WorldWideScience

Sample records for lysimeters

  1. Lysimeter literature review

    International Nuclear Information System (INIS)

    Rogers, R.D.; McConnell, J.W. Jr.

    1993-08-01

    Many reports have been published concerning the use of lysimeters to obtain data on the performance of buried radioactive waste. This document presents a review of some of those reports. This review includes lysimeter studies using radioactive waste forms at Savannah River Site, Hanford Site, Argonne National Laboratory, and Oak Ridge National Laboratory; radionuclide tracer studies at Whiteshell Nuclear Research Establishment and Los Alamos National Laboratory; and water movement studies at the Nuclear Regulatory Commission's Beltsville, Maryland site, at the Hanford Site, and at New Mexico State University. The tests, results, and conclusions of each report are summarized, and conclusions concerning lysimeter technology are presented from an overall analysis of the literature. 38 refs., 44 figs., 9 tabs

  2. The Precision Field Lysimeter Concept

    Science.gov (United States)

    Fank, J.

    2009-04-01

    The understanding and interpretation of leaching processes have improved significantly during the past decades. Unlike laboratory experiments, which are mostly performed under very controlled conditions (e.g. homogeneous, uniform packing of pre-treated test material, saturated steady-state flow conditions, and controlled uniform hydraulic conditions), lysimeter experiments generally simulate actual field conditions. Lysimeters may be classified according to different criteria such as type of soil block used (monolithic or reconstructed), drainage (drainage by gravity or vacuum or a water table may be maintained), or weighing or non-weighing lysimeters. In 2004 experimental investigations have been set up to assess the impact of different farming systems on groundwater quality of the shallow floodplain aquifer of the river Mur in Wagna (Styria, Austria). The sediment is characterized by a thin layer (30 - 100 cm) of sandy Dystric Cambisol and underlying gravel and sand. Three precisely weighing equilibrium tension block lysimeters have been installed in agricultural test fields to compare water flow and solute transport under (i) organic farming, (ii) conventional low input farming and (iii) extensification by mulching grass. Specific monitoring equipment is used to reduce the well known shortcomings of lysimeter investigations: The lysimeter core is excavated as an undisturbed monolithic block (circular, 1 m2 surface area, 2 m depth) to prevent destruction of the natural soil structure, and pore system. Tracing experiments have been achieved to investigate the occurrence of artificial preferential flow and transport along the walls of the lysimeters. The results show that such effects can be neglected. Precisely weighing load cells are used to constantly determine the weight loss of the lysimeter due to evaporation and transpiration and to measure different forms of precipitation. The accuracy of the weighing apparatus is 0.05 kg, or 0.05 mm water equivalent

  3. Lysimeter Research Group - A scientific community network for lysimeter research

    Science.gov (United States)

    Cepuder, Peter; Nolz, Reinhard; Bohner, Andreas; Baumgarten, Andreas; Klammler, Gernot; Murer, Erwin; Wimmer, Bernhard

    2014-05-01

    A lysimeter is a vessel that isolates a volume of soil between ground surface and a certain depth, and includes a sampling device for percolating water at its bottom. Lysimeters are traditionally used to study water and solute transport in the soil. Equipped with a weighing system, soil water sensors and temperature sensors, lysimeters are valuable instruments to investigate hydrological processes in the system soil-plant-atmosphere, especially fluxes across its boundary layers, e.g. infiltration, evapotranspiration and deep drainage. Modern lysimeter facilities measure water balance components with high precision and high temporal resolution. Hence, lysimeters are used in various research disciplines - such as hydrology, hydrogeology, soil science, agriculture, forestry, and climate change studies - to investigate hydrological, chemical and biological processes in the soil. The Lysimeter Research Group (LRG) was established in 1992 as a registered nonprofit association with free membership (ZVR number: 806128239, Austria). It is organized as an executive board with an international scientific steering committee. In the beginning the LRG focused mainly on nitrate contamination in Austria and its neighboring countries. Today the main intention of the LRG is to advance interdisciplinary exchange of information between researchers and users working in the field of lysimetry on an international level. The LRG also aims for the dissemination of scientific knowledge to the public and the support of decision makers. Main activities are the organization of a lysimeter conference every two years in Raumberg-Gumpenstein (Styria, Austria), the organization of excursions to lysimeter stations and related research sites around Europe, and the maintenance of a website (www.lysimeter.at). The website contains useful information about numerous European lysimeter stations regarding their infrastructure, instrumentation and operation, as well as related links and references which

  4. Measurement of precipitation using lysimeters

    Science.gov (United States)

    Fank, Johann; Klammler, Gernot

    2013-04-01

    Austria's alpine foothill aquifers contain important drinking water resources, but are also used intensively for agricultural production. These groundwater bodies are generally recharged by infiltrating precipitation. A sustainable water resources management of these aquifers requires quantifying real evapotranspiration (ET), groundwater recharge (GR), precipitation (P) and soil water storage change (ΔS). While GR and ΔS can be directly measured by weighable lysimeters and P by separate precipitation gauges, ET is determined by solving the climatic water balance ET = P GR ± ΔS. According to WMO (2008) measurement of rainfall is strongly influenced by precipitation gauge errors. Most significant errors result from wind loss, wetting loss, evaporation loss, and due to in- and out-splashing of water. Measuring errors can be reduced by a larger area of the measuring gaugés surface and positioning the collecting vessel at ground level. Modern weighable lysimeters commonly have a surface of 1 m², are integrated into their typical surroundings of vegetation cover (to avoid oasis effects) and allow scaling the mass change of monolithic soil columns in high measuring accuracy (0.01 mm water equivalent) and high temporal resolution. Thus, also precipitation can be quantified by measuring the positive mass changes of the lysimeter. According to Meissner et al. (2007) also dew, fog and rime can be determined by means of highly precise weighable lysimeters. Furthermore, measuring precipitation using lysimeters avoid common measuring errors (WMO 2008) at point scale. Though, this method implicates external effects (background noise, influence of vegetation and wind) which affect the mass time series. While the background noise of the weighing is rather well known and can be filtered out of the mass time series, the influence of wind, which blows through the vegetation and affects measured lysimeter mass, cannot be corrected easily since there is no clear relation between

  5. Mathematical study of a lysimeter

    International Nuclear Information System (INIS)

    Gibson, D.K.

    1987-11-01

    In studies of the rehabilitation of mine overburden heaps at Rum Jungle in the Northern Territory of Australia, simple buried water collectors have been used as lysimeters to measure the infiltration into the heaps. This report describes the development and results of a study state finite difference computer code which calculates the movement of water in such systems. It is shown that the water collection efficiency of this type of lysimeter depends strongly on the hydraulic properties of the soil in which it is buried, as does the rate of capillary loss during periods of zero infiltration

  6. Lysimeter study of vegetative uptake from saltstone

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.

    1990-06-08

    At the Savannah River Site, liquid, low-level nuclear waste will be disposed of by incorporating the waste in concrete, a wasteform called saltstone. Saltstone monoliths will then be buried in the earth. To study the potential uptake of radionuclides by trees and other plants growing in the soil in the area containing buried saltstone, a lysimeter study has been in progress since 1984. Thirty two lysimeters were designed, constructed, and filled with soil. Saltstone samples, containing the liquid, low-level supernate from the tank 50 in-tank precipitation demonstration, were buried in some of the lysimeters. Other lysimeters, not containing saltstone, were used as controls. Crops, grass, and trees were planted in the lysimeters and sampled periodically to determine radionuclide concentrations. Water samples were also collected from the lysimeter sumps and analyzed for radionuclide content. This report documents the results of vegetative and lysimeter sump water measurements from the beginning of the project in November of 1984 through September of 1989. 6 refs., 22 figs., 6 tabs.

  7. Investigations of pollutant migration using lysimeters

    International Nuclear Information System (INIS)

    Klotz, D.

    2002-01-01

    The third GSF Lysimeter Workshop focused on pollutant migration in underground strata, i.e. the dispersion of water constituents as referred to water transport on the basis of ideal tracer investigations [de

  8. Summary: special waste form lysimeters - arid program

    International Nuclear Information System (INIS)

    Skaggs, R.L.; Walter, M.B.

    1987-01-01

    The purpose of the Special Waste Form Lysimeters - Arid Program is to determine the performance of solidified commercial low-level waste forms using a field-scale lysimeter facility constructed for measuring the release and migration of radionuclides from the waste forms. The performance of these waste forms, as measured by radionuclide concentrations in lysimeter effluent, will be compared to that predicted by laboratory characterization of the waste forms. Waste forms being tested include nuclear power reactor waste streams that have been solidified in cement, Dow polymer, and bitumen. To conduct the field leaching experiments a lysimeter facility was built to measure leachate under actual environmental conditions. Field-scale samples of waste were buried in lysimeters equipped to measure water balance components, effluent radionuclide concentrations, and to a limited extent, radionuclide concentrations in lysimeter soil samples. The waste forms are being characterized by standard laboratory leach tests to obtain estimates of radionuclide release. These estimates will be compared to leach rates observed in the field. Adsorption studies are being conducted to determine the amount of contaminant available for transport after the release. Theoretical solubility calculations will also be performed to investigate whether common solid phases could be controlling radionuclide release. 4 references, 8 figures, 1 table

  9. Special waste-form lysimeters: Arid

    International Nuclear Information System (INIS)

    Jones, T.L.; Serne, R.J.

    1987-08-01

    The release of contaminant from solidified low-level waste forms is being studied in a field lysimeter facility at the Hanford Site in southeastern Washington State. Duplicate samples of five different waste forms have been buried in 10 lysimeters since March 1984. Waste-form samples represent three different waste streams and four solidification agents (masonry cement, Portland III cement, Dow polymer /sup (a)/, and bitumen). Most precipitation at the Hanford Site arrives as winter snow; this contributes to a strong seasonal pattern in water storage and drainage observed in the lysimeters. The result is an annual range in the volumetric soil water content from 11% in late winter to 7% in the late summer and early fall, as well as annual changes in pore water velocities from approximately 1 cm/wk in early spring to less than 0.05 cm/wk in early fall. Measurable quantities of tritium and cobalt-60 are being collected in lysimeter drainage water. Approximately 30% of the original tritium inventory has been leached from two lysimeters originally containing tritium. Cobalt-60 is present in all waste forms; it is being collected in the leachate from five lysimeters. The total amount released varies, but in each case it is less than 0.1% of the original cobalt inventory of the waste sample. Nonradioactive constituents contained in the waste form, such as sodium, boron, and sulfate, are also being leached

  10. Field Lysimeter Test Facility for protective barriers: Experimental plan

    International Nuclear Information System (INIS)

    Kirkham, R.R.; Gee, G.W.; Downs, J.L.

    1987-12-01

    This document was first written in October 1986 and has been used to guide the design of the Field Lysimeter Test Facility (FLTF) and to promote discussions between research and engineering staff regarding the selection of barrier treatments for inclusion in the FLTF. The construction of the lysimeter facility was completed June 28, 1987. This document describes the facility, the treatments placed in each lysimeter, types of measurements made in each lysimeter, and a brief discussion of project activities related to quality assurance, safety, and funding requirements. The treatment description and figures have been updated to reflect the lysimeter facility as constructed. 12 refs., 6 figs., 5 tabs

  11. Special wasteform lysimeter program at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Oblath, S.B.; Stone, J.A.; Wiley, J.R.

    1983-01-01

    The Special Wasteform Lysimeter project at SRL is designed to measure performance of typical production-line, low-level, solid wasteforms produced at power reactors and emplaced in a himid SLB site. The use of lysimeters permits direct measurement of migration of radioactivity from these wasteforms to provide a technical basis for evaluating how well these forms will perform in an actual burial trench, and additionally allows comparison with unencapsulated defense waste. Cement and polymer wasteforms were place into 10 lysimeters in March 1982. By March, 1983, 60 Co from both types of wasteforms had been detected in te lysimeter sumps. 134 Cs, 137 Cs, and 60 Co were found in porous cup samplers located directly below the wasteforms. Measurements in mid-summer 1983 showed that 60 Co levels were 10 to 100 times greater in lysimeters containing the cement forms than in those containing the polymer. 5 references

  12. Special wasteform lysimeters initial three-year monitoring report

    International Nuclear Information System (INIS)

    Oblath, S.B.; Grant, M.W.

    1985-01-01

    Lysimeters containing ten typical commercial power reactor low-level wsteforms are in operation at the Savannah River Plant. This ten-year program is designed to measure the leaching and migration of radionuclides from these wasteforms under realistic burial ground conditions in a humid site. The data which the lysimeters provide serves as a technical basis for evaluating the performance of the wasteforms under actual burial conditions. Three years' operation of the lysimeters has demonstrated that all of the wasteforms perform excellently, with minimal releases of radioactivity. Cement-based wasteforms appear superior at retaining strontium. Polymer-based wasteforms appear superior at retaining cobalt and cesium isotopes. The releases of activity from the lysimeters are compared to the leaching behavior in immersion tests, with several differences noted. The conclusions drawn in this study are tentative, subject to the performance of the wasteforms after the lysimeters have been in operation for a longer period of time

  13. Leaching of transuranics observed in lysimeter experiments

    International Nuclear Information System (INIS)

    Erikson, A.; Fredriksson, L.

    1994-01-01

    A lysimeter installation, primarily designed for studies on plant uptake of transuranics from a number of Swedish soils, has been used also for studies on leaching of nuclides with drainage water from contaminated top soil layers in lysimeter vessels through 65 cm subsoil layers. Interception by ion exchanging resins simulated the nuclide transfer to a field drainage system. The study dealt with the contamination of agricultural land. The results obtained in the experiments have to be interpreted cautiously with regard to their bearing on field conditions. Also, the experimental period has been short when compared with the expected ecological half time of transuranic elements in the environment. However, the results indicate that over a first decade the leaching to drainage systems of transuranics in equilibrium with soil environments is of the same order as that of the crop uptake. The ranges assessed for leaching with an excess precipitation of 200 mm from a deposit in the plough layer to the drainage system during a decade are: for plutonium - 0.003-0.8%, for americium - 0.004-0.006% and for neptunium - 0.03-0.06%. The values for plutonium and americium are very similar except for the organic soil used which held the former nuclide very loosely bound. The leaching of neptunium seems to be ten times that for the other nuclides. It is higher on sandy soils than on organic and clay soils. (author)

  14. 1987 monitoring report for the defense waste lysimeters

    International Nuclear Information System (INIS)

    McIntyre, P.F.

    1987-01-01

    Low levels of radionuclides migrate through the soil to the sump. This report updates previous monitoring reports and discusses results obtained during the past year of operation. The effluents from the forty defense waste lysimeters continue to be analyzed on a monthly basis for gamma emitting radionuclides and quarterly for alpha emitting radionuclides and Sr-90. Cobalt-60, Sr-90, Sb-125, U-235, Pu-238, Pu-239 and Am-241 continue to be detected in sump effluent. Detectable levels of cobalt-60 and antimony-125 are each observed in only one lysimeter. Manganese-54, Ru-106 and Th-234 are no longer detected in effluent from any lysimeter. Significant levels of Sr-90 and Pu-238 are observed from several lysimeters, while others continue to show low levels of U-235, Pu-239 and Am-241. The release rates for transporting radionuclides through the soil to the sump indicate that migration is independent of whether a lysimeter is operated in a saturated or unsaturated mode. Pine trees continue to grow on the ten foot diameter lysimeters. No sampling of needles or woody stem portions was performed. The purpose of analyzing pine trees growing on lysimeters is to measure the amount of radionuclide uptake by the pine trees as their root systems come in contact with the waste material. 6 refs., 2 figs., 49 tabs

  15. Leaching of potassium in a lysimeter experiment

    International Nuclear Information System (INIS)

    Gerzabek, M.H.

    1996-11-01

    Leaching of potassium was studied in the lysimeter plant in Seibersdorf/Austria (Pannonian climate). Averaged over three years, gravitational water amounted to 15.7% of the sum of precipitation (mean 485 mm) and irrigation (mean 138 mm). Differences between the four soils with respect to drainage were explained by the specific percentage of the soil skeleton. The average yearly potassium leaching ranged from 3.64 kg K/ha·yr (Dystric-Cambisol) to 22.7 kg K/ha·yr (drained Gleysol). Correlation between gravitational water volume and potassium leaching were only significant for one out of four soil types. No correlation was observed between extractable potassium in the soil profiles and potassium leaching. (author)

  16. Radionuclide release from low-level waste in field lysimeters

    International Nuclear Information System (INIS)

    Oblath, S.B.

    1986-01-01

    A field program has been in operation for 8 years at the Savannah River Plant (SRP) to determine the leaching/migration behavior of low-level radioactive waste using lysimeters. The lysimeters are soil-filled caissons containing well characterized wastes, with each lysimeter serving as a model of a shallow land burial trench. Sampling and analysis of percolate water and vegetation from the lysimeters provide a determination of the release rates of the radionuclides from the waste/soil system. Vegetative uptake appears to be a major pathway for migration. Fractional release rates from the waste/soil system are less than 0.01% per year. Waste-to-soil leach rates up to 10% per year have been determined by coring several of the lysimeters. The leaching of solidified wasteforms under unsaturated field conditions has agreed well with static, immersion leaching of the same type waste in the laboratory. However, releases from the waste/soil system in the lysimeter may be greater than predicted based on leaching alone, due to complexation of the radionuclides by other components leached from the wastes to form mobile, anionic species

  17. Results of field testing of waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.

    1988-01-01

    The purpose of the field testing task, using lysimeter arrays, is to expose samples of solidified resin waste to the actual physical, chemical, and microbiological conditions of disposal enviroment. Wastes used in the experiment include a mixture of synthetic organic ion exchange resins and a mixture of organic exchange resins and an inorganic zeolite. Solidification agents used to produce the 4.8-by 7.6-cm cylindrical waste forms used in the study were Portland Type I-II cement and Dow vinyl ester-styrene. Seven of these waste forms were stacked end-to-end and inserted into each lysimeter to provide a 1-L volume. There are 10 lysimeters, 5 at ORNL and 5 at ANL-E. Lysimeters used in this study were designed to be self-contained units which will be disposed at the termination of the 20-year study. Each is a 0.91-by 3.12-m right-circular cylinder divided into an upper compartment, which contains fill material, waste forms, and instrumentation, and an empty lower compartment, which collects leachate. Four lysimeters at each site are filled with soil, while a fifth (used as a control) is filled with inert silica oxide sand. Instrumentation within each lysimeter includes porous cup soil-water samplers and soil moisture/temperature probes. The probes are connected to an on-site data acquisition and storage system (DAS) which also collects data from a field meteorological station located at each site. 9 refs

  18. Geochemical Modeling of ILAW Lysimeter Water Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-22

    Geochemical modeling results of water extracts from simulated immobilized low-activity waste (ILAW) glasses, placed in lysimeters for eight years suggest that the secondary phase reaction network developed using product consistency test (PCT) results at 90°C may need to be modified for field conditions. For sediment samples that had been collected from near the glass samples, the impact of glass corrosion could be readily observed based upon the pH of their water extracts. For unimpacted sediments the pH ranged from 7.88 to 8.11 with an average of 8.04. Sediments that had observable impacts from glass corrosion exhibited elevated pH values (as high as 9.97). For lysimeter sediment samples that appear to have been impacted by glass corrosion to the greatest extent, saturation indices determined for analcime, calcite, and chalcedony in the 1:1 water extracts were near equilibrium and were consistent with the secondary phase reaction network developed using PCT results at 90°C. Fe(OH)3(s) also appears to be essentially at equilibrium in extracts impacted by glass corrosion, but with a solubility product (log Ksp) that is approximately 2.13 units lower than that used in the secondary phase reaction network developed using PCT results at 90°C. The solubilities of TiO2(am) and ZrO2(am) also appear to be much lower than that assumed in the secondary phase reaction network developed using PCT results at 90°C. The extent that the solubility of TiO2(am) and ZrO2(am) were reduced relative to that assumed in the secondary phase reaction network developed using PCT results at 90°C could not be quantified because the concentrations of Ti and Zr in the extracts were below the estimated quantification limit. Gibbsite was consistently highly oversaturated in the extract while dawsonite was at or near equilibrium. This suggests that dawsonite might be a more suitable phase for the secondary phase reaction network

  19. The estimation of soil water fluxes using lysimeter data

    Science.gov (United States)

    Wegehenkel, M.

    2009-04-01

    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  20. Lysimeter data as input to performance assessment models

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.

    1998-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-117 prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. The program includes reviewing radionuclide releases from those waste forms in the first 7 years of sampling and examining the relationship between code input parameters and lysimeter data. Also, lysimeter data are applied to performance assessment source term models, and initial results from use of data in two models are presented

  1. Status of SRNL radiological field lysimeter experiment-Year 1

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Roberts, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-10-01

    The Savannah River National Laboratory (SRNL) Radiological Field Lysimeter Experiment is a one-of-a-kind field facility designed to study radionuclide geochemical processes at a larger spatial scale (from grams to tens of kilograms sediment) and temporal scale (from months to 10 years) than is readily afforded through laboratory studies. The lysimeter facility is intended to capture the natural heterogeneity of moisture and temperature regimes in the vadose zone, the unsaturated subsurface region between the surface soil and the underlying aquifer. The 48 lysimeter columns, which contain various radionuclides (and stable iodine), were opened to rainfall infiltration on July 5, 2012. The objective of this report is to provide a status of the lysimeter facility operations and to compile data collected during FY13, including leachate volume, rainfall, and soil moisture and temperature in situ probe data. Radiological leachate data are not presented in this document but will be the subject of a separate document.1 Leachate samples were collected quarterly and shipped to Clemson University for radiological analyses. Rainfall, leachate volume, moisture and temperature probe data were collected continuously. During operations of the facility this year, there were four safety or technical concerns that required additional maintenance: 1) radioactivity was detected in one of the overflow bottles (captured water collected from the secondary containment that does not come in contact with the radiological source material); 2) rainwater accumulated within the sample-bottle storage sheds; 3) overflow containers collected more liquid than anticipated; and 4) significant spider infestation occurred in the sample-bottle storage sheds. To address the first three concerns, each of the lysimeter columns was re-plumbed to improve and to minimize the number of joint unions. To address the fourth concern regarding spiders, new sample-bottle water sheds were purchased and a pest control

  2. Leaching of transuranics observed in lysimeter experiments

    International Nuclear Information System (INIS)

    Eriksson, A.; Fredriksson, L.

    1994-01-01

    Transuranic elements in fallout are generally bound in oxide particles, size from submicron to several microns. During the fallout they can be intercepted on plant covers or reach the soil surface. The particles can be re-suspended to the air and reach other residence sites, be linked into the food chain or be redistributed in other ways (Cf Essington et al. 1976) before eventually being incorporated into the soil. The fate of such particles in the soil depends on the size and on the nature of the particulate matter and on environmental factors, the climate and the properties of the soil. In a dry climate the particles tend to be kept intact long time, (Schulz et al. 1976) and they are more easily redistributed than in a humid climate with plant covered moist and living soils. In the former the particles move more easily in the soil profile than in the latter, the particle matter is very slowly dissolved and the average availability of the deposited nuclides for plant uptake can be assumed to be comparatively low. The downward movements of the particles or nuclide compounds bound to small soil particles are enhanced by the swelling and shrinking of soil caused by absorption and depletion of water during the season. Cracks and fissures are created and closed several times a year in soils rich in colloidal material. Sandy soils with coarse material have less cracks, but in dry conditions the empty pore space may allow transport of fine particles. The coarser material also has less specific area and sorption capacity. The nuclide compounds leached with the drainage water in coarse soils should be less retarded than in clays (Cf. Rai and Serne, 1977; Nishita and Haug, 1979 and Rai et al., 1980). The lysimeter installation used for the study reported below was primarily designed to study the plant uptake of transuranics from a number of Swedish soils. However, as such an installation in many ways well simulate field conditions and at the same time is a closed system

  3. Instrumentation of Lysimeter Experiments and Monitoring of Soil Parameters

    International Nuclear Information System (INIS)

    Schmid, T.; Tallos, A.; Millan, R.; Vera, R.; Recreo, F.

    2004-01-01

    This study forms part of the project Mercurio and Recuperation de Terrenos Afectados por Mercurio Ambiental (RETAMA) , which determines the behaviour of mercury in the soil-plant system within the area of Almaden. The objective of this work is to instrument lysimeters with a set of electronic sensors to monitor physical and chemical soil parameters (moisture content, soil temperature, soil water matrix potential, Eh and pH) over a period of a complete vegetation cycle for selected crops. Physical and chemical soil analyses have been carried out on samples two soil profiles marking the extreme perimeter where the lysimeters were extracted. The monitoring data obtained every half hour show that the physicochemical conditions of the soils in the lysimeter can be correlated with the type of cultivation in the lysimeters. The results for parameters such as soil water matrix potential and the soil temperature reflect the diurnal changes; and fluctuations of the Eh can be related to the biological activities in the soils and are within oxid and sub oxid conditions. Slight fluctuations have been observed for the pH and constant volumetric moisture content is maintained during the period of no hydric stress. (Author) 16 refs

  4. Instrumentation of Lysimeter Experiments and Monitoring of Soil Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, T.; Tallos, A.; Millan, R.; Vera, R.; Recreo, F.

    2004-07-01

    This study forms part of the project Mercurio and Recuperation de Terrenos Afectados por Mercurio Ambiental (RETAMA), which determines the behaviour of mercury in the soil-plant system within the area of Almaden. The objective of this work is to instrument lysimeters with a set of electronic sensors to monitor physical and chemical soil parameters (moisture content, soil temperature, soil water matrix potential. Eh and pH) over a period of a complete vegetation cycle for selected crops. Physical and chemical soil analyses have been carried out on samples two soil profiles marking the extreme perimeter where the lysimeters were extracted. The monitoring data obtained every half hour show that the physicochemical conditions of the soils in the lysimeter can be correlated with the type of cultivation in the lysimeters. The results for parameters such as soil water matrix potential and the soil temperature reflect the diurnal changes; and fluctuations of the Eh can be related to the biological activities in the soils and are within oxid and suboxic conditions. Slight fluctuations have been observed for the pH and constant volumetric moisture content is maintained during the period of no hydric stress. (Author) 16 refs.

  5. Precipitation and evapotranspiration at the mountain lysimeter station Stoderzinken

    Science.gov (United States)

    Herndl, Markus; Winkler, Gerfried; Birk, Steffen

    2014-05-01

    Alpine water resources are highly important for the Austrian drinking water supply. In particular, the Northern Calcareous Alps contribute substantially to both the regional and the national drinking water supply. To analyse water balance, runoff and recharge in a representative mountain pasture area in the Northern Calcareous Alps a lysimeter station was established at the mountain Stoderzinken (1830 m a.s.l.) in 2005. This work examines the water balance at the lysimeter station during one summer period. Precipitation and evapotranspiration are determined using various approaches in order to identify potential errors in the measurement or interpretation of the data and thus to assess the uncertainties in the water balance components. For this purpose, data of rain gauges and a distrometer was compared with the precipitation calculated from the water balance of the lysimeter. Furthermore evapotranspiration was calculated using the HAUDE and PENMAN-MONTEITH equations for comparison. Already in previous seasons the distrometer was found to be prone to errors, which was confirmed when compared to the rain gauge data. In contrast, precipitation rates calculated from the lysimeter data were found to agree better with the rain gauge data but showed a trend to higher values. However, the approach to calculate precipitation from the lysimeter data turned out to be unsuitable for time periods with significant contribution of snow melt. Evapotranspiration calculated from lysimeter data are in good agreement with the results from the above-mentioned (semi-)empirical equations during dry periods. Furthermore the differences to the evapotranspiration calculated from the climate data correlate with the amount of precipitation. These results suggest that in alpine catchments the uncertainty in the precipitation data constitutes the major source of error in the calculation of evapotranspiration from the water balance of the lysimeter. However, it should be noted that these

  6. Monitoring the performance of an alternative cover using caisson lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J.; Smith, G.M.; Mushovic, P.S.

    2004-02-29

    The U.S. Department of Energy (DOE) office in Grand Junction, Colorado, and the U.S. Environmental Protection Agency (EPA), Region 8, collaborated on a series of field lysimeter studies to design and monitor the performance of an alternative cover for a uranium mill tailings disposal cell at the Monticello, Utah, Superfund Site. Because groundwater recharge is naturally limited at Monticello in areas with thick loess soils, DOE and EPA chose to design a cover for Monticello using local soils and a native plant community to mimic this natural soilwater balance. Two large drainage lysimeters fabricated of corrugated steel culvert lined with high-density polyethylene were installed to evaluate the hydrological and ecological performance of an alternative cover design constructed in 2000 on the disposal cell. Unlike conventional, lowpermeability designs, this cover relies on (1) the water storage capacity of a 163-cm soil “sponge” layer overlying a sand-and-gravel capillary barrier to retain precipitation while plants are dormant and (2) native vegetation to remove precipitation during the growing season. The sponge layer consists of a clay loam subsoil compacted to 1.65 g/cm2 in one lysimeter and a loam topsoil compacted to 1.45 g/cm2 in the other lysimeter, representing the range of as-built conditions constructed in the nearby disposal cell cover. About 0.1 mm of drainage occurred in both lysimeters during an average precipitation year and before they were planted, an amount well below the EPA target of <3.0 mm/yr. However, the cover with less compacted loam topsoil sponge had a 40% greater water storage capacity than the cover with overly compacted clay loam subsoil sponge. The difference is attributable in part to higher green leaf area and water extraction by plants in the loam topsoil. The lesson learned is that seemingly subtle differences in soil types, sources, and compaction can result in salient differences in performance. Diverse, seeded communities of

  7. Lysimeter data as input to performance assessment source term codes

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Sullivan, T.

    1992-01-01

    The Field Lysimeter Investigation: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-II c prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. In this paper, radionuclide releases from waste forms in the first seven years of sampling are presented and discussed. Application of lysimeter data to be used in performance assessment source term models is presented. Initial results from use of data in two models are discussed

  8. Results of field testing of radioactive waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W., Jr.; Rogers, R.D.; Jastrow, J.D.; Wickliff, D.S.

    1992-01-01

    The Field Lysimeter Investigation: Low-Level Waste Data Base Development Program is obtaining informaiton on the performance of radioactive waste in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-II prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. In this paper, radionuclide releases from waste forms in the first six years of sampling are presented and discussed. Application of lysimeter data to use in performance assessment models is presented. Initial results from use of data in a performance assessment model are discussed

  9. Construction and evaluation of simulated pilot scale landfill lysimeter in Bangladesh.

    Science.gov (United States)

    Rafizul, Islam M; Howlader, Milon Kanti; Alamgir, Muhammed

    2012-11-01

    This research concentrates the design, construction and evaluation of simulated pilot scale landfill lysimeter at KUET campus, Khulna, Bangladesh. Both the aerobic and anaerobic conditions having a base liner and two different types of cap liner were simulated. After the design of a reference cell, the construction of landfill lysimeter was started in January 2008 and completed in July 2008. In all construction process locally available civil construction materials were used. The municipal solid waste (MSW) of 2800-2985 kg having the total volume of 2.80 m(3) (height 1.6 m) and moisture content of 65% was deposited in each lysimeter by applying required compaction energy. In contrast, both the composition in terms of methane (CH(4)), carbon dioxide (CO(2)) and oxygen (O(2)) as well as the flow rate of landfill gas (LFG) generated from MSW in landfill lysimeter were measured and varied significantly in relation to the variation of lysimeter operational condition. Moreover, anaerobic lysimeter-C shows the highest composition of LFG in compare to the anaerobic lysimeter-B due to the providing of lower compaction of cap liner in anaerobic lysimeter-C. Here, it is interesting to note that in absence of compacted clay liner (CCL) and hence percolation of rainwater that facilitates rapid degradation of MSW in aerobic lysimeter-A has resulted in the highest settlement than that of anaerobic landfill lysimeter-B and C. Moreover, in case of anaerobic lysimeter-B and C, the leachate generation was lower than that of aerobic lysimeter-A due to the providing of cap liner in anaerobic lysimeter-B and C, played an important role to reduce the percolation of rainwater. The study also reveals that the leachate pollution index (LPI) has decreased in relation to the increasing of elapsed period as well as the LPI for collection system of aerobic lysimeter-A was higher than that of the collection system of anaerobic lysimeter-B and C. Finally, it can be depicted that LPI for lysimeter

  10. Special waste form lysimeters-arid. Annual report, 1985

    International Nuclear Information System (INIS)

    Walter, M.B.; Graham, M.J.

    1985-09-01

    The Special Waste Form Lysimeters-Arid program was initiated to determine typical source terms generated by commercial solidified low-level nuclear waste in an arid climate. Waste-form leaching tests are being conducted at a field facility at the Hanford site near Richland, Washington. A similar program is being conducted at a humid site. The field facility consists of 10 lysimeters placed around a central instrument caisson. The waste samples from boiling water and pressurized water reactors were emplaced in 1984, and the lysimeters are being monitored for movement of contaminants and water. Solidifying agents being tested include vinyl ester-styrene, bitumen, and cement. Laboratory leaching and geochemical modeling studies are being conducted to predict expected leach rates at the field site and to aid field-data interpretation. Small samples of the solidified waste forms were made for use in the laboratory leaching studies that include standard leach tests and leaching of solidified waste forms in soil columns. Complete chemical and radionuclide analyses are being conducted on the solid and liquid portions of the wastes. 2 refs

  11. Tritium tracing in hydrogeochemical studies using model-lysimeters

    International Nuclear Information System (INIS)

    Matthess, G.; Pekdeger, A.; Schulz, H.D.; Rast, H.; Rauert, W.

    1978-01-01

    Tritium was used as a reference tracer for hydrogeochemical studies in the unsaturated zone. The investigators used different lysimeter types (25, 50, 100 cm), with and without suction plates filled with undisturbed soil monoliths of sandy podsol and loamy lessive. The tritium loss was greater than the evaporation amount determined. Water logging takes place in lysimeter bottoms increasing the evaporation in up to 100 cm lysimeters filled with loamy lessive and 25 cm with sandy podsol. After a 20 mm rain event seepage characteristics indicate 'by-passing' water besides intergranular seepage. Dispersion coefficients (8.5 x 10 -5 cm 2 s -1 ) are higher than molecular diffusion coefficient. Dispersion takes place mainly in top soil with wide ranging pore size distribution. Distribution coefficients of tritium in soil are rather low. Concentrations of anions and dissolved organic substance are different depending on residence time of seepage water in soil. Even a short residence time of seepage water in unsaturated soil is enough for cation exchange reactions to take place. (orig.) [de

  12. African Mahogany transpiration with Granier method and water table lysimeter

    Directory of Open Access Journals (Sweden)

    Ana C. O. Sérvulo

    Full Text Available ABSTRACT The thermal dissipation probe (Granier method is useful in the water deficit monitoring and irrigation management of African Mahogany, but its model needs proper adjustment. This paper aimed to adjust and validate the Granier sap flux model to estimate African Mahogany transpiration, measure transpiration using lysimeter and relate it to atmospheric water demand. Weather conditions, transpiration and sap flux were monitored in three units of 2.5-year-old African Mahogany trees in constant water table lysimeter, in Goiânia, GO. Sapwood area (SA, leaf area (LA, transpiration measured by lysimeter (TLYS and estimated by sap flux (TSF were evaluated. The SA comprised 55.24% of the trunk’s transversal section. The LA varied from 11.95 to 10.66 m2. TLYS and TSF varied from 2.94 to 29.31 and from 0.94 to 15.45 L d-1, respectively. The original model underestimated transpiration by 44.4%, being the adjusted equation F = 268.25 . k1.231. SA was significant (F < 0.05. Due the root confinement, the transpiration showed low correlation, but positive, with the atmospheric water demand.

  13. Special Waste Form Lysimeters-Arid: annual report 1985

    International Nuclear Information System (INIS)

    Walter, M.B.; Graham, M.J.

    1986-01-01

    The Special Waste Form Lysimeters-Arid program was initiated to determine typical source terms generated by commercial solidified low-level nuclear waste in an arid climate. Waste-form leaching tests are being conducted at a field facility at the Hanford site near Richland, Washington. A similar program is being conducted at a humid site. The field facility consists of 10 lysimeters placed around a central instrument caisson. The waste samples from boiling water and pressurized water reactors were emplaced in 1984, and the lysimeters are being monitored for movement of contaminants and water. Solidifying agents being tested include vinyl ester-styrene, bitumen, and cement. Laboratory leaching and geochemical modeling studies are being conducted to predict expected leach rates at the field site and to aid field-data interpretation. Small samples of the solidified waste forms were made for use in the laboratory leaching studies that include standard leach tests and leaching of solidified waste forms in soil columns. Complete chemical and radionuclide analyses are being conducted on the solid and liquid portions of the wastes

  14. Evaluation and performance of the special wasteform lysimeters at a humid site

    International Nuclear Information System (INIS)

    Oblath, S.B.; Hoeffner, S.L.

    1985-09-01

    The Savannah River Laboratory has been evaluating the leaching/migration behavior of commercial power reactor wasteforms by the use of lysimeters operated under field conditions at a humid site. These lysimeters model the conditions in actual burial trenches. Wasteforms comprising Portland cement, masonry cement, and vinyl ester-styrene polymer wasteforms were emplaced in the lysimeters in March 1982. Effluent water has been analyzed on a regular basis since that time. Cs-137, Sr-90, and/or Co-60 have observed in the effluent water from the lysimeters, as well as in soil moisture samples collected from the unsaturated zone beneath the wasteforms. In March of 1984, horizontal cores were taken from one of the lysimeters containing a Portland cement wasteform to determine the vertical and radial profiles of radionuclides which might not have reached the lysimeter sump. Results from all of these sampling methods are discussed and interpreted. 6 refs., 3 figs., 3 tabs

  15. Characterization and tropical seasonal variation of leachate: results from landfill lysimeter studied.

    Science.gov (United States)

    Rafizul, Islam M; Alamgir, Muhammed

    2012-11-01

    This study aims to characterize the leachate and to investigate the tropical climatic influence on leachate characteristics of lysimeter studies under different seasonal variations at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored since June 2008 to May 2010, these periods cover both the dry and rainy season. The leachate generation had followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have highest leachate generation. Moreover, the open dump lysimeter-A had lower total kjeldahl nitrogen (TKN), ammonia nitrogen (NH(4)-N) and TKN load, while both the COD concentration and load was higher compared with sanitary landfill lysimeter-B and C. In addition, sanitary landfill lysimeter-B, not only had lowest leachate generation, but also produces reasonable low COD concentration and load compared with open dump lysimeter-A. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and providing remedial measures of proper liner system in sanitary landfill design and leachate treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Annual Report for Gravity Collection Lysimeter Monitoring Plan - ERDF Cells 5 and 6

    International Nuclear Information System (INIS)

    Remsen, W.E.

    2006-01-01

    The objectives of the Annual Report are to: (1) describe changes in the volume of liquid seen in each lysimeter, (2) describe concentrations and changes or trends in the concentrations of leachate-indicator constituents in any liquids accumulated in each lysimeter, (3) summarize the finding in regard to the presence or absence of leachate in each lysimeter, (4) make recommendations, if any, limited to vadose-zone study-related variables. The data and analyses contained in this report reflect the initial characterization of construction and consolidation water in Cells 5 and 6 lysimeters.

  17. Upscaling of lysimeter measurements to regional groundwater nitrate distribution

    Science.gov (United States)

    Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Rock, Gerhard

    2015-04-01

    For many European countries nitrate leaching from the soil zone into the aquifer due to surplus application of mineral fertilizer and animal manure by farmers constitutes the most important threat to groundwater quality. This is a diffuse pollution situation and measures to change agricultural production have to be investigated at the aquifer scale to safeguard drinking water supply from shallow groundwater resources Lysimeters are state-of-the-art measurements for water and solute fluxes through the unsaturated zone towards groundwater at the point scale, but due to regional heterogeneities (especially concerning soil conditions) lysimeters cannot provide aquifer-wide groundwater recharge and solute leaching. Thus, in this work the numerical simulation model SIMWASER/STOTRASIM (Stenitzer, 1988; Feichtinger, 1998) for quantifying groundwater recharge and nitrate leaching at aquifer scale is applied. Nevertheless, according to Groenendijk et al. (2014) a model calibration by means of lysimeter measurements is essential, since uncalibrated models are generally far from acceptable. Thus, a lysimeter provides the basis for the parameterization of numerical simulation models. To quantify also the impact on regional nitrate distribution in the groundwater, we couple the unsaturated zone model SIMWASER/STOTRASIM with the saturated groundwater flow and solute transport model FELOW (Diersch, 2009) sequentially. In principal, the problem could be solved by the 3 dimensional equation describing variable saturated groundwater flow and solute transport. However, this is computationally prohibitive due to the temporal and spatial scope of the task, particularly in the framework of running numerous simulations to compromise between conflicting interests (i.e. good groundwater status and high agricultural yield). To account for the unknown regional distribution of crops grown and amount, timing and kind of fertilizers used a stochastic tool (Klammler et al, 2011) is developed that

  18. Field Lysimeter Test Facility status report IV: FY 1993

    International Nuclear Information System (INIS)

    Gee, G.W.; Felmy, D.G.; Ritter, J.C.; Campbell, M.D.; Downs, J.L.; Fayer, M.J.; Kirkham, R.R.; Link, S.O.

    1993-10-01

    At the U.S. Department of Energy's Hanford Site near Richland, Washington, a unique facility, the Field Lysimeter Test Facility (FLTF) is used to measure drainage from and water storage in soil covers. Drainage has ranged from near zero amounts to more than 50% of the applied water, with the amount depending on vegetative cover and soil type. Drainage occurred from lysimeters with coarse soils and gravel covers, but did not occur from capillary barrier-type lysimeters (1.5 m silt loam soil over coarse sands and gravels) except under the most extreme condition tested. For capillary barriers that were irrigated and kept vegetation-free (bare surface), no drainage occurred in 5 of the past 6 years. However, this past year (1992--1993) a record snowfall of 1,425 mm occurred and water storage in the irrigated, bare-surfaced capillary barriers exceeded 500 mm resulting in drainage of more than 30 mm from these barriers. In contrast, capillary barriers, covered with native vegetation (i.e., shrubs and grasses) did not drain under any climatic condition (with or without irrigation). In FY 1994, the FLTF treatments will be increased from 11 to 17 with the addition of materials that will simulate portions of a prototype barrier planned for construction in 1994 at the Hanford Site. The 17 FLTF treatments are designed to test the expected range of surface soil, vegetation, and climatic conditions encountered at the Hanford Site and will assist in evaluating final surface barrier designs for a waste disposal facility

  19. Fate of diuron and linuron in a field lysimeter experiment.

    Science.gov (United States)

    Guzzella, L; Capri, E; Di Corcia, A; Barra Caracciolo, A; Giuliano, G

    2006-01-01

    The environmental fate of herbicides can be studied at different levels: in the lab with disturbed or undisturbed soil columns or in the field with suction cup lysimeters or soil enclosure lysimeters. A field lysimeter experiment with 10 soil enclosures was performed to evaluate the mass balance in different environmental compartments of the phenylurea herbicides diuron [3-(3,4-diclorophenyl)-1,1-dimethyl-urea] and linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea]. After application on the agricultural soil, the herbicides were searched for in soil, pore water, and air samples. Soil and water samples were collected at different depths of the soil profile and analyzed to determine residual concentrations of both the parent compounds and of their main transformation products, to verify their persistence and their leaching capacity. Air volatilization was calculated using the theoretical profile shape method. The herbicides were detected only in the surface layer (0-10 cm) of soil. In this layer, diuron was reduced to 50% of its initial concentration at the end of the experiment, while linuron was still 70% present after 245 d. The main metabolites detected were DCPMU [3-(3,4-dichlorophenyl)-1-methylurea] and DCA (3,4-dichloroaniline). In soil pore water, diuron and linuron were detected at depths of 20 and 40 cm, although in very low concentrations. Therefore the leaching of these herbicides was quite low in this experiment. Moreover, volatilization losses were inconsequential. The calculated total mass balance showed a high persistence of linuron and diuron in the soil, a low mobility in soil pore water (less than 0.5% in leachate water), and a negligible volatilization effect. The application of the Pesticide Leaching Model (PELMO) showed similar low mobility of the chemicals in soil and water, but overestimated their volatilization and their degradation to the metabolite DCPMU. In conclusion, the use of soil enclosure lysimeters proved to be a good

  20. Mathematical modelling of deuterium transport in field lysimeters

    International Nuclear Information System (INIS)

    Maloszewski, P.; Klotz, D.; Trimborn, P.; Maciejewski, S.

    1999-01-01

    The results yielded by the Variable Flow Model (VFDM) permitted determining water flow velocities and degrees of dispersiveness. It transpired that it is not possible to isolate immobile water, which is to say that the available measuring and modelling data permit no conclusion as to whether or not the system contains immobile water. Comparison with the results obtained with the Dispersion Model (DM) showed that the simpler DM model yields tracer concentration curves in the system output that are almost as good as those of the more complicated VFDM model while entailing less work. The two models yield very similar calculations of lysimeter water content [de

  1. Unsaturated zone moisture and vapor movement induced by temperature variations in asphalt barrier field lysimeters

    International Nuclear Information System (INIS)

    Holford, D.J.; Fayer, M.J.

    1990-08-01

    Protective barriers are being considered for use at the Hanford Site to enhance the isolation of radioactive wastes from water, plant, and animal intrusion. Lysimeters were constructed to evaluate the performance of asphalt barrier formulations under natural environmental conditions. These lysimeters were constructed of 1.7-m lengths of PVC pipe that have a diameter of 30 cm. The lysimeters were filled with layers of gravel, coarse sand, and asphalt. The sand and gravel placed under the asphalt barrier were wet when installed. TOUGH was used to conduct simulations to assess the effect of temperature variations on moisture and vapor movement beneath the asphalt layer in field test lysimeters. All variables in TOUGH were converted to double precision so that simulations could be run on a Sun-4 UNIX workstation. A radially symmetric grid was used to simulate the lysimeter. 8 refs., 9 figs

  2. Large zero-tension plate lysimeters for soil water and solute collection in undisturbed soils

    Directory of Open Access Journals (Sweden)

    A. Peters

    2009-09-01

    Full Text Available Water collection from undisturbed unsaturated soils to estimate in situ water and solute fluxes in the field is a challenge, in particular if soils are heterogeneous. Large sampling devices are required if preferential flow paths are present. We present a modular plate system that allows installation of large zero-tension lysimeter plates under undisturbed soils in the field. To investigate the influence of the lysimeter on the water flow field in the soil, a numerical 2-D simulation study was conducted for homogeneous soils with uni- and bimodal pore-size distributions and stochastic Miller-Miller heterogeneity. The collection efficiency was found to be highly dependent on the hydraulic functions, infiltration rate, and lysimeter size, and was furthermore affected by the degree of heterogeneity. In homogeneous soils with high saturated conductivities the devices perform poorly and even large lysimeters (width 250 cm can be bypassed by the soil water. Heterogeneities of soil hydraulic properties result into a network of flow channels that enhance the sampling efficiency of the lysimeter plates. Solute breakthrough into zero-tension lysimeter occurs slightly retarded as compared to the free soil, but concentrations in the collected water are similar to the mean flux concentration in the undisturbed soil. To validate the results from the numerical study, a dual tracer study with seven lysimeters of 1.25×1.25 m area was conducted in the field. Three lysimeters were installed underneath a 1.2 m filling of contaminated silty sand, the others deeper in the undisturbed soil. The lysimeters directly underneath the filled soil material collected water with a collection efficiency of 45%. The deeper lysimeters did not collect any water. The arrival of the tracers showed that almost all collected water came from preferential flow paths.

  3. The Field Lysimeter Test Facility (FLTF) at the Hanford Site: Installation and initial tests

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.; Downs, J.L.; Campbell, M.D.

    1989-02-01

    The objectives of this program are to test barrier design concepts and to demonstrate a barrier design that meets established performance criteria for use in isolating wastes disposed of near-surface at the Hanford Site. Specifically, the program is designed to assess how well the barriers perform in controlling biointrusion, water infiltration, and erosion, as well as evaluating interactions between environmental variables and design factors of the barriers. To assess barrier performance and design with respect to infiltration control, field lysimeters and small- and large-scale field plots are planned to test the performance of specific barrier designs under actual and modified (enhanced precipitation) climatic conditions. The Field Lysimeter Test Facility (FLTF) is located in the 600 Area of the Hanford Site just east of the 200 West Area and adjacent to the Hanford Meteorological Station. The FLTF data will be used to assess the effectiveness of selected protective barrier configurations in controlling water infiltration. The facility consists of 14 drainage lysimeters (2 m dia x 3 m deep) and four precision weighing lysimeters (1.5 m x 1.5 m x 1.7 m deep). The lysimeters are buried at grade and aligned in a parallel configuration, with nine lysimeters on each side of an underground instrument chamber. The lysimeters were filled with materials to simulate a multilayer protective barrier system. Data gathered from the FLTF will be used to compare key barrier components and to calibrate and test models for predicting long-term barrier performance

  4. Integrating lysimeter drainage and eddy covariance flux measurements in a groundwater recharge model

    DEFF Research Database (Denmark)

    Vasquez, Vicente; Thomsen, Anton Gårde; Iversen, Bo Vangsø

    2015-01-01

    Field scale water balance is difficult to characterize because controls exerted by soils and vegetation are mostly inferred from local scale measurements with relatively small support volumes. Eddy covariance flux and lysimeters have been used to infer and evaluate field scale water balances...... because they have larger footprint areas than local soil moisture measurements.. This study quantifies heterogeneity of soil deep drainage (D) in four 12.5 m2 repacked lysimeters, compares evapotranspiration from eddy covariance (ETEC) and mass balance residuals of lysimeters (ETwbLys), and models D...

  5. Use of Long-Term Lysimeter Data in Support of Shallow Land Waste Disposal Cover Design

    International Nuclear Information System (INIS)

    Desotell, L.T.; Hudson, D.B.; Yucel, V.; Carilli, J.T.

    2006-01-01

    Water balance studies using two precision weighing lysimeters have been conducted at the Nevada Test Site in support of low-level radioactive waste disposal since 1994. The lysimeters are located in northern Frenchman Flat approximately 400 meters (m) from the southwest corner of the Area 5 Radioactive Waste Management Site. Frenchman Flat is in the northern Mojave Desert and has an average annual precipitation of 125 millimeters (mm). Each lysimeter consists of a 2 m by 4 m by 2 m deep steel tank filled with native alluvium, supported on a sensitive scale. The scale is instrumented with an electronic load-cell and data-logger for continuous measurement of total soil water storage with a precision of approximately ±800 grams or ±0.1 mm of soil water storage. Data-loggers are linked to cell phone modems for remote data acquisition. One lysimeter is vegetated with native creosote bush, four wing salt bush, and annual grass at the approximate density of the surrounding landscape while the other is maintained as bare soil. Since no drainage has been observed from the bottom of the lysimeters and run-on/run-off is precluded, the change in soil-water storage is equal to precipitation minus evaporation/evapotranspiration. After equilibration, the bare lysimeter contains approximately 20.2 centimeters (cm) of water (10.1 % volumetric water content) and the vegetated lysimeter contains approximately 11.6 cm of water (5.8 % volumetric water content). The finite difference code UNSAT-H was used to simulate the continuous water balance of the lysimeters. Calibrated one-dimensional model simulations were generally in agreement with field data. 30-year model simulations were conducted to evaluate long-term potential transport of radionuclides via the soil water migration pathway. A 30-year climate record was generated by repeating the existing data record. Simulations indicate a 2 m thick closure cover, in conjunction with native vegetation, will essentially eliminate drainage

  6. Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria).

    Science.gov (United States)

    Klammler, Gernot; Fank, Johann

    2014-11-15

    The shallow Murtal aquifer south of Graz, Austria, provides easily withdrawable groundwater, which is supplied as drinking water without any chemical treatment. The aquifer is also used intensively by agriculture. Common agricultural management practices are the main source for diffuse nitrogen leaching and high groundwater nitrate concentrations. To safeguard the coexisting use of these two important resources, lysimeters are operated at the agricultural test site Wagna, Austria, and the influence of two beneficial management practices--low nitrogen input and organic farming--on nitrogen leaching towards groundwater is investigated. The technical lysimeter design as presented here consists of: (1) high-resolution weighing cells, (2) a suction controlled lower boundary condition for sucking off seepage water, thus emulating undisturbed field conditions, (3) comparative soil temperature, water content and matrix potential measurements inside and outside the lysimeter at different depths, (4) an installation of the lysimeters directly into test plots and (5) a removable upper lysimeter ring enabling machinery soil tillage. Our results indicate that oasis effects or fringe effects of the lysimeter cylinder on unsaturated water flow did not occur. Another lysimeter cultivated with lawn is operated for observing grass-reference evapotranspiration, which resulted in good agreement with calculated grass-reference evapotranspiration according to the FAO-Penman-Monteith method. We conclude that lysimeters installed at Wagna test site did not show any fringe effects and, thus, are appropriate tools for measuring water balance elements and nitrogen leaching of arable and grass land at point scale. Furthermore, our results for the period of 2005 to 2011 show that beneficial management practices reduced nitrate leaching and, hence, may allow for a sustainable coexistence of drinking water supply and agriculture in the Murtal aquifer. Copyright © 2014 Elsevier B.V. All rights

  7. Contributions of lysimeter data to the development of site specific performance assessment plans

    International Nuclear Information System (INIS)

    Rogers, R.D.; McConnell, J.W. Jr.; Jastrow, J.D.; Wickliff, D.S.

    1991-01-01

    Accurate data on the long-term performance of radioactive wastes in a disposal system are becoming a necessity in part because of restrictive federal and state regulations that are being promulgated. Data on the performance of buried radioactive waste forms can be obtained from lysimeter arrays. Lysimeters are ideal instruments for the acquisition of actual field test data. When properly designed and operated, lysimeters can be used to isolate and then study soil/waste systems under actual environmental conditions. The complexity of interactions occurring under field conditions can never by completely duplicated by standard laboratory testing. This paper provides data from two instrumented, operational lysimeter arrays containing waste forms fabricated with highly located exchange resin materials. The lysimeters have been in operation for five years and have been providing data for both meteorological events and radionuclide content of percolating water for the past four years. This paper provides data obtained from the lysimeters, a discussion of the data, and a manipulation of the database for calculating some code parameters that can be used as input into codes used to verify performance of buried radioactive waste forms

  8. Field Lysimeter Test Facility: Second year (FY 1989) test results

    International Nuclear Information System (INIS)

    Campbell, M.D.; Gee, G.W.; Kanyid, M.J.; Rockhold, M.L.

    1990-04-01

    The Record of Decision associated with the Hanford Defense Waste Environmental Impact Statement (53 FR 12449-53) commits to an evaluation of the use of protective barriers placed over near-surface wastes. The barrier must protect against wind and water erosion and limit plant and animal intrusion and infiltration of water. Successful conclusion of this program will yield the necessary protective barrier design for near-surface waste isolation. This report presents results from the second year of tests at the FLTF. The primary objective of testing protective barriers at the FLTF was to measure the water budgets within the various barriers and assess the effectiveness of their designs in limiting water intrusion into the zone beneath each barrier. Information obtained from these measurements is intended for use in refining barrier designs. Four elements of water budget were measured during the year: precipitation, evaporation, storage, and drainage. Run-off, which is a fifth element of a complete water budget, was made negligible by a lip on the lysimeters that protrudes 5 cm above the soil surface to prevent run-off. A secondary objective of testing protective barriers at the FLTF was to refine procedures and equipment to support data collection for verification of the computer model needed for long-term projections of barrier performance. 6 refs

  9. Distribution of 15N fertilizer in field-lysimeters sown with garlic (Allium sativum) and foxtail millet (Setaria italica)

    International Nuclear Information System (INIS)

    Lazzari, M.A.

    1982-01-01

    We examined the distribution of residual 15 N and its uptake by a foxtail millet crop grown in field lysimeters following a previous garlic crop fertilized with either 15 N-urea or 15 N-ammonium sulphate. Garlic apparently removed more N from the lysimeters treated with urea-N than from those treated with (NH 4 ) 2 SO 4 . Fertilizer-N in the lysimeters was similar (ca. 32% of original) following millet harvest. About 16 per cent of both fertilizers in the lysimeters was removed by the millet. (orig.)

  10. Distribution of /sup 15/N fertilizer in field-lysimeters sown with garlic (Allium sativum) and foxtail millet (Setaria italica)

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, M.A. (Universidad Nacional del Sur, Bahia Blanca (Argentina). Dept. de Ciencas Agrarias)

    1982-01-01

    We examined the distribution of residual /sup 15/N and its uptake by a foxtail millet crop grown in field lysimeters following a previous garlic crop fertilized with either /sup 15/N-urea or /sup 15/N-ammonium sulphate. Garlic apparently removed more N from the lysimeters treated with urea-N than from those treated with (NH/sub 4/)/sub 2/SO/sub 4/. Fertilizer-N in the lysimeters was similar (ca. 32% of original) following millet harvest. About 16 per cent of both fertilizers in the lysimeters was removed by the millet.

  11. Field lysimeter studies for performance evaluation of grouted Hanford defense wastes

    International Nuclear Information System (INIS)

    Last, G.V.; Serne, R.J.; LeGore, V.L.

    1995-02-01

    The Grout Waste Test Facility (GWTF) consisted of four large field lysimeters designed to test the leaching and migration rates of grout-solidified low-level radioactive wastes generated by Hanford Site operations. Each lysimeter was an 8-m-deep by 2-media closed-bottom caisson that was placed in the ground such that the uppermost rim remained just above grade. Two of these lysimeters were used; the other two remained empty. The two lysimeters that were used (A-1 and B-1) were backfilled with a two-layer soil profile representative of the proposed grout disposal site. The proposed grout disposal site (termed the Grout Treatment Facility Landfill) is located immediately east of the Hanford Site's 200 East Area. This soil profile consisted of a coarse sand into which the grout waste forms were placed and covered by 4 m of a very fine sand. The A-1 lysimeter was backfilled in March 1985, with a grout-solidified phosphate/sulfate liquid waste from N Reactor decontamination and ion exchange resin regeneration. The B-1 lysimeter was backfilled in September 1985 and received a grout-solidified simulated cladding removal waste representative of waste generated from fuel reprocessing operations at the head end of the Plutonium Uranium Extraction (PUREX) plant. Routine monitoring and leachate collection activities were conducted for over three years, terminating in January 1989. Drainage was collected sporadically between January 1989 and December 1992. Decontamination and decommissioning of these lysimeters during the summer of 1994, confirmed the presence of a 15 to 20-cm-long hairline crack in one of the bottom plate welds. This report discusses the design and construction of the GWTF, presents the routine data collected from this facility through January 1989 and subsequent data collected sporadically between 1989 and 1993, and provides a brief discussion concerning preliminary interpretation of the results

  12. Performance of special wasteform lysimeters and waste migration at a humid site

    International Nuclear Information System (INIS)

    McIntyre, P.F.

    1986-01-01

    The special wasteform lysimeter (SWL) program at the Savannah River Laboratory (SRL) near Aiken, South Carolina, is designed to measure leaching behavior and radionuclide migration under realistic burial conditions at a humid site. A similar program at an arid site is being conducted at Hanford near Richland, Washington. The wasteforms were placed in the lysimeters in March 1982 and represent typical low-level waste from two commercial reactors. An extensive report covering the initial three years of operation was issued in November 1985. This report updates the results of that report and includes significant observations made during the past year of operation. The Waste Migration Program at SRL included continued monitoring of 40 defense waste lysimeters, radionuclide uptake by pine trees, and measurement of total organic carbon in the groundwater of the burial ground

  13. Engineered surface barriers for waste disposal sites: lysimeter facility design and construction

    International Nuclear Information System (INIS)

    Phillips, S.J.; Ruben, M.S.; Kirkham, R.R.

    1988-01-01

    A facility to evaluate performance of engineered surface carriers for confinement of buried wastes has been designed, constructed, and operations initiated. The Field Lysimeter Test Facility is located at the US Department of Energy's Hanford Site in Richland, Washington. The facility consists of 18 one-dimensional drainage and weighing lysimeters used to evaluate 7 replicated barrier treatments. Distinct layers of natural earth materials were used to construct layered soil and rock barriers in each lysimeter. These barrier designs are capable in principal of significantly reducing or precluding infiltration of meteoric water through barriers into underlying contaminated zones. This paper summarizes salient facility design and construction features used in testing of the Hanford Site's engineered surface barriers

  14. Performance of special wasteform lysimeters and waste migration at a humid site

    International Nuclear Information System (INIS)

    McIntyre, P.F.

    1987-01-01

    The special wasteform lysimeter (SWL) program at the Savannah River Laboratory (SRL) near Aiken, South Carolina is designed to measure leaching behavior and radionuclide migration under realistic burial conditions at a humid site. A similar program at an arid site is being conducted at Hanford near Richland, Washington. The wasteforms were placed in the lysimeters in March 1982 and represent typical low-level waste from two commercial reactors. An extensive report covering the initial three years of operation was issued in November 1985. This report updates the results of that report and includes significant observations made during the past year of operation. The Waste Migration Program at SRL included continued monitoring of 40 defense waste lysimeters, radionuclide uptake by pine trees, and measurement of total organic carbon in the ground water of the burial ground. 5 references, 2 figures, 5 tables

  15. Field lysimeter facility for evaluating the performance of commercial solidified low-level waste

    International Nuclear Information System (INIS)

    Walter, M.B.; Graham, M.J.; Gee, G.W.

    1984-11-01

    Analyzing the potential migration of radionuclides from sites containing solid low-level wastes requires knowledge of contaminant concentrations in the soil solution surrounding the waste. This soil solution concentration is generally referred to as the source term and is determined by such factors as the concentration of radionuclides in the solid waste, the rate of leachate formation, the concentration of dissolved species in the leachate, any solubility reactions occurring when the leachate contacts the soil, and the rate of water flow in the soil surrounding the waste. A field lysimeter facility established at the Hanford site is being used to determine typical source terms in arid climates for commercial low-level wastes solidifed with cement, Dow polymer (vinyl ester-styrene), and bitumen. The field lysimeter facility consists of 10, 3-m-deep by 1.8-m-dia closed-bottom lysimeters situated around a 4-m-deep by 4-m-dia central instrument caisson. Commercial cement and Dow polymer waste samples were removed from 210-L drums and placed in 8 of the lysimeters. Two bitumen samples are planned to be emplaced in the facility's remaining 2 lysimeters during 1984. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste. Suction candles (ceramic cups) placed around the waste forms will be used to periodically collect soil-water samples for chemical analysis. Meteorological data, soil moisture content, and soil temperature are automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle-size distribution, and distributions and concentrations of radionuclides in the waste forms. 11 references, 12 figures, 5 tables

  16. The influence of the lysimeter filling on the soil monolith inside

    Science.gov (United States)

    Puetz, T.; Schilling, J.; Vereecken, H.

    2009-04-01

    In general, lysimeters are vessels containing disturbed or undisturbed soil blocks, for the most realistic scenario with regard to real outdoor conditions an undisturbed soil block so called soil monolith is preferable. The lower boundary condition was realized in two different ways: as a zero-tension lysimeter with a perforated bottom plate or as controlled lower boundary condition with a suction plate. The optimal surface area and the lysimeter length depend mainly on the scientific question. For cropped lysimeter experiments the lysimeter length has to reflect to a maximum root length. The base area is strongly connected to the scale of observation, whereby small-scale heterogeneity will be averaged using large base areas. For our experiments lysimeters with 2.5 m length, 2 m2 base area and with a wall thickness of the round vessel of 10 mm were used. A base frame weighted down by 120 t of concrete weights is necessary to press a lysimeter cylinder into the ground by the aid of a hydraulic press. The hydraulic press is connected with the base frame via chains. Because of the control of the four hydraulic cylinders a very precise vertical pressing process is guaranteed. To visualize the impact of the lysimeter filling on the intactness of the soil monolith a finite element computation was conducted. The finite element package ANSYS Release 11 was used to execute a nonlinear static analysis on a 2D-axisymmetric finite element model, to simulate the pressing process starting from a soil initial stress state and ending with the full length of the vessel driven into the soil, after which the hydraulic press and the concrete weights are deactivated and the vessel-surrounding soil is excavated. The numerical model of the pressing process considers among other things, a cap non-associative plasticity model with shear and volumetric hardening, soil to soil contact with cohesive zone modelling, soil to vessel contact with high friction, soil excavation using element birth

  17. Lysimeter experiments on the translocation of methabenzthiazuron and dissolved organic carbon in an orthic luvisol, construction of two climate measuring stations and investigations to validate the lysimeter system

    International Nuclear Information System (INIS)

    Puetz, T.

    1993-09-01

    To study the transfer of methabenzthiazuron into the soil solution and to investigate leaching in intensively cultivated orthic luvisol soil, 248 and 264 mg m -2 [phenyl-U- 14 C]methabenzthiazuron were applied to winter wheat in a w.p. 66.7% formulation by pre-emergence spraying in accordance with good agricultural practice on two lysimeters in November 1988. This corresponded to an application quantity of 3.7 and 4.0 kg ha -1 of Tribunil R . To study the translocation of dissolved organic carbon (DOC) in an orthic luvisol, 631 g m -2 14 C-labelled oat straw, corresponding to a practical application of 6-8 t ha -1 , was worked into the 0-5 cm of the soil of the third lysimeter in October 1988. After oat straw and methabenzthiazuron application, two suction candles were installed at each depth of 10, 20, 40 and 60 cm in two lysimeters for continuous soil solution sampling. (orig.)

  18. Special waste-form lysimeters-arid: Three-year monitoring report

    International Nuclear Information System (INIS)

    Jones, T.L.; Serne, R.J.; Toste, A.P.

    1988-04-01

    Regulations governing the disposal of commercial low-level waste require all liquid waste to be solidified before burial. Most waste must be solidified into a rigid matrix such as cement or plastic to prevent waste consolidation and site slumping after burial. These solidification processes affect the rate at which radionuclides and other solutes are released into the soil. In 1983, a program was initiated at Pacific Northwest Laboratory to study the release of waste from samples of low-level radioactive waste that had been commercially solidified. The primary method used by this program is to bury sample waste forms in field lysimeters and monitor leachate composition from the release and transport of solutes. The lysimeter facility consists of 10 lysimeters, each containing one sample of solidified waste. Five different waste forms are being tested, allowing duplicate samples of each one to be evaluated. The samples were obtained from operating nuclear power plants and are actual waste forms routinely generated at these facilities. All solidification was accomplished by commercial processes. Sample size is a partially filled 210-L drum. All containers were removed prior to burial leaving the bare waste form in contact with the lysimeter soil. 11 refs., 14 figs., 16 tabs

  19. Effects of biochar addition to soil on nitrogen fluxes in a winter wheat lysimeter experiment

    Science.gov (United States)

    Hüppi, Roman; Leifeld, Jens; Neftel, Albrecht; Conen, Franz; Six, Johan

    2014-05-01

    Biochar is a carbon-rich, porous residue from pyrolysis of biomass that potentially increases crop yields by reducing losses of nitrogen from soils and/or enhancing the uptake of applied fertiliser by the crops. Previous research is scarce about biochar's ability to increase wheat yields in temperate soils or how it changes nitrogen dynamics in the field. In a lysimeter system with two different soils (sandy/silt loam) nitrogen fluxes were traced by isotopic 15N enriched fertiliser to identify changes in nitrous oxide emissions, leaching and plant uptake after biochar addition. 20t/ha woodchip-waste biochar (pH=13) was applied to these soils in four lysimeters per soil type; the same number of lysimeters served as a control. The soils were cropped with winter wheat during the season 2012/2013. 170 kg-N/ha ammonium nitrate fertiliser with 10% 15N was applied in 3 events during the growing season and 15N concentrations where measured at different points in time in plant, soil, leachate and emitted nitrous oxide. After one year the lysimeter system showed no difference between biochar and control treatment in grain- and straw yield or nitrogen uptake. However biochar did reduce nitrous oxide emissions in the silt loam and losses of nitrate leaching in sandy loam. This study indicates potential reduction of nitrogen loss from cropland soil by biochar application but could not confirm increased yields in an intensive wheat production system.

  20. Ecotoxicity and fate of a silver nanomaterial in an outdoor lysimeter study.

    Science.gov (United States)

    Schlich, Karsten; Hoppe, Martin; Kraas, Marco; Fries, Elke; Hund-Rinke, Kerstin

    2017-08-01

    Sewage sludge is repeatedly applied as fertilizer on farmland due to its high nutrient content. This may lead to a significant increase of silver nanomaterials (AgNM) in soil over years. Therefore, our aim was to investigate the ecotoxicity and fate of AgNM under environmentally relevant conditions in outdoor lysimeters over 25 months. Two AgNM concentrations (1.7 and 8.0 mg/kg dry matter soil) were applied via sewage sludge into soil. In subsamples of the soil, incubated under laboratory conditions for 180 days, the comparability of outdoor and laboratory results regarding ecotoxicity was determined. The results from our long term lysimeter experiments show no detectable horizontal displacement in combination with very low remobilization to the percolate water. Thus, indicate that the sludge applied AgNM remains nearly immobile in the pathway between soils and leachate. However, Ag uptake to the roots of wheat and canola suggests that the chemical conditions in the rhizosphere induce AgNM remobilization from the incorporated sewage sludge even after two harvesting cycles. At the higher AgNM concentration a steady inhibition of the soil microflora was observed over 25 month in the lysimeter study, while there was no effect at the lower AgNM concentration. The results of the laboratory experiment reflect the findings of the lysimeter study and indicate that a risk assessment for AgNM based on data from laboratory tests is acceptable.

  1. Results after ten years of field testing low-level radioactive waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.; Sanford, W.E.; Larsen, I.L.; Sullivan, T.M.

    1995-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms. Ion-exchange resins from a commercial nuclear power station were solidified into waste forms using portland cement and vinyl esterstyrene. These waste forms are being tested to: (a) obtain information on performance of waste forms in typical disposal environments, (b) compare field results with bench leach studies, (c) develop a low-level waste data base for use in performance assessment source term calculations, and (d) apply the DUST computer code to compare predicted cumulative release to actual field data. The program, funded by the Nuclear Regulatory Commission (NRC), includes observed radionuclide releases from waste forms in field lysimeters. The purpose of this paper is to present the experimental results of two lysimeter arrays over 10 years of operation, and to compare those results to bench test results and to DUST code predicted releases. Further analysis of soil cores taken to define the observed upward migration of radionuclides in one lysimeter is also presented

  2. Settlement behavior of municipal solid waste due to internal and external environmental factors in a lysimeter.

    Science.gov (United States)

    Melo, Márcio C; Caribé, Rômulo M; Ribeiro, Libânia S; Sousa, Raul B A; Monteiro, Veruschka E D; de Paiva, William

    2016-12-05

    Long-term settlement magnitude is influenced by changes in external and internal factors that control the microbiological activity in the landfill waste body. To improve the understanding of settlement phenomena, it is instructive to study lysimeters filled with MSW. This paper aims to understand the settlement behavior of MSW by correlating internal and external factors that influence waste biodegradation in a lysimeter. Thus, a lysimeter was built, instrumented and filled with MSW from the city of Campina Grande, the state of Paraíba, Brazil. Physicochemical analysis of the waste (from three levels of depth of the lysimeter) was carried out along with MSW settlement measurements. Statistical tools such as descriptive analysis and principal component analysis (PCA) were also performed. The settlement/compression, coefficient of variation and PCA results indicated the most intense rate of biodegradation in the top layer. The PCA results of intermediate and bottom levels presented fewer physicochemical and meteorological variables correlated with compression data in contrast with the top layer. It is possible to conclude that environmental conditions may influence internal indicators of MSW biodegradation, such as the settlement.

  3. Annual Report for Gravity Collection Lysimeter Monitoring Plan – ERDF Cells 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    M. L. Proctor

    2006-04-04

    The data and analyses contained in this report reflect the initial characterization of construction and consolidation water in Cells 5 and 6 lysimeters. Therefore, the scope of this report will be to establish constituent levels and document dewatering activities completed to date.

  4. Annual Report for Gravity Collection Lysimeter Monitoring Plan - ERDF Cells 5 and 6

    International Nuclear Information System (INIS)

    Remsen, W.E.

    2006-01-01

    The data and analyses contained in this report reflect the initial characterization of construction and consolidation water in Cells 5 and 6 lysimeters. Therefore, the scope of this report will be to establish constituent levels and document dewatering activities completed to date

  5. Annual Report for Gravity Collection Lysimeter Monitoring Plan - ERDF Cells 5 and 6

    International Nuclear Information System (INIS)

    Proctor, M.L.

    2006-01-01

    The data and analyses contained in this report reflect the initial characterization of construction and consolidation water in Cells 5 and 6 lysimeters. Therefore, the scope of this report will be to establish constituent levels and document dewatering activities completed to date.

  6. Assessment of soil hydrology variability of a new weighing lysimeter facility

    Science.gov (United States)

    Brown, S. E.; Wagner-Riddle, C.; Berg, A. A.

    2017-12-01

    Diversifying annual crop rotations is a strategy that mimics natural ecosystems and is postulated to increase agricultural resilience to climate change, soil quality and provision of soil ecosystem services. However, diverse cropping systems could increase soil mineral N levels and lead to greater leaching and/or N2O emissions; which raises the questions: (i) are diverse cropping systems actually beneficial for air and water quality? (ii) what are the trade-offs between soil, water, and air quality upon implementing a diverse cropping rotation? It can be difficult to fully evaluate the interactions between the two N-pollution pathways simultaneously in traditional field studies as drainage is largely unconstrained. Weighing lysimeters solve this issue by providing a closed system to measure N outputs via drainage and soil gas fluxes. A set of 18 weighting lysimeters were installed in Elora, Ontario, Canada in May 2016, to establish a long-term study of N-leaching and greenhouse gas emission from traditional and diverse cropping rotations for two different soil types. Each lysimeter is equipped with an automated chamber for continuous measurement of soil N2O and CO2 fluxes. A full characterization of variations of physical properties that may affect GHG emissions and N-leaching (e.g., soil temperature, moisture, drainage and evapotranspiration rates) amongst the lysimeters is required prior to application and assessment of the management treatments. Novel techniques such as wavelet analysis is required as standard statistical analyses are not applicable to the time series data. A full description of the lysimeters will be presented along with results of the characterization.

  7. Lysimeter study to investigate the effect of rainfall patterns on leaching of isoproturon.

    Science.gov (United States)

    Beulke, Sabine; Brown, Colin D; Fryer, Christopher J; Walker, Allan

    2002-01-01

    The influence of five rainfall treatments on water and solute leaching through two contrasting soil types was investigated. Undisturbed lysimeters (diameter 0.25 m, length 0.5 m) from a sandy loam (Wick series) and a moderately structured clay loam (Hodnet series) received autumn applications of the radio-labelled pesticide isoproturon and bromide tracer. Target rainfall plus irrigation from the end of November 1997 to May 1998 ranged from drier to wetter than average (235 to 414 mm); monthly rainfall was varied according to a pre-selected pattern or kept constant (triplicate lysimeters per regime). Leachate was collected at intervals and concentrations of the solutes were determined. Total flow (0.27-0.94 pore volumes) and losses of bromide (3-80% of applied) increased with increasing inputs of water and were larger from the Wick sandy loam than from the Hodnet clay loam soil. Matrix flow appeared to be the main mechanism for transport of isoproturon through the Wick soil whereas there was a greater influence of preferential flow for the Hodnet lysimeters. The total leached load of isoproturon from the Wick lysimeters was 0.02-0.26% of that applied. There was no clear variation in transport processes between the rainfall treatments investigated for this soil and there was an approximately linear relationship (r2 = 0.81) between leached load and total flow. Losses of isoproturon from the Hodnet soil were 0.03-0.39% of applied and there was evidence of enhanced preferential flow in the driest and wettest treatments. Leaching of isoproturon was best described by an exponential relationship between load and total flow (r2 = 0.62). A 45% increase in flow between the two wettest treatments gave a 100% increase in leaching of isoproturon from the Wick soil. For the Hodnet lysimeters, a 35% increase in flow between the same treatments increased herbicide loss by 325%.

  8. Water transport monitoring in an unsaturated zone – Case study: lysimeter Selniška dobrava (Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Mali

    2002-12-01

    Full Text Available Pollution transport in an aquifer depends on its structure, upper unsaturated zone and lower saturated zone. In order to understand processes in the unsaturated zone, several hydrogeological field measurements must be done. A field laboratory- lysimeter in Selni{kadobrava was installed for the improvement of field measurements, and explanation of the parameters and processes in the unsaturated zone. The problems, which can be solved by means of investigations in a lysimeter, are defined in this paper. Described are also:concept of investigation planning, construction and equipment of the lysimeter, measurements of unsaturated zone parameters and processes, water sampling for physical, chemical and isotope analysis.

  9. Leaching of pesticides through normal-tillage and low-tillage soil--a lysimeter study. I. Isoproturon.

    Science.gov (United States)

    Fomsgaard, Inge S; Spliid, Niels Henrik; Felding, Gitte

    2003-01-01

    Isoproturon is a herbicide, which was used in Denmark against grass weeds and broad-leaved weeds until 1998. Isoproturon has frequently been detected in ground water monitoring studies. Leaching of isoproturon (N,N-dimethyl-N'-(4-(1-methylethyl)-phenyl)urea) and its metabolites, N'-(4-isopropylphenyl)-N-methylurea and N'-(4-isopropylphenyl)urea was studied in four lysimetres, two of them being replicates from a low-tillage field (lysimeter 3 and 4), the other two being replicates from a normal tillage field (lysimeter 5 and 6). In both cases the soil was a sandy loam soil with 13-14% clay. The lysimetres had a surface area of 0.5 m2 and a depth of 110 cm. Lysimeter 3 and 4 were sprayed with unlabelled isoproturon while lysimeter 5 and 6 was sprayed with a mixture of 14C-labelled and unlabelled isoproturon. The total amount of isoproturon sprayed onto each lysimeter was 63 mg, corresponding to 1.25 kg active ingredient per ha. The lysimeters were sprayed with isoproturon on October 26, 1997. The lysimetres were installed in an outdoor system in Research Centre Flakkebjerg and were thus exposed to normal climatic conditions of the area. A mean of 360 l drainage water were collected from lysimeter 3 and 4 and a mean of 375 litres from lysimeter 5 and 6. Only negligible amounts of isoproturon and its primary metabolites were found in the drainage water samples, and thus no significant difference between the two lysimeter sets was shown. In a total of 82 drainage water samples, evenly distributed between the four lysimetres isoproturon was found in detectable amounts in two samples and N'-(4-isopropylphenyl)urea was found in detectable amounts in two other samples. The detection limit for all the compounds was 0.02 microg/l. 48% and 54% of the added radioactivity were recovered from the upper 10 cm soil layer in lysimeter 5 and 6, respectively, and 17 and 14% from 10-20 cm's depth. By extraction first with an aquatic CaCl2 solution 0.49% of the added radioactivity was

  10. Leaching of human pathogens in repacked soil lysimeters and contamination of potato tubers under subsurface drip irrigation in Denmark

    DEFF Research Database (Denmark)

    Forslund, Anita; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O......, phage 28B was detected in low concentrations (2 pfu ml1) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy....... The findings of bacterial pathogens and phage 28 on all potato samples suggest that the main risk associated with subsurface drip irrigation with low quality water is faecal contamination of root crops, in particular those consumed raw....

  11. Results after nine years of field testing low-level radioactive waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.; Sanford, W.E.; Sullivan, T.M.

    1995-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms. Ion-exchange resins from a nuclear power station were solidified into waste forms using Portland cement and vinyl ester-styrene. These waste forms are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. This paper reviews radionuclide releases from those waste forms in the first 9 years of sampling. Included is a discussion of the recently discovered upward migration of radionuclides. Also, lysimeter data are applied to a performance assessment source term model, and initial results are presented

  12. Design and construction of a large weighing lysimeter in an almond orchard

    Energy Technology Data Exchange (ETDEWEB)

    Lorite, I. J.; Santos, C.; Testi, L.; Fereres, E.

    2012-11-01

    Effective water management is essential to ensure the sustainability of irrigated agriculture. The accurate determination of crop water requirements is the first step in this task. This paper describes the building of a one-tree weighing lysimeter (3 × 3 m and 2.15 m depth) located in an almond (Prunus dulcis cv. Guara) orchard, inside the experimental farm “Alameda del Obispo” in Córdoba, Spain, to measure orchard evapotranspiration (ETc). Following a review on lysimetry, the description of the construction of the weighing lysimeter is provided in detail, including considerations relative to system resolution and wind effects on the measurements. Finally, some preliminary results of the evaporation and transpiration of young almond trees are presented demonstrating that lysimetry in orchards provides accurate ETc values needed to determine irrigation water requirements. (Author) 72 refs.

  13. Automated Passive Capillary Lysimeters for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Jabro, J.; Evans, R.

    2009-04-01

    In this study, we demonstrated and evaluated the performance and accuracy of an automated PCAP lysimeters that we designed for in-situ continuous measuring and estimating of drainage water below the rootzone of a sugarbeet-potato-barley rotation under two irrigation frequencies. Twelve automated PCAPs with sampling surface dimensions of 31 cm width * 91 cm long and 87 cm in height were placed 90 cm below the soil surface in a Lihen sandy loam. Our state-of-the-art design incorporated Bluetooth wireless technology to enable an automated datalogger to transmit drainage water data simultaneously every 15 minutes to a remote host and had a greater efficiency than other types of lysimeters. It also offered a significantly larger coverage area (2700 cm2) than similarly designed vadose zone lysimeters. The cumulative manually extracted drainage water was compared with the cumulative volume of drainage water recorded by the datalogger from the tipping bucket using several statistical methods. Our results indicated that our automated PCAPs are accurate and provided convenient means for estimating water drainage in the vadose zone without the need for costly and manually time-consuming supportive systems.

  14. Formation of secondary minerals in a lysimeter approach - A mineral-microbe interaction

    Science.gov (United States)

    Schäffner, F.; Merten, D.; De Giudici, G.; Beyer, A.; Akob, D. M.; Ricci, P. C.; Küsel, K.; Büchel, G.

    2012-04-01

    Heavy metal contamination of large areas due to uranium mining operations poses a serious long-term environmental problem. In the Ronneburg district (eastern Thuringia, Germany), leaching of low grade uranium bearing ores (uranium content metals, especially Cd, Ni, Co, Cu and Zn due to a residual contamination even after remediation efforts. To reveal the processes of secondary mineral precipitation in the field a laboratory lysimeter approach was set up under in situ-like conditions. Homogenized soil from the field site and pure quartz sand were used as substrates. In general, in situ measurements of redox potentials in the substrates showed highly oxidizing conditions (200-750 mV). Water was supplied to the lysimeter from below via a mariottés bottle containing contaminated groundwater from the field. Evaporation processes were allowed, providing a continuous flow of water. This led to precipitation of epsomite and probably aplowite on the top layer of substrate, similar to what is observed in field investigations. After 4 weeks, the first iron and manganese bearing secondary minerals became visible. Soil water samples were used to monitor the behaviour of metals within the lysimeter. Saturation indices (SI) for different secondary minerals were calculated with PHREEQC. The SI of goethite showed oversaturation with respect to the soil solution. SEM-EDX analyses and IR spectroscopy confirmed the formation of goethite. Geochemical data revealed that goethite formation was mainly dominated by Eh/pH processes and that heavy metals, e.g. Zn and U, could be enriched in this phase. Although Eh/pH data does not support formation of manganese minerals, Mn(II)-oxidizing bacteria (MOB) could be isolated from field soil samples, supporting the fact that microorganisms may influence this natural attenuation process. Laser ablation ICP-MS data reveal accumulation of manganese in MOB biomass on Mn(II)-containing agar plates. Furthermore, it was possible to show the importance

  15. Influence of hydrologic factors on leaching of solidified low-level waste forms at an arid site field-scale lysimeter facility

    International Nuclear Information System (INIS)

    Jones, T.L.; Skaggs, R.L.

    1987-04-01

    Most of the precipitation at the Hanford Site arrives as winter snow; this contributes to a strong seasonal pattern in water storage and drainage observed in the lysimeters. This seasonal pattern in storage corresponds to an annual range in the volumetric soil water content of 11% in late winter to 7% in the late summer and early fall. Annual changes in drainage rates cause pore water velocities to vary annually by nearly two orders of magnitude. Rapid snowmelt and frozen soils in February 1985 caused runoff water from areas adjacent to the lysimeter facility to flood three of the lysimeters. This resulted in a temporary increase in soil water storage, and an additional 5 to 10 cm of drainage for these three lysimeters. Measurable quantities of tritium and cobalt-60 are being collected in lysimeter drainage water. Approximately 30% of the original tritium inventory has been leached from both lysimeters containing samples of this waste form. Cobalt-60 is consistently being leached from five lysimeters representing three of the five waste forms. Total cobalt-60 collected from each of the five lysimeters varies, but in each case is less than 0.1% of the original cobalt inventory of the waste sample. Comparisons of cobalt release among flooded and non-flooded lysimeters show no significant difference caused by the extra drainage

  16. Field lysimeter investigations: Low-level waste data base development program for fiscal year 1996. Annual report; Volume 9

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Larsen, I.L.; Sanford, W.E.; Sullivan, T.M.; Fuhrmann, M.

    1997-08-01

    A data base development program, funded by the US Nuclear Regulatory Commission, is (a) studying the degradation effects in organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified ion-exchange resins, (c) obtaining performance information on solidified ion-exchange resins in a disposal environment, and (d) determining the condition of liners used to dispose the ion-exchange resins. During the field testing experiments, both portland type 1--2 cement and Dow vinyl ester-styrene waste form samples were tested in lysimeter arrays located at Argonne National Laboratory-East (ANL-E) in Illinois and at Oak Ridge National Laboratory (ORNL). The study was designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over an extended period. Those experiments have been shut down and are to be exhumed. This report discusses the plans for removal, sampling, and analysis of waste form and soil cores from the lysimeters. Results of partition coefficient determinations are presented, as well as application of a source term computer code using those coefficients to predict the lysimeter results. A study of radionuclide-containing colloids associated with the leachate waters removed from these lysimeters is described. An update of upward migration of radionuclides in the sand-filled lysimeter at ORNL is included

  17. Nitrate Leaching from Winter Cereal Cover Crops Using Undisturbed Soil-Column Lysimeters.

    Science.gov (United States)

    Meisinger, John J; Ricigliano, Kristin A

    2017-05-01

    Cover crops are important management practices for reducing nitrogen (N) leaching, especially in the Chesapeake Bay watershed, which is under total maximum daily load (TMDL) restraints. Winter cereals are common cool-season crops in the Bay watershed, but studies have not directly compared nitrate-N (NO-N) leaching losses from these species. A 3-yr cover crop lysimeter study was conducted in Beltsville, MD, to directly compare NO-N leaching from a commonly grown cultivar of barley ( L.), rye ( L.), and wheat ( L.), along with a no-cover control, using eight tension-drained undisturbed soil column lysimeters in a completely randomized design with two replicates. The lysimeters were configured to exclude runoff and to estimate NO-N leaching and flow-weighted NO-N concentration (FWNC). The temporal pattern of NO-N leaching showed a consistent highly significant ( leaching with cover crops compared with no cover but showed only small and periodically significant ( leaching was more affected by the quantity of establishment-season (mid-October to mid-December) precipitation than by cover crop species. For example, compared with no cover, winter cereal covers reduced NO-N leaching 95% in a dry year and 50% in wet years, with corresponding reductions in FWNC of 92 and 43%, respectively. These results are important for scientists, nutrient managers, and policymakers because they directly compare NO-N leaching from winter cereal covers and expand knowledge for developing management practices for winter cereals that can improve water quality and increase N efficiency in cropping systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Flow through in situ reactors with suction lysimeter sampling capability and methods of using

    Science.gov (United States)

    Radtke, Corey W [Idaho Falls, ID; Blackwelder, D Brad [Blackfoot, ID; Hubbell, Joel M [Idaho Falls, ID

    2009-11-17

    An in situ reactor for use in a geological strata includes a liner defining a centrally disposed passageway and a sampling conduit received within the passageway. The sampling conduit may be used to receive a geological speciment derived from geological strata therein and a lysimeter is disposed within the sampling conduit in communication with the geological specimen. Fluid may be added to the geological specimen through the passageway defined by the liner, between an inside surface of the liner and an outside surface of the sampling conduit. A distal portion of the sampling conduit may be in fluid communication with the passageway.

  19. Verification SEBAL and Hargreaves –Samani Models to Estimate Evapotranspiration by Lysimeter Data

    Directory of Open Access Journals (Sweden)

    Ali Morshedi

    2017-02-01

    Full Text Available Introduction: Evapotranspiration (ET is an important component of the hydrological cycle, energy equations at the surface and water balance. ET estimation is needed in various fields of science, such as hydrology, agriculture, forestry and pasture, and water resources management. Conventional methods used to estimate evapotranspiration from point measurements. Remote sensing models have the capability to estimate ET using surface albedo, surface temperature and vegetation indices in larger scales. Surface Energy Balance Algorithm for Land (SEBAL estimate ET at the moment of satellite path as a residual of energy balance equation for each pixel. In this study Hargreaves-Samani (HS and SEBAL models ET compared to an alfalfa lysimeter data’s, located in Shahrekord plain within the Karun basin. Satellite imageries were based on Landsat 7 ETM+ sensor data’s in seven satellite passes for path 164 and row 38 in the World Reference System, similar to lysimeter sampling data period, from April to October 2011. SEBAL uses the energy balance equation to estimate evapotranspiration. Equation No. 1 shows the energy balance equation for an evaporative surface: λET=Rn–G–H [1] In this equation Rn, H, G and λET represent the net radiation flux input to the surface (W/m2, Sensible heat flux (W/m2, soil heat flux (W/m2, and latent heat of vaporization (W/m2, respectively. In this equation the vertical flux considered and the horizontal fluxes of energy are neglected. The above equation must be used for large surfaces and uniformly full cover plant area. SEBAL is provided for estimating ET, using the minimum data measured by ground equipment. This model is applied and tested in more than 30 countries with an accuracy of about 85% at field scale, and 95 percent in the daily and seasonal scales. In Borkhar watershed (East of Isfahan, IRAN ASTER and MODIS satellite imageries were used for SEBAL to compare Penman-Monteith model. Results showed that estimated

  20. Lysimeter study of vegetative uptake from saltstone. Part I. Design, installation, and data collection plan

    International Nuclear Information System (INIS)

    Johnson, T.L.

    1986-02-01

    A field test facility has been designed and installed to obtain data on the vegetative uptake of radionuclides from buried low-level radioactive waste. The waste is a cement-like, solidified salt solution known as saltstone. The facility consists of 32 lysimeters (containers 6 feet in diameter and 6 to 10 feet in depth) holding buried saltstone at varying depths, and with varying types of vegetation grown at the surface. Vegetation, soil, and groundwater samples will be analyzed for Tc-99, Sr-90, I-129, Cs-137, and other radionuclides. Groundwater will also be analyzed for other water quality parameters, including nitrates

  1. Evaluating lysimeter drainage against soil deep percolation modeled with profile soil moisture, field tracer propagation, and lab measured soil hydraulic properties

    DEFF Research Database (Denmark)

    Vasquez, Vicente; Thomsen, Anton Gårde; Iversen, Bo Vangsø

    them have been reported. To compare among methods, one year of four large-scale lysimeters drainage (D) was evaluated against modeled soil deep percolation using either profile soil moisture, bromide breakthrough curves from suction cups, or measured soil hydraulic properties in the laboratory....... Measured volumetric soil water content (q) was 3-4% higher inside lysimeters than in the field probably due to a zero tension lower boundary condition inside lysimeters. D from soil hydraulic properties measured in the laboratory resulted in a 15% higher evapotranspiration and 12% lower drainage...... predictions than the model calibrated with field measured q. Bromide (Br) breakthrough curves indicated high variability between lysimeters and field suction cups with mean Br velocities at first arrival time of 110 and 33 mm/d, respectively. D was 520 mm/yr with lysimeters, 613 mm/yr with the calibrated...

  2. Revisiting hydraulic hysteresis based on long-term monitoring of hydraulic states in lysimeters

    Science.gov (United States)

    Hannes, M.; Wollschläger, U.; Wöhling, T.; Vogel, H.-J.

    2016-05-01

    Hysteretic processes have been recognized for decades as an important characteristic of soil hydraulic behavior. Several studies confirmed that wetting and drying periods cannot be described by a simple functional relationship, and that some nonequilibrium of the water retention characteristics has to be taken into account. A large number of models describing the hysteresis of the soil water retention characteristic were successfully tested on soil cores under controlled laboratory conditions. However, its relevance under field conditions under natural forcings has rarely been investigated. In practice, the modeling of field soils usually neglects the hysteretic nature of soil hydraulic properties. In this study, long-term observations of water content and matric potential in lysimeters of the lysimeter network TERENO-SoilCan are presented, clearly demonstrating the hysteretic behavior of field soils. We propose a classification into three categories related to different time scales. Based on synthetic and long-term monitoring data, three different models of hysteresis were applied to data sets showing different degrees of hysteresis. We found no single model to be superior to the others. The model ranking depended on the degree of hysteresis. All models were able to reflect the general structure of hysteresis in most cases but failed to reproduce the detailed trajectories of state variables especially under highly transient conditions. As an important result we found that the temporal dynamics of wetting and drying significantly affects these trajectories which should be accounted for in future model concepts.

  3. Mineralization and Transfer Processes of 14C-labeled Pesticides in Outdoor Lysimeters

    International Nuclear Information System (INIS)

    Grundmann, Sabine; Doerfler, Ulrike; Ruth, Bernhard; Loos, Christine; Wagner, Tobias; Karl, Heidrun; Munch, Jean Charles; Schroll, Reiner

    2008-01-01

    A recently designed two-chamber-lysimeter-test-system allows the detailed investigation of degradation, transport and transfer processes of 14 C-labeled substances in soil-plant-atmosphere-systems under outdoor conditions. With this test system it is feasible to distinguish between 14 C-emissions from soil surfaces and 14 C-emissions from plant surfaces in soil monoliths under real environmental conditions. Special soil humidity sensors allow the measurement of soil water content near to the soil surface, in 1 and 5 cm depth. The behavior of organic chemicals can be followed for a whole vegetation period and a mass balance for the applied chemical can be established. Some selected results of the herbicides isoproturon and glyphosate - using the two-chamber-lysimeter-test-system - are presented to demonstrate its applicability for the identification and quantification of the processes that govern pesticide behavior in soil-plant-systems. Mineralization of 14 C-isoproturon was very different in four different soils; the mineralization capacity of the soils ranged from 2 to 60%. Leaching of isoproturon in general was very low, but depending on the soil type and environmental conditions isoproturon and its metabolites could be leached via preferential flow, especially shortly after application. For the herbicide 14 C-glyphosate no accumulation of residues in the soil and no leaching of the residues to deeper soil layers could be observed after three applications. Glyphosate was rapidly degraded to AMPA in the soil. Glyphosate and AMPA were accumulated in soy bean nodules

  4. Leaching of 60Co, 137Cs and 226Ra in lysimeter experiments

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Mueck, K.; Steger, F.; Algader, S.M.

    1996-10-01

    The present report describes the first results obtained from lysimeter experiments started in 1990. The lysimeter plant consists of twelve soil monoliths from four different sites (three replicates each). Since 1990 the following agricultural crops were grown: endive, corn, winter wheat, mustard, sugar beet and potato. Gravitational water ranged from 3.9 % to 18.3 % of precipitation plus irrigation water, calculated as half years average values excluding the first six months of operation. The two Cambisols on sediments exhibited a mean percentage of approx. 10 %. The Dystric Cambisol on silicate rock and the Gleysol showed average values of 20 %. In 1990 the top layers (20 cm) were contaminated with three radionuclides. The leaching of the contaminants 60 Co, 137 Cs and 226 Ra differed distinctly between the elements. The lowest leaching rates were observed for 137 Cs, followed by 60 Co. The 226 Ra-concentrations in the gravitational water were clearly highest of all. However, the comparison of the 226 Ra/ 22 2 8 Ra ratios in deep soil layers and in gravitational water showed that the 226 Ra measured in the leachate originates from the natural contents in the subsoil and not from the artificial 226 Ra contamination of the topsoil. The mobility of the artificial radionuclides decreased therefore in the following order: 60 Co > ( 226 Ra) > 137 Cs. (author)

  5. LYSIMETER - A UNIQUE TOOL FOR MONITORING THE INTERACTIONS AMONG THE COMPONENTS OF ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ivan Matušek

    2016-06-01

    Full Text Available Modern lysimeter facilities in connection with meteorological stations allow monitoring and evaluation of mutual basic components of the environment, such as water, air, soil and vegetation. Water is the most important component of the ecosystem and the component which connects all the other components. Therefore, we need to know the basic distribution and water balance in the different components of the environment to be able to interpret some processes in nature. Rainfall, which is the primary source of vital processes in the soil, is formed in the air. The amount of precipitation that gets into the soil and into the groundwater is affected by weather conditions. Primary distribution of rainwater is divided between infiltration, surface runoff, transpiration and evapotranspiration. The amount of water infiltrated into the soil and then evaporated by solar activity or activities of plants can be identified primarily by monitoring changes in weight. For this monitoring we use weighable lysimeter. This equipment with the monolith size of surface area 1 m2 and the depth of 1.5 m is able to follow online updates of weight of the 2 ton body with an accuracy of 100 g. When we add to quantification of leakages through the bottom layer, we obtain a comprehensive record of rainfall at the time in the natural environment of the individual components. The obtained data can be further interpreted in terms of the needs of hydrology, agriculture, and environmental studies, and according to the purpose and objectives for which we want to use them.

  6. Field Lysimeter Test Facility: Protective barrier test results (FY 1990, the third year)

    International Nuclear Information System (INIS)

    Campbell, M.D.; Gee, G.W.

    1990-11-01

    The Field Lysimeter Test Facility (FLTF) was constructed to test protective barriers for isolating low-level radioactive and hazardous wastes from the biosphere. Protective barriers are specially configured earth materials placed over near-surface wastes to prevent intrusion of water, plants, and animals. Low-level radioactive waste is stored in near-surface repositories at the Hanford Site and can be transported into the biosphere by water, plants, and animals. The purpose of the FLTF is to measure water balance within barriers as precipitation is partitioned to evaporation (including transpiration), storage, and drainage. Runoff was prevented by raised edges on the lysimeters. Water balance in protective barriers depends on the water-holding capacity of the soil, the gradient of a potential, and the conductivity of the underlying capillary barrier. Current barrier design uses soil with a high water storage capacity and a capillary barrier underlying the soil to increase its water storage capacity. This increased storage capacity is to hold water, which would normally drain, near the the surface where evaporation can cycle it back to the atmosphere. 7 refs., 23 figs., 5 tabs

  7. Mathematical modelling of deuterium transport in field lysimeters; Mathematische Modellierung des Deuteriumtransports in Freilandlysimetern

    Energy Technology Data Exchange (ETDEWEB)

    Maloszewski, P.; Klotz, D.; Trimborn, P. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Hydrologie; Maciejewski, S. [Polish Academy of Sciences, Gdansk (Poland). Inst. of Hydroengineering

    1999-02-01

    The results yielded by the Variable Flow Model (VFDM) permitted determining water flow velocities and degrees of dispersiveness. It transpired that it is not possible to isolate immobile water, which is to say that the available measuring and modelling data permit no conclusion as to whether or not the system contains immobile water. Comparison with the results obtained with the Dispersion Model (DM) showed that the simpler DM model yields tracer concentration curves in the system output that are almost as good as those of the more complicated VFDM model while entailing less work. The two models yield very similar calculations of lysimeter water content. [Deutsch] Die Ergebnisse der Modellierung mit dem Variable-Flow-Modell (VFDM) ermoeglichten die Bestimmung von Wassergeschwindigkeiten des Wassers und Dispersivitaeten. Es wurde dabei festgestellt, dass eine Abtrennung des immobilen Wassers nicht moeglich ist. D.h. es kann nicht auf Grund vorhandener Messdaten und der Modellierung entschieden werden, ob das System immobiles Wasser beinhaltet oder nicht. Ein Vergleich der Ergebnisse nach dem Variable-Flow- und dem Dispersions-Modell (DM) zeigte, dass das einfache Modell DM mit weniger Aufwand fast so gute Tracerkonzentrationskurven im Output aus dem System liefert wie das komplizierte Modell mit VFDM. Die berechneten Wassergehalte der Lysimeter nach beiden Modellierungen sind sehr aehnlich. (orig.)

  8. Numerical simulation of water flow in lysimeters; Numerische Simulation des Wasserflusses in Lysimetern

    Energy Technology Data Exchange (ETDEWEB)

    Honisch, M.; Klotz, D. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Hydrologie

    1999-02-01

    A small-scale lysimeter plant on the premises of GSF has been dedicated to the study of water movement in sediments of Quaternary and Tertiary origin. The purpose of the present study was to describe water transport and non-reactive transport in the lysimeters under transient conditions and test the suitability of the numerical simulation programme Hydrus-2D for the unsaturated zone. The hydraulic characteristics and dispersiveness parameters were derived from earlier studies. The validity of these values was determined on the basis of a tracer experiment using the ideal tracer tritium water. [Deutsch] Zur Charakterisierung der Wasserbewegung in Sedimenten quartaeren und tertiaeren Ursprungs wird auf dem Gelaende der GSF eine Kleinlysimeteranlage betrieben. Ziel der vorliegenden Untersuchung war es, den Wasserfluss und nicht-reaktiven Transport in den Saeulen unter transienten Bedingungen zu beschreiben und hierbei die Eignung des numerischen Simulationsprogramms Hydrus-2D fuer die ungesaettigte Zone zu ueberpruefen. Die hydraulischen Kenngroessen und Dispersivitaetsparameter waren aus frueheren Untersuchungen abzuleiten. Die offene Frage hinsichtlich der Validitaet dieser Werte sollte auf der Grundlage eines Tracerexperiments mit tritiiertem Wasser als idealem Tracer ueberprueft werden. (orig.)

  9. Device for applying organic chemicals to lysimeter surfaces; Applikationsvorrichtung fuer organische Chemikalien auf Lysimeteroberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, R. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Bodenoekologie

    1999-02-01

    One of the aims of environmental research at the GSF Research Centre for the Environment and Health is to determine the behaviour of environmentally consequential chemicals in terrestrial ecosystems under as natural conditions as possible. The GSF lysimeter plant in Neuherberg permits studying the environmental behaviour of organic chemicals in different soils. Collaborators at GSF have developed a means of applying -14-marked substances in field lysimeters so as to be able to refind released chemicals, identify their conversion products and set up mass balances for the chemicals. [Deutsch] Ein Ziel der Umweltforschung im GSF-Forschungszentrum fuer Umwelt und Gesundheit ist es, das Verhalten von Umweltchemikalien in terrestrischen Oekosystemen unter moeglichst natuerlichen Bedingungen zu bestimmen. In der GSF-Lysimeteranlage Neuherberg kann das Umweltverhalten von Organika in verschiedenen Boeden untersucht werden. Zur Wiedererkennung der ausgebrachten Chemikalie bzw. zur Identifizierung aus ihr entstandener Umwandlungsprodukte und letztendlich auch zur Erstellung einer Massenbilanz fuer das ausgebrachte Praeparat wurde in der GSF die Moeglichkeit geschaffen, {sup 14}C-markierte Substanzen in Freilandlysimetern applizieren zu koennen. (orig.)

  10. Upward migration of radio-cesium and strontium in a sand-filled lysimeter

    International Nuclear Information System (INIS)

    Sanford, W.E.; Larsen, I.L.; McConnell, J.W.; Rogers, R.D.

    1998-01-01

    The upward migration of 134 Cs, 137 Cs, and 90 Sr was observed in a silica sand-filled lysimeter at the Field Lysimeter Investigations: Low Level Waste Data Base Development experiment site at Oak Ridge National Laboratory. The source of the radionuclides first observed on the surface was identified from isotopic analysis as being from the buried waste. Cores of the sand were collected and analyzed for the vertical distribution of the radionuclides. Results of analyses revealed that pulses (elevated levels) in the activity of the Cs and Sr radioisotopes occurred at the same depths. During the sectioning of the sand core collected from directly above the buried waste form it was discovered that a fine root from an unidentified plant was present throughout all but the upper few centimeters of the core. Because the upward migration was unexpected, information that may lead to the determination of a definitive mechanism of migration was not preserved. The distribution of the radionuclides coupled with the presence of the root suggest that Cs and Sr migrated upward in the evapotranspiration stream of the root. Further study must be undertaken to confirm this phenomenon. Upward migration of radionuclides as observed here could result in direct exposures and offsite releases from underground storage facilities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. A Comparison of delO18 Composition of Water Extracted from Suction Lysimeters, Centrifugation, and Azeotropic Distillation

    Science.gov (United States)

    Figueroa, A.; Tindall, J. A.; Friedel, M. J.

    2005-12-01

    Concentration of delO18 in water samples extracted by suction lysimeters is compared to samples obtained by methods of centrifugation and azeotropic distillation. Intact soil cores (30 cm diameter by 40 cm height) were extracted from two different sites. Site 1 was rapid infiltration basin number 50, near Altamonte Springs in Seminole County, Florida on properties belonging to the Walt Disney World Resort Complex. Site 2 was the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri. The delO18 water was analyzed on a mass spectrophotometer. Potassium Bromide (KBr) was also used as a tracer and analyzed by ion chromatography. A portion of the data obtained was modeled using CXTFIT. Water collected by centrifugation and azeotropic distillation data were about 2-5% more negative than that collected by suction lysimeter values from the Florida (sandy) soil and about 5-7 % more negative from the Missouri (well structured clay) soil. Results indicate that the majority of soil water in well structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. Also, it is plausible that evaporation caused some delO18 enrichment in the suction lysimeters. Suction lysimeters preferentially sampled water held at lower matric potentials, which may not represent total soil water. In cases where a sufficient volume of water has passed through the soil profile and displaced all previous pore water, suction lysimeters will however collect a representative sample of all the water at that depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeters be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The CXTFIT program worked well for Florida soils (a more homogeneous sand), but gave poor performance for Missouri soils (well structured clays) except for deeper depths where clay structure was less

  12. Examination plan for the soils and low-level radioactive waste forms of the NRC field testing lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.

    1996-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms. These experiments were recently shut down and have been examined in accordance with a detailed waste form and soil sampling plan. Ion-exchange resins from a commercial nuclear power station were solidified into waste forms using portland cement and vinyl ester-styrene. These waste forms were tested to (a) obtain information on performance of waste forms in typical disposal environments, (b) compare field results with bench leach studies, (c) develop a low-level waste data base for use in performance assessment source term calculations, and (d) apply the DUST computer code to compare predicted cumulative release to actual field data. The program, funded by the Nuclear Regulatory Commission (NRC), includes observed radionuclide releases from waste forms at two test sites over 10 years of successful operation. Lysimeters are ideal systems for obtaining actual field test data because, when properly designed and operated, they can be used to isolate soil and waste systems under actual environmental conditions. The purpose of this paper is to present the experimental plan for the examination of the waste forms and soils of the two lysimeter arrays, which have now been shut down. Vertical soil cores have been taken from the soil columns and will be analyzed with radiochemistry to define movement of radionuclides after release from the waste forms. A comparison is made of the DUST-predicted releases to those previously determined and reported from the lysimeter leachate analyses. That comparison uses new partition coefficients (Kd) recently obtained from laboratory analysis of the lysimeter soils and sand. Those DUST code results also will be compared to actual radionuclide movements through the soil columns as determined from soil core analysis

  13. Status report for the Small-Tube Lysimeter Facility; Fiscal year 1992

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.; Kemp, C.J.; Cadwell, L.L.

    1993-07-01

    Westinghouse Hanford Company and Pacific Northwest Laboratory are jointly developing earthen protective barriers for the near-surface disposal of radioactive and hazardous waste at the Hanford Site. The proposed barrier design consists of a blanket of fine-textured soil overlying a sequence of layers, varying from sand to basalt riprap. The experiments conducted at the Small-Tube Lysimeter Facility (STLF) were designed to measure the influence of erosion-control practices and alternate barrier layer configurations on water movement within the barrier, and extraction of water from the barrier. This report describes the results of data collected during the period from September 1988 through May 1992 at the STLF. Four concurrent experiments are being performed at this facility, each of these experiments are designed to test different components of the proposed barrier. The experiments are as follows

  14. Geochemical Results of Lysimeter Sampling at the Manning Canyon Repository in the Mercur Mining District, Utah

    Science.gov (United States)

    Earle, John; Choate, LaDonna

    2010-01-01

    This report presents chemical characteristics of transient unsaturated-zone water collected by lysimeter from the Manning Canyon repository site in Utah. Data collected by U.S. Geological Survey and U.S. Department of the Interior, Bureau of Land Management scientists under an intragovernmental order comprise the existing body of hydrochemical information on unsaturated-zone conditions at the site and represent the first effort to characterize the chemistry of the soil pore water surrounding the repository. Analyzed samples showed elevated levels of arsenic, barium, chromium, and strontium, which are typical of acidic mine drainage. The range of major-ion concentrations generally showed expected soil values. Although subsequent sampling is necessary to determine long-term effects of the repository, current results provide initial data concerning reactive processes of precipitation on the mine tailings and waste rock stored at the site and provide information on the effectiveness of reclamation operations at the Manning Canyon repository.

  15. Investigations of pollutant migration using lysimeters; Untersuchungen zur Schadstoff-Migration in Lysimetern

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, D. (ed.)

    2002-07-01

    The third GSF Lysimeter Workshop focused on pollutant migration in underground strata, i.e. the dispersion of water constituents as referred to water transport on the basis of ideal tracer investigations. [German] Der am 29./30.04.2002 stattgefundene Workshop 'Untersuchungen zur Schadstoffmigration in Lysimetern' war der dritte GSF-Lysimeterworkshop nach denen in den Jahren 1998 und 2000 veranstalteten. Nachdem in den Jahren 1998 und 2000 der Wassertransport und die Bestimmung der Sickerwassergeschwindigkeit in Lysimetern im Mittelpunkt standen, war 2002 die Schadstoffmigration im Untergrund der Schwerpunkt der Vortraege und Poster. Unter Migration wird das Ausbreitungsverhalten von Wasserinhalts-(Fremd-, Schad-)Stoffen bezogen auf den Wassertransport, bestimmt mit idealen Tracern, verstanden. (orig.)

  16. Mineralization and Transfer Processes of {sup 14}C-labeled Pesticides in Outdoor Lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Sabine; Doerfler, Ulrike, E-mail: doerfler@gsf.de; Ruth, Bernhard; Loos, Christine [GSF - National Research Center for Environment and Health, Institute of Soil Ecology (Germany); Wagner, Tobias [GSF - National Research Center for Environment and Health, Institute of Biochemical Plant Pathology (Germany); Karl, Heidrun; Munch, Jean Charles; Schroll, Reiner [GSF - National Research Center for Environment and Health, Institute of Soil Ecology (Germany)

    2008-04-15

    A recently designed two-chamber-lysimeter-test-system allows the detailed investigation of degradation, transport and transfer processes of {sup 14}C-labeled substances in soil-plant-atmosphere-systems under outdoor conditions. With this test system it is feasible to distinguish between {sup 14}C-emissions from soil surfaces and {sup 14}C-emissions from plant surfaces in soil monoliths under real environmental conditions. Special soil humidity sensors allow the measurement of soil water content near to the soil surface, in 1 and 5 cm depth. The behavior of organic chemicals can be followed for a whole vegetation period and a mass balance for the applied chemical can be established. Some selected results of the herbicides isoproturon and glyphosate - using the two-chamber-lysimeter-test-system - are presented to demonstrate its applicability for the identification and quantification of the processes that govern pesticide behavior in soil-plant-systems. Mineralization of {sup 14}C-isoproturon was very different in four different soils; the mineralization capacity of the soils ranged from 2 to 60%. Leaching of isoproturon in general was very low, but depending on the soil type and environmental conditions isoproturon and its metabolites could be leached via preferential flow, especially shortly after application. For the herbicide {sup 14}C-glyphosate no accumulation of residues in the soil and no leaching of the residues to deeper soil layers could be observed after three applications. Glyphosate was rapidly degraded to AMPA in the soil. Glyphosate and AMPA were accumulated in soy bean nodules.

  17. Multitracer studies for determining seepage water and anion movement in four types of soil using lysimeters with different functions and designs

    International Nuclear Information System (INIS)

    Knappe, S.; Russow, R.

    1999-01-01

    Lysimeter experiments based on the stable isotope tracer technique are a suitable means of examining the complex relationships governing water and material transport processes in the soil. The present paper reports on experiments in which water and nitrate movement was traced directly by means of lysimeters placed at different depths and using deuterium water and [ 15 N]N-nitrate for pulse marking. Extensive investigations carried out during the dissection of soil monoliths that had been used for many years in lysimeters offered an opportunity for stable isotope tracer studies aimed at determining seepage water and anion movement in undisturbed soils and, after dismantling the lysimeters, conducting soil analyses to find out more about the fate of nonpercolated tracers at various soil depths. Following other authors, bromide anions were additionally used as conservative tracers [de

  18. Model validation studies of water flow and radionuclide transport in vegetated soils using lysimeter data

    Energy Technology Data Exchange (ETDEWEB)

    Butler, A.; Jining Chen [Imperial College of Science, Technology and Medicine, London (United Kingdom)] [and others

    1996-09-01

    Model Uncertainty and Validation was one of the four themes of BIOMOVS II which had been identified by the programme's steering committee. It arose out of a concern that biosphere assessment models are generally simplified representations of highly complex environmental systems which, therefore, include a degree of uncertainty in their outputs. This uncertainty may be due to inadequate representations of the physical, chemical and biological processes; issues associated with scaling up highly non-linear systems; problems of model identification, in particular user interpretation. Therefore, during the course of the 5 year (1991-1996) BIOMOVS II programme a number of working sub-groups reestablished to address these issues. This document is the final report of the Prediction of Upward Migration of Radionuclides in Lysimeters sub-group which was established towards the end of the programme, late in 1994. It describes the 'blind' application of various hydrological and radiochemical transport models to experiment data derived from vegetated lysimeters. In order to investigate soil-to-plant transfer processes affecting the radionuclide migration from contaminated near surface water tables into arable crops, a lysimeter experiment has been undertaken at Imperial College, funded by UK Nirex Ltd. Detailed observations of climate, soil hydrology, plant growth and radiochemical migration were collected on the uptake of various radionuclides by a winter wheat crop. A selected set of data was made available to members of BIOMOVS II in order to allow them to test relevant components of current versions of assessment code. This was a challenging task owing to the rather unusual experimental design, in particular, the introduction of radionuclides at the base of the lysimeter, 5 cm below a fixed water table, and their subsequent upward migration through the soil. The comprehensive hydrological data set available provided various modelers, particularly those

  19. Model validation studies of water flow and radionuclide transport in vegetated soils using lysimeter data

    International Nuclear Information System (INIS)

    Butler, A.; Jining Chen

    1996-09-01

    Model Uncertainty and Validation was one of the four themes of BIOMOVS II which had been identified by the programme's steering committee. It arose out of a concern that biosphere assessment models are generally simplified representations of highly complex environmental systems which, therefore, include a degree of uncertainty in their outputs. This uncertainty may be due to inadequate representations of the physical, chemical and biological processes; issues associated with scaling up highly non-linear systems; problems of model identification, in particular user interpretation. Therefore, during the course of the 5 year (1991-1996) BIOMOVS II programme a number of working sub-groups reestablished to address these issues. This document is the final report of the Prediction of Upward Migration of Radionuclides in Lysimeters sub-group which was established towards the end of the programme, late in 1994. It describes the 'blind' application of various hydrological and radiochemical transport models to experiment data derived from vegetated lysimeters. In order to investigate soil-to-plant transfer processes affecting the radionuclide migration from contaminated near surface water tables into arable crops, a lysimeter experiment has been undertaken at Imperial College, funded by UK Nirex Ltd. Detailed observations of climate, soil hydrology, plant growth and radiochemical migration were collected on the uptake of various radionuclides by a winter wheat crop. A selected set of data was made available to members of BIOMOVS II in order to allow them to test relevant components of current versions of assessment code. This was a challenging task owing to the rather unusual experimental design, in particular, the introduction of radionuclides at the base of the lysimeter, 5 cm below a fixed water table, and their subsequent upward migration through the soil. The comprehensive hydrological data set available provided various modelers, particularly those involved in tritium

  20. Design of top covers supporting aerobic in situ stabilization of old landfills - An experimental simulation in lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Hrad, Marlies [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Wimmer, Bernhard; Reichenauer, Thomas G. [Health and Environment Department, Environmental Resources and Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Tested engineered covers as surrogate to gas extraction during and after in situ aeration. Black-Right-Pointing-Pointer Examined how covers influence gas emissions, water balance and leachate generation. Black-Right-Pointing-Pointer Investigated effect of top covers on air-distribution in waste mass during aeration. Black-Right-Pointing-Pointer We suggest criteria and cover design to meet the demands during and after aeration. Black-Right-Pointing-Pointer Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 Multiplication-Sign 2 Multiplication-Sign 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH{sub 4} loadings up to 300 l CH{sub 4}/m{sup 2} d. In addition, the compost material provided high air permeability

  1. Large-scale demonstration of disposal of decontaminated salt as saltstone. Part I. Construction, loading, and capping of lysimeters

    International Nuclear Information System (INIS)

    Wolf, H.C.

    1984-06-01

    The installation phase of a large-scale demonstration of the disposal concept for decontaminated, low-level radioactive salt waste at the Savannah River Plant was completed in December 1983 and January 1984. The installation entailed immobilizing 7500 gallons of decontaminated salt solution with a blended cement formulation and pouring the resulting grout, saltstone, into three specially designed lysimeters for extended in-field leaching tests under natural conditions. 4 references, 35 figures, 4 tables

  2. Phytoremediation of Composition-B Derived TNT and RDX in Herbaceous Plant-vegetated and Bare Lysimeters

    Science.gov (United States)

    2009-12-01

    ER D C TR -0 9- 10 Strategic Environmental Research and Development Program Phytoremediation of Composition-B Derived TNT and RDX in...Program ERDC TR-09-10 December 2009 Phytoremediation of Composition-B Derived TNT and RDX in Herbaceous Plant-vegetated and Bare Lysimeters Elly P. H...for U.S. Army Corps of Engineers Washington, DC 20314-1000 ERDC TR-09-10 ii Abstract: This report describes a study in which phytoremediation of

  3. Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies.

    Science.gov (United States)

    Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W

    2017-02-01

    The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer

  4. Lysimeter study with a cambric arenosol exposed to artificial acid rain: I. Concentrations of ions in leachate

    International Nuclear Information System (INIS)

    Sogn, T.A.; Abrahamsen, G.; Stuanes, A.O.

    1993-01-01

    The effects of artificial acid rain on soil leachate composition were studied in a lysimeter experiment. Cambic Arenosol (Typic Udipsamment) in monolith lysimeters was treated for 6 1/2 year with 125 mm yr -1 artificial rain in addition to natural precipitation. Artificial acid rain was produced from groundwater with H 2 SO 4 added. pH levels of 6.1, 4 and 3 were used. Increasing content of H 2 SO 4 in the artificial rain increased the concentration of Ca 2+ and Mg 2+ in the leachate significantly. The pH of the leachate was slightly reduced only by the most acidic treatment (pH 3). The H + retention was not accompanied by a proportionate increase in the Al ion concentration. A slight increase in the Al ion concentration was only observed in the leachate from the pH 3-treated lysimeter. It is concluded that cation exchange and/or weathering were the main buffer mechanisms in the soil. The study supports conclusions from other acidification studies, that acidic precipitation is likely to increase the leaching of Ca 2+ and Mg 2+ from soils. 25 refs., 3 figs., 7 tabs

  5. Plant-specific responses to zinc contamination in a semi-field lysimeter and on hydroponics

    International Nuclear Information System (INIS)

    Bernhard, Roland; Verkleij, Jos A.C.; Nelissen, Hans J.M.; Vink, Jos P.M.

    2005-01-01

    The species Agrostis stolonifera, Brassica napus and Trifolium repens representing different ecological strategies, were selected to study the effect of Zn contamination on Zn tolerance, uptake and accumulation patterns. Parallel tests were carried out with increasing concentrations of Zn in a semi-field lysimeter and hydroponics in the climate chamber. A significant reduction in biomass production or root length and an increase in shoot Zn concentration was observed for all species at increasing external Zn concentrations. However, shoot biomass production, Zn tolerance and Zn accumulation differed significantly among the tested species. The results in both experimental set-ups were quite similar concerning Zn tolerance and accumulation and improved the validity of the findings. The rather specific responses of the different plant species to Zn contamination interfere with the more generic approach used in risk assessment studies. Maximum amounts of Zn in shoot are not likely to cause a risk to herbivores. - Effects of Zn contamination showed different responses in uptake and accumulation patterns of site-specific plant species, which were similar in a semi-field experiment and under controlled conditions

  6. Plant-specific responses to zinc contamination in a semi-field lysimeter and on hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, Roland [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands); Verkleij, Jos A.C. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands)]. E-mail: jos.verkleij@falw.vu.nl; Nelissen, Hans J.M. [Department of Ecology and Physiology of Plants, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam (Netherlands); Vink, Jos P.M. [Department of Chemistry and Ecotoxicology, RIZA, PO Box 17, NL-8200 AA Lelystad (Netherlands)

    2005-11-15

    The species Agrostis stolonifera, Brassica napus and Trifolium repens representing different ecological strategies, were selected to study the effect of Zn contamination on Zn tolerance, uptake and accumulation patterns. Parallel tests were carried out with increasing concentrations of Zn in a semi-field lysimeter and hydroponics in the climate chamber. A significant reduction in biomass production or root length and an increase in shoot Zn concentration was observed for all species at increasing external Zn concentrations. However, shoot biomass production, Zn tolerance and Zn accumulation differed significantly among the tested species. The results in both experimental set-ups were quite similar concerning Zn tolerance and accumulation and improved the validity of the findings. The rather specific responses of the different plant species to Zn contamination interfere with the more generic approach used in risk assessment studies. Maximum amounts of Zn in shoot are not likely to cause a risk to herbivores. - Effects of Zn contamination showed different responses in uptake and accumulation patterns of site-specific plant species, which were similar in a semi-field experiment and under controlled conditions.

  7. Comparison of lysimeter based and calculated ASCE reference evapotranspiration in a subhumid climate

    Science.gov (United States)

    Nolz, Reinhard; Cepuder, Peter; Eitzinger, Josef

    2016-04-01

    The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration (ET ref) and subsequently plant water requirements. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on environmental and weather conditions. Therefore, it seems generally advisable to evaluate the model under local environmental conditions. In this study, reference evapotranspiration was determined at a subhumid site in northeastern Austria from 2005 to 2010 using a large weighing lysimeter (ET lys). The measured data were compared with ET ref calculations. Daily values differed slightly during a year, at which ET ref was generally overestimated at small values, whereas it was rather underestimated when ET was large, which is supported also by other studies. In our case, advection of sensible heat proved to have an impact, but it could not explain the differences exclusively. Obviously, there were also other influences, such as seasonal varying surface resistance or albedo. Generally, the ASCE-EWRI equation for daily time steps performed best at average weather conditions. The outcomes should help to correctly interpret ET ref data in the region and in similar environments and improve knowledge on the dynamics of influencing factors causing deviations.

  8. Radionuclide field lysimeter experiment (RadFLEx): geochemical and hydrological data for SRS performance assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Powell, B. [Clemson Univ., SC (United States); Barber, K. [Clemson Univ., SC (United States); Devol, T. [Clemson Univ., SC (United States); Dixon, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Erdmann, B. [Clemson Univ., SC (United States); Maloubier, M. [Clemson Univ., SC (United States); Martinez, N. [Clemson Univ., SC (United States); Montgomery, D. [Clemson Univ., SC (United States); Peruski, K. [Clemson Univ., SC (United States); Roberts, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Witmer, M. [Clemson Univ., SC (United States)

    2017-12-12

    The SRNL Radiological Field Lysimeter Experiment (RadFLEx) is a one-of-a-kind test bed facility designed to study radionuclide geochemical processes in the Savannah River Site (SRS) vadose zone at a larger spatial scale (from grams to tens of kilograms of sediment) and temporal scale (from months to decade) than is readily afforded through laboratory studies. RadFLEx is a decade-long project that was initiated on July 5, 2012 and is funded by six different sources. The objective of this status report is as follows: 1) to report findings to date that have an impact on SRS performance assessment (PA) calculations, and 2) to provide performance metrics of the RadFLEx program. The PA results are focused on measurements of transport parameters, such as distribution coefficients (Kd values), solubility, and unsaturated flow values. As this is an interim report, additional information from subsequent research may influence our interpretation of current results. Research related to basic understanding of radionuclide geochemistry in these vadose zone soils and other source terms are not described here but are referenced for the interested reader.

  9. A comparative modeling study of a dual tracer experiment in a large lysimeter under atmospheric conditions

    Science.gov (United States)

    Stumpp, C.; Nützmann, G.; Maciejewski, S.; Maloszewski, P.

    2009-09-01

    SummaryIn this paper, five model approaches with different physical and mathematical concepts varying in their model complexity and requirements were applied to identify the transport processes in the unsaturated zone. The applicability of these model approaches were compared and evaluated investigating two tracer breakthrough curves (bromide, deuterium) in a cropped, free-draining lysimeter experiment under natural atmospheric boundary conditions. The data set consisted of time series of water balance, depth resolved water contents, pressure heads and resident concentrations measured during 800 days. The tracer transport parameters were determined using a simple stochastic (stream tube model), three lumped parameter (constant water content model, multi-flow dispersion model, variable flow dispersion model) and a transient model approach. All of them were able to fit the tracer breakthrough curves. The identified transport parameters of each model approach were compared. Despite the differing physical and mathematical concepts the resulting parameters (mean water contents, mean water flux, dispersivities) of the five model approaches were all in the same range. The results indicate that the flow processes are also describable assuming steady state conditions. Homogeneous matrix flow is dominant and a small pore volume with enhanced flow velocities near saturation was identified with variable saturation flow and transport approach. The multi-flow dispersion model also identified preferential flow and additionally suggested a third less mobile flow component. Due to high fitting accuracy and parameter similarity all model approaches indicated reliable results.

  10. Evaluation of evapotranspiration on paddy rice using non-weighting lysimeters under the different air temperature

    Science.gov (United States)

    Oh, D.; Ryu, J. H.; Cho, J.

    2017-12-01

    Estimation of the crop evapotranspiration (ETc), as a representative of crop water needs, is important for not only high crop productivity, but also improving irrigation water management. In farm lands crop coefficient (Kc), the ratio of ETc to potential ET, is often used to simply estiamte ETc. However, the traits of Kc under the global warming condition will different with current one because plant transpiration and surface evaporaiton will be changed by the alternative crop growth and evaporative energy. In this study, Non-Weighting Lysimeter (NWL) was used to directly estimate ETc under the warmed condition, particularly for paddy riace which has one of lower water use efficiency. The different air t emperature (Ta) conditions for the NWL were provided by Temperature Gradient Chamber (TGC), which was formed gradually warmed conditions. The water body evporation and paddy rice evapotransipiration in the NWL were at the two places of ambient Ta (AT) and AT+3° in the TGC. In addition, we installed Infra-Red thermometer (IRT) to understand the surface energy balance. The result was shown that the different partitioning of evaporation and transpiration of paddy rice at the AT+3°, comparing at AT. Further, the water use efficiency, the ratio of yield to total ET, was also decreased in the warmed condition. These experiments for paddy rice ET in the warmed conditions during growth period will be useful to understand the effect of global warming on the hydrological cycle and manamge the irrigation schedule for more efficient water use.

  11. Probabilistic risk assessment of nitrate groundwater contamination from greenhouses in Albenga plain (Liguria, Italy) using lysimeters.

    Science.gov (United States)

    Paladino, Ombretta; Seyedsalehi, Mahdi; Massabò, Marco

    2018-04-05

    The use of fertilizers in greenhouse-grown crops can pose a threat to groundwater quality and, consequently, to human beings and subterranean ecosystem, where intensive farming produces pollutants leaching. Albenga plain (Liguria, Italy) is an alluvial area of about 45km 2 historically devoted to farming. Recently the crops have evolved to greenhouses horticulture and floriculture production. In the area high levels of nitrates in groundwater have been detected. Lysimeters with three types of reconstituted soils (loamy sand, sandy clay loam and sandy loam) collected from different areas of Albenga plain were used in this study to evaluate the leaching loss of nitrate (NO 3 - ) over a period of 12weeks. Leaf lettuce (Lactuca sativa L.) was selected as a representative green-grown crop. Each of the soil samples was treated with a slow release fertilizer, simulating the real fertilizing strategy of the tillage. In order to estimate the potential risk for aquifers as well as for organisms exposed via pore water, nitrate concentrations in groundwater were evaluated by applying a simplified attenuation model to the experimental data. Results were refined and extended from comparison of single effects and exposure values (Tier I level) up to the evaluation of probabilistic distributions of exposure and related effects (Tier II, III IV levels). HHRA suggested HI >1 and about 20% probability of exceeding RfD for all the greenhouses, regardless of the soil. ERA suggested HQ>100 for all the greenhouses; 93% probability of PNEC exceedance for greenhouses containing sand clay loam. The probability of exceeding LC50 for 5% of the species was about 40% and the probability corresponding to DBQ of DEC/EC50>0.001 was >90% for all the greenhouses. The significantly high risk, related to the detected nitrate leaching loss, can be attributed to excessive and inappropriate fertigation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A Particle Smoother with Sequential Importance Resampling for soil hydraulic parameter estimation: A lysimeter experiment

    Science.gov (United States)

    Montzka, Carsten; Hendricks Franssen, Harrie-Jan; Moradkhani, Hamid; Pütz, Thomas; Han, Xujun; Vereecken, Harry

    2013-04-01

    An adequate description of soil hydraulic properties is essential for a good performance of hydrological forecasts. So far, several studies showed that data assimilation could reduce the parameter uncertainty by considering soil moisture observations. However, these observations and also the model forcings were recorded with a specific measurement error. It seems a logical step to base state updating and parameter estimation on observations made at multiple time steps, in order to reduce the influence of outliers at single time steps given measurement errors and unknown model forcings. Such outliers could result in erroneous state estimation as well as inadequate parameters. This has been one of the reasons to use a smoothing technique as implemented for Bayesian data assimilation methods such as the Ensemble Kalman Filter (i.e. Ensemble Kalman Smoother). Recently, an ensemble-based smoother has been developed for state update with a SIR particle filter. However, this method has not been used for dual state-parameter estimation. In this contribution we present a Particle Smoother with sequentially smoothing of particle weights for state and parameter resampling within a time window as opposed to the single time step data assimilation used in filtering techniques. This can be seen as an intermediate variant between a parameter estimation technique using global optimization with estimation of single parameter sets valid for the whole period, and sequential Monte Carlo techniques with estimation of parameter sets evolving from one time step to another. The aims are i) to improve the forecast of evaporation and groundwater recharge by estimating hydraulic parameters, and ii) to reduce the impact of single erroneous model inputs/observations by a smoothing method. In order to validate the performance of the proposed method in a real world application, the experiment is conducted in a lysimeter environment.

  13. Studies on development of experimental system for trial manufacture of semi-field scale lysimeter

    International Nuclear Information System (INIS)

    Kamada, Hiroshi; Yukawa, Masae; Watabe, Teruhisa; Tanaka, Hirobumi; Ohwaku, Keiichi

    1978-01-01

    Because of difficulties in conduct of in situ experiments using the radiotracer method for this purpose, it is necessary to develope the technique on utilization of the results obtained by the laboratory works to resolve phenomenon in the actual environment. For this kind of extrapolation, optimum size of experimental model, designed as large as reasonable in scale to simulate the actual environment (defined as the term, 'semi-field scale experimental model' for convenience) was investigated. For this kind of extrapolation, optimum size of experimental model, designed as large as reasonable in scale to simulate the actual environment (defined as the term, 'semi-field scale experimental model' for convenience) was investigated. For this object, following experiments are especially conducted. The effects of vegetation to the mobility of transition elements in the surface layer of soil was studied by Wagner pot experiment. The vertical movement pattern of radionuclides in the deeper layer in the ground, especially transfer of long-lived-nuclides from soil into water, was investigated using radioactivity survey data of fallout. These results indicated the importance of information on the behaviour of contaminants in 'surface soil', 'Intermediate zone', 'capillary zone' and 'aquifer'. Therefore, an experimental mode, consisted of above four parts, was designed. The apparatus would include several substructures; an artificial rainfall apparatus, the Lysimeter, and receptive basin and so on. A regulation system for the fluctuation of hydraulic gradient in the aquifer would be also required. In order to get information on the above four parts of ground constitutions altogether, approximately 4 - 12 m depth was recommended for the model. (author)

  14. Zero-tension lysimeters: An improved design to monitor colloid-facilitated contaminant transport in the vadose zone

    International Nuclear Information System (INIS)

    Thompson, M.L.; Scharf, R.L.; Shang, C.

    1995-01-01

    There is increasing evidence that mobile colloids facilitate the long-distance transport of contaminants. The mobility of fine particles and macromolecules has been linked to the movement of actinides, organic contaminants, and heavy metals through soil. Direct evidence for colloid mobility includes the presence of humic materials in deep aquifers as well as coatings of accumulated clay, organic matter, or sesquioxides on particle or aggregate surfaces in subsoil horizons of many soils. The potential for colloid-facilitated transport of contaminants from hazardous-waste sites requires adequate monitoring before, during, and after in-situ remediation treatments. Zero-tension lysimeters (ZTLs) are especially appropriate for sampling water as it moves through saturated soil, although some unsaturated flow events may be sampled as well. Because no ceramic barrier or fiberglass wick is involved to maintain tension on the water (as is the case with other lysimeters), particles suspended in the water as well as dissolved species may be sampled with ZTLs. In this report, a ZTL design is proposed that is more suitable for monitoring colloid-facilitated contaminant migration. The improved design consists of a cylinder made of polycarbonate or polytetrafluoroethylene (PTFE) that is placed below undisturbed soil material. In many soils, a hydraulically powered tube may be used to extract an undisturbed core of soil before placement of the lysimeter. In those cases, the design has significant advantages over conventional designs with respect to simplicity and speed of installation. Therefore, it will allow colloid-facilitated transport of contaminants to be monitored at more locations at a given site

  15. Construction and demolition waste: Comparison of standard up-flow column and down-flow lysimeter leaching tests.

    Science.gov (United States)

    Butera, Stefania; Hyks, Jiri; Christensen, Thomas H; Astrup, Thomas F

    2015-09-01

    Five samples of construction and demolition waste (C&DW) were investigated in order to quantify leaching of inorganic elements under percolation conditions according to two different experimental setups: standardised up-flow saturated columns (<4mm particle size) and unsaturated, intermittent down-flow lysimeters (<40mm particle size). While standardised column tests are meant primarily to provide basic information on characteristic leaching properties and mechanisms and not to reproduce field conditions, the lysimeters were intended to mimic the actual leaching conditions when C&DW is used in unbound geotechnical layers. In practice, results from standardised percolation tests are often interpreted as estimations of actual release from solid materials in percolation scenarios. In general, the two tests yielded fairly similar results in terms of cumulative release at liquid-to-solid ratio (L/S) 10l·kgTS; however, significant differences were observed for P, Pb, Ba, Mg and Zn. Further differences emerged in terms of concentration in the early eluates (L/S<5l·kg(-1)TS) for Al, As, Ba, Cd, Cu, DOC, Mg, Mn, Ni, P, Pb, Sb, Se, Si, Zn. Observed differences between tests are likely to be due to differences in pH related to crushing and exposure of fresh particle surfaces, as well as in equilibrium conditions. In the case of C&DW, the standardised column tests, which are more practical, are considered to acceptably describe cumulative releases at L/S 10l·kg(-1)TS in percolation scenarios. However, when the focus is on estimation of initial concentrations for (for example) risk assessment, data from standardised column tests may not be fully applicable, and data from lysimeters may be used for validation purposes. Se, Cr and, to a lesser extent, SO4 and Sb were leaching from C&DW in critical amounts compared with existing limit values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Transport and modeling of estrogenic hormones in a dairy farm effluent through undisturbed soil lysimeters.

    Science.gov (United States)

    Steiner, Laure D; Bidwell, Vincent J; Di, Hong J; Cameron, Keith C; Northcott, Grant L

    2010-04-01

    The presence of endocrine-disrupting chemicals, including estrone (E1) and 17beta-estradiol (E2), in surface waters has been associated with physiological dysfunction in a number of aquatic organisms. One source of surface and groundwater contamination with E1 and E2 is the land application of animal wastes. The processes involved in the transport of these hormones in the soil, when applied with animal wastes, are still unclear. Therefore, a field-transport experiment was carried out, where a dairy farm effluent spiked with E1 and E2 was applied on large (50 cm diameter and 70 cm depth) undisturbed soil lysimeters. The concentrations of E1 and E2 in the leachate were monitored over a 3-month period, during which irrigation was applied. The experimental data suggest that E1 and E2 were transported through preferential/macropore flow pathways. The data from the experiment also show that E1 and E2 are leached earlier than the inert tracer (bromide). This observation can be explained either by the presence of antecedent concentrations in the soil or by an enhanced transport of E1 and E2 through the soil. A state-space mixing-cell model was further developed in order to describe the transport of E1 and E2 by three transport processes in parallel. The inverse modeling of the leaching data did not support the hypothesis that antecedent concentrations of estrogens could be responsible for the observed breakthrough curves but confirmed that estrogens were transported mainly via preferential/macropore flow and also via an enhanced transport. The parameter values that characterized this enhanced transport strongly suggest that this enhanced transport is mediated by colloids. For the first time, the simultaneous transport of E1 and E2 was modeled under transient conditions, taking into account the advection-dispersion, preferential/macropore flow, and colloidal-enhanced transport processes as well as E1 and E2 dissipation in the soil. These findings have major implications in

  17. Validation of a simple evaporation-transpiration scheme (SETS) to estimate evaporation using micro-lysimeter measurements

    Science.gov (United States)

    Ghazanfari, Sadegh; Pande, Saket; Savenije, Hubert

    2014-05-01

    Several methods exist to estimate E and T. The Penman-Montieth or Priestly-Taylor methods along with the Jarvis scheme for estimating vegetation resistance are commonly used to estimate these fluxes as a function of land cover, atmospheric forcing and soil moisture content. In this study, a simple evaporation transpiration method is developed based on MOSAIC Land Surface Model that explicitly accounts for soil moisture. Soil evaporation and transpiration estimated by SETS is validated on a single column of soil profile with measured evaporation data from three micro-lysimeters located at Ferdowsi University of Mashhad synoptic station, Iran, for the year 2005. SETS is run using both implicit and explicit computational schemes. Results show that the implicit scheme estimates the vapor flux close to that by the explicit scheme. The mean difference between the implicit and explicit scheme is -0.03 mm/day. The paired T-test of mean difference (p-Value = 0.042 and t-Value = 2.04) shows that there is no significant difference between the two methods. The sum of soil evaporation and transpiration from SETS is also compared with P-M equation and micro-lysimeters measurements. The SETS predicts the actual evaporation with a lower bias (= 1.24mm/day) than P-M (= 1.82 mm/day) and with R2 value of 0.82.

  18. Removal of personal care compounds from sewage sludge in reed bed container (lysimeter) studies - Effects of macrophytes

    DEFF Research Database (Denmark)

    Chen, Xijuan; Pauly, Udo; Rehfus, Stefan

    2009-01-01

    as on the bactericide Triclosan. Additionally, the capacity of different macrophytes species to affect the treatment process was examined. Three different macrophyte species were compared: bulrush (Typha latifolia), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea). They were planted...... into containers (lysimeters) with a size of 1 m × 1 m × 1 m which were filled with 20 cm gravel at the bottom and 50 cm sludge on top, into which the macrophytes were planted. During the twelve months experiment reduction of 20-30% for HHCB and AHTN, 70% for Triclosan and 70% for OTNE were determined under...... environmental conditions. The reduction is most likely due to degradation, since volatilization, uptake into plants and leaching are insignificant. No difference between the containers with different macrophyte species or the unplanted containers was observed. Considering the usual operation time of 10 years...

  19. A study of dissipation, degradation and binding of 14C-labeled endosulfan to soil in model lysimeter

    International Nuclear Information System (INIS)

    Gonzalez, J.E.; Ceballos, J.; Amor, A.; Saiz, E.B. de

    1999-01-01

    The degradation, dissipation and binding of α-endosulfan in two agricultural soils and sand was studied in lysimeter system under outdoor conditions, using 14 C labeled insecticide. Dissipation was rapid during the first few weeks after application. The half life of disappearance was 38 to 61 days for the soils from Cerro Punta and El Ejido, whereas, in sand it was 91 days. The insecticide degraded by oxidation at the sulfite group to the sulfate. The resultant product underwent further degradation to form 14 CO 2 and bound residues. Although a significant amount of 14 C leached through the sand, which contained less that 0.1% organic matter, there was no leaching of endosulfan through the other two types of soil, when leaching was started immediately after treatment. (author)

  20. Hydroponics versus field lysimeter studies of urea, ammonium and nitrate uptake by oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Arkoun, Mustapha; Sarda, Xavier; Jannin, Laëtitia; Laîné, Philippe; Etienne, Philippe; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2012-09-01

    N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.

  1. Elemental Redistribution at the Onset of Soil Genesis from Basalt as Measured in a Soil Lysimeter System

    Science.gov (United States)

    Wang, Y.; Umanzor, M.; Alves Meira Neto, A.; Sengupta, A.; Amistadi, M. K.; Root, R.; Troch, P.; Chorover, J.

    2017-12-01

    Elemental translocation, resulting in enrichment or depletion relative to parent rock, is a consequence of mineral dissolution and precipitation reactions of soil genesis. Accurate measurement of translocation in natural systems is complicated by factors such as parent material heterogeneity and dust deposition. In the present work, a fully controlled and monitored 10° sloping soil lysimeter with known homogeneous initial conditions, was utilized to investigate initial stages of soil genesis from 1 m3 of crushed basalt. Throughout the two-year experiment, periodic irrigation coupled with sensor measurements enabled monitoring of changes in internal moisture states. A total 15-meter water influx resulted in distinct efflux patterns, wetting and drying cycles, as well as high volume water storage. Biological changes, such as algal and grass emergence, were visible on the soil surface, and microbial colonization throughout the profile was measured in a companion study, suggesting that biogeochemical hotspots may have formed. Forensic excavation and sampling of 324 voxels captured the final state heterogeneity of the lysimeter with respect to length and depth. Total elemental concentrations and a five-step sequential extraction (SE) scheme quantified elemental redistributions into operationally-defined pools including exchangeable, poorly-crystalline (hydr)oxides, and crystalline (hydr)oxides. Data were correlated to water flux and storage that was determined from sensor and tracer data over the two years of rock-water interaction; then used to map 2D cross-sections and identify geochemical hotspots. Total and SE Fe concentrations were used to establish a governing mass balance equation, and sub mass balance equations with unique partitioning coefficients of Fe were developed for each SE pool, respectively. The results help to explain elemental (e.g., Fe) lability and redistribution due to physical and geochemical weathering during the initial stages of soil genesis.

  2. Fluxes of N2O and CH4 from forest and grassland lysimeter soils in response to simulated climate change

    Science.gov (United States)

    Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry

    2015-04-01

    Central Europe is expected to be exposed to altered temperature and hydrological conditions, which will affect the vulnerability of nitrogen and carbon cycling in soils and thus production and fluxes of climate relevant trace gases. However, knowledge of the response of greenhouse gas fluxes to climate change is limited so far, but will be an important basis for future climate projections. Here we present preliminary results of an ongoing lysimeter field study which aims to assess the impact of simulated climate change on N2O and CH4 fluxes from a forest and a fertilized grassland soil. The lysimeters are part of the Germany-wide research infrastructure TERENO, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Lysimeters (A = 1m2) were established in 2010 at high elevated sites (HE, 500 and 600 m.a.s.l.) and subsequently transferred along an altitudinal gradient to a low elevated site (LE, 100 m.a.s.l.) within the Eifel / Lower Rhine Valley Observatory in Western Germany, thereby resulting in a temperature increase of 2.3 K whereas precipitation decreased by 160 mm during the present study period. Systematic monitoring of soil-atmosphere exchange of N2O and CH4 based on weekly manual closed chamber measurements at HE and LE sites has started in August 2013. Furthermore, we routinely determine dissolved N2O and CH4 concentrations in the seepage water using a headspace equilibration technique and record water discharge in order to quantify leaching losses of both greenhouse gases. Cumulative N2O fluxes clearly responded to simulated climate change conditions and increased by 250 % and 600 % for the forest and the grassland soil, respectively. This difference between the HE and LE sites was mainly caused by an exceptionally heavy precipitation event in July 2014 which turned the LE site sustainably to a consistently higher emission level. Nonetheless, emissions remained rather small and ranged between 20 and 40 μg m-2 h-1. In

  3. Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale.

    Science.gov (United States)

    Prédélus, Dieuseul; Coutinho, Artur Paiva; Lassabatere, Laurent; Bien, Le Binh; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2015-10-01

    It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Lysimeter experiments to determine the ability of soil to reduce concentrations of BOD, available P and inorganic N in dirty water.

    Science.gov (United States)

    Brookman, S K E; Chadwick; Retter, A R

    2005-11-01

    Lysimeter experiments were conducted to determine the ability of different soils to reduce levels of biochemical oxygen demand (BOD) and concentrations of molybdate reactive phosphorus (MRP) and ammonium-N (NH4(+)-N) in dirty water and the impact of applications on nitrate leaching. An additional experiment investigated the effect of dirty water components on leaching quality. This information is required to assess the potential risk of dirty water applications on polluting groundwater and to assess the use of such soils in the development of treatment systems for dirty water. Intact and disturbed soil lysimeters, 0.5 and 1m deep were constructed from four soils; a coarse free-draining sandy loam, a sandy loam over soft sandstone, a calcareous silty clay over chalk and a sandy loam over granite. For the coarse free-draining sandy loam, lysimeters were also constructed from disturbed soil with and without the addition of lime, to assess if this could increase phosphorus immobilisation. Levels of BOD and concentrations of MRP, NH4(+)-N and nitrate (NO3(-)-N) of leachates were measured following dirty water applications at 2 and 8 mm day(-1) under laboratory conditions. Under the daily 2mm application, all soils were effective at treating dirty water, reducing concentrations of BOD, MRP and NH4(+)- N by > or = 98% but NO3(-)-N concentrations increased up to 80 mg l(-1) from the 0.5 m deep lysimeters of the sandy loam over granite. Soils were less effective at reducing levels of BOD, MRP and NH4(+)- N at the 8 mm daily rate of application, with maximum NO3(-)-N concentrations of leachates of 200 mg l(-1) from disturbed soils.

  5. Composition and properties of soil solution in the Podzolic soil of a green moss-spruce stand according to lysimeter data

    Energy Technology Data Exchange (ETDEWEB)

    Shilova, E I; Korovkina, L V

    1964-01-01

    Lysimeter water from an acid Podzolic soil in a green moss - spruce stand always contained free CO/sub 2/ and bicarbonates. Titrable acidity (as a result of CO/sub 2/) showed the following averages by horizons for the period of observation: 0.86 meq/liter. (A/sub 0/A/sub 1/), 0.67 meq/liter (A/sub 2/), and 0.98 meq per liter (B). The corresponding alkalinities were: 0.69, 0.51, and 2.50 meq/liter. Bicarbonates were the principal mineral components of the soil solution. Their concentration in the litter (A/sub 0/A/sub 1/) was relatively low; it reached a minimum in the Podzolic horizon, and then increased sharply in the illuvial horizon. The seasonal dynamics of bicarbonates in the lower part of the profile were not related to changes in bicarbonate content in the upper horizons. It followed the cycle of plant activity. The autumn lysimeter water, formed by displacement of the upper soil solution, showed maximum concentration of bicarbonates. The spring lysimeter water, and partly the summer water, which form following the period of winter anabiosis, showed the lowest concentration. As the plants absorb water, the roots evolve carbon dioxide. The higher the summer temperature, the more bicarbonates accumulate in the soil.

  6. Lysimeter studies on the behavior of persistant organic pollutants in the soil-plant-system (1989-1994). Vol. 2. The behavior of 14C fluoranthene and 14C benzo(a)pyrene and also 14C PCB 28 and 14C PCB 52 in the agroecosystem - lysimeter experiments with an orthic luvisol. Final report

    International Nuclear Information System (INIS)

    Schnoeder, F.; Mittelstaedt, W.; Fuehr, F.

    1995-11-01

    14 C-labelled PAH and PCB (benzo(a)pyrene/fluoranthene resp. PCB 28/PCB 52) were mixed into the A n horizon of the lysimeters containing soil cores of an Orthic Luvisol which had been removed undisturbed. Carrots (1990), winter wheat and spinach (1991), potatoes and kale (1992) were grown to harvest maturity. Radio-HPLC enabled the selective enrichment of radioactive substances from extracts of soil, plant and leachate samples in high-purity fractions for GC/MS analyses. Additionally degradation studies with benzo(a)pyrene and fluoranthene have been carried out. In the PAH-lysimeter the concentration of radioactivity in the soil dropped to less than 50% of the initial value after 4 months and after 28 months to about 30%. This can be attributed to mineralisation of fluoranthene. An increasing formation of bound residues was determined either in lysimeter as well as in the degradation study, which finally amounted to more than 50% of the 14 C activity persisting in the soil, of which 2/3 was located in the humin fraction and roughly equal fraction of the remainder in the fulvic and humic acids. Apart from the parent substances both in the lysimeter and degradation study three benzo(a)pyrene quinones were characterised and a non-polar metabolite of benzo(a)pyren with unknown structure was isolated. In the PCB-lysimeter the concentration of the radioactivity in the soil remained almost unchanged throughout 28 months. Metabolites of PCB could not be detected. A total of 0.58% (PCBs) and 0.16% (PAHs) of the radioactivity applied was recovered in the plants. The highest concentration has been determined in carrots, lower concentrations have been found in the subsequent crops and only the PCB cogeneres were detectable in small quantities ( [de

  7. Measurement of magnetic susceptibility on tailings cores report on cores obtained from the Ontario Research Foundation lysimeter experiment

    International Nuclear Information System (INIS)

    1984-10-01

    Bulk susceptibility and induced magnetic remanence results are reported for 40 cores obtained from the uranium tailings lysimeter experiment at the Ontario Research Foundation. Both methods indicate a broad threefold subdivision of the tailings pile. An upper zone is characterized by an enhanced susceptibility level, which is related to enhanced concentration of both magnetite and hematite. Depletion zones, where present, are of limited areal extent and strongly developed. An intermediate zone is characterized by a mixture of large areas of reduced susceptibility that separate smaller regions of slightly enhanced susceptibility. The zones of susceptibility depletion appear to define a dendritic drainage pattern. Locally in this zone magnetite is enhanced and hematite depleted. In the lowermost zone susceptibility levels are reduced over most of the tailings bed. Only in the upper most right hand corner is there any vestige of a positive susceptibility concentration. Both magnetite and hematite are strongly depleted in this lower zone. Visually it is apparent that this lowermost depleted zone correlates to the zones of strongest 'yellowcake' development

  8. Removal of personal care compounds from sewage sludge in reed bed container (lysimeter) studies--effects of macrophytes.

    Science.gov (United States)

    Chen, Xijuan; Pauly, Udo; Rehfus, Stefan; Bester, Kai

    2009-10-15

    Sludge reed beds have been used for dewatering (draining and evapotranspiration) and mineralisation of sludge in Europe since 1988. Although reed beds are considered as a low cost and low contamination method in reducing volume, breaking down organic matter and increasing the density of sludge, it is not yet clear whether this enhanced biological treatment is suitable for degradation of organic micro-pollutants such as personal care products. Within this project the effect of biological sludge treatment in a reed bed on reducing the concentrations of the fragrances HHCB, AHTN, OTNE was studied as on the bactericide Triclosan. Additionally, the capacity of different macrophytes species to affect the treatment process was examined. Three different macrophyte species were compared: bulrush (Typha latifolia), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea). They were planted into containers (lysimeters) with a size of 1 m x 1 m x 1 m which were filled with 20 cm gravel at the bottom and 50 cm sludge on top, into which the macrophytes were planted. During the twelve months experiment reduction of 20-30% for HHCB and AHTN, 70% for Triclosan and 70% for OTNE were determined under environmental conditions. The reduction is most likely due to degradation, since volatilization, uptake into plants and leaching are insignificant. No difference between the containers with different macrophyte species or the unplanted containers was observed. Considering the usual operation time of 10 years for reed beds, an assessment was made for the whole life time.

  9. Persistence of 14C-labeled atrazine and its residues in a field lysimeter soil after 22 years

    International Nuclear Information System (INIS)

    Jablonowski, Nicolai D.; Koeppchen, Stephan; Hofmann, Diana; Schaeffer, Andreas; Burauel, Peter

    2009-01-01

    Twenty-two years after the last application of ring- 14 C-labeled atrazine at customary rate (1.7 kg ha -1 ) on an agriculturally used outdoor lysimeter, atrazine is still detectable by means of accelerated solvent extraction and LC-MS/MS analysis. Extractions of the 0-10 cm soil layer yielded 60% of the residual 14 C-activity. The extracts contained atrazine (1.0 μg kg -1 ) and 2-hydroxy-atrazine (42.5 μg kg -1 ). Extractions of the material of the lowest layer 55-60 cm consisting of fine gravel yielded 93% of residual 14 C-activity, of which 3.4 μg kg -1 was detected as atrazine and 17.7 μg kg -1 was 2-hydroxy-atrazine. The detection of atrazine in the lowest layer was of almost four times higher mass than in the upper soil layer. These findings highlight the fact that atrazine is unexpectedly persistent in soil. The overall persistence of atrazine in the environment might represent a potential risk for successive groundwater contamination by leaching even after 22 years of environmental exposure. - Atrazine and its metabolite 2-hydroxy-atrazine are still present in soil after long-term aging.

  10. A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Paul [Cranfield Centre for EcoChemistry, Cranfield University, Shardlow Hall, Shardlow, Derby DE72 2GN (United Kingdom)]. E-mail: paul.kay@adas.co.uk; Blackwell, Paul A. [Cranfield Centre for EcoChemistry, Cranfield University, Shardlow Hall, Shardlow, Derby DE72 2GN (United Kingdom); Boxall, Alistair B.A. [Cranfield Centre for EcoChemistry, Cranfield University, Shardlow Hall, Shardlow, Derby DE72 2GN (United Kingdom)

    2005-03-01

    Pharmaceuticals used in livestock production may be present in manure and slurry as the parent compound and/or metabolites. The environment may therefore be exposed to these substances due to the application of organic fertilisers to agricultural land or deposition by grazing livestock. For other groups of substances that are applied to land (e.g. pesticides), preferential flow in clay soils has been identified as an extremely important mechanism by which surface water pollution can occur. This lysimeter study was therefore performed to investigate the fate of three antibiotics from the sulphonamide, tetracycline and macrolide groups in a clay soil. Only sulphachloropyridazine was detected in leachate and soil analysis at the end of the experiment showed that almost no antibiotic residues remained. These data were analysed alongside field data for the same compounds to show that soil tillage which breaks the connectivity of macropores formed over the summer months, prior to slurry application, significantly reduces chemical mobility. - This paper describes one of the first studies to investigate the fate of veterinary medicines in cracking clay soils.

  11. A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data

    International Nuclear Information System (INIS)

    Kay, Paul; Blackwell, Paul A.; Boxall, Alistair B.A.

    2005-01-01

    Pharmaceuticals used in livestock production may be present in manure and slurry as the parent compound and/or metabolites. The environment may therefore be exposed to these substances due to the application of organic fertilisers to agricultural land or deposition by grazing livestock. For other groups of substances that are applied to land (e.g. pesticides), preferential flow in clay soils has been identified as an extremely important mechanism by which surface water pollution can occur. This lysimeter study was therefore performed to investigate the fate of three antibiotics from the sulphonamide, tetracycline and macrolide groups in a clay soil. Only sulphachloropyridazine was detected in leachate and soil analysis at the end of the experiment showed that almost no antibiotic residues remained. These data were analysed alongside field data for the same compounds to show that soil tillage which breaks the connectivity of macropores formed over the summer months, prior to slurry application, significantly reduces chemical mobility. - This paper describes one of the first studies to investigate the fate of veterinary medicines in cracking clay soils

  12. Soil-plant transfer of Cs-137 and Sr-90 in digestate amended agricultural soils- a lysimeter scale experiment

    Science.gov (United States)

    Mehmood, Khalid; Berns, Anne E.; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Zoriy, Myroslav; Flucht, Reinhold; Opitz, Thorsten; Hofmann, Diana

    2014-05-01

    Radiocesium and radiostrontium are among the most problematic soil contaminants following nuclear fallout due to their long half-lives and high fission yields. Their chemical resemblance to potassium, ammonium and calcium facilitates their plant uptake and thus enhances their chance to reach humans through the food-chain dramatically. The plant uptake of both radionuclides is affected by the type of soil, the amount of organic matter and the concentration of competitive ions. In the present lysimeter scale experiment, soil-plant transfer of Cs-137 and Sr-90 was investigated in an agricultural silty soil amended with digestate, a residue from a biogas plant. The liquid fraction of the digestate, liquor, was used to have higher nutrient competition. Digestate application was done in accordance with the field practice with an application rate of 34 Mg/ha and mixing it in top 5 cm soil, yielding a final concentration of 38 g digestate/Kg soil. The top 5 cm soil of the non-amended reference soil was also submitted to the same mixing procedure to account for the physical disturbance of the top soil layer. Six months after the amendment of the soil, the soil contamination was done with water-soluble chloride salts of both radionuclides, resulting in a contamination density of 66 MBq/m2 for Cs-137 and 18 MBq/m2 for Sr-90 in separate experiments. Our results show that digestate application led to a detectable difference in soil-plant transfer of the investigated radionuclides, effect was more pronounced for Cs-137. A clear difference was observed in plant uptake of different plants. Pest plants displayed higher uptake of both radionuclides compared to wheat. Furthermore, lower activity values were recorded in ears compared to stems for both radionuclides.

  13. Large-scale lysimeter site St. Arnold, Germany: analysis of 40 years of precipitation, leachate and evapotranspiration

    Directory of Open Access Journals (Sweden)

    N. Harsch

    2009-03-01

    Full Text Available This study deals with a lysimetrical-meteorological data series collected on the large-scale lysimeter site "St. Arnold", Germany, from November 1965 to April 2007. The particular relevance of this data rests both upon its perdurability and upon the fact that the site is comprised of a grassland basin, an oak/beech and a pine basin.

    Apart from analyzing long term trends of the meteorological measurements, the primary objective of this study is to investigate the water balance in grassland and forested basins, in particular comparing the precipitation term to leachate quantities and potential and actual evapotranspiration. The latter are based upon the Penman and the Penman-Monteith approaches, respectively.

    The main results of this survey are that, on a long-term average, the grassland basin turns more than half (53% of its annually incoming precipitation into leachate and only 36% into water vapour, while the deciduous forest exhibits a ratio of 37% for leachate and 56% for evapotranspiration, and the evergreen coniferous forest shows the highest evaporation rate (65% and the lowest leachate rate (26%.

    Concerning these water balances, considerable differences both between basins and between seasons stand out. While summer periods exhibit high evapotranspiration rates for the forests and moderate ones for the grassland, winter periods are characterised by considerable leachate quantities for grassland and the deciduous forest and moderate ones for the coniferous forest. Following the analysis of the climatic development in St. Arnold, trends towards a milder and more humid regional climate were detected.

  14. Field lysimeter investigations: Low-level waste data base development program for fiscal year 1995. Volume 8, Annual report, October 1994-- September 1995

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.; Larsen, I.L.; Jastrow, J.D.; Sanford, W.E.; Sullivan, T.M.

    1996-06-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the U.S. Nuclear Regulatory Commission, is (a) studying the degradation effects in organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified ion-exchange resins, (c) obtaining performance information on solidified ion- exchange resins in a disposal environment, and (d) determining the condition of liners used to dispose the ion-exchange resins. Compressive test results of 12-year-old cement and vinyl ester- styrene solidified waste form samples are presented, which show effects of aging and self-irradiation. Results of the tenth year of data acquisition from the field testing are presented and discussed. During the continuing field testing, both portland type I-II cement and Dow vinyl ester-styrene waste form samples are being tested in lysimeter arrays located at Argonne National Laboratory-East in Illinois and at Oak Ridge National Laboratory. The study is designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over a 20-year period

  15. Field Lysimeter Investigations - test results: Low-Level Waste Data Base Development Program: Test results for fiscal years 1994-1995

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rodgers, R.D.; Hilton, L.D.; Neilson, R.M. Jr.

    1996-06-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the U.S. Nuclear Regulatory Commission (NRC), is (1) studying the degradation effects in EPICOR-II organic ion-exchange resins caused by radiation, (2) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified EPICOR-II resins, (3) obtaining performance information on solidified EPICOR-II ion-exchange resins in a disposal environment, and (4) determining the condition of EPICOR-II liners. Results of the final 2 (10 total) years of data acquisition from operation of the field testing are presented and discussed. During the continuing field testing, both portland type I-II cement and Dow vinyl ester-styrene waste forms are being tested in lysimeter arrays located at Argonne National Laboratory-East in Illinois and at Oak Ridge National Laboratory. The experimental equipment is described and results of waste form characterization using tests recommended by the NRC's open-quotes Technical Position on Waste Formclose quotes are presented. The study is designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over a 20-year period. At the end of the tenth year, the experiment was closed down. Examination of soil and waste forms is planned to be conducted next and will be reported later

  16. Influence of a heavy rainfall event on the leaching of [{sup 14}C]isoproturon and its degradation products in outdoor lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, Ulrike [GSF-National Research Centre for Environment and Health, Institute of Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)]. E-mail: doerfler@gsf.de; Cao Guoyin [Chinese Academy of Agricultural Sciences, Beijing (China); Grundmann, Sabine [GSF-National Research Centre for Environment and Health, Institute of Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Schroll, Reiner [GSF-National Research Centre for Environment and Health, Institute of Soil Ecology, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)

    2006-11-15

    In four different agricultural soils the long-term leaching behaviour of [{sup 14}C]isoproturon was studied in outdoor lysimeters (2 m length, 1 m{sup 2} surface area). The herbicide was applied in spring 1997 and spring 2001. At the end of the first 4-year-investigation period between 0.13% and 0.31% of the applied radioactivity was leached. Isoproturon or known metabolites could not be detected in the leachate. However, shortly after the second application isoproturon and its degradation products 2-hydroxy-isoproturon and monodemethyl-isoproturon were leached via preferential flow in one of the lysimeters (Mollic gleysol) in concentrations of 4.5 {mu}g L{sup -1}, 3.1 {mu}g L{sup -1} and 0.9 {mu}g L{sup -1}, respectively, thus considerably exceeding the EU threshold limit of 0.1 {mu}g L{sup -1} for ground and drinking water. The results indicate that in soils where mass flow transfer dominates, leaching of isoproturon to groundwater is of low probability whereas in highly structured soils which have the tendency to form macropores, isoproturon can be transported via preferential flow to the groundwater. - In a heavy clay soil isoproturon and its degradation products can be leached to the groundwater via preferential flow.

  17. Influence of a heavy rainfall event on the leaching of [14C]isoproturon and its degradation products in outdoor lysimeters.

    Science.gov (United States)

    Dörfler, Ulrike; Cao, Guoyin; Grundmann, Sabine; Schroll, Reiner

    2006-11-01

    In four different agricultural soils the long-term leaching behaviour of [14C]isoproturon was studied in outdoor lysimeters (2 m length, 1 m2 surface area). The herbicide was applied in spring 1997 and spring 2001. At the end of the first 4-year-investigation period between 0.13% and 0.31% of the applied radioactivity was leached. Isoproturon or known metabolites could not be detected in the leachate. However, shortly after the second application isoproturon and its degradation products 2-hydroxy-isoproturon and monodemethyl-isoproturon were leached via preferential flow in one of the lysimeters (Mollic gleysol) in concentrations of 4.5 microg L-1, 3.1 microg L-1 and 0.9 microg L-1, respectively, thus considerably exceeding the EU threshold limit of 0.1 microg L-1 for ground and drinking water. The results indicate that in soils where mass flow transfer dominates, leaching of isoproturon to groundwater is of low probability whereas in highly structured soils which have the tendency to form macropores, isoproturon can be transported via preferential flow to the groundwater.

  18. Influence of a heavy rainfall event on the leaching of [14C]isoproturon and its degradation products in outdoor lysimeters

    International Nuclear Information System (INIS)

    Doerfler, Ulrike; Cao Guoyin; Grundmann, Sabine; Schroll, Reiner

    2006-01-01

    In four different agricultural soils the long-term leaching behaviour of [ 14 C]isoproturon was studied in outdoor lysimeters (2 m length, 1 m 2 surface area). The herbicide was applied in spring 1997 and spring 2001. At the end of the first 4-year-investigation period between 0.13% and 0.31% of the applied radioactivity was leached. Isoproturon or known metabolites could not be detected in the leachate. However, shortly after the second application isoproturon and its degradation products 2-hydroxy-isoproturon and monodemethyl-isoproturon were leached via preferential flow in one of the lysimeters (Mollic gleysol) in concentrations of 4.5 μg L -1 , 3.1 μg L -1 and 0.9 μg L -1 , respectively, thus considerably exceeding the EU threshold limit of 0.1 μg L -1 for ground and drinking water. The results indicate that in soils where mass flow transfer dominates, leaching of isoproturon to groundwater is of low probability whereas in highly structured soils which have the tendency to form macropores, isoproturon can be transported via preferential flow to the groundwater. - In a heavy clay soil isoproturon and its degradation products can be leached to the groundwater via preferential flow

  19. Lisímetro de pesagem de grande porte.: desenvolvimento e calibração A large-scale weighting lysimeter. part I: development and calibration

    Directory of Open Access Journals (Sweden)

    Luiz F. M. de S. Campeche

    2011-05-01

    Full Text Available A evapotranspiração de plantas frutíferas foi medida a partir da instalação e calibração de um lisímetro de pesagem de grande porte. O equipamento, composto por caçamba metálica em aço carbono, possui arquitetura circular com área de 5,72 m² e massa total de 10,5 toneladas. Uma muda de coqueiro anão-verde foi transplantada para o lisímetro e mantida sob as mesmas condições de solo e adubação do campo experimental. Na automação do processo foi utilizado o mecanismo de alívio de carga baseado em sistemas de alavancas e contrapesos, apoiado em uma célula de carga com capacidade de 200 kg e precisão de 0,02% de sua capacidade. Os dados de saída da célula de carga foram armazenados em um coletor automático de dados tipo data logger. A relação entre a variação de massa e a voltagem da célula de carga do lisímetro é descrita adequadamente por modelo linear com mínima histerese. A metodologia empregada na instalação e na calibração do lisímetro foi adequada, obtendo-se um coeficiente de determinação de 0,99 na equação de calibração. Os resultados ainda indicam que o lisímetro de pesagem pode ser utilizado com êxito na determinação de evapotranspiração de plantas frutíferas de grande porte.The objectives of present study were to develop and to calibrate a large-scale weighing lysimeter in order to estimate evapotranspiration of fruit plants. The equipment consisted of a metallic bucket (steel carbon of circular design with total area of 5.72 m² and total mass of 10.5 t. A seedling of dwarf-green coconut palm was transplanted in lysimeter and maintained under same fertilization conditions of experimental field. For automation of the process, a mechanism of load relief based on systems of levers and counterbalances was used, leaning in a load cell with capacity of 200 kg and precision of 0.02% of its capacity. The output data of load cell were stored in an automatic data acquisition system. The

  20. Multitracer studies for determining seepage water and anion movement in four types of soil using lysimeters with different functions and designs; Multitracer-Untersuchungen zur Bestimmung der Sickerwasser- und Anionenbewegung in vier Bodenformen bei Lysimetern unterschiedlicher Nutzung und Bauart

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, S.; Russow, R. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Bad Lauchstaedt (Germany). Sektion Bodenforschung; Seeger, J. [Lysimeterstation Falkenberg (Germany)

    1999-02-01

    Lysimeter experiments based on the stable isotope tracer technique are a suitable means of examining the complex relationships governing water and material transport processes in the soil. The present paper reports on experiments in which water and nitrate movement was traced directly by means of lysimeters placed at different depths and using deuterium water and [{sup 15}N]N-nitrate for pulse marking. Extensive investigations carried out during the dissection of soil monoliths that had been used for many years in lysimeters offered an opportunity for stable isotope tracer studies aimed at determining seepage water and anion movement in undisturbed soils and, after dismantling the lysimeters, conducting soil analyses to find out more about the fate of nonpercolated tracers at various soil depths. Following other authors, bromide anions were additionally used as conservative tracers. [Deutsch] Zur Untersuchung der komplexen Zusammenhaenge des Wasser- und Stofftransportes im Boden bieten sich Lysimeterversuche unter Nutzung der stabilisotopen Tracertechnik an. In der vorliegenden Arbeit wird zunaechst ueber die direkte Verfolgung der Wasser- und Nitrat-Bewegung in tiefengestaffelten Lysimetern durch Pulsmarkierung mit Deuteriumwasser und [{sup 15}N]Nitrat berichtet. Im Rahmen von umfangreichen Untersuchungen bei der Zerlegung von langjaehrig in Lysimetern genutzten Bodenmonolithen bestand des weiteren die Moeglichkeit, stabilisotope Traceruntersuchungen zur Bestimmung der Sickerwasser- und Anionenbewegung an ungestoerten Boeden durchzufuehren und nach der Zerlegung der Lysimeter ueber entsprechende Analysen des Bodens Aussagen zum Verbleib der nicht perkolierten Tracer in verschiedenen Bodentiefen zu treffen. Zusaetzlich wurde dabei das von anderen Autoren bereits genutzte Bromid-Anion als sogenannter konservativer Tracer eingesetzt. (orig.)

  1. Degradation and leaching behaviour of 14C-glufosinate in a silty sand soil. Experiments in outdoor lysimeters with undisturbed soil cores

    International Nuclear Information System (INIS)

    Kubiak, R.

    1996-12-01

    Degradation and leaching behaviour of 14 C-labelled glufosinate in a silty sand soil was investigated in two outdoor lysimeters after repeated application of 12.5 litres/hectare (1/ha) Basta (divided in 7.5 and 5 l/ha respectively). The 14 C-loss during application was 4.8-8.2%. The 14 C-content in the plants (vines and weeds) was 0.3% of that applied at the most. After 130 days, 25.9 and 25.5% of the applied material was found in the soil up to a depth of 40 cm. One year after the first application, this amount was still 18.5 and 18.6%. As a consequence of the renewed spraying, the detected amounts of 14 C were 44.3 and 43.1% some 107 days after the first application in the second experimental year. The additional investigation in lysimeter 2 after 373 days showed a decrease to 33.9%. Most of the detected radioactivity remained in the 0-10 cm soil layer. At the end of the experiment, the amount of 14 C in the 30-40 cm layer was 0.5%. The total residues in the 0-10 cm soil layer were less than 1 mg/kg at all dates of sampling, and only a small amount still represented the free acid of the active ingredient. The average values were 0.05 mg/kg after 130 days, 0.01 mg/kg after 363 days and 0.09 mg/kg at the following date of sampling. In the spring of the following year, no residues of the free acid were detectable. The radioactivity in the percolate amounted to a maximum of 0.11% of that applied and in no case represented the free acid of the ammonium salt. (author)

  2. Degradation and leaching behaviour of {sup 14}C-glufosinate in a silty sand soil. Experiments in outdoor lysimeters with undisturbed soil cores

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, R

    1996-12-01

    Degradation and leaching behaviour of {sup 14}C-labelled glufosinate in a silty sand soil was investigated in two outdoor lysimeters after repeated application of 12.5 litres/hectare (1/ha) Basta (divided in 7.5 and 5 l/ha respectively). The {sup 14}C-loss during application was 4.8-8.2%. The {sup 14}C-content in the plants (vines and weeds) was 0.3% of that applied at the most. After 130 days, 25.9 and 25.5% of the applied material was found in the soil up to a depth of 40 cm. One year after the first application, this amount was still 18.5 and 18.6%. As a consequence of the renewed spraying, the detected amounts of {sup 14}C were 44.3 and 43.1% some 107 days after the first application in the second experimental year. The additional investigation in lysimeter 2 after 373 days showed a decrease to 33.9%. Most of the detected radioactivity remained in the 0-10 cm soil layer. At the end of the experiment, the amount of {sup 14}C in the 30-40 cm layer was 0.5%. The total residues in the 0-10 cm soil layer were less than 1 mg/kg at all dates of sampling, and only a small amount still represented the free acid of the active ingredient. The average values were 0.05 mg/kg after 130 days, 0.01 mg/kg after 363 days and 0.09 mg/kg at the following date of sampling. In the spring of the following year, no residues of the free acid were detectable. The radioactivity in the percolate amounted to a maximum of 0.11% of that applied and in no case represented the free acid of the ammonium salt. (author)

  3. Managing Salmonella Typhimurium and Escherichia coli O157:H7 in soil with hydrated lime - An outdoor study in lysimeters and field plots.

    Science.gov (United States)

    Nyberg, Karin A; Vinnerås, Björn; Albihn, Ann

    2014-01-01

    An outbreak of Salmonella Typhimurium or E. coli O157:H7 among domestic animals can have great financial consequences for an animal enterprise but also be a threat for public health as there is a risk for transmission of the infection through the environment. In order to minimize disease transmission, it is important to treat not only the affected animals but also the areas on which they have been kept. In the present study, the effect of hydrated lime as a treatment for Salmonella Typhimurium or E. coli O157:H7 contaminated soil was investigated. The study was performed outdoors, in a lysimeter system and in field plots. The soils were spiked with Salmonella Typhimurium and/or E. coli O157:H7 and hydrated lime was added at three different concentrations (0.5, 1 and 2%). Sampling was performed over one month, and the levels of bacteria were analyzed by standard culture methods. In addition, the soil pH was monitored throughout the study. The results showed that application of 0.5-1 kg hydrated lime per m(2) reduced both Salmonella Typhimurium and E. coli O157:H7 numbers to below the detection limit (2 log10 CFU g-1 soil) in 3-7 days. Lower application rates of hydrated lime did not reduce pathogen numbers in the lysimeter study, but in the field plots no E. coli O157:H7 was detected at the end of the four-week study period regardless of hydrated lime application. A recommended strategy for treating a Salmonella Typhimurium or E. coli O157:H7 contaminated soil could therefore be to monitor the pH over the time of treatment and to repeat hydrated lime application if a decrease in pH is observed.

  4. Accurate measurements of vadose zone fluxes using automated equilibrium tension plate lysimeters: A synopsis of results from the Spydia research facility, New Zealand.

    Science.gov (United States)

    Wöhling, Thomas; Barkle, Greg; Stenger, Roland; Moorhead, Brian; Wall, Aaron; Clague, Juliet

    2014-05-01

    Automated equilibrium tension plate lysimeters (AETLs) are arguably the most accurate method to measure unsaturated water and contaminant fluxes below the root zone at the scale of up to 1 m². The AETL technique utilizes a porous sintered stainless-steel plate to provide a comparatively large sampling area with a continuously controlled vacuum that is in "equilibrium" with the surrounding vadose zone matric pressure to ensure measured fluxes represent those under undisturbed conditions. This novel lysimeter technique was used at an intensive research site for investigations of contaminant pathways from the land surface to the groundwater on a sheep and beef farm under pastoral land use in the Tutaeuaua subcatchment, New Zealand. The Spydia research facility was constructed in 2005 and was fully operational between 2006 and 2011. Extending from a central access caisson, 15 separately controlled AETLs with 0.2 m² surface area were installed at five depths between 0.4 m and 5.1 m into the undisturbed volcanic vadose zone materials. The unique setup of the facility ensured minimum interference of the experimental equipment and external factors with the measurements. Over the period of more than five years, a comprehensive data set was collected at each of the 15 AETL locations which comprises of time series of soil water flux, pressure head, volumetric water contents, and soil temperature. The soil water was regularly analysed for EC, pH, dissolved carbon, various nitrogen compounds (including nitrate, ammonia, and organic N), phosphorus, bromide, chloride, sulphate, silica, and a range of other major ions, as well as for various metals. Climate data was measured directly at the site (rainfall) and a climate station at 500m distance. The shallow groundwater was sampled at three different depths directly from the Spydia caisson and at various observation wells surrounding the facility. Two tracer experiments were conducted at the site in 2009 and 2010. In the 2009

  5. Lysimeter experiments on root uptake of Co-60, Sr-90 and Cs-137 from soil into vine and apple trees and on the transfer into grapes and apples

    International Nuclear Information System (INIS)

    Steffens, W.; Foerstel, H.; Mittelstaedt, W.

    1993-01-01

    In lysimeters filled with two different soil types (Parabraunerde and Podzol) the transfer of 60 Co, 90 Sr and 137 Cs from soil into vine and apple trees was investigated over a time period of 5 years (1988-1992). The soil was contaminated in 1978, so that at the beginning of the experiment the radionuclides were already aged. Due to the low availability for root uptake, the transfer of 60 Co and 137 Cs into vine and apple trees was very low. 90 Sr was fairly available for root uptake which caused a considerable uptake and translocation into vegetative plant parts. The physiological behaviour of the radionuclides investigated determined generally a low transfer into must and apples. This was confirmed by the transfer factors variing between 0.001 and 0.029 for 60 Co, 0.01 and 0.036 for 90 Sr and 0.001 and 0.109 for 137 Cs, respectively. The corresponding values in apples were in the same order of magnitude. The influence of the soil type is shown by the higher incorporation of 60 Co, 90 Sr and 137 Cs into the single plant organs and by the higher transfer factors in must and apples grown on the podzolic soil. (orig.) [de

  6. Results of about a seven years lysimeter study to the quantification of the mobility of radionuclides into the system soil-water-plant

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Strebl, F.; Temmel, B.

    1999-04-01

    The result of seven years lysimeter experiments (twelve soil monoliths, four soil types) to determine the uptake of 60 Co, 137 Cs and 226 Ra into agricultural crops and the leaching behaviour are presented. The mobility of the artificial radionuclides in soil profiles decreased in the following order: 60 Co ≥ 22 6Ra > 137 Cs. Total median values of soil-plant transfer factors (dry matter basis) for the three radionuclides decreased from 226 Ra (0.068 kg kg -1 ) to 137 Cs (0.043 kg kg -1 ) and 60 Co (0.018 kg kg -1 ). The physical and chemical properties of the experimental soils resulted in significant differences in transfer factors or fluxes between the investigated soils for 137 Cs and 226 Ra, but not for 60 Co. Differences in transfer between plant species and plant parts are distinct, with graminaceous species showing 5.8 and 15 times lower values for 137 Cs and 60 Co than dicodyle-donean species. In model calculations radionuclide losses through the different pathways (physical decay, leaching plant uptake and removal) were quantified. (author)

  7. Determinación del consumo de agua del duraznero por lisimetría Determination of water use in peach trees with a lysimeter

    Directory of Open Access Journals (Sweden)

    Lucía Puppo

    2010-01-01

    Full Text Available En el año 2004 se instaló un lisímetro de compensación de 2 x 2 x 0,80 m con capa freática constante en un monte de durazneros, con el objetivo de estudiar el consumo de agua de ese cultivo en la región sur del Uruguay. Las mediciones se hicieron en las tres primeras temporadas de crecimiento. El consumo en la primera temporada alcanzó valores de 5 mm d-1, equivalente a 56 L en el marco de plantación. En la segunda temporada llegó a 6 mm d-1 (68 L, aunque alcanzó valores extremos de más de 7 mm d-1. Cuando el árbol alcanzó su tamaño adulto, el consumo máximo se mantuvo alrededor de los 6 mm d-1, aunque este valor se alcanzó más temprano que en la temporada anterior. Este adelanto se correspondió con un mayor índice de área foliar (IAF. El coeficiente de cultivo (Kc fue de alrededor de 1,2 en la primera temporada, y de 1,4 en las dos siguientes. Se calcularon los coeficientes de base (Kcb y su valor se ajustó por el modelo tri-segmentado. Su valor fue de 0,91 en la primera temporada, 1,04 en la segunda y 1,20 en la tercera. Se hacen algunas observaciones metodológicas sobre el uso de este lisímetro, proponiéndose incorporar la variación de agua en el suelo a la ecuación de balance de volúmenes y se propone adicionar riego desde la superficie.A compensation lysimeter with constant freatic water table of 2 x 2 x 0.80 m was installed in 2004 in a peach grove, in order to study the crop water consumption in the south of Uruguay. Measurements were taken in the first three growing seasons. Evapotranspiration at the first season reached 5 mm d-1, equivalent to 56 L in the whole area. In the second season, it went up to 6 mm d-1 (68 L, reaching extreme values of 7 mm d-1 and more. When the tree reached its adult size, the maximum consumption remained around 6 mm d-1, although this value was reached earlier than the season before. This early behavior came together with higher leaf area index (LAI. The crop coefficient (Kc was

  8. Effect of application of dairy manure, effluent and inorganic fertilizer on nitrogen leaching in clayey fluvo-aquic soil: A lysimeter study.

    Science.gov (United States)

    Fan, Jianling; Xiao, Jiao; Liu, Deyan; Ye, Guiping; Luo, Jiafa; Houlbrooke, David; Laurenson, Seth; Yan, Jing; Chen, Lvjun; Tian, Jinping; Ding, Weixin

    2017-08-15

    Dairy farm manure and effluent are applied to cropland in China to provide a source of plant nutrients, but there are concerns over its effect on nitrogen (N) leaching loss and groundwater quality. To investigate the effects of land application of dairy manure and effluent on potential N leaching loss, two lysimeter trials were set up in clayey fluvo-aquic soil in a winter wheat-summer maize rotation cropping system on the North China Plain. The solid dairy manure trial included control without N fertilization (CK), inorganic N fertilizer (SNPK), and fresh (RAW) and composted (COM) dairy manure. The liquid dairy effluent trial consisted of control without N fertilization (CF), inorganic N fertilizer (ENPK), and fresh (FDE) and stored (SDE) dairy effluent. The N application rate was 225kgNha -1 for inorganic N fertilizer, dairy manure, and effluent treatments in both seasons. Annual N leaching loss (ANLL) was highest in SNPK (53.02 and 16.21kgNha -1 in 2013/2014 and 2014/2015, respectively), which were 1.65- and 2.04-fold that of COM, and 1.59- and 1.26-fold that of RAW. In the effluent trial (2014/2015), ANLL for ENPK and SDE (16.22 and 16.86kgNha -1 , respectively) were significantly higher than CF and FDE (6.3 and 13.21kgNha -1 , respectively). NO 3 - contributed the most (34-92%) to total N leaching loss among all treatments, followed by dissolved organic N (14-57%). COM showed the lowest N leaching loss due to a reduction in NO 3 - loss. Yield-scaled N leaching in COM (0.35kgNMg -1 silage) was significantly (Pleaching loss while ensuring high crop yield in the North China Plain. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comparison of different soil water extraction systems for the prognoses of solute transport at the field scale using numerical simulations, field and lysimeter experiments

    Energy Technology Data Exchange (ETDEWEB)

    Weihermueller, L

    2005-07-01

    To date, the understanding of processes, factors, and interactions that influence the amount of extracted water and the solute composition sampled with suction cups is limited. But this information is required for process description of solute transport in natural soils. Improved system understanding can lead to a low cost and easy to install water sampling system which can help to predict solute transport in natural soils for the benefit of environmental protection. The main objectives of this work were to perform numerical simulations with different boundary conditions and to implement the findings in the interpretation of the lysimeter and field experiments. In a first part of this thesis, theoretical considerations on the processes affecting the spatial influence of a suction cup in soil and changes in solute transport initiated by the suction cups are presented, including testing and validation of available model and experimental approaches. In the second part, a detailed experimental study was conducted to obtain data for the comparison of the different soil water sampling systems. Finally, the numerical experiments of the suction cup influence were used for the interpretation of the experimental data. The main goals are summarized as follows: - Characterization of the suction cup activity domain (SCAD), suction cup extraction domain (SCED) and suction cup sampling area (SCSA) of active suction cups (definitions are given in Chapter 6). - Determination of the boundary conditions and soil properties [e.g. infiltration, applied suction, duration of water extraction, soil hydraulic properties and soil heterogeneity] affecting the activity domain, extraction domain and sampling area of a suction cup. - Identification of processes that change the travel time and travel time variance of solutes extracted by suction cups. - Validation of the numerically derived data with analytical and experimental data from literature. - Comparison of the experimental data obtained

  10. Experiences with the use of conservative tracers as an aid in transferring lysimeter results to the open field; Erfahrungen beim Einsatz von konservativen Tracern als Hilfsmittel zur Uebertragung von Lysimeterergebnissen auf Freilandflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, J.; Meissner, R.; Rupp, H. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Lysimeterstation; Mueller, L.; Eulenstein, F. [Zentrum fuer Agrarlandschafts- und Landnutzungsforschung e.V. (ZALF), Muencheberg (Germany)

    1999-02-01

    Four lysimeter trials performed on an IS-type soil yielded an almost constant range of displacement of a tracer front (NO{sub 3} front) of 4.0 to 4.5 mm / l of seepage water (referred to a surface area of 1 m-2 and a depth of 1 m). This was experimental confirmation of a tentatively formulated simplified relationship between seepage water volume, vertical tracer displacement, and field capacity. The results were also in very good agreement with those of a control study in the open field carried out under similar hydrological, pedological, and agrotechnical conditions using lysimeters and Cl tracers for determining quantities of seepage water formation. As the present lysimeter trials mirror soil hydrological processes in the open field with sufficient accuracy, they appear well suited to take the place of the so often lacking territorial data as a means of validating mathematical models describing seepage-water-bound material export. [Deutsch] Auf der Basis von 4 Lysimeterversuchen konnte fuer die Bodenart IS ein nahezu konstanter Wertebereich fuer die Verlagerung einer Tracerfront (NO{sub 3}-Front) in Hoehe von 4,0 bis 4,5 mm/l Sickerwasser (bezogen auf eine Oberflaeche von 1 m{sup 2} und eine Tiefe von 1 m) ermittelt werden. Damit konnte die vereinfachte Beziehung zwischen Sickerwassermenge, Tracerverlagerungstiefe und Feldkapazitaet experimentell bestaetigt werden. Ein Vergleich zur Bestimmung der Sickerwassermengenbildung mit Hilfe von Lysimetern und durch Einsatz von Cl-Tracern unter aehnlich hydrologischen, pedologischen und agrotechnischen Bedingungen im Freiland wies eine hohe Uebereinstimmung auf. Da die hier durchgefuehrten Lysimeteruntersuchungen bodenhydrologische Prozesse von Freilandflaechen mit ausreichender Genauigkeit widerspieglen, erscheinen sie anstelle oft fehlender Gebietskenndaten zur Validierung von mathematischen Modellen zur Beschreibung sickerwassergebundener Stoffaustraege gut geeignet. (orig.)

  11. Comparative investigations on the transferability of results from standardized vessel and lysimeter experiments on the actual field conditions with the example of the residue situation in plants after spraying with Goltix and Tribunil

    International Nuclear Information System (INIS)

    Hansper, M.

    1986-06-01

    The radioactivity values in the plant samples of the lysimeter and vessel experiments made it possible to calculate the material equivalent quantities in mg/kg of fresh or dry mass. The basis for the calculation was the specific 14 C activity of the applied materials. In these calculated material equivalent quantities one is dealing with compounds, which originate from a large number of material change processes including reassimilated in 14 CO 2 from decomposition processes in the ground. Within one test unit, with one exception, double quantities always led to residues of more than twice as much in the plants. (orig./PW) [de

  12. Seepage water flow velocity in hydromorphic acid brown earth in northeast Germany - {sup 15}N studies in groundwater lysimeters; Sickerwassergeschwindigkeit in Hydromorphen Sauerbraunerden Nordostdeutschlands - {sup 15}N-Untersuchungen in Grundwasserlysimetern

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, A.; Hoelzel, D.; Schalitz, G. [ZALF Muencheberg, Paulinenaue (Germany). Forschungstation; Merbach, W. [ZALF Muencheberg, Paulinenaue (Germany). Inst. fuer Rhizosphaerenforschung und Pflanzenernaehrung

    1999-02-01

    Sandy soils occur widely in Brandenburg. These soils are usually characterised by a high permeability. In low-lying areas such the Havellaendische Luch their proximity to groundwater can pose problems, especially when nutrients such as nitrate are not fully absorbed by the plants and are leached into the ground. Lysimeter studies with stable isotope tracers are especially well suited for estimating the leaching loss attributable to mineral fertilisation. For one thing, lateral flow can largely be excluded in the closed system of a lysimeter. For another, one can reasonably suppose that the marked nitrogen does not behave essentially differently from normal nitrogen. [Deutsch] In Brandenburg kommen verbreitet sandige Boeden vor. Diese Boeden zeichnen sich meist durch hohe Durchlaessigkeiten aus. Dadurch kann in Niederungsgebieten, wie dem Havellaendischen Luch, die Grundwassernaehe zum Problem werden, insbesondere wenn Naehrstoffe wie Nitrat nicht vollstaendig von den Pflanzen aufgenommen werden und der Auswaschung anheimfallen. Zur Abschaetzung der Auswaschungsverluste, die tatsaechlich aus der Mineralduengung stammen, eignen sich besonders Lysimeteruntersuchungen mit stabilisotopen Tracern. Einerseits lassen sich hier, im geschlossenen System, laterale Stroemungen weitgehend ausschliessen, andererseits kann man davon ausgehen, dass sich der makierte Stickstoff im System Boden-Pflanze nicht grundsaetzlich anders verhaelt als herkoemmlicher Stickstoff. (orig.)

  13. Reatividade de corretivos da acidez e condicionadores de solo em colunas de lixiviação Reactivity of soil acidity correctives and conditioners in lysimeters

    Directory of Open Access Journals (Sweden)

    Lucélia Alves Ramos

    2006-10-01

    mobility and slow correction in the soil profile. Other products have been tested for acidity correction such as silicates or the reduction of acidity effects in deeper soil layers with gypsum. This study compared the effect of lime, gypsum and silicates to supply calcium, magnesium, silicate and to correct soil pH in deeper soil layers. Soil samples of an Ustoxic Quartzipsamment were used, collected under native forest, with low levels of exchangeable Ca and Mg and high acidity. Lysimeters were prepared, divided into 12 rings of 5cm and filled with the collected soil. In the top ring (0-5 cm the equivalent to 500 or 1.000 kg ha-1 calcium silicate (Wollastonite, Ca and Mg silicate, thermophosphate, commercial (calcitic lime, and agricultural gypsum were incorporated, in a randomized block design with 4 replications. The soil columns were incubated (moisture near field capacity for 40 days, irrigated with 2.000 mm distilled water (five times/week during the incubation period. Available silicon, exchangeable Ca and Mg and pH (CaCl2 were determined. Gypsum increased Ca levels throughout the soil profile, but did not correct the acidity. Silicates did correct soil acidity and were more effective than lime for soil pH correction and to increase exchangeable Ca levels. Use of calcium and magnesium silicate or of thermophosphate increased the soil magnesium concentration to a depth of 25 cm. The measured Silicon was transported to the deepest soil layer in the lysimeters (55 cm, independently of the tested Si source.

  14. The impact of different flooding periods on the dynamics of pore water concentrations of As, Cr, Mo and V in a contaminated floodplain soil - results of a lysimeter study

    Science.gov (United States)

    Rupp, Holger; Meissner, Ralph; Shaheen, Sabry; Rinklebe, Jörg

    2014-05-01

    Trace elements and arsenic (As) were transported with water during inundation in floodplain ecosystems, where they settled down and accumulated predominantly in depressions and low-lying terraces. Highly variable hydrological conditions in floodplains can affect the dynamics of pollutants. The impact of different flooding/drying periods on the temporal dynamics of pore water concentrations of As, Cr, Mo and V as a function of soil EH/pH changes and dynamics of DOC, Fe, Mn and SO42- was studied in a contaminated floodplain soil collected at the Elbe River (Germany). A specific groundwater lysimeter technique with two separate small lysimeter vessels served as replicates was used for this study. The groundwater level inside the lysimeters was controlled to simulate long term and short term flooding/drying. The long term (LT) flooding scenario consists of 94 days of flooding followed by similar drying term. The short term (ST) flooding/drying scenario comprises 21 days and was six times repeated. The entire experimental period (LT_ST) was about 450 days. Flooding of the soil caused a significant decrease of EH and pH. Concentrations of soluble As, Cr, Fe, Mn, Mo and DOC were higher under reducing conditions than under oxidizing conditions in LT. However, As and Cr tended to be mobilized under oxidizing conditions during ST, which might be due to slow kinetics of the redox reaction of As and Cr. Dynamics of Mo were more affected by changes of EH/pH as compared to As, Cr and V and governed mainly by Fe-Mn chemistry. Concentrations of V in ST were higher than in LT and were controlled particularly by pH and chemistry of Fe. The interactions between the elements and carriers studied were stronger during long flood-dry-cycles than during short cycles, which confirmed our hypothesis. We conclude that the dynamics of As, Cr, Mo and V are determined by the length of time soils are exposed to flooding, because drivers of element mobility need a certain time to provoke

  15. Distribuição da concentração de potássio no solo em lisímetros cultivados com amendoim Distribution of the potassium concentration in soil with lysimeters cultivated with peanut

    Directory of Open Access Journals (Sweden)

    Jarbas H Miranda

    2010-04-01

    Full Text Available A aplicação de fertilizantes na agricultura pode provocar uma dinâmica de solutos no solo abaixo da zona radicular, podendo, além de provocar prejuízos econômicos, contaminar águas subterrâneas. O presente trabalho teve como objetivo acompanhar o processo de deslocamento do íon potássio (K+ em lisímetros preenchidos com solo de textura arenosa e cultivado com amendoim (Arachis hypogaea L., sob diferentes condições de atenuação da densidade de fluxo radiante, como a utilização de filmes plásticos com diferentes espessuras (100 e 150 micras. O deslocamento do íon potássio (K+ foi monitorado por extratores de solução instalados em diferentes profundidades (15 e 25 cm, e o manejo da fertirrigação foi realizado com a utilização de tensiômetros. Concluiu-se que a baixa radiação solar incidente nos dois ambientes com coberturas plásticas afetou negativamente a produtividade do amendoim; o período em que o amendoim demanda maior quantidade de potássio ocorre dos 30 aos 55 dias após a semeadura; as plantas de amendoim não apresentaram deficiência nutricional com menor lixiviação de K+ para as camadas mais profundas do solo; nos lisímetros com cobertura plástica de 100 e 150 micras, ocorreu maior concentração de K+ na superfície do solo.The application of fertilizers in agriculture produce some solute displacement below the root zone and this situation has provoked great impacts, besides the economic damages, causing groundwater contamination. The present work has as the objective of monitoring the displacement process of the potassium (K+ in lysimeters filled with soil, sandy texture and cultivated with peanuts (Arachis hypogaea L. under different conditions of reducing solar radiation by using plastic films with different thickness (100 and 150 µ. The potassium displacement was monitored by soil solution extractors installed in different depths (15 and 25 cm and the fertigation management was accomplished by

  16. Integral Study of Atrazine Behaviour in Field Lysimeters in Argentinean Humid Pampas Soils Estudio Integral del Comportamiento de Atrazina en Lisímetros de Campo en Suelos de la Pampa Húmeda Argentina

    Directory of Open Access Journals (Sweden)

    Susana Hang

    2010-03-01

    Full Text Available Atrazine behavior during crop maize (Zea mays L. production in soils of Argentine humid pampas was investigated. Lysimeters (3.3 x 3.3 x 1.4 m with a Typic Argiudoll (Pergamino and others with a Typic Hapludoll (Junín were monitored for drainage water content and atrazine concentrations in soil and water. Soil profiles were sampled in four depths in three dates, and water drainage pooled in four periods. Most of atrazine loss in drainage occurred within 30 d of atrazine application being 0.13% and 0.03% of the total atrazine applied for Pergamino and Junín, respectively. Under laboratory conditions half-life average in both profiles was 16 d. Atrazine extractable residues (AER in lysimeters showed differences in quantity and distribution between both profiles. Extractable residues were 25.7 (Pergamino and 69.4 g ha-1 (Junín. At the 30th day of application, AER represented 25% of total AER in Junín and 88% in Pergamino in the first 30 cm. Occurrence of preferential flow through the Bt horizon (Pergamino may explain differences detected. High proportion of AER in Junín profile suggests low atrazine affinity and should be followed through time in order to evaluate actual stability of these residues and if they constitute a potential risk for aquifers.Se estudió el comportamiento de atrazina durante el ciclo de un cultivo de maíz (Zea mays L. en suelos de la pampa húmeda Argentina. Se monitoreó el total de agua drenada y la concentración de atrazina en suelo y agua, mediante el uso de seis lisímetros (3.3 x 3.3 x 1.4 m tres de ellos llenados con un Argiudoll Típico (Pergamino y otros tres con un Hapludoll Típico (Junín. Se tomaron muestras de cuatro horizontes en cada perfil de suelo en tres fechas y el agua drenada se agrupó en cuatro períodos. La mayor parte de las pérdidas de atrazina en el drenaje ocurrieron dentro de los primeros 30 días desde la aplicación de atrazina. Los porcentajes recuperados respecto de la cantidad

  17. Lisímetro de pesagem de grande porte. parte II: consumo hídrico do coqueiro anão verde irrigado Large-scale weighing lysimeter. part II: water requirements of the irrigated dwarf-green coconut

    Directory of Open Access Journals (Sweden)

    Inajá F. Sousa

    2011-05-01

    Full Text Available Este trabalho, como segunda parte de uma pesquisa realizada no Estado de Sergipe, objetiva determinar a evapotranspiração e o coeficiente de cultura na fase de crescimento do coqueiro anão-verde (Cocos nucifera L., com base em medições lisimétricas e no modelo do balanço de energia, segundo a razão de Bowen. Obteve-se a evapotranspiração de referência pelo método de Penman-Monteith, na escala diária em todo o período experimental. O sistema de aquisição de dados foi programado para a automação da coleta de todos os sensores necessários à obtenção dos componentes do balanço de energia. O consumo hídrico do coqueiro durante a fase de crescimento é de 1.263,30 mm, com média diária de 3,90 mm d-1. O coeficiente de cultura nessa fase fenológica da palmeira varia entre 0,50 e 1,80, com média de 0,96.This paper, as Part II of a research carried out in Sergipe state, aims to determine evapotranspiration and crop coefficient of dwarf-green coconut (Cocos nucifera L. based on lysimeter measurements and Bowen ratio-energy balance method. The reference evapotranspiration was obtained by the Penman-Monteith approach on daily-scale during the experimental period. The data acquisition system was used to obtain all data from the sensors necessary to determine the energy balance components. The water requirements of coconut palm during the phenological growth stage is 1263.30 mm, with daily average of 3.90 mm d-1. The crop coefficient during this phenological growth stage varies between 0.50 and 1.80, with daily mean of 0.96.

  18. Coeficiente de cultura da lima-ácida tahiti no outono-inverno determinado por lisimetria de pesagem em Piracicaba - SP Crop coefficient of acid lime tahiti during autumn-winter period determined by weighing lysimeter technique in Piracicaba - SP, Brazil

    Directory of Open Access Journals (Sweden)

    Cícero R. A. Barboza Júnior

    2008-12-01

    Full Text Available O Brasil é o maior produtor mundial de citros, com destaque para o Estado de São Paulo, maior produtor nacional. Recentes estudos mostram que a área irrigada de citros em São Paulo tem aumentado significativamente nos últimos anos. Porém, a falta de informações sobre o manejo eficiente da irrigação na cultura de citros é uma das principais dificuldades enfrentadas pelos produtores. Com o intuito de atender a essa necessidade, este trabalho teve como objetivos determinar a evapotranspiração de uma planta adulta de limeira-ácida 'Tahiti' (Citrus latifolia Tan. e o coeficiente de cultivo (Kc no período seco (outono-inverno, utilizando a técnica de lisimetria de pesagem. O experimento foi realizado na ESALQ/USP em Piracicaba - SP, em área irrigada por gotejamento, com plantas espaçadas de 7 x 4 m, sendo cada planta atendida por quatro pontos de molhamento no solo, distribuídos de forma equidistantes entre si. Foi realizado o monitoramento climático, utilizando estação meteorológica automatizada, e a determinação da evapotranspiração da cultura por lisímetro de pesagem. Durante o período de estudo, o Kc variou entre 0,82 e 1,18, e a ETc variou entre 1,2 e 5,6.Brazil is the largest world producer of citrus crop, with São Paulo state leading as the largest national producer. Recent studies show that irrigated areas of citrus in the state have been increasing significantly in the last few years. However, lack of information on irrigation management related to this crop is one of the main problems encountered by the farmers. In order to help solve the above problem, the objective of this work was to determine the evapotranspiration of acid lime adult plant variety 'Tahiti' (Citrus latifolia Tan. and the crop coefficient during dry period (autumn - winter using a weighing lysimeter technique. The experiment was carried out at ESALQ/USP in Piracicaba - SP, Brazil, in a drip irrigated area with plant spacing of 7 x 4 m. Each

  19. Simple weighing lysimeters for measuring reference and crop evapotranspiration

    Science.gov (United States)

    Knowledge of cotton crop evapotranspiration is important in scheduling irrigations, optimizing crop production, and modeling evapotranspiration and crop growth. The ability to measure, estimate, and predict evapotranspiration and cotton crop water requirements can result in better satisfying the cr...

  20. Nitrate leaching from winter cereal cover crops using undisturbed soil-column lysimeters

    Science.gov (United States)

    Cover crops are important management practices for reducing nitrogen (N) leaching in the Chesapeake Bay watershed, which is under Total Maximum Daily Load restraints. Cool-season annual grasses such as barley, rye, or wheat are common cover crops, but studies are needed to directly compare field ni...

  1. Activated carbon amendment to sequester PAHs in contaminated soil: a lysimeter field trial.

    Science.gov (United States)

    Hale, Sarah E; Elmquist, Marie; Brändli, Rahel; Hartnik, Thomas; Jakob, Lena; Henriksen, Thomas; Werner, David; Cornelissen, Gerard

    2012-04-01

    Activated carbon (AC) amendment is an innovative method for the in situ remediation of contaminated soils. A field-scale AC amendment of either 2% powder or granular AC (PAC and GAC) to a PAH contaminated soil was carried out in Norway. The PAH concentration in drainage water from the field plot was measured with a direct solvent extraction and by deploying polyoxymethylene (POM) passive samplers. In addition, POM samplers were dug directly in the AC amended and unamended soil in order to monitor the reduction in free aqueous PAH concentrations in the soil pore water. The total PAH concentration in the drainage water, measured by direct solvent extraction of the water, was reduced by 14% for the PAC amendment and by 59% for GAC, 12 months after amendment. Measurements carried out with POM showed a reduction of 93% for PAC and 56% for GAC. The free aqueous PAH concentration in soil pore water was reduced 93% and 76%, 17 and 28 months after PAC amendment, compared to 84% and 69% for GAC. PAC, in contrast to GAC, was more effective for reducing freely dissolved concentrations than total dissolved ones. This could tentatively be explained by leaching of microscopic AC particles from PAC. Secondary chemical effects of the AC amendment were monitored by considering concentration changes in dissolved organic carbon (DOC) and nutrients. DOC was bound by AC, while the concentrations of nutrients (NO(3), NO(2), NH(4), PO(4), P-total, K, Ca and Mg) were variable and likely affected by external environmental factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. COSMOS soil water sensor compared with EM sensor network & weighing lysimeter

    Science.gov (United States)

    Soil water sensing methods are widely used to characterize the root zone and below, but only a few are capable of delivering water content data with accuracy for the entire soil profile such that evapotranspiration (ET) can be determined by soil water balance and irrigations can be scheduled with mi...

  3. Determining seepage water velocity by means of lysimeters; Bestimmung der Sickerwassergeschwindigkeit in Lysimetern

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, D.; Seiler, K.P.

    1999-02-01

    The processes in the water-unsaturated zone have in the past received too little attention from hydrogeologists and their study by pedologists has been patchy. It is only recently that studies have been published, with for some part very diverse scientific approaches, which consider the water-unsaturated zone and the soil as a whole. There are small-scale and large-scale hydraulic approaches, hydraulic and first tracer-hydrological approaches. This poses the problem of how to transfer results obtained locally to larger spaces. Moreover, the homogeneity of substrates has been found to be such that hydraulic and tracer-hydrological approaches are unproblematic at the large scale, while at the small scale their results can only be interpreted with certain reservations. For example, this has led to findings of steady groundwater recharge at a large scale which contrast with findings at a smaller scale of a separation into highly variable matrix and bypass flows or into groundwater recharge and intermediate outflows. Studies at different levels of scale consequently bear different implications for material transport within and material export from specific landscape sections to underground or aboveground neighbouring compartments. The purpose of the present workshop on seepage water movement is to contribute to the establishment of facts on this issue, identify deficits, and stimulate future cooperation. [Deutsch] Die Prozesse in der wasserungesaettigten Zone wurden in der Vergangenheit zu wenig durch die Hydrogeologie und nur ausschnittsweise von der Pedologie betrachtet. Erst in neuerer Zeit mehren sich Arbeit, die die wasserungesaettigte Zone einschliesslich des Bodens integral betrachten, wobei die wissenschaftlichen Ansaetze z.T. sehr verschieden sind. Es gibt - klein- und grossskalige hydraulische Ansaetze, - hydraulische und erste tracerhydrologische Ansaetze und daraus erwaechst das Problem der Ueberleitung lokaler Ergebnisse auf groessere Raeume. Darueber hinaus zeigt sich, dass die Homogenitaet der Substrate dergestalt ist, dass die hydraulischen und tracerhydrologischen Ansaetze grossskalig unproblematisch, kleinskalig jedoch nur mit gewissen Einschraenkungen allgemein interpretierbar sind. Dies fuehrt z.B. zu den Beobachtungen einer gleichmaessigen Grundwasserneubildung auf der grossen Skalenebene und einer Auftrennung in stark variable Matrix- und Bypass-Fluesse bzw. Grundwasserneubildung und Zwischenabfluesse auf der kleinen Skalenebene. All diese Skalenebenen haben folglich auch eine unterschiedliche Relevanz fuer den Stofftransport in und den Stoffexport aus Landschaftsausschnitten in unterirdische und oberirdische Nachbarkompartimente hinein. Der Workshop ueber die Sickerwasserbewegung sollte dazu beitragen, hierzu eine Standortbestimmung herbeizufuehren, Defizite aufzuzeigen und Zusammenarbeiten zu stimulieren. (orig.)

  4. Test of Different Lysimeter-Types on Sandy Soils in Denmark

    DEFF Research Database (Denmark)

    Nielsen, K. E.

    1995-01-01

    UN ECE Convention on Long-Range Transboundary Air Pollution. International Co-operative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems......UN ECE Convention on Long-Range Transboundary Air Pollution. International Co-operative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems...

  5. Preferential flow in water-repellent sandy soils : model development and lysimeter experiments

    NARCIS (Netherlands)

    Rooij, de G.H.

    1996-01-01


    When water enters a water-repellent topsoil, preferential flow paths develop and the flow bypasses a large part of the unsaturated zone. Therefore, preferential flow caused by water- repellency is expected to accelerate solute leaching to the groundwater. In soils with water-repellent

  6. A lysimeter experiment to investigate temporal changes in the availability of pesticide residues for leaching

    International Nuclear Information System (INIS)

    Renaud, F.G.; Brown, C.D.; Fryer, C.J.; Walker, A.

    2004-01-01

    Leaching of three pesticides (isoproturon, chlorotoluron and triasulfuron) and a tracer (bromide) were determined in four contrasting soils ranging in texture from sandy loam to clay. The compounds were applied to undisturbed columns of soil and four columns for each soil were randomly selected and leached with 24-mm equivalent of water at prescribed time intervals (3, 9, 24, 37 and 57 d after application). A rapid decline in leached loads of isoproturon and chlorotoluron as time from application to irrigation increased was observed in all soils. In contrast, triasulfuron and bromide loads only decreased rapidly in the clay soil. Bromide losses decreased with decreasing clay contents of the soil and therefore with a decrease in structural development. Magnitudes of pesticide losses varied from soil to soil, depending on structural development and the organic carbon content. Pesticide degradation experiments on disturbed and undisturbed soil samples showed that the rapid decline of leached loads with time was faster than could be explained by degradation alone. Five physico-chemical processes are put forward to explain the different patterns of pesticide leached loads observed in the soils: (1) relative extent of preferential flow, (2) sorption capacity of the compounds to the different soils, (3) extent of degradation of the compounds in the soil, (4) variation in sorption kinetics between compounds associated with pesticide diffusion into soil aggregates, and (5) protection of the compounds by a combination of intra-aggregate diffusion and the presence of preferential flow pathways

  7. A lysimeter experiment to investigate temporal changes in the availability of pesticide residues for leaching

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, F.G.; Brown, C.D.; Fryer, C.J.; Walker, A

    2004-09-01

    Leaching of three pesticides (isoproturon, chlorotoluron and triasulfuron) and a tracer (bromide) were determined in four contrasting soils ranging in texture from sandy loam to clay. The compounds were applied to undisturbed columns of soil and four columns for each soil were randomly selected and leached with 24-mm equivalent of water at prescribed time intervals (3, 9, 24, 37 and 57 d after application). A rapid decline in leached loads of isoproturon and chlorotoluron as time from application to irrigation increased was observed in all soils. In contrast, triasulfuron and bromide loads only decreased rapidly in the clay soil. Bromide losses decreased with decreasing clay contents of the soil and therefore with a decrease in structural development. Magnitudes of pesticide losses varied from soil to soil, depending on structural development and the organic carbon content. Pesticide degradation experiments on disturbed and undisturbed soil samples showed that the rapid decline of leached loads with time was faster than could be explained by degradation alone. Five physico-chemical processes are put forward to explain the different patterns of pesticide leached loads observed in the soils: (1) relative extent of preferential flow, (2) sorption capacity of the compounds to the different soils, (3) extent of degradation of the compounds in the soil, (4) variation in sorption kinetics between compounds associated with pesticide diffusion into soil aggregates, and (5) protection of the compounds by a combination of intra-aggregate diffusion and the presence of preferential flow pathways.

  8. Spatial and temporal distribution of solute leaching in heterogeneous soils: analysis and application to multisampler lysimeter data

    NARCIS (Netherlands)

    Rooij, de G.H.; Stagnitti, F.

    2002-01-01

    Accurate assessment of the fate of salts, nutrients, and pollutants in natural, heterogeneous soils requires a proper quantification of both spatial and temporal solute spreading during solute movement. The number of experiments with multisampler devices that measure solute leaching as a function of

  9. Evaluation of field and lysimeter studies on the leaching of pesticides from soil using the PESTLA model

    NARCIS (Netherlands)

    Veen, van de J.R.; Boesten, J.J.T.I.

    1996-01-01

    The PESTLA model Version 2.4 is used to evaluate pesticide leaching from soil under Dutch agricultural conditions. A method is presented to translate the results of a leaching experiment into the standard scenario, using the ratio between measured andcomputed leaching for that experiment. An attempt

  10. Construction and demolition waste: Comparison of standard up-flow column and down-flow lysimeter leaching tests

    DEFF Research Database (Denmark)

    Butera, Stefania; Hyks, Jiri; Christensen, Thomas Højlund

    2015-01-01

    Five samples of construction and demolition waste (C&DW) were investigated in order to quantify leaching of inorganic elements under percolation conditions according to two different experimental setups: standardised up-flow saturated columns (-1TS) for Al, As, Ba, Cd, Cu, DOC, Mg, Mn, Ni, P, Pb...

  11. Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters

    International Nuclear Information System (INIS)

    Thevenot, M.; Dousset, S.; Rousseaux, S.; Andreux, F.

    2008-01-01

    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching. - The application of organic amendments increased diuron leaching through a sandy-loam soil, in contrast to a clay-loam soil

  12. Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Thevenot, M. [UMR 1229 Microbiologie et Geochimie des Sols, CMSE, INRA - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France)], E-mail: mathieu.thevenot@u-bourgogne.fr; Dousset, S. [UMR 5561 Biogeosciences, CNRS - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France); Rousseaux, S. [EA 4149 Laboratoire de Recherche en Vigne et Vin, Institut Universitaire de la Vigne et du Vin, rue Claude Ladrey, 21000 Dijon (France); Andreux, F. [UMR 1229 Microbiologie et Geochimie des Sols, CMSE, INRA - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France)

    2008-05-15

    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching. - The application of organic amendments increased diuron leaching through a sandy-loam soil, in contrast to a clay-loam soil.

  13. Basic parameters of the lysimeter sediments of Scheyern, Kelheim, Hohenwart and Feldkirchen; Grundparameter der Lysimetersedimente - Standorte Scheyern, Kelheim, Hohenwart und Feldkirchen

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, D. (ed.)

    2002-10-01

    The report contains a collection of publications concerning lysimetry projects at the GSF research facility in Neuherberg. The soils come from 4 different sites. The following parameters were investigated: grain size, layers, pore size, specific surface area, surface potential, hydraulic parameters, diffusion coefficients, water content and dispersivity in relation to atmospheric precipitations, content of organic matter and carbonates, cation exchange capacity, content of metalloid and heavy metals, microorganisms. (uke)

  14. The 1996 thaw as a {sup 18}O tracer experiment at the lysimeter plant in Wagna; Die Schneeschmelze 1996 als {sup 18}O-Tracerversuch an der Lysimeteranlage in Wagna

    Energy Technology Data Exchange (ETDEWEB)

    Fank, J.; Zojer, H. [Forschungsgesellschaft Joanneum, Graz (Austria). Inst. fuer Geothermie und Hydrogeologie; Stichler, W. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Hydrologie

    1999-02-01

    In the year 1991 a research site was set up in Wagna in the western Leibnitz Field (Styria) which permits an examination of seepage water movement and of material transport as a function of the permeability of the uppermost soil layers and the underlying more coarsly clastic sediments under locale-specific natural management systems. Research at this site is largely based on hydrochemical and isotope-hydrological analysis. The {sup 18}O isotope is an ideal natural tracer of water movement. Infiltration water from the thaw following a snowy winter was displaced downward into the unsaturated zone as a result of a major precipitation event of 85.5 mm from April 2 to 5, 1996. This displacement is evident in the {sup 18}O concentrations of the seepage water at various measuring depths. The displacement is associated with recharge events, thaw processes tending to produce dispersive flows and precipitation events leading to ``piston flow effects. Winter precipitation water reaches a depth of 60 to 70 cm by mid-April. The attenuated {sup 18}O concentration reveals the predominant flow characteristics in the different compartments of the unsaturated zone (finely clastic soils, gravels, and sands). [Deutsch] Im Jahre 1991 wurde in Wagna, im westlichen Leibnitzer Feld (Steiermark), eine Forschungsstation errichtet, die es erlaubt, unter ortsueblichen, natuerlichen Bewirtschaftungssystemen die Sickerwasserbewegung und den Transport von Stoffen in Abhaengigkeit von der Durchlaessigkeit der obersten Bodenschichten und der darunter folgenden groeberklastischen Sedimente vor allem auf Grundlage der hydrochemischen und isotopenhydrologischen Analytik zu untesuchen. Die Verwendung des {sup 18}O-Isotops als natuerlicher Tracer repraesentiert in idealer Weise die Bewegung des Wassers. Infiltrationswasser aus der Schneeschmelze nach einem schneereichen Winter wurde durch ein starkes Niederschlagsereignis von 85.6 mm zwischen 2. und 5. April 1996 in der ungesaettigten Zone tieferverlagert. Diese Verlagerung ist in den Verlaeufen der {sup 18}O-Konzentration im Sickerwasser in den unterschiedlichen Messtiefen nachvollziehbar. Die Verlagerung ist an Neubildungsereignisse gekoppelt, wobei Schneeschmelzvorgaenge eher einen dispersiven Fluss, Niederschlagsereignisse einen `piston flow` Effekt ausloesen. Die Winterniederschlaege erreichen Mitte April eine Tiefe von 60 bis 70 cm. Die Daempfung des {sup 18}O-Gehaltes zeigt bevorzugte Fliesscharakteristika in den unterschiedlichen Kompartimenten der ungesaettigten Zone (feinklastischer Boden, Kiese und Sande). (orig.)

  15. Leaching of 14-Carbofuran into sub-surface water in vegetable agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Misman Sumin; Maizatul Akmam Mohd Nasir; Kubiak, R.

    2000-01-01

    An experimental setup was constructed to investigate leaching of 14C C arbofuran into sub-surface water through Bungor series sandy loam soil. The indoor lysimeter was constructed using homogenous and packed disturbed soil column. The outdoor lysimeter was constructed using undisturbed soil column. In the field, leachate production was influenced by rainfall intensity but tracer transport was independent of water transport to a certain degree. A high rainfall intensity at 39 DAA has not enhanced tracer leaching into sub-surface water in vegetable agroecosystem whereas a lower rainfall intensity at 21 DAA has enhanced its leaching. Indoor lysimeter behaved incoherently and showed non-parallel relationship between applied water and also volume of leachate produced with tracer transport. In both types of lysimeter, tracer transport and carbofuran transport generally correlated. Carbofuran and tracer were leached at a lower magnitude in outdoor lysimeter compared to the indoor lysimeter. The maximum total radioactivities leached were 1.1% and 0.4% of applied radio activities from indoor lysimeter and outdoor lysimeter at 35 and 21 DAA respectively. The maximum total carbofuran equivalent leached were 193.9 μg/L and 39.3 μg/L at 35 DAA and 21 DAA from indoor lysimeter and outdoor lysimeter respectively. (author)

  16. Large-scale demonstration of waste solidification in saltstone

    International Nuclear Information System (INIS)

    McIntyre, P.F.; Oblath, S.B.; Wilhite, E.L.

    1988-05-01

    The saltstone lysimeters are a large scale demonstration of a disposal concept for decontaminated salt solution resulting from in-tank processing of defense waste. The lysimeter experiment has provided data on the leaching behavior of large saltstone monoliths under realistic field conditions. The results also will be used to compare the effect of capping the wasteform on contaminant release. Biweekly monitoring of sump leachate from three lysimeters has continued on a routine basis for approximately 3 years. An uncapped lysimeter has shown the highest levels of nitrate and 99 Tc release. Gravel and clay capped lysimeters have shown levels equivalent to or slightly higher than background rainwater levels. Mathematical model predictions have been compared to lysimeter results. The models will be applied to predict the impact of saltstone disposal on groundwater quality. 9 refs., 5 figs., 3 tabs

  17. Performance of Evapotranspirative Covers Under Enhanced Precipitation: Preliminary Data

    International Nuclear Information System (INIS)

    David C. Anderson; Lloyd T. Desotell; David B. Hudson; Gregory J. Shott; Vefa Yucel

    2007-01-01

    Since January 2001, drainage lysimeter studies have been conducted at Yucca Flat, on the Nevada Test Site, in support of an evapotranspirative cover design. Yucca Flat has an arid climate with average precipitation of 16.5 cm annually. The facility consists of six drainage lysimeters 3 m in diameter, 2.4 m deep, and backfilled with a single layer of native soil. The bottom of each lysimeter is sealed and equipped with a small drain that enables direct measurement of saturated drainage. Each lysimeter has eight time-domain reflectometer probes to measure moisture content-depth profiles paired with eight heat-dissipation probes to measure soil-water potential depth profiles. Sensors are connected to dataloggers which are remotely accessed via a phone line. The six lysimeters have three different surface treatments: two are bare-soil; two were revegetated with native species (primarily shadscale, winterfat, ephedra, and Indian rice grass); and two were allowed to revegetate naturally with such species as Russian thistle, halogeton, tumblemustard and cheatgrass. Beginning in October 2003, one half of the paired cover treatments (one bare soil, one invader species, and one native species) were irrigated with an amount of water equal to two times the natural precipitation to achieve a three times natural precipitation treatment. From October 2003 through December 2005, all lysimeters received 52.8 cm precipitation, and the four irrigated lysimeters received an extra 105.6 cm of irrigation. No drainage has occurred from any of the nonirrigated lysimeters, but moisture has accumulated at the bottom of the bare-soil lysimeter and the native-plant lysimeter. All irrigated lysimeters had some drainage. The irrigated baresoil lysimeter had 48.3 cm of drainage or 26.4 percent of the combined precipitation and applied irrigation for the entire monitoring record. The irrigated invader species lysimeter had 5.8 cm of drainage, about 3.2 percent of the combined precipitation and

  18. Assessing the performance of a cold region evapotranspiration landfill cover using lysimetry and electrical resistivity tomography.

    Science.gov (United States)

    Schnabel, William E; Munk, Jens; Abichou, Tarek; Barnes, David; Lee, William; Pape, Barbara

    2012-01-01

    In order to test the efficacy ofa cold-region evapotranspiration (ET) landfill cover against a conventional compacted clay (CCL) landfill cover, two pilot scale covers were constructed in side-by-side basin lysimeters (20m x 10m x 2m) at a site in Anchorage, Alaska. The primary basis of comparison between the two lysimeters was the percolation of moisture from the bottom of each lysimeter. Between 30 April 2005 and 16 May 2006, 51.5 mm of water percolated from the ET lysimeter, compared to 50.6 mm for the the CCL lysimeter. This difference was not found to be significant at the 95% confidence level. As part of the project, electrical resistivity tomography (ERT) was utilized to measure and map soil moisture in ET lysimeter cross sections. The ERT-generated cross sections were found to accurately predict the onset and duration of lysimeter percolation. Moreover, ERT-generated soil moisture values demonstrated a strong linear relationship to lysimeter percolation rates (R-Squared = 0.92). Consequently, ERT is proposed as a reliable tool for assessing the function of field scale ET covers in the absence of drainage measurement devices.

  19. Partnership to Improve Nutrient Efficiency

    Science.gov (United States)

    PINE began in 2013 by working with OSU Extension and producers to locate and test existing 1990s lysimeters in Benton, Linn and Lane counties. The team identified additional producers to install Prenart lysimeters at a total of 15 sites. Producers allow for soil and water samplin...

  20. Phosphorus leaching from cow manure patches on soil columns

    NARCIS (Netherlands)

    Chardon, W.J.; Aalderink, G.H.; Salm, van der C.

    2007-01-01

    The loss of P in overland flow or leachate from manure patches can impair surface water quality. We studied leaching of P from 10-cmhigh lysimeters filled with intact grassland soil or with acid-washed sand. A manure patch was created on two grassland and two sandfilled lysimeters, and an additional

  1. Evaluating evapotranspiration for six sites in Benton, Spokane, and Yakima counties, Washington, May 1990 to September 1992

    Science.gov (United States)

    Tomlinson, S.A.

    1996-01-01

    This report evaluates evapotranspiration for six sites in Benton, Spokane, and Yakima Counties, Washington. Three sites were located on the Arid Lands Ecology Reserve in Benton County: one at a full-canopy grassland in Snively Basin (Snively Basin site), one at a sparse-canopy grassland adjacent to two weighing lysimeters (grass lysimeter site), and one at a sagebrush grassland adjacent to two weighing lysimeters (sage lysimeter site). Two sites were located on the Turnbull National Wildlife Refuge in Spokane County: one at a full-canopy grassland in a meadow (Turnbull meadow site), the other a full-canopy grassland near a marsh (Turnbull marsh site). The last site was located in a sagebrush grassland in the Black Rock Valley in Yakima County (Black Rock Valley site). The periods of study at the six sites varied, ranging from 5 months at the Black Rock Valley site to more than 2 years at the Snively Basin, grass lysimeter, and sage lysimeter sites. The periods of study were May 1990 to September 1992 for the Snively Basin, grass lysimeter, and sage lysimeter sites; May 1991 to September 1992 for the Turnbull meadow site; May 1991 to April 1992 for the Turnbull marsh site; and March to September 1992 for the Black Rock Valley site. Evapotranspiration and energy-budget fluxes were estimated for the Snively Basin site, the Turnbull meadow site, and the Black Rock Valley site using the Bowen-ratio and Penman-Monteith methods. Daily evapotranspiration for the Snively Basin site was also estimated using a deep-percolation model for the Columbia Basin. The Bowen-ratio method and weighing lysimeters were used at the grass and sage lysimeter sites. The Penman-Monteith method was used at the Turnbull marsh site. Daily evapotranspiration at the sites ranged from under 0.2 millimeter during very dry or cold periods to over 4\\x11millimeters after heavy rainfall or during periods of peak transpiration. At all sites, peak evapotranspiration occurred in spring, coinciding with

  2. Waste migration studies at the Savannah River Plant burial ground

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Grant, M.W.; Hoeffner, S.L.; King, C.M.

    1985-01-01

    The low-level radioactive waste burial ground at the Savannah River Plant is a typical shallow-land-burial disposal site in a humid region. Studies of waste migration at this site provide generic data for designing other disposal facilities. A program of field, laboratory, and modeling studies for the SRP burial ground has been conducted for several years. Recent results of lysimeter tests, soil-water chemistry studies, and transport modeling are reported. The lysimeter experiments include ongoing tests with 40 lysimeters containing a variety of defense wastes, and recently concluded lysimeter tests with tritium and plutonium waste forms. The tritium lysimeter operated 12 years. In chemistry studies, measurements of soil-water distribution coefficients (K/sub d/) were concluded. Current emphasis is on identification of trace organic compounds in groundwater from the burial site. Development of the dose-to-man model was completed, and the computer code is available for routine use. 16 refs., 2 figs., 2 tabs

  3. The influence of small-mammal burrowing activity on water storage at the Hanford Site

    International Nuclear Information System (INIS)

    Landeen, D.S.

    1994-01-01

    This paper summarizes the activities that were conducted in support of the long-term surface barrier development program by Westinghouse Hanford Company to determine the degree that small-mammal burrow systems affect the loss or retention of water in the soils at the Hanford Site in Washington state. An animal intrusion lysimeter facility was constructed, consisting of two outer boxes buried at grade, which served as receptacles for six animal intrusion lysimeters. Small burrowing animals common the Hanford Site were introduced over a 3- to 4-month period. Supplemental precipitation was added monthly to three of the lysimeters with a rainfall simulator (rainulator). Information collected from the five tests indicated that (1) during summer months, water was lost in all the lysimeters, including the supplemental precipitation added with the rainulator; and (2) during winter months, all lysimeters gained water. The data indicate little difference in the amount of water stored between control and animal lysimeters. The overall water loss was attributed to surface evaporation, a process that occurred equally in control and treatment lysimeters. Other causes of water loss are a result of (1) constant soil turnover and subsequent drying, and (2) burrow ventilation effects. This suggests that burrow systems will not contribute to any significant water storage at depth and, in fact, may enhance the removal of water from the soil

  4. Hanford protective barriers program: Status of asphalt barrier studies - FY 1989

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gee, G.W.

    1989-11-01

    The Hanford Protective Barrier Program is evaluating alternate barriers to provide a means of meeting stringent water infiltration requirements. One type of alternate barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick. Evaluations of these barriers were initiated in FY 1988, and, based on laboratory studies, two asphalt formulations were selected for further testing in small-tube lysimeters: a hot rubberized asphalt and an admixture of cationic asphalt emulsion and concrete sand containing 24 wt% residual asphalt. Eight lysimeters containing asphalt seals were installed as part of the Small Tube Lysimeter Test Facility on the Hanford Site. Two control lysimeters containing Hanford sand with a surface gravel treatment were also installed for comparison. 5 refs., 13 figs., 1 tab

  5. Field test facility for monitoring water/radionuclide transport through partially saturated geologic media: design, construction, and preliminary description. Appendix I. Engineering drawings

    International Nuclear Information System (INIS)

    Phillips, S.J.; Campbell, A.C.; Campbell, M.D.; Gee, G.W.; Hoober, H.H.; Schwarzmiller, K.O.

    1979-11-01

    The engineering plans for a test facility to monitor radionuclide transport in water through partially saturated geological media are included. Drawings for the experimental set-up excavation plan and details, lysimeter, pad, access caisson, and caisson details are presented

  6. Natural groundwater recharge and water balance at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Gee, G.W.; Kanyid, M.J.

    1990-01-01

    The purpose of this report is to present water-balance data collected in 1988 and 1989 from the 300 Area Buried Waste Test Facility and Grass Site, and the 200 East Area closed-bottom lysimeter. This report is an annual update of previous recharge status reports by Gee, Rockhold, and Downs, and Gee. Data from several other lysimeter sites are included for comparison. 43 refs., 28 figs., 7 tabs

  7. Coolside waste management research. Quarterly technical report, January 1--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to produce sufficient information on the physical and chemical nature of Coolside wastes to design and construct physically stable and environmentally safe landfills. The report consists of three monthly progress reports which detail investigations of geotechnical properties and mineralogic reactions of Coolside fly ash, ash, and FGD sludges. Both laboratory and field lysimeters have been set up to gather leachates for testing. Results are presented on the laboratory leachates; field lysimeters have just begun to flow.

  8. Alternative Landfill Cover and Monitoring Systems for Landfills in Arid Environments

    International Nuclear Information System (INIS)

    Rawlinson, S. E.

    2002-01-01

    In December 2000, a performance monitoring facility was constructed adjacent to the mixed waste disposal unit U-3ax/bl at the Area 3 Radioactive Waste Management Site at the Nevada Test Site. This facility consists of eight drainage lysimeters measuring 10 feet in diameter, 8 feet deep, and backfilled with native soil. The lysimeters have three different surface treatments: two were left bare, two were revegetated with native species, and two were allowed to revegetate with invader species (two are reserved for future studies). The lysimeters are instrumented with an array of soil water content and soil water potential sensors and have sealed bottoms so that any drainage can be measured. All sensors are working properly and indicate that the bare lysimeters are the wettest, as expected. The vegetated lysimeters, both seeded and those allowed to revegetate with invader species, are significantly drier than the bare cover treatments. No drainage has occurred in any of the lysimeters. The Accelerated Site Technology Deployment program under the U.S. Department of Energy's Office of Science and Technology provided the funding for this project with the objective of reducing the uncertainty associated with the performance of monolayer-evapotranspiration waste covers in arid regions such as the one deployed at U-3ax/bl

  9. EPICOR-II: a field leaching test of solidified radioactively loaded ion exchange resin

    International Nuclear Information System (INIS)

    Davis, E.C.; Marshall, D.S.; Todd, R.A.; Craig, P.M.

    1986-08-01

    As part of an ongoing research program investigating the disposal of radioactive solid wastes in the environment' the Oak Ridge National Laboratory (ORNL) is participating with Argonne National Laboratory, the Idaho National Engineering Laboratory, and the Nuclear Regulatory Commission in a study of the leachability of solidified EPICOR-II ion-exchange resin under simulated disposal conditions. To simulate disposal, a group of five 2-m 3 soil lysimeters has been installed in Solid Waste Storage Area Six at ORNL, with each lysimeter containing a small sample of solidified resin at its center. Two solidification techniques are being investigated: a Portland cement and a vinyl ester-styrene treatment. During construction, soil moisture temperature cells were placed in each lysimeter, along with five porous ceramic tubes for sampling water near the waste source. A meteorological station was set up at the study site to monitor climatic conditions (primarily precipitation and air temperature), and a data acquisition system was installed to keep daily records of these meteorological parameters as well as lysimeter soil moisture and temperature conditions. This report documents the first year of the long-term field study and includes discussions of lysimeter installation, calibration of soil moisture probes, installation of the site meteorological station, and the results of the first-quarter sampling for radionuclides in lysimeter leachate. In addition, the data collection and processing system developed for this study is documented, and the results of the first three months of data collection are summarized in Appendix D

  10. Animal intrusion status report for fiscal year 1990

    International Nuclear Information System (INIS)

    Landeen, D.S.

    1991-03-01

    The Protective Barrier and Warning Marker System Development Plan identified tasks that need to be completed to design a final protective barrier to implement in-place disposal of radioactive waste. This report summarizes the animal intrusion work conducted by Westinghouse Hanford Company in fiscal year 1990 regarding small mammals and water infiltration. An animal intrusion lysimeter facility was constructed and installed in fiscal year 1988. The facility consists of two outer boxes buried at grade that serve as receptacles for six animal intrusion lysimeters. Small burrowing mammals common to the Hanford Site environs are introduced over a 3- to 4-month period. Supplemental precipitation is added to three of the lysimeters with a rainulator at a rate equivalent to a 100-year storm. Soil moisture samples are taken before and after each test, and soil moisture measurements are also taken with a hydroprobe during the test period. During fiscal year 1990, tests three and four were completed and test five was initiated. Results of test three (summer treatment), which used Townsend ground squirrels and pocket gophers, indicated that the additional 1.5 inches of precipitation that was added with the rainulator was lost during this test. The plots that did not receive any additional precipitation all lost water (5 to 6 percent). Results from test four (winter treatment), which used pocket gophers and pocket mice, indicated that all of the lysimeters except one gained water. The two control lysimeters (rainulator plots and nonrainulator lysimeters with no animals) gained more water than their corresponding animal burrow lysimeters. 4 refs., 9 figs., 3 tabs

  11. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-01-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at Hanford in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of 10, 3 M deep by 1.8 M diameter, closed-bottomed lysimeters around a central 4 M deep by 4 M diameter instrument caisson. Commercial cement and dow polymer waste samples were removed from 210 L drums and placed in the 1.8 M diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility this year. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are being automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste streams

  12. New technique of insitu soil moisture sampling for environmental isotope analysis applied at 'Pilat-dune' near Bordeaux

    International Nuclear Information System (INIS)

    Thoma, G.; Esser, N.; Sonntag, C.; Weiss, W.; Rudolph, J.; Leveque, P.

    1978-01-01

    A new soil-air suction method with soil water vapor adsorption by 4 A-molecular sieve provides soil moisture samples from various depths for environmental isotope analysis and yields soil temperature profiles. A field tritium tracer experiment shows that this insitu sampling method has an isotope profile resolution of about 5-10 cm only. Application of this method in the Pilat sand dune (Bordeaux/France) yielded deuterium and tritium profiles down to 25 meters depth. Bomb tritium measurements of monthly lysimeter percolate samples available since 1961 show that the tritium response has a mean delay of 5 months in case of a sand lysimeter and of 2.5 years for a loess loam lysimeter. A simple HETP model simulates the layered downward movement of soil water and the longitudinal dispersion in the lysimeters. Field capacity and evapotranspiration taken as open parameters yield tritium concentration values of the lysimeters' percolate which are in close agreement with the experimental results. Based on local meteorological data the HETP model applied to tritium tracer experiments in the unsaturated zone further yiels an individual prediction of the momentary tracer position and of the soil moisture distribution. This prediction can be checked experimentally at selected intervals by coring. (orig.) [de

  13. Arsenic leaching and speciation in C&D debris landfills and the relationship with gypsum drywall content.

    Science.gov (United States)

    Zhang, Jianye; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy

    2017-01-01

    The effects of sulfide levels on arsenic leaching and speciation were investigated using leachate generated from laboratory-scale construction and demolition (C&D) debris landfills, which were simulated lysimeters containing various percentages of gypsum drywall. The drywall percentages in lysimeters were 0, 1, 6, and 12.4wt% (weight percent) respectively. With the exception of a control lysimeter that contained 12.4wt% of drywall, each lysimeter contained chromated copper arsenate (CCA) treated wood, which accounts for 10wt% of the C&D waste. During the period of study, lysimeters were mostly under anaerobic conditions. Leachate analysis results showed that sulfide levels increased as the percentage of drywall increased in landfills, but arsenic concentrations in leachate were not linearly correlated with sulfide levels. Instead, the arsenic concentrations decreased as sulfide increased up to approximately 1000μg/L, but had an increase with further increase in sulfide levels, forming a V-shape on the arsenic vs. sulfide plot. The analysis of arsenic speciation in leachate showed different species distribution as sulfide levels changed; the fraction of arsenite (As(III)) increased as the sulfide level increased, and thioarsenate anions (As(V)) were detected when the sulfide level further increased (>10 4 μg/L). The formation of insoluble arsenic sulfide minerals at a lower range of sulfide and soluble thioarsenic anionic species at a higher range of sulfide likely contributed to the decreasing and increasing trend of arsenic leaching. Copyright © 2016. Published by Elsevier Ltd.

  14. Evaluation of the performance of solidified commercial low-level wastes in an arid climate

    International Nuclear Information System (INIS)

    Graham, M.J.; Walter, M.B.

    1984-09-01

    Shallow land burial is being used as a disposal method for commercial low-level waste at waste disposal sites in arid (Hanford site near Richland, Washington) and humid (Barnwell, South Carolina) climatic regions. A field lysimeter facility has been established at the Hanford site in which to conduct waste-form leaching tests. The primary objective of this research is to determine typical source terms generated by commercial solidified low-level wastes. The field lysimeter facility consists of ten 3-m-deep by 1.8-m-diameter, closed-bottom lysimeters around a central instrument caisson, 4 m in diameter. Commercial cement and vinyl ester-styrene waste samples were removed from 210-L drums and placed in the 1.8-m-diameter lysimeters. Two bitumen samples are planned to be emplaced in the facility in 1984. The central caisson provides access to the instrumentation in the individual lysimeters and allows selective sampling of the soil and waste forms. Suction candles (ceramic cups) placed around the waste will be used to periodically collect soil water samples for chemical analysis. Meteorological data, moisture content, and soil temperature are automatically monitored at the facility. Characterization of the soils and waste forms have been partially completed. These data consist of moisture release characteristics, particle size distribution, concentrations and distributions of radionuclides in the waste forms, concentrations of radionuclides in the waste streams, and concentrations of hydrophilic organic species in one of the waste steams. 8 references, 3 figures, 5 tables

  15. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    Science.gov (United States)

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis

    2012-01-01

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.

  16. New technique of in-situ soil-moisture sampling for environmental isotope analysis applied at Pilat sand dune near Bordeaux. HETP modelling of bomb tritium propagation in the unsaturated and saturated zones

    International Nuclear Information System (INIS)

    Thoma, G.; Esser, N.; Sonntag, C.; Weiss, W.; Rudolph, J.; Leveque, P.

    1979-01-01

    A new soil-air suction method with soil-water vapour adsorption by a 4-A molecular sieve provides soil-moisture samples from various depths for environmental isotope analysis and yields soil temperature profiles. A field tritium tracer experiment shows that this in-situ sampling method has an isotope profile resolution of about 5-10cm only. Application of this method in the Pilat sand dune (Bordeaux/France) yielded deuterium and tritium profiles down to 25m depth. Bomb tritium measurements of monthly lysimeter percolate samples available since 1961 show that the tritium response has a mean delay of five months in the case of a sand lysimeter and of 2.5 years for a loess loam lysimeter. A simple HETP model simulates the layered downward movement of soil water and the longitudinal dispersion in the lysimeters. Field capacity and evapotranspiration taken as open parameters yield tritium concentration values of the lysimeters' percolate which agree well with the experimental results. Based on local meteorological data the HETP model applied to tritium tracer experiments in the unsaturated zone yields in addition an individual prediction of the momentary tracer position and of the soil-moisture distribution. This prediction can be checked experimentally at selected intervals by coring. (author)

  17. Leaching of chromated copper arsenate (CCA)-treated wood in a simulated monofill and its potential impacts to landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Jambeck, Jenna R. [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States)]. E-mail: ttown@ufl.edu; Solo-Gabriele, Helena [Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146-0630 (United States)

    2006-07-31

    The proper end-of-life management of chromated copper arsenate (CCA)-treated wood, which contains arsenic, copper, and chromium, is a concern to the solid waste management community. Landfills are often the final repository of this waste stream, and the impacts of CCA preservative metals on leachate quality are not well understood. Monofills are a type of landfill designed and operated to dispose a single waste type, such as ash, tires, mining waste, or wood. The feasibility of managing CCA-treated wood in monofills was examined using a simulated landfill (a leaching lysimeter) that contained a mix of new and weathered CCA-treated wood. The liquid to solid ratio (LS) reached in the experiment was 0.63:1. Arsenic, chromium, and copper leached from the lysimeter at average concentrations of 42 mg/L for arsenic, 9.4 mg/L for chromium, and 2.4 mg/L for copper. Complementary batch leaching studies using deionized water were performed on similar CCA-treated wood samples at LS of 5:1 and 10:1. When results from the lysimeter were compared to the batch test results, copper and chromium leachability appeared to be reduced in the lysimeter disposal environment. Of the three metals, arsenic leached to the greatest extent and was found to have the best correlation between the batch and the lysimeter experiments.

  18. Effects of increased temperature and CO{sub 2} on soil quality

    Energy Technology Data Exchange (ETDEWEB)

    Ogner, G.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The Norwegian Forest Research Institute has studied the effects of increased CO{sub 2} and temperature on forest soil, soil leachate and plants in an open top chamber experiment. The purpose was to analyze the changes in soil parameters and the leaching of elements. Nitrate and aluminium received special attention. The growth of Norway spruce and birch was followed, and its impact on the soil parameters. Preliminary results indicate that the temperature increase of the soil and consequently an increased turnover of soil organic matter had the major effect on the quality of soil leachates. CO{sub 2} was less important. Leaching of NO{sub 3}{sup -} was high from control lysimeters with moss cover. Lysimeters with birch hardly leached NO{sub 3}{sup -} at all. Spruce is in an intermediate position. Increased leaching of Al{sup n+} is found for moss lysimeters. Leachates from birch lysimeters have high concentrations of Al{sup n+} only at the end of the growth seasons. Plant growth is to some extent increased by the CO{sub 2} treatment. Birch grew well in all lysimeters and all treatments, spruce developed clear symptoms of stress. This result does not fit with the increased availability of nutrients in soil solution

  19. Evaluation of small scale laboratory and pot experiments to determine realistic transfer factors for the radionuclides 90Sr, 137Cs, 60Co and 54Mn

    International Nuclear Information System (INIS)

    Steffens, W.; Fuehr, F.; Mittelstaedt, W.

    1980-01-01

    Transfer factors for the root uptake of 90 Sr, 137 Cs, 60 Co and 54 Mn were compared using outdoor lysimeters, Kick-Brauckmann experimental pots under greenhouse conditions and Neubauer cups under growth chamber conditions. The uptake was studied in barley, potatoes, sugar beet and salad vegetables grown on either podsolic or loess soil. The transfer factors for these radionuclides under the specific conditions of the small scale Neubauer cup experiments differed greatly from those obtained from the outdoor lysimeter. In the pot experiments, the transfer factors for 90 Sr, 137 Cs and 54 Mn showed less deviation from the lysimeter results especially in crops grown on podsolic soil. For 60 Co, the transfer factors varied for the different crops grown. Transfer factors obtained in pot experiments can only be applicable to a limited extent to field conditions; factors influencing the transfer factors in pot experiments include soil volume, root density, root/shoot ratio, water supply and fertilizer application rate. (UK)

  20. Control of water infiltration through SLB trench covers

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.

    1986-01-01

    A technique for control of water infiltration into waste burial trenches is described. Initial results show the procedure to be very promising. In essence, the technique combines engineered or positive control of run-off, along with a vegetative cover, and is named bioengineering management. To investigate control of infiltration, lysimeters are being used to make complete water balance measurements. The studies are underway at the Maxey Flats, Kentucky, low-level waste burial site. Where the original Maxey Flats site closure procedure is followed, it is necessary to pump large amounts of water out of the lysimeters to prevent the water table from rising closer than 2 meters from the surface. Using the fescue grass bioengineering management procedure, no pumping is required. Encouraged by the initial findings in the rather small-scale lysimeters, a large scale demonstration of the bioengineering management technique has been initiated in Beltsville, Maryland. 6 references, 14 figures

  1. Performance of a buried radioactive high level waste (HLW) glass after 24 years

    International Nuclear Information System (INIS)

    Jantzen, Carol M.; Kaplan, Daniel I.; Bibler, Ned E.; Peeler, David K.; John Plodinec, M.

    2008-01-01

    A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in a lysimeter in the SRS burial ground for 24 years. Lysimeter leachate data was available for the first 8 years. The glass was exhumed in 2004. The glass was predicted to be very durable and laboratory tests confirmed this. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with results of other laboratory and field tests. Radionuclide profiling for alpha, beta, and 137 Cs indicated that Pu was not enriched in the soil while 137 Cs and 9 deg. C Sr were enriched in the first few centimeters surrounding the glass. Lysimeter leachate data indicated that 9 deg. C Sr and 137 Cs leaching from the glass was diffusion controlled

  2. Migration studies at the Savannah River Plant shallow land burial site

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Emslie, R.H.; Ryan, J.P. Jr.; King, C.M.

    1983-01-01

    Radionuclide migration from the Savannah River Plant low-level waste burial ground was studied in ongoing programs that provide generic data on a shallow land burial site in a humid region and support local waste disposal operations. Field, laboratory, and theoretical work continued in four areas. (1) Subsurface Monitoring: Groundwater around the burial ground was monitored for traces of radioactivity and mercury. (2) Lysimeter Tests: Gamma-emitting radionuclides were identified by sensitive methods in defense waste lysimeter percolate waters. Results from these and other lysimeters containing tritium, I-129, or Pu-239 sources are given. (3) Soil-Water Chemistry: Experiments on specific factors affecting migration of Cs-137 showed that potassium significantly increases cesium mobility, thus confirming observations with trench waters. Distribution coefficients for ruthenium were measured. (4) Transport Modeling: Efforts to refine and validate the SRL dose-to-man model continued. Transport calculations were made for tritium, Sr-90, Tc-99, and TRU radionuclides. 12 references, 3 tables

  3. Improvements to measuring water flux in the vadose zone.

    Science.gov (United States)

    Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M

    2004-01-01

    Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix.

  4. L'isotope stable 15N et le lysimètre, des outils complémentaires pour l'étude de la lixiviation de l'azote dans les sols agricoles

    Directory of Open Access Journals (Sweden)

    Destain JP.

    2010-01-01

    Full Text Available Stable 15N isotope and lysimeter, complementary tools in order to study the nitrogen leaching in agricultural soils. Stable 15N was used in lysimetric trials conducted with the aim to study nitrate leaching of agricultural soils. At Gembloux, a rate of 200 kg N.ha-1 as 15NH4 15NO3 with an isotopic abundance of 2.161 At%15N was applied in two lysimeters before a spinach crop, followed by beans and winter wheat; in the first lysimeter, total recovery by crops was less than 39.8% while in second lysimeter, recovery was 62.2%. Concentrations of N-NO3 - in leached water were always higher in lysimeter 2 than lysimeter 1, probably due to less microbial immobilization of nitrogen. At Remicourt and Omal, a simulated mineral residue of 150 kg N.ha-1 (rate of 15NH4 15NO3 applied in autumn has completely disappeared from the soil profile (0-90 cm already in July of the following year. At Omal, a winter crop has recovered no more than 9% of nitrogen rate applied in autumn. Measurement of N-NO3 - concentration in leached water has shown clearly higher levels at Remicourt (even more than 70 mg N.l-1 probably caused by an application of high rate of compost rich in nitrogen than is Omal. Stable 15N isotope could not be analyzed in leaching water probably due to a leak of sensitiveness of the analytical equipment.

  5. Migration of 226 Ra, 228 Ra, 210 Pb, U and Th from phosphogypsum

    International Nuclear Information System (INIS)

    Silva, Nivaldo Carlos da; Cipriani, Moacir; Taddei, Maria Helena T.

    2002-01-01

    The physico-chemical availability of radioactive elements ( 210 Pb, 226 Ra, 228 Ra, Th and U) in Brazilian phosphogypsum was investigated in a large scale leaching experiment carried out in lysimeters, using phosphogypsum samples (approximately 1.2 tons) from two phosphoric acid industries. Lysimeters were built using cylindrical concrete containers with 0.9 m inner diameter and 2 m depth. The bottom of the lysimeter was filled with a 10 cm layer of gravel covered with geomembrane sheet. Under this layer a pipe was designed to drain the percolated water. Three lysimeters were filled with phosphogypsum from each industry and a mixture of both. As percolated water comes exclusively from the rain, sample was collected daily when available. Samples were then pooled weekly, carefully prepared and submitted to radiochemical analysis. Radiochemical characterization of phosphogypsum and percolated water was performed by radiochemical separation followed by gross alpha and beta counting ( 226 Ra, 228 Ra and 210 Pb) and UV-Vis spectrophotometry with Arsenazo III (U and Th). This experiment was carried out from 12/01/1999 to 01/22/2001, with a precipitation of 2,732 mm. It was observed that approximately 40% (534 L) of the rain fall percolated through the lysimeter 1. The analysis of 22 samples of percolated water from lysimeter 1 showed mean radionuclides activities of 70±30 mBqL -1 , 70±50 mBqL -1 , 100±60 mBqL -1 and 110±55 mBqL -1 for U, 226 Ra, 228 Ra and 210 Pb, respectively. Thorium activities were below detection limit. (author)

  6. Soil-plant-transfer factors for I-129 and pasture vegetation

    International Nuclear Information System (INIS)

    Haisch, A.; Schuettelkopf, H.

    1993-07-01

    The transfer factors for soil/plant, I-129 and I-127 and pasture vegetation have been measured with soils developed by wethering of granite, jura and cretaceous formations. Greenhouse (Karlsruhe) and field experiments (Munich) have been performed using lysimeters. Three ground water levels and the influence of a six weeks flooding was measured. About 90% of the transfer factors ranged from 0.000 to 0.020. The highest values have been determined with soils from granite wethering. The flooding of the lysimeters caused an important increase of the transfer factors after the end of flooding. (orig.) [de

  7. Adjustment of nitrogen fertilization to the needs of plants and limitations posed by the risk of nitrate accumulation and pollution of the soil and subsoil

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J C

    1980-01-01

    In chalky Champagne, nitrogen balance is study to adjust availability to plant response. For this, it is necessary to know some parameters whose measurement is obtained progressively; plants exportation, nitrogen transformations in terms of transport processes in soil system, kinetic of mineralization of soil organic nitrogen, plants residus and agricultural waste waters. Lysimeters with rotation of Champagne (wheat, sugarbeet, potatoes...) are used to measure losses of nitrogen and follow transport of nitrates by mean of soil solution captors. Comparisons with field results, lysimeters results and laboratory experimentations are used to adjust an experimental model. Two examples show: 1) Nitrogen fertilizer requirement for wheat. 2) Possibility of maximum application for agricultural waste waters.

  8. Evaporation studies on Themeda triandra under field conditions: a ...

    African Journals Online (AJOL)

    In the semi-arid regions of South Africa, the efficiency of water use by natural grazing plants is important and can be used to evaluate the production potentially of comparative grasses. Hydraulic non-floating lysimeters were designed and tested under field conditions and indicated that with accurate calibration for ...

  9. Development and evaluation of the SoilClim model for water balance and soil climate estimates

    Czech Academy of Sciences Publication Activity Database

    Hlavinka, Petr; Trnka, Miroslav; Balek, J.; Semerádová, Daniela; Hayes, M.; Svoboda, M.; Eitzinger, J.; Možný, M.; Fischer, Milan; Hunter, E.; Žalud, Zdeněk

    2011-01-01

    Roč. 98, č. 8 (2011), s. 1249-1261 ISSN 0378-3774 Institutional research plan: CEZ:AV0Z60870520 Keywords : Evapotranspiration * Soil moisture * Eddy-covariance * Bowen ratio * Lysimeter * TDR * Atmometer Subject RIV: EH - Ecology, Behaviour Impact factor: 1.998, year: 2011

  10. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils

    International Nuclear Information System (INIS)

    Kasel, Daniela; Bradford, Scott A.; Šimůnek, Jiří; Pütz, Thomas; Vereecken, Harry; Klumpp, Erwin

    2013-01-01

    Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14 C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment was performed to provide long-term information at a larger scale. In all experiments, no breakthrough of MWCNTs was detectable and more than 85% of the applied radioactivity was recovered in the soil profiles. The retention profiles exhibited a hyper-exponential shape with greater retention near the column or lysimeter inlet and were successfully simulated using a numerical model that accounted for depth-dependent retention. In conclusion, results indicated that the soils acted as a strong sink for MWCNTs. Little transport of MWCNTs is therefore likely to occur in the vadose zone, and this implies limited potential for groundwater contamination in the investigated soils. -- Highlights: •Investigation of undisturbed soil columns and lysimeter. •Transport experiments under water-unsaturated conditions. •Retention profiles were measured and numerically modeled. •Complete retention of MWCNT in undisturbed and repacked soil columns. -- In undisturbed columns and a lysimeter study, complete retention of functionalized multi-walled carbon nanotubes was found in two soils at environmentally relevant conditions

  11. Fruit load governs transpiration of olive trees

    NARCIS (Netherlands)

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-01-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from

  12. Evapotranspiration studies on Themeda triandra Forsk. under field ...

    African Journals Online (AJOL)

    Hydraulic non-floating lysimeters were used to determine the evapotranspiration (Et) of a Themeda triandra grass cover under field conditions. The highest evapotranspiration losses were recorded during December and January when the plants were in the reproductive phase, provided the soil moisture was not limiting.

  13. Hydrological cycle and water use efficiency of veld in different ...

    African Journals Online (AJOL)

    Hydraulic non-floating lysimeters were used to determine the evapotranspiration (Et) and water use efficiency (W.U.E.) of veld in different successional stages for the period September 1978 to June 1979. In addition runoff of the various successional stages was recorded on runoff plots.Averages of 1,018 litres, 1,258 litres ...

  14. Determining input values for a simple parametric model to estimate ...

    African Journals Online (AJOL)

    Estimating soil evaporation (Es) is an important part of modelling vineyard evapotranspiration for irrigation purposes. Furthermore, quantification of possible soil texture and trellis effects is essential. Daily Es from six topsoils packed into lysimeters was measured under grapevines on slanting and vertical trellises, ...

  15. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Hasfurther, V.

    1992-01-01

    The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 x 3.0 x 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells

  16. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    International Nuclear Information System (INIS)

    Turner, J.P.; Reeves, T.L.; Skinner, Q.D.; Hasfurther, V.

    1992-11-01

    The scope of the original research program and of its continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large-scale testing sufficient to describe commercial-scale embankment behavior. The large-scale testing was accomplished by constructing five lysimeters, each 7.3x3.0x3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process (Schmalfield 1975). Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin near Rifle, Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was placed in the lysimeter cells. This report discusses and summarizes results from scientific efforts conducted between October 1991 and September 1992 for Fiscal Year 1992

  17. Simulation of Quinoa (Chenopodium Quinoa Willd.) response to soil salinity using the saltmed model

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Ahmadi, Seyed Hamid

    Quinoa (Chenopodium quinoa Willd.) is a crop with high tolerance to salinity and drought and its response to varying soil moisture and salinity levels was studied in a field lysimeter experiment. Quinoa (cv. Titicaca) was irrigated with different concentrations of saline water (0, 10, 20, 30 and 40...

  18. Growth and physiological aspects of bell pepper ( Capsicum annuum )

    African Journals Online (AJOL)

    This study aimed to evaluate growth and physiological aspects of 'All Big' bell pepper, under saline stress and exogenous application of proline on the leaves. The research was conducted in pots adapted as drainage lysimeters under greenhouse conditions, using sandy-loam eutrophic Regolithic Neosol, in the ...

  19. A comparison of soil moisture relations between standing and ...

    African Journals Online (AJOL)

    Drainage rates through the profile were established using time domain reflectometry probes while water drainage volumes were assessed using shallow plate lysimeters. Despite slow growth in the unfelled crop during the monitoring period (attributed to a pest infestation), soil moisture depletion remained rapid and ...

  20. Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.)

    NARCIS (Netherlands)

    Araya, A.; Stroosnijder, L.; Girmay, G.; Keesstra, S.D.

    2011-01-01

    In the semi-arid region of Tigray, Northen Ethiopia a two season experiment was conducted to measure evapotranspiration, estimate yield response to water stress and derive the crop coefficient of teff using the single crop coefficient approach with simple, locally made lysimeters and field plots.

  1. Middle East Regional Irrigation Management Information Systems project-Some science products

    Science.gov (United States)

    Similarities in the aridity of environments and water scarcity for irrigation allow common approaches to irrigation management problems and research methods in the Southern Great Plains of the United States and the Middle East. Measurement methods involving weighing lysimeters and eddy covariance sy...

  2. Impact of different plants on the gas profile of a landfill cover

    International Nuclear Information System (INIS)

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-01-01

    Research highlights: → Plants influence gas profile and methane oxidation in landfill covers. → Plants regulate water content and increase the availability of oxygen for methane oxidation. → Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  3. Assessing the bioavailability of dissolved organic phosphorus in pasture and cultivated soils treated with different rates of nitrogen fertiliser

    NARCIS (Netherlands)

    McDowell, R.W.; Koopmans, G.F.

    2006-01-01

    A proportion of dissolved organic phosphorus (DOP) in soil leachates is readily available for uptake by aquatic organisms and, therefore, can represent a hazard to surface water quality. A study was conducted to characterise DOP in water extracts and soil P fractions of lysimeter soils (pasture

  4. RADIONUCLIDE LEVELS AT 2 SITES IN A WATER EXTRACTION AREA IN THE NETHERLANDS AFTER CHERNOBYL

    NARCIS (Netherlands)

    VEEN, AWL; DEMEIJER, RJ

    The coastal dune aquifer providing drinking water for a large part of the population of the western Netherlands, is recharged by rainfall and artificial infiltration of Rhine water. Chernobyl fallout has been detected in both water sources. At the Castricum lysimeter station the rainfall-derived

  5. Soil water nitrate concentrations in giant cane and forest riparian buffer zones

    Science.gov (United States)

    Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver

    2003-01-01

    Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...

  6. The production and degradation of trichloroacetic acid in soil: Results from in situ soil column experiments

    Czech Academy of Sciences Publication Activity Database

    Heal, M. R.; Dickey, C. A.; Heal, K.V.; Stidson, R.T.; Matucha, Miroslav; Cape, J. N.

    2010-01-01

    Roč. 79, č. 4 (2010), s. 401-407 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z50380511 Keywords : Trichloroacetic acid * TCA * Soil lysimeter Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 3.155, year: 2010

  7. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik

    2008-01-01

    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes...

  8. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Plauborg, Finn

    2010-01-01

    Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after...

  9. Effect of sludges on bacteria in agricultural soil

    DEFF Research Database (Denmark)

    Kuntz, Jérôme; Nassr-Amellal, Najat; Lollier, Marc

    2008-01-01

    in the laboratory conditions probably due to the favorable conditions of mineralization. The results observed with soil amended with the same sludges and cultivated or not with carrots in outdoor lysimeters were similar to those observed in the laboratory experiments. Thus, this bioassay allowed predicting...

  10. Fertilizer source effects on phosphate and nitrate leaching through simulated golf greens

    International Nuclear Information System (INIS)

    Shuman, L.M.

    2003-01-01

    In general, more P than N leached from both field and greenhouse lysimeters. - Phosphorus and nitrogen leached from high-porosity golf greens can adversely affect surface water and groundwater quality. Greenhouse and field lysimeter experiments were carried out to determine the effects of eight fertilizer sources on P and N leaching from simulated golf greens. Phosphorus appeared in the leachate later than nitrate-N, and the highest concentrations were for the soluble 20-20-20 and the 16-25-12 starter fertilizers. The other six sources resulted in lower P concentrations. The soluble 20-20-20 and the 16-25-12 sources each resulted in 43% of the added P eluting in the leachate, whereas the others varied from 15 to 25%. For nitrate-N the lowest cumulative mass was for the controlled-release 13-13-13 and sulfur-coated urea. A higher percentage of applied P than applied N leached from both field and greenhouse lysimeters. However, the amounts of P leached for the field lysimeters were lower than for the greenhouse columns

  11. Dynamic flow-through approaches for metal fractionation in environmentally relevant solid samples

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Chomchoei, Roongrat

    2005-01-01

    generations of flow-injection analysis. Special attention is also paid to a novel, robust, non-invasive approach for on-site continuous sampling of soil solutions, capitalizing on flow-through microdialysis, which presents itself as an appealing complementary approach to the conventional lysimeter experiments...

  12. RADIONUCLIDE LEVELS AT 2 SITES IN A WATER EXTRACTION AREA IN THE NETHERLANDS AFTER CHERNOBYL

    NARCIS (Netherlands)

    VEEN, AWL; DEMEIJER, RJ

    1993-01-01

    The coastal dune aquifer providing drinking water for a large part of the population of the western Netherlands, is recharged by rainfall and artificial infiltration of Rhine water. Chernobyl fallout has been detected in both water sources. At the Castricum lysimeter station the rainfall-derived

  13. Evaluation of small scale laboratory and pot experiments to determine realistic transfer factors for the radionuclides Sr-90, Cs-137, Co-60 and Mn-54

    International Nuclear Information System (INIS)

    Steffens, W.; Fuhr, F.; Mittelstaedt, W.

    1980-01-01

    Lysimeter experiments were undertaken in a controlled experimental field to study the root uptake of Sr-90, Cs-137, Co-60 and Mn-54 under outdoor conditions. Parallel experiments were set up using the Kick - Brauckman experimental pots under greenhouse and the Neubauer cups under growth chamber conditions. The results obtained from the three types of experiments are compared. (H.K.)

  14. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  15. Theoretical analysis of municipal solid waste treatment by leachate recirculation under anaerobic and aerobic conditions

    NARCIS (Netherlands)

    van Turnhout, A.G.; Brandstätter, Christian; Kleerebezem, R.; Fellner, Johann; Heimovaara, T.J.

    2018-01-01

    Long-term emissions of Municipal Solid Waste (MSW) landfills are a burden for future generations because of the required long-term aftercare. To shorten aftercare, treatment methods have to be developed that reduce long-term emissions. A treatment method that reduces emissions at a lysimeter

  16. Effect of pine-bark mulch on lowbush blueberry (Vaccinium angustifolium) water demand

    Science.gov (United States)

    Lowbush blueberry (Vaccinium angustifolium) growers seeking an alternative and/or a complement to supplemental irrigation require accurate crop-specific information on the water conserving benefits of mulch. Twenty-eight weighing lysimeters equipped with soil moisture monitors were used at 5 sites ...

  17. Extraction and analysis of 14C-carbofuran radioactivity in soil sample

    International Nuclear Information System (INIS)

    Maizatul Akmam Mhd Nasir; Nashriyah Mat

    2005-01-01

    Carbofuran insecticide or nematicide sprayed onto soil in the agroecosystem will be taken up by plant. Carbofuran residue will pollute the environment and organisms in the food chain. Extraction and analysis of 14 C-carbofuran in soil from lysimeter were carried out. The Liquid Scintillation Counter (LSC) was used to measure radioactivity of 14 C-carbofuran in soil sample. (Author)

  18. Classification and salt tolerance analysis of barley varieties

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T.

    2006-01-01

    Six varieties of barley (Hordeum vulgare), five of which were provided by ICARDA, were tested in a green house experiment for their salt tolerance. Afterwards the ICARDA variety Melusine, selected from this experiment for its combination of high yield and salt tolerance, was compared in a lysimeter

  19. Alternative Site Technology Deployment-Monitoring System for the U-3ax/bl Disposal Unit at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dixon, J.M.; Levitt, D.G.; Rawlinson, S.E.

    2001-01-01

    In December 2000, a performance monitoring facility was constructed adjacent to the U-3ax/bl mixed waste disposal unit at the Nevada Test Site (NTS). Recent studies conducted in the arid southwestern United States suggest that a vegetated monolayer evapotranspiration (ET) closure cover may be more effective at isolating waste than traditional Resource Conservation and Recovery Act (RCRA) multi-layered designs. The monitoring system deployed next to the U-3ax/bl disposal unit consists of eight drainage lysimeters with three surface treatments: two are left bare; two are revegetated with native species; two are being allowed to revegetate with invader species; and two are reserved for future studies. Soil used in each lysimeter is native alluvium taken from the same location as the soil used for the cover material on U-3ax/bl. The lysimeters were constructed so that any drainage to the bottom can be collected and measured. To provide a detailed evaluation of the cover performance, an ar ray of 16 sensors was installed in each lysimeter to measure soil water content, soil water potential, and soil temperature. Revegetation of the U-3ax/bl closure cover establishes a stable plant community that maximizes water loss through transpiration while at the same time, reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment

  20. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. II. Durum wheat

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Nachit, M.M.; Oweis, T.

    2005-01-01

    Seven varieties of durum wheat (Triticum turgidum), provided by ICARDA, were tested in a greenhouse experiment for their salt tolerance. Afterwards two varieties, differing in salt tolerance, were irrigated with waters of three different salinity levels in a lysimeter experiment to analyse their

  1. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. I. Chickpea and faba bean

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Oweis, T.

    2005-01-01

    Two varieties of chickpea (Cicer arietinum L.) and faba bean (Vicia faba), differing in drought tolerance according to the classification of the International Center for Agronomic Research in Dry Areas (ICARDA), were irrigated with waters of three different salinity levels in a lysimeter experiment

  2. Deployment of an Alternative Closure Cover and Monitoring System at the Mixed Waste Disposal Unit U-3ax/bl at the Nevada Test Site

    International Nuclear Information System (INIS)

    Levitt, D.G.; Fitzmaurice, T.M.

    2001-01-01

    In October 2000, final closure was initiated of U-3ax/bl, a mixed waste disposal unit at the Nevada Test Site (NTS). The application of approximately 30 cm of topsoil, composed of compacted native alluvium onto an operational cover, seeding of the topsoil, installation of soil water content sensors within the cover, and deployment of a drainage lysimeter facility immediately adjacent to the disposal unit initiated closure. This closure is unique in that it required the involvement of several U.S. Department of Energy (DOE) Environmental Management (EM) groups: Waste Management (WM), Environmental Restoration (ER), and Technology Development (TD). Initial site characterization of the disposal unit was conducted by WM. Regulatory approval for closure of the disposal unit was obtained by ER, closure of the disposal unit was conducted by ER, and deployment of the drainage lysimeter facility was conducted by WM and ER, with funding provided by the Accelerated Site Technology Deployment ( ASTD) program, administered under TD. In addition, this closure is unique in that a monolayer closure cover, also known as an evapotranspiration (ET) cover, consisting of native alluvium, received regulatory approval instead of a traditional Resource Conservation and Recovery Act (RCRA) multi-layered cover. Recent studies indicate that in the arid southwestern United States, monolayer covers may be more effective at isolating waste than layered covers because of the tendency of clay layers to desiccate and crack, and subsequently develop preferential pathways. The lysimeter facility deployed immediately adjacent to the closure cover consists of eight drainage lysimeters with three surface treatments: two were left bare; two were revegetated with native species; two were allowed to revegetate with invader species; and two are reserved for future studies. The lysimeters are constructed such that any drainage through the bottoms of the lysimeters can be measured. Sensors installed in the

  3. Evaluation of Plant- Compost -Microorganisms Synergy for the Remediation of Diesel contaminated Soil: Success Stories from the Field Station

    Science.gov (United States)

    Hussain, Imran; Wimmer, Bernhard; Soja, Gerhard; Sessitsch, Angela; Reichenauer, Thomas G.

    2016-04-01

    Total petroleum hydrocarbons (TPH) contain a mixture of crude oil, gasoline, creosote and diesel is one of the most common groups of persistent organic pollutants. TPH enters into the ecosystem (soil, water and air) through leakage of underground storage tanks (LUST), accidental oil spills, transportation losses and industrial processes. Pollution associated with diesel oil and its refined products is of great concern worldwide due to its threats/damages for human and ecosystem health, soil structure and ground water quality. Extensive soils pollution with petroleum hydrocarbons results in extreme harsh surroundings, produce hydrophobic conditions and infertile soils that ultimately lead towards less plant and microorganisms growth. Among biological methods, bioremediation and phytoremediation are promising technologies that have both technical and ecological benefits as compared to convention methods. Within phytoremediation, rhizoremediation based on stimulation of degrading microorganism's population influenced by plant rhizospheric effect is known as main mechanism for phytoremediation of petroleum polluted soils. Composting along with rhizodegradtion was used to remediate freshly spilled soils at Lysimeter station Siebersdof, Austria. Experiment was started in July 2013 and will be monitored up to September 2016. Field station has 12 Lysimeter in total; each has length, width and depth of 100 cm respectively. Each Lysimeter was filled with normal agricultural soil from Siebersdof (0-70 cm), sand (70-85 cm) and stones (85-100cm). Sand and stones were added to support the normal leaching and percolation of water as we collected leachate samples after regular intervals. After filling, commercial diesel oil (2% w/w of 0-70 cm soil) was spilled on top of each Lysimeter as accidental spill occurs in filed. Compost was added at 0-15 cm layer (5% w/w of soil) to stimulate plant as well as microorganisms growth. Whole Lysimeter station was divided into three treatments

  4. A Comparison of Soil-Water Sampling Techniques

    Science.gov (United States)

    Tindall, J. A.; Figueroa-Johnson, M.; Friedel, M. J.

    2007-12-01

    The representativeness of soil pore water extracted by suction lysimeters in ground-water monitoring studies is a problem that often confounds interpretation of measured data. Current soil water sampling techniques cannot identify the soil volume from which a pore water sample is extracted, neither macroscopic, microscopic, or preferential flowpath. This research was undertaken to compare values of extracted suction lysimeters samples from intact soil cores with samples obtained by the direct extraction methods to determine what portion of soil pore water is sampled by each method. Intact soil cores (30 centimeter (cm) diameter by 40 cm height) were extracted from two different sites - a sandy soil near Altamonte Springs, Florida and a clayey soil near Centralia in Boone County, Missouri. Isotopically labeled water (O18? - analyzed by mass spectrometry) and bromide concentrations (KBr- - measured using ion chromatography) from water samples taken by suction lysimeters was compared with samples obtained by direct extraction methods of centrifugation and azeotropic distillation. Water samples collected by direct extraction were about 0.25 ? more negative (depleted) than that collected by suction lysimeter values from a sandy soil and about 2-7 ? more negative from a well structured clayey soil. Results indicate that the majority of soil water in well-structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. In cases where a sufficient volume of water has passed through the soil profile and displaced previous pore water, suction lysimeters will collect a representative sample of soil pore water from the sampled depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeter should be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The data also indicate that each extraction method be use to sample a different

  5. 11-year field study of Pu migration from Pu III, IV, and VI sources

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Serkiz, S.M.; Demirkanli, D.I.; Gumapas, L.; Fjeld, R.A.; Molz, F.J.; Powell, B.A.

    2005-01-01

    Full text of publication follows: Understanding the processes controlling Pu mobility in the subsurface environment is important for estimating the amount of Pu waste that can be safely disposed in vadose zone burial sites. To study long-term Pu mobility, four 52-L lysimeters filled with sediment collected from the Savannah River Site near Aiken South Carolina were amended with well characterized solid Pu sources (Pu III Cl 3 , Pu IV (NO 3 ) 4 , Pu IV (C 2 O 4 ) 2 , and Pu VI O 2 (NO 3 ) 2 ) and left exposed to natural precipitation for 2 to 11 years. Pu oxidation state distribution in the Pu(III) and Pu(IV) lysimeters sediments (a red clayey sediment, pH = 6.3) were similar, consisting of 0% Pu(III), >92% Pu(IV), 1% Pu(V), 1% Pu(VI), and the remainder was a Pu polymer. These three lysimeters also had near identical sediment Pu concentration profiles, where >95% of the Pu remained within 1.25 cm of the source after 11 years; moving at an overall rate of 0.9 cm yr -1 . As expected, Pu moved more rapidly through the Pu(VI) lysimeter, at an overall rate of 12.5 cm yr -1 . Solute transport modeling of the sediment Pu concentration profile data in the Pu(VI) lysimeter indicated that some transformation of Pu into a much less mobile form, presumably Pu(IV), had occurred during the course of the two year study. This modeling also supported previous laboratory measurements showing that Pu(V) or Pu(VI) reduction was five orders of magnitude faster than corresponding Pu(III) or Pu(IV) oxidation. The slow oxidation rate (1 x 10-8 hr -1 ; t 1/2 = 8,000 yr) was not discernable from the Pu(VI) lysimeter data that reflected only two years of transport but was readily discernable from the Pu(III) and Pu(IV) lysimeter data that reflected 11 yr of transport. (authors)

  6. Design and Installation of a Disposal Cell Cover Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.H. [University of Wisconsin–Madison, Madison, Wisconsin; Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, Colorado; Albright, W.H. [Desert Research Institute, Reno, Nevada; Smith, G.M. [Geo-Smith Engineering, Grand Junction, Colorado; Bush, R.P. [U.S. Department of Energy, Grand Junction, Colorado

    2011-02-27

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  7. Methane production from food waste leachate in laboratory-scale simulated landfill.

    Science.gov (United States)

    Behera, Shishir Kumar; Park, Jun Mo; Kim, Kyeong Ho; Park, Hung-Suck

    2010-01-01

    Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum-substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH(4) yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH(4) yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH(4) production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities. 2010 Elsevier Ltd. All rights reserved.

  8. Effect of the Presence of Nonionic Surfactant Brij35 on the Mobility of Metribuzin in Soil

    Directory of Open Access Journals (Sweden)

    Eman M. ElSayed

    2013-04-01

    Full Text Available Given the water scarcity becoming endemic to a large portion of the globe, arid region irrigation has resorted to the use of treated, partially treated, or even untreated wastewaters. Such waters contain a number of pollutants, including surfactants. Applied to agricultural lands, these surfactants could affect the fate and transport of other chemicals in the soil, particularly pesticides. A field lysimeter study was undertaken to investigate the effect of nonionic surfactant, Brij35, on the in-soil fate and transport of a commonly used herbicide, metribuzin [4-amino-6-tert-butyl-3-(methylthio-1,2,4-triazin-5(4H-one]. Nine PVC lysimeters, 1.0 m long × 0.45 m diameter, were packed with a sandy soil to a bulk density of 1.35 mg m−3. Antibiotic-free cattle manure was applied (10 mg ha−1 at the surface of the lysimeters. Metribuzin was then applied to the soil surface of all lysimeters at a rate of 1.00 kg a.i. ha−1. Each of three aqueous Brij35 solutions, 0, 0.5 and 5 mg L−1 (i.e., “good”, “poor” and “very poor” quality irrigation water were each applied to the lysimeters in triplicate. Analysis for metribuzin residues in samples of both soil and leachate, collected over a 90-day period, showed the surfactant Brij35 to have increased the mobility of metribuzin in soil, indicating that continued use of poor quality water could influence pesticide transport in agricultural soils, and increase the risk of groundwater contamination.

  9. Development of a Test Cell to Evaluate Embankment Infiltration

    International Nuclear Information System (INIS)

    Orton, T. L.

    2002-01-01

    Envirocare of Utah, Inc. (Envirocare) has developed and constructed a test pad to evaluate potential infiltration through the designed cover system over the low-level radioactive waste disposal embankments incorporated at the facility. The general design of the test pad follows the recommendations set forth in the Alternative Cover Assessment Program (ACAP) that is currently funded by the U.S. Environmental Protection Agency (EPA) to assess potential alternatives to conventional landfill cover designs. The bulk of the test pad is below grade with dimensions approximately 16 feet wide by 28 feet long. The base of the test pad is a lysimeter built to the same dimensions as compliance lysimeters within the disposal embankments at Envirocare. The lysimeter collects all liquids to a single low point and directs the liquids through monitoring instruments within a manhole outside the test pad. The lysimeter is constructed to simulate the ''top of waste'' condition in Envirocare's embankments; consequently, the top of the lysimeter is sloped at an angle of approximately 2.8 percent, the design top slope of the embankment. A replica of the embankment cover is constructed directly above the lysimeter. This cover is constructed exactly the same as final cover is constructed upon the waste disposal embankments, utilizing the same QA/QC measures. Permanent monitoring equipment has been placed during construction at specific intervals throughout the test pad. Monitoring equipment consists of water content reflectometers (WCRs), matric water potential sensors (heat dissipation units; HDUs), and temperature probes. The monitoring equipment provides cross-sectional data of the moisture content and temperatures throughout the constructed cover. Additionally, surface water runoff is collected through a drainage trough and measured in order to perform a water balance over the entire test pad. To aid in the assessment, data collected from the site meteorological stat ion will be used

  10. The development of permanent isolation surface barriers: Hanford Site, Richland, Washington, U.S.A

    International Nuclear Information System (INIS)

    Wing, N.R.; Gee, G.W.

    1993-01-01

    Permanent isolation surface barriers are being developed to isolate wastes disposed of in situ (in place) at the US Department of Energy's Hanford Site in Washington State (USA). The current focus of development efforts is to design barriers that will function in a semiarid to subhumid climate, Emit infiltration and percolation of water through the waste zone to near-zero amounts, be maintenance free, and last up to 1000 years or more. A series of field tests, experiments, and lysimeter studies have been conducted for several years. The results of tests to date confirm that the Hanford barrier concepts are valid for both present and wetter climatic conditions. The data collected also have provided the foundation for the design of a large prototype barrier to be constructed later in 1993. This paper presents the results of some of the field tests, experiments, and lysimeter studies

  11. Comparison of two recent models for estimating actual evapotranspiration using only regularly recorded data

    Science.gov (United States)

    Ali, M. F.; Mawdsley, J. A.

    1987-09-01

    An advection-aridity model for estimating actual evapotranspiration ET is tested with over 700 days of lysimeter evapotranspiration and meteorological data from barley, turf and rye-grass from three sites in the U.K. The performance of the model is also compared with the API model . It is observed from the test that the advection-aridity model overestimates nonpotential ET and tends to underestimate potential ET, but when tested with potential and nonpotential data together, the tendencies appear to cancel each other. On a daily basis the performance level of this model is found to be of the same order as the API model: correlation coefficients were obtained between the model estimates and lysimeter data of 0.62 and 0.68 respectively. For periods greater than one day, generally the performance of the models are improved. Proposed by Mawdsley and Ali (1979)

  12. Arsenic transfer and impacts on snails exposed to stabilized and untreated As-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Coeurdassier, M.; Scheifler, R.; Mench, M.; Crini, N.; Vangronsveld, J.; de Vaufleury, A. [Universite de Franche-Comte, Besancon (France)

    2010-06-15

    An As-contaminated soil (Unt) was amended with either iron grit (Z), a coal fly ash (beringite, B) or B + Z (BZ) and placed in lysimeters in 1997. An uncontaminated soil (R) was also studied. In summer and autumn 2003, lettuces were cultivated in the lysimeters and snails were caged for one month. Lettuce As concentrations were higher during the summer, while no differences occurred in snails between seasons. Snail As concentrations ({mu} g g{sup -1} DW) ranged from 2.5 to 7.0 in B, Z and BZ, and peaked at 17.5 in Unt. In summer, snail survival was affected in Unt and Z compared to R and B while no mortality was noticed in autumn. Snail growth decreased only in B, BZ and Unt in autumn. Snail As concentrations suggest a risk for their predators even on the remediated soils.

  13. Testing the structure of a hydrological model using Genetic Programming

    Science.gov (United States)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  14. Testing the Structure of Hydrological Models using Genetic Programming

    Science.gov (United States)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  15. Artificial neural networks employment in the prediction of evapotranspiration of greenhouse-grown sweet pepper

    Directory of Open Access Journals (Sweden)

    Héliton Pandorfi

    2016-06-01

    Full Text Available ABSTRACT This study aimed to investigate the applicability of artificial neural networks (ANNs in the prediction of evapotranspiration of sweet pepper cultivated in a greenhouse. The used data encompass the second crop cycle, from September 2013 to February 2014, constituting 135 days of daily meteorological data, referring to the following variables: temperature and relative air humidity, wind speed and solar radiation (input variables, as well as evapotranspiration (output variable, determined using data obtained by load-cell weighing lysimeter. The recorded data were divided into three sets for training, testing and validation. The ANN learning model recognized the evapotranspiration patterns with acceptable accuracy, with mean square error of 0.005, in comparison to the data recorded in the lysimeter, with coefficient of determination of 0.87, demonstrating the best approximation for the 4-21-1 network architecture, with multilayers, error back-propagation learning algorithm and learning rate of 0.01.

  16. Uptake of [14C]triadimenol via grain and root after seed treatment of winter barley with a flowable seed dressing: Influence of soil moisture and sowing date on the distribution of radioactivity and active ingredient content in plant and soil

    International Nuclear Information System (INIS)

    Schneider, M.

    1988-12-01

    Winter barley seed of the 'Vogelsander Gold' variety was shown in a total of 7 lysimeters after seed treatment with [benzene ring-U- 14 C]triadimenol in the formulation as [ 14 C]Baytan 075 FS and [ 14 C]Baytan 25 DS at an early (September) and a late date (October). After both dates of sowing, the FS-treated winter barley developed under 3 different soil moisture conditions. The radioactivity and active ingredient contents in plants and soil were recorded until tillering as a function of low, high and natural precipitation after sowing. Details on the uptake of radioactivity via grain and roots were quantitatively and qualitatively studied in two further lysimeters, a pot experiment as well as experiments in the growth chamber. The results are presented and discussed in detail. (orig./MG) [de

  17. Seasonal Snowpack Dynamics and Runoff in a Maritime Forested Basin, Niigata, Japan

    Science.gov (United States)

    Whitaker, A. C.; Sugiyama, H.

    2005-12-01

    Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff is given through three complete winter seasons 2002-05 in: (1) mature cedar stand, (2) larch stand, and (3) regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter base-flow, mid-winter melt, rain-on-snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterised by constant ground melt of 0.8-1.0 mm/day. Rapid response to mid-winter melt or rainfall shows that the snowpack remains in a ripe or near-ripe condition throughout the snowcover season. Hourly and daily lysimeter discharge was greatest during rain-on-snow with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain-on-snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4.0 times greater in the opening compared to the mature cedar, and 48-hour discharge was up to 2.5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models.

  18. Evaluation of Upland Disposal of Oakland Harbor, California, Sediment; Volume I: Turning Basin Sediments

    Science.gov (United States)

    1992-10-01

    infiltration studies ( Westerdahl and Skogerboe 1982). Extensive field 53 verification studies have been conducted with the WES Rainfall Simulator...Lysimeter System on a wide range of Corps project sites ( Westerdahl and Skogerboe 1982, Lee and Skogerboe 1984, Skogerboe et al. 1987). The WES Rain- fall...Vicksburg, MS. Winer, B. J. 1971. Statistical Principles in Experimental Design, McGraw- Hill Book Company, New York. Westerdahl , H. E., and Skogerboe, J

  19. New Bedford Harbor Superfund Project, Acushnet River Estuary Engineering Feasibility Study of Dredging and Dredged Material Disposal Alternatives. Report 4. Surface Runoff Quality Evaluation for Confined Disposal

    Science.gov (United States)

    1988-01-01

    infiltration studies ( Westerdahl and Skogerboe 1982). Exten- sive field verification studies have been conducted with the WES Rainfall Simulator...Lysimeter System on a wide range of USACE project sites ( Westerdahl and Skogerboe 1982, Lee and Skogerboe 1984, Skogerboe et al. 1987). The WES Rainfall...Criteria for Water 1986,"’ Criteria and Standards Division, Washington, DC. Westerdahl , H. E., and Skogerboe, J. G. 1982. "Realistic Rainfall and Water

  20. Evaluation of Upland Disposal of Oakland Harbor, California, Sediment. Volume 2: Inner and Outer Harbor Sediments

    Science.gov (United States)

    1993-08-01

    the drop size and terminal velocities of natural rain- fall, factors which are critical in erosion and infiltration studies ( Westerdahl and Skogerboe... Westerdahl and Skogerboe 1982; Lee and Skogerboe 1984; Skogerboe et al. 1987). The WES Rainfall Simulator/ Lysimeter System proved to be an effective...Waters (Phase IIIA of -42-Foot Project); Volume 2: Appendixes," iNL-83-2, Vol 2, Battelle/Marine Science Laboratory, Sequim, WA. Westerdahl , H. E., and

  1. Experimental measurement and modeling of snow accumulation and snowmelt in a mountain microcatchment

    Science.gov (United States)

    Danko, Michal; Krajčí, Pavel; Hlavčo, Jozef; Kostka, Zdeněk; Holko, Ladislav

    2016-04-01

    Fieldwork is a very useful source of data in all geosciences. This naturally applies also to the snow hydrology. Snow accumulation and snowmelt are spatially very heterogeneous especially in non-forested, mountain environments. Direct field measurements provide the most accurate information about it. Quantification and understanding of processes, that cause these spatial differences are crucial in prediction and modelling of runoff volumes in spring snowmelt period. This study presents possibilities of detailed measurement and modeling of snow cover characteristics in a mountain experimental microcatchment located in northern part of Slovakia in Western Tatra mountains. Catchment area is 0.059 km2 and mean altitude is 1500 m a.s.l. Measurement network consists of 27 snow poles, 3 small snow lysimeters, discharge measurement device and standard automatic weather station. Snow depth and snow water equivalent (SWE) were measured twice a month near the snow poles. These measurements were used to estimate spatial differences in accumulation of SWE. Snowmelt outflow was measured by small snow lysimeters. Measurements were performed in winter 2014/2015. Snow water equivalent variability was very high in such a small area. Differences between particular measuring points reached 600 mm in time of maximum SWE. The results indicated good performance of a snow lysimeter in case of snowmelt timing identification. Increase of snowmelt measured by the snow lysimeter had the same timing as increase in discharge at catchment's outlet and the same timing as the increase in air temperature above the freezing point. Measured data were afterwards used in distributed rainfall-runoff model MIKE-SHE. Several methods were used for spatial distribution of precipitation and snow water equivalent. The model was able to simulate snow water equivalent and snowmelt timing in daily step reasonably well. Simulated discharges were slightly overestimated in later spring.

  2. Which key properties controls the preferential transport in the vadose zone under transient hydrological conditions

    Science.gov (United States)

    Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.

    2015-12-01

    Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5

  3. Estimation of water percolation by different methods using TDR

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva

    2014-02-01

    Full Text Available Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR in a drainage lysimeter. We used Darcy's law with K(θ functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ predicted by the method of Hillel et al. (1972 provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980, Sisson et al. (1980 and van Genuchten (1980 underestimated water percolation.

  4. Loss pathways of N-nitrosodimethylamine (NDMA) in turfgrass soils.

    Science.gov (United States)

    Arienzo, M; Gan, J; Ernst, F; Qin, S; Bondarenko, S; Sedlak, D L

    2006-01-01

    N-nitrosodimethylamine (NDMA) is a potent carcinogen that is often present in municipal wastewater effluents. In a previous field study, it was observed that NDMA did not leach through turfgrass soils following 4 mo of intensive irrigation with NDMA-containing wastewater effluent. To better understand the loss pathways for NDMA in landscape irrigation systems, a mass balance approach was employed using in situ lysimeters treated with 14C-NDMA. When the lysimeters were subjected to irrigation and field conditions after NDMA application, very rapid dissipation of NDMA was observed for both types of soil used in the field plots. After only 4 h, total 14C activity in the lysimeters decreased to 19.1 to 26.1% of the applied amount, and less than 1% of the activity was detected below the 20-cm depth. Analysis of plant materials showed that less than 3% of the applied 14C was incorporated into the plants, suggesting only a minor role for plant uptake in removing NDMA from the vegetated soils. The rapid dissipation and limited downward movement of NDMA in the in situ lysimeters was consistent with the negligible leaching observed in the field study, and suggests volatilization as the only significant loss pathway. This conclusion was further corroborated by rapid NDMA volatilization found from water or a thin layer of soil under laboratory conditions. In a laboratory incubation experiment, prolonged wastewater irrigation did not result in enhanced NDMA degradation in the soil. Therefore, although NDMA may be present at relatively high levels in treated wastewater, gaseous diffusion and volatilization in unsaturated soils may effectively impede significant leaching of NDMA, minimizing the potential for ground water contamination from irrigation with treated wastewater.

  5. Installation Restoration Program. Phase 1. Records Search, United States Air Force Academy, Colorado Springs, Colorado

    Science.gov (United States)

    1984-12-01

    SOURCE: U.S. Air Force Academy, Tab A-i, Environmental Narrative Woodland Biome Zone (6000-7000 feet) SPECIES U Trees 3 . ’Ponderosa pine Pinus ...Highest Frequency of Occurrence U SPECIES 3 Trees 1. Ponderosa pine Pinus ponderosa var scopulorum 3 2. Douglas fir Pseudotsuga menzlesii 3. White...LYSIMETER A vacuum operated sampling device used for extracting pore waters at various I depths within the unsaturated zone. I G-6 I I * i MEK Methyl Ethyl

  6. Validation of a phytoremediation computer model

    Energy Technology Data Exchange (ETDEWEB)

    Corapcioglu, M Y; Sung, K; Rhykerd, R L; Munster, C; Drew, M [Texas A and M Univ., College Station, TX (United States)

    1999-01-01

    The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg[sub -1

  7. Cleanup Verification Package for the 600-259 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-02-09

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste.

  8. Analog elements for transuranic chemistries

    International Nuclear Information System (INIS)

    Weimer, W.C.

    1982-01-01

    The analytical technique for measuring trace concentrations of the analog rare earth elements has been refined for optimal detection. The technique has been used to determine the rare earth concentrations in a series of geological and biological materials, including samples harvested from controlled lysimeter investigations. These studies have demonstrated that any of the trivalent rare earth elements may be used as analog elements for the trivalent transuranics, americium and curium

  9. On-line acquisition of plant related and environmental parameters (plant monitoring) in gerbera: determining plant responses

    OpenAIRE

    Baas, R.; Slootweg, G.

    2004-01-01

    For on-line plant monitoring equipment to be functional in commercial glasshouse horticulture, relations between sensor readings and plant responses on both the short (days) and long term (weeks) are required. For this reason, systems were installed to monitor rockwool grown gerbera plants on a minute-to-minute basis from July 2002 until April 2003. Data collected included, amongst others, crop transpiration from lysimeter data (2 m2), canopy temperature using infrared sensors, rockwool water...

  10. Cleanup Verification Package for the 600-259 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste

  11. Annual report 1986 of the GSF Institute of Radiohydrometry

    International Nuclear Information System (INIS)

    1987-02-01

    Sorption data of radionnuclides in cohesive materials are measured by batch experiments or by single-pass column experiments. New developments of equipment are explained, as for instance the H-2-uranium measuring device, the isotope dating of ground water with Ar-39, and measurement of Kr-35 in air. Field epxeriments are explained, such as studies of the fields of ground-water flow using tracer methods, hydrological methods and lysimeter techniques. (DG) [de

  12. An overview of the geochemical code MINTEQ: Applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Peterson, S.R.; Opitz, B.E.; Graham, M.J.; Eary, L.E.

    1987-03-01

    The MINTEQ geochemical computer code, developed at the Pacific Northwest Laboratory (PNL), integrates many of the capabilities of its two immediate predecessors, MINEQL and WATEQ3. The MINTEQ code will be used in the Special Waste Form Lysimeters-Arid program to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments of the interaction of ground water with solidified low-level wastes. The code can calculate ion speciation/solubilitya, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial, solidified low-level wastes. The wastes being evaluated include power-reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code was upgraded preparatory to performing the geochemical modeling. Thermodynamic data for solid phases and aqueous species containing Sb, Ce, Cs, or Co were added to the MINTEQ database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the waste forms predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partial field validation of the geochemical model

  13. Some feature of evaporarion from the ground suface of tibetan plateau

    OpenAIRE

    ZHANG, Yinsheng; YABUKI, Hironori; YAO, Tandong; PU, Jianchen; OHATA, Tetsuo

    1997-01-01

    [ABSTRACT] The processes of evaporation on the ground in Dongkemadi River Basin near the Tanggula Pass were observed with weighting-lysimeter method from May to September 1993, and some preliminary results were got. Evaporation mainly occurred from May to September and the daily mean soil evaporation in July is higher than in other months; there is a nice linear relationship between the soil evaporation and water evaporation which observed in 20 cm evaporation pan; the soil evaporation is muc...

  14. Radionuclide migration studies at the Savannah River Plant humid shallow land burial site for low-level waste

    International Nuclear Information System (INIS)

    Stone, J.A.; Oblath, S.B.; Hawkins, R.H.; Emslie, R.H.; Hoeffner, S.L.; King, C.M.

    1984-01-01

    A program of field, laboratory, and modeling studies for the Savannah River Plant low-level waste burial ground has been conducted for several years. The studies provide generic data on an operating shallow land burial site in a humid region. Recent results from individual studies on subsurface monitoring, lysimeter tests, soil-water chemistry, and transport modeling are reported. Monitoring continues to show little movement of radionuclides except tritium. Long-term lysimeter tests with a variety of defense wastes measure migration under controlled field conditions. One lysimeter was excavated to study radionuclide distribution on the soil column beneath the waste. New soil-water distribution coefficients (K/sub d/) were measured for Co-60, Sr-90, Ru-106, Sb-125, and I-129. Laboratory and field data are integrated by means of the SRL dose-to-man model, to evaluate effects of alternative disposal practices. The model recently has been used to evaluate TRU disposal criteria and to predict migration behavior of tritium, Tc-99, and I-129. 14 references, 2 tables

  15. The separation of radionuclide migration by solution and particle transport in LLRW repository buffer material

    International Nuclear Information System (INIS)

    Torok, J.; Buckley, L.P.; Woods, B.L.

    1989-01-01

    Laboratory-scale lysimeter experiments were performed with simulated waste forms placed in candidate buffer materials which have been chosen for a low-level radioactive waste repository. Radionuclide releases into the effluent water and radionuclide capture by the buffer material were determined. The results could not be explained by traditional solution transport mechanisms, and transport by particles released from the waste form and/or transport by buffer particles were suspected as the dominant mechanism for radionuclide release from the lysimeters. To elucidate the relative contribution of particle and solution transport, the waste forms were replaced by a wafer of neutron-activated buffer soaked with selected soluble isotopes. Particle transport was determined by the movement of gamma-emitting neutron-activation products through the lysimeter. Solution transport was quantified by comparing the migration of soluble radionuclides relative to the transport of neutron activation products. The new approach for monitoring radionuclide migration in soil is presented. It facilitates the determination of most of the fundamental coefficients required to model the transport process

  16. Isotopic studies of nitrogen balance in a cracking clay

    International Nuclear Information System (INIS)

    Craswell, E.T.; Martin, A.E.

    1975-01-01

    The stable isotope 15 N was used to study the fate of nitrogen fertilizers applied to a black earth growing wheat. In a glasshouse experiment using soil packed at 56 per cent moisture (pF 2) into pots, added nitrate was almost completely recovered (mean, 98.8 +- 2.3 per cent) by soil and plant analysis. This experiment was repeated using 15 N-labelled ammonium as well as nitrate; mean recoveries at 15 weeks were 96.8 and 97 per cent respectively (+- 2.2 per cent at P 15 N measured, 97 and 96.8 per cent at 56 and 63 per cent moisture respectively. Fallow and planted systems were then studied in a gas lysimeter. During experiments lasting up to 14 weeks, gaseous losses as 15 N-labelled denitrification products were less than the equivalent of 0.2 μg nitrogen/g soil (the lower limit of detection with a mass spectrometer). Although analysis of plant and soil from the lysimeter in two experiments showed virtually quantitative recovery (99.7 and 97.05 per cent), small (0.16 per cent) losses of labelled ammonia into the lysimeter atmosphere were detected. The significance of these results is discussed in relation to the common finding of large deficits in nitrogen balance studies. (author)

  17. UPWARD MOVEMENT OF PLUTONIUM TO SURFACE SEDIMENTS DURING AN 11-YEAR FIELD STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.; Beals, D.; Cadieux, J.; Halverson, J.

    2010-01-25

    An 11-y lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The {sup 240}Pu/{sup 239}Pu and {sup 242}Pu/{sup 239}Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments.

  18. Evaportranspiration studies for protective barriers: FY 1989 status report

    International Nuclear Information System (INIS)

    Link, S.O.; Thiede, M.E.; Downs, J.L.; Lettau, D.J.; Waugh, W.J.

    1992-05-01

    This document describes the results of technological developments and experiments at the Small Tube Lysimeter Facility. The objective of this research is to develop the capability to predict evapotranspiration in support of studies of water infiltration control for the Hanford Protective Barrier Development Program. Evapotranspiration is the combined loss of water from plants and soil surfaces to the atmosphere. This process must be predictable to adequately model soil water dynamics. We develop a miniature greenhouse (gas exchange chamber), where internal temperature and relative humidity can be controlled. With this device we measured evapotranspiration, transpiration, and carbon dioxide exchange rates from lysimeters with various surface and plant characteristics. We tested the effect on gas exchange rates and sand, gravel, admix, and soil surfaces in lysimeters where, cheat-grass, Bromus tectorum, had been seeded. Results showed that evapotranspiration was unaffected by the surface treatments. Estimated transpiration rates were higher for plants growing in sand compared with rates for plants growing in the admix and soil treatments. Soil evaporation rates were higher in the gravel treatment than in the sand treatment. Future research will entail parameterization of relationships between evapotranspiration, transpiration, soil evaporation, carbon dioxide exchange, and the abiotic and biotic factors that drive these processes for model development

  19. Crop uptake and leaching losses of 15N labelled fertilizer nitrogen in relation to waterlogging of clay and sandy loam soils

    International Nuclear Information System (INIS)

    Webster, C.P.; Belford, R.K.; Cannell, R.Q.

    1986-01-01

    Ammonium nitrate fertilizer, labelled with 15 N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha -1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freely drained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheater at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1-2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer

  20. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth

    International Nuclear Information System (INIS)

    Malekian, Raheleh; Abedi-Koupai, Jahangir; Eslamian, Sayed Saeid

    2011-01-01

    The increasing demands for environmental protection and sustainable food production require an increase in the use of natural and non-toxic materials for agriculture. In this study, the feasibility of using surfactant-modified zeolite (SMZ) in comparison with zeolite clinoptilolite (Cp) application to reduce nitrate leaching and enhance crop growth was investigated. The effects of size (millimeter and nanometer) and application rate (20 g kg -1 and 60 g kg -1 ) of Cp and SMZ on nitrate leaching and crop response were also evaluated. Using soil lysimeters, it was determined that the maximum and mean nitrate concentration in the leachate of SMZ-amended soil were significantly (p 3 -N leached from SMZ- and Cp-amended lysimeters at the higher application rate (60 g kg -1 ) was approximately 26% and 22% lower, respectively, than that from the control system. The mean grain yield, grain nitrogen content, stover dry matter, and N uptake were significantly greater in Cp-amended than SMZ-amended lysimeters. There was no significant effect due to the particle size of the two soil amendments. The results implicitly suggest that plants may have a better response if Cp is used as a fertilizer carrier rather than SMZ when applied at a rate of 60 g kg -1 .

  1. Treatment of log yard run-off by irrigation of grass and willows

    International Nuclear Information System (INIS)

    Jonsson, Maria; Dimitriou, Ioannis; Aronsson, Paer; Elowson, Torbjoern

    2006-01-01

    Log yard run-off is a potential environmental risk, among other things because it creates an oxygen deficiency in receiving watercourses. This study was conducted to investigate the purification efficiency of soil-plant systems with couchgrass (Elymus repens) and willows (Salix sp.) when intensively irrigated with run-off from an open sprinkling system at a Norway spruce (Picea abies) log yard. The purification efficiency was determined both at the field scale (couchgrass) and in 68-L lysimeters (couchgrass and willows). Groundwater in the field and drainage water from the lysimeters were analysed for Total Organic Carbon (TOC), distillable phenols, total P, and total N. Retention of TOC, phenols and P occurred but no difference between couchgrass and willows was observed. The system had better purification capacity at the field scale than in the lysimeters. -- By irrigating willow and couchgrass soil-plant systems with log yard run-off water, TOC, phenols, and phosphorus were reduced with 35% to 96% in the water

  2. Leachate movement through unsaturated sand at a low-level radioactive-waste disposal site in northwestern Illinois

    International Nuclear Information System (INIS)

    Mills, P.C.; Devries, M.P.

    1988-01-01

    Movement of radionuclides and volatile organic compounds in soil water (leachate) were examined in an unsaturated sand deposit immediately underlying trenches at a low-level radioactive-waste disposal site near Sheffield, Illinois. Physical and hydraulic properties of the 2.0- to 8.0-meter thick sand deposit were defined from core samples. Soil-water samples were collected from 16 gravity lysimeters and 1 vacuum lysimeter from September 1986 through October 1987. Preliminary results include the following: Tritium, halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons, nonhalogenated aromatic hydrocarbons, and methyl esters were detected in the soil water. Gross alpha and gross beta concentrations were detected at background levels. Tritium flux through the gravity lysimeters ranged from 0.18 to 1.74 microcuries per year and totaled 5.14 microcuries per year. In most locations, soil-water movement occurred as slow, steady, unsaturated flow; more rapid saturated flow occurred along isolated, narrow (less than 1 square millimeter), vertical flow paths. The homogeneous texture and hydraulic properties of the sand deposit imply that the location of flow paths primarily is dependent on the locations of water entry into, and flow paths within, the void-rich trenches. The timing of water movement through the saturated pathways in the sand deposit was influenced, in part, by individual precipitation events and seasonal climatic trends. Changes in tritium concentration were attributable to changes in soil-water flux and to apparent deterioration of waste containers within the trenches

  3. Subsurface Investigations Program at the radioactive waste management complex of the Idaho National Engineering Laboratory. Annual progress report, FY-1985

    International Nuclear Information System (INIS)

    Hubbell, J.M.; Hull, L.C.; Humphrey, T.G.; Russell, B.F.; Pittman, J.R.; Cannon, K.M.

    1985-12-01

    This report describes work conducted in FY-85 in support of the Subsurface Investigation Program at the Radioactive Waste Management Complex of the Idaho National Engineering Laboratory. The work is part of a continuing effort to define and predict radionuclide migration from buried waste. The Subsurface Investigation Program is a cooperative study conducted by EG and G Idaho and the US Geological Survey, INEL Office. EG and G is responsible for the shallow drilling, solution chemistry, and net downward flux portions of this program, while the US Geological Survey is responsible for the weighing lysimeters and test trench. Data collection was initiated by drilling, sampling, and instrumenting shallow wells, continuing the installation of test trenches, and modifying the two weighing lysimeters. Twenty-one shallow auger holes were around the Radioactive Waste Management Complex (RWMC) to evaluate radionuclide content in the surficial sediments, to determine the geologic and hydrologic characteristics of the surficial sediments, and to provide as monitoring sites for moisture in these sediments. Eighteen porous cup lysimeters were installed in 12 auger holes to collect soil water samples from the surficial sediments. Fourteen auger holes were instrumented with tensiometers, gypsum blocks and/or psychrometers at various depths throughout the RWMC. Readings from these instruments are taken on a monthly basis

  4. Time series models for prediction the total and dissolved heavy metals concentration in road runoff and soil solution of roadside embankments

    Science.gov (United States)

    Aljoumani, Basem; Kluge, Björn; sanchez, Josep; Wessolek, Gerd

    2017-04-01

    Highways and main roads are potential sources of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Prediction of heavy metals transfer near the roadside into deeper soil layers are very important to prevent the groundwater pollution. This study was carried out on data of a number of lysimeters which were installed along the A115 highway (Germany) with a mean daily traffic of 90.000 vehicles per day. Three polyethylene (PE) lysimeters were installed at the A115 highway. They have the following dimensions: length 150 cm, width 100 cm, height 60 cm. The lysimeters were filled with different soil materials, which were recently used for embankment construction in Germany. With the obtained data, we will develop a time series analysis model to predict total and dissolved metal concentration in road runoff and in soil solution of the roadside embankments. The time series consisted of monthly measurements of heavy metals and was transformed to a stationary situation. Subsequently, the transformed data will be used to conduct analyses in the time domain in order to obtain the parameters of a seasonal autoregressive integrated moving average (ARIMA) model. Four phase approaches for identifying and fitting ARIMA models will be used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, will use to enhance this flexible approach to model building

  5. Leaching and soil/groundwater transport of contaminants from coal combustion residues

    International Nuclear Information System (INIS)

    Hjelmar, O.; Hansen, E.A.; Larsen, F.; Thomassen, H.

    1992-01-01

    In this project the results of accelerated laboratory leaching tests on coal fly ash and flue gas desulfurization (FGD) products from the spray dryer absorption process (SDA) were evaluated by comparison to the results of large scale lysimeter leaching tests on the same residues. The mobility of chromium and molybdenum - two of the kev contaminants of coal combustion residue leachates - in various typical soil types was investigated by batch and column methods in the laboratory. Some of the results were confirmed by field observations at an old coal fly ash disposal site and by a lysimeter attenuation test with coal fly ash leachate on a clayed till. A large number of groundwater transport models and geochemical models were reviewed, and two of the models (Gove-Stollenwerk and CHMTRNS) were modified and adjusted and used to simulate column attenuation tests performed in the laboratory. One of the models (Grove-Stollenwerk) was used to illustrate a recommended method of environmental impact assessment, using lysimeter leaching data and laboratory column attenuation data to describe the emission and migration of Mo from a coal fly ash disposal site

  6. Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste

    International Nuclear Information System (INIS)

    Delay, Markus; Lager, Tanja; Schulz, Horst D.; Frimmel, Fritz H.

    2007-01-01

    The changes in waste management policy caused by the massive generation of waste materials (e.g. construction and demolition waste material, municipal waste incineration products) has led to an increase in the reuse and recycling of waste materials. For environmental risk assessment, test procedures are necessary to examine waste materials before they can be reused. In this article, results of column and lysimeter leaching tests having been applied to inorganic compounds in a reference demolition waste material are presented. The results show a good agreement between the leaching behaviour determined with the lysimeter unit and the column units used in the laboratory. In view of less time and system requirements compared to lysimeter systems, laboratory column units can be considered as a practicable instrument to assess the time-dependent release of inorganic compounds under conditions similar to those encountered in a natural environment. The high concentrations of elements in the seepage water at the initial stage of elution are reflected by the laboratory column leaching tests. In particular, authorities or laboratories might benefit and have an easy-to-use, but nevertheless reliable, method to serve as a basis for decision-making

  7. LIXIVIAÇÃO DE POTÁSSIO EM UM CULTIVO DE PIMENTÃO SOB LÂMINAS DE IRRIGAÇÃO E DOSES DE POTÁSSIO

    Directory of Open Access Journals (Sweden)

    FRANCIMAR DA SILVA ALBUQUERQUE

    2011-01-01

    Full Text Available With the aim of determining the concentration of potassium (K+ and electrical conductivity (EC in water drainage in the cultivation of sweet pepper (Maximos F1, and to evaluate the possible risk of contamination of groundwater was conducted a experiment on a battery of 40 drainage lysimeters, whose experimental plot consisted of three plants in each lysimeter, located at campus of the Federal Rural University of Pernambuco (UFRPE, Recife, PE, in a completely randomized factorial scheme 5 x 2, with four replications, being five irrigation depth (80, 90, 100, 110 and 120% of ETc and two levels of potassium (80 and 120 kg ha-1 of K2O, applied parceled according to phenological phase, through a drip irrigation system, with selfcompensable emitters. Throughout the cycle proceeded to the measurement of volumes generated from natural drainage and the fortnightly water balances in the lysimeters, and collection of samples for tests to determine the K+ and EC. The K+ content and the EC showed significant linear adjustments in all phases of the cycle, whose mean values were 9.79 mg L-1 and 0.35 dS m-1, respectively. The drained volume showed increases in certain events of water balance due to the high rainfall during the period, leaching more potassium ions. It was observed that with the application of higher blade and the higher dose losses were higher K2O, an average 60.10 kg ha-1.

  8. Attenuation of heavy metal leaching from hazardous wastes by co-disposal of wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Wookeun; Shin, Eung Bai [Hanyang Univ., Ansan (Korea, Republic of); Lee, Kil Chul; Kim, Jae Hyung [National Institute of Environmental Research, Seoul (Korea, Republic of)] [and others

    1996-12-31

    The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, the latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.

  9. Temporal variability in phosphorus transfers: classifying concentration–discharge event dynamics

    Directory of Open Access Journals (Sweden)

    P. Haygarth

    2004-01-01

    Full Text Available The importance of temporal variability in relationships between phosphorus (P concentration (Cp and discharge (Q is linked to a simple means of classifying the circumstances of Cp–Q relationships in terms of functional types of response. New experimental data at the upstream interface of grassland soil and catchment systems at a range of scales (lysimeters to headwaters in England and Australia are used to demonstrate the potential of such an approach. Three types of event are defined as Types 1–3, depending on whether the relative change in Q exceeds the relative change in Cp (Type 1, whether Cp and Q are positively inter-related (Type 2 and whether Cp varies yet Q is unchanged (Type 3. The classification helps to characterise circumstances that can be explained mechanistically in relation to (i the scale of the study (with a tendency towards Type 1 in small scale lysimeters, (ii the form of P with a tendency for Type 1 for soluble (i.e., p–Q relationships that can be developed further to contribute to future models of P transfer and delivery from slope to stream. Studies that evaluate the temporal dynamics of the transfer of P are currently grossly under-represented in comparison with models based on static/spatial factors. Keywords: phosphorus, concentration, discharge, lysimeters, temporal dynamics, overland flow

  10. Arsenic, chromium, and copper leaching from CCA-treated wood and their potential impacts on landfill leachate in a tropical country.

    Science.gov (United States)

    Kamchanawong, S; Veerakajohnsak, C

    2010-04-01

    This study looks into the potential risks of arsenic, chromium, and copper leaching from disposed hardwoods treated with chromated copper arsenate (CCA) in a tropical climate. The Toxicity Characteristic Leaching Procedure (TCLP) and the Waste Extraction Test (WET) were employed to examine new CCA-treated Burseraceae and Keruing woods, weathered CCA-treated teak wood, and ash from new CCA-treated Burseraceae wood. In addition, a total of six lysimeters, measuring 2 m high and 203 mm in diameter were prepared to compare the leachate generated from the wood monofills, construction and demolition (C&D) debris landfills and municipal solid waste (MSW) landfills, containing CCA-treated Burseraceae wood. The TCLP and WET results showed that the CCA-treated Burseraceae wood leached higher metal concentrations (i.e. 9.19-17.70 mg/L, 1.14-5.89 mg/L and 4.83-23.89 mg/L for arsenic, chromium, and copper, respectively) than the CCA-treated Keruing wood (i.e. 1.74-11.34 mg/L, 0.26-3.57 mg/L and 0.82-13.64 mg/L for arsenic, chromium and copper, respectively). Ash from the CCA-treated Burseraceae wood leached significantly higher metal concentrations (i.e. 108.5-116.9 mg/L, 1522-3862 mg/L and 84.03-114.4 mg/L for arsenic, chromium and copper, respectively), making this type of ash of high concern. The lysimeter study results showed that the MSW lysimeter exhibited higher reducing conditions, more biological activities and more dissolved ions in their leachates than the wood monofill and C&D debris lysimeters. All leachates generated from the lysimeters containing the CCA-treated Burseraceae wood contained significantly higher concentrations of arsenic in comparison to those of the untreated wood: in the range of 0.53-15.7 mg/L. It can be concluded that the disposal of CCA-treated Burseraceae wood in an unlined C&D landfill or a MSW landfill has the potential to contaminate groundwater.

  11. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  12. Assessing factors that influence deviations between measured and calculated reference evapotranspiration

    Science.gov (United States)

    Rodny, Marek; Nolz, Reinhard

    2017-04-01

    Evapotranspiration (ET) is a fundamental component of the hydrological cycle, but challenging to be quantified. Lysimeter facilities, for example, can be installed and operated to determine ET, but they are costly and represent only point measurements. Therefore, lysimeter data are traditionally used to develop, calibrate, and validate models that allow calculating reference evapotranspiration (ET0) based on meteorological data, which can be measured more easily. The standardized form of the well-known FAO Penman-Monteith equation (ASCE-EWRI) is recommended as a standard procedure for estimating ET0 and subsequently plant water requirements. Applied and validated under different climatic conditions, the Penman-Monteith equation is generally known to deliver proper results. On the other hand, several studies documented deviations between measured and calculated ET0 depending on environmental conditions. Potential reasons are, for example, differing or varying surface characteristics of the lysimeter and the location where the weather instruments are placed. Advection of sensible heat (transport of dry and hot air from surrounding areas) might be another reason for deviating ET-values. However, elaborating causal processes is complex and requires comprehensive data of high quality and specific analysis techniques. In order to assess influencing factors, we correlated differences between measured and calculated ET0 with pre-selected meteorological parameters and related system parameters. Basic data were hourly ET0-values from a weighing lysimeter (ET0_lys) with a surface area of 2.85 m2 (reference crop: frequently irrigated grass), weather data (air and soil temperature, relative humidity, air pressure, wind velocity, and solar radiation), and soil water content in different depths. ET0_ref was calculated in hourly time steps according to the standardized procedure after ASCE-EWRI (2005). Deviations between both datasets were calculated as ET0_lys-ET0_ref and

  13. Nitrogen Fertilizer Rate and Crop Management Effects on Nitrate Leaching from an Agricultural Field in Central Pennsylvania

    Directory of Open Access Journals (Sweden)

    Richard H. Fox

    2001-01-01

    Full Text Available Eighteen pan lysimeters were installed at a depth of 1.2 m in a Hagerstown silt loam soil in a corn field in central Pennsylvania in 1988. In 1995, wick lysimeters were also installed at 1.2 m depth in the same access pits. Treatments have included N fertilizer rates, use of manure, crop rotation (continuous corn, corn-soybean, alfalfa-corn, and tillage (chisel plow-disk, no-till. The leachate data were used to evaluate a number of nitrate leaching models. Some of the highlights of the 11 years of results include the following: 1 growing corn without organic N inputs at the economic optimum N rate (EON resulted in NO3–-N concentrations of 15 to 20 mg l-1 in leachate; 2 use of manure or previous alfalfa crop as partial source of N also resulted in 15 to 20 mg l-1 of NO3–-N in leachate below corn at EON; 3 NO3–-N concentration in leachate below alfalfa was approximately 4 mg l-1; 4 NO3–-N concentration in leachate below soybeans following corn was influenced by fertilizer N rate applied to corn; 5 the mass of NO3–-N leached below corn at the EON rate averaged 90 kg N ha-1 (approx. 40% of fertilizer N applied at EON; 6 wick lysimeters collected approximately 100% of leachate vs. 40–50% collected by pan lysimeters. Coefficients of variation of the collected leachate volumes for both lysimeter types were similar; 7 tillage did not markedly affect nitrate leaching losses; 8 tested leaching models could accurately predict leachate volumes and could be calibrated to match nitrate leaching losses in calibration years, but only one model (SOILN accurately predicted nitrate leaching losses in the majority of validation treatment years. Apparent problems with tested models: there was difficulty estimating sizes of organic N pools and their transformation rates, and the models either did not include a macropore flow component or did not handle macropore flow well.

  14. Testing the effectiveness of pine needlecast in reducing post-fire soil erosion using complementary experimental approaches

    Science.gov (United States)

    Bento, C. P. M.; Shakesby, R. A.; Walsh, R. P. D.; Ferreira, C. S. S.; Ferreira, A. J. D.; Urbanek, E.

    2012-04-01

    Mediterranean wildfire activity has increased markedly in recent decades, leading to enhanced runoff and erosion. Limiting post-fire on-site soil degradation and off-site flooding and sedimentation, however, often has a low priority because of the high costs of materials and labour needed to implement many recognised techniques (e.g. seeding, hydromulching, installing logs along the contour). However, in pine plantations, the crowns may only be scorched so that after fire the needlecast can form a comparatively dense ground cover. Its post-fire erosion-limiting effectiveness is virtually unknown in the Mediterranean context, despite potentially protecting soil with minimal effort (requiring only a delay to existing salvage logging procedures at most). As part of the DESIRE research programme, this paper presents results from two complementary approaches testing the erosion-limiting effectiveness of needlecast. (1) Near Moinhos, central Portugal, two 8m2 erosion plots were established immediately post-fire in September 2009 on a steep (30°) slope representative of an adjacent burnt Pinus pinaster plantation. Soil erosion was monitored during a 3-month pre-treatment phase. Needles were then applied to one plot at a density (37.7% cover) measured on a post-fire pine plantation. Soil losses from treated and untreated plots were then monitored until April 2011. By taking the percentage increase or decrease in erosion between the two monitoring phases for the untreated control plot as the 'expected' pattern, the erosion-limiting effectiveness of needles applied to the treated plot could then be determined. (2) Six adjacent rectangular 1.23m2 lysimeters were filled with gravel and sand, and capped by 10 cm of topsoil taken from a long unburnt Pinus pinaster plantation. They were set at 15° and left open to natural rainfall. This angle was considered the steepest possible from logistical and soil stability points of view. All lysimeters underwent a phase under bare soil

  15. Uptake, distribution, and velocity of organically complexed plutonium in corn (Zea mays).

    Science.gov (United States)

    Thompson, Shannon W; Molz, Fred J; Fjeld, Robert A; Kaplan, Daniel I

    2012-10-01

    Lysimeter experiments and associated simulations suggested that Pu moved into and through plants that invaded field lysimeters during an 11-year study at the Savannah River Site. However, probable plant uptake and transport mechanisms were not well defined, so more detailed study is needed. Therefore, experiments were performed to examine movement, distribution, and velocity of soluble, complexed Pu in corn. Corn was grown and exposed to Pu using a "long root" system in which the primary root extended through a soil pot and into a hydroponic container. To maintain solubility, Pu was complexed with the bacterial siderophore DFOB (Desferrioxamine B) or the chelating agent DTPA (diethylenetriaminepentaacetic acid). Corn plants were exposed to nutrient solutions containing Pu for periods of 10 min to 10 d. Analysis of root and shoot tissues permitted concentration measurement and calculation of uptake velocity and Pu retardation in corn. Results showed that depending on exposure time, 98.3-95.9% of Pu entering the plant was retained in the roots external to the xylem, and that 1.7-4.1% of Pu entered the shoots (shoot fraction increased with exposure time). Corn Pu uptake was 2-4 times greater as Pu(DFOB) than as Pu(2)(DTPA)(3). Pu(DFOB) solution entered the root xylem and moved 1.74 m h(-1) or greater upward, which is more than a million times faster than Pu(III/IV) downward movement through soil during the lysimeter study. The Pu(DFOB) xylem retardation factor was estimated to be 3.7-11, allowing for rapid upward Pu transport and potential environmental release. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J.; Link, S.O. (Pacific Northwest Lab., Richland, WA (USA))

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  17. Dissipation, degradation and uptake of 14C-carbofuran in a Panamanian Alfisol soil

    International Nuclear Information System (INIS)

    Gonzalez, J.E.; Saiz, E.B. de; Gonzalez, L.; Perez, O.; Caballos, J.

    1999-01-01

    The dissipation, degradation and leaching of carbon-14 labelled carbofuran was studied in a micro-lysimeter system with disturbed and undisturbed soil cores of an Alfisol from El Ejido, Panama. The micro-lysimeters were conditioned under the environment prior to the application of the insecticide. Each lysimeter was treated with 14C-labelled carbofuran at a concentration of 1.7 μg carbofuran/g soil and maize seed were sown in the treated soil. Samples of soil were taken at 0, 8, 15, 30, 60, 90 and 180 days after treatment. The plant material was separated and the soil was analyzed by radiometric techniques for total, extractable and non-extractable residues. The total 14C-radioactivity decreased with time to 30% of the originally applied activity. Extractable residues decreased with time to 2.5% whereas, the un-extractable residues increased to 35.5% of the original. Residues in the plant foliage were in the range of 0.5 to 0.9 μg/g and showed highest concentration during the first 30 days after germination. Extractable residues included carbofuran, 3-hydroxy-carbofuran and 3-keto-carbofuran. The amount of radioactivity leached was in the range of 19.2 to 22.8% of original. It is concluded that carbofuran residues move easily in soil-maize system. Maize plants rapidly absorb the insecticide and C14-activity predominates 15 to 30 days post-treatment. Dissipation of carbofuran occurs soon, with a halflife of 30 days. (author)

  18. Overview of the geochemical code MINTEQ: applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Graham, M.J.; Peterson, S.R.

    1985-09-01

    The MINTEQ geochemical computer code, developed at Pacific Northwest Laboratory, integrates many of the capabilities of its two immediate predecessors, WATEQ3 and MINEQL. MINTEQ can be used to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments or the interaction of ground water with solidified low-level wastes. The code is capable of performing calculations of ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial solidified low-level wastes. The wastes being evaluated include power reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code is being upgraded before the geochemical modeling is performed. Thermodynamic data for cobalt, antimony, cerium, and cesium solid phases and aqueous species are being added to the database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the wastes predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partical field validation of the geochemical model. 28 refs

  19. Simulated aerobic pedogenesis in pyritic overburden with a positive acid-base account

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, J.J.; Hossner, L.R.; Wilding, L.P. (South Dakota State University, Brookings, SD (United States). Dept. of Plant Science)

    Reclamation of surface-mined land is often hindered by the excess salts and acidity produced by the weathering of pyritic overburden. This study was conducted to document the initial transformations that occur when pyritic overburden containing excess acid neutralizing potential is used as parent material in minesoil construction. An overburden containing 0.8% FeS[sub 2] (pyrite) and 1.6% inorganic carbonate (predominantly dolomite) was collected from the highwall of an active lignite surface mine in Panola County, Texas. The overburden was lightly crushed through a 13-mm sieve and packed into three replicate lysimeters (0.75 by 0.75 by 1.2 m). The lysimeters were leached monthly with 63.5 mm of deionized water for 24 mo. The initial material had a pH of 8.3 and an excess acid neutralizing potential. Progressive FeS[sub 2] oxidation released H[sub 2]SO[sub 4], and the pH decreased to 6.8. The dolomite dissolved, neutralizing the acidity, with subsequent release of Ca and Mg ions into solution. Leachate Ca[sup 2+] and SO[sub 4][sup 2-] concentrations exceeded the ion activity product of gypsum in the lower 60 cm of the lysimeters. Thin-section analysis revealed that gypsum crystals precipitated along margins of residual pyrite particles and in conductive vughs and channels. The continued accumulation of gypsum in minesoil development could eventually lead to the formation of a gypsic or a petrogypsic horizon. A restrictive layer such as this would decrease vertical movement of water and O[sub 2] which would reduce vegetative growth, increase runoff and erosion, and thus increase the probability of reclamation failure.

  20. Balance study of the fate of 15N fertilizer

    International Nuclear Information System (INIS)

    Korte, F.; Sotiriou, N.

    1980-01-01

    An interim report is presented on a series of experiments with wooden box-type lysimeters (60 cm x 60 cm x 70 cm) loaded with a sandy soil, a loess soil and straw-amended soil. The lysimeters support crops rotated over a five-year period to be studied - potato, barley, sugar-beet, barley (with winter rape) and finally (1979) potato. Each lysimeter received split applications of urea at total rates of 0, 50 or 100 kg.ha -1 . The effects of soil residues of the herbicide monolinuron were also studied. The report deals with data collected during the first three years of the planned experiments (1975 - 1977 inclusive). 15 N-labelled urea (47 atom 15 N% excess) was initially used but in some experiments this was followed by applications of unlabelled urea in order to study the fate of the residual 15 N in the subsequent years. The results to date indicated that in the first year highest recoveries in the plant of the applied 15 N obtained on the sandy soil. The low recoveries of 15 N in the subsequent years when unlabelled urea was supplied also indicated significant storage by soil or root organic matter of the applied 15 N. Compared with the control (zero application of urea nitrogen), potato took up more total nitrogen in the presence of fertilizer including more of the unlabelled soil pool nitrogen. Analyses of the soil profiles in terms of total soil nitrogen and fertilizer-derived nitrogen (on the basis of 15 N assays) indicated leaching of the labelled nitrogen down the soil profile in all cases during the three-year period. Analysis of NO 3 -N in leachates confirmed the presence of labelled urea-derived nitrogen. (author)

  1. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  2. Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States

    Science.gov (United States)

    Green, C.T.; Fisher, L.H.; Bekins, B.A.

    2008-01-01

    The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 1 to 22 m. Chemical analyses of water from lysimeters and shallow wells indicate that advective transport of nitrate is the dominant process affecting the flux of N below the root zone. Vertical profiles of (i) nitrogen species, (ii) stable isotopes of nitrogen and oxygen, and (iii) oxygen, N, and argon in unsaturated zone air and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. As a result, physical factors, such as N application rate, water inputs, and evapotranspiration, control the differences in concentrations among the sites. Concentrations of N in shallow lysimeters exhibit seasonal variation, whereas concentrations in lysimeters deeper than a few meters are relatively stable. Based on concentration and recharge estimates, fluxes of N through the deep unsaturated zone range from 7 to 99 kg ha-1 yr-1. Vertical fluxes of N in ground water are lower due to spatial and historical changes in N inputs. High N fluxes are associated with coarse sediments and high N application rates. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. Plant rhizosphere processes influencing the mobility of radionuclides in soils

    International Nuclear Information System (INIS)

    Cowan, C.E.; Cataldo, D.A.; McFadden, K.M.; Garland, T.R.; Wildung, R.E.

    1988-06-01

    Native vegetation associated with commercial low-level waste disposal sites has the potential for modifying the soil chemical environment over the long term and, consequently, affecting radionuclide mobility. These changes were assessed for coniferous and deciduous trees grown in lysimeter systems by examining their influence on soil solution chemistry using advanced analytical and geochemical modeling techniques. Our studies demonstrated the formation of highly mobile anionic radionuclide complexes with amino acids, peptides and organic acids originating from plant leaf litter and roots. The production of complexing agents was related to season and tree species, suggesting that vegetation management or exclusion may be appropriate after a site is closed

  4. A fully automated meltwater monitoring and collection system for spatially distributed isotope analysis in snowmelt-dominated catchments

    Science.gov (United States)

    Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James

    2016-04-01

    In many mountainous catchments the seasonal snowpack stores a significant volume of water, which is released as streamflow during the melting period. The predicted change in future climate will bring new challenges in water resource management in snow-dominated headwater catchments and their receiving lowlands. To improve predictions of hydrologic extreme events, particularly summer droughts, it is important characterize the relationship between winter snowpack and summer (low) flows in such areas (e.g., Godsey et al., 2014). In this context, stable water isotopes (18O, 2H) are a powerful tool for fingerprinting the sources of streamflow and tracing water flow pathways. For this reason, we have established an isotope sampling network in the Alptal catchment (46.4 km2) in Central-Switzerland as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Samples of precipitation (daily), snow cores (weekly) and runoff (daily) are analyzed for their isotopic signature in a regular cycle. Precipitation is also sampled along a horizontal transect at the valley bottom, and along an elevational transect. Additionally, the analysis of snow meltwater is of importance. As the sample collection of snow meltwater in mountainous terrain is often impractical, we have developed a fully automatic snow lysimeter system, which measures meltwater volume and collects samples for isotope analysis at daily intervals. The system consists of three lysimeters built from Decagon-ECRN-100 High Resolution Rain Gauges as standard component that allows monitoring of meltwater flow. Each lysimeter leads the meltwater into a 10-liter container that is automatically sampled and then emptied daily. These water samples are replaced regularly and analyzed afterwards on their isotopic composition in the lab. Snow melt events as well as system status can be monitored in real time. In our presentation we describe the automatic snow lysimeter

  5. Leaching studies of low-level waste as input to radiological assessment at the Drigg disposal site, Cumbria

    International Nuclear Information System (INIS)

    Poulton, J.; Rushbrook, P.E.

    1989-01-01

    Over the period of operation of the low-level waste disposal site at Drigg in Cumbria, several radiological assessments have been carried out. This paper discusses data requirements for such an assessment and in particular describes a project to measure the leaching behaviour of wastes. This project, jointly set up by the staff of BNFL and Environmental Safety Centre at Harwell, began in 1985. The objectives were to determine the processes operating within the waste disposal trenches at Drigg and conditions affecting them. The paper describes the installation and operation of the first of a series of lysimeters designed to simulate conditions in current trenches. (author)

  6. Transport of nitrate from a large cement based waste form

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1986-01-01

    A finite-element model is used to calculate the time-dependent transport of nitrate from a cement-based (saltstone) monolith with and without a clay cap. Model predictions agree well with data from two lysimeter field experiments begun in 1984. The clay cap effectively reduces the flux of nitrate from the monolith. Predictions for a landfill monolith design show a peak concentration occurring within 25 years; however, the drinking water guideline is exceeded for 1200 years. Alternate designs and various restrictive liners are being considered

  7. Effects of salinity and soil-drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.)

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Ahmadi, Seyed Hamid; Jacobsen, Sven-Erik

    2012-01-01

    Drought and salinity reduce crop productivity especially in arid and semi-arid regions, and finding a crop which produces yield under these adverse conditions is therefore very important. Quinoa (Chenopodium quinoa Willd.) is such a crop. Hence, a study was conducted in field lysimeters to invest...... matter. Increasing salinity from 20 to 40 dS m-1 did not further decrease the seed number per m2 and seed yield, which shows that quinoa (cv. Titicaca) acclimated to saline conditions when exposed to salinity levels between 20 and 40 dS m-1....

  8. Influence of tensides and lipophilic substrates on the biological availability of polycyclic aromatic hydrocarbons (PAHs); Ueber dem Einfluss von Tensiden und lipophilen Substraten auf die Bioverfuegbarkeit von polyzyklischen aromatischen Kohlenwasserstoffen (PAK)

    Energy Technology Data Exchange (ETDEWEB)

    Soeder, C.J. von; Kleespies, M; Eschner, C; Webb, L; Groeneweg, J [Forschungszentrum Juelich GmbH (Germany). IBT-3/ICG-6

    1998-12-31

    The objects of the study were as follows: isolation and characterization of PAH-degrading micro-organisms from lysimeters; tests relating to the experimental simulation of the conditions permitting pollutant degradation in soil; investigation of the influence of tensides and other dissolved organic compounds on the biological availability and degradation of PAHs. (orig./SR) [Deutsch] - Isolierung und Charakterisierung PAK-abbauender Mikroorganismen aus Lysimetern; Versuche zur experimentellen Simulation der Bedingungen, unter denen der Abbau von Schadstoffen im Boden erfolgt. - Untersuchung des Einflusses von Tensiden und anderen geloesten organischen Verbindungen auf Bioverfuegbarkeit und Abbau von PAK. (orig./SR)

  9. Subsurface barrier design alternatives for confinement and controlled advection flow

    International Nuclear Information System (INIS)

    Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.

    1994-02-01

    Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described

  10. Jordfysiske egenskabers påvirkning af mikrobiologisk olienedbrydning i dieselolieforurenet jord

    DEFF Research Database (Denmark)

    Lund, Willy; Møldrup, P.

    1996-01-01

    The effect of basic soil-physical properties such as soil texture, soil-water content, effective oxygen diffusivity and permeability on biological oil degradation in two artificially polluted soils was investigated. Experiments were carried out during a six months period in large-scale laboratory...... lysimeters using packed soils with an initial oil content of 1.5% and using two different strategies for water, nitrogen and phosphorus application. A significant oil degradation was obtained only in the top few cm of the soils where the water content in periods was sufficiently low to allow a large oxygen...

  11. Dynamics of nitrogen in an oxic paleudalf soil with the incorporation of 15N-tagged organic nitrogen (maize straw) and 15N-tagged mineral nitrogen (ammonium sulphate)

    International Nuclear Information System (INIS)

    Freitas, J.R. de.

    1984-12-01

    An experiment, carried out under field conditions in 12 lysimeters, each containing 3.0 ton of Oxic Paleudalf soil with four replicates, is described. This objective is labelling soil organic N. Nitrogen was incorporated into soil as maize straw, non-labelled and labelled with 15 N and ammonium sulphate - 15 N. The soil was sampled every 15 days in three different depths. N as NH + 4 , NO - 3 , total-N and (%)C and (%) moisture was analysed. (M.A.C.) [pt

  12. Investigation of TC and TSS Removal Efficiencies at Ahvaz West WTP Effluent Using the Land‒plant Treatment Process

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2015-12-01

    Full Text Available Although the conventional (primary and secondary treatment processes are known to remove up to 95–99% of some micro-organisms, they do not provide adequate treatment to make the effluent suitable for direct reuse, mainly due to the presence of high concentrations of pathogenic microorganisms. Obtaining reusable effluents, therefore, requires the use of processes that can be justified both technical and economic grounds. One such indigenous, low cost option is the land-plant process that can be used for advanced wastewater treatment. It is the objective of the present study to determine the efficiency of the local soil in Ahvaz and that of the vetiver plant in reducing the microbial load in the effluent from municipal wastewater treatment plants. A pilot study was thus carried out including three Lysimeters installed in West Ahvaz Wastewater Treatment Plant. Local soil was used in one Lysimeter, local soil with vetiver plant in the second one, and an artificial assortment of soil comprising local soil, silica sand (0.5-1mm, and sand (15-30mm in the third. In addition, the effluent from the secondary settling outlet at the WTP was transferred by pumping at the three filtration rates of 0.2, 0.6, and 1 ml/min into the system with three replications for each rate and samples were collected from both inlet and outlet flows. The average removal efficiencies of Total Suspended Solids (TSS and Total Coliform (TC in the effluent from the three Lysimeters with local soil with vetiver, local soil without vetiver, and artificial soil assortment for the filtration rate of 0.2 ml/min were: 67.75% and 99.7%, 58.33% and 99.6%, and 56.25% and 99.5%, respectively. For a filtration rate of 0.6 ml/min, these values were: 53.33% and 98.93%, 48.8 and 98.77%, and 47.68% and 98.64%. Finally, the values obtained for a filtration rate of 0.6 ml/min were: 50% and 93.96%, 46.42 and 91.34%, and 44/04% and 88/81%, respectively. The results from the study showed that the

  13. Remedial Action Plan and Site Design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Appendix C to Attachment 3, Calculations. Final

    International Nuclear Information System (INIS)

    1995-09-01

    This volume contains calculations for: Slick Rock processing sites background ground water quality; Slick Rock processing sites lysimeter water quality; Slick Rock processing sites on-site and downgradient ground water quality; Slick Rock disposal site background water quality; Burro Canyon disposal site, Slick Rock, Colorado, average hydraulic gradients and average liner ground water velocities in the upper, middle, and lower sandstone units of the Burro Canyon formation; Slick Rock--Burro Canyon disposal site, Burro Canyon pumping and slug tests--analyses; water balance and surface contours--Burro Canyon disposal cell; and analytical calculation of drawdown in a hypothetical well completed in the upper sandstone unit of the Burro Canyon formation

  14. Influence of tensides and lipophilic substrates on the biological availability of polycyclic aromatic hydrocarbons (PAHs); Ueber dem Einfluss von Tensiden und lipophilen Substraten auf die Bioverfuegbarkeit von polyzyklischen aromatischen Kohlenwasserstoffen (PAK)

    Energy Technology Data Exchange (ETDEWEB)

    Soeder, C.J. von; Kleespies, M.; Eschner, C.; Webb, L.; Groeneweg, J. [Forschungszentrum Juelich GmbH (Germany). IBT-3/ICG-6

    1997-12-31

    The objects of the study were as follows: isolation and characterization of PAH-degrading micro-organisms from lysimeters; tests relating to the experimental simulation of the conditions permitting pollutant degradation in soil; investigation of the influence of tensides and other dissolved organic compounds on the biological availability and degradation of PAHs. (orig./SR) [Deutsch] - Isolierung und Charakterisierung PAK-abbauender Mikroorganismen aus Lysimetern; Versuche zur experimentellen Simulation der Bedingungen, unter denen der Abbau von Schadstoffen im Boden erfolgt. - Untersuchung des Einflusses von Tensiden und anderen geloesten organischen Verbindungen auf Bioverfuegbarkeit und Abbau von PAK. (orig./SR)

  15. Assessing reference evapotranspiration in a subhumid climate in NE Austria

    Science.gov (United States)

    Nolz, Reinhard; Eitzinger, Josef; Cepuder, Peter

    2015-04-01

    Computing reference evapotranspiration and multiplying it with a specific crop coefficient as recommended by the Food and Agriculture Organization of the United Nations (FAO) is the most widely accepted approach to estimate plant water requirements. The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on local environmental conditions. Consequently, it seems advisable to evaluate the model under local environmental conditions. Evapotranspiration was determined at a subhumid site in Austria (48°12'N, 16°34'E; 157 m asl) using a large weighing lysimeter operated at (limited) reference conditions and compared with calculations according to ASCE-EWRI. The lysimeter had an inner diameter of 1.9 m and a hemispherical bottom with a maximum depth of 2.5 m. Seepage water was measured at a free draining outlet using a tipping bucket. Lysimeter mass changes were sensed by a weighing facility with an accuracy of ±0.1 mm. Both rainfall and evapotranspiration were determined directly from lysimeter data using a simple water balance equation. Meteorological data for the ASCE-EWRI model were obtained from a weather station of the Central Institute for Meteorology and Geodynamics, Austria (ZAMG). The study period was from 2005 to 2010, analyses were based upon daily time steps. Daily calculated reference evapotranspiration was generally overestimated at small values, whereas it was rather underestimated when evapotranspiration was large, which is supported also by other studies. In the given case, advection of sensible heat proved

  16. Risk assessment of mercury contaminated sites

    International Nuclear Information System (INIS)

    Hempel, M.

    1993-01-01

    At two sites, highly contaminated with mercury, risk assessment was executed. Methods were developed to determine organomercury compounds in water, air and soil. Toxicity tests demonstrated the high toxicity of organomercury compounds compared to inorganic mercury. Besides highly toxic methylmercury, ethylmercury was found in soils close to a chemical plant in Marktredwitz. In ultrafiltration-experiments mercury showed great affinity to high molecular substances in water. Lysimeter-experiments proved, that organomercury compounds are adsorbed and transformed to inorganic and elemental mercury. (orig.) [de

  17. Irrigation of treated wastewater in Braunschweig, Germany

    DEFF Research Database (Denmark)

    Ternes, T.A.; Bonerz, M.; Herrmann, N.

    2007-01-01

    pharmaceuticals and two personal care products (PPCPs; e.g. betablockers, antibiotics, antiphlogistics, carbamazepine, musk fragrances, iodinated contrast media (ICM) and estrogens). No differences in PPCP pollution of the groundwater were found due to irrigation of STP effluents with and without addition....... In the groundwater and lysimeter samples primarily the ICM diatrizoate and iopamidol, the antiepileptic carbamazepine and the antibiotic sulfamethoxazole were detected up to several mu g l(-1), while the acidic pharmaceuticals, musk fragrances, estrogens and betablockers were likely sorbed or transformed while...

  18. Shallow land burial technology development - arid

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Abeele, W.V.; Burton, B.W.; Hakonson, T.E.; Perkins, B.A.

    1982-01-01

    The experimental results obtained during FY-1982 on biointrusion barrier testing, migration barrier testing, and ground and surface water management system testing are described. The results of the small lysimeter study on biointrusion barriers are presented and the larger scale experiments in progress are described. The results of the experiments to determine the migration potential for water under unsaturated conditions are described. Preliminary results on the wick system experiment are presented. A comparison of model calculations and experimental results on the water movement experiments is also presented

  19. Control of water infiltration into near surface low-level waste disposal units. Final report on field experiments at a humid region site, Beltsville, Maryland

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1997-09-01

    This study''s objective was to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work was carried out in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration were investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management

  20. Effect of surface treatment of tailings on effluent quality

    International Nuclear Information System (INIS)

    Murray, D.R.; Okuhara, D.

    1980-01-01

    Lysimeters containing 125 tons of mine tailings were used to determine the impact of gravel, sawdust, and vegetation as surface treatments on the quality and quantity of effluent produced from sulfide-containing uranium mill tailings. Over a 5-yr period, treatments did not alter the effluent quality to a level acceptable to regulatory requirements. The concentration of iron, copper, lead, aluminum, and sulfate increased with the rise of acidity during this period. However, the rate and extent of changes did vary with the treatment. The role of surface treatment in long-term waste abandonment must be investigated further

  1. Nitrogen dynamics following grain legumes and subsequent catch crops and the effects on succeeding cereal crops

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Mundus, Simon; Jensen, Erik Steen

    2009-01-01

    balances. A 2½-year lysimeter experiment was carried out on a temperate sandy loam soil. Crops were not fertilized in the experimental period and the natural 15N abundance technique was used to determine grain legume N2 fixation. Faba bean total aboveground DM production was significantly higher (1,300 g m...... on the subsequent spring wheat or winter triticale DM production. Nitrate leaching following grain legumes was significantly reduced with catch crops compared to without catch crops during autumn and winter before sowing subsequent spring wheat. Soil N balances were calculated from monitored N leaching from...

  2. Comparative study of in situ methods for potential and actual evapotranspiration determination and their calculation by simulation model

    International Nuclear Information System (INIS)

    Kolev, B.

    2006-01-01

    Four in situ methods for potential and actual evapotranspiration determining were compared: neutron gauge, tensiometers, gypsum blocks and lysimeters. The actual and potential evapotranspiration were calculated by water balance equation and by using a simulation model for their determination. The aim of this study was mainly pointed on calculations of water use efficiency and transpiration coefficient in potential production situation. This makes possible to choose the best way for water consumption optimization for a given crop. The final results find with the best of the methods could be used for applying the principles of sustainable agricultural production in random object of Bulgarian agricultural area

  3. 2016 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    Black, David [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-08-30

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data include direct radiation exposure, as well as radiation from the air, groundwater, meteorology, and vadose zone. This report summarizes the 2016 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports, developed by National Security Technologies, LLC Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show that tritium concentrations in water vapor and americium and plutonium concentrations in air particles are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. During 2016, precipitation at the Area 3 RWMS was 8% below average, and precipitation at the Area 5 RWMS was 8% above average. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation as measured from the bare-soil weighing lysimeter. Vadose zone monitoring on Area 5 and Area 3 RWMS cell covers shows no evidence of precipitation percolating through the covers

  4. Integrated Disposal Facility FY 2016: ILAW Verification and Validation of the eSTOMP Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bacon, Diana H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fang, Yilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-13

    This document describes two sets of simulations carried out to further verify and validate the eSTOMP simulator. In this report, a distinction is made between verification and validation, and the focus is on verifying eSTOMP through a series of published benchmarks on cementitious wastes, and validating eSTOMP based on a lysimeter experiment for the glassified waste. These activities are carried out within the context of a scientific view of validation that asserts that models can only be invalidated, and that model validation (and verification) is a subjective assessment.

  5. Nevada Test Site, 2006 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    David B. Hudson

    2007-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2006 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2006; Warren and Grossman, 2007; National Security Technologies, LLC, 2007). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2006 totaled 98.6 millimeters (mm) (3.9 inches [in.]) at the Area 3 RWMS and 80.7 mm (3.2 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 remains at the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that evaporation continues to slowly remove soil moisture that came from the heavy precipitation in the fall of 2004 and the spring of

  6. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    David B. Hudson, Cathy A. Wills

    2006-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover

  7. Quality prediction of a leached produced in a sanitary landfills

    International Nuclear Information System (INIS)

    Agudelo Garcia, Ruben Alberto; Garcia R, Francisco Fernando; Rivera Mesa, Carolina

    2002-01-01

    This paper presents a mathematical model developed with the purpose of predicting the concentration of pollutants in the leached produced by the biological degradation of the solid wastes disposed in sanitary landfills. The model consists in a kinetic equation of first level, able to describe the degradation of the organic matter being the solid residuals. This model was calibrated using the results obtained from six laboratory scale lysimeters operated under different conditions. The model predicted the concentration of the pollutants in the leached with an accuracy of 94%

  8. An electrical resistivity-based method for investigation of subsurface structure

    Science.gov (United States)

    Alves Meira Neto, A.; Litwin, D.; Troch, P. A. A.; Ferre, T. P. A.

    2017-12-01

    Resolving the spatial distribution of soil porosity within the subsurface is of great importance for understanding flow and transport within heterogeneous media. Additionally, porosity patterns can be associated with the availability of water and carbon dioxide that will drive geochemical reactions and constrain microbiological growth. The use of controlled experimentation has the potential to circumvent problems related to the external and internal variability of natural systems, while also allowing a higher degree of observability. In this study, we suggest an ERT-based method of retrieving porosity fields based on the application of Archie's law associated with an experimental procedure that can be used in laboratory-scale studies. We used a 2 cubic meter soil lysimeter, equipped with 238 electrodes distributed along its walls for testing the method. The lysimeter serves as a scaled-down version of the highly monitored artificial hillslopes at the Landscape Evolution Observatory (LEO) located at Biosphere 2 - University of Arizona. The capability of the ERT system in deriving spatially distributed patterns of porosity with respect to its several sources of uncertainty was numerically evaluated. The results will be used to produce an optimal experimental design and for assessing the reliability of experimental results. This novel approach has the potential to further resolve subsurface heterogeneity within the LEO project, and highlight the use of ERT-derived results for hydro-bio-geochemical studies.

  9. Water extraction and implications on soil moisture sensor placement in the root zone of banana

    Directory of Open Access Journals (Sweden)

    Alisson Jadavi Pereira da Silva

    Full Text Available ABSTRACT: The knowledge on spatial and temporal variations of soil water storage in the root zone of crops is essential to guide the studies to determine soil water balance, verify the effective zone of water extraction in the soil and indicate the correct region for the management of water, fertilizers and pesticides. The objectives of this study were: (i to indicate the zones of highest root activity for banana in different development stages; (ii to determine, inside the zone of highest root activity, the adequate position for the installation of soil moisture sensors. A 5.0 m3 drainage lysimeter was installed in the center of an experimental area of 320 m2. Water extraction was quantified inside the lysimeter using a 72 TDR probe. The concept of time stability was applied to indicate the position for sensor installation within the limits of effective water extraction. There are two patterns of water extraction distribution during the development of banana and the point of installation of sensors for irrigation management inside the zone of highest root activity is not constant along the crop development.

  10. Monitoring of soil chemical characteristics with time as affected by irrigation with saline water

    International Nuclear Information System (INIS)

    Mostafa, A. Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    A lysimeter study was conducted to investigate the effect of irrigation with saline water on soil chemical characteristics at two depth (0-20) and (20-40 cm).Both fertilized (60, 120 KgN/ha) and unfertilized (0) soil were simulated in a total of 84 lysimeter. Data indicated that the electric conductivity (EC) values tended to increase with time intervals also EC-values as affected by soil depth after 105 days were high in 20 cm depth as compared to 40 cm depth. Chloride concentration did not reflect great variations as affected by time of nitrogen application where the values were nearly closed to each other. At the end of the experiment, much of Cl - content was occurred in the second layer of soil depth (20-40) as compared to depth of 0-20 cm. This was the case under all salinity levels. The irrigation with fresh water did not reflect any significant different in EC values between 120 KgN/ha , 60 KgN/ha or soil depth, however, it tend to increase with increasing water salinity levels. There were no much differences between the nitrogen application time (T1, T2 and T3). In contrast with Cl - , sodium was remained in the upper layer of 0-20 cm soil depth but still increase with increasing water salinity levels.

  11. Performance of methods for estimation of table beet water requirement in Alagoas

    Directory of Open Access Journals (Sweden)

    Daniella P. dos Santos

    Full Text Available ABSTRACT Optimization of water use in agriculture is fundamental, particularly in regions where water scarcity is intense, requiring the adoption of technologies that promote increased irrigation efficiency. The objective of this study was to evaluate evapotranspiration models and to estimate the crop coefficients of beet grown in a drainage lysimeter in the Agreste region of Alagoas. The experiment was conducted at the Campus of the Federal University of Alagoas - UFAL, in the municipality of Arapiraca, AL, between March and April 2014. Crop evapotranspiration (ETc was estimated in drainage lysimeters and reference evapotranspiration (ETo by Penman-Monteith-FAO 56 and Hargreaves-Samani methods. The Hargreaves-Samani method presented a good performance index for ETo estimation compared with the Penman-Monteith-FAO method, indicating that it is adequate for the study area. Beet ETc showed a cumulative demand of 202.11 mm for a cumulative reference evapotranspiration of 152.00 mm. Kc values determined using the Penman-Monteith-FAO 56 and Hargreaves-Samani methods were overestimated, in comparison to the Kc values of the FAO-56 standard method. With the obtained results, it is possible to correct the equations of the methods for the region, allowing for adequate irrigation management.

  12. Moisture movement in soils on the Hanford Reservation

    International Nuclear Information System (INIS)

    Brownell, L.E.; Isaacson, R.E.; Sloughter, J.P.; Veatch, M.D.

    1971-01-01

    Methods being studied are as follows: the thermodynamic method based on water potential and thermocouple psychrometers; the tracer method using atmospheric tritium; the annual water balance based on the annual heat balance; the field lysimeter using thermocouple psychrometers; the influence of soil breathing as a result of changes in barometric pressure; and the influence of soil stratification. Progress to date has involved the installation of thermocouple psychrometers from the surface to the water table 310 feet below. These instruments are in the process of equilibration. Isothermal methods of analyzing water potential must be extended to include nonisothermal conditions which are dominant at the Hanford Reservation. Tracer techniques using tritium analyses of soil samples have successfully demonstrated that archaic water exists in virgin soil at the Hanford Reservation from a depth of approximately 7 meters to the water table, indicating that percolation has been limited to lesser depths. The annual heat balance indicates that quantities of water many times greater than the annual average precipitation of 16 centimeters can be evaporated from the soils at the Hanford Reservation during a normal summer. This indicates that the critical precipitation (P/sub c/) value may be greater than 30 to 50 centimeters of water. More precise values of the Bowen's ratio for the Hanford Reservation are required to refine this computation. The field lysimeter is perhaps the most direct method of determining the critical precipitation values for the Hanford Reservation but as yet has not been used

  13. Mobility of pollutants in the soil-water-plant system

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Algader, S.; Gottwald, B.; Schaffer, K.; Mueck, K.; Streit, S.; Urbanich, E.

    1995-01-01

    The present report describes the first results obtained from lysimeter experiments started in 1990. The lysimeter plant consists of twelf soil monoliths from four different sites (three replicates each). Since 1990 the following agricultural crops were grown: endive, corn, winterwheat, mustard, sugar beet and potato. The mean yields of corn and sugar beet were distinctly above average. Gravitational water ranged from 3.9 % to 18.3 % of precipitation plus irrigation water, calculated as half years average values excluding the first six months of operation. The two brown earths on sediments exhibited a mean percentage of app. 10 %. The brown earth on silicate rock and the gleysol showed average values of 20 %. In 1990 the top layers (20 cm) were contaminated with three radionuclides. The leaching of the artificial contaminants 60 Co, 137 Cs and 226 Ra differed distinctly between the elements. The lowest leaching rates were observed for 137 Cs, followed by 60 Co. The 226 Ra-concentrations in the gravitational water were clearly higher than that of the other nuclides. However, it has to be proved, if the measured radium originates from the contaminated top layers or comes from natural 226 Ra from the bottom layer of the soil profile. (author)

  14. Soil moisture transport during the 1974--1975 and 1975--1976 water years

    International Nuclear Information System (INIS)

    Last, G.V.; Easley, P.G.; Brown, D.J.

    1976-12-01

    The rate and direction of soil moisture movement in Hanford sediments were determined for the 1974-1975 and 1975-1976 water years. The data for these determinations was obtained from two large lysimeters located on the 200 area plateau near the center of the Hanford Reservation. During the 1974-75 water year, meteoric moisture percolated to a depth of 2.5 meters with a peak moisture content of 10.5 volume-percent. This percolation envelope was eliminated by evaporation during the hot dry summer of 1975. The 1975-76 water year had only 70 percent of the normal precipitation, thus the percolation envelope was small and penetrated to a depth of only two meters. However, in spite of this shallow depth and low volume of moisture, the percolation envelope was not eliminated by the end of the water year because of lower seasonal temperatures and higher humidity during the drying season. Moisture content of sediments in the 4-18 meter depth range showed no relative change throughout the two water years, and no moisture accumulated at the bottom of the lysimeters, which indicates there is no deep percolation of meteoric moisture at this site, and no recharge to the ground water

  15. Effect of moisture control and air venting on H2S production and leachate quality in mature C&D debris landfills.

    Science.gov (United States)

    Zhang, Jianye; Dubey, Brajesh; Townsend, Timothy

    2014-10-21

    The effect of air venting and moisture variation on H2S production and the leaching of metals/metalloids (arsenic, copper, chromium, and boron) from treated wood in aged mature construction and demolition (C&D) debris landfills were examined. Three simulated C&D debris landfill lysimeters were constructed and monitored, each containing as a major debris component either wooden pallets, chromated copper arsenate (CCA) treated wood, or alkaline copper quaternary (ACQ) treated wood. The lysimeters were operated with alternating periods of water addition (a total of 160 L in four equal amounts) and air venting (68.4 m(3)per day for 121 days in two phases). Moisture addition did not increase H2S levels in the long term, and a significant drop in H2S concentration was observed (up to 99%) when aerobic conditions were promoted through air venting. H2S concentrations increased after venting stopped up to values approximately two orders of magnitude lower than observed prior to venting. Venting had the immediate consequence of suppressing biological H2S production, and the longer-term effect of decreasing organic matter that could otherwise be utilized in this process. Under aerobic conditions, the levels of arsenic, chromium, and boron in leachate decreased up to 96%, 49%, and 68%, respectively, while copper was found to increase up to 200% in CCA and 445% in ACQ column leachates.

  16. Salt as a mitigation option for decreasing nitrogen leaching losses from grazed pastures.

    Science.gov (United States)

    Ledgard, Stewart F; Welten, Brendon; Betteridge, Keith

    2015-12-01

    The main source of nitrogen (N) leaching from grazed pastures is animal urine with a high N deposition rate (i.e. per urine patch), particularly between late summer and early winter. Salt is a potential mitigation option as a diuretic to induce greater drinking-water intake, increase urination frequency, decrease urine N concentration and urine N deposition rate, and thereby potentially decrease N leaching. This hypothesis was tested in three phases: a cattle metabolism stall study to examine effects of salt supplementation rate on water consumption, urination frequency and urine N concentration; a grazing trial to assess effects of salt (150 g per heifer per day) on urination frequency; and a lysimeter study on effects of urine N rate on N leaching. Salt supplementation increased cattle water intake. Urination frequency increased by up to 69%, with a similar decrease in urine N deposition rate and no change in individual urination volume. Under field grazing, sensors showed increased urination frequency by 17%. Lysimeter studies showed a proportionally greater decrease in N leaching with decreased urine N rate. Modelling revealed that this could decrease per-hectare N leaching by 10-22%. Salt supplementation increases cattle water intake and urination frequency, resulting in a lower urine N deposition rate and proportionally greater decrease in urine N leaching. Strategic salt supplementation in autumn/early winter with feed is a practical mitigation option to decrease N leaching in grazed pastures. © 2015 Society of Chemical Industry.

  17. Transport assessment - arid: measurement and prediction of water movement below the root zone

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.

    1984-01-01

    The amount of water transported below the root-zone and available for drainage (recharge) must be known in order to quantify the potential for leaching at low-level waste sites. Under arid site conditions, we quantified drainage by using weighing lysimeters containing sandy soil and measured 6 and 11 cm of drainage for a 1-yr period (June 1983-May 1984) from grass-covered and bare-soil surfaces, respectively. Precipitation during this period at our test site near Richland, Washington, was 25 cm. Similar drainage values were estimated from neutron probe measurements of water content profile changes in an adjacent grass-covered site. These data suggest that significant amounts of drainage can occur at arid sites when soils are coarse textured and precipitation occurs during fall and winter months. Model simulations predicted drainage values comparable to those measured with our weighing lysimeters. Long-term, 500- to 1000-yr predictions of leaching are possible with our model simulations. However, additional studies are needed to evaluate the effect of soil variability and stochastic rainfall inputs on drainage estimates, particularly for arid sites

  18. Leak detection systems for uranium mill tailings impoundments with synthetic liners

    International Nuclear Information System (INIS)

    Myers, D.A.; Tyler, S.W.; Gutknecht, P.J.; Mitchell, D.H.

    1983-09-01

    This study evaluated the performance of existing and alternative leak detection systems for lined uranium mill tailings ponds. Existing systems for detecting leaks at uranium mill tailings ponds investigated in this study included groundwater monitoring wells, subliner drains, and lysimeters. Three alternative systems which demonstrated the ability to locate leaks in bench-scale tests included moisture blocks, soil moisture probes, and a soil resistivity system. Several other systems in a developmental stage are described. For proper performance of leak detection systems (other than groundwater wells and lysimeters), a subgrade is required which assures lateral dispersion of a leak. Methods to enhance dispersion are discussed. Cost estimates were prepared for groundwater monitoring wells, subliner drain systems, and the three experimental systems. Based on the results of this report, it is suggested that groundwater monitoring systems be used as the primary means of leak detection. However, if a more responsive system is required due to site characteristics and groundwater quality criteria, subliner drains are applicable for ponds with uncovered liners. Leak-locating systems for ponds with covered liners require further development. Other recommendations are discussed in the report

  19. Assessment of changes of some functions of Ukrainian acid soils after chemical amelioration

    Directory of Open Access Journals (Sweden)

    Zapko Yurij

    2014-09-01

    Full Text Available The objective of the article was to determine the effectiveness of lime of different origin for chemical amelioration of soils and examine its impact on soil functions such as productivity, habitat, regulation of water quality, and the protective buffer biogeocenotic screen. Limy ameliorants were applied in small local field experiment on Luvic Chernozem, and experiment with lysimeter columns was carried out on Albic Luvisol. The number of the main groups of microflora and enzymatic activity of soil was determined in soil samples taken for the analysis from the root zone. Research concerning the influence of natural and industrial origin ameliorants on soil as habitat showed the correlation of sugar beets productivity with soil biogenic. The increase of biomultiplicity of soil microbiota after addition of a cement dust and negative influence of red sludge on soil as habitat for living organisms was observed. Research involving the influence of ameliorants on soil by lime as the protective buffer biogeocenotic screen was carried out using lysimeter columns. It was stated that the addition of limy ameliorants reduces mobility of heavy metals.

  20. Remediation and reclamation of soils heavily contaminated with toxic metals as a substrate for greening with ornamental plants and grasses.

    Science.gov (United States)

    Jelusic, Masa; Lestan, Domen

    2015-11-01

    Soils highly contaminated with toxic metals are currently treated as waste despite their potential inherent fertility. We applied EDTA washing technology featuring chelant and process water recovery for remediation of soil with 4037, 2527, and 26 mg kg(-1) of Pb, Zn and Cd, respectively in a pilot scale. A high EDTA dose (120 mmol kg(-1) of soil) removed 70%, 15%, and 58% of Pb, Zn, and Cd, respectively, and reduced human oral bioaccessibility of Pb below the limit of quantification and that of Zn and Cd 3.4 and 3.2 times. In a lysimeters experiment, the contaminated and remediated soils were laid into two garden beds (4×1×0.15 m) equipped with lysimeters, and subjected to cultivation of ornamental plants: Impatiens walleriana, Tagetes erecta, Pelargonium×peltatum, and Verbena×hybrida and grasses: Dactylis glomerata, Lolium multiflorum, and Festuca pratensis. Plants grown on remediated soil demonstrated the same or greater biomass yield and reduced the uptake of Pb, Zn and Cd up to 10, 2.5 and 9.5 times, respectively, compared to plants cultivated on the original soil. The results suggest that EDTA remediation produced soil suitable for greening. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Septic systems as hot-spots of pollutants in the environment: Fate and mass balance of micropollutants in septic drainfields.

    Science.gov (United States)

    Yang, Yun-Ya; Toor, Gurpal S; Wilson, P Chris; Williams, Clinton F

    2016-10-01

    Septic systems, a common type of onsite wastewater treatment systems, can be an important source of micropollutants in the environment. We investigated the fate and mass balance of 17 micropollutants, including wastewater markers, hormones, pharmaceuticals and personal care products (PPCPs) in the drainfield of a septic system. Drainfields were replicated in lysimeters (1.5m length, 0.9m width, 0.9m height) and managed similar to the field practice. In each lysimeter, a drip line dispersed 9L of septic tank effluent (STE) per day (equivalent to 32.29L/m(2) per day). Fourteen micropollutants in the STE and 12 in the leachate from drainfields were detected over eight months. Concentrations of most micropollutants in the leachate were low (85% of the added micropollutants except for sucralose were attenuated in the drainfield. We discovered that sorption was the key mechanism for retention of carbamazepine and partially for sulfamethoxazole, whereas microbial degradation likely attenuated acetaminophen in the drainfield. This data suggests that sorption and microbial degradation limited transport of micropollutants from the drainfields. However, the leaching of small amounts of micropollutants indicate that septic systems are hot-spots of micropollutants in the environment and a better understanding of micropollutants in septic systems is needed to protect groundwater quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modelling Water Flow through Paddy Soils under Alternate Wetting and Drying Irrigation Practice

    Science.gov (United States)

    Shekhar, S.; Mailapalli, D. R.; Das, B. S.; Raghuwanshi, N. S.

    2017-12-01

    Alternate wetting and drying (AWD) irrigation practice in paddy cultivation requires an optimum soil moisture stress (OSMS) level at which irrigation water savings can be maximized without compromising the yield reduction. Determining OSMS experimentally is challenging and only possible with appropriate modeling tools. In this study, field experiments on paddy were conducted in thirty non-weighing type lysimeters during dry seasons of 2016 and 2017. Ten plots were irrigated using continuous flooding (CF) and the rest were irrigated with AWD practice at 40mb and 75mb soil moisture stress levels. Depth of ponding and soil suction at 10, 40 and 70 cm from the soil surface were measured daily from all lysimeter plots. The measured field data were used in calibration and validation of Hydrus-1D model and simulated the water flow for both AWD and CF plots. The Hydrus-1D is being used to estimate OSMS for AWD practice and compared the seasonal irrigation water input and deep percolation losses with CF practice.

  3. Environmental and agronomic aspects of municipal-solid-waste heavy fraction used for turfgrass production

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, M.S.

    1991-01-01

    In a field plot experiment using Kentucky bluegrass (Poa pratensis L.), measurements of sod strength taken 8.5 and 9.5 months after seeding were greater for sod grown in topsoil amended with heavy fraction than for turf grown in topsoil only. In a container study, physical properties of a loam topsoil were altered 16 months after addition of heavy fraction. Bulk density and particle density were reduced and organic matter content increased by soil incorporation of this by-product. Total porosity and air porosity of the topsoil increased whereas water porosity decreased with increasing amount of applied heavy fraction. Soil fertility was enhanced and soil pH raised by addition of heavy fraction. Concentrations of extractable NH[sub 4]-N, P, K, Ca, Mg, Mn, and Zn in soil were increased by the application of heavy fraction, as were concentrations of K, Ca, S, Mg, and Mn in leachate collected in lysimeter studies. Improved fertility resulted in greater aesthetic quality, clipping yields, and tissue N content for tall fescue (Festuca arundinacea Schreb.). Lysimeter studies indicted that the greatest environmental concern associated with the use of heavy fraction for turfgrass production appears to be the potential for leaching of NO[sub 3]-N during turf establishment.

  4. SUNLIT AND SHADED MAIZE CANOPY WATER LOSS UNDER VARIED WATER STRESS

    Directory of Open Access Journals (Sweden)

    Antonio Odair Santos

    1999-12-01

    Full Text Available ABSTRACT The precise estimation of transpiration from plant canopies is important for the monitoring of crop water use and management of many agricultural operations related to water use planning. The aim of this study was to estimate transpiration from sunlit and shaded fractions of a maize ( Zea mays L. canopy, using the Penman-Monteith energy balance equation with modifications introduced by Fuchs et al. (1987 and Fuchs & Cohen (1989. Estimated values were validated by a heat pulse system, which was used to measure stem sap flow and by a weighing lysimeter. A relationship between incident radiation and leaf stomatal conductance for critical levels of leaf water potential was used to estimate transpiration. Results showed that computed transpiration of the shaded canopy ranged from 27 to 45% of the total transpiration when fluctuations in atmospheric demand and the level of water stress were taken in account. Hourly and daily estimates of transpiration showed agreement with lysimeter and heat pulse measurements on the well-watered plots. For the water-limited plots the precision of the estimate decreased due to difficulties in simulating the canopy stomatal conductance.

  5. Soil-moisture transport in arid site vadose zones

    International Nuclear Information System (INIS)

    Isaacson, R.E.; Brownell, L.E.; Nelson, R.W.; Roetman, E.L.

    1974-01-01

    Soil-moisture transport processes in the arid soils of the United States Atomic Energy Commission's Hanford site are being evaluated. The depth of penetration of meteoric precipitation has been determined by profiling fall-out tritium at two locations where the water table is about 90 m below ground surface. In situ temperatures and water potentials were measured with temperature transducers and thermocouple psychrometers at the same location to obtain thermodynamic data for identifying the factors influencing soil-moisture transport. Neutron probes are being used to monitor soil-moisture changes in two lysimeters, three metres in diameter by 20 metres deep. The lysimeters are also equipped to measure pressure, temperature and relative humidity as a function of depth and time. Theoretical models based on conservation of momentum expressions are being developed to analyse non-isothermal soil-moisture transport processes. Future work will be concerned with combining the theoretical and experimental work and determining the amount of rainfall required to cause migration of soil-moisture to the water table. (author)

  6. Transport assessment - arid: measurement and prediction of water movement below the root zone

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    The amount of water transported below the root-zone and available for drainage (recharge) must be known in order to quantify the potential for leaching at low-level waste sites. Under arid site conditions, we quantified drainage by using weighing lysimeters containing sandy soil and measured 6 and 11 cm of drainage for a 1-yr period (June 1983-May 1984) from grass-covered and bare-soil surfaces, respectively. Precipitation during this period at our test site near Richland, Washington, was 25 cm. Similar drainage values were estimated from neutron probe measurements of water content profile changes in an adjacent grass-covered site. These data suggest that significant amounts of drainage can occur at arid sites when soils are coarse textured and precipitation occurs during fall and winter months. Model simulations predicted drainage values comparable to those measured with our weighing lysimeters. Long-term, 500- to 1000-yr predictions of leaching are possible with our model simulations. However, additional studies are needed to evaluate the effect of soil variability and stochastic rainfall inputs on drainage estimates, particularly for arid sites. 15 references, 9 figures, 1 table

  7. Determination of degree of compacting and of moisture content by radiometric probes

    International Nuclear Information System (INIS)

    Martinec, J.; Paul, P.

    1977-01-01

    A survey is given of radiometric probes used for measuring bulk density and moisture content. Surface probes are used in depths of up to 20 cm with an accuracy of 10%, drive-in probes are used to depths of up to 50 cm with a 4% error, depth probes are used for measuring in depths of 30 to 50 cm with an accuracy of roughly 5% and bulk density in depths of 10 to 150 cm may be measured with an accuracy of 2% using a lysimeter. Changes in the bulk density and soil moisture of the subsoil of an airport runway were studied radiometrically in dependence on time and depth. The dependence is represented graphically. The results of radiometric measurements were compared with the conventional method using a lysimeter probe; the comparison showed that the results were lower by about 7% for the moisture content and higher by about 8% for the bulk density. Radiometric measurements for determining bulk density and soil moisture are advantageous in that they allow the measurement of a great number of sites without any major disturbance of the measured material and results are available immediately on measurement. The economic effect is significant in a large number of measurements carried out on a surface having the same chemical composition and similar grain size which does not necessitate calibration of the instruments to be made more than once a week. The NZK-201 probe by Tesla does not provide sufficiently accurate information on the moisture and density of the earths probed

  8. Model assessment of protective barriers: Part 4, Status of FY 1992 work

    International Nuclear Information System (INIS)

    Fayer, M.J.

    1993-03-01

    Protective barriers are being considered for use at the Hanford Site to enhance the isolation of radioactive wastes from water, plant, and animal intrusion. This study is part of an ongoing effort to assess the effectiveness of protective barriers for isolation of wastes from water. Part I of this study was the original modeling assessment by Pacific Northwest Laboratory of various protective barrier designs (e.g., soil type, vegetation). In Part 11 of this study, additional barrier designs were reviewed and several barrier modeling assumptions were tested. A test plan was then produced that detailed the requirement for hydrologic modeling of protective barriers. Part III of this study summarized the status of work in FY 1990 dealing with two-dimensional flow beneath the barrier and with validation testing using lysimeter data. This report (Part IV) addresses the application of a calibrated model to a much longer data set, the application of the calibrated model to a lysimeter that received a different treatment, and the effect of hysteresis on the behavior of water in the protective barrier

  9. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Directory of Open Access Journals (Sweden)

    Mohammad Aljaradin

    2016-01-01

    Full Text Available A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane content was found to be more than 45% and the leachate produced reached 15.7 l after 200 days. However, after 260 days the gas and leachate production rate became negligible. A significant amount of heavy metal traces was found in the leachate due to mixed waste disposal. Changes in biogas and leachate quality parameters in the lysimeter revealed typical landfill behaviour trends, the only difference being that they developed much more quickly. In view of current landfill practices in Jordan and the effect of climate change, the results suggest that landfill design and operational modes need to be adjusted in order to achieve sustainability. For this reason, optimized design parameters and operational scenarios for sustainable landfill based on the country’s climatic conditions and financial as well as technical potential are recommended as a primary reference for future landfills in Jordan as well as in similar regions and climates.

  10. Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone.

    Science.gov (United States)

    Nauer, Philipp A; Chiri, Eleonora; Schroth, Martin H

    2013-10-01

    Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil disturbance. It is based on perforated access tubes (ATs) permanently installed in the soil. A multi-level sampler allows extraction of soil-gas samples from 20 locations within 1 m depth, while a capacitance probe is used to measure volumetric water contents. During idle times, the ATs are sealed and can be equipped with temperature sensors. Proof-of-concept experiments in a field lysimeter showed good agreement of soil-gas samples and water-content measurements compared with conventional techniques, while a successfully performed gas-tracer test demonstrated the feasibility of the PMLS to determine soil-gas diffusion coefficients in situ. A field application of the PMLS to quantify oxidation of atmospheric CH4 in a field lysimeter and in the forefield of a receding glacier yielded activity coefficients and soil-atmosphere fluxes well in agreement with previous studies. With numerous options for customization, the presented tool extends the methodological choices to investigate soil-gas transport in the vadose zone.

  11. Experimental and modelling studies of radionuclide migration from contaminated groundwaters

    International Nuclear Information System (INIS)

    Tompkins, J. A.; Butler, A. P.; Wheater, H. S.; Shaw, G.; Wadey, P.; Bell, J. N. B.

    1994-01-01

    Lysimeter-based studies of radionuclide uptake by winter wheat are being undertaken to investigate soil-to-plant transfer processes. A five year multi-disciplinary research project has concentrated on the upward migration of contaminants from near surface water-tables and their subsequent uptake by a winter wheat crop. A weighted transfer factor approach and a physically based modelling methodology, for the simulation and prediction of radionuclide uptake, have been developed which offer alternatives to the traditional transfer factor approach. Integrated hydrological and solute transport models are used to simulate contaminant movement and subsequent root uptake. This approach enables prediction of radionuclide transport for a wide range of soil, plant and radionuclide types. This paper presents simulated results of 22 Na plant uptake and soil activity profiles, which are verified with respect to lysimeter data. The results demonstrate that a simple modelling approach can describe the variability in radioactivity in both the harvested crop and the soil profile, without recourse to a large number of empirical parameters. The proposed modelling technique should be readily applicable to a range of scales and conditions, since it embodies an understanding of the underlying physical processes of the system. This work constitutes part of an ongoing research programme being undertaken by UK Nirex Ltd., to assess the long term safety of a deep level repository for low and intermediate level nuclear waste. (author)

  12. Preliminary Study on the Effect of Wastewater Storage in Septic Tank on E. coli Concentration in Summer

    Directory of Open Access Journals (Sweden)

    James K. Bradshaw

    2013-07-01

    Full Text Available On-site wastewater treatment systems (OWTS work by first storing the wastewater in a septic tank before releasing it to soils for treatment that is generally effective and sustainable. However, it is not clear how the abundance of E. coli changes during its passage through the tank. In this study, which was conducted under the UGA young Scholar Program in summer of 2010, we examined the change in wastewater quality parameters during the passage of the wastewater through the tank and after its release into soil. We collected wastewater samples at the inlet and outlet of an experimental septic tank in addition to obtaining water samples from lysimeters below trenches where the drainpipes were buried. We report that E. coli concentration was higher by 100-fold in the septic tank effluent than influent wastewater samples, indicating the growth of E. coli inside the tank under typical Georgian summer weather. This is contrary to the assumption that E. coli cells do not grow outside their host and suggests that the microbial load of the wastewater is potentially enhanced during its storage in the tank. Electrical conductivity, pH and nitrogen were similar between the influent and effluent wastewater samples. E. coli and total coliform concentrations were mainly below detection in lysimeter samples, indicating the effectiveness of the soil in treating the wastewater.

  13. Leachability of radioactive constituents from uranium mine tailings

    International Nuclear Information System (INIS)

    Bryant, D.N.; Cohen, D.B.; Durham, R.W.

    1979-04-01

    A project was carried out using lysimeters to determine the leaching of radioactive constituents and BaRaSO 4 from abandoned uranium mine tailings. Lime addition to the surface of acidic abandoned tailings did not reduce the level of radioactive constituents in the leachate. Considerable increases in levels of the radionuclides 230 Th, 232 Th and 22 /8Th, as well as gross alpha and beta activity in the leachate, occurred five months after recycling of BaRaSO 4 sediments to the surface layers of abandoned tailings. After nine months of leaching, the levels of 226 Ra in the leachate were 30% greater than the tailings plus sediment treatment than from tailings only (control). Another experiment compared the quality of effluent flowing over chemically-fixed (solidified) BaRaSO 4 sediments with that of non-fixed (control) in simulated sedimentation ponds. During seven months the release of 226 Ra to water from chemically-fixed BaRaSO 4 sediments remained 3 for phosphorus removal) was applied to supply 3 percent organic matter in the top 15 cm of the revegetated lysimeters. Undiluted effluent and leachate from chemically-fixed BaRaSO 4 sediments and fresh tailings were 100 percent lethal to Daphnia pulex and rainbow trout (Salmo gairdneri) in static 96-hour bioassay tests. Diluted (50 percent) effluent samples were non-toxic. (auth)

  14. Modelling 137Cs uptake in plants from undisturbed soil monoliths

    International Nuclear Information System (INIS)

    Waegeneers, Nadia; Smolders, Erik; Merckx, Roel

    2005-01-01

    A model predicting 137 Cs uptake in plants was applied on data from artificially contaminated lysimeters. The lysimeter data involve three different crops (beans, ryegrass and lettuce) grown on five different soils between 3 and 5 years after contamination and where soil solution composition was monitored. The mechanistic model predicts plant uptake of 137 Cs from soil solution composition. Predicted K concentrations in the rhizosphere were up to 50-fold below that in the bulk soil solution whereas corresponding 137 Cs concentration gradients were always less pronounced. Predictions of crop 137 Cs content based on rhizosphere soil solution compositions were generally closer to observations than those based on bulk soil solution composition. The model explained 17% (beans) to 91% (lettuce) of the variation in 137 Cs activity concentrations in the plants. The model failed to predict the 137 Cs activity concentration in ryegrass where uptake of the 5-year-old 137 Cs from 3 soils was about 40-fold larger than predicted. The model generally underpredicted crop 137 Cs concentrations at soil solution K concentration below about 1.0 mM. It is concluded that 137 Cs uptake can be predicted from the soil solution composition at adequate K nutrition but that significant uncertainties remain when soil solution K is below 1 mM

  15. Control of water infiltration into near surface LLW disposal units

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1992-10-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70inch x 45inch x lOinch) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions am maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. TWs system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (''drying out'') existing water-logged disposal sites at low cost

  16. Control of water infiltration into near surface LLW disposal units. Progress report on field experiments at a humid region site, Beltsville, Maryland: Volume 7

    International Nuclear Information System (INIS)

    Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

    1994-12-01

    The project objective is to assess means for controlling waste infiltration through waste disposal unit covers in humid regions. Experimental work is being performed in large scale lysimeters (70 ft x 45 ft x 10 ft) at Beltsville, MD and results of the assessment are applicable to disposal of LLW, uranium mill tailings, hazardous waste, and sanitary landfills. Three concepts are under investigation: (1) resistive layer barrier, (2) conductive layer barrier, and bioengineering water management. The resistive layer barrier consists of compacted earth (clay). The conductive layer barrier is a special case of the capillary barrier and it requires a flow layer (e.g. fine sandy loam) over a capillary break. As long as unsaturated conditions are maintained water is conducted by the flow layer to below the waste. This barrier is most efficient at low flow rates and is thus best placed below a resistive layer barrier. Such a combination of the resistive layer over the conductive layer barrier promises to be highly effective provided there is no appreciable subsidence. Bioengineering water management is a surface cover that is designed to accommodate subsidence. It consists of impermeable panels which enhance run-off and limit infiltration. Vegetation is planted in narrow openings between panels to transpire water from below the panels. This system has successfully dewatered two lysimeters thus demonstrating that this procedure could be used for remedial action (drying out) existing water-logged disposal sites at low cost

  17. Modeling Recharge - can it be Done?

    Science.gov (United States)

    Verburg, K.; Bond, W. J.; Smith, C. J.; Dunin, F. X.

    2001-12-01

    In sub-humid areas where rainfall is relatively low and sporadic, recharge (defined as water movement beyond the active root zone) is the small difference between the much larger numbers rainfall and evapotranspiration. It is very difficult to measure and often modeling is resorted to instead. But is modeling this small number any less difficult than measurement? In Australia there is considerable debate over the magnitude of recharge under different agricultural systems because of its contribution to rising saline groundwater levels following the clearing of native vegetation in the last 100 years. Hence the adequacy of measured and modeled estimates of recharge is under close scrutiny. Results will be presented for the water balance of an intensively monitored 8 year sequence of crops and pastures. Measurements included meteorological inputs, evapotranspiration measured with a pair of weighing lysimeters, and soil water content was measured with TDR and neutron moisture meter. Recharge was estimated from the percolate removed from the lysimeters as well as, when conditions were suitable, from soil water measurements and combined soil water and evapotranspiration measurements. This data was simulated using a comprehensive soil-plant-atmosphere model (APSIM). Comparison with field measurements shows that the recharge can be simulated with an accuracy similar to that with which it can be measured. However, is either sufficiently accurate for the applications for which they are required?

  18. Arsenic transfer and impacts on snails exposed to stabilized and untreated As-contaminated soils

    International Nuclear Information System (INIS)

    Coeurdassier, M.; Scheifler, R.; Mench, M.; Crini, N.; Vangronsveld, J.; Vaufleury, A. de

    2010-01-01

    An As-contaminated soil (Unt) was amended with either iron grit (Z), a coal fly ash (beringite, B) or B + Z (BZ) and placed in lysimeters in 1997. An uncontaminated soil (R) was also studied. In summer and autumn 2003, lettuces were cultivated in the lysimeters and snails were caged for one month. Lettuce As concentrations were higher during the summer, while no differences occurred in snails between seasons. Snail As concentrations (μg g -1 DW) ranged from 2.5 to 7.0 in B, Z and BZ, and peaked at 17.5 in Unt. In summer, snail survival was affected in Unt and Z compared to R and B while no mortality was noticed in autumn. Snail growth decreased only in B, BZ and Unt in autumn. Snail As concentrations suggest a risk for their predators even on the remediated soils. - The addition of beringite along with iron grit into an As-contaminated soil decreases As transfer to and impacts on snails.

  19. Fruit load governs transpiration of olive trees

    Science.gov (United States)

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-01-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. PMID:26802540

  20. Field measurements of groundwater pollution from agricultural land use

    International Nuclear Information System (INIS)

    Cepuder, P.

    2000-01-01

    This study was carried out in a problem area located to the northeast of Vienna. Several devices were installed for collecting water samples from the soil profile to measure nitrate concentration: suction cups, soil-water samplers, tensiometers and small lysimeters. Measurements of N leaching from four levels of fertilizer application were made at Gross Enzersdorf under irrigated wheat using suction cups and lysimeters. In order to determine fertilizer-N uptake by plants and the amounts retained in the soil and leached, 15 N-enriched fertilizer was applied to micro-plots. The nitrate concentrations below the root zone were measured for winter wheat followed by a cover crop, using suction cups. Soil-water contents were measured in the soil profile with a neutron probe and gypsum blocks, and suctions were measured with tensiometers at four depths. The yields of crops together with total N in grain and straw from fertilizer and soil were calculated. Also presented are data on the mineralization, immobilization and actual fertilizer used by the crops. Winter wheat took up between 27% and 44% of the applied fertilizer. The storage of fertilizer N in soil ranged between 22% and 36%, and only a small fraction was leached. (author)

  1. An Isotopic view of water and nitrogen transport through the ...

    Science.gov (United States)

    Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variab

  2. Risk analysis of bioprocesses based on genetically modified bacteria. Pathway and exposure modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rein, A.; Bittens, M. [Tuebingen Univ. (Germany). Zentrum fuer Angewandte Geowissenschaften

    2003-07-01

    For soils contaminated with polychlorinated biphenyls (PCBs), a plant-microorganism system for in situ - bioremediation has been developed. It consists of genetically modified microorganisms (GMOs) in conjunction with plant roots. The GMOs are Pseudomonas fluorescens strains which are genetically engineered to degrade PCB congeners in situ. Their metabolism requires root exudates and is therefore tightly coupled to plant rhizospheres. Compared to wild type organisms, the genetically modified bacteria develop a specificity to PCB as a substrate and therefore foster biodegradation in a more efficient way. To evaluate the efficiency and impact of this bioremediation system for potential field application, lysimeter tests are carried out. The lysimeters are filled with contaminated soil from a PCB release site in Denmark and planted with GMO inoculated plants. On the basis of these experiments, a detailed risk analysis is carried out to obtain conclusions to field-conditions (potential deliberate GMO-release). A qualitative and quantitative assessment of actual or potential effects is performed, addressing transport, fate and exposure of PCBs, GMOs and specific degradation products in different environmental compartments. (orig.)

  3. Leaching of saltstone: Laboratory and field testing and mathematical modeling

    International Nuclear Information System (INIS)

    Grant, M.W.; Langton, C.A.; Oblath, S.B.; Pepper, D.W.; Wallace, R.M.; Wilhite, E.L.; Yau, W.W.F.

    1987-01-01

    A low-level alkaline salt solution will be a byproduct in the processing of high-level waste at the Savannah River Plant (SRP). This solution will be incorporated into a wasteform, saltstone, and disposed of in surface vaults. Laboratory and field leach testing and mathematical modeling have demonstrated the predictability of contaminant release from cement wasteforms. Saltstone disposal in surface vaults will meet the design objective, which is to meet drinking water standards in shallow groundwater at the disposal area boundary. Diffusion is the predominant mechanism for release of contaminants to the environment. Leach testing in unsaturated soil, at soil moisture levels above 1 wt %, has shown no difference in leach rate compared to leaching in distilled water. Field leach testing of three thirty-ton blocks of saltstone in lysimeters has been underway since January 1984. Mathematical models were applied to assess design features for saltstone disposal. One dimensional infinite-composite and semi-infinite analytical models were developed for assessing diffusion of nitrate from saltstone through a cement barrier. Numerical models, both finite element and finite difference, were validated by comparison of model predictions with the saltstone lysimeter results. Validated models were used to assess the long-term performance of the saltstone stored in surface vaults. The maximum concentrations of all contaminants released from saltstone to shallow groundwater are predicted to be below drinking water standards at the disposal area boundary. 5 refs., 11 figs., 5 tabs

  4. Interpretation of vadose zone monitoring system data near Engineered Trench 1

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Whiteside, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-12

    The E-Area Vadose Zone Monitoring System (VZMS) includes lysimeter sampling points at many locations alongside and angling beneath the Engineered Trench #1 (ET1) disposal unit footprint. The sampling points for ET1 were selected for this study because collectively they showed consistently higher tritium (H-3) concentrations than lysimeters associated with other trench units. The VZMS tritium dataset for ET1 from 2001 through 2015 comprises concentrations at or near background levels at approximately half of locations through time, concentrations up to about 600 pCi/mL at a few locations, and concentrations at two locations that have exceeded 1000 pCi/mL. The highest three values through 2015 were 6472 pCi/mL in 2014 and 4533 pCi/mL in 2013 at location VL-17, and 3152 pCi/mL in 2007 at location VL-15. As a point of reference, the drinking water standard for tritium and a DOE Order 435.1 performance objective in the saturated zone at the distant 100-meter facility perimeter is 20 pCi/mL. The purpose of this study is to assess whether these elevated concentrations are indicative of a general trend that could challenge 2008 E-Area Performance Assessment (PA) conclusions, or are isolated perturbations that when considered in the context of an entire disposal unit would support PA conclusions.

  5. Temporal variability in phosphorus transfers: classifying concentration-discharge event dynamics

    Science.gov (United States)

    Haygarth, P.; Turner, B. L.; Fraser, A.; Jarvis, S.; Harrod, T.; Nash, D.; Halliwell, D.; Page, T.; Beven, K.

    The importance of temporal variability in relationships between phosphorus (P) concentration (Cp) and discharge (Q) is linked to a simple means of classifying the circumstances of Cp-Q relationships in terms of functional types of response. New experimental data at the upstream interface of grassland soil and catchment systems at a range of scales (lysimeters to headwaters) in England and Australia are used to demonstrate the potential of such an approach. Three types of event are defined as Types 1-3, depending on whether the relative change in Q exceeds the relative change in Cp (Type 1), whether Cp and Q are positively inter-related (Type 2) and whether Cp varies yet Q is unchanged (Type 3). The classification helps to characterise circumstances that can be explained mechanistically in relation to (i) the scale of the study (with a tendency towards Type 1 in small scale lysimeters), (ii) the form of P with a tendency for Type 1 for soluble (i.e., <0.45 μm P forms) and (iii) the sources of P with Type 3 dominant where P availability overrides transport controls. This simple framework provides a basis for development of a more complex and quantitative classification of Cp-Q relationships that can be developed further to contribute to future models of P transfer and delivery from slope to stream. Studies that evaluate the temporal dynamics of the transfer of P are currently grossly under-represented in comparison with models based on static/spatial factors.

  6. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties.

    Science.gov (United States)

    Jelusic, Masa; Lestan, Domen

    2014-03-15

    We applied a multi-level approach assessing the quality, toxicity and functioning of Pb, Zn and Cd contaminated/remediated soil from a vegetable garden in Meza Valley, Slovenia. Contaminated soil was extracted with EDTA and placed into field experimental plots equipped with lysimeters. Soil properties were assessed by standard pedological analysis. Fractionation and leachability of toxic metals were analyzed by sequential extraction and TCLP and metal bioaccessibility by UBM tests. Soil respiration and enzyme activities were measured as indicators of soil functioning. Remediation reduced the metal burden by 80, 28 and 72% for Pb, Zn and Cd respectively, with a limited impact on soil pedology. Toxic metals associated with labile soil fractions were largely removed. No shifts between labile and residual fractions were observed during the seven months of the experiment. Initial metal leaching measured through lysimeters eventually ceased. However, remediation significantly diminished potential soil enzyme activity and no trends were observed of the remediated soil recovering its biological properties. Soil washing successfully removed available forms of Pb, Zn and Cd and thus lowered the human and environmental hazards of the remediated soil; however, remediation also extracted the trace elements essential for soil biota. In addition to reduced water holding capacity, soil health was not completely restored. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Fate and Transport of Pharmaceutical Compounds Applied to Turf-Covered Soil

    Science.gov (United States)

    Young, M.; Green, R. L.; Devitt, D.; McCullough, M.; Wright, L.; Vanderford, B. J.; Snyder, S. A.

    2012-12-01

    In arid and semi-arid regions, the use of treated wastewater for landscape irrigation is becoming common practice and a significant asset to conserve potable water supplies. Public interest and lack of field-scale data are leading to a concern that compounds found in reuse water could persist in the environment and contaminate groundwater. As part of a larger study, 2-yr experiments were conducted in CA and NV, where reuse water was the primary source of non-ambient water input. A total of 13 compounds were studied, all originating in irrigation water applied to soil covered in turf or left bare. The target compounds included atenolol, atorvastatin, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, ibuprofen, meprobamate, naproxen, primidone, sulfamethoxazole, triclosan, and trimethoprim. Analytical protocols for all compounds (detection at ng/L range) were established before the study commenced. The goals of the research were to increase available data on the fate and transport of these target compounds in turfgrass/soil systems, and to use these data to assess long-term risk from using water containing these compounds. Experiments conducted at two scales are discussed here: lysimeter-scale and field-scale. At the lysimeter-scale, 24 drainage lysimeters (120 cm thick) were exposed to treated wastewater as an irrigation source. Lysimeters varied by soil type (two types), soil cover (bare- versus turf-covered) and leaching fraction (5% and 25%). Upper and lower boundary conditions were monitored throughout the study. Water samples were collected periodically after water breakthrough. After the study, soil samples were analyzed for compound mass, allowing compound mass balance and removal to be assessed. At the field-scale, passive drain gages (Decagon Devices) were installed in triplicate in fairways at four operational golf courses, one in NV and three in CA, all with histories of using treated wastewater. The gages measure water fluxes through the 60

  8. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application.

    Science.gov (United States)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2014-11-15

    Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic

  9. Nevada National Security Site 2010 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    2011-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2010 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2010a; 2010b; 2011). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 246.9 millimeters (mm) (9.72 inches [in.]) of precipitation at the Area 3 RWMS during 2010 is 56 percent above the average of 158.7 mm (6.25 in.), and the 190.4 mm (7.50 in.) of precipitation at the Area 5 RWMS during 2010 is 50 percent above the average of 126.7 mm (4.99 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than

  10. A spatially distributed isotope sampling network in a snow-dominated catchment for the quantification of snow meltwater

    Science.gov (United States)

    Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James

    2017-04-01

    In mountainous catchments with seasonal snowpacks, river discharge in downstream valleys is largely sustained by snowmelt in spring and summer. Future climate warming will likely reduce snow volumes and lead to earlier and faster snowmelt in such catchments. This, in turn, may increase the risk of summer low flows and hydrological droughts. Improved runoff predictions are thus required in order to adapt water management to future climatic conditions and to assure the availability of fresh water throughout the year. However, a detailed understanding of the hydrological processes is crucial to obtain robust predictions of river streamflow. This in turn requires fingerprinting source areas of streamflow, tracing water flow pathways, and measuring timescales of catchment storage, using tracers such as stable water isotopes (18O, 2H). For this reason, we have established an isotope sampling network in the Alptal, a snowmelt-dominated catchment (46.4 km2) in Central-Switzerland, as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Precipitation and snow cores are analyzed for their isotopic signature at daily or weekly intervals. Three-week bulk samples of precipitation are also collected on a transect along the Alptal valley bottom, and along an elevational transect perpendicular to the Alptal valley axis. Streamwater samples are taken at the catchment outlet as well as in two small nested sub-catchments (automatic snow lysimeter system was developed, which also facilitates real-time monitoring of snowmelt events, system status and environmental conditions (air and soil temperature). Three lysimeter systems were installed within the catchment, in one forested site and two open field sites at different elevations, and have been operational since November 2016. We will present the isotope time series from our regular sampling network, as well as initial results from our snowmelt lysimeter sites. Our

  11. Part 1: Logging residues in piles - Needle loss and fuel quality. Part 2: Nitrogen leaching under piles of logging residues

    International Nuclear Information System (INIS)

    Lehtikangas, P.; Lundkvist, H.

    1991-01-01

    Part 1: Experimental piles were built in three geographical locations during May-Sept. 1989. Logging residues consisted of 95% spruce and 5% pine. Height of the piles varied between 80 and 230 cm. Needles were collected by placing drawers under 40 randomely chosen piles. The drawers were emptied every two weeks during the storage period. Natural needle loss was between 18 and 32% of the total amount of needles after the first two months of storage. At the end of the storage period, 24-42% of the needles had fallen down to the drawers. At the end of the experiment the total needle fall was 95-100% in the shaken piles. According to the results of this study piles smaller than 150 cm had the most effective needle fall. Piles should be placed on open places where the air and sun heat penetrate and dry them. Needles were the most sensitive fraction to variations in precipitation compared to the other components, such as branches. Piles usually dried quickly, but they also rewet easily. This was especially true in the smaller piles. The lowest moisture content was measured at the end of June. The ash content in needles varied between 4 and 8%. 16 refs., 15 figs. Part 2: Three field experiments were equipped with no-tension humus lysimeters. Pairs of lysimeters with the same humus/field layer vegetation material were placed in pairs, one under a pile of felling residues and another in the open clear felling. Leaching of nitrogen as well as pH and electric conductivity in the leachate was followed through sampling of the leachate at regular intervals. The results from the investigation show that: * the amount of leachate was higher in lysimeters in the open clear felling, * pH in the leachate was initially lower under piles of felling residues, * the amount of nitrogen leached was higher in the open clear felling. Thus, storing of felling residues in piles during the summer season did not cause any increase in nitrogen leaching, which had been considered to be a risk

  12. Transport of atrazine and dicamba through silt and loam soils

    Science.gov (United States)

    Tindall, James A.; Friedel, Michael J.

    2016-01-01

    The objectives of this research were to determine the role of preferential flow paths in the transport of atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) and dicamba (3-6-dichloro-2-methoxybenzoic acid) through silt and loam soils overlying the High Plains aquifer in Nebraska. In a previous study, 3 of 6 study areas demonstrated high percentages of macropores; those three areas were used in this study for analysis of chemical transport. As a subsequent part of the study, 12 intact soil cores (30-cm diameter by 40-cm height), were excavated sequentially, two from each of the following depths: 0-40cm and 40-80cm. These cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties. Two undisturbed experimental field plots, each with a 3-m2 surface area, were installed in three study areas in Nebraska. Each was instrumented with suction lysimeters and tensiometers at depths of 10cm to 80cm in 10-cm increments. Additionally, each plot was planted with corn (Zea mays). A neutron probe access tube was installed in each plot to determine soil w ater content at 15-cm intervals. All plots were enclosed w ith a raised frame (of 8-cm height) to prevent surface runoff. All suction lysimeters were purged monthly for three months and were sampled immediately prior to pre-plant herbicide application to obtain background chemical concentrations. Atrazine and dicamba moved rapidly through the soil, but only after a heavy rainfall event, probably owing to the presence of preferential flow paths and lack of microbial degradation in these soil areas. Staining of laboratory cores showed a positive correlation between the percent area stained by depth and the subsequent breakthrough of Br- in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater

  13. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were 99% disappeared (primarily nitrified) in the vadose zone (20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the groundwater nitrate-N was elevated upto 19.2 mg/L after wastewater delivery in tradional systems. Total P in the wastewater was ~10 mg/L, but low in all lysimeters (0.046-1.72 mg/L) and piezometers (0.01-0.78 mg

  14. Evapotranspiração e coeficiente de cultivo do tomate caqui cultivado em ambiente protegido Evapotranspiration and crop coefficient of Kaki tomato cultivated in greenhouse

    Directory of Open Access Journals (Sweden)

    Ligia S. Reis

    2009-06-01

    Full Text Available Os parâmetros aerodinâmicos de uma cultura cultivada em ambiente protegido podem ser considerados dependentes do nível de radiação global, temperatura do ar e umidade do ar, com base em leis exponenciais. Assim sendo se propôs com este trabalho, estimar a evapotranspiração e o coeficiente de cultivo da cultura do tomate caqui em ambiente protegido, sob irrigação por gotejamento, utilizando-se o modelo de Penman-Monteith. Os parâmetros aerodinâmicos foram medidos com sensores conectados à estação automática instalada dentro do ambiente protegido. A evapotranspiração da cultura (ETc foi determinada experimentalmente por meio de lisímetros de drenagem e a umidade do solo foi medida através de sensores instalados a uma profundidade de 20 cm. O desempenho do modelo de Penman-Monteith foi comparado aos valores decendiais do balanço hídrico nos lisímetros; já a evapotranspiração de referência foi calculada com dados externos e utilizada para o cálculo do Kc da cultura; enfim, os resultados indicaram que o modelo de Penman-Monteith subestima os valores de evapotranspiração encontrados pelo balanço hídrico nos lisímetros.The aerodynamic parameters of a crop cultivated in greenhouse can be considered dependent upon the level of global radiation, air temperature and relative humidity, based on exponential laws. Consequently, this work intends to estimate the evapotranspiration and the crop coefficient of Kaki tomato in greenhouse, under drip irrigation, using the Penman-Monteith model. The aerodynamic parameters were measured with sensors connected to the automatic station installed inside the greenhouse. The ETc was determined experimentally through drainage lysimeters and the soil water content was measured through sensors installed at a depth of 20 cm. The performance of the Penman-Monteith model was compared to decennial values of the water balance in the lysimeters, while the reference evapotranspiration was calculated

  15. Overview of the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08): A field experiment evaluating methods for quantifying ET at multiple scales

    Science.gov (United States)

    Evett, Steven R.; Kustas, William P.; Gowda, Prasanna H.; Anderson, Martha C.; Prueger, John H.; Howell, Terry A.

    2012-12-01

    In 2008, scientists from seven federal and state institutions worked together to investigate temporal and spatial variations of evapotranspiration (ET) and surface energy balance in a semi-arid irrigated and dryland agricultural region of the Southern High Plains in the Texas Panhandle. This Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08) involved determination of micrometeorological fluxes (surface energy balance) in four weighing lysimeter fields (each 4.7 ha) containing irrigated and dryland cotton and in nearby bare soil, wheat stubble and rangeland fields using nine eddy covariance stations, three large aperture scintillometers, and three Bowen ratio systems. In coordination with satellite overpasses, flux and remote sensing aircraft flew transects over the surrounding fields and region encompassing an area contributing fluxes from 10 to 30 km upwind of the USDA-ARS lysimeter site. Tethered balloon soundings were conducted over the irrigated fields to investigate the effect of advection on local boundary layer development. Local ET was measured using four large weighing lysimeters, while field scale estimates were made by soil water balance with a network of neutron probe profile water sites and from the stationary flux systems. Aircraft and satellite imagery were obtained at different spatial and temporal resolutions. Plot-scale experiments dealt with row orientation and crop height effects on spatial and temporal patterns of soil surface temperature, soil water content, soil heat flux, evaporation from soil in the interrow, plant transpiration and canopy and soil radiation fluxes. The BEAREX08 field experiment was unique in its assessment of ET fluxes over a broad range in spatial scales; comparing direct and indirect methods at local scales with remote sensing based methods and models using aircraft and satellite imagery at local to regional scales, and comparing mass balance-based ET ground truth with eddy covariance

  16. Development and field testing of an alternative latrine design utilizing basic oxygen furnace slag as a treatment media for pathogen removal

    Science.gov (United States)

    Stimson, J.; Suhogusoff, A. V.; Blowes, D. W.; Hirata, R. A.; Ptacek, C. J.; Robertson, W. D.; Emelko, M. B.

    2009-05-01

    In densely-populated communities in developing countries, appropriate setback distances for pit latrines often cannot be met. An alternative latrine was designed that incorporates two permeable reactive media to treat pathogens and nitrate from effluent. Basic oxygen furnace (BOF) slag in contact with wastewater effluent elevates pH to levels (> 11) that inactivate pathogens. Saturated woodchip creates reducing conditions that encourage the growth of denitrifying bacteria which remove NO3-. The field application was constructed in Santo Antônio, a peri-urban community located 25 km south of the city of São Paulo, Brazil. A 2-m diameter pit was excavated to a depth of 4 m into the sandy-clay unsaturated zone. A geotextile liner was emplaced to create saturated conditions in the 0.5-m thick woodchip barrier. Above the woodchip barrier, a 1-m thick layer of BOF slag mixed with pea gravel and sand was emplaced. A series of filter layers, grading upward from coarse sand to fine gravel, where placed above the BOF layer, and gravel was also infilled around the outer perimeter of the excavation, to ensure O2 diffusion into the design, the formation of biofilm, and degradation of organic material. A control latrine, constructed with similar hydraulic characteristics and nonreactive materials, was constructed at a locality 100 m away, in the same geological materials. Total coliform, thermotolerant coliform, and E. coli are removed by approximately 4-5 log concentration units in less than one meter of vertical transport through the BOF slag media. In the control latrine, comparable reductions in these pathogenic indicators are observed over three meters of vertical transport. Removal of sulphur-reducing Clostridia, Clostridium perfrigens and somatic coliphage are also achieved in the alternative design, but initial concentrations in effluent are low. Some measurable concentrations of pathogen indicators are measured in lysimeters below the BOF layer, but are associated

  17. Preferential flow, nitrogen transformations and 15N balance under urine-affected areas of irrigated and non-irrigated clover-based pastures

    Science.gov (United States)

    Pakro, Naser; Dillon, Peter

    1995-12-01

    Urine-affected areas can lead to considerable losses of N by leaching, ammonia volatilisation and denitrification from dairy pastures in the southeast of South Australia. Potable groundwater supplies are considered to have become contaminated by nitrate as a result of leaching from these leguminous pastures. Dairy cow urine, labelled with 15N urea, was applied to micro-plots and mini-lysimeters installed in two adjacent irrigated (white clover-rye grass) and non-irrigated (subterranean clover-annual grasses) paddocks of a dairy farm on four occasions representing different seasonal conditions. These experiments allowed measurement of nitrogen transformations, recovery of 15N in the pasture and soil, and leaching below various depths. Gaseous losses were calculated from the nitrogen balance. The results of the four experiments showed that within a day of urine application up to 40% of the applied urinary-N was leached below a depth of 150 mm as a result of macropore flow in the irrigated paddock, and up to 24% in the non-irrigated one. After application to the irrigated paddock 17% of the urinary-N moved immediately below 300 mm but only 2% below the 450-mm depth. The urinary-N remaining in the soil was converted from urea to ammonium within a day regardless of season. Within the first 7 days of application six times more nitrate was produced in summer than in winter. This has obvious implications for leaching potential. Leaching of 15N from the top 150 mm of soil, following urine applications in all seasons, was between 41% and 62% of the applied 15N in the irrigated paddock and 25-51% in the non-irrigated paddock. However, leaching losses measured at depths of 300 or 450 mm were smaller by a factor of 2-4. The leaching loss of 15N applied in spring in both paddocks was 41% below 150 mm and 12% below 450 mm. Recovery of 15N from the soil-plant system in the 450-nm deep lysimeters was ˜60% of that applied. Estimated ammonia was ˜9% of applied 15N with no paddock

  18. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Min; Sun, Xuecheng; Hu, Chengxiao; Tan, Qiling; Zhao, Changsheng [Huazhong Agricultural Univ., Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Di, Hong J. [Lincoln Univ., Christchurch (New Zealand). Center for Soil and Environment Research

    2011-07-15

    Vegetable production is one of the most intensive agricultural systems with high rates of nitrogen (N) fertilizer use and irrigation, conditions conducive for nitrate (NO{sub 3}{sup -}) leaching, and nitrous oxide (N{sub 2}O) emissions. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO{sub 3}{sup -} leaching and N{sub 2}O emissions in vegetable production systems. Twenty-four undisturbed soil monolith lysimeters (610 mm in diameter; 700 mm in depth; surface area, 0.29 m{sup 2}) with two different soils, Huangzongrang (alfisol) and Chaotu (fluvisols), were collected and installed in a field lysimeter facility in Central China under irrigated vegetable production conditions. Urea fertilizer was applied at 650 kg N ha{sup -1}, and DCD was applied at 10 kg ha{sup -1} to the lysimeters planted with three kinds of vegetables (capsicum, Capsicum annuum L.; amaranth, Amaranthus mangostanus L.; radish, Raphanus sativus L.). The results showed that DCD reduced NO3- leaching by 58.5% and 36.2% and N{sub 2}O emissions factor by 83.8% and 72.7% in the two soils. The average NO{sub 3}{sup -}-N concentration in the drainage water was decreased from 4.9 mg NL{sup -1} to 2.3 mg NL{sup -1} and from 4.4 mg NL{sup -1} to 3.3 mg NL{sup -1}, in the Huangzongrang and Chaotu soils, respectively. In addition to the environmental benefits, the use of DCD also increased the yields of capsicum and radish in alfisol soil significantly (P < 0.01); only the amaranth yield in fluvisol soil was declined (P < 0.01), and the other vegetables yields were not affected. Total N concentrations of the three vegetables were increased significantly (P < 0.01) with the application of DCD with urea compared with urea alone. These results showed that the nitrification inhibitor DCD has the potential to significantly reduce NO{sub 3}{sup -} leaching and N{sub 2}O emissions and to make vegetable farming more environmentally

  19. Pore structure of natural and regenerated soil aggregates

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2014-01-01

    Quantitative characterization of aggregate pore structure can reveal the evolution of aggregates under different land use and management practices and their effects on soil processes and functions. Advances in X-ray Computed Tomography (CT) provide powerful means to conduct such characterization....... This study examined aggregate pore structure of three differently managed same textured Danish soils (mixed forage cropping, MFC; mixed cash cropping, MCC; cereal cash cropping, CCC) for (i) natural aggregates, and (ii) aggregates regenerated after 20 months of incubation. In total, 27 aggregates (8-16 mm...... pore diameter of 200 and 170 Hm, respectively. Pore shape analysis indicated that CCC and MFC aggregates had an abundance of rounded and elongated pores, respectively, and those of MCC were in-between CCC and MFC. Aggregate pore structure development in the lysimeters was nearly similar irrespective...

  20. Plant rhizosphere processes influencing radionuclide mobility in soil

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Cowan, C.E.; McFadden, K.M.; Garland, T.R.; Wildung, R.E.

    1987-10-01

    Native vegetation associated with commercial low-level waste disposal sites has the potential for modifying the soil chemical environment over the long term and, consequently, the mobility of radionuclides. These effects were assessed for coniferous and hardwood tree species by using plants grown in lysimeter systems and examining their influence on soil solution chemistry using advanced analytical and geochemical modeling techniques. The study demonstrated formation of highly mobile anionic radionuclide complexes with amino acids, peptides, and organic acids originating from plant leaf litter and roots. The production of complexing agents was related to season and tree species, suggesting that vegetation management and exclusion may be appropriate after a site is closed. This research provides a basis for focusing on key complexing agents in future studies to measure critical affinity constants and to incorporate this information into mathematical models describing biological effects on radionuclide mobility. 26 refs., 5 figs., 23 tabs

  1. Uptake of plutonium, americium, curium, and neptunium in plants cultivated under greenhouse conditions

    International Nuclear Information System (INIS)

    Pimpl, M.; Schmidt, W.

    1984-01-01

    The root-uptake of Np, Pu, Am, and Cm from three different artificially contaminated soils in grass, maize, spring wheat, and potatoes was investigated under greenhouse conditions in pots filled with 9 kg contaminated soil and in lysimeters with a surface area of 0,5 m 2 containing the soils in undisturbed profils up to a depth of 80 cm. Only the plough layer of 30 cm was contaminated with Np, Pu, Am, and Cm. Crop cultivation was done corresponding to usual practice in agriculture. Results of the 1st vegetation period are represented. Transfer factors obtained deviate considerably from those which are recommended for the estimation of long-term exposure of man in the Federal Republic of Germany. (orig.)

  2. Recharge Data Package for the 2005 Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, Michael J.; Szecsody, Jim E.

    2004-06-30

    Pacific Northwest National Laboratory assisted CH2M Hill Hanford Group, Inc., (CHG) by providing estimates of recharge rates for current conditions and long-term scenarios involving disposal in the Integrated Disposal Facility (IDF). The IDF will be located in the 200 East Area at the Hanford Site and will receive several types of waste including immobilized low-activity waste. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the IDF PA Project and from modeling studies conducted for the project. Recharge estimates were provided for three specific site features (the surface barrier; possible barrier side slopes; and the surrounding soil) and four specific time periods (pre-Hanford; Hanford operations; surface barrier design life; post-barrier design life). CHG plans to conduct a performance assessment of the latest IDF design and call it the IDF 2005 PA; this recharge data package supports the upcoming IDF 2005 PA.

  3. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  4. Establishment of new disposal capacity for the Savannah River Plant

    International Nuclear Information System (INIS)

    Albenesius, E.L.; Wilhite, E.L.

    1987-01-01

    Two new low-level waste (LLW) disposal sites for decontaminated salt solidified with cement and fly ash (saltstone) and for conventional solid LLW are planned for SRP in the next several years. An above-ground vault disposal system for saltstone was designed to minimize impact on the environment by controlling permeability and diffusivity of the waste form and concrete liner. The experimental program leading to the engineered disposal system included formulation studies, multiple approaches to measurement of permeability and diffusivity, extensive mathematical modeling, and large-scale lysimeter tests to validate model projections. The overall study is an example of the systems approach to disposal site design to achieve a predetermined performance objective. The same systems approach is being used to develop alternative designs for disposal of conventional LLW at the Savannah River Plant. 14 figures

  5. Influência do manejo da irrigação no meloeiro rendilhado cultivado em ambiente protegido Irrigation management on net-melon fruits cultivated under greenhouse

    Directory of Open Access Journals (Sweden)

    Tonny J. A. Silva

    2005-12-01

    evaluated by tensiometer and tension lysimeter with two levels of solution fertility (presence and absence. Tension lysimeter is a device based on porous cap, capable of supplying water automatically to the plant through a Mariotte reservoir (constant hydraulic head. For the treatments with tension lysimeter, the average free water porosity (PLA was 15%. For treatments with tensiometers, the PLA was 35% in average, favoring a good relation of air-water throughout the experiment. The temporal variation of the matrix potential in treatments by tensiometer, measured in three depths, presented an average deviation of 9.10% whereas treatments with tension lysimeter were 1.33%. The irrigation management by tensiometers without fertilizer obtained an average weight of the fruits (1,070.4 g that was almost duplicated in relation to minimum commercial standard (550 g. However, by adding fertilizer in these plants the productivity increment was 4.5 times higher (2,493.8 g. The net-melon fruits presented a low productivity when the free water porosity was lower at 20%.

  6. [Measurement and estimation methods and research progress of snow evaporation in forests].

    Science.gov (United States)

    Li, Hui-Dong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Yuan, Feng-Hui; Wu, Jia-Bing

    2013-12-01

    Accurate measurement and estimation of snow evaporation (sublimation) in forests is one of the important issues to the understanding of snow surface energy and water balance, and it is also an essential part of regional hydrological and climate models. This paper summarized the measurement and estimation methods of snow evaporation in forests, and made a comprehensive applicability evaluation, including mass-balance methods (snow water equivalent method, comparative measurements of snowfall and through-snowfall, snow evaporation pan, lysimeter, weighing of cut tree, weighing interception on crown, and gamma-ray attenuation technique) and micrometeorological methods (Bowen-ratio energy-balance method, Penman combination equation, aerodynamics method, surface temperature technique and eddy covariance method). Also this paper reviewed the progress of snow evaporation in different forests and its influencal factors. At last, combining the deficiency of past research, an outlook for snow evaporation rearch in forests was presented, hoping to provide a reference for related research in the future.

  7. Improving efficiencies of irrigation and nitrogen uptake in wheat

    International Nuclear Information System (INIS)

    Bazza, M.

    2000-01-01

    Three years of field studies and lysimeter experiments on irrigated wheat had the objective of finding ways of managing irrigation and N fertilization to minimize losses and reduce contamination of groundwater. Applied N had significant positive effects on crop-water consumptive use. The highest N losses occurred during early growth. Irrigation had little effect on N loss when it was practiced efficiently. Under the prevailing conditions, it is recommended that no N be applied to wheat at planting, in order to limit N losses by leaching caused by the high precipitation that usually occurs during early development when crop-N requirements are small. No more than 120 kg N ha -1 should be applied in total to minimize groundwater pollution and maximize N-uptake efficiency and economic returns. Also, for economic and environmental reasons, irrigation should be limited to 80% of the total requirement and to depths of 40 to 60 mm. (author)

  8. A study on the radiation and environmental safety -Studies on radionuclide migration and distribution in terrestrial ecosystem-

    International Nuclear Information System (INIS)

    Lee, Jung Hoh; Lee, Hyun Duk; Kim, Sam Lang; Lee, Chang Woo; Choi, Yong Hoh; Kim, Sang Bok; Lee, Myung Hoh; Hong, Kwang Heui; Lee, Won Yoon; Park, Doo Won; Choi, Sang Doh

    1995-07-01

    In order to investigate the migrational behaviors of radionuclides deposited onto the farm-land during crop cultures, potato and red pepper were cultured on lysimeters installed in a greenhouse and the solution of mixed radionuclides such as Mn-54, Co-60, Sr-85 and Cs-137 was distributed over the land surface on different growth stages of the crops. For rice, soybean, Chinese cabbage and radish, the second or third year's radio-tracer experiments were carried out. Experimental results on Sr-85 and Cs-137 transfer factors for Chinese cabbage and radish were compared with their root-uptake concentrations calculated using existing methods. Samples of farm-land soils and crop plants were collected in the middle part of Korea and concentrations of several γ-emitters were measured. Soil-to-plant transfer factors of Cs-137 measured in outdoor fields were compared with those from greenhouse experiments. 20 figs, 35 tabs, 58 refs. (Author)

  9. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beedlow, P.A.

    1984-05-01

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables.

  10. Fate and Transport of Nitrogen and Phosphorus in Onsite Wastewater Treatment Systems

    Science.gov (United States)

    Toor, G.; De, M.; Danmowa, N.

    2012-12-01

    The contribution of nitrogen (N) and phosphorus (P) from onsite wastewater treatment systems (OWTS) to groundwater pollution is largely not quantified in most aquifers and watersheds in the world. Thus, the knowledge about the fate and transport of N and P from OWTS is needed to protect groundwater contamination. In Florida, porous sandy soils intensify the transport of N from drianfield of OWTS to shallow groundwater. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to investigate the dynamics of N and P transport in the vadose zone and groundwater in full scale OWTS. We constructed three mounds: (1) drip dispersal mound: 45 cm depth of sand below the emitters, followed by natural soil; (2) gravel trench mound: 45 cm depth of sand below the emitters, followed by 30 cm depth of gravels, and natural soil; and (3) advanced system mound: which contained aerobic (lingo-cellulosic) and anaerobic (sulfur) media for enhanced nitrification and denitrification before dispersing wastewater in the vadose zone. Each mound received 120 L of septic tank effluent (STE) per day (equivalent to maximum allowable rate of 3 L/ft2/day) from our facility (office and homes); STE was dosed 6 times at 4-hour intervals in a day. Soil water samples were collected from the mounds (vadose zone) by using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected by using piezometers installed at 3-3.30 m depth below mounds. We collected samples during May-Aug 2012 before STE delivery (3 events at 3-day intervals) and after STE delivery (10 events at 3-day intervals; 13 events at 7-day intervals). Collected samples (STE, soil water, groundwater) were analysed for pH, EC, chloride (Cl), and organic and inorganic N and P fractions. The ranges of pH, EC, and Cl of STE (26 events) were 6.9-7.7, 1.01-1.33 d

  11. Validation of a phytoremediation computer model

    International Nuclear Information System (INIS)

    Corapcioglu, M.Y.; Sung, K.; Rhykerd, R.L.; Munster, C.; Drew, M.

    1999-01-01

    The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg -1 ] TNT, PBB and chrysene. Vegetated and unvegetated treatments were conducted in triplicate to obtain data regarding contaminant concentrations in the soil, plant roots, root distribution, microbial activity, plant water use and soil moisture. When given the parameters of time and depth, the model successfully predicted contaminant concentrations under actual field conditions. Other model parameters are currently being evaluated. 15 refs., 2 figs

  12. Determination of cesium-137 soil-to-plant concentration ratios for vegetables in Goiania City, Brazil

    International Nuclear Information System (INIS)

    Lauria, D.C.; Sachett, I.A.; Pereira, J.C.; Zenaro, R.

    1994-01-01

    The radiological accident that occurred in Goiania City, Brazil, in September 1987, led to the spreading of 137 Cs in the urban area. Even after the decontamination procedure, there was a reminiscence of 137 Cs activity in the soil of residential gardens. This activity was enough to conduct preliminary experiments for determination of soil to vegetable concentration ratios. Experiments were conducted for carrots, lettuce and radishes. Two types of experimental patterns were used to determine the concentration ratios: lysimeters cultivation under greenhouse condition and soil cultivation in open field plot. The concentration ratios measured for cultivation under greenhouse and field plot conditions are considerably higher than those mentioned in the International Union of Radioecologist (IUR) data bank for the same vegetables and cultivation condition. (author) 5 refs.; 2 figs.; 3 tabs

  13. Measuring forest floor evaporation from interception in prescribed burned forests in Southern Italy.

    Science.gov (United States)

    Giuditta, Elisabetta; Coenders-Gerrits, Miriam; Bogaard, Thom; Wenninger, Jochen; Greco, Roberto; Ialongo, Gianluca; Esposito, Assunta; Rutigliano, Flora Angela

    2016-04-01

    Wildfires are one of the major environmental issue in the Mediterranean area. Prescribed burning (PB) is increasingly used in Europe as a practice to reduce fire risk, through dead fine fuel reduction. Several studies have focused on fire effects on vegetation and soil microbial community, but very few on ecosystem processes involved in water cycle. This study aims to estimate interception by the litter and fermentation layer and the successive evaporation flux in laboratory conditions, using a water balance and 2H and 18O isotopes mass balance calculation, in order to assess PB effects on the hydrology and ecosystem in pine plantations. PB was carried out in spring 2014 in three pine plantations of Southern Italy, dominated by Pinus halepensis (Cilento, Vallo di Diano e Alburni National Park, CVDANP), P. pinaster (Vesuvio National Park, VNP) and P. pinea (Castel Volturno Nature Reserve, CVNR). A dataset concerning the effects of PB on vegetation structure, floristic composition, microbial biomass and activity in the fermentation layer and 5-cm of soil beneath is available for the same stands. In each plantation, two cores of litter and fermentation layer were sampled in a burned area and in a near unburned area (control), respectively, with a collector to extract an "undisturbed" core. Then, each core was transferred in a lysimeter installed in the Water Lab of Delft University of Technology. In total, three lysimeters were set up and each experiment was carried out in duplicate. The laboratory had constant temperature, and both temperature and relative humidity were recorded every 15 minutes. To simulate rainfall, ~1 litre of tap water was sprinkled uniformly on the lysimeter with a plant spray (equivalent to 32 mm of rain). The precipitation was sprinkled every 3 days for a period of two months. Soil moisture and temperature were measured during the experiment every 15 minutes in the top and bottom of the litter and fermentation layer. Interception water was

  14. Nevada National Security Site 2012 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, David B.

    2013-09-10

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2012 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2012; 2013a; 2013b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 133.9 millimeters (mm) (5.27 inches [in.]) of precipitation at the Area 3 RWMS during 2012 is 12% below the average of 153.0 mm (6.02 in.), and the 137.6 mm (5.42 in.) of precipitation at the Area 5 RWMS during 2012 is 11% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents

  15. Nevada National Security Site 2013 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, D. B. [National Security Technologies, LLC, Las Vegas, NV (United States)

    2014-08-01

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2013 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2013; 2014a; 2014b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are close to detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 105.8 millimeters (mm) (4.17 inches [in.]) of precipitation at the Area 3 RWMS during 2013 is 30% below the average of 150.3 mm (5.92 in.), and the 117.5 mm (4.63 in.) of precipitation at the Area 5 RWMS during 2013 is 5% below the average of 123.6 mm (4.86 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents

  16. Experimental and modelling studies of radionuclide uptake in vegetated soil columns

    International Nuclear Information System (INIS)

    Marchant, J. K.; Butler, A. P.

    1995-01-01

    Investigations are currently being conducted at Imperial College into the upward migration of radionuclides from a contaminated water table and their subsequent uptake by plant root systems. This programme includes both experimental studies and related mathematical modelling. Previous work has been primarily with lysimeters. However, these experiments are expensive and somewhat lengthy and the alteration of key features is difficult. Therefore, an experimental research programme using smaller scale columns where conditions can be readily altered has been set up under a NERC studentship. This paper presents both the observed and simulated results from some preliminary column experiments involving the movement of two different radionuclides. It will be shown that physically-based mathematical models developed for field scale problems are readily applicable at the scale of the experimental columns. Work is currently in hand to demonstrate the validity of the column experiments for determining parameters associated with various soil, plant and radionuclide types. (author)

  17. COMPORTAMENTO DOS PARÂMETROS INDICATIVOS DE PRODUÇÃO DA BANANEIRA PACOVAN SUBMETIDA A DIFERENTES LÂMINAS DE IRRIGAÇÃO E DOSES DE POTÁSSIO NA CHAPADA DO APODI - LIMOEIRO DO NORTE-CE

    Directory of Open Access Journals (Sweden)

    SOLERNE CAMINHA COSTA

    2009-01-01

    Full Text Available The study was to evaluate the effect of the combination of different irrigation levels and rates of potassium applied drip on parameters indicative of the banana production Pacovan Apodi (var. SH3640. The experimental design was a randomized complete block with split plot and 3 replications. The treatments consisted of a combination of five layers of irrigation and drainage lysimeter by means for four doses of potassium applied by fertirrigation. The variables were the weight of the bunch without stalk, the number of hands in the bunch, the weight of the hand of the central cluster and the number of fruits of the central cluster of the bunch. The data were obtained from the harvest of the first two cycles of the experiment, from March 2006 to September 2007. The treatments with irrigation levels influenced in all tested parameters of production, while the doses of potassium only influenced the weight of the bunch without stalk.

  18. Elucidation of processes resulting in the contamination of groundwater used as drinking water reservoirs with pesticides

    International Nuclear Information System (INIS)

    Doerfler, U.; Schroll, R.; Scheunert, I.; Klotz, D.

    1994-08-01

    The aim of the partial project was the long-term measurement of the transfer of 14 C-labelled pesticides and, especially, their conversion and degradation products from soils into leachate upon application under field conditions according to current practice. Consequently, experiments in lysimeters were carried through where 14 C-labelled terbutylazine and pendimethaline were applied to sandy arable soil (NM) and sandy forest soil (SF). The arable soil bore culture plants and the forest soil had been planted with forest grasses. Not only were radioative products in leachate quantified and characterized, but, in addition, measurements for making up a 14 C budget in the terrestrial ecosystem were carried through including the determination of residues in the soil, uptake by plants, volatilization into the atmosphere, and mineralization to 14 CO 2 . (orig.) [de

  19. Interaction of different irrigation strategies and soil textures on the nitrogen uptake of field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, S.H.; Andersen, Mathias Neumann; Lærke, Poul Erik

    2011-01-01

    Nitrogen (N) uptake (kg ha-1) of field-grown potatoes was measured in 4.32 m2 lysimeters that were filled with coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments...... in the loamy sand had the highest amount of N uptake. The interaction between irrigation treatments and soil textures was significant, and implied that under non-limiting water conditions, loamy sand is the suitable soil for potato production because plants can take up sufficient amounts of N and it could...... potentially lead to higher yield. However, under limited water conditions and applying water-saving irrigation strategies, sandy loam and coarse sand are better growth media because N is more available for the potatoes. The simple yield prediction model was developed that could explains ca. 96...

  20. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30–70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below...

  1. Assessment of metal retention in newly constructed highway embankments.

    Science.gov (United States)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2016-12-01

    Newly constructed embankments should provide both a specific bearing capacity to enable trafficability in emergency cases and a sufficient pollutant retention capacity to protect the groundwater. A number of lysimeters were installed along the A115 highway to determine total and dissolved metal concentrations in road runoff and in the soil solution of newly constructed embankments. Dissolved concentrations in soil solution of the embankments did not exceed the trigger values of the German legislation. Depending on the metal, total concentrations in soil solution were more than twice as high as dissolved concentrations. The high infiltration rates lead to increased groundwater recharge beneath the embankments (up to 4100 mm a -1 ). Although metal concentrations were not problematic from the legislators' point of view, the elevated infiltration rates beside the road facilitated the transfer of high metal loads into deeper soil layers and potentially into the groundwater as well.

  2. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations

    Directory of Open Access Journals (Sweden)

    Chiara Corbari

    2017-11-01

    Full Text Available The Food and Agricultural Organization (FAO method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  3. Isotope Investigations of Groundwater Movement in a Coarse Gravel Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    Mali, N. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Kozar-Logar, J. [Jozef Stefan Institute, Ljubljana (Slovenia); Leis, A. [Institute of Water Resources Management, Hydrogeology and Geophysics, Joanneum Research Forschungsgesellschaft mbH, Graz (Austria)

    2013-07-15

    The unsaturated zone above an aquifer serves as a water reservoir which discharges water and possible pollution to the saturated zone. This paper presents the application of oxygen-18 and tritium isotope methods in the study of groundwater transport processes in the unsaturated zone of Selniska Dobrava coarse gravel aquifer. The Selniska Dobrava gravel aquifer is an important water resource for Maribor and its surroundings, therefore the determination of transport processes in the unsaturated zone is important regarding its protection. Groundwater flow characteristics were estimated using isotopes and based on experimental work in a lysimeter. Tritium investigation results were compared with the results of long term oxygen-18 isotope investigation. In this paper the analytical approach, results and interpretation of {delta}{sup 18}O and tritium measurements in the unsaturated zone are presented. (author)

  4. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Vito Sardo

    2011-02-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  5. Energy and carbon balances in cheatgrass, an essay in autecology. [Shortwave radiation, radiowave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, W.T.

    1975-01-01

    An experiment to determine the fates of energy and carbon in cheatgrass (Bromus tectorum L.) was carried out on steep (40/sup 0/) north- and south-facing slopes on a small earth mound, using many small lysimeters to emulate swards of cheatgrass. Meteorological conditions and energy fluxes that were measured included air and soil temperatures, relative humidity, wind speed, incoming shortwave radiation, net all-wave radiation, heat flux to the soil, and evaporation and transpiration separately. The fate of photosynthetically fixed carbon during spring growth was determined by analysis of the plant tissues into mineral nutrients, crude protein, crude fat, crude fiber, and nitrogen-free extract (NFE) for roots, shoots, and seeds separately. (auth)

  6. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    2006-06-01

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  7. Phytoremediation of metals contaminated dredged sediments: Use of synthetic chelates in metals phytoextraction

    Science.gov (United States)

    Sahut, C.; Geniaut, G.; Lillo, M. P.

    2003-05-01

    (in Times 10 points) The waterways maintenance leads to a large volume of dredged polluted sediments, to be disposed of, every year. As the economic disposal of dredged sediment is a single line along the stream they can behave as a sink of pollutant and a migration in the environment is observed. Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from dredged sediment by plants. Lysimeters studies were conducted to study the phytoremediation of sediments with EDTA and lactic acid used as synthetic chelators. EDTA appeared to enhance metal solubility by plant uptake did not increase accordingly. Futhermore EDTA enhance metal leaching which could lead 10 groungwater pollution. To prevent these unwanted side-effects, careful management of phytoremediation and of the use of EDTA seems necessary.

  8. Wheat Response to a Soil Previously Irrigated with Saline Water

    Directory of Open Access Journals (Sweden)

    Marco Antonio Russo

    2009-12-01

    Full Text Available A research was conducted aimed at assessing the response of rainfed, lysimeter-grown wheat to various levels of soil salinity, in terms of dry mass production, inorganic and organic components, sucrose phosphate synthase (SPS and sucrose synthase (SS activity. One additional scope was the assessment of soil ability to recover from applied salts by means of winter precipitations. The results confirmed the relatively high salt tolerance of wheat, as demonstrated by the mechanisms enacted by plants to contrast salinity at root and leaf level. Some insight was gained in the relationships between salinity and the various inorganic and organic components, as well as with SPS and SS activity. It was demonstrated that in a year with precipitations well below the average values (305 mm vs 500 the leaching action of rain was sufficient to eliminate salts accumulated during summer irrigation with saline water.

  9. Transport Assessment - Arid Task: model verification studies - FY 1983. Annual report

    International Nuclear Information System (INIS)

    Jones, T.L.; Kirkham, R.R.; Gibson, D.

    1983-08-01

    The current focus of the Transport Assessment- Arid Task is the evaluation of evaporation and transpiration submodels used in water flow models. Models will be evaluated by how accurately they simulate field water balance data. To date we have: (1) selected four evaporation models to be tested, (2) constructed an evaporation test case, and (3) started collection of data for a transpiration test case. Evaluation of the evaporation models will be completed during FY83, with results published in September. The evaporation test case contains data describing soil water content, water storage, as well as drainage rates observed in the unvegetated lysimeters of the BWTF. For example, data show deep drainage accounted for 8% of the natural precipitation, but rose to 25% after irrigation doubled total precipitation. This year, deep drainage was also observed in vegetated soils. These results refute a commonly held assumption that evapotranspiration eliminates deep drainage in arid soils

  10. Nevada Test Site 2009 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    2010-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2009 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NTS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 87.6 millimeters (mm) (3.45 inches (in.)) of precipitation at the Area 3 RWMS during 2009 is 43 percent below the average of 152.4 mm (6.00 in.), and the 62.7 mm (2.47 in.) of precipitation at the Area 5 RWMS during 2009 is 49 percent below the average of 122.5 mm (4.82 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation

  11. Nevada National Security Site 2015 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Black, David; Hudson, David

    2016-01-01

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data include direct radiation exposure, as well as radiation from the air, groundwater, meteorology, and vadose zone. This report summarizes the 2015 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports developed by National Security Technologies, LLC. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show that tritium concentrations in water vapor and americium and plutonium concentrations in air particles are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. During 2015, precipitation at the Area 3 RWMS was 0.9% above average, and precipitation at the Area 5 RWMS was 25% above average. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation as measured from the bare-soil weighing lysimeter. The 1.8 inches of precipitation in September reached the lowest sensors at 180 cm on the Cell 5S and 5N covers, however the

  12. Lixiviation of polymer matrix parcels of nuclear wastes in an environment with a low water content with respect to the standard characterisation test

    International Nuclear Information System (INIS)

    Reynaud, Vincent

    1996-01-01

    It is generally admitted that, in a nuclear waste storage site, a possible return of radionuclides towards the biosphere would mainly occur by leaching of coated items and their transport by natural waters. Therefore, lixiviation properties of coated nuclear wastes are among the most important. The objective of this research thesis is therefore to compare the activity release of samples of ion exchange polymer coated by a polymer (epoxy or polyester) matrix. Two types of tests have been performed: a standard test (sample immersion in water) and a lysimeter test (simulation of the geological environment by means of glass balls). The lixiviation of tritium-containing water is studied after a 300 day long experiment. The modelling of the release of tritium-containing water by using Fick equations gives good results. Factors influencing the lixiviation of cobalt ions and caesium ions are studied, and the lixiviation of these both ions is then modelled [fr

  13. Estimation Of The Spatial Distribution Of Crop Coefficient (Kc) From Landsat Satellite Imagery

    International Nuclear Information System (INIS)

    Abou EI-Magd, I.H.

    2009-01-01

    Single crop coefficient factor (K c ) is an essential component for crop water allocation for efficient irrigation scheduling and irrigation water management. Kc is basically defined as the ratio of actual evapotranspiration and grass/alfalfa reference evapotranspiration and always measured by lysimeter in localized area in the field, which then generalized on the whole irrigated land. The lack of precise information about the crop coefficient particularly in our country together with both small sized fields and heterogeneity of agricultural crops calls for developing a new methodology for computing a real time crop coefficient from remotely sensed data. This paper discusses the methodology developed for obtaining a real time single crop coefficient from Landsat Satellite ETM + 7 imageries. The methodology was applied and optimized on one irrigation field with two different dates and crop cover in the northern Delta of Egypt

  14. The fate of 15N-labelled organic nitrogen in sheep manure applied to soils of different texture under field conditions

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.; Nielsen, N.E.

    1994-01-01

    The fate of nitrogen from N-15-labelled sheep manure and ammonium sulfate in small lysimeters and plots in the field was studied during two growth seasons. In April 1991, N-15-labelled sheep faeces (87 kg N ha(-1)) plus unlabelled (NH4)(2)SO4 (90 kg N ha(-1)), and ((NH4)-N-15)(2)SO4 (90 kg N ha(-1......-17% of the labelled manure N and 56% of the labelled (NH4)(2)SO4-N. After 18 months 30% of the labelled manure N and 65% of the labelled (NH4)(2)SO4-N were accumulated in barley, the succeeding ryegrass crop and in leachate collected below 45 cm of soil, irrespective of the soil-sand mixture. Calculating the barley...

  15. Effect of quantity and composition of waste on the prediction of annual methane potential from landfills.

    Science.gov (United States)

    Cho, Han Sang; Moon, Hee Sun; Kim, Jae Young

    2012-04-01

    A study was conducted to investigate the effect of waste composition change on the methane production in landfills. An empirical equation for the methane potential of the mixed waste is derived based on the methane potential values of individual waste components and the compositional ratio of waste components. A correction factor was introduced in the equation and was determined from the BMP and lysimeter tests. The equation and LandGEM were applied for a full size landfill and the annual methane potential was estimated. Results showed that the changes in quantity of waste affected the annual methane potential from the landfill more than the changes of waste composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Fly ash leachate generation and qualitative trends at Ohio test sites

    Energy Technology Data Exchange (ETDEWEB)

    Solc, J.; Foster, H.J.; Butler, R.D. [Energy & Environmental Research Center, Grand Forks, ND (United States)

    1995-12-01

    Under the sponsorship of the U.S. Department of Energy, the environmental impact and potential contamination from landfilled fly ash (coal conversion solid residues - CCSRs) have been studied at field sites in Ohio. The progressive increase of moisture content within pilot cells over depth and time facilitated intensive chemical processes and generation of highly alkaline (pH of 10 to 12) leachate. Chemistry of pore water from lysimeters and ASTM leachate from fly ash and soil cores indicate the leachate potential to migrate out of deposit and impact the pore water quality of surrounding soils. Na, SO{sub 4} and, particularly, K, Cl, pH, and EC appeared to be valuable indicator parameters for tracking potential leachate transport both within the cells and below the ash/soil interface.

  17. Water born pollutants sampling using porous suction samples

    International Nuclear Information System (INIS)

    Baig, M.A.

    1997-01-01

    The common standard method of sampling water born pollutants in the vadoze zone is core sampling and it is followed by extraction of pore fluid. This method does not allow sampling at the same location next time and again later on. There is an alternative approach for sampling fluids (water born pollutants) from both saturated and unsaturated regions of vadose zone using porous suction samplers. There are three types of porous suction samplers, vacuum-operated, pressure-vacuum lysimeters, high pressure vacuum samples. The suction samples are operated in the range of 0-70 centi bars and usually consist of ceramic and polytetrafluorethylene (PTFE). The operation range of PTFE is higher than ceramic cups. These samplers are well suited for in situ and repeated sampling form the same location. This paper discusses the physical properties and operating condition of such samplers to the utilized under our environmental sampling. (author)

  18. Response of lupine plants irrigated with saline water to rhizobium inoculation using 15N-isotope dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; El-Ghandour, I.A.; Abdel Aziz, H.A.; Hamdy, A.; Aly, M.M.

    2002-01-01

    The lupine Rhizobium symbiosis and contribution of N 2 fixation under different levels of irrigation water salinity were examined. Lysimeter experiment was established under greenhouse conditions during the year 2002-2003. In this experiment, inoculated plants were imposed to different salinity levels of irrigation water and N-fertilizer treatment. Plant height was decreased under different salinity levels, nitrogen treatments and bacterial inoculation. Similar trend was noticed with leaf area. The highest leaf area was recorded with salt tolerant bacterial inoculation (SBI) and splitting N-treatment. Highest values of N-uptake occurred after 100 day intervals under the tested factors. Relative decrease in N-uptake did not exceed 40% of those recorded with the fresh water treatment as affected by experimental factors. Nitrogen uptake by the whole plant reflected an increase at 3 dS/m salinity level of irrigation water. Relative increases were 5% and 15% for normal bacteria inoculation under single dose (NI) and splitting

  19. Nevada National Security Site 2015 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    Black, David [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Hudson, David [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2016-08-20

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data include direct radiation exposure, as well as radiation from the air, groundwater, meteorology, and vadose zone. This report summarizes the 2015 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports developed by National Security Technologies, LLC. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show that tritium concentrations in water vapor and americium and plutonium concentrations in air particles are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. During 2015, precipitation at the Area 3 RWMS was 0.9% above average, and precipitation at the Area 5 RWMS was 25% above average. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation as measured from the bare-soil weighing lysimeter. The 1.8 inches of precipitation in September reached the lowest sensors at 180 cm on the Cell 5S and 5N covers, however the

  20. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S.

    2003-01-01

    The effect of sole and intercropping of field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) and of crop residue management on crop yield, NO3- leaching and N balance in the cropping system was tested in a 2-year lysimeter experiment on a temperate sandy loam soil. The crop rotation...... cropping. Crops received no fertilizer in the experimental period. Natural N-15 abundance techniques were used to determine pea N-2 fixation. The pea-barley intercrop yielded 4.0 Mg grain ha(-1), which was about 0.5 Mg lower than the yields of sole cropped pea but about 1.5 Mg greater than harvested...... was pea and barley sole and intercrops followed by winter-rye and a fallow period. The Land Equivalent Ratio (LER), which is defined as the relative land area under sole crops that is required to produce the yields achieved in intercropping, was used to compare intercropping performance relative to sole...

  1. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    International Nuclear Information System (INIS)

    Beedlow, P.A.

    1984-05-01

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables

  2. Comparative study of methods for potential and actual evapotranspiration determination

    International Nuclear Information System (INIS)

    Kolev, B.

    2004-01-01

    Two types of methods for potential and actual evapotranspiration determining were compared. The first type includes neutron gauge, tensiometers, gypsum blocks and lysimeters. The actual and potential evapotranspiration were calculated by water balance equation. The second type of methods used a simulation model for all calculation. The aim of this study was not only to compare and estimate the methods using. It was mainly pointed on calculations of water use efficiency and transpiration coefficient in potential production situation. This makes possible to choose the best way for water consumption optimization for a given crop. The final results find with the best of the methods could be used for applying the principles of sustainable agriculture in random region of Bulgarian territory. (author)

  3. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    the alteration mechanisms. The recommended characterization tests are single-pass flow-through tests using a batch reactor design, Accelerated and service conditions tests include product consistency and pressurized unsaturated flow (PUF) tests. Nonradioactive glasses will be used for the majority of the laboratory testing (-80%), with the remainder performed with glasses containing a selected set of key radionuclides. Additionally, a series of PUF experiments with a natural analog of basaltic glass is recommended to confirm that the alteration products observed under accelerated conditions in the PUF tests are similar to those found associated with the natural analog. This will provide additional confidence in using the PUF test results to infer long-term corrosion behavior. Field tests are proposed as a unique way to validate the glass corrosion and contaminant transport models being used in the performance assessment. To better control the test conditions, the field tests are to be performed in lysimeters (corrugated steel containers buried flush with the ground surface). Lysimeters provide a way to combine a glass, Hanford soil, and perhaps other engineered materials in a well-controlled test, but on a scale that is not practicable in the laboratory. The recommended field tests include some experiments where a steady flow rate of water is artificially applied. These tests use a glass designed to have a high corrosion rate so that it is easier to monitor contaminant release and transport. Existing lysimeters at the Hanford Site can be used for these experiments or new lysimeters that have been equipped with the latest in monitoring equipment and located near the proposed disposal site.

  4. Isotope geochemistry of sulfur in forest soils and in new groundwater below forest soils

    International Nuclear Information System (INIS)

    Mayer, B.

    1993-04-01

    The isotope geochemistry of sulphur in aerobic forest soils and new groundwater below forest soils was investigated for the purpose of investigating the transport and transformation behaviour of sulfate in the water-unsaturated zone. The effects of hydrodynamic and biogeochemical processes on the development of seepage water sulfate isotopes between depositions and groundwater were investigated by means of laboratory experiments, profile studies, lysimeter experiments, and field studies in order to determine the sulphur conversion processes. Dissolved sulphur from precipitates, seepage water, creek water and groundwater, as well as sulphur extracted from soil samples, were precipitated in the form of BaSO 4 or AgS 2 , decomposed thermally into SO 2 or CO 2 , and the 34 S/ 32 S and 18 O/ 16 O isotope ratios were determined by mass spectrometry. (orig.) [de

  5. Nevada Test Site 2007 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2007 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2007a; 2008; Warren and Grossman, 2008). Direct radiation monitoring data indicate exposure levels at the RWMSs are at background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. A single gamma spectroscopy measurement for cesium was slightly above the minimum detectable concentration, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. The measured levels of radionuclides in air particulates are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 136.8 millimeters (mm) (5.39 inches [in.]) of precipitation at the Area 3 RWMS during 2007 is 13 percent below the average of 158.1 mm (6.22 in.), and the 123.8 mm (4.87 in.) of precipitation at the Area 5 RWMS during 2007 is 6 percent below the average of 130.7 mm (5.15 in.). Soil-gas tritium monitoring at borehole GCD-05U continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward movement percolation of precipitation more effectively

  6. Soil to plant transfer of {sup 137}Cs and {sup 60}Co in Ferralsol, Nitisol and Acrisol

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, M.A. [Instituto de Radioprotecao e Dosimetria, CNEN, Av. Salvador Allende s/no, Recreio, CEP: 22780-160, Rio de Janeiro, RJ (Brazil)], E-mail: angelica@ird.gov.br; Bartoly, F.; Viana, A.G.; Silva, M.M.; Rochedo, E.R.R. [Instituto de Radioprotecao e Dosimetria, CNEN, Av. Salvador Allende s/no, Recreio, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Perez, D.V. [Centro Nacional de Pesquisa de Solos, EMBRAPA, R. Jardim Botanico 1024, CEP: 22460-000, Rio de Janeiro, RJ (Brazil); Conti, C.C. [Instituto de Radioprotecao e Dosimetria, CNEN, Av. Salvador Allende s/no, Recreio, CEP: 22780-160, Rio de Janeiro, RJ (Brazil)

    2008-03-15

    In this study, soil to plant transfer factor values were determined for {sup 137}Cs and {sup 60}Co in radish (Raphanus sativus), maize (Zea mays L.) and cabbage (Brassica oleracea L. var. capitata) growing in gibbsite-, kaolinite- and iron-oxide-rich soils. After 3 years of experiment in lysimeters it was possible to identify the main soil properties able to modify the soil to plant transfer processes, e.g. exchangeable K and pH, for {sup 137}Cs, and organic matter for {sup 60}Co. Results of sequential chemical extraction were coherent with root uptake and allowed the recognition of the role of iron oxides on {sup 137}Cs behaviour and of Mn oxides on {sup 60}Co behaviour. This information should provide support for adequate choices of countermeasures to be applied on tropical soils in case of accident or for remediation purposes.

  7. Evapotranspiration and crop coefficients of corn in monoculture and intercropped with jack bean

    Directory of Open Access Journals (Sweden)

    Mário S. P. de Araújo

    Full Text Available ABSTRACT This study was carried out to determine the evapotranspiration (ETc and crop coefficients (Kc for four stages of “Caatingueiro” corn under the climate condition of Seropédica, RJ, Brazil, using weighing lysimeters. The field trial occurred in 2015, from March 18 to June 25, in two areas cultivated with “Caatingueiro’ corn intercropped with jack bean and in monoculture. The reference evapotranspiration (ETo was estimated by the FAO-56 Penman-Monteith model and the Kc values were determined by the ratio between ETc and ETo. The Kc values obtained for the intercropping and monoculture systems, were respectively: 0.78 (I; 1.01 (II; 1.10 (III and 1.01 (IV, and 0.62 (I; 0.92 (II; 1.27 (III and 0.81 (IV, and they were different from the values presented by FAO.

  8. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations.

    Science.gov (United States)

    Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco

    2017-11-18

    The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.

  9. Re-evaluation of the sorption behaviour of Bromide and Sulfamethazine under field conditions using leaching data and modelling methods

    Science.gov (United States)

    Gassmann, Matthias; Olsson, Oliver; Höper, Heinrich; Hamscher, Gerd; Kümmerer, Klaus

    2016-04-01

    The simulation of reactive transport in the aquatic environment is hampered by the ambiguity of environmental fate process conceptualizations for a specific substance in the literature. Concepts are usually identified by experimental studies and inverse modelling under controlled lab conditions in order to reduce environmental uncertainties such as uncertain boundary conditions and input data. However, since environmental conditions affect substance behaviour, a re-evaluation might be necessary under environmental conditions which might, in turn, be affected by uncertainties. Using a combination of experimental data and simulations of the leaching behaviour of the veterinary antibiotic Sulfamethazine (SMZ; synonym: sulfadimidine) and the hydrological tracer Bromide (Br) in a field lysimeter, we re-evaluated the sorption concepts of both substances under uncertain field conditions. Sampling data of a field lysimeter experiment in which both substances were applied twice a year with manure and sampled at the bottom of two lysimeters during three subsequent years was used for model set-up and evaluation. The total amount of leached SMZ and Br were 22 μg and 129 mg, respectively. A reactive transport model was parameterized to the conditions of the two lysimeters filled with monoliths (depth 2 m, area 1 m²) of a sandy soil showing a low pH value under which Bromide is sorptive. We used different sorption concepts such as constant and organic-carbon dependent sorption coefficients and instantaneous and kinetic sorption equilibrium. Combining the sorption concepts resulted in four scenarios per substance with different equations for sorption equilibrium and sorption kinetics. The GLUE (Generalized Likelihood Uncertainty Estimation) method was applied to each scenario using parameter ranges found in experimental and modelling studies. The parameter spaces for each scenario were sampled using a Latin Hypercube method which was refined around local model efficiency maxima

  10. Geochemical controls on the composition of soil pore waters beneath a mixed waste disposal site in the unsaturated zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Hubbell, J.M.

    1989-01-01

    Soil pore waters are collected routinely to monitor a thick unsaturated zone that separates a mixed waste disposal site containing transuranic and low-level radioactive wastes from the Snake River Plain aquifer. The chemistry of the soil pore waters has been studied to evaluate the possible control on the water composition by mineral equilibria and determine the extent, if any, of migration of radionuclides from the disposal site. Geochemical codes were used to perform speciation calculations for the waters. The results of speciation calculations suggest that the installation of the lysimeters affects the observed silica contents of the soil pore waters. The results also establish those chemical parameters that are controlled by secondary mineral precipitation. 15 refs., 6 figs., 1 tab

  11. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    Science.gov (United States)

    Rappe-George, M. O.; Gärdenäs, A. I.; Kleja, D. B.

    2013-03-01

    Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.

  12. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States

    Science.gov (United States)

    Storck, Pascal; Lettenmaier, Dennis P.; Bolton, Susan M.

    2002-11-01

    The results of a 3 year field study to observe the processes controlling snow interception by forest canopies and under canopy snow accumulation and ablation in mountain maritime climates are reported. The field study was further intended to provide data to develop and test models of forest canopy effects on beneath-canopy snowpack accumulation and melt and the plot and stand scales. Weighing lysimeters, cut-tree experiments, and manual snow surveys were deployed at a site in the Umpqua National Forest, Oregon (elevation 1200 m). A unique design for a weighing lysimeter was employed that allowed continuous measurements of snowpack evolution beneath a forest canopy to be taken at a scale unaffected by variability in canopy throughfall. Continuous observations of snowpack evolution in large clearings were made coincidentally with the canopy measurements. Large differences in snow accumulation and ablation were observed at sites beneath the forest canopy and in large clearings. These differences were not well described by simple relationships between the sites. Over the study period, approximately 60% of snowfall was intercepted by the canopy (up to a maximum of about 40 mm water equivalent). Instantaneous sublimation rates exceeded 0.5 mm per hour for short periods. However, apparent average sublimation from the intercepted snow was less than 1 mm per day and totaled approximately 100 mm per winter season. Approximately 72 and 28% of the remaining intercepted snow was removed as meltwater drip and large snow masses, respectively. Observed differences in snow interception rate and maximum snow interception capacity between Douglas fir (Pseudotsuga menziesii), white fir (Abies concolor), ponderosa pine (Pinus ponderosa), and lodgepole pine (Pinus contorta) were minimal.

  13. Effects of re-application of nitrogen fertilizer on forest soil-water chemistry, with special reference to cadmium

    International Nuclear Information System (INIS)

    Hoegbom, Lars; Nohrstedt, Hans-Oerjan

    2000-09-01

    A greatly increased concentration of cadmium was found in soil water following the application of nitrogen fertilizer. Our study was conducted at an experimental site in the western part of central Sweden. Prior to this, the area had been used to study the effects of the repeated application of fertilizer, under different regimes, on forest production. In this experiment, we examined the residual effects of previous nitrogen fertilizer application regimes on soil-water chemistry, following a final, additional fertilizer application. Soil water was sampled using suction lysimeters installed at a depth of 50 cm. However, due to the failure of the lysimeters at two of the study plots, the differences between fertilizer regimes could not be evaluated. Instead, we focused on changes in the solubility of cadmium and aluminium caused by soil-water acidification due to the re-application of nitrogen fertilizer. Every fourth or eighth year, between 1981 and 1997, the study plots received 150 kg N ha -1 , in the form of ammonium nitrate (AN) and calcium ammonium nitrate (CAN). The effects of the final fertilizer application (CAN) were studied. Application of nitrogen fertilizer resulted in a rapid increase in NO 3 - concentration in soil-water, and a decrease in pH. The increased soil-water acidity resulted in some metals becoming more soluble and occurring in higher concentrations within the soil water. The increase in concentration of some toxic heavy metals, such as cadmium, was of concern. The highest measured cadmium concentration was 2.7 μg l -1 , compared to the government health limit of 5 μg l -1 for drinking water. The cadmium detected must originate from the soil since it was not present in the nitrogen fertilizer. Cadmium is highly toxic to both animals and plants, and knowledge of its occurrence, in relation to various silvicultural operations, is of great importance

  14. Fruit load governs transpiration of olive trees.

    Science.gov (United States)

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-03-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Migration of 137Cs and 90Sr in undisturbed soil profiles under controlled and close-to-real conditions

    International Nuclear Information System (INIS)

    Forsberg, S.; Rosen, K.; Fernandez, V.; Juhan, H.

    2000-01-01

    Migration of 137 Cs and 90 Sr in undisturbed soil was studied in large lysimeters three and four years after contamination, as part of a larger European project studying radionuclide soil-plant interactions. The lysimeters were installed in greenhouses with climate control and contaminated with radionuclides in an aerosol mixture, simulating fallout from a nuclear accident. The soil types studied were loam, silt loam, sandy loam and loamy sand. The soils were sampled to 30-40 cm depth in 1997 and 1998. The total deposition of 137 Cs ranged from 24 to 45 MBq/m 2 , and of 90 Sr from 23 to 52 MBq/m 2 . It was shown that migration of 137 Cs was fastest in sandy loam, and of 90 Sr fastest in sandy loam and loam. The slowest migration of both nuclides was found in loamy sand. Retention within the upper 5 cm was 60% for both 137 Cs and 90 Sr in sandy loam, while in loamy sand it was 97 and 96%, respectively. In 1998, migration rates, calculated as radionuclide weighted median depth (migration centre) divided by time since deposition were 1.1 cm/year for both 137 Cs and 90 Sr in sandy loam, 0.8 and 1.0 cm/year, respectively, in loam, 0.6 and 0.8 cm/year in silt loam, and 0.4 and 0.6 cm/year for 137 Cs and 90 Sr, respectively, in loamy sand. A distinction is made between short-term migration, caused by events soon after deposition and less affected by soil type, and long-term migration, more affected by e.g. soil texture. Three to four years after deposition, effects of short-term migration is still dominant in the studied soils

  16. Technical note: Improving the AWAT filter with interpolation schemes for advanced processing of high resolution data

    Science.gov (United States)

    Peters, Andre; Nehls, Thomas; Wessolek, Gerd

    2016-06-01

    Weighing lysimeters with appropriate data filtering yield the most precise and unbiased information for precipitation (P) and evapotranspiration (ET). A recently introduced filter scheme for such data is the AWAT (Adaptive Window and Adaptive Threshold) filter (Peters et al., 2014). The filter applies an adaptive threshold to separate significant from insignificant mass changes, guaranteeing that P and ET are not overestimated, and uses a step interpolation between the significant mass changes. In this contribution we show that the step interpolation scheme, which reflects the resolution of the measuring system, can lead to unrealistic prediction of P and ET, especially if they are required in high temporal resolution. We introduce linear and spline interpolation schemes to overcome these problems. To guarantee that medium to strong precipitation events abruptly following low or zero fluxes are not smoothed in an unfavourable way, a simple heuristic selection criterion is used, which attributes such precipitations to the step interpolation. The three interpolation schemes (step, linear and spline) are tested and compared using a data set from a grass-reference lysimeter with 1 min resolution, ranging from 1 January to 5 August 2014. The selected output resolutions for P and ET prediction are 1 day, 1 h and 10 min. As expected, the step scheme yielded reasonable flux rates only for a resolution of 1 day, whereas the other two schemes are well able to yield reasonable results for any resolution. The spline scheme returned slightly better results than the linear scheme concerning the differences between filtered values and raw data. Moreover, this scheme allows continuous differentiability of filtered data so that any output resolution for the fluxes is sound. Since computational burden is not problematic for any of the interpolation schemes, we suggest always using the spline scheme.

  17. Health risk assessment linked to filling coastal quarries with treated dredged seaport sediments

    Energy Technology Data Exchange (ETDEWEB)

    Perrodin, Yves, E-mail: yves.perrodin@entpe.fr [Université de Lyon, ENTPE, UMR CNRS 5023, Laboratoire LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Donguy, Gilles [Université de Lyon, ENTPE, UMR CNRS 5023, Laboratoire LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Emmanuel, Evens [Laboratoire de Qualité de l' Eau et de l' Environnement, Université Quisqueya, BP 796 Port-au-Prince (Haiti); Winiarski, Thierry [Université de Lyon, ENTPE, UMR CNRS 5023, Laboratoire LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France)

    2014-07-01

    Dredged seaport sediments raise complex management problems since it is no longer possible to discharge them into the sea. Traditional waste treatments are poorly adapted for these materials in terms of absorbable volumes and cost. In this context, filling quarries with treated sediments appears interesting but its safety regarding human health must be demonstrated. To achieve this, a specific methodology for assessing health risks has been developed and tested on three seaport sediments. This methodology includes the development of a conceptual model of the global scenario studied and the definition of specific protocols for each of its major steps. The approach proposed includes in particular the use of metrological and experimental tools that are new in this context: (i) an experimental lysimeter for characterizing the deposit emissions, and (ii) a geological radar for identifying potential preferential pathways between the sediment deposit and the groundwater. The application of this approach on the three sediments tested for the scenario studied showed the absence of health risk associated with the consumption of groundwater for substances having a “threshold effect” (risk quotient < 1), and an acceptable risk for substances having a “non-threshold effect”, with the notable exception of arsenic (individual risk equal to 3.10{sup −6}). - Highlights: • The release of polluted dredged seaport sediments into the sea must be avoided. • Their use after treatment for the filling-up of quarries is proposed by managers. • An original health risk assessment methodology was created to validate this option. • It includes the use of a lysimeter and a georadar for the exposure assessment stage. • The example studied concludes to a health risk linked to arsenic in the groundwater.

  18. Selenium transformation in coal mine spoils: Its environmental impact assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harness, J.; Atalay, A.; Koll, K.J.; Zhang, H.; Maggon, D.

    1991-12-31

    The objective of this program was to conduct an environmental impact assessment study for selenium from coal mine spoils. The use of in-situ lysimetry to predict selenium speciation, transformation, and mobility under natural conditions was evaluated. The scope of the study was to construct and test field-scale lysimeter and laboratory mini-column to assess mobility and speciation of selenium in coal mine overburden and soil systems; to conduct soil and groundwater sampling throughout the state of Oklahoma for an overall environmental impact assessment of selenium; and to conduct an in-depth literature review on the solubility, speciation, mobility, and toxicity of selenium from various sources. Groundwater and surface soil samples were also collected from each county in Oklahoma. Data collected from the lysimeter study indicated that selenium in the overburden of the abandoned mine site was mainly found in the selenite form. The amount of selenite found was too low and immobile to be of concern to the environment. The spoil had equilibrated long enough (over 50 years) that most of the soluble forms of selenium have already been lost. Examination of the overburden indicated the presence of pyrite crystals that precipitated over time. The laboratory mini-column study indicated that selenite is quite immobile and remained on the overburden material even after leaching with dilute acid. Data from groundwater samples indicated that based on the current permissible level for selenium in groundwater (0.01 mg Se/L), Oklahoma groundwater is widely contaminated with the element. However, according to the new regulation (0.05 mg Se/L), which is to be promulgated in 1992, only 9 of the 77 counties in the state exceed the limit.

  19. Selenium transformation in coal mine spoils: Its environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Harness, J.; Atalay, A.; Koll, K.J.; Zhang, H.; Maggon, D.

    1991-12-31

    The objective of this program was to conduct an environmental impact assessment study for selenium from coal mine spoils. The use of in-situ lysimetry to predict selenium speciation, transformation, and mobility under natural conditions was evaluated. The scope of the study was to construct and test field-scale lysimeter and laboratory mini-column to assess mobility and speciation of selenium in coal mine overburden and soil systems; to conduct soil and groundwater sampling throughout the state of Oklahoma for an overall environmental impact assessment of selenium; and to conduct an in-depth literature review on the solubility, speciation, mobility, and toxicity of selenium from various sources. Groundwater and surface soil samples were also collected from each county in Oklahoma. Data collected from the lysimeter study indicated that selenium in the overburden of the abandoned mine site was mainly found in the selenite form. The amount of selenite found was too low and immobile to be of concern to the environment. The spoil had equilibrated long enough (over 50 years) that most of the soluble forms of selenium have already been lost. Examination of the overburden indicated the presence of pyrite crystals that precipitated over time. The laboratory mini-column study indicated that selenite is quite immobile and remained on the overburden material even after leaching with dilute acid. Data from groundwater samples indicated that based on the current permissible level for selenium in groundwater (0.01 mg Se/L), Oklahoma groundwater is widely contaminated with the element. However, according to the new regulation (0.05 mg Se/L), which is to be promulgated in 1992, only 9 of the 77 counties in the state exceed the limit.

  20. Uptake of radiocaesium by lettuce crops: the effect of K in soil solution

    International Nuclear Information System (INIS)

    Waegeneers, N.; Camps I Vila, M.; Smolders, E.; Merckx, R.; Sauras, T.; Madoz-Escande, C.

    1998-01-01

    The effect of varying K supply on 137 Cs uptake by lettuce (Lactuca sativa, cv. Batavia, Gloire du Dauphine) was studied in solution culture, in a potted soil experiment and in a greenhouse lysimeter experiment under close-to-real conditions. Lettuce was grown for 13 days in nutrient solution spiked with 137 Cs. Treatments were four concentrations of potassium in solution (25, 50, 250, and 1000 μM). Yields were marginally affected by K supply. The 137 Cs concentration factor (CF, ml/g) decreased 66-fold in the shoot and 432-fold in the roots over the whole K concentration range. The decrease was most pronounced between 25 and 250 μM K. In a subsequent experiment, lettuce was grown for 20 days under the same climatic conditions in two sandy-foam soils (A, B) contaminated with 134 Cs. Both had similar characteristics but differed widely in K supply. Soil solution K concentrations were 100 μM (A) or 3000 μM (B). The radiocesium soil-to-plant Transfer Factor (TF, g plant dry weight / g soil) was 0.320 in soil A and 0.016 in soil B. The higher 137 Cs availability at the lower K supply (soil A) was contrasted by lower 137 Cs concentrations in soil solution of soil A than of soil B. Radiocesium transfer to lettuce grown to maturity was analysed on 5 different lysimeter soils under controlled climatic conditions. The soils were artificially contaminated with 137 Cs in 1994. The TF's varied between 0.032 and 0.191 and were not related to K concentrations in soil solution. The CF decreased about 100-fold with K concentrations increasing from 0.3 to 18 mM. Predictions of soil-to-plant transfer factors based on soil solution composition and nutrient solution results were qualitatively correct but underestimated the observed values

  1. Influência da qualidade da água de rega num Fluvissolo do Alentejo Effect of soil water quality in a Fluvisol in Alentejo

    Directory of Open Access Journals (Sweden)

    M. C. Gonçalves

    2009-01-01

    finais não provoquem riscos imediatos de sodização do solo (6% nas condições mais desfavoráveis. O balanço dos sais indicou uma acumulação de sódio de cerca de 2,5 e 4 vezes nos monólitos B e C. Verificou-se ainda uma lixiviação importante daquele catião no monólito C. Não se verificaram alterações dignas de nota nas propriedades hidráulicas e microestrutura do solo. As pequenas variações verificadas devem-se certamente à variação espacial daquelas propriedades.Three soil lysimeters (A, B, and C were built in a Fluvisol located in Alvalade-Sado (Alentejo. The soil lysimeters were irrigated from 2001 to 2005 with waters of different quality (May to August, and subjected to atmospheric conditions during the remaining months of the year. A total depth of 500 mm was applied every year in each soil lysimeter. The quality of the irrigation waters varied by increasing the concentration of NaCl, CaCl2 e MgCl2 in its composition. The electrical conductivity (EC of the irrigation waters applied varied between 0.3 and 3.2 dS m-1, with the best quality waters being applied in soil lysimeter A, and the worse quality waters being applied in soil lysimeter C. The sodium adsorption ratio (SAR was 1, 3 and 6 (meq L-10.5, always maintaining a relation Ca:Mg = 1:2 in the irrigation waters. Effects on soil salinization/sodification resulting from applying those irrigation waters were evaluated in the end of each irrigation season, in the end of each leaching season, and in the end of the experiment (December 2005. The parameters monitored were the EC and soluble cations in the saturation extract, extractable cations, the cation exchange capacity, SAR and the exchangeable sodium percentage (ESP. Soil hydraulic properties and soil microagregation stability was also monitored in the end of the experiment. A mass balance for salt concentration along the different seasons was also calculated. In the end of the experiment, EC values although higher than the values

  2. Non-isothermal processes during the drying of bare soil: Model Development and Validation

    Science.gov (United States)

    Sleep, B.; Talebi, A.; O'Carrol, D. M.

    2017-12-01

    Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.

  3. Degradation of deicing chemicals affects the natural redox system in airfield soils.

    Science.gov (United States)

    Lissner, Heidi; Wehrer, Markus; Jartun, Morten; Totsche, Kai Uwe

    2014-01-01

    During winter operations at airports, large amounts of organic deicing chemicals (DIC) accumulate beside the runways and infiltrate into the soil during spring. To study the transport and degradation of DIC in the unsaturated zone, eight undisturbed soil cores were retrieved at Oslo airport, Norway, and installed as lysimeters at a nearby field site. Before snowmelt in 2010 and 2011, snow amended with a mix of the DICs propylene glycol (PG) and formate as well as bromide as conservative tracer was applied. Water samples were collected and analyzed until summer 2012. Water flow and solute transport varied considerably among the lysimeters but also temporally between 2010 and 2011. High infiltration rates during snowmelt resulted in the discharge of up to 51 and 82% PG in 2010 and 2011, respectively. The discharge of formate remained comparatively low, indicating its favored degradation even at freezing temperatures compared with PG. Manganese (Mn) and iron (Fe) were observed in the drainage in autumn owing to the anaerobic degradation of residual PG during summer. Our findings suggest that upper boundary conditions, i.e., snow cover and infiltration rate, and the extent of preferential flowpaths, control water flow and solute transport of bromide and PG during snowmelt. PG may therefore locally reach deeper soil regions where it may pose a risk for groundwater. In the long term, the use of DIC furthermore causes the depletion of potential electron acceptors and the transport of considerable amounts of Fe and Mn. To avoid an overload of the unsaturated zone with DIC and to maintain the natural redox system, the development of suitable remediation techniques is required.

  4. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales

    International Nuclear Information System (INIS)

    Limousin, G.

    2006-10-01

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10 -4 mol.L -1 , cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10 -6 mol.L -1 , cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements at equilibrium do

  5. Management considerations to minimize environmental impacts of arsenic following monosodium methylarsenate (MSMA) applications to turfgrass.

    Science.gov (United States)

    Mahoney, Denis J; Gannon, Travis W; Jeffries, Matthew D; Matteson, Audrey R; Polizzotto, Matthew L

    2015-03-01

    Monosodium methylarsenate (MSMA) is an organic arsenical herbicide currently utilized in turfgrass and cotton systems. In recent years, concerns over adverse impacts of arsenic (As) from MSMA applications have emerged; however, little research has been conducted in controlled field experiments using typical management practices. To address this knowledge gap, a field lysimeter experiment was conducted during 2012-2013 to determine the fate of As following MSMA applications to a bareground and an established turfgrass system. Arsenic concentrations in soil, porewater, and aboveground vegetation, were measured through one yr after treatment. Aboveground vegetation As concentration was increased compared to nontreated through 120 d after initial treatment (DAIT). In both systems, increased soil As concentrations were observed at 0-4 cm at 30 and 120 DAIT and 0-8 cm at 60 and 365 DAIT, suggesting that As was bound in shallow soil depths. Porewater As concentrations in MSMA-treated lysimeters from a 30-cm depth (22.0-83.8 μg L(-1)) were greater than those at 76-cm depth (0.4-5.1 μg L(-1)). These results were combined with previous research to devise management considerations in systems where MSMA is utilized. MSMA should not be applied if rainfall is forecasted within 7 DAIT and/or in areas with shallow water tables. Further, disposing of MSMA-treated turfgrass aboveground vegetation in a confined area - a common management practice for turfgrass clippings - may be of concern due to As release to surface water or groundwater as the vegetation decomposes. Finally, long-term MSMA use may cause soil As accumulation and thus downward migration of As over time; therefore, MSMA should be used in rotation with other herbicides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Evaluation of the contamination risk by 241AM from lightning rods disposed at uncontrolled garbage dump

    International Nuclear Information System (INIS)

    Marumo, Julio Takehiro

    2006-01-01

    Radioactive lightning rods were manufactured in Brazil until 1989, when the licenses for using radioactive sources in these products were lifted by the national nuclear authority. Since then, radioactive devices have been replaced by Franklin type one and collected as radioactive waste. However, only 23 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission (Comissao Nacional de Energia Nuclear - CNEN). This situation is of concern as there is a possibility of the rods being discarded as domestic waste, considering that in Brazil, 63.6 percent of the municipal solid waste is disposed at uncontrolled garbage dump, according to Instituto Brasileiro de Geografia e Estatistica (IBGE) in 2000. In addition, americium, the most common employed radionuclide, is classified as a high toxicity element, when ingested or inhaled. In the present study, it was performed migration experiments of Am-241 by lysimeter system in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Sources removed from lightning rods were placed inside lysimeters filled with organic waste, collected at the restaurant of Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, and the generated leachate was periodically analyzed to determine its characteristics such as pH, redox potential, solid content and concentration of the radioactive material. Microbial growth was also evaluated by counting the number of colony forming units. The equivalent dose to members of the public has been calculated considering the ingestion of drinking water, the most probable mode of exposure. The final result was about 145 times below the effective dose limit of 1 mSv.year-1 for members of the public, established by the International Commission on Radiological Protection (ICRP), demonstrating that the risk caused by lightning rods disposed at uncontrolled garbage dump is low. (author)

  7. Long term fate and effects of the herbicide bromoxynil in soil cropped with maize

    International Nuclear Information System (INIS)

    Scheunert, I.; Gunthner, A.; Rosenbrock, P.

    2001-01-01

    Bromoxynil (3,5-dibromo-4-hydroxy-benzonitrile; BO), mainly used as the octanoate ester (BOO), is among the most widespread herbicides applied to maize in Germany and other countries. Effects on the microflora of soil were assessed by the determination of microbial biomass and bioactivity using microcalorimetry, of enzymatic activity using dehydrogenase activity, of potential nitrification and of phospholipid fatty acid pattern. In laboratory experiments for 3 weeks, significant effects on microbial biomass and bioactivity, dehydrogenase activity and nitrification in general were obvious only for 100-to 1000-fold of the concentration resulting from normal agricultural application rate. Differences in the composition pattern of phospholipid fatty acids were obvious as trends already at BOO-concentrations corresponding to the normal application rate and were highly significant at 10-fold application rate level. After application of BOO formulation to outdoor lysimeters at normal agricultural application rates, no significant differences in dehydrogenase activity and nitrification between treated soils and controls could be detected; however, both treated soils and controls exhibited seasonal variations between the different sampling dates. After application of 14 C-BOO formulation to outdoor lysimeters, the uptake of 14 C in maize plants was negligible ( 14 C in leachate amounted to about 0.12 μg/L and was due only to highly polar, water-soluble products not identified thus far. Laboratory degradation experiments with 14 C-BO and 14 C-BOO in soil demonstrated mineralization to 14 CO 2 , transformation to the corresponding benzoate, and the formation of soil-bound residues. (author)

  8. Evaluation of the contamination risk by {sup 241}AM from lightning rods disposed at uncontrolled garbage dump; Avaliacao da contaminacao provocada por para-raios radioativos de americio-241 descartados em lixoes

    Energy Technology Data Exchange (ETDEWEB)

    Marumo, Julio Takehiro

    2006-07-01

    Radioactive lightning rods were manufactured in Brazil until 1989, when the licenses for using radioactive sources in these products were lifted by the national nuclear authority. Since then, radioactive devices have been replaced by Franklin type one and collected as radioactive waste. However, only 23 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission (Comissao Nacional de Energia Nuclear - CNEN). This situation is of concern as there is a possibility of the rods being discarded as domestic waste, considering that in Brazil, 63.6 percent of the municipal solid waste is disposed at uncontrolled garbage dump, according to Instituto Brasileiro de Geografia e Estatistica (IBGE) in 2000. In addition, americium, the most common employed radionuclide, is classified as a high toxicity element, when ingested or inhaled. In the present study, it was performed migration experiments of Am-241 by lysimeter system in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Sources removed from lightning rods were placed inside lysimeters filled with organic waste, collected at the restaurant of Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, and the generated leachate was periodically analyzed to determine its characteristics such as pH, redox potential, solid content and concentration of the radioactive material. Microbial growth was also evaluated by counting the number of colony forming units. The equivalent dose to members of the public has been calculated considering the ingestion of drinking water, the most probable mode of exposure. The final result was about 145 times below the effective dose limit of 1 mSv.year-1 for members of the public, established by the International Commission on Radiological Protection (ICRP), demonstrating that the risk caused by lightning rods disposed at uncontrolled garbage dump is low. (author)

  9. DESIGN, PERFORMANCE, AND SUSTAINABILITY OF ENGINEERED COVERS FOR URANIUM MILL TAILINGS

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W. Jody

    2004-04-21

    Final remedies at most uranium mill tailings sites include engineered covers designed to contain metals and radionuclides in the subsurface for hundreds of years. Early cover designs rely on compacted soil layers to limit water infiltration and release of radon, but some of these covers inadvertently created habitats for deep-rooted plants. Root intrusion and soil development increased the saturated hydraulic conductivity several orders of magnitude above design targets. These covers may require high levels of maintenance to sustain long-term performance. Relatively low precipitation, high potential evapotranspiration, and thick unsaturated soils favor long-term hydrologic isolation of buried waste at arid and semiarid sites. Later covers were designed to mimic this natural soil-water balance with the goal of sustaining performance with little or no maintenance. For example, the cover for the Monticello, Utah, Superfund site relies on a thick soil-sponge layer overlying a sand-and-gravel capillary barrier to store precipitation while plants are dormant and on native vegetation to dry the soil sponge during the growing season. Measurements of both off-site caisson lysimeters and a large 3-ha lysimeter built into the final cover show that drainage has been well below a U.S. Environmental Protection Agency target of less than 3.0 mm/yr. Our stewardship strategy combines monitoring precursors to failure, probabilistic riskbased modeling, and characterization of natural analogs to project performance of covers for a range of possible future environmental scenarios. Natural analogs are needed to understand how ecological processes will influence cover performance, processes that cannot be predicted with short-term monitoring and existing numerical models.

  10. Chloride-mass-balance for predicting increased recharge after land-use change

    Energy Technology Data Exchange (ETDEWEB)

    Gee, G.W.; Zhang, Z.F.; Tyler, S.W.; Albright, W.H.; Singleton, M.J.

    2004-02-23

    The chloride-mass-balance (CMB) method has been used extensively to estimate recharge in arid and semi-arid environments. Required data include estimates of annual precipitation, total chloride input (from dry fallout and precipitation), and pore-water chloride concentrations. Typically, CMB has been used to estimate ancient recharge but recharge from recent land-use change has also been documented. Recharge rates below a few mm/yr are reliably detected with CMB; however, estimates above a few mm/yr appear to be less reliable. We tested the CMB method against 26 years of drainage from a 7.6-m-deep lysimeter at a simulated waste-burial ground, located on the Department of Energy s Hanford Site in southeastern Washington State, USA where land-use change has increased recharge rates. Measured drainage from the lysimeter for the past 26 years averaged 62 mm/yr. Precipitation averaged 190 mm/yr with an estimated chloride input of 0.225 mg/L. Initial pore-water chloride concentration was 88 mg/L and decreased to about 6 mg/L after 26 years, while the drainage water decreased to less than 1 mg/L. A recharge estimate made using chloride concentrations in drain water was within 20 percent of the measured drainage rate. In contrast, recharge estimates using 1:1 (water: soil) extracts were lower than actual by factors ranging from 2 to 8 or more. The results suggest that when recharge is above a few mm/yr, soil water extracts can lead to unreliable estimates of recharge. For conditions of elevated recharge, direct sampling of pore water is the preferred method, because chloride concentrations are often 20 to 50 times higher in directly-sampled pore water than in pore-water extracts.

  11. Hydrology and geochemistry of a surface coal mine in northwestern Colorado

    Science.gov (United States)

    Williams, R.S.; Clark, G.M.

    1994-01-01

    The hydrology and geochemistry of a reclaimed coal mine in northwestern Colorado were monitored during water years 1988 and 1989. Some data also were collected in water years 1987 and 1990. This report describes (1) the sources of hydrologic recharge to and discharge from reclaimed spoil, (2) the relative contributions of recharge to the reclaimed spoil aquifer from identified source waters and the rate of water movement from those sources to the reclaimed spoil, and (3) the geochemical reactions that control water quality in reclaimed spoil. The study area was at a dip-slope coal mine encompassing about 7 square miles with land slopes of varying aspect. The area was instrumented and monitored at five sites; two sites had unmined and reclaimed- spoil areas adjacent to each other and three sites were unmined. The mined areas had been reclaimed. Instrumentation at the study sites included 1 climate station, 3 rain gages, 19 soil-water access tubes, 2 lysimeters, 18 wells completed in bedrock, 7 wells completed in reclaimed spoil, and 2 surface- water gaging stations. The results of the study indicate that the reclaimed spoil is recharged from surface recharge and underburden aquifers. Discharge, as measured by lysimeters, was about 3 inches per year and occurred during and after snowmelt. Hydraulic-head measurements indicated a potential for ground-water movement from deeper to shallower aquifers. Water levels rose in the reclaimed-spoil aquifer and spring discharge at the toe of the spoil slopes increased rapidly in response to snowmelt. Water chemistry, stable isotopes, geochemical models, and mass-balance calculations indicate that surface recharge and the underburden aquifers each contribute about 50 percent of the water to the reclaimed-spoil aquifers. Geochemical information indicates that pyrite oxidation and dissolution of carbonate and efflorescent sulfate minerals control the water chemistry of the reclaimed-spoil aquifer.

  12. Experimental lysimetric device NPP A-1

    International Nuclear Information System (INIS)

    Matusek, I.; Plsko, J.

    2002-01-01

    In the frame of decommissioning of the NPP A-1 in the locality Jaslovske Bohunice the problem of remedial measures in scope of radioactive contaminated soils is also studied. These soils have originated in the area of the NPP A-1 by different mechanisms as the result of leakages from technology and in the present time they represent the secondary source of contamination of underground waters. Contaminated soils represent the particularity, because we can characterize them as voluminous radioactive contaminated residues with low-level or very low-level activity. EKOSUR Company in the frame of active underground water protection suggested more remedial measures. Two basic tasks are solved in the field of the contaminated soils: rehabilitation of contaminated soils or temporary immobilisation of radionuclides in the contaminated volumes, deposition of rehabilitated soils in the storage of landfill type. In the frame of engineering solution of the landfill storage the question of technology of own deposition of contaminated soils into storage area is important from the safety viewpoint. Therefore the Experimental lysimetric device was built for half-operational test of suggested technologies. This device contains 6 pieces of lysimeters with 6 active volumes of approximately 1 cubic meter. The aim of suggested and in the present time realised experiments is the practical modelling of influence of filtering of waters into storage of contaminated soils in configurational and qualitative different conditions of deposition of soils (for example exploitation of sorption materials). Also the structure of un-rehabilitated soils by the influence of natural downfalls activity is modelled in one lysimeter. In this issue the authors deal with the construction of lysimetric device, proposed experiments as like as gained results of observations. (authors)

  13. Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados.

    Science.gov (United States)

    Laabs, V; Amelung, W; Pinto, A; Altstaedt, A; Zech, W

    2000-11-01

    Pesticide pollution of ground and surface water is of growing concern in tropical countries. The objective of this pilot study was to evaluate the leaching potential of eight pesticides in a Brazilian Oxisol. In a field experiment near Cuiabá, Mato Grosso, atrazine, chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, metolachlor, monocrotofos, simazine, and trifluraline were applied onto a Typic Haplustox. Dissipation in the topsoil, mobility within the soil profile and leaching of pesticides were studied for a period of 28 days after application. The dissipation half-life of pesticides in the topsoil ranged from 0.9 to 14 d for trifluraline and metolachlor, respectively. Dissipation curves were described by exponential functions for polar pesticides (atrazine, metolachlor, monocrotofos, simazine) and bi-exponential ones for apolar substances (chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, trifluraline). Atrazine, simazine and metolachlor were moderately leached beyond 15 cm soil depth, whereas all other compounds remained within the top 15 cm of the soil. In lysimeter percolates (at 35 cm soil depth), 0.8-2.0% of the applied amounts of atrazine, simazine, and metolachlor were measured within 28 days after application. Of the other compounds less than 0.03% of the applied amounts was detected in the soil water percolates. The relative contamination potentials of pesticides, according to the lysimeter study, were ranked as follows: metolachlor > atrazine = simazine > monocrotofos > endsulfane alpha > chlorpyrifos > trifluraline > lambda-cyhalothrin. This order of the pesticides was also achieved by ranking them according to their effective sorption coefficient Ke, which is the ratio of Koc to field-dissipation half-life.

  14. Migration barrier covers for radioactive and mixed waste landfills

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G.; Kent, J.S.

    1993-01-01

    Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE's radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate

  15. Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function

    International Nuclear Information System (INIS)

    Durenkamp, Mark; Pawlett, Mark; Ritz, Karl; Harris, Jim A.; Neal, Andrew L.; McGrath, Steve P.

    2016-01-01

    One of the main pathways by which engineered nanoparticles (ENPs) enter the environment is through land application of waste water treatment plant (WWTP) sewage sludges. WWTP sludges, enriched with Ag and ZnO ENPs or their corresponding soluble metal salts during anaerobic digestion and subsequently mixed with soil (targeting a final concentration of 1400 and 140 mg/kg for Zn and Ag, respectively), were subjected to 6 months of ageing and leaching in lysimeter columns outdoors. Amounts of Zn and Ag leached were very low, accounting for <0.3% and <1.4% of the total Zn and Ag, respectively. No differences in total leaching rates were observed between treatments of Zn or Ag originally input to WWTP as ENP or salt forms. Phospholipid fatty acid profiling indicated a reduction in the fungal component of the soil microbial community upon metal exposure. However, overall, the leachate composition and response of the soil microbial community following addition of sewage sludge enriched either with ENPs or metal salts was very similar. - Highlights: • Adding nanoparticles (NPs) to influent of a WWTP provides a realistic exposure route. • ZnO and Ag NP and metal salt soil/sludges were aged 6 months in outdoor columns. • Amounts of Zn and Ag leached were very low in NP and metal salt treatments. • Both types of metal exposure reduced the fungal component of the soil microbial community. • Responses in NP and metal salt soil/sludges were very similar overall. - The fate and effects of ENPs are studied under realistic conditions: ENPs were added to the influent of a Waste Water Treatment Plant and the resulting sewage sludges mixed with soil in lysimeters.

  16. Health risk assessment linked to filling coastal quarries with treated dredged seaport sediments

    International Nuclear Information System (INIS)

    Perrodin, Yves; Donguy, Gilles; Emmanuel, Evens; Winiarski, Thierry

    2014-01-01

    Dredged seaport sediments raise complex management problems since it is no longer possible to discharge them into the sea. Traditional waste treatments are poorly adapted for these materials in terms of absorbable volumes and cost. In this context, filling quarries with treated sediments appears interesting but its safety regarding human health must be demonstrated. To achieve this, a specific methodology for assessing health risks has been developed and tested on three seaport sediments. This methodology includes the development of a conceptual model of the global scenario studied and the definition of specific protocols for each of its major steps. The approach proposed includes in particular the use of metrological and experimental tools that are new in this context: (i) an experimental lysimeter for characterizing the deposit emissions, and (ii) a geological radar for identifying potential preferential pathways between the sediment deposit and the groundwater. The application of this approach on the three sediments tested for the scenario studied showed the absence of health risk associated with the consumption of groundwater for substances having a “threshold effect” (risk quotient −6 ). - Highlights: • The release of polluted dredged seaport sediments into the sea must be avoided. • Their use after treatment for the filling-up of quarries is proposed by managers. • An original health risk assessment methodology was created to validate this option. • It includes the use of a lysimeter and a georadar for the exposure assessment stage. • The example studied concludes to a health risk linked to arsenic in the groundwater

  17. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.

    Science.gov (United States)

    Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi

    2013-08-01

    An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 John Wiley & Sons Ltd.

  18. Soil conditions under a Fagus sylvatica CONECOFOR stand in Central Italy: an integrated assessment through combined solid phase and solution studies

    Directory of Open Access Journals (Sweden)

    Guido SANESI

    2002-09-01

    Full Text Available As soil solution represents the major phase of soil chemical reactions, its study is a powerful tool for ecological investigations. Soil solution chemical composition gives a realistic idea about the soil chemical components immediately available in the environment, mainly in relation to the soil ecosystem reaction to the disturbance due to acidifying loads. Within the CONECOFOR Program, the monitoring of forest soil conditions was performed in a level II plot (ABR I, under a Fagus sylvatica (European beech stand, through the study of throughfall and soil solutions collected from depths ranging between the base of the litter layers and 90 cm. To be able to investigate solution contents of nutrients, acidifying agents and DOC throughout the profile, both zero tension and tension lysimeters were used. The first ones were inserted below the organic horizons, while tension lysimeters were placed within the mineral horizons at 15, 25, 55 and 90 cm depth. Sampled solutions were analyzed for Na, K, Ca, Mg, NH4, Cl, F, NO3, SO4, and DOC. The results evidence a clear seasonal pattern, mainly for macronutrients and inorganic N components. Acidic pulses were mostly evident below the organic horizons, in relation to strong nitric N releases from litter; these last were not always immediately neutralized by basic cations. Acid solutions leaving the organic horizons were invariably neutralized in the surface mineral horizons, within 15 cm depth. Temporal patterns of sulphate retention and release suggest that the soil has low retention capability for this anion. Such behaviour can be explained by the composition of the solid phase, where potential anion adsorbants appear strongly linked with organic matter in long residence time complexes. Sulphate and nitrate loading of this soil appear, anyway, to be mostly non-anthropogenic, but rather linked to natural mineralization pulses and, for sulphate, to aeolian solid transport from the south.

  19. Assessment of transpiration efficiency in peanut (Arachis hypogaea L.) under drought using a lysimetric system.

    Science.gov (United States)

    Ratnakumar, P; Vadez, V; Nigam, S N; Krishnamurthy, L

    2009-11-01

    Transpiration efficiency (TE) is an important trait for drought tolerance in peanut (Arachis hypogaea L.). The variation in TE was assessed gravimetrically using a long time interval in nine peanut genotypes (Chico, ICGS 44, ICGV 00350, ICGV 86015, ICGV 86031, ICGV 91114, JL 24, TAG 24 and TMV 2) grown in lysimeters under well-watered or drought conditions. Transpiration was measured by regularly weighing the lysimeters, in which the soil surface was mulched with a 2-cm layer of polythene beads. TE in the nine genotypes used varied from 1.4 to 2.9 g kg(-1) under well-watered and 1.7 to 2.9 g kg(-1) under drought conditions, showing consistent variation in TE among genotypes. A higher TE was found in ICGV 86031 in both well-watered and drought conditions and lower TE was found in TAG-24 under both water regimes. Although total water extraction differed little across genotypes, the pattern of water extraction from the soil profile varied among genotypes. High water extraction within 24 days following stress imposition was negatively related to pod yield (r(2) = 0.36), and negatively related to water extraction during a subsequent period of 32 days (r(2) = 0.73). By contrast, the latter, i.e. water extraction during a period corresponding to grain filling (24 to 56 days after flowering) was positively related to pod yield (r(2) = 0.36). TE was positively correlated with pod weight (r(2) = 0.30) under drought condition. Our data show that under an intermittent drought regime, TE and water extraction from the soil profile during a period corresponding to pod filling were the most important components.

  20. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fred J. Molz, III

    2010-05-28

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  1. Observing plants dealing with soil water stress: Daily soil moisture fluctuations derived from polymer tensiometers

    Science.gov (United States)

    van der Ploeg, Martine; de Rooij, Gerrit

    2014-05-01

    Periods of soil water deficit often occur within a plant's life cycle, even in temperate deciduous and rain forests (Wilson et al. 2001, Grace 1999). Various experiments have shown that roots are able to sense the distribution of water in the soil, and produce signals that trigger changes in leaf expansion rate and stomatal conductance (Blackman and Davies 1985, Gollan et al. 1986, Gowing et al. 1990 Davies and Zhang 1991, Mansfield and De Silva 1994, Sadras and Milroy 1996). Partitioning of water and air in the soil, solute distribution in soil water, water flow through the soil, and water availability for plants can be determined according to the distribution of the soil water potential (e.g. Schröder et al. 2013, Kool et al. 2014). Understanding plant water uptake under dry conditions has been compromised by hydrological instrumentation with low accuracy in dry soils due to signal attenuation, or a compromised measurement range (Whalley et al. 2013). Development of polymer tensiometers makes it possible to study the soil water potential over a range meaningful for studying plant responses to water stress (Bakker et al. 2007, Van der Ploeg et al. 2008, 2010). Polymer tensiometer data obtained from a lysimeter experiment (Van der Ploeg et al. 2008) were used to analyse day-night fluctuations of soil moisture in the vicinity of maize roots. To do so, three polymer tensiometers placed in the middle of the lysimeter from a control, dry and very dry treatment (one lysimeter per treatment) were used to calculate water content changes over 12 hours. These 12 hours corresponded with the operation of the growing light. Soil water potential measurements in the hour before the growing light was turned on or off were averaged. The averaged value was used as input for the van Genuchten (1980) model. Parameters for the model were obtained from laboratory determination of water retention, with a separate model parameterization for each lysimeter setup. Results show daily

  2. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    International Nuclear Information System (INIS)

    Molz, Fred J. III

    2010-01-01

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  3. Accumulation of metals in vegetation established in ash constructions; Ackumulering av metaller i vegetation paa geotekniska askkonstruktioner

    Energy Technology Data Exchange (ETDEWEB)

    Hemstroem, Kristian; Wik, Ola (SGI, Statens geotekniska institut (Sweden)); Bramryd, Torleif; Johansson, Michael (Lunds Universitet, Miljoestrategi (Sweden)); Jaegerbrand, Annika (VTI, Statens Vaeg och transportforskningsinstitut (Sweden))

    2012-02-15

    The overall aim of this study was to investigate how the use of ash in a long-term perspective affects the surrounding flora and fauna with regard to the accumulation of metals in the ecosystem through plant uptake and exposure to grazing animals. The study included a field study and a cultivation experiment. In the field study, the accumulation of metals and metalloids in leaves of trees and shrubs that had self established and grown in lysimeters with aged MSWI bottom ash and aged biofuel ash was determined. In the cultivation experiment, the accumulation of metals and metalloids from the studied materials in ryegrass was determined. Reference materials in the cultivation experiment were two conventional geotechnical materials, crushed rock and excavated soil. Leaves from trees and bushes in the vicinity of the ash lysimeters were used as reference materials in the field study. Contamination of plant samples with particles, through splashing during rain, dusting, or in connection with sampling, proved to have had a major impact on the measured metal and metalloid concentrations in several grass samples in the cultivation experiment. The results also indicate that contamination of plant samples with particles occurred in the field study. In this case, probably due to atmospheric deposition. The particle contamination complicated the evaluation of some of the results in the project since the intention was to study accumulation by roots from the studied ash materials, but, on the other hand, the particle contamination showed the importance of taking into account the spreading of contaminants through particles as an exposure route for grazing animals. In the field study, only Cd and Zn in aspen, willow and birch exhibited elevated levels in the leaves due to root uptake from MSWI bottom ash compared to the reference samples. In addition, elevated levels of As was observed in leaves from trees in the biofuel ash. The total content of As was similar in all studied

  4. Landfill operation and waste management procedures in the reduction of methane and leachate pollutant emissions from municipal solid waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, J.

    2002-07-01

    The objective of the present research was to find ways of minimising emissions from municipal solid waste (MSW) landfills by means of laboratory experiments. During anaerobic incubation for 237 days, the grey waste components produced between 120 and 320 m{sup 3}CH{sub 4} tTS{sup -1} and between 0.32 and 3.5 kg NH{sub 4}-N tTS{sup -1} and the first-order rate constant of degradation ranged from 0.021 and 0.058 d{sup -1}. High amounts of COD and NH{sub 4}-N were observed in the leachate of grey waste in all the procedures tested during lysimeter experiments lasting 573 days. In the 10- year-old landfilled MSW, a high rate of methanisation was achieved with rainwater addition and leachate recirculation over 538 days, whereas initially pre-wetted grey waste and landfilled MSW were rapidly acidified, thus releasing a high amount of COD into the leachate. In batch assays, the grey waste produced a methane potential amounting to 70-85 % of the total methane potential of the grey waste plus putrescibles. In low moisture conditions, i.e. below 55%, methane production was delayed in the old landfill waste and prevented in the grey waste. In the emission potential study with five waste types, putrescibles produced 410 m{sup 3}CH{sub 4} tTS{sup -1} and 3.6 kgNH{sub 4}-N tTS{sup -1}, whereas composted putrescibles produced 41 m{sup 3}CH{sub 4} tVS{sup -1}, and 2.0 kgNH{sub 4}-N tTS{sup -1}. The remains of putrescibles probably caused the leaching potential of 2.1 kgNH{sub 4}-N tTS{sup -1} in the grey waste. Aeration for 51 days in lysimeters reduced the CH{sub 4} potential of putrescibles by more than 68 % and of the lysimeter landfilled grey waste by 50 %, indicating the potential of aeration for CH4 emission reduction. Nitrogen removal of landfill leachate was studied in the laboratory as well as on-site. Over 90 % nitrification of leachate was obtained with loading rates between 100 and 130 mgNH{sub 4}-N l{sup -1} d-1 at 25 deg C. Nitrified leachate was denitrified with a

  5. A Study Plan for Determining Recharge Rates at the Hanford Site Using Environmental Tracers

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. M.; Szecsody, J. E.; Phillips, S. J.

    1991-02-01

    This report presents a study plan tor estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. The prediction of contaminant movement or transport is one aspect of performance assessment and an important step in the remedial investigation/feasibility study (RI/FS) process. In the past, recharge has been characterized by collecting lysimeter data. Although lysimeters can generate important and reliable data, their limitations include 1) fixed location, 2) fixed sediment contents, 3) edge effects, 4) low rates, and 5) relatively short duration of measurement. These limitations impact the ability to characterize the spatial distribution of recharge at the Hanford Site, and thus the ability to predict contaminant movement in the vadose zone. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, {sup 36}CI, {sup 3}H, and {sup 2}H/{sup 18}O. Atmospheric levels of {sup 36}CI and {sup 3}H increased during nuclear bomb testing in the Pacific, and the resulting "bomb pulse" or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resu~ed in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, {sup 129}I, and {sup 99}Tc. The radionuclides, in particular, reached a well-defined atmospheric peak in 1945. Atmospheric releases of {sup 129}I and {sup 99}Tc were greatly reduced by mid-1946, but nitrogen oxides continued to be released from the uranium separations facilities. As a result, the nitrate concentrations probably peaked in the mid-1950s, when the greatest number of separations facilities were operating

  6. Monitoring soil greenhouse gas emissions from managed grasslands

    Science.gov (United States)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  7. The effects of artificial recharge on groundwater levels and water quality in the west hydrogeologic unit of the Warren subbasin, San Bernardino County, California

    Science.gov (United States)

    Stamos, Christina L.; Martin, Peter; Everett, Rhett; Izbicki, John A.

    2013-01-01

    Between the late 1940s and 1994, groundwater levels in the Warren subbasin, California, declined by as much as 300 feet because pumping exceeded sparse natural recharge. In response, the local water district, Hi-Desert Water District, implemented an artificial-recharge program in early 1995 using imported water from the California State Water Project. Subsequently, the water table rose by as much as 250 feet; however, a study done by the U.S. Geological Survey found that the rising water table entrained high-nitrate septic effluent, which caused nitrate (as nitrogen) concentrations in some wells to increase to more than the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter.. A new artificial-recharge site (site 3) was constructed in 2006 and this study, which started in 2004, was done to address concerns about the possible migration of nitrates in the unsaturated zone. The objectives of this study were to: (1) characterize the hydraulic, chemical, and microbiological properties of the unsaturated zone; (2) monitor changes in water levels and water quality in response to the artificial-recharge program at site 3; (3) determine if nitrates from septic effluent infiltrated through the unsaturated zone to the water table; (4) determine the potential for nitrates within the unsaturated zone to mobilize and contaminate the groundwater as the water table rises in response to artificial recharge; and (5) determine the presence and amount of dissolved organic carbon because of its potential to react with disinfection byproducts during the treatment of water for public use. Two monitoring sites were installed and instrumented with heat-dissipation probes, advanced tensiometers, suction-cup lysimeters, and wells so that the arrival and effects of recharging water from the State Water Project through the 250 to 425 foot-thick unsaturated zone and groundwater system could be closely observed. Monitoring site YVUZ-1 was located between two

  8. Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

    Science.gov (United States)

    Peters, C.A.; Striegl, Robert G.; Mills, P.C.; Healy, R.W.

    1992-01-01

    methods of constructing, installing, and sampling with lysimeters were evaluated to ensure data reliability. These evaluations indicate that, with respect to most constituents, the samples retrieved from the lysimeters accurately represented pore-water chemistry.

  9. Unsaturated flow dynamics during irrigation with wastewater: field and modelling study

    Science.gov (United States)

    Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.

    2012-04-01

    To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters

  10. Bowen ratio/energy balance technique for estimating crop net CO2 assimilation, and comparison with a canopy chamber

    Science.gov (United States)

    Held, A. A.; Steduto, P.; Orgaz, F.; Matista, A.; Hsiao, T. C.

    1990-12-01

    This paper describes a Bowen ratio/energy balance (BREB) system which, in conjunction with an infra-red gas analyzer (IRGA), is referred to as BREB+ and is used to estimate evapotranspiration ( ET) and net CO2 flux ( NCF) over crop canopies. The system is composed of a net radiometer, soil heat flux plates, two psychrometers based on platinum resistance thermometers (PRT), bridge circuits to measure resistances, an IRGA, air pumps and switching valves, and a data logger. The psychrometers are triple shielded and aspirated, and with aspiration also between the two inner shields. High resistance (1 000 ohm) PRT's are used for dry and wet bulbs to minimize errors due to wiring and connector resistances. A high (55 K ohm) fixed resistance serves as one arm of the resistance bridge to ensure linearity in output signals. To minimize gaps in data, to allow measurements at short (e.g., 5 min) intervals, and to simplify operation, the psychrometers were fixed at their upper and lower position over the crop and not alternated. Instead, the PRT's, connected to the bridge circuit and the data logger, were carefully calibrated together. Field tests using a common air source showed appartent effects of the local environment around each psychrometer on the temperatures measured. ET rates estimated with the BREB system were compared to those measured with large lysimeters. Daily totals agreed within 5%. There was a tendency, however, for the lysimeter measurements to lag behind the BREB measurements. Daily patterns of NCF estimated with the BREB+ system are consistent with expectations from theories and data in the literature. Side-by-side comparisons with a stirred Mylar canopy chamber showed similar NCF patterns. On the other hand, discrepancies between the results of the two methods were quite marked in the morning or afternoon on certain dates. Part of the discrepancies may be attributed to inaccuracies in the psychrometric temperature measurements. Other possible causes

  11. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    Directory of Open Access Journals (Sweden)

    M. O. Rappe-George

    2013-03-01

    Full Text Available Addition of mineral nitrogen (N can alter the concentration and quality of dissolved organic matter (DOM in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC and dissolved organic nitrogen (DON in Stråsan experimental forest (Norway spruce in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr of N addition than the shorter N2 treatment (24 yr. N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6, and tension lysimeters were installed in the underlying B horizon (n = 4: soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii indirectly via priming of old SOM, and/or (iii a suppression of extracellular oxidative enzymes.

  12. Water and energy balance in the cultivated and bake soil in a montane area in Paraiba, Brazil

    International Nuclear Information System (INIS)

    Lima, Jose Romualdo de Sousa

    2004-02-01

    In the areas of rain fed agriculture it is very important to quantify losses of water by evapotranspiration and soil evaporation. The methods used for measuring evapotranspiration and/or evaporation varies from direct measurements techniques, using lysimeters, to measurements of the water and energy balances. The precision lysimeters have high cost, being only used for research purposes. The water and energy balances methods have been very used due the simplicity, robustness and lower cost. Therefore, the objective of this study was to assess the water and energy balance components in the soil cultivated with cowpea (Vigna unguiculata (L) Walp) and without vegetation, besides comparing the methods used to determine the cowpea evapotranspiration. Two experiments (2002 and 2003) were performed in the 4 ha area of the Centro de Ciencias Agrarias, UFPB, municipality of Areia, Paraiba State (6 deg C 58 S, 5 deg C 41 W). To determine the energy balance, the area was instrumented with a rain gauge, a pyrano meter, a net radiometer, and sensors for measuring air temperature and humidity, and wind speed in two levels. Two locals, in the soil, were instrumented with two temperature sensors located at 2.0 cm and 8.0 cm below soil surface and one heat flux plate placed at 5.0 cm below soil surface. The measurements were recorded every 30 minutes on a data logger. To determine the water balance, three plots were installed, composed one-meter access tube for neutron probe measurements, and 8 tensiometers. The results show very good correlation between the aerodynamic method and the Bowen ration energy balance method, for all atmospherics and soil water conditions. For the two years, in average 72% of the net radiation was used by crop evapotranspiration. The energy and water balance can be used, the determine the crop evapotranspiration and soil evaporation, and regardless of the method used, the major water use by crop occurred in the reproductive stage. In the year of 2002

  13. Fire Effects on Soil and Dissolved Organic Matter in a Southern Appalachian Hardwood Forest: Movement of Fire-Altered Organic Matter Across the Terrestrial-Aquatic Interface Following the Great Smoky Mountains National Park Fire of 2016

    Science.gov (United States)

    Matosziuk, L.; Gallo, A.; Hatten, J. A.; Heckman, K. A.; Nave, L. E.; Sanclements, M.; Strahm, B. D.; Weiglein, T.

    2017-12-01

    Wildfire can dramatically affect the quantity and quality of soil organic matter (SOM), producing thermally altered organic material such as pyrogenic carbon (PyC) and polyaromatic hydrocarbons (PAHs). The movement of this thermally altered material through terrestrial and aquatic ecosystems can differ from that of unburned SOM, with far-reaching consequences for soil carbon cycling and water quality. Unfortunately, due to the rapid ecological changes following fire and the lack of robust pre-fire controls, the cycling of fire-altered carbon is still poorly understood. In December 2016, the Chimney Tops 2 fire in Great Smoky Mountains National Park burned over co-located terrestrial and aquatic NEON sites. We have leveraged the wealth of pre-fire data at these sites (chemical, physical, and microbial characterization of soils, continuous measurements of both soil and stream samples, and five soil cores up to 110 cm in depth) to conduct a thorough study of the movement of fire-altered organic matter through terrestrial and aquatic ecosystems. Stream samples have been collected weekly beginning 5 weeks post-fire. Grab samples of soil were taken at discrete time points in the first two months after the fire. Eight weeks post-fire, a second set of cores was taken and resin lysimeters installed at three different depths. A third set of cores and grab samples will be taken 8-12 months after the fire. In addition to routine soil characterization techniques, solid samples from cores and grab samples at all time points will be analyzed for PyC and PAHs. To determine the effect of fire on dissolved organic matter (DOM), hot water extracts of these soil samples, as well as the stream samples and lysimeter samples, will also be analyzed for PyC and PAHs. Selected samples will be analyzed by 1D- and 2D-NMR to further characterize the chemical composition of DOM. This extensive investigation of the quantity and quality of fire-altered organic material at discrete time points

  14. An evaluation of SEBAL algorithm using high resolution aircraft data acquired during BEAREX07

    Science.gov (United States)

    Paul, G.; Gowda, P. H.; Prasad, V. P.; Howell, T. A.; Staggenborg, S.

    2010-12-01

    Surface Energy Balance Algorithm for Land (SEBAL) computes spatially distributed surface energy fluxes and evapotranspiration (ET) rates using a combination of empirical and deterministic equations executed in a strictly hierarchical sequence. Over the past decade SEBAL has been tested over various regions and has found its application in solving water resources and irrigation problems. This research combines high resolution remote sensing data and field measurements of the surface radiation and agro-meteorological variables to review various SEBAL steps for mapping ET in the Texas High Plains (THP). High resolution aircraft images (0.5-1.8 m) acquired during the Bushland Evapotranspiration and Agricultural Remote Sensing Experiment 2007 (BEAREX07) conducted at the USDA-ARS Conservation and Production Research Laboratory in Bushland, Texas, was utilized to evaluate the SEBAL. Accuracy of individual relationships and predicted ET were investigated using observed hourly ET rates from 4 large weighing lysimeters, each located at the center of 4.7 ha field. The uniqueness and the strength of this study come from the fact that it evaluates the SEBAL for irrigated and dryland conditions simultaneously with each lysimeter field planted to irrigated forage sorghum, irrigated forage corn, dryland clumped grain sorghum, and dryland row sorghum. Improved coefficients for the local conditions were developed for the computation of roughness length for momentum transport. The decision involved in selection of dry and wet pixels, which essentially determines the partitioning of the available energy between sensible (H) and latent (LE) heat fluxes has been discussed. The difference in roughness length referred to as the kB-1 parameter was modified in the current study. Performance of the SEBAL was evaluated using mean bias error (MBE) and root mean square error (RMSE). An RMSE of ±37.68 W m-2 and ±0.11 mm h-1 was observed for the net radiation and hourly actual ET, respectively

  15. Mobilization and transport of pollutants in an abandoned dump in tropical conditions

    Science.gov (United States)

    Pelinson, Natalia; Shinzato, Marjolly; Wendland, Edson

    2017-04-01

    The valuation and treatment techniques of municipal solid waste (MSW) in developing countries are not sufficiently developed, and therefore, the volume of waste destined for disposal still presents significant amounts. In Brazil, the more common practice of final destination is the deposition on the soil, due to its simple operation and low cost compared to other techniques. One of the most serious negative environmental impacts in the irregular disposal of solid waste is the contamination of soil and groundwater by waste leachates. The final disposal in dumps is forbidden by Brazilian law since 2010, nevertheless, the public administration is not prepared to monitor waste disposal areas and the risk of contamination of water. In this sense, a research has been developed in an abandoned dump installed over an outcrop of the Botucatu Formation, which is part of the Guarani Aquifer System (SAG) and therefore, is an area of high water vulnerability. In this dump, an old gully was used as a final waste disposal area for urban, construction and demolition, medical and industrial waste from 1980 to 1996. Since the end of the deposition, the waste body is kept with inefficient hydraulic control. The water infiltration due to rainfall promotes the mobility of contaminant in the deposit. The present water quality in the dump has been monitored through physical and chemical analysis of samples collected in the unsaturated zone (inside the waste mass using vacuum lysimeters) and in the saturated zone (monitoring wells). The rainfall variation observed in the years 2014 (dry year) and 2015 (wet year) contributed significantly to evaluate the mobilization of pollutants within the dump. The reduction of the water volume that infiltrates the waste mass affected the quality of the leachate collected in the lysimeters. The groundwater collected in monitoring wells outside the dump area presents low turbidity values (1000 µS.cma-1 in leachate) and chlorides values (>800 mg.L-1

  16. Transfer of reactive solutes in the unsaturated zone of soils at several observation scales; Transfert de solutes reactifs dans la zone non-saturee des sols a differentes echelles d'observation

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G

    2006-10-15

    The transfer of contaminants in the unsaturated zone of soils is driven by numerous mechanisms. Field studies are sometimes difficult to set up, and so the question is raised about the reliability of laboratory measurements for describing a field situation. The nuclear power plant at Brennilis (Finistere, France) has been chosen to study the transfer of strontium, cobalt and inert tracers in the soil of this industrial site. Several observation scales have been tested (batch, stirred flow-through reactor, sieved-soil column, un-repacked or repacked soil-core lysimeter, field experiments) in order to determine, at each scale, the factors that influence the transfer of these contaminants, then to verify the adequacy between the different observation scales and their field representativeness. Regarding the soil hydrodynamic properties, the porosity, the water content in the field, the pore water velocity at the water content in the field, the saturation hydraulic conductivity and the dispersion coefficient of this embanked soil are spatially less heterogeneous than those of agricultural or non-anthropic soils. The results obtained with lysimeter and field experiments suggest that hydrodynamics of this unstructured soil can be studied on a repacked sample if the volume is high compared to the rare big-size stones. Regarding the chemical soil-contaminant interactions, cobalt and strontium isotherms are non-linear at concentration higher than 10{sup -4} mol.L{sup -1}, cobalt adsorption and desorption are fast and independent on pH. On the contrary, at concentration lower than 3.5 x 10{sup -6} mol.L{sup -1}, cobalt and strontium isotherms are linear, cobalt desorption is markedly slower than adsorption and both cobalt partition coefficient at equilibrium and its reaction kinetics are highly pH-dependent. For both elements, the results obtained with batch, stirred flow-through reactor and sieved-soil column are in adequacy. However, strontium batch adsorption measurements

  17. Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan.

    Science.gov (United States)

    Tariq, Muhammad Ilyas; Afzal, Shahzad; Hussain, Ishtiaq

    2006-02-01

    The present study evaluated the influence of temperature, moisture, and microbial activity on the degradation and persistence of commonly used cotton pesticides, i.e., carbosulfan, carbofuran, lambda-cyhalothrin, endosulfan, and monocrotophos, with the help of laboratory incubation and lysimeter studies on sandy loam soil (Typic Ustocurepts) in Pakistan. Drainage from the lysimeters was sampled on days 49, 52, 59, 73, 100, 113, and 119 against the pesticide application on days 37, 63, 82, 108, and 137 after the sowing of cotton. Carbofuran, monocrotophos, and nitrate were detected in the drainage samples, with an average value, respectively, of 2.34, 2.6 microg/L, and 15.6 mg/L for no-tillage and 2.16, 2.3 microg/L, and 13.4 mg/L for tillage. In the laboratory, pesticide disappearance kinetics were measured with sterile and nonsterile soils from 0 to 10 cm in depth at 15, 25, and 35 degrees C and 50% and 90% field water capacities. Monocrotophos and carbosulfan dissipation followed first-order kinetics while others followed second-order kinetics. The results of incubation studies showed that temperature and moisture contents significantly reduced the t(1/2) (half-life) values of pesticides in sterile and nonsterile soil, but the effect of microbial activity was nearly significant that might be due to less organic carbon (0.3%). The presence of carbofuran and monocrotophos in the soil profile (0-10, 10-30, 30-60, 60-90, 90-150 cm) and the higher concentrations of endosulfan and lambda-cyhalothrin in the top layer (0-10 cm) showed the persistence of the pesticides. The detection of endosulfan and lambda-cyhalothrin in the 10-30 cm soil layer might be due to preferential flow. The data generated from this study could be helpful for risk assessment studies of pesticides and for validating pesticide transport models for sandy loam soils in cotton-growing areas of Pakistan.

  18. Impacts of Green Infrastructure on the Water Budget and Other Ecosystem Services in Subhumid Urban Areas

    Science.gov (United States)

    Feng, Y.; Burian, S. J.; Pardyjak, E.; Pomeroy, C. A.

    2014-12-01

    Green infrastructure (GI) measures have been well established as part of low-impact development approaches for stormwater (SW) management. The origin of the concepts, practices and the preponderance of research have taken place in humid climates. Recent work has begun to explore and adapt GI to subhumid and semi-arid climates, which experience warmer and drier periods. But much remains unknown about effects of GI on the water cycle and how to effectively implement to maximize ecosystem benefits. This research synthesizes observation and modeling to address questions related to changes in evapotranspiration (ET), SW runoff volume, and other water cycle processes from GI introduction in Salt Lake City, Utah, USA. First, the water budget of green roofs is being studied via weighing lysimeter systems on two rooftop gardens on the University of Utah campus. ET, outflow, and soil moisture have been measured for approximately one year. Up to this early summer, average ET rates for lysimeters of pure medium, Sedums, and Bluegrass are 1.85±1.01, 1.97±0.94, and 2.31±0.91 mm/d respectively; the maximum ET rate could reach 6.11 mm/d from Sedums. Over 2/3 of total rainfall and irrigation were slowly consumed via ET from green roof. Second, the observation studies are leading to new ET modeling techniques that are being incorporated into the U.S. EPA Storm Water Management Model (SWMM). The modified SWMM has been used to simulate ET, SW runoff volume, and overall water budget changes from GI implementation. Preliminary result shows that ET could account for 10% of the total inflows into bioretentions, and 25% of the inflows into landscapes; potential ET rates could vary up to 0.95 mm/hr across 53 subcatchments in the 29 acres catchment. The influence of various design factors for GI on SW runoff reduction and the water budget is also to be estimated. The application of the research is to analyze the water budget of the Red Butte Creek Watershed in Salt Lake City and to

  19. Chelant-enhanced heavy metals uptake by Eucalyptus trees under controlled deficit irrigation

    Science.gov (United States)

    Fine, Pinchas; Rathod, Paresh; Beriozkin, Anna; Ein-Gal, Oz; Hass, Amir

    2014-05-01

    Enhancement of phytoremediation of heavy metal polluted soils employs organic ligands, aimed to solubilize, phytoextract and translocate metals into the canopy. The use of more persistent chelants (e.g. EDTA) is phasing out due to concerns over their role in the environment. We tested the hypothesis that controlled deficit irrigation (CDI) of the fast growing, salinity resistant Eucalyptus camaldulensis coupled with timely EDTA application enhances sediment phytoremediation while minimizing leaching of metal complexes below the root-zone. This was tested in 220-L lysimeters packed with sand mixed with metals polluted biosolids. One year old trees were brought under CDI with tap or RO water for two growing seasons. EDTA, EDDS and citric acid fertigation at 2 mM started in each May for 2.5-3.5 months, and prescribed soil leaching and sampling of tree leaves started thereafter. While all 3 chelants solubilized biosolids metal in batch extraction (EDDS often being the more efficient), EDTA was the only to increased metal concentrations both in the soil solution and in the Eucalyptus leaves. The average concentrations in the soil solution and in the leaves, in the EDTA vs. control (chelant-free) treatments, all respectively, were: Cd - 200 mg L-1 vs. 1.0, and 67 vs. 21 mg kg-1; Cu: 90 vs. 1.5 mg L-1, and 17 vs. 3.0 mg kg-1; Cr: 4.0 vs. 1.4 mg L-1, and 3.0 vs. 1.0 mg kg-1; Ni: 60 mg L-1 vs. 14, and 20 vs. 6.0 mg kg-1; Pb: >44 vs. 0.1 mg L-1, and 9.0 vs. 1.0 mg kg-1; and Zn: 650 vs. 4.0 mg L-1 and 200 vs. 70 mg kg-1. While EDDS was undetectable in all the leachates, EDTA concentrated to up to 100 mM. At 10 mM soil solution concentration, EDDS half-life in acclimated lysimeter media was 5-11 days and that of EDTA was ≥27-d. The study suggests that sustainable phytostabilization and phytoextraction of heavy metals are achievable under CDI with EDTA augmentation at low dose. This was yet futile with the biodegradable EDDS and citric acid. CDI with RO water further widened

  20. Water Use and Quality Footprints of Biofuel Crops in Florida

    Science.gov (United States)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  1. Water and energy balance in the cultivated and bake soil in a montane area in Paraiba, Brazil; Balanco hidrico e de energia em solo cultivado e sem vegetacao, para as condicoes do brejo paraibano

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jose Romualdo de Sousa

    2004-02-01

    In the areas of rain fed agriculture it is very important to quantify losses of water by evapotranspiration and soil evaporation. The methods used for measuring evapotranspiration and/or evaporation varies from direct measurements techniques, using lysimeters, to measurements of the water and energy balances. The precision lysimeters have high cost, being only used for research purposes. The water and energy balances methods have been very used due the simplicity, robustness and lower cost. Therefore, the objective of this study was to assess the water and energy balance components in the soil cultivated with cowpea (Vigna unguiculata (L) Walp) and without vegetation, besides comparing the methods used to determine the cowpea evapotranspiration. Two experiments (2002 and 2003) were performed in the 4 ha area of the Centro de Ciencias Agrarias, UFPB, municipality of Areia, Paraiba State (6 deg C 58 S, 5 deg C 41 W). To determine the energy balance, the area was instrumented with a rain gauge, a pyrano meter, a net radiometer, and sensors for measuring air temperature and humidity, and wind speed in two levels. Two locals, in the soil, were instrumented with two temperature sensors located at 2.0 cm and 8.0 cm below soil surface and one heat flux plate placed at 5.0 cm below soil surface. The measurements were recorded every 30 minutes on a data logger. To determine the water balance, three plots were installed, composed one-meter access tube for neutron probe measurements, and 8 tensiometers. The results show very good correlation between the aerodynamic method and the Bowen ration energy balance method, for all atmospherics and soil water conditions. For the two years, in average 72% of the net radiation was used by crop evapotranspiration. The energy and water balance can be used, the determine the crop evapotranspiration and soil evaporation, and regardless of the method used, the major water use by crop occurred in the reproductive stage. In the year of 2002

  2. New Comparative Experiments of Different Soil Types for Farmland Water Conservation in Arid Regions

    Directory of Open Access Journals (Sweden)

    Yiben Cheng

    2018-03-01

    Full Text Available Irrigated farmland is the main food source of desert areas, and moisture is the main limiting factor of desert farmland crop productivity. Study on the influence of irrigation on desert farmland soil moisture can guide the agricultural water resource utilization and agricultural production in those regions. At present, the efficiency of irrigation water usage in Northwest China is as low as approximately 40% of the irrigated water. To understand the response of farmland soil moisture in different soil types on irrigation in the Ulan Buh Desert of Inner Mongolia of China, this experimental study takes advantage of different infiltration characteristics and hydraulic conductivities of sand, clay, and loam to determine an optimized soil combination scheme with the purpose of establishing a hydraulic barrier that reduces infiltration. This study includes three comparative experiments with each consisting of a 100 cm thick of filled sand, or clay, or loam soil underneath a 50 cm plough soil, with a total thickness of 150 cm soil profile. A new type of lysimeter is installed below the above-mentioned 150 cm soil profile to continuously measure deep soil recharge (DSR, and the ECH2O-5 soil moisture sensors are installed at different depths over the 150 cm soil profile to simultaneously monitor the soil moisture above the lysimeter. The study analyzes the characteristics of soil moisture dynamics, the irrigation-related recharge on soil moisture, and the DSR characteristics before and after irrigation, during the early sowing period from 2 April to 2 May 2017. Research results show that: (1 Irrigation significantly influences the soil moisture of 0–150 cm depths. The soil moisture increase after the irrigation follows the order from high to low when it is in the order of loam, sand, and clay. (2 Irrigation-induced soil moisture recharge occurs on all three soil combinations at 0–150 cm layers, and the order of soil moisture recharge from high to low

  3. Role of rock texture and mineralogy on the hydrology and geochemistry of three neutral-drainage mesoscale experimental waste rock piles at the Antamina Mine, Peru

    Science.gov (United States)

    Peterson, H.; Bay, D. S.; Beckie, R. D.; Mayer, K. U.; Klein, B.; Smith, L.

    2009-12-01

    An ongoing study at the Antamina Cu-Zn-Mo mine in Peru investigates the hydrology and geochemistry of heterogeneous waste rock at multiple scales. Three of five instrumented mesoscale experimental waste rock piles (36m X 36m X 10m high) were constructed between 2006 and 2008. The coarsest-grained Pile 1 exhibits rapid, intense response to rain and returns to residual saturation relatively quickly, suggesting a significant influence of preferential flow in addition to high-conductivity matrix flow. Pile 2, the finest-grained of the three piles, exhibits signals from rain events that are significantly delayed and muted in comparison to those from Pile 1. Except for in the finest size fractions, the particle size distribution of Pile 3 closely resembles that of Pile 2, yet Pile 3 responds to rain events more similarly to Pile 1 than Pile 2. The presence of large boulders in Pile 3 could facilitate preferential flow, either through surface flow effects across boulders or by contributing to the formation of unfilled void space acting as macropores at high infiltration rates. The rapid rain event response of Pile 3 could also be attributed to a silt-clay percentage that is similar to Pile 1, which is less than half of the silt-clay percentage observed in Pile 2 (i.e., ~3%, ~8.5%, and ~4% for Piles 1, 2 and 3, respectively). For each of the three piles, the pH of effluent collected from bottom lysimeters and internal pore water sampled with suction lysimeters has remained circumneutral, with notable maximum concentrations of 2.8 mg/L Zn from Pile 1, which is comprised of slightly reactive hornfels and marble waste rock; 13.4 mg/L Zn and 22.7 mg/L Mo from Pile 2, comprised of reactive intrusive waste rock; and 42.5 mg/L Zn from Pile 3, comprised of reactive exoskarn waste rock. Ongoing work includes analysis of two additional mixed-rock experimental piles, studies to investigate the role of microbes on metal release (Dockrey et al., this session), analysis of pore gas