WorldWideScience

Sample records for lymphoma kinase alk

  1. Timely topic: anaplastic lymphoma kinase (ALK) spreads its influence.

    Science.gov (United States)

    Cheuk, W; Chan, J K

    2001-02-01

    Anaplastic lymphoma kinase (ALK) is normally not expressed in human tissues except selected sites in the nervous system. Its expression and constitutive activation as a result of a chromosomal translocation involving 2p23 plays a pivotal role in the genesis of anaplastic large cell lymphoma. ALK expression has been instrumental in defining a homogeneous subset from the category of anaplastic large cell lymphoma, characterised by occurrence in young patients, primary systemic presentation, favorable prognosis, a broad morphological spectrum, nuclear and/or cytoplasmic immunostaining for ALK protein, and a number of possible fusion partner genes such as NPM, ATIC, TFG, TPM3 and CLTCL. Recently ALK has been implicated in the genesis of another tumour type, the inflammatory myofibroblastic tumours. The ALK-positive examples occur in children and young adults, involving a variety of sites, such as the abdomen, mesentery, liver, bladder, mediastinum, lung and bone. The partner genes identified in some cases are TPM3 (tropomyosin 3) and TPM4 (tropomyosin 4). These molecular findings also further support the neoplastic nature of at least a subset of inflammatory myofibroblastic tumours.

  2. Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK-driven lung cancers.

    Science.gov (United States)

    Roskoski, Robert

    2017-03-01

    Anaplastic lymphoma kinase is expressed in two-thirds of the anaplastic large-cell lymphomas as an NPM-ALK fusion protein. Physiological ALK is a receptor protein-tyrosine kinase within the insulin receptor superfamily of proteins that participates in nervous system development. The EML4-ALK fusion protein and four other ALK-fusion proteins play a fundamental role in the development in about 5% of non-small cell lung cancers. The amino-terminal portions of the ALK fusion proteins result in dimerization and subsequent activation of the ALK protein kinase domain that plays a key role in the pathogenesis of various tumors. Downstream signaling from the ALK fusion protein leads to the activation of the Ras/Raf/MEK/ERK1/2 cell proliferation module and the JAK/STAT cell survival pathways. Moreover, nearly two dozen ALK activating mutations are involved in the pathogenesis of childhood neuroblastomas. The occurrence of oncogenic ALK-fusion proteins, particularly in non-small cell lung cancer, has fostered considerable interest in the development of ALK inhibitors. Crizotinib was the first such inhibitor approved by the US Food and Drug Administration for the treatment of ALK-positive non-small cell lung cancer in 2011. The median time for the emergence of crizotinib drug resistance is 10.5 months after the initiation of therapy. Such resistance prompted the development of second-generation drugs including ceritinib and alectinib, which are approved for the treatment of non-small cell lung cancer. Unlike the single gatekeeper mutation that occurs in drug-resistant epidermal growth factor receptor in lung cancer, nearly a dozen different mutations in the catalytic domain of ALK fusion proteins have been discovered that result in crizotinib resistance. Crizotinib, ceritinib, and alectinib form a complex within the front cleft between the small and large lobes of an inactive ALK protein-kinase domain with a compact activation segment. These drugs are classified as type I½ B

  3. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death.

    Science.gov (United States)

    Zamo, Alberto; Chiarle, Roberto; Piva, Roberto; Howes, Jennifer; Fan, Yan; Chilosi, Marco; Levy, David E; Inghirami, Giorgio

    2002-02-07

    The anaplastic lymphoma kinase (ALK) gene is characteristically translocated in Anaplastic Large Cell Lymphomas (ALCL) and the juxtaposition of the ALK gene to multiple partners results in its constitutive protein tyrosine kinase activity. We show here that expression of activated ALK induces the constitutive phosphorylation of Stat3 in transfected cells as well as in primary human ALCLs. Furthermore, immunohistochemical studies demonstrate that among distinct human B and T cell lymphomas, activation of Stat3 nuclear translocation is uniquely associated with ALK expression. NPM-ALK also binds and activates Jak3; however, Jak3 is not required for Stat3 activation or for cell transformation in vitro. Moreover, src family kinases are not necessary for NPM-ALK-mediated Stat3 activation or transformation, suggesting that Stat3 may be phosphorylated directly by ALK. To evaluate relevant targets of ALK-activated Stat3, we investigated the regulation of the anti-apoptotic protein Bcl-x(L) and its role in cell survival in NPM-ALK positive cells. NPM-ALK expression caused enhanced Bcl-x(L) transcription, largely mediated by Stat3. Increased expression of Bcl-x(L) provided sufficient anti-apoptotic signals to protect cells from treatment with specific inhibitors of the Jaks/Stat pathway or the Brc-Abl kinase. These studies support a pathogenic mechanism whereby stimulation of anti-apoptotic signals through activation of Stat3 contributes to the successful outgrowth of ALK positive tumor cells.

  4. Development of anaplastic lymphoma kinase (ALK inhibitors and molecular diagnosis in ALK rearrangement-positive lung cancer

    Directory of Open Access Journals (Sweden)

    Iwama E

    2014-03-01

    Full Text Available Eiji Iwama,1,2 Isamu Okamoto,3 Taishi Harada,2 Koichi Takayama,2 Yoichi Nakanishi2,3 1Department of Comprehensive Clinical Oncology, Faculty of Medical Sciences, Kyushu University, 2Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan Abstract: The fusion of echinoderm microtubule-associated protein-like 4 with anaplastic lymphoma kinase (ALK was identified as a transforming gene for lung cancer in 2007. This genetic rearrangement accounts for 2%–5% of non-small-cell lung cancer (NSCLC cases, occurring predominantly in younger individuals with adenocarcinoma who are never- or light smokers. A small-molecule tyrosine-kinase inhibitor of ALK, crizotinib, was rapidly approved by the US Food and Drug Administration on the basis of its pronounced clinical activity in patients with ALK rearrangement-positive NSCLC. Next-generation ALK inhibitors, such as alectinib, LDK378, and AP26113, are also being developed in ongoing clinical trials. In addition, the improvement and validation of methods for the detection of ALK rearrangement in NSCLC patients will be key to the optimal clinical use of ALK inhibitors. We here summarize recent progress in the development of new ALK inhibitors and in the molecular diagnosis of ALK rearrangement-positive NSCLC. Keywords: ALK, rearrangement, NSCLC, ALK inhibitor, targeted therapy, diagnosis

  5. Analysis of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-reactive CD8(+) T cell responses in children with NPM-ALK(+) anaplastic large cell lymphoma.

    Science.gov (United States)

    K Singh, V; Werner, S; Hackstein, H; Lennerz, V; Reiter, A; Wölfel, T; Damm-Welk, C; Woessmann, W

    2016-10-01

    Cellular immune responses against the oncoantigen anaplastic lymphoma kinase (ALK) in patients with ALK-positive anaplastic large cell lymphoma (ALCL) have been detected using peptide-based approaches in individuals preselected for human leucocyte antigen (HLA)-A*02:01. In this study, we aimed to evaluate nucleophosmin (NPM)-ALK-specific CD8(+) T cell responses in ALCL patients ensuring endogenous peptide processing of ALK antigens and avoiding HLA preselection. We also examined the HLA class I restriction of ALK-specific CD8(+) T cells. Autologous dendritic cells (DCs) transfected with in-vitro-transcribed RNA (IVT-RNA) encoding NPM-ALK were used as antigen-presenting cells for T cell stimulation. Responder T lymphocytes were tested in interferon-gamma enzyme-linked immunospot (ELISPOT) assays with NPM-ALK-transfected autologous DCs as well as CV-1 in Origin with SV40 genes (COS-7) cells co-transfected with genes encoding the patients' HLA class I alleles and with NPM-ALK encoding cDNA to verify responses and define the HLA restrictions of specific T cell responses. NPM-ALK-specific CD8(+) T cell responses were detected in three of five ALK-positive ALCL patients tested between 1 and 13 years after diagnosis. The three patients had also maintained anti-ALK antibody responses. No reactivity was detected in samples from five healthy donors. The NPM-ALK-specific CD8(+) T cell responses were restricted by HLA-C-alleles (C*06:02 and C*12:02) in all three cases. This approach allowed for the detection of NPM-ALK-reactive T cells, irrespective of the individual HLA status, up to 9 years after ALCL diagnosis.

  6. ALK kinase domain mutations in primary anaplastic large cell lymphoma: consequences on NPM-ALK activity and sensitivity to tyrosine kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Federica Lovisa

    Full Text Available ALK inhibitor crizotinib has shown potent antitumor activity in children with refractory Anaplastic Large Cell Lymphoma (ALCL and the opportunity to include ALK inhibitors in first-line therapies is oncoming. However, recent studies suggest that crizotinib-resistance mutations may emerge in ALCL patients. In the present study, we analyzed ALK kinase domain mutational status of 36 paediatric ALCL patients at diagnosis to identify point mutations and gene aberrations that could impact on NPM-ALK gene expression, activity and sensitivity to small-molecule inhibitors. Amplicon ultra-deep sequencing of ALK kinase domain detected 2 single point mutations, R335Q and R291Q, in 2 cases, 2 common deletions of exon 23 and 25 in all the patients, and 7 splicing-related INDELs in a variable number of them. The functional impact of missense mutations and INDELs was evaluated. Point mutations were shown to affect protein kinase activity, signalling output and drug sensitivity. INDELs, instead, generated kinase-dead variants with dominant negative effect on NPM-ALK kinase, in virtue of their capacity of forming non-functional heterocomplexes. Consistently, when co-expressed, INDELs increased crizotinib inhibitory activity on NPM-ALK signal processing, as demonstrated by the significant reduction of STAT3 phosphorylation. Functional changes in ALK kinase activity induced by both point mutations and structural rearrangements were resolved by molecular modelling and dynamic simulation analysis, providing novel insights into ALK kinase domain folding and regulation. Therefore, these data suggest that NPM-ALK pre-therapeutic mutations may be found at low frequency in ALCL patients. These mutations occur randomly within the ALK kinase domain and affect protein activity, while preserving responsiveness to crizotinib.

  7. ALK kinase domain mutations in primary anaplastic large cell lymphoma: consequences on NPM-ALK activity and sensitivity to tyrosine kinase inhibitors.

    Science.gov (United States)

    Lovisa, Federica; Cozza, Giorgio; Cristiani, Andrea; Cuzzolin, Alberto; Albiero, Alessandro; Mussolin, Lara; Pillon, Marta; Moro, Stefano; Basso, Giuseppe; Rosolen, Angelo; Bonvini, Paolo

    2015-01-01

    ALK inhibitor crizotinib has shown potent antitumor activity in children with refractory Anaplastic Large Cell Lymphoma (ALCL) and the opportunity to include ALK inhibitors in first-line therapies is oncoming. However, recent studies suggest that crizotinib-resistance mutations may emerge in ALCL patients. In the present study, we analyzed ALK kinase domain mutational status of 36 paediatric ALCL patients at diagnosis to identify point mutations and gene aberrations that could impact on NPM-ALK gene expression, activity and sensitivity to small-molecule inhibitors. Amplicon ultra-deep sequencing of ALK kinase domain detected 2 single point mutations, R335Q and R291Q, in 2 cases, 2 common deletions of exon 23 and 25 in all the patients, and 7 splicing-related INDELs in a variable number of them. The functional impact of missense mutations and INDELs was evaluated. Point mutations were shown to affect protein kinase activity, signalling output and drug sensitivity. INDELs, instead, generated kinase-dead variants with dominant negative effect on NPM-ALK kinase, in virtue of their capacity of forming non-functional heterocomplexes. Consistently, when co-expressed, INDELs increased crizotinib inhibitory activity on NPM-ALK signal processing, as demonstrated by the significant reduction of STAT3 phosphorylation. Functional changes in ALK kinase activity induced by both point mutations and structural rearrangements were resolved by molecular modelling and dynamic simulation analysis, providing novel insights into ALK kinase domain folding and regulation. Therefore, these data suggest that NPM-ALK pre-therapeutic mutations may be found at low frequency in ALCL patients. These mutations occur randomly within the ALK kinase domain and affect protein activity, while preserving responsiveness to crizotinib.

  8. IGF-IR tyrosine kinase interacts with NPM-ALK oncogene to induce survival of T-cell ALK+ anaplastic large-cell lymphoma cells.

    Science.gov (United States)

    Shi, Ping; Lai, Raymond; Lin, Quan; Iqbal, Abid S; Young, Leah C; Kwak, Larry W; Ford, Richard J; Amin, Hesham M

    2009-07-01

    Type I insulin-like growth factor receptor (IGF-IR) tyrosine kinase plays important roles in the pathogenesis of several malignancies. Although it promotes the growth of stimulated hematopoietic cells, a direct role of IGF-IR in malignant lymphoma has not been identified. Anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma (ALK(+) ALCL) is a unique type of T-cell lymphoma. Approximately 85% of ALK(+) ALCL cases harbor the translocation t(2;5)(p23;q35), which generates the chimeric oncogene NPM-ALK. In the present study, we explored a possible role of IGF-IR in ALK(+) ALCL. Our results demonstrate that IGF-IR and IGF-I are widely expressed in ALK(+) ALCL cell lines and primary tumors. Importantly, we identified novel reciprocal functional interactions between IGF-IR and NPM-ALK. Antagonism of IGF-IR decreased the viability, induced apoptosis and cell-cycle arrest, and decreased proliferation and colony formation of ALK(+) ALCL cell lines. These effects could be explained by alterations of cell survival regulatory proteins downstream of IGF-IR signaling. Our findings improve current understanding of the biology of IGF-IR and NPM-ALK and have significant therapeutic implications as they identify IGF-IR signaling as a potential therapeutic target in ALK(+) ALCL and possibly other types of malignant lymphoma.

  9. Identification of a novel crosstalk between casein kinase 2α and NPM-ALK in ALK-positive anaplastic large cell lymphoma.

    Science.gov (United States)

    Armanious, Hanan; Gelebart, Pascal; Anand, Mona; Lai, Raymond

    2013-02-01

    It was previously reported that β-catenin contributes to the tumorigenesis of ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL), and the oncogenic effects of β-catenin in these tumors are promoted by NPM-ALK, an abnormal fusion protein characteristic of ALK(+)ALCL. In this study, we hypothesized that NPM-ALK promotes the oncogenic activity of β-catenin via its functional interactions with the Wnt canonical pathway (WCP). To test this hypothesis, we examined if NPM-ALK modulates the gene expression of various members in the WCP. Using a Wnt pathway-specific oligonucleotide array and Western blots, we found that the expression of casein kinase 2α (CK2α) was substantially downregulated in ALK(+)ALCL cells in response to siRNA knockdown of NPM-ALK. CK2α is biologically important in ALK(+)ALCL, as its inhibition using 4,5,6,7-tetrabromobenzotriazole or siRNA resulted in a significant decrease in cell growth and a substantial decrease in the β-catenin protein level. Furthermore, CK2α co-immunoprecipitated with NPM-ALK and regulated its level of serine phosphorylation, a feature previously shown to correlate with the oncogenic potential of this fusion protein. To conclude, this study has revealed a novel crosstalk between NPM-ALK and CK2α, and our data supports the model that these two molecules work synergistically to promote the tumorigenicity of these lymphomas.

  10. STAT1 is phosphorylated and downregulated by the oncogenic tyrosine kinase NPM-ALK in ALK-positive anaplastic large-cell lymphoma.

    Science.gov (United States)

    Wu, Chengsheng; Molavi, Ommoleila; Zhang, Haifeng; Gupta, Nidhi; Alshareef, Abdulraheem; Bone, Kathleen M; Gopal, Keshav; Wu, Fang; Lewis, Jamie T; Douglas, Donna N; Kneteman, Norman M; Lai, Raymond

    2015-07-16

    The tumorigenicity of most cases of ALK-positive anaplastic large-cell lymphoma (ALK+ ALCL) is driven by the oncogenic fusion protein NPM-ALK in a STAT3-dependent manner. Because it has been shown that STAT3 can be inhibited by STAT1 in some experimental models, we hypothesized that the STAT1 signaling pathway is defective in ALK+ ALCL, thereby leaving the STAT3 signaling unchecked. Compared with normal T cells, ALK+ ALCL tumors consistently expressed a low level of STAT1. Inhibition of the ubiquitin-proteasome pathway appreciably increased STAT1 expression in ALK+ ALCL cells. Furthermore, we found evidence that NPM-ALK binds to and phosphorylates STAT1, thereby promoting its proteasomal degradation in a STAT3-dependent manner. If restored, STAT1 is functionally intact in ALK+ ALCL cells, because it effectively upregulated interferon-γ, induced apoptosis/cell-cycle arrest, potentiated the inhibitory effects of doxorubicin, and suppressed tumor growth in vivo. STAT1 interfered with the STAT3 signaling by decreasing STAT3 transcriptional activity/DNA binding and its homodimerization. The importance of the STAT1/STAT3 functional interaction was further highlighted by the observation that short interfering RNA knockdown of STAT1 significantly decreased apoptosis induced by STAT3 inhibition. Thus, STAT1 is a tumor suppressor in ALK+ ALCL. Phosphorylation and downregulation of STAT1 by NPM-ALK represent other mechanisms by which this oncogenic tyrosine kinase promotes tumorigenesis.

  11. Involvement of Grb2 adaptor protein in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated signaling and anaplastic large cell lymphoma growth.

    Science.gov (United States)

    Riera, Ludovica; Lasorsa, Elena; Ambrogio, Chiara; Surrenti, Nadia; Voena, Claudia; Chiarle, Roberto

    2010-08-20

    Most anaplastic large cell lymphomas (ALCL) express oncogenic fusion proteins derived from chromosomal translocations or inversions of the anaplastic lymphoma kinase (ALK) gene. Frequently ALCL carry the t(2;5) translocation, which fuses the ALK gene to the nucleophosmin (NPM1) gene. The transforming activity mediated by NPM-ALK fusion induces different pathways that control proliferation and survival of lymphoma cells. Grb2 is an adaptor protein thought to play an important role in ALK-mediated transformation, but its interaction with NPM-ALK, as well as its function in regulating ALCL signaling pathways and cell growth, has never been elucidated. Here we show that active NPM-ALK, but not a kinase-dead mutant, bound and induced Grb2 phosphorylation in tyrosine 160. An intact SH3 domain at the C terminus of Grb2 was required for Tyr(160) phosphorylation. Furthermore, Grb2 did not bind to a single region but rather to different regions of NPM-ALK, mainly Tyr(152-156), Tyr(567), and a proline-rich region, Pro(415-417). Finally, shRNA knockdown experiments showed that Grb2 regulates primarily the NPM-ALK-mediated phosphorylation of SHP2 and plays a key role in ALCL cell growth.

  12. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells.

    Science.gov (United States)

    Ambrogio, Chiara; Martinengo, Cinzia; Voena, Claudia; Tondat, Fabrizio; Riera, Ludovica; di Celle, Paola Francia; Inghirami, Giorgio; Chiarle, Roberto

    2009-11-15

    Transformed cells in lymphomas usually maintain the phenotype of the postulated normal lymphocyte from which they arise. By contrast, anaplastic large cell lymphoma (ALCL) is a T-cell lymphoma with aberrant phenotype because of the defective expression of the T-cell receptor and other T-cell-specific molecules for still undetermined mechanisms. The majority of ALCL carries the translocation t(2;5) that encodes for the oncogenic tyrosine kinase NPM-ALK, fundamental for survival, proliferation, and migration of transformed T cells. Here, we show that loss of T-cell-specific molecules in ALCL cases is broader than reported previously and involves most T-cell receptor-related signaling molecules, including CD3epsilon, ZAP70, LAT, and SLP76. We further show that NPM-ALK, but not the kinase-dead NPM-ALK(K210R), downregulated the expression of these molecules by a STAT3-mediated gene transcription regulation and/or epigenetic silencing because this downregulation was reverted by treating ALCL cells with 5-aza-2-deoxycytidine or by knocking down STAT3 through short hairpin RNA. Finally, NPM-ALK increased the methylation of ZAP70 intron 1-exon 2 boundary region, and both NPM-ALK and STAT3 regulated the expression levels of DNA methyltransferase 1 in transformed T cells. Thus, our data reveal that oncogene-deregulated tyrosine kinase activity controls the expression of molecules that determine T-cell identity and signaling.

  13. Novel covalent modification of human anaplastic lymphoma kinase (ALK and potentiation of crizotinib-mediated inhibition of ALK activity by BNP7787

    Directory of Open Access Journals (Sweden)

    Parker AR

    2015-02-01

    Full Text Available Aulma R Parker,1 Pavankumar N Petluru,1 Vicki L Nienaber,2 Min Zhao,1 Philippe Y Ayala,1 John Badger,2 Barbara Chie-Leon,2 Vandana Sridhar,2 Cheyenne Logan,2 Harry Kochat,1 Frederick H Hausheer1 1BioNumerik Pharmaceuticals, Inc., San Antonio, TX, USA; 2Zenobia Therapeutics, Inc., La Jolla, CA, USA Abstract: BNP7787 (Tavocept, disodium 2,2’-dithio-bis-ethanesulfonate is a novel, investigational, water-soluble disulfide that is well-tolerated and nontoxic. In separate randomized multicenter Phase II and Phase III clinical trials in non-small-cell lung cancer (NSCLC patients, treatment with BNP7787 in combination with standard chemotherapy resulted in substantial increases in the overall survival of patients with advanced adenocarcinoma of the lung in the first-line treatment setting. We hypothesized that BNP7787 might interact with and modify human anaplastic lymphoma kinase (ALK. At least seven different variants of ALK fusions with the gene encoding the echinoderm microtubule-associated protein-like 4 (EML4 are known to occur in NSCLC. EML4–ALK fusions are thought to account for approximately 3% of NSCLC cases. Herein, we report the covalent modification of the kinase domain of human ALK by a BNP7787-derived mesna moiety and the functional consequences of this modification in ALK assays evaluating kinase activity. The kinase domain of the ALK protein crystallizes as a monomer, and BNP7787-derived mesna-cysteine adducts were observed at Cys 1235 and Cys 1156. The BNP7787-derived mesna adduct at Cys 1156 is located in close proximity to the active site and results in substantial disorder of the P-loop and activation loop (A-loop. Comparison with the P-loop of apo-ALK suggests that the BNP7787-derived mesna adduct at Cys 1156 interferes with the positioning of Phe 1127 into a small pocket now occupied by mesna, resulting in a destabilization of the loop's binding orientation. Additionally, in vitro kinase activity assays indicate that BNP7787

  14. IL-2R common gamma-chain is epigenetically silenced by nucleophosphin-anaplastic lymphoma kinase (NPM-ALK) and acts as a tumor suppressor by targeting NPM-ALK.

    Science.gov (United States)

    Zhang, Qian; Wang, Hong Yi; Liu, Xiaobin; Bhutani, Gauri; Kantekure, Kanchan; Wasik, Mariusz

    2011-07-19

    Anaplastic lymphoma kinase (ALK), physiologically expressed only by certain neural cells, becomes highly oncogenic, when aberrantly expressed in nonneural tissues as a fusion protein with nucleophosphin (NPM) and other partners. The reason why NPM-ALK succeeds in transforming specifically CD4(+) T lymphocytes remains unknown. The IL-2R common γ-chain (IL-2Rγ) is shared by receptors for several cytokines that play key roles in the maturation and growth of normal CD4(+) T lymphocytes and other immune cells. We show that IL-2Rγ expression is inhibited in T-cell lymphoma cells expressing NPM-ALK kinase as a result of DNA methylation of the IL-2Rγ gene promoter. IL-2Rγ promoter methylation is induced in malignant T cells by NPM-ALK. NPM-ALK acts through STAT3, a transcription factor that binds to the IL-2Rγ gene promoter and enhances binding of DNA methyltransferases (DNMTs) to the promoter. In addition, STAT3 suppresses expression of miR-21, which selectively inhibits DNMT1 mRNA expression. Reconstitution of IL-2Rγ expression leads to loss of the NPM-ALK protein and, consequently, apoptotic cell death of the lymphoma cells. These results demonstrate that the oncogenic tyrosine kinase NPM-ALK induces epigenetic silencing of the IL-2Rγ gene and that IL-2Rγ acts as a tumor suppressor by reciprocally inhibiting expression of NPM-ALK.

  15. The tyrosine 343 residue of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) is important for its interaction with SHP1, a cytoplasmic tyrosine phosphatase with tumor suppressor functions.

    Science.gov (United States)

    Hegazy, Samar A; Wang, Peng; Anand, Mona; Ingham, Robert J; Gelebart, Pascal; Lai, Raymond

    2010-06-25

    The cytoplasmic tyrosine phosphatase SHP1 has been shown to inhibit the oncogenic fusion protein nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), and loss of SHP1 contributes to NPM-ALK-mediated tumorigenesis. In this study, we aimed to further understand how SHP1 interacts and regulates NPM-ALK. We employed an in vitro model in which GP293 cells were transfected with various combinations of NPM-ALK (or mutants) and SHP1 (or mutants) expression vectors. We found that SHP1 co-immunoprecipitated with NPM-ALK, but not the enzymatically inactive NPM-ALK(K210R) mutant, or the mutant in which all three functionally important tyrosine residues (namely, Tyr(338), Tyr(342), and Tyr(343)) in the kinase activation loop (KAL) of ALK were mutated. Interestingly, whereas mutation of Tyr(338) or Tyr(342) did not result in any substantial change in the NPM-ALK/SHP1 binding (assessed by co-immunoprecipitation), mutation of Tyr(343) abrogated this interaction. Furthermore, the NPM-ALK/SHP1 binding was readily detectable when each of the remaining 8 tyrosine residues known to be phosphorylated were mutated. Although the expression of SHP1 effectively reduced the level of tyrosine phosphorylation of NPM-ALK, it did not affect that of the NPM-ALK(Y343F) mutant. In soft agar clonogenic assay, SHP1 expression significantly reduced the tumorigenicity of NPM-ALK but not that of NPM-ALK(Y343F). In conclusion, we identified Tyr(343) of NPM-ALK as the crucial site for mediating the NPM-ALK/SHP1 interaction. Our results also support the notion that the tumor suppressor effects of SHP1 on NPM-ALK are dependent on its ability to bind to this oncogenic protein.

  16. Rearranged anaplastic lymphoma kinase (ALK) gene in adult-onset papillary thyroid cancer amongst atomic bomb survivors.

    Science.gov (United States)

    Hamatani, Kiyohiro; Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-11-01

    We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAF(V600E)) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription-polymerase chain reaction and 5' rapid amplification of cDNA ends (5' RACE). We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK rearrangements, being observed in

  17. Conditional TPM3-ALK and NPM-ALK transgenic mice develop reversible ALK-positive early B-cell lymphoma/leukemia.

    Science.gov (United States)

    Giuriato, Sylvie; Foisseau, Marianne; Dejean, Emilie; Felsher, Dean W; Al Saati, Talal; Demur, Cécile; Ragab, Ashraf; Kruczynski, Anna; Schiff, Claudine; Delsol, Georges; Meggetto, Fabienne

    2010-05-20

    NPM-ALK (nucleophosmin-anaplastic lymphoma kinase) and TPM3-ALK (nonmuscular tropomyosin 3-anaplastic lymphoma kinase) are oncogenic tyrosine kinases implicated in the pathogenesis of human ALK-positive lymphoma. We report here the development of novel conditional mouse models for ALK-induced lymphomagenesis, with the use of the tetracycline regulatory system under the control of the EmuSRalpha enhancer/promoter. The expression of either oncogene resulted in the arrest of the differentiation of early B cells and lymphomagenesis. We also observed the development of skin keratoacanthoma lesions, probably because of aberrant ALK expression in keratinocytes. The inactivation of the ALK oncogene on doxycycline treatment was sufficient to induce sustained regression of both hematopoietic tumors and skin disease. Importantly, treatment with the specific ALK inhibitor (PF-2341066) also reversed the pathologic states, showing the value of these mouse models for the validation of ALK tyrosine kinase inhibitors. Thus, our results show (1) that NPM-ALK and TPM3-ALK oncogenes are sufficient for lymphoma/leukemia development and required for tumor maintenance, hence validating ALK as potentially effective therapeutic target; and (2) for the first time, in vivo, the equal tumorigenic potential of the NPM-ALK and TPM3-ALK oncogenic tyrosine kinases. Our models offer a new tool to investigate in vivo the molecular mechanisms associated with ALK-induced lymphoproliferative disorders.

  18. NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma.

    Science.gov (United States)

    Leventaki, Vasiliki; Drakos, Elias; Medeiros, L Jeffrey; Lim, Megan S; Elenitoba-Johnson, Kojo S; Claret, Francois X; Rassidakis, George Z

    2007-09-01

    Anaplastic large-cell lymphoma (ALCL) frequently carries the t(2;5)(p23;q35), resulting in aberrant expression of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). We show that in 293T and Jurkat cells, forced expression of active NPM-ALK, but not kinase-dead mutant NPM-ALK (210K>R), induced JNK and cJun phosphorylation, and this was linked to a dramatic increase in AP-1 transcriptional activity. Conversely, inhibition of ALK activity in NPM-ALK(+) ALCL cells resulted in a concentration-dependent dephosphorylation of JNK and cJun and decreased AP-1 DNA-binding. In addition, JNK physically binds NPM-ALK and is highly activated in cultured and primary NPM-ALK(+) ALCL cells. cJun phosphorylation in NPM-ALK(+) ALCL cells is mediated by JNKs, as shown by selective knocking down of JNK1 and JNK2 genes using siRNA. Inhibition of JNK activity using SP600125 decreased cJun phosphorylation and AP-1 transcriptional activity and this was associated with decreased cell proliferation and G2/M cell-cycle arrest in a dose-dependent manner. Silencing of the cJun gene by siRNA led to a decreased S-phase cell-cycle fraction associated with upregulation of p21 and downregulation of cyclin D3 and cyclin A. Taken together, these findings reveal a novel function of NPM-ALK, phosphorylation and activation of JNK and cJun, which may contribute to uncontrolled cell-cycle progression and oncogenesis.

  19. Anaplastic lymphoma kinase (ALK inhibitors for second-line therapy of non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Berghmans T

    2012-12-01

    Full Text Available Thierry Berghmans,1 Myriam Remmelink,2 Ahmad Awada31Clinic of Thoracic Oncology and Department of Intensive Care, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; 2Department of Pathology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; 3Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, BelgiumAbstract: Targeted therapies are nowadays a treatment option in metastatic non-small cell lung cancer, for which oncogenic drivers have been identified. The epidermal growth factor-receptor tyrosine kinase inhibitors gefitinib and erlotinib, are the standard of care for patients in whom tumors are presenting with an activating epidermal growth factor-receptor mutation, with new active agents like afatinib reaching clinics in the near future. Other genetic abnormalities have been documented in squamous and non-squamous lung cancer. The EML4–ALK gene fusion is a rare event, occurring in around 5% of lung cancer, quite exclusively in adenocarcinoma with a predominance of young non/light smokers. Detection of ALK-positive tumors is challenging, as there is no gold-standard technique. Fluorescence in situ hybridization is the method used in prospective trials assessing the activity of crizotinib and is recommended by the American FDA. Crizotinib is the first orally active inhibitor of receptor tyrosine kinases, including ALK and ROS1, in clinical practice. Impressive results came from a phase I study and are now confirmed in a large phase II study with response rate of 60%, whatever the number of previous lines of chemotherapy. Other ALK inhibitors are currently in the preclinical phase, and some are showing promising results in early phase I/II studies. This review aims to present the current knowledge on the EML4–ALK gene fusion, the pitfalls for the pathologist and the clinician in searching this abnormality, and to review the existing literature on ALK inhibitors under

  20. Silibinin suppresses NPM-ALK, potently induces apoptosis and enhances chemosensitivity in ALK-positive anaplastic large cell lymphoma.

    Science.gov (United States)

    Molavi, Ommoleila; Samadi, Nasser; Wu, Chengsheng; Lavasanifar, Afsaneh; Lai, Raymond

    2016-05-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion protein carrying constitutively active tyrosine kinase, is known to be central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK+ALCL). Here, it is reported that silibinin, a non-toxic naturally-occurring compound, potently suppressed NPM-ALK and effectively inhibited the growth and soft agar colony formation of ALK+ALCL cells. By western blots, it was found that silibinin efficiently suppressed the phosphorylation/activation of NPM-ALK and its key substrates/downstream mediators (including STAT3, MEK/ERK and Akt) in a time- and dose-dependent manner. Correlating with these observations, silibinin suppressed the expression of Bcl-2, survivin and JunB, all of which are found to be upregulated by NPM-ALK and pathogenetically important in ALK+ALCL. Lastly, silibinin augmented the chemosensitivity of ALK+ALCL cells to doxorubicin, particularly the small cell sub-set expressing the transcriptional activity of Sox2, an embryonic stem cell marker. To conclude, the findings suggest that silibinin might be useful in treating ALK+ALCL.

  1. Prognostic significance of NPM-ALK fusion transcript overexpression in ALK-positive anaplastic large-cell lymphoma.

    Science.gov (United States)

    Li, Chunmei; Takino, Hisashi; Eimoto, Tadaaki; Ishida, Takashi; Inagaki, Atsushi; Ueda, Ryuzo; Suzuki, Ritsuro; Yoshino, Tadashi; Nakagawa, Atsuko; Nakamura, Shigeo; Inagaki, Hiroshi

    2007-06-01

    In anaplastic large-cell lymphomas positive for anaplastic lymphoma kinase (ALK) protein, the ALK gene is most commonly fused to the NPM gene, and less commonly to TPM3, TFG, ATIC, and other rare genes. Although this lymphoma is generally associated with a favorable clinical outcome, 25% of the patients die of the disease within 5 years. In this study, we developed three assays, all of which can be used with archival formalin-fixed, paraffin-embedded tissues: (1) a sensitive reverse transcription-polymerase chain reaction (RT-PCR) assay for various X-ALK fusion genes, (2) a 5' rapid amplification of cDNA ends (RACE) assay to identify unknown fusion partners, and (3) a real-time RT-PCR assay to quantify the amount of the NPM-ALK fusion transcript. In 26 cases of ALK(+) anaplastic large-cell lymphoma, the RT-PCR assay showed that the ALK was fused to NPM in 21 cases, to TPM3 in three, and to TFG in one. The 5' RACE assay detected ATIC-ALK fusion in the remaining case. The real-time quantitative RT-PCR assay showed that the NPM-ALK transcript was over expressed in four of 20 quantifiable cases. Patients with NPM-ALK overexpression showed a significantly unfavorable overall survival compared with those with a low expression of this transcript. The RT-PCR and 5' RACE assays developed here may be useful for identification of known and unknown gene partners fused to the ALK gene. Overexpression of the NPM-ALK fusion transcript may be associated with a poor prognosis of the patients with ALK(+) anaplastic large-cell lymphomas.

  2. Rearranged anaplastic lymphoma kinase (ALK) gene found for the first time in adult-onset papillary thyroid cancer cases among atomic bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Hamatani, K.; Mukai, M.; Takahashi, K.; Nakachi, K.; Kusunoki, Y. [Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima (Japan); Hayashi, Y. [Geriatric Health Service Facility Hidamari, Hiroshima (Japan)

    2012-07-01

    Full text of the publication follows: Thyroid cancer is one of the malignancies most strongly associated with ionizing radiation in humans. Epidemiology studies of atomic bomb (A-bomb) survivors have indicated that excess relative risk of papillary thyroid cancer per Gy was remarkably high in the survivors. We therefore aim to clarify mechanisms linking A-bomb radiation exposure and development of papillary thyroid cancer. Toward this end, we intend to clarify characteristics of gene alterations occurring in radiation-associated adult-onset papillary thyroid cancer from the Life Span Study cohort of A-bomb survivors. We have thus far found that with increased radiation dose, papillary thyroid cancer cases with chromosomal rearrangements (mainly RET/PTC rearrangements) significantly increased and papillary thyroid cancer cases with point mutations (mainly BRAF-V600E) significantly decreased. Papillary thyroid cancer cases with non-detected gene alterations that carried no mutations in RET, NTRK1, BRAF or RAS genes tended to increase with increased radiation dose. In addition, we found that relative frequency of these papillary thyroid cancer cases significantly decreased with time elapsed since exposure. Through analysis of papillary thyroid cancer cases with non-detected gene alterations, we recently discovered a new type of rearrangement for the first time in papillary thyroid cancer, i.e., rearranged anaplastic lymphoma kinase (ALK) gene, although identification of any partner gene(s) is needed. Specifically, rearrangement of ALK was found in 10 of 19 exposed papillary thyroid cancer cases with non-detected gene alterations but not in any of the six non-exposed papillary thyroid cancer cases. Furthermore, papillary thyroid cancer with ALK rearrangement was frequently found in the cases with high radiation dose or with short time elapsed since A-bomb exposure. These results suggest that chromosomal rearrangement, typically of RET and ALK, may play an important

  3. Inhibition of Rac controls NPM-ALK-dependent lymphoma development and dissemination.

    Science.gov (United States)

    Colomba, A; Giuriato, S; Dejean, E; Thornber, K; Delsol, G; Tronchère, H; Meggetto, F; Payrastre, B; Gaits-Iacovoni, F

    2011-06-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is a tyrosine kinase oncogene responsible for the pathogenesis of the majority of human ALK-positive lymphomas. We recently reported that it activated the Rac1 GTPase in anaplastic large-cell lymphoma (ALCL), leading to Rac-dependent formation of active invadopodia required for invasiveness. Herein, we went further into the study of this pathway and used the inhibitor of Rac, NSC23766, to validate its potential as a molecular target in ALCL in vitro and in vivo in a xenograft model and in a conditional model of NPM-ALK transgenic mice. Our data demonstrate that Rac regulates important effectors of NPM-ALK-induced transformation such as Erk1/2, p38 and Akt. Moreover, inhibition of Rac signaling abrogates NPM-ALK-elicited disease progression and metastasis in mice, highlighting the potential of small GTPases and their regulators as additional therapic targets in lymphomas.

  4. Functional characterization of the kinase activation loop in nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) using tandem affinity purification and liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Wang, Peng; Wu, Fang; Ma, Yupo; Li, Liang; Lai, Raymond; Young, Leah C

    2010-01-01

    Previous studies have shown that the kinase activation loop (KAL) of the oncogenic fusion protein NPM-ALK regulates its overall tyrosine phosphorylation status and tumorigenicity. Using tandem affinity purification-mass spectrometry, we assessed how the KAL of NPM-ALK regulates the phosphorylation status of its individual tyrosines. Using the lysates of GP293 cells transfected with NPM-ALK, our highly reproducible results showed evidence of phosphorylation in all 3 tyrosines in KAL and 8 tyrosines outside KAL. We created 7 KAL mutants, each of which carried a Tyr-to-Phe mutation of >or=1 of the 3 tyrosines in KAL. A complete loss of the 8 phosphotyrosines outside KAL was found in 3 KAL mutants, and their oncogenicity (assessed by cell viability, colony formation, and the ability to phosphorylate effector proteins) was abrogated. A partial loss of the 8 phosphotyrosines was found in 4 KAL mutants, but their oncogenicity did not show simple correlation with the number of residual phosphotyrosines. Tyr-to-Phe mutations of each of the 8 phosphotyrosines outside KAL did not result in a significant decrease in the oncogenicity. In conclusion, we have provided details of how the KAL in NPM-ALK regulates its tyrosine phosphorylation pattern. Our results challenge some of the current concepts regarding the relationship between the tyrosine phosphorylation and oncogenicity of NPM-ALK.

  5. NPM-ALK and the JunB transcription factor regulate the expression of cytotoxic molecules in ALK-positive, anaplastic large cell lymphoma.

    Science.gov (United States)

    Pearson, Joel D; Lee, Jason K H; Bacani, Julinor T C; Lai, Raymond; Ingham, Robert J

    2011-01-30

    Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is an aggressive non-Hodgkin lymphoma of T/null immunophenotype that is most prevalent in children and young adults. The normal cellular counterpart of this malignancy is presumed to be the cytotoxic T lymphocyte (CTL), and this presumption is partly based on the observation that these tumour cells often express cytotoxic granules containing Granzyme B (GzB) and Perforin. Chromosomal translocations involving the gene encoding for the ALK tyrosine kinase are also characteristic of ALK+ ALCL, and the resulting fusion proteins (e.g. NPM-ALK) initiate signalling events important in ALK+ ALCL pathogenesis. These events include the elevated expression of JunB; an AP-1 family transcription factor that promotes ALK+ ALCL proliferation. In this report we demonstrate that JunB is a direct transcriptional activator of GzB and that GzB transcription is also promoted by NPM-ALK. We found that Perforin expression was not regulated by JunB, but was promoted by NPM-ALK in some cell lines and inhibited by it in others. In conclusion, our study makes the novel observation that signalling through NPM-ALK and JunB affect the expression of cytotoxic molecules in ALK+ ALCL. Moreover, these findings demonstrate the expression of GzB and Perforin in this lymphoma is not solely due its presumed CTL origin, but that oncogenic signalling is actively influencing the expression of these proteins.

  6. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy

    OpenAIRE

    2016-01-01

    A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The...

  7. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas.

    Science.gov (United States)

    Laimer, Daniela; Dolznig, Helmut; Kollmann, Karoline; Vesely, Paul W; Schlederer, Michaela; Merkel, Olaf; Schiefer, Ana-Iris; Hassler, Melanie R; Heider, Susi; Amenitsch, Lena; Thallinger, Christiane; Staber, Philipp B; Simonitsch-Klupp, Ingrid; Artaker, Matthias; Lagger, Sabine; Turner, Suzanne D; Pileri, Stefano; Piccaluga, Pier Paolo; Valent, Peter; Messana, Katia; Landra, Indira; Weichhart, Thomas; Knapp, Sylvia; Shehata, Medhat; Todaro, Maria; Sexl, Veronika; Höfler, Gerald; Piva, Roberto; Medico, Enzo; Ruggeri, Bruce A; Cheng, Mangeng; Eferl, Robert; Egger, Gerda; Penninger, Josef M; Jaeger, Ulrich; Moriggl, Richard; Inghirami, Giorgio; Kenner, Lukas

    2012-11-01

    Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin's lymphoma found in children and young adults. ALCLs frequently carry a chromosomal translocation that results in expression of the oncoprotein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). The key molecular downstream events required for NPM-ALK-triggered lymphoma growth have been only partly unveiled. Here we show that the activator protein 1 family members JUN and JUNB promote lymphoma development and tumor dissemination through transcriptional regulation of platelet-derived growth factor receptor-β (PDGFRB) in a mouse model of NPM-ALK-triggered lymphomagenesis. Therapeutic inhibition of PDGFRB markedly prolonged survival of NPM-ALK transgenic mice and increased the efficacy of an ALK-specific inhibitor in transplanted NPM-ALK tumors. Notably, inhibition of PDGFRA and PDGFRB in a patient with refractory late-stage NPM-ALK(+) ALCL resulted in rapid, complete and sustained remission. Together, our data identify PDGFRB as a previously unknown JUN and JUNB target that could be a highly effective therapy for ALCL.

  8. Analysis of gene expression profile of TPM3-ALK positive anaplastic large cell lymphoma reveals overlapping and unique patterns with that of NPM-ALK positive anaplastic large cell lymphoma.

    Science.gov (United States)

    Bohling, Sandra D; Jenson, Stephen D; Crockett, David K; Schumacher, Jonathan A; Elenitoba-Johnson, Kojo S J; Lim, Megan S

    2008-03-01

    Anaplastic large cell lymphoma (ALCL) comprises a group of non-Hodgkin lymphomas characterized by the expression of the CD30/Ki-1 antigen. A subset of ALCL is characterized by chromosomal translocations involving the anaplastic lymphoma kinase (ALK) gene on chromosome 2. While the most common translocation is the t(2;5)(p23;q35) involving the nucleophosmin (NPM) gene on chromosome 5, up to 12 other translocations partners of the ALK gene have been identified. One of these is the t(1;2)(q25;p23) which results in the formation of the chimeric protein TPM3-ALK. While several of the signaling pathways induced by NPM-ALK have been elucidated, those involved in ALCLs harboring TPM3-ALK are largely unknown. In order to investigate the expression profiles of ALCLs carrying the NPM-ALK and TPM3-ALK fusions, we carried out cDNA microarray analysis of two ALCL tissue samples, one expressing the NPM-ALK fusion protein and the other the TPM3-ALK fusion protein. RNA was extracted from snap-frozen tissues, labeled with fluorescent dyes and analyzed using cDNAs microarray containing approximately 9,200 genes and expressed sequence tags (ESTs). Quantitative fluorescence RT-PCR was performed to validate the cDNA microarray data on nine selected gene targets. Our results show a significant overlap of genes deregulated in the NPM-ALK and TPM-ALK positive lymphomas. These deregulated genes are involved in diverse cellular functions, such as cell cycle regulation, apoptosis, proliferation, and adhesion. Interestingly, a subset of the genes was distinct in their expression pattern in the two types of lymphomas. More importantly, many genes that were not previously associated with ALK positive lymphomas were identified. Our results demonstrate the overlapping and unique transcriptional patterns associated with the NPM-ALK and TPM3-ALK fusions in ALCL.

  9. TrkA is a binding partner of NPM-ALK that promotes the survival of ALK(+) T-cell lymphoma.

    Science.gov (United States)

    Shi, Wenyu; George, Suraj Konnath; George, Bhawana; Curry, Choladda V; Murzabdillaeva, Albina; Alkan, Serhan; Amin, Hesham M

    2017-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK(+) ) T-cell lymphoma is an aggressive neoplasm that is more commonly seen in children and young adults. The pathogenesis of NPM-ALK(+) T-cell lymphoma is not completely understood. Wild-type ALK is a receptor tyrosine kinase that is physiologically expressed in neural tissues during early stages of human development, which suggests that ALK may interact with neurotrophic factors. The aberrant expression of NPM-ALK results from a translocation between the ALK gene on chromosome 2p23 and the NPM gene on chromosome 5q35. The nerve growth factor (NGF) is the first neurotrophic factor attributed to non-neural functions including cancer cell survival, proliferation, and metastasis. These functions are primarily mediated through the tropomyosin receptor kinase A (TrkA). The expression and role of NGF/TrkA in NPM-ALK(+) T-cell lymphoma are not known. In this study, we tested the hypothesis that TrkA signaling is upregulated and sustains the survival of this lymphoma. Our data illustrate that TrkA and NGF are expressed in five NPM-ALK(+) T-cell lymphoma cell lines and TrkA is expressed in 11 of 13 primary lymphoma tumors from patients. In addition, we found evidence to support that NPM-ALK and TrkA functionally interact. A selective TrkA inhibitor induced apoptosis and decreased cell viability, proliferation, and colony formation of NPM-ALK(+) T-cell lymphoma cell lines. These effects were associated with downregulation of cell survival regulatory proteins. Similar results were also observed using specific knockdown of TrkA in NPM-ALK(+) T-cell lymphoma cells by siRNA. Importantly, the inhibition of TrkA signaling was associated with antitumor effects in vivo, because tumor xenografts in mice regressed and the mice exhibited improved survival. In conclusion, TrkA plays an important role in the pathogenesis of NPM-ALK(+) T-cell lymphoma, and therefore, targeting TrkA signaling may represent a novel approach to

  10. MOLECULAR BIOLOGICAL CHARACTERISTICS OF ALK-POSITIVE ANAPLASTIC LARGE CELL LYMPHOMA

    Directory of Open Access Journals (Sweden)

    E. V. Chernyshova

    2016-01-01

    Full Text Available ALK-positive anaplastic large cell lymphoma is a heterogeneous group of mature T-cell non-Hodgkin lymphoma, and is characterized by CD30/Ki-1 expression. Recently, value of various prognostic factors is investigated. These include clinical, histological and molecular genetic changes associated with different signaling pathways activation. Some features of the mechanism of action of anaplastic lymphoma kinases and targeted therapies possibilities addressed in this review.

  11. A "liaison dangereuse" between AUF1/hnRNPD and the oncogenic tyrosine kinase NPM-ALK.

    Science.gov (United States)

    Fawal, Mohamad; Armstrong, Florence; Ollier, Severine; Dupont, Henri; Touriol, Christian; Monsarrat, Bernard; Delsol, Georges; Payrastre, Bernard; Morello, Dominique

    2006-10-15

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is a chimeric protein expressed in a subset of cases of anaplastic large cell lymphoma (ALCL) for which constitutive expression represents a key oncogenic event. The ALK signaling pathway is complex and probably involves functional redundancy between various signaling substrates of ALK. Despite numerous studies on signaling mediators, the molecular mechanisms contributing to the distinct oncogenic features of NPM-ALK remain incompletely understood. The search for additional interacting partners of NPM-ALK led to the discovery of AUF1/hnRNPD, a protein implicated in AU-rich element (ARE)-directed mRNA decay. AUF1 was immunoprecipitated with ALK both in ALCL-derived cells and in NIH3T3 cells stably expressing NPM-ALK or other X-ALK fusion proteins. AUF1 and NPM-ALK were found concentrated in the same cytoplasmic foci, whose formation required NPM-ALK tyrosine kinase activity. AUF1 was phosphorylated by ALK in vitro and was hyperphosphorylated in NPM-ALK-expressing cells. Its hyperphosphorylation was correlated with increased stability of several AUF1 target mRNAs encoding key regulators of cell proliferation and with increased cell survival after transcriptional arrest. Thus, AUF1 could function in a novel pathway mediating the oncogenic effects of NPM-ALK. Our data establish an important link between oncogenic kinases and mRNA turnover, which could constitute a critical aspect of tumorigenesis.

  12. NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma.

    Science.gov (United States)

    Galietta, Annamaria; Gunby, Rosalind H; Redaelli, Sara; Stano, Paola; Carniti, Cristiana; Bachi, Angela; Tucker, Philip W; Tartari, Carmen J; Huang, Ching-Jung; Colombo, Emanuela; Pulford, Karen; Puttini, Miriam; Piazza, Rocco G; Ruchatz, Holger; Villa, Antonello; Donella-Deana, Arianna; Marin, Oriano; Perrotti, Danilo; Gambacorti-Passerini, Carlo

    2007-10-01

    The oncogenic fusion tyrosine kinase nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) induces cellular transformation in anaplastic large-cell lymphomas (ALCLs) carrying the t(2;5) chromosomal translocation. Protein-protein interactions involving NPM/ALK are important for the activation of downstream signaling pathways. This study was aimed at identifying novel NPM/ALK-binding proteins that might contribute to its oncogenic transformation. Using a proteomic approach, several RNA/DNA-binding proteins were found to coimmunoprecipitate with NPM/ALK, including the multifunctional polypyrimidine tract binding proteinassociated splicing factor (PSF). The interaction between NPM/ALK and PSF was dependent on an active ALK kinase domain and PSF was found to be tyrosine-phosphorylated in NPM/ALK-expressing cell lines and in primary ALK(+) ALCL samples. Furthermore, PSF was shown to be a direct substrate of purified ALK kinase domain in vitro, and PSF Tyr293 was identified as the site of phosphorylation. Y293F PSF was not phosphorylated by NPM/ALK and was not delocalized in NPM/ALK(+) cells. The expression of ALK fusion proteins induced delocalization of PSF from the nucleus to the cytoplasm and forced overexpression of PSF-inhibited proliferation and induced apoptosis in cells expressing NPM/ALK. PSF phosphorylation also increased its binding to RNA and decreased the PSF-mediated suppression of GAGE6 expression. These results identify PSF as a novel NPM/ALK-binding protein and substrate, and suggest that PSF function may be perturbed in NPM/ALK-transformed cells.

  13. Oncogenic kinase NPM/ALK induces expression of HIF1α mRNA.

    Science.gov (United States)

    Marzec, M; Liu, X; Wong, W; Yang, Y; Pasha, T; Kantekure, K; Zhang, P; Woetmann, A; Cheng, M; Odum, N; Wasik, M A

    2011-03-17

    The mechanisms of malignant cell transformation mediated by the oncogenic anaplastic lymphoma kinase (ALK) tyrosine kinase remain only partially understood. In this study, we report that T-cell lymphoma (TCL) cells carrying the nucleophosmin (NPM)/ALK fusion protein (ALK+ TCL) strongly express hypoxia-induced factor 1α (HIF1α) mRNA, even under normoxic conditions, and markedly upregulate HIF1α protein expression under hypoxia. HIF1α expression is strictly dependent on the expression and enzymatic activity of NPM/ALK, as shown in BaF3 cells transfected with wild-type NPM/ALK and kinase-inactive NPM/ALK K210R mutant and by the inhibition of the NPM/ALK function in ALK+ TCL cells by a small-molecule ALK inhibitor. NPM/ALK induces HIF1α expression by upregulating its gene transcription through its key signal transmitter signal transducer and activator of transcription 3 (STAT3), which binds to the HIF1α gene promoter as shown by the chromatin immunoprecipitation assay and is required for HIF1α gene expression as demonstrated by its small interfering RNA-mediated depletion. In turn, depletion of HIF1α increases mammalian target of rapamycin complex 1 activation, cell growth and proliferation and decreases vascular endothelial growth factor synthesis. These results identify a novel cell-transforming property of NPM/ALK, namely its ability to induce the expression of HIF1α, a protein with an important role in carcinogenesis. These results also provide another rationale to therapeutically target NPM/ALK and STAT3 in ALK+ TCL.

  14. SHP1 tyrosine phosphatase negatively regulates NPM-ALK tyrosine kinase signaling.

    Science.gov (United States)

    Honorat, Jean-François; Ragab, Ashraf; Lamant, Laurence; Delsol, Georges; Ragab-Thomas, Jeannie

    2006-05-15

    Anaplastic large-cell lymphoma (ALCL) is frequently associated with the 2;5 translocation and expresses the NPM-ALK fusion protein, which possesses a constitutive tyrosine kinase activity. We analyzed SHP1 tyrosine phosphatase expression and activity in 3 ALK-positive ALCL cell lines (Karpas 299, Cost, and SU-DHL1) and in lymph node biopsies (n = 40). We found an inverse correlation between the level of NPM-ALK phosphorylation and SHP1 phosphatase activity. Pull-down and coimmunoprecipitation experiments demonstrated a SHP1/NPM-ALK association. Furthermore, confocal microscopy performed on ALCL cell lines and biopsy specimens showed the colocalization of the 2 proteins in cytoplasmic bodies containing Y664-phosphorylated NPM-ALK. Dephosphorylation of NPM-ALK by SHP1 demonstrated that NPM-ALK was a SHP1 substrate. Downregulation of SHP1 expression by RNAi in Karpas cells led to hyperphosphorylation of NPM-ALK, STAT3 activation, and increase in cell proliferation. Furthermore, SHP1 overexpression in 3T3 fibroblasts stably expressing NPM-ALK led to the decrease of NPM-ALK phosphorylation, lower cell proliferation, and tumor progression in nude mice. These findings show that SHP1 is a negative regulator of NPM-ALK signaling. The use of tissue microarrays revealed that 50% of ALK-positive ALCLs were positive for SHP1. Our results suggest that SHP1 could be a critical enzyme in ALCL biology and a potential therapeutic target.

  15. NPM-ALK: The Prototypic Member of a Family of Oncogenic Fusion Tyrosine Kinases

    Directory of Open Access Journals (Sweden)

    Joel D. Pearson

    2012-01-01

    Full Text Available Anaplastic lymphoma kinase (ALK was first identified in 1994 with the discovery that the gene encoding for this kinase was involved in the t(2;5(p23;q35 chromosomal translocation observed in a subset of anaplastic large cell lymphoma (ALCL. The NPM-ALK fusion protein generated by this translocation is a constitutively active tyrosine kinase, and much research has focused on characterizing the signalling pathways and cellular activities this oncoprotein regulates in ALCL. We now know about the existence of nearly 20 distinct ALK translocation partners, and the fusion proteins resulting from these translocations play a critical role in the pathogenesis of a variety of cancers including subsets of large B-cell lymphomas, nonsmall cell lung carcinomas, and inflammatory myofibroblastic tumours. Moreover, the inhibition of ALK has been shown to be an effective treatment strategy in some of these malignancies. In this paper we will highlight malignancies where ALK translocations have been identified and discuss why ALK fusion proteins are constitutively active tyrosine kinases. Finally, using ALCL as an example, we will examine three key signalling pathways activated by NPM-ALK that contribute to proliferation and survival in ALCL.

  16. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration.

    Science.gov (United States)

    Voena, Claudia; Conte, Chiara; Ambrogio, Chiara; Boeri Erba, Elisabetta; Boccalatte, Francesco; Mohammed, Shabaz; Jensen, Ole N; Palestro, Giorgio; Inghirami, Giorgio; Chiarle, Roberto

    2007-05-01

    Anaplastic large cell lymphomas (ALCL) are mainly characterized by the reciprocal translocation t(2;5)(p23;q35) that involves the anaplastic lymphoma kinase (ALK) gene and generates the fusion protein NPM-ALK with intrinsic tyrosine kinase activity. NPM-ALK triggers several signaling cascades, leading to increased cell growth, resistance to apoptosis, and changes in morphology and migration of transformed cells. To search for new NPM-ALK interacting molecules, we developed a mass spectrometry-based proteomic approach in HEK293 cells expressing an inducible NPM-ALK and identified the tyrosine phosphatase Shp2 as a candidate substrate. We found that NPM-ALK was able to bind Shp2 in coprecipitation experiments and to induce its phosphorylation in the tyrosine residues Y542 and Y580 both in HEK293 cells and ALCL cell lines. In primary lymphomas, antibodies against the phosphorylated tyrosine Y542 of Shp2 mainly stained ALK-positive cells. In ALCL cell lines, Shp2-constitutive phosphorylation was dependent on NPM-ALK, as it significantly decreased after short hairpin RNA (shRNA)-mediated NPM-ALK knock down. In addition, only the constitutively active NPM-ALK, but not the kinase dead NPM-ALK(K210R), formed a complex with Shp2, Gab2, and growth factor receptor binding protein 2 (Grb2), where Grb2 bound to the phosphorylated Shp2 through its SH2 domain. Shp2 knock down by specific shRNA decreased the phosphorylation of extracellular signal-regulated kinase 1/2 and of the tyrosine residue Y416 in the activation loop of Src, resulting in impaired ALCL cell proliferation and growth disadvantage. Finally, migration of ALCL cells was reduced by Shp2 shRNA. These findings show a direct involvement of Shp2 in NPM-ALK lymphomagenesis, highlighting its critical role in lymphoma cell proliferation and migration.

  17. NPM-ALK signals through glycogen synthase kinase 3β to promote oncogenesis.

    Science.gov (United States)

    McDonnell, S R P; Hwang, S R; Basrur, V; Conlon, K P; Fermin, D; Wey, E; Murga-Zamalloa, C; Zeng, Z; Zu, Y; Elenitoba-Johnson, K S J; Lim, M S

    2012-08-01

    Anaplastic large cell lymphoma (ALCL) is the most common type of pediatric peripheral T-cell lymphoma. In 70-80% of cases, the chromosomal aberration t(2;5)(p23;q35) results in the juxtaposition of anaplastic lymphoma kinase (ALK) with nucleophosmin (NPM) and the subsequent expression of the NPM-ALK fusion protein. NPM-ALK is a chimeric tyrosine kinase, which induces numerous signaling pathways that drive proliferation and abrogate apoptosis. However, the mechanisms that lead to activation of downstream growth regulatory molecules have not been completely elucidated. Using a mass spectrometry-based phosphoproteomic screen, we identified GSK3β as a signaling mediator of NPM-ALK. Using a selective inhibitor of ALK, we demonstrated that the tyrosine kinase activity of ALK regulates the serine-9 phosphorylation of GSK3β. Expression of NPM-ALK in 293T cells led to an increase of pS(9)-GSK3β (glycogen synthase kinase 3 beta) compared with kinase-defective K210R mutant NPM-ALK, but did not affect total GSK3β levels. Phosphorylation of pS(9)-GSK3β by NPM-ALK was mediated by the PI3K/AKT signaling pathway. ALK inhibition resulted in degradation of GSK3β substrates Mcl-1 and CDC25A, which was recovered upon chemical inhibition of the proteasome (MG132). Furthermore, the degradation of Mcl-1 was recoverable with inhibition of GSK3β. ALK inhibition also resulted in decreased cell viability, which was rescued by GSK3β inhibition. Furthermore, stable knockdown of GSK3β conferred resistance to the growth inhibitory effects of ALK inhibition using viability and colony formation assays. pS(9)-GSK3β and CDC25A were selectively expressed in neoplastic cells of ALK+ALCL tissue biopsies, and showed a significant correlation (PNPM-ALK regulates the phosphorylation of S(9)-GSK3β by PI3K/AKT. The subsequent inhibition of GSK3β activity results in accumulation of CDC25A and Mcl-1, which confers the advantage of growth and protection from apoptosis. These findings provide

  18. Brain metastasis of ALK positive anaplastic large cell lymphoma after a long-term disease free survival in an old adult

    Science.gov (United States)

    Wang, Cai-Xia; Wang, Hai; Li, Jie; Ma, Heng-Hui; Yu, Bo; Shi, Shan-Shan; Zhou, Xiao-Jun; Shi, Qun-Li

    2014-01-01

    Anaplastic large cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma composed of CD30-positive cells and now recognized as three different entities: primary cutaneous ALCL, primary systemic anaplastic lymphoma kinase (ALK)-positive (ALK+) ALCL and primary ALK-negative (ALK-) ALCL. ALK+ ALCL is supposed to have a better prognosis than ALK- ALCL. It is rarely metastasized to other sites, especially to the central nervous system (CNS). Herein, we present a rare case of systemic ALK+ ALCL which metastasized to the brain after a long-term disease free survival in an adult. Neuroimaging revealed a well-enhanced mass in the left frontal lobe. And it was completely resected. The results of the pathological and immunohistochemical studies were consistent with the metastasized ALK+ ALCL. The clinical findings, pathologic characteristics and treatment are described. PMID:24696735

  19. Anti-ALK Antibodies in Patients with ALK-Positive Malignancies Not Expressing NPM-ALK.

    Science.gov (United States)

    Damm-Welk, Christine; Siddiqi, Faraz; Fischer, Matthias; Hero, Barbara; Narayanan, Vignesh; Camidge, David Ross; Harris, Michael; Burke, Amos; Lehrnbecher, Thomas; Pulford, Karen; Oschlies, Ilske; Siebert, Reiner; Turner, Suzanne; Woessmann, Wilhelm

    2016-01-01

    Patients with Nucleophosmin (NPM)- Anaplastic Lymphoma Kinase (ALK) fusion positive Anaplastic Large Cell Lymphoma produce autoantibodies against ALK indicative of an immune response against epitopes of the chimeric fusion protein. We asked whether ALK-expression in other malignancies induces specific antibodies. Antibodies against ALK were detected in sera of one of 50 analysed ALK-expressing neuroblastoma patients, 13 of 21 ALK positive non-small cell lung carcinoma (NSCLC) patients, 13 of 22 ALK translocation-positive, but NPM-ALK-negative lymphoma patients and one of one ALK-positive rhabdomyosarcoma patient, but not in 20 healthy adults. These data suggest that boosting a pre-existent anti-ALK immune response may be more feasible for patients with ALK-positive NSCLC, lymphomas and rhabdomyosarcomas than for tumours expressing wild-type ALK.

  20. Three Years Sustained Complete Remission Achieved in a Primary Refractory ALK-Positive Anaplastic T Large Cell Lymphoma Treated with Crizotinib

    Science.gov (United States)

    Mahuad, Carolina Valeria; Repáraz, María de los Ángeles Vicente; Zerga, Marta E.; Aizpurua, María Florencia; Casali, Claudia; Garate, Gonzalo

    2016-01-01

    The prognosis of the primary refractory anaplastic lymphoma kinase (ALK+) anaplastic T large cell lymphoma is ominous. The identification of molecular targets with potential to drive oncogenesis remains a cornerstone for the designing of new selective cancer therapies. Crizotinib is a selective ATP-competitive inhibitor for ALK, approved for its use in lung cancer with rearrangements on ALK gene. The reported cases describe the use of crizotinib as a bridging strategy prior to allotransplantation; there are no reported prolonged survivals under monotherapy with Crizotinib. We report a case of a primary refractory ALK+ anaplastic large-cell lymphoma that sustains complete response after 3 years of crizotinib monotherapy. PMID:27441079

  1. Anaplastic large cell lymphoma ALK-negative clinically mimicking alcoholic hepatitis – a review

    Directory of Open Access Journals (Sweden)

    Fernando Peixoto Ferraz de Campos

    2013-10-01

    Full Text Available Anaplastic large cell lymphoma (ALCL, described less than 30 years ago by Karl Lennert and Herald Stein in Kiel, West Germany, is a T-cell or null non-Hodgkin lymphoma, with distinctive morphology (hallmark cells, prominent sinus and/or perivascular growth pattern, characteristic immunophenotype (CD30+, cytotoxic granules protein+, CD3–/+ and specific genetic features as translocations involving the receptor tyrosine kinase called anaplastic lymphoma kinase (ALK on 2p23 and variable partners genes, which results in the expression of ALK fusion protein. The absence of ALK expression is also observed and is associated with poorer prognosis that seen with ALK expression. ALK-negative ALCL is more frequent in adults, with both nodal and extra nodal clinical presentation and includes several differential diagnoses with other CD30+ lymphomas. Liver involvement by ALCL is rare and is generally seen as mass formation; the diffuse pattern of infiltration is even more unusual. The authors present a case of a 72-year-old man who presented clinical symptoms of acute hepatic failure. The patient had a long history of alcohol abuse and the diagnosis of alcoholic hepatitis was highly considered, although the serum lactic dehydrogenase (LDH value was highly elevated. The clinical course was fulminant leading to death on the fourth day of hospitalization. Autopsy demonstrated diffuse neoplastic hepatic infiltration as well as splenic, pulmonary, bone marrow, and minor abdominal lymph nodes involvement by the tumor. Based on morphological, immunophenotypical, and immunohistochemical features, a diagnosis of ALK- negative ALCL was concluded. When there is marked elevation of LDH the possibility of lymphoma, ALCL and other types, should be the principal diagnosis to be considered.

  2. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein

    Directory of Open Access Journals (Sweden)

    Pearson Joel D

    2012-06-01

    Full Text Available Abstract Background Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g. NPM-ALK with constitutive tyrosine kinase activity, which activate numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock protein-90 (Hsp90 plays a critical role in allowing NPM-ALK and other signalling proteins to function in this lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40, is up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines. Methods NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP 51, and FKBP52 examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined. Results We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with siRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell lines treated with Cyp40 siRNA does not appear to

  3. The pathobiology of the oncogenic tyrosine kinase NPM-ALK: a brief update.

    Science.gov (United States)

    Lai, Raymond; Ingham, Robert J

    2013-04-01

    Extensive research has been carried out in the past two decades to study the pathobiology of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), which is an oncogenic fusion protein found exclusively in a specific type of T-cell lymphoid malignancy, namely ALK-positive anaplastic large cell lymphoma. Results from these studies have provided highly useful insights into the mechanisms by which a constitutively tyrosine kinase, such as NPM-ALK, promotes tumorigenesis. Several previous publications have comprehensively summarized the advances in this field. In this review, we provide readers with a brief update on specific areas of NPM-ALK pathobiology. In the first part, the NPM-ALK/signal transducer and activator of transcription 3 (STAT3) signaling axis is discussed, with an emphasis on the existence of multiple biochemical defects that have been shown to amplify the oncogenic effects of this signaling axis. Specifically, findings regarding JAK3, SHP1 and the stimulatory effects of several cytokines including interleukin (IL)-9, IL-21 and IL-22 are summarized. New concepts stemming from recent observations regarding the functional interactions among the NPM-ALK/STAT3 axis, β catenin and glycogen synthase kinase 3β will be postulated. Lastly, new mechanisms by which the NPM-ALK/STAT3 axis promotes tumorigenesis, such as its modulations of Twist1, hypoxia-induced factor 1α, CD274, will be described. In the second part, we summarize recent data generated by mass spectrometry studies of NPM-ALK, and use MSH2 and heat shock proteins as examples to illustrate the use of mass spectrometry data in stimulating new research in this field. In the third part, the evolving field of microRNA in the context of NPM-ALK biology is discussed.

  4. A novel patient-derived tumorgraft model with TRAF1-ALK anaplastic large-cell lymphoma translocation.

    Science.gov (United States)

    Abate, F; Todaro, M; van der Krogt, J-A; Boi, M; Landra, I; Machiorlatti, R; Tabbò, F; Messana, K; Abele, C; Barreca, A; Novero, D; Gaudiano, M; Aliberti, S; Di Giacomo, F; Tousseyn, T; Lasorsa, E; Crescenzo, R; Bessone, L; Ficarra, E; Acquaviva, A; Rinaldi, A; Ponzoni, M; Longo, D L; Aime, S; Cheng, M; Ruggeri, B; Piccaluga, P P; Pileri, S; Tiacci, E; Falini, B; Pera-Gresely, B; Cerchietti, L; Iqbal, J; Chan, W C; Shultz, L D; Kwee, I; Piva, R; Wlodarska, I; Rabadan, R; Bertoni, F; Inghirami, G

    2015-06-01

    Although anaplastic large-cell lymphomas (ALCL) carrying anaplastic lymphoma kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human patient-derived tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of ALK and nuclear factor kB (NFkB) pathways. Genomic studies of ALCL-11 showed the TP53 loss and the in vivo subclonal expansion of lymphoma cells, lacking PRDM1/Blimp1 and carrying c-MYC gene amplification. The treatment with proteasome inhibitors of TRAF1-ALK cells led to the downregulation of p50/p52 and lymphoma growth inhibition. Moreover, a NFkB gene set classifier stratified ALCL in distinct subsets with different clinical outcome. Although a selective ALK inhibitor (CEP28122) resulted in a significant clinical response of hPDT mice, nevertheless the disease could not be eradicated. These data indicate that the activation of NFkB signaling contributes to the neoplastic phenotype of TRAF1-ALK ALCL. ALCL hPDTs are invaluable tools to validate the role of druggable molecules, predict therapeutic responses and implement patient specific therapies.

  5. Structure Based Drug Design of Crizotinib (PF-02341066), a Potent and Selective Dual Inhibitor of Mesenchymal-Epithelial Transition Factor (c-MET) Kinase and Anaplastic Lymphoma Kinase (ALK)

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J Jean; Tran-Dube,; #769; Michelle,; Shen, Hong; Nambu, Mitchell; Kung, Pei-Pei; Pairish, Mason; Jia, Lei; Meng, Jerry; Funk, Lee; Botrous, Iriny; McTigue, Michele; Grodsky, Neil; Ryan, Kevin; Padrique, Ellen; Alton, Gordon; Timofeevski, Sergei; Yamazaki, Shinji; Li, Qiuhua; Zou, Helen; Christensen, James; Mroczkowski, Barbara; Bender, Steve; Kania, Robert S; Edwards, Martin P [Pfizer

    2011-08-03

    Because of the critical roles of aberrant signaling in cancer, both c-MET and ALK receptor tyrosine kinases are attractive oncology targets for therapeutic intervention. The cocrystal structure of 3 (PHA-665752), bound to c-MET kinase domain, revealed a novel ATP site environment, which served as the target to guide parallel, multiattribute drug design. A novel 2-amino-5-aryl-3-benzyloxypyridine series was created to more effectively make the key interactions achieved with 3. In the novel series, the 2-aminopyridine core allowed a 3-benzyloxy group to reach into the same pocket as the 2,6-dichlorophenyl group of 3 via a more direct vector and thus with a better ligand efficiency (LE). Further optimization of the lead series generated the clinical candidate crizotinib (PF-02341066), which demonstrated potent in vitro and in vivo c-MET kinase and ALK inhibition, effective tumor growth inhibition, and good pharmaceutical properties.

  6. Reactive oxygen species and lipoxygenases regulate the oncogenicity of NPM-ALK-positive anaplastic large cell lymphomas.

    Science.gov (United States)

    Thornber, K; Colomba, A; Ceccato, L; Delsol, G; Payrastre, B; Gaits-Iacovoni, F

    2009-07-23

    The chimera nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), the tyrosine kinase activity of which is constitutively upregulated, is the causative agent of 75% of the anaplastic large-cell lymphomas (ALCLs). We have demonstrated that NPM-ALK induces the production of reactive oxygen species (ROS) by a pathway involving the arachidonic acid-metabolizing enzymes of the lipoxygenase (LOX) family. The use of the LOX inhibitor nordihydroguaiaretic acid (NDGA) and of the anti-oxidant N-acetylcysteine (NAC) demonstrated that ROS are important in maintaining the ALK kinase active. Consistent with this, NDGA treatment resulted in the inhibition of key pathways, such as Akt, signal transducer and activator of transcription factor 3 (STAT3) and extracellular signal-regulated kinase (ERK), which are involved in NPM-ALK antiapoptotic and pro-mitogenic functions. Conversely, the stress-activated kinase p38, described in some instances as a mediator of apoptosis, was activated. Interestingly, 5-LOX, an isoform involved in many cancers, was found to be activated in NPM-ALK(+) cells. Functional studies have shown that transforming properties, namely proliferation and resistance to apoptosis, were abrogated by treatment with either NDGA or the 5-LOX inhibitor (N-(3-phenoxycinnamyl)-acetohydroxamic acid) (BW A4C). Together, these data point to the ROS/LOX pathway as a potential new target for therapy in NPM-ALK-positive tumors.

  7. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma

    DEFF Research Database (Denmark)

    Zhang, Qian; Raghunath, Puthryaveett N; Xue, Liquan

    2002-01-01

    Accumulating evidence indicates that expression of anaplastic lymphoma kinase (ALK), typically due to t(2;5) translocation, defines a distinct type of T/null-cell lymphoma (TCL). The resulting nucleophosmin (NPM) /ALK chimeric kinase is constitutively active and oncogenic. Downstream effector...... known STATs was consistently tyrosine phosphorylated in these cell lines. In addition, malignant cells in tissue sections from all (10 of 10) ALK+ TCL patients expressed tyrosine-phosphorylated STAT3. Transfection of BaF3 cells with NPM/ALK resulted in tyrosine phosphorylation of STAT3. Furthermore...

  8. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming

    DEFF Research Database (Denmark)

    Marzec, Michal; Halasa, Krzysztof; Liu, Xiaobin

    2013-01-01

    by the STAT5 and STAT3 transcription factors, whereas transcription of Egr-1 and Fosl-1 was induced by the MEK-ERK pathway. Finally, we found that Egr-1, a protein not associated previously with either IL-2 or ALK, contributes to the cell proliferation. These findings indicate that NPM/ALK transforms......Anaplastic lymphoma kinase (ALK), physiologically expressed only by nervous system cells, displays a remarkable capacity to transform CD4(+) T lymphocytes and other types of nonneural cells. In this study, we report that activity of nucleophosmin (NPM)/ALK chimeric protein, the dominant form of ALK...... expressed in T cell lymphomas (TCLs), closely resembles cell activation induced by IL-2, the key cytokine supporting growth and survival of normal CD4(+) T lymphocytes. Direct comparison of gene expression by ALK(+) TCL cells treated with an ALK inhibitor and IL-2-dependent ALK(-) TCL cells stimulated...

  9. ALK-positive anaplastic large cell lymphoma with soft tissue involvement in a young woman

    Directory of Open Access Journals (Sweden)

    Gao KH

    2016-07-01

    Full Text Available Kehai Gao, Hongtao Li, Caihong Huang, Huazhuang Li, Jun Fang, Chen Tian Department of Orthopaedics, Yidu Central Hospital, Shandong, People’s Republic of China Introduction: Anaplastic large cell lymphoma (ALCL is a type of non-Hodgkin lymphoma that has strong expression of CD30. ALCL can sometimes involve the bone marrow, and in advanced stages, it can produce destructive extranodal lesions. But anaplastic large cell lymphoma kinase (ALK+ ALCL with soft tissue involvement is very rare.Case report: A 35-year-old woman presented with waist pain for over 1 month. The biopsy of soft tissue lesions showed that these cells were positive for ALK-1, CD30, TIA-1, GranzymeB, CD4, CD8, and Ki67 (90%+ and negative for CD3, CD5, CD20, CD10, cytokeratin (CK, TdT, HMB-45, epithelial membrane antigen (EMA, and pan-CK, which identified ALCL. After six cycles of Hyper-CVAD/MA regimen, she achieved partial remission. Three months later, she died due to disease progression.Conclusion: This case illustrates the unusual presentation of ALCL in soft tissue with a bad response to chemotherapy. Because of the tendency for rapid progression, ALCL in young adults with extranodal lesions are often treated with high-grade chemotherapy, such as Hyper-CVAD/MA. Keywords: anaplastic large cell lymphoma, ALK+, soft tissue involvement, Hyper-CVAD/MA

  10. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway.

    Science.gov (United States)

    Marzec, M; Kasprzycka, M; Liu, X; El-Salem, M; Halasa, K; Raghunath, P N; Bucki, R; Wlodarski, P; Wasik, M A

    2007-08-16

    The mechanisms of cell transformation mediated by the nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) tyrosine kinase are only partially understood. Here, we report that cell lines and native tissues derived from the NPM/ALK-expressing T-cell lymphoma display persistent activation of mammalian target of rapamycin (mTOR) as determined by phosphorylation of mTOR targets S6rp and 4E-binding protein 1 (4E-BP1). The mTOR activation is serum growth factor-independent but nutrient-dependent. It is also dependent on the expression and enzymatic activity of NPM/ALK as demonstrated by cell transfection with wild-type and functionally deficient NPM/ALK, small interfering RNA (siRNA)-mediated NPM/ALK depletion and kinase activity suppression using the inhibitor WHI-P154. The NPM/ALK-induced mTOR activation is transduced through the mitogen-induced extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway and, to a much lesser degree, through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. Accordingly, whereas the low-dose PI3K inhibitor wortmannin and Akt inhibitor III profoundly inhibited Akt phosphorylation, they had a very modest effect on S6rp and 4E-BP1 phosphorylation. In turn, MEK inhibitors U0126 and PD98059 and siRNA-mediated depletion of either ERK1 or ERK2 inhibited S6rp phosphorylation much more effectively. Finally, the mTOR inhibitor rapamycin markedly decreased proliferation and increased the apoptotic rate of ALK+TCL cells. These findings identify mTOR as a novel key target of NPM/ALK and suggest that mTOR inhibitors may prove effective in therapy of ALK-induced malignancies.

  11. Crizotinib (PF-2341066) induces apoptosis due to downregulation of pSTAT3 and BCL-2 family proteins in NPM-ALK(+) anaplastic large cell lymphoma.

    Science.gov (United States)

    Hamedani, Farid Saei; Cinar, Munevver; Mo, Zhicheng; Cervania, Melissa A; Amin, Hesham M; Alkan, Serhan

    2014-04-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is an aberrant fusion gene product with tyrosine kinase activity and is expressed in substantial subset of anaplastic large cell lymphomas (ALCL). It has been shown that NPM-ALK binds to and activates signal transducer and activator of transcription 3 (STAT3). Although NPM-ALK(+) ALCL overall shows a better prognosis, there is a sub-group of patients who relapses and is resistant to conventional chemotherapeutic regimens. NPM-ALK is a potential target for small molecule kinase inhibitors. Crizotinib (PF-2341066) is a small, orally bioavailable molecule that inhibits growth of tumors with ALK activity as shown in a subgroup of non-small lung cancer patients with EML4-ALK expression. In this study, we have investigated the in vitro effects of Crizotinib in ALCL cell line with NPM-ALK fusion. Crizotinib induced marked downregulation of STAT3 phosphorylation, which was associated with significant apoptotic cell death. Apoptosis induction was attributed to caspase-3 cleavage and marked downregulation of the Bcl-2 family of proteins including MCL-1. These findings implicate that Crizotinib has excellent potential to treat patients with NPM-ALK(+) ALCL through induction of apoptotic cell death and downregulation of major oncogenic proteins in this aggressive lymphoma.

  12. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy

    Science.gov (United States)

    Buetti-Dinh, Antoine; O’Hare, Thomas

    2016-01-01

    A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance. PMID:27669408

  13. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1).

    Science.gov (United States)

    Marzec, Michal; Zhang, Qian; Goradia, Ami; Raghunath, Puthiyaveettil N; Liu, Xiaobin; Paessler, Michele; Wang, Hong Yi; Wysocka, Maria; Cheng, Mangeng; Ruggeri, Bruce A; Wasik, Mariusz A

    2008-12-30

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells strongly express the immunosuppressive cell-surface protein CD274 (PD-L1, B7-H1), as determined on the mRNA and protein level. The CD274 expression is strictly dependent on the expression and enzymatic activity of NPM/ALK, as demonstrated by inhibition of the NPM/ALK function in ALK+TCL cells by the small molecule ALK inhibitor CEP-14083 and by documenting CD274 expression in IL-3-depleted BaF3 cells transfected with the wild-type NPM/ALK, but not the kinase-inactive NPM/ALK K210R mutant or empty vector alone. NPM/ALK induces CD274 expression by activating its key signal transmitter, transcription factor STAT3. STAT3 binds to the CD274 gene promoter in vitro and in vivo, as shown in the gel electromobility shift and chromatin immunoprecipitation assays, and is required for the PD-L1 gene expression, as demonstrated by siRNA-mediated STAT3 depletion. These findings identify an additional cell-transforming property of NPM/ALK and describe a direct link between an oncoprotein and an immunosuppressive cell-surface protein. These results also provide an additional rationale to therapeutically target NPM/ALK and STAT3 in ALK+TCL. Finally, they suggest that future immunotherapeutic protocols for this type of lymphoma may need to include the inhibition of NPM/ALK and STAT3 to achieve optimal clinical efficacy.

  14. The emerging pathogenic and therapeutic importance of the anaplastic lymphoma kinase gene.

    LENUS (Irish Health Repository)

    Kelleher, Fergal C

    2012-02-01

    The anaplastic lymphoma kinase gene (ALK) is a gene on chromosome 2p23 that has expression restricted to the brain, testis and small intestine but is not expressed in normal lymphoid tissue. It has similarity to the insulin receptor subfamily of kinases and is emerging as having increased pathologic and potential therapeutic importance in malignant disease. This gene was originally established as being implicated in the pathogenesis of rare diseases including inflammatory myofibroblastic tumour (IMT) and ALK-positive anaplastic large cell lymphoma, which is a subtype of non-Hodgkin\\'s lymphoma. Recently the number of diseases in which ALK is implicated in their pathogenesis has increased. In 2007, an inversion of chromosome 2 involving ALK and a fusion partner gene in a subset of non-small cell lung cancer was discovered. In 2008, publications emerged implicating ALK in familial and sporadic cases of neuroblastoma, a childhood cancer of the sympatho-adrenal system. Chromosomal abnormalities involving ALK are translocations, amplifications or mutations. Chromosomal translocations are the longest recognised ALK genetic abnormality. When translocations occur a fusion gene is created between ALK and a gene partner. This has been described in ALK-positive anaplastic large cell lymphoma in which ALK is fused to NPM (nucleolar protein gene) and in non-small cell lung cancer where ALK is fused to EML4 (Echinoderm microtubule-associated protein 4). The most frequently described partner genes in inflammatory myofibroblastic tumour are tropomyosin 3\\/4 (TMP3\\/4), however in IMTs a diversity of ALK fusion partners have been found, with the ability to homodimerise a common characteristic. Point mutations and amplification of the ALK gene occur in the childhood cancer neuroblastoma. Therapeutic targeting of ALK fusion genes using tyrosine kinase inhibition, vaccination using an ALK specific antigen and treatment using viral vectors for RNAi are emerging potential therapeutic

  15. Brigatinib in Patients With Crizotinib-Refractory Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer

    DEFF Research Database (Denmark)

    Kim, Dong-Wan; Tiseo, Marcello; Ahn, Myung-Ju

    2017-01-01

    Purpose Most crizotinib-treated patients with anaplastic lymphoma kinase gene ( ALK)-rearranged non-small-cell lung cancer (ALK-positive NSCLC) eventually experience disease progression. We evaluated two regimens of brigatinib, an investigational next-generation ALK inhibitor, in crizotinib-refra...

  16. Fusion tyrosine kinase NPM-ALK Deregulates MSH2 and suppresses DNA mismatch repair function novel insights into a potent oncoprotein.

    Science.gov (United States)

    Young, Leah C; Bone, Kathleen M; Wang, Peng; Wu, Fang; Adam, Benjamin A; Hegazy, Samar; Gelebart, Pascal; Holovati, Jelena; Li, Liang; Andrew, Susan E; Lai, Raymond

    2011-07-01

    The fusion tyrosine kinase NPM-ALK is central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL). We recently identified that MSH2, a key DNA mismatch repair (MMR) protein integral to the suppression of tumorigenesis, is an NPM-ALK-interacting protein. In this study, we found in vitro evidence that enforced expression of NPM-ALK in HEK293 cells suppressed MMR function. Correlating with these findings, six of nine ALK(+)ALCL tumors displayed evidence of microsatellite instability, as opposed to none of the eight normal DNA control samples (P = 0.007, Student's t-test). Using co-immunoprecipitation, we found that increasing levels of NPM-ALK expression in HEK293 cells resulted in decreased levels of MSH6 bound to MSH2, whereas MSH2·NPM-ALK binding was increased. The NPM-ALK·MSH2 interaction was dependent on the activation/autophosphorylation of NPM-ALK, and the Y191 residue of NPM-ALK was a crucial site for this interaction and NPM-ALK-mediated MMR suppression. MSH2 was found to be tyrosine phosphorylated in the presence of NPM-ALK. Finally, NPM-ALK impeded the expected DNA damage-induced translocation of MSH2 out of the cytoplasm. To conclude, our data support a model in which the suppression of MMR by NPM-ALK is attributed to its ability to interfere with normal MSH2 biochemistry and function.

  17. Treatment of elderly patients or patients who are performance status 2 (PS2) with advanced Non-Small Cell Lung Cancer without epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) translocations - Still a daily challenge.

    Science.gov (United States)

    Su, Chunxia; Zhou, Fei; Shen, Jiqiao; Zhao, Jing; O'Brien, Mary

    2017-09-01

    Cytotoxic chemotherapy remains the core treatment strategy for patients with advanced non-small cell lung cancer (NSCLC) with tumours that do not have actionable molecular alterations, such as epidermal growth factor receptor (EGFR)-sensitising mutations, anaplastic lymphoma kinase (ALK) translocations or ROS1 translocations. Age and performance status (PS) are two pivotal factors to guide treatment decisions regarding the use of chemotherapy in lung cancer patients. Lung cancer is predominantly a disease of the elderly, with more than two-thirds of patients aged ≥65 years, the current definition of 'elderly'. The prevalence of poor PS, as estimated by patients themselves, can be as high as 50%. Both the elderly and PS2 patients are underrepresented in clinical trials. Therefore, optimising treatment strategy for the subgroup of elderly or PS2 patients with advanced NSCLC remains challenging as a result of a paucity of clinical trial data. The current review focusses on the elderly or PS2 patients without actionable oncogenic drivers and attempts to summarise current available data on recent treatments trials including angiogenesis inhibitors and immune-checkpoint inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. ALK-positive diffuse large B-cell lymphoma: two more cases and a brief literature review.

    Science.gov (United States)

    Rudzki, Zbigniew; Rucińska, Małgorzata; Jurczak, Wojciech; Skotnicki, Aleksander B; Maramorosz-Kurianowicz, Magdalena; Mruk, Andrzej; Piróg, Krystyna; Utych, Graźyna; Bodzioch, Piotr; Srebro-Stariczyk, Maria; Włodarska, Iwona; Stachura, Jerzy

    2005-01-01

    Anaplastic lymphoma kinase (ALK)-positive diffuse large B-cell lymphoma (DLBCL) is a rare, recently defined tumor distinct in many aspects from ALK-positive anaplastic large cell lymphoma (ALCL). We present two additional cases of ALK+DLBCL recently diagnosed in our department and a review of literature. A 48-year old man presented with a large upper neck mass growing slowly over 18 months. Histologically the tumor was diagnosed as an ALK-positive diffuse large B-cell lymphoma. with plasmablastic features. Large, frequently intrasinusoidal tumor cells expressed CD138, EMA, weakly IgA and kappa, but were negative for other B-cell markers, T-cell markers and CD30. The ALK staining was cytoplasmic with the increased intensity in the Golgi area. At the diagnosis the patient manifested with the stage IIIB. Three courses of CHOP resulted in partial and only transient remission. The patient died of massive bleeding from his decomposing tumor 3 months after the diagnosis. A 49-year old man complaining of abdominal pain revealed abdominal lymphadenomegaly and a gastric infiltrate, involving the deep portions of the gastric wall. The tumor showed immunoblastic/anaplastic morphology, with some Reed-Sternberg-like cells positive for ALK. ALK immunostaining was cytoplasmic, weak in a routine immunostain, enhanced with double (proteinase + pressure cooker) antigen retrieval. FISH was consistent with the t(2;5)/nucleophosmin(NPM)-ALK rearrangement. The tumor demonstrated similar "null" B/T phenotype with positivity for IgA, lambda, EMA and LCA. The patient (stage IVB) currently undergoes chemotherapy. ALK-positive DLBCL affects mostly middle-aged men, shows generally poor but stage-dependent prognosis (at least 60% mortality rate), presents typically as a lymph node-based disseminated disease, and very rarely involves the bone marrow. Genetic studies showed that the majority of ALK+DLBCL cases are characterized by the clathrin (CLTC)-ALK fusion and in a few cases the NPM-ALK

  19. Downregulation of NPM-ALK by siRNA causes anaplastic large cell lymphoma cell growth inhibition and augments the anti cancer effects of chemotherapy in vitro.

    Science.gov (United States)

    Hsu, Faye Yuan-yi; Zhao, Yi; Anderson, W French; Johnston, Patrick B

    2007-06-01

    The fusion protein, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), results from the chromosome translocation t(2;5)(p23;q25) and is present in 50-70 percent of anaplastic large-cell lymphomas (ALCLs). NPM-ALK is a constitutively activated kinase that transforms cells through stimulating several mitogenic signaling pathways. To examine if the NPM-ALK is a potential therapeutic target in ALCL, we used siRNA to specifically downregulate the expression of the NPM-ALK in ALCL cell lines. In this report, we demonstrated viability loss in t(2;5)-positive ALCL cell lines, SUDHL-1 and Karpas 299 cells, but not in lymphoma cell lines without the chromosome translocation, Jurkat and Granta 519 cells. Further study demonstrated that the downregulation of NPM-ALK resulted in decreased cell proliferation and increased cell apoptosis. When used in combination with chemotherapeutic agents, such as doxorubicin, the inhibition of the NPM-ALK augments the chemosensitivity of the tumor cells. These results revealed the importance of continuous expression of NPM-ALK in maintaining the growth of ALCL cells. Our data also suggested that the repression of the fusion gene might be a potential novel therapeutic strategy for NPM-ALK positive ALCLs.

  20. Concomitant occurrence of EGFR (epidermal growth factor receptor) and KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) mutations in an ALK (anaplastic lymphoma kinase)-positive lung adenocarcinoma patient with acquired resistance to crizotinib

    DEFF Research Database (Denmark)

    Rossing, Henrik H; Grauslund, Morten; Urbanska, Edyta M;

    2013-01-01

    , the events behind crizotinib-resistance currently remain largely uncharacterized. Thus, we report on an anaplastic lymphoma kinase-positive non-small cell lung carcinoma patient with concomitant occurrence of epidermal growth factor receptor and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog mutations......Anaplastic lymphoma kinase-positive non-small cell lung carcinoma patients are generally highly responsive to the dual anaplastic lymphoma kinase and MET tyrosine kinase inhibitor crizotinib. However, they eventually acquire resistance to this drug, preventing the anaplastic lymphoma kinase...... inhibitors from having a prolonged beneficial effect. The molecular mechanisms responsible for crizotinib resistance are beginning to emerge, e.g., in some anaplastic lymphoma kinase-positive non-small cell lung carcinomas the development of secondary mutations in this gene has been described. However...

  1. ALK signaling and target therapy in anaplastic large cell lymphoma

    Directory of Open Access Journals (Sweden)

    Fabrizio eTabbo

    2012-05-01

    Full Text Available The discovery by Morris SW et al. in 1994 of the genes contributing to the t(2;5(p23;q35 translocation has put the foundation for a molecular based recognition of Anaplastic Large Cell Lymphoma (ALCL and pointed out the need for a further stratification of T-cell neoplasia. Likewise the detection of ALK genetic lesions among many human cancers has defined unique subsets of cancer patients, providing new opportunities for innovative therapeutic interventions. The objective of this review is to appraise the molecular mechanisms driving ALK-mediated transformation, and to maintain the neoplastic phenotype. The understanding of these events will allow the design and implementation of novel tailored strategies for a well-defined subset of cancer patients.

  2. Activation of Rac1 and the exchange factor Vav3 are involved in NPM-ALK signaling in anaplastic large cell lymphomas.

    Science.gov (United States)

    Colomba, A; Courilleau, D; Ramel, D; Billadeau, D D; Espinos, E; Delsol, G; Payrastre, B; Gaits-Iacovoni, F

    2008-04-24

    The majority of anaplastic large cell lymphomas (ALCLs) express the nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) fusion protein, which is oncogenic due to its constitutive tyrosine kinase activity. Transformation by NPM-ALK not only increases proliferation, but also modifies cell shape and motility in both lymphoid and fibroblastic cells. We report that the Rac1 GTPase, a known cytoskeletal regulator, is activated by NPM-ALK in ALCL cell lines (Karpas 299 and Cost) and transfected cells (lymphoid Ba/F3 cells, NIH-3T3 fibroblasts). We have identified Vav3 as one of the exchange factors involved in Rac1 activation. Stimulation of Vav3 and Rac1 by NPM-ALK is under the control of Src kinases. It involves formation of a signaling complex between NPM-ALK, pp60(c-src), Lyn and Vav3, in which Vav3 associates with tyrosine 343 of NPM-ALK via its SH2 domain. Moreover, Vav3 is phosphorylated in NPM-ALK positive biopsies from patients suffering from ALCL, demonstrating the pathological relevance of this observation. The use of Vav3-specific shRNA and a dominant negative Rac1 mutant demonstrates the central role of GTPases in NPM-ALK elicited motility and invasion.

  3. Serine phosphorylation of NPM-ALK, which is dependent on the auto-activation of the kinase activation loop, contributes to its oncogenic potential.

    Science.gov (United States)

    Wang, Peng; Wu, Fang; Zhang, Jingdong; McMullen, Todd; Young, Leah C; Ingham, Robert J; Li, Liang; Lai, Raymond

    2011-02-01

    It is well established that the tumorigenic potential of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), an oncogenic tyrosine kinase, is dependent on its tyrosine phosphorylation. Using tandem affinity purification-mass spectrometry, we found evidence of phosphorylation of three serine residues of NPM-ALK (Serine¹³⁵, Serine¹⁶⁴ and Serine⁴⁹⁷) ectopically expressed in GP293 cells. Using a specific anti-phosphoserine antibody and immunoprecipitation, we confirmed the presence of serine phosphorylation of NPM-ALK in all three NPM-ALK-expressing cell lines examined. Similar to the tyrosine phosphorylation, phosphorylation of these serine residues was dependent on the activation status of the kinase activation loop of ALK. All of these three serine residues are biologically important as mutation of any one of these residues resulted in a significant reduction in the tumorigenicity of NPM-ALK (assessed by cell viability and clonogenic assay), which correlated with a substantial reduction in the phosphorylation of extracellular signal-regulated kinase 1/2, c-jun N-terminal kinase and signal transducer and activator of transcription 6. Serine phosphorylation of NPM-ALK appears to be regulated by multiple serine kinases since it was markedly reduced by pharmacologic inhibitors for glycogen synthase kinase-3, casein kinase I or mitogen-activated protein kinases. In summary, our study is the first to identify serine phosphorylation of NPM-ALK and to provide evidence that it enhances the tumorigenic potential of this oncogenic protein.

  4. Integrated phosphoproteomic and metabolomic profiling reveals NPM-ALK-mediated phosphorylation of PKM2 and metabolic reprogramming in anaplastic large cell lymphoma.

    Science.gov (United States)

    McDonnell, Scott R P; Hwang, Steven R; Rolland, Delphine; Murga-Zamalloa, Carlos; Basrur, Venkatesha; Conlon, Kevin P; Fermin, Damian; Wolfe, Thomas; Raskind, Alexander; Ruan, Chunhai; Jiang, Jian-Kang; Thomas, Craig J; Hogaboam, Cory M; Burant, Charles F; Elenitoba-Johnson, Kojo S J; Lim, Megan S

    2013-08-01

    The mechanisms underlying the pathogenesis of the constitutively active tyrosine kinase nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expressing anaplastic large cell lymphoma are not completely understood. Here we show using an integrated phosphoproteomic and metabolomic strategy that NPM-ALK induces a metabolic shift toward aerobic glycolysis, increased lactate production, and biomass production. The metabolic shift is mediated through the anaplastic lymphoma kinase (ALK) phosphorylation of the tumor-specific isoform of pyruvate kinase (PKM2) at Y105, resulting in decreased enzymatic activity. Small molecule activation of PKM2 or expression of Y105F PKM2 mutant leads to reversal of the metabolic switch with increased oxidative phosphorylation and reduced lactate production coincident with increased cell death, decreased colony formation, and reduced tumor growth in an in vivo xenograft model. This study provides comprehensive profiling of the phosphoproteomic and metabolomic consequences of NPM-ALK expression and reveals a novel role of ALK in the regulation of multiple components of cellular metabolism. Our studies show that PKM2 is a novel substrate of ALK and plays a critical role in mediating the metabolic shift toward biomass production and tumorigenesis.

  5. ALK-positive anaplastic large cell lymphoma presenting as intradural spinal mass: first reported case and review of literature.

    Science.gov (United States)

    Novello, Mariangela; Lauriola, Libero; Della Pepa, Giuseppe Maria; Giuseppe, La Rocca; Coli, Antonella; Visocchi, Massimiliano

    2013-08-01

    Anaplastic large cell lymphoma (ALCL) is characterized by large anaplastic cells of T-cell or null-cell phenotype expressing CD30 (Ki-1 antigen). In most cases this neoplasm expresses the anaplastic lymphoma kinase (ALK), a chimeric protein resulting from the t(2;5)(p23;q35) translocation. ALK-positive anaplastic large cell lymphoma is most frequent in the first three decades of life and shows a male predominance, involving both nodal and extranodal sites, but rarely the CNS. We report a 21-year-old patient with a previous history of nodal ALK-positive ALCL, lymphohistiocytic subtype, who was admitted for recent occurrence of left-sided anesthesia with pain and progressive motor weakness of both legs. An MRI of the spine documented an intradural extramedullary mass dislocating the thoracic cord, suggesting a meningioma and the patient underwent surgical decompression. Histological examination revealed a lymphoproliferative neoplasm with morphology and immunophenotype of ALK-positive anaplastic large cell lymphoma. After surgery, all preoperative symptoms disappeared. To our knowledge, no cases of ALCL presenting as secondary localization with an intradural extramedullary spinal mass have been reported in the literature. © 2012 Japanese Society of Neuropathology.

  6. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms.

    Science.gov (United States)

    Turner, Suzanne D; Yeung, Debra; Hadfield, Kathryn; Cook, Simon J; Alexander, Denis R

    2007-04-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expression is associated with the lymphoid malignancy anaplastic large cell lymphoma (ALCL) and results from a t(2;5) chromosomal translocation. We show that NPM-ALK induces Ras activation and phosphorylation of the ERK MAP Kinase consistent with activation of the Ras-MAP Kinase pathway. Furthermore, we demonstrate that activation of Ras is necessary for inducing transcription via NFAT/AP-1 composite transcriptional binding sites. This activity is dependent on NPM-ALK forming complexes with proteins that bind to autophosphorylated tyrosine residues at positions 156, 567 and 664, associated with binding to IRS-1, Shc and PLCgamma, respectively. Specifically, NPM-ALK activates transcription from the TRE promoter element, an AP-1 binding region, an activity dependent on both Ras and Shc activity. Our results show that NPM-ALK mimics activated T-cell receptor signalling by inducing pathways associated with the activation of NFAT/AP-1 transcription factors that bind to promoter elements found in a broad array of cytokine genes.

  7. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf.

    Science.gov (United States)

    Marzec, M; Kasprzycka, M; Liu, X; Raghunath, P N; Wlodarski, P; Wasik, M A

    2007-02-01

    The mechanisms of cell transformation mediated by the highly oncogenic, chimeric NPM/ALK tyrosine kinase remain only partially understood. Here we report that cell lines and native tissues derived from the NPM/ALK-expressing T-cell lymphoma (ALK+ TCL) display phosphorylation of the extracellular signal-regulated protein kinase (ERK) 1/2 complex. Transfection of BaF3 cells with NPM/ALK induces phosphorylation of EKR1/2 and of its direct activator mitogen-induced extracellular kinase (MEK) 1/2. Depletion of NPM/ALK by small interfering RNA (siRNA) or its inhibition by WHI-154 abrogates the MEK1/2 and ERK1/2 phosphorylation. The NPM/ALK-induced MEK/ERK activation is independent of c-Raf as evidenced by the lack of MEK1/2 and ERK1/2 phosphorylation upon c-Raf inactivation by two different inhibitors, RI and ZM336372, and by its siRNA-mediated depletion. In contrast, ERK1/2 activation is strictly MEK1/2 dependent as shown by suppression of the ERK1/2 phosphorylation by the MEK1/2 inhibitor U0126. The U0126-mediated inhibition of ERK1/2 activation impaired proliferation and viability of the ALK+ TCL cells and expression of antiapoptotic factor Bcl-xL and cell cycle-promoting CDK4 and phospho-RB. Finally, siRNA-mediated depletion of both ERK1 and ERK2 inhibited cell proliferation, whereas depletion of ERK 1 (but not ERK2) markedly increased cell apoptosis. These findings identify MEK/ERK as a new signaling pathway activated by NPM/ALK and indicate that the pathway represents a novel therapeutic target in the ALK-induced malignancies.

  8. Anaplastic lymphoma kinase rearrangements in non-small-cell lung cancer: novel applications in diagnostics and treatment.

    Science.gov (United States)

    Shackelford, Rodney E; Ansari, Junaid M; Wei, Eric X; Alexander, Jonathan S; Cotelingam, James

    2017-08-01

    The ALK gene, first identified as an anaplastic large cell lymphoma driver mutation, is dysregulated in nearly 20 different human malignancies, including 3-7% of non-small-cell lung cancers (NSCLC). In NSCLC, ALK commonly fuses with the EML4, forming a constitutively active tyrosine kinase that drives oncogenic progression. Recently, several ALK-inhibiting drugs have been developed that are more effective than standard chemotherapeutic regimens in treating advanced ALK-positive NSCLC. For this reason, molecular diagnostic testing for dysregulated ALK expression is a necessary part of identifying optimal NSCLC treatment options. Here, we review the molecular pathology of ALK-positive NSCLC, ALK molecular diagnostic techniques, ALK-targeted NSCLC treatments, and drug resistance mechanisms to ALK-targeted therapies.

  9. Anaplastic Lymphoma Kinase Acts in the Drosophila Mushroom Body to Negatively Regulate Sleep.

    Directory of Open Access Journals (Sweden)

    Lei Bai

    2015-11-01

    Full Text Available Though evidence is mounting that a major function of sleep is to maintain brain plasticity and consolidate memory, little is known about the molecular pathways by which learning and sleep processes intercept. Anaplastic lymphoma kinase (Alk, the gene encoding a tyrosine receptor kinase whose inadvertent activation is the cause of many cancers, is implicated in synapse formation and cognitive functions. In particular, Alk genetically interacts with Neurofibromatosis 1 (Nf1 to regulate growth and associative learning in flies. We show that Alk mutants have increased sleep. Using a targeted RNAi screen we localized the negative effects of Alk on sleep to the mushroom body, a structure important for both sleep and memory. We also report that mutations in Nf1 produce a sexually dimorphic short sleep phenotype, and suppress the long sleep phenotype of Alk. Thus Alk and Nf1 interact in both learning and sleep regulation, highlighting a common pathway in these two processes.

  10. Malignant transformation of CD4+ T lymphocytes mediated by oncogenic kinase NPM/ALK recapitulates IL-2-induced cell signaling and gene expression reprogramming.

    Science.gov (United States)

    Marzec, Michal; Halasa, Krzysztof; Liu, Xiaobin; Wang, Hong Y; Cheng, Mangeng; Baldwin, Donald; Tobias, John W; Schuster, Stephen J; Woetmann, Anders; Zhang, Qian; Turner, Suzanne D; Ødum, Niels; Wasik, Mariusz A

    2013-12-15

    Anaplastic lymphoma kinase (ALK), physiologically expressed only by nervous system cells, displays a remarkable capacity to transform CD4(+) T lymphocytes and other types of nonneural cells. In this study, we report that activity of nucleophosmin (NPM)/ALK chimeric protein, the dominant form of ALK expressed in T cell lymphomas (TCLs), closely resembles cell activation induced by IL-2, the key cytokine supporting growth and survival of normal CD4(+) T lymphocytes. Direct comparison of gene expression by ALK(+) TCL cells treated with an ALK inhibitor and IL-2-dependent ALK(-) TCL cells stimulated with the cytokine revealed a very similar, albeit inverse, gene-regulation pattern. Depending on the analysis method, up to 67% of the affected genes were modulated in common by NPM/ALK and IL-2. Based on the gene expression patterns, Jak/STAT- and IL-2-signaling pathways topped the list of pathways identified as affected by both IL-2 and NPM/ALK. The expression dependence on NPM/ALK and IL-2 of the five selected genes-CD25 (IL-2Rα), Egr-1, Fosl-1, SOCS3, and Irf-4-was confirmed at the protein level. In both ALK(+) TCL and IL-2-stimulated ALK(-) TCL cells, CD25, SOCS3, and Irf-4 genes were activated predominantly by the STAT5 and STAT3 transcription factors, whereas transcription of Egr-1 and Fosl-1 was induced by the MEK-ERK pathway. Finally, we found that Egr-1, a protein not associated previously with either IL-2 or ALK, contributes to the cell proliferation. These findings indicate that NPM/ALK transforms the target CD4(+) T lymphocytes, at least in part, by using the pre-existing, IL-2-dependent signaling pathways.

  11. Redundant and nonredundant roles for Cdc42 and Rac1 in lymphomas developed in NPM-ALK transgenic mice

    DEFF Research Database (Denmark)

    Choudhari, Ramesh; Minero, Valerio Giacomo; Menotti, Matteo

    2016-01-01

    NPM-ALK lymphoma dissemination in vivo. Thus, Cdc42 and Rac1 have nonredundant roles in controlling ALK-rearranged lymphoma survival and morphology but are redundant for lymphoma dissemination, suggesting that targeting both GTPases could represent a preferable therapeutic option for ALCL treatment....

  12. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, HongYi; Kantekure, Kanchan

    2011-01-01

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression via...... STAT3, which triggers the transcriptional activity of the ICOS gene promoter. In addition, STAT3 suppresses the expression of miR-219 that, in turn, selectively inhibits ICOS expression. ALK(+) TCL cell lines display extensive DNA methylation of the CpG island located within intron 1, the putative...... enhancer region, of the ICOS gene, whereas cutaneous T-cell lymphoma cell lines, which strongly express ICOS, show no methylation of the island. Treatment of the ALK(+) TCL cell lines with DNA methyltransferase inhibitor reversed the CpG island methylation and augmented the expression of ICOS m...

  13. MicroRNA Expression Profiling Identifies Molecular Diagnostic Signatures for Anaplastic Large Cell Lymphoma

    DEFF Research Database (Denmark)

    Liu, Cuiling; Iqbal, Javeed; Teruya-Feldstein, Julie

    2013-01-01

    Anaplastic large-cell lymphomas (ALCLs) encompass at least 2 systemic diseases distinguished by the presence or absence of anaplastic lymphoma kinase (ALK) expression. We performed genome-wide microRNA (miRNA) profiling on 33 ALK-positive (ALK[+]) ALCLs, 25 ALK-negative (ALK[-]) ALCLs, 9 angioimm...

  14. Poor response to gefitinib in lung adenocarcinoma with concomitant epidermal growth factor receptor mutation and anaplastic lymphoma kinase rearrangement.

    Science.gov (United States)

    Zhou, Jianya; Zheng, Jing; Zhao, Jing; Sheng, Yihong; Ding, Wei; Zhou, Jianying

    2015-03-01

    A patient presenting with concomitant epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) translocation is rare. We report a non-small cell lung cancer (NSCLC) patient with concomitant ALK rearrangement and exon 19 (E746-A750del) EGFR mutation. The ALK rearrangement was confirmed not only in the primary tumor biopsy specimen, but also in the pleural effusion cell block by reverse transcriptase-polymerase chain reaction (RT-PCR), Ventana ALK immunohistochemistry assay, and fluorescence in situ hybridization. No clinical benefit using chemotherapy or EGFR tyrosine kinase inhibitor gefitinib was obtained in this case.

  15. Redundant and nonredundant roles for Cdc42 and Rac1 in lymphomas developed in NPM-ALK transgenic mice.

    Science.gov (United States)

    Choudhari, Ramesh; Minero, Valerio Giacomo; Menotti, Matteo; Pulito, Roberta; Brakebusch, Cord; Compagno, Mara; Voena, Claudia; Ambrogio, Chiara; Chiarle, Roberto

    2016-03-10

    Increasing evidence suggests that Rho family GTPases could have a critical role in the biology of T-cell lymphoma. In ALK-rearranged anaplastic large cell lymphoma (ALCL), a specific subtype of T-cell lymphoma, the Rho family GTPases Cdc42 and Rac1 are activated by the ALK oncogenic activity. In vitro studies have shown that Cdc42 and Rac1 control rather similar phenotypes of ALCL biology such as the proliferation, survival, and migration of lymphoma cells. However, their role and possible redundancy in ALK-driven lymphoma development in vivo are still undetermined. We genetically deleted Cdc42 or Rac1 in a mouse model of ALK-rearranged ALCL to show that either Cdc42 or Rac1 deletion impaired lymphoma development, modified lymphoma morphology, actin filament distribution, and migration properties of lymphoma cells. Cdc42 or Rac1 deletion primarily affected survival rather than proliferation of lymphoma cells. Apoptosis of lymphoma cells was equally induced following Cdc42 or Rac1 deletion, was associated with upregulation of the proapoptotic molecule Bid, and was blocked by Bcl2 overexpression. Remarkably, Cdc42/Rac1 double deletion, but not Cdc42 or Rac1 single deletions, completely prevented NPM-ALK lymphoma dissemination in vivo. Thus, Cdc42 and Rac1 have nonredundant roles in controlling ALK-rearranged lymphoma survival and morphology but are redundant for lymphoma dissemination, suggesting that targeting both GTPases could represent a preferable therapeutic option for ALCL treatment.

  16. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS.

    Science.gov (United States)

    Zhang, Qian; Wang, Hongyi; Kantekure, Kanchan; Paterson, Jennifer C; Liu, Xiaobin; Schaffer, Andras; Paulos, Chrystal; Milone, Michael C; Odum, Niels; Turner, Suzanne; Marafioti, Teresa; Wasik, Mariusz A

    2011-09-15

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression via STAT3, which triggers the transcriptional activity of the ICOS gene promoter. In addition, STAT3 suppresses the expression of miR-219 that, in turn, selectively inhibits ICOS expression. ALK(+) TCL cell lines display extensive DNA methylation of the CpG island located within intron 1, the putative enhancer region, of the ICOS gene, whereas cutaneous T-cell lymphoma cell lines, which strongly express ICOS, show no methylation of the island. Treatment of the ALK(+) TCL cell lines with DNA methyltransferase inhibitor reversed the CpG island methylation and augmented the expression of ICOS mRNA and protein. Stimulation of the ICOS receptor with anti-ICOS antibody or ICOS ligand-expressing B cells markedly enhanced proliferation of the ALK(+) TCL cells. These results demonstrate that NPM-ALK, acting through STAT3 as the gene transcriptional activator, induces the expression of ICOS, a cell growth promoting receptor. These data also show that the DNA methylation status of the intronic CpG island affects transcriptional activity of the ICOS gene and, consequently, modulates the concentration of the expressed ICOS protein.

  17. Pharmacological inhibition of Anaplastic Lymphoma Kinase rescues spatial memory impairments in Neurofibromatosis 1 mutant mice.

    Science.gov (United States)

    Weiss, Joseph B; Weber, Sydney; Marzulla, Tessa; Raber, Jacob

    2017-08-14

    Heterozygous Neurofibromatosis 1 (NF1) loss of function mutations are found in 90% of patients with neurofibromatosis, a syndrome associated with disabling cognitive impairment. Drosophila studies have demonstrated a genetic interaction between Anaplastic Lymphoma Kinase (Alk) and NF1 in cognitive performance. In addition, pharmacologic inhibition of Alk improves cognitive performance in heterozygous NF1 mutant flies. In this study, we tested whether pharmacological inhibition of Alk in heterozygous NF1 mutant mice attenuates or rescues cognitive impairments. Cognitive impairment of spatial memory retention observed in heterozygous NF1 mutant mice was rescued by the Alk inhibitor. These data support the hypothesis that inhibition of Alk may cognitively benefit patients with Neurofibromatosis 1. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. PIM kinases as potential therapeutic targets in a subset of peripheral T cell lymphoma cases.

    Directory of Open Access Journals (Sweden)

    Esperanza Martín-Sánchez

    Full Text Available Currently, there is no efficient therapy for patients with peripheral T cell lymphoma (PTCL. The Proviral Integration site of Moloney murine leukemia virus (PIM kinases are important mediators of cell survival. We aimed to determine the therapeutic value of PIM kinases because they are overexpressed in PTCL patients, T cell lines and primary tumoral T cells. PIM kinases were inhibited genetically (using small interfering and short hairpin RNAs and pharmacologically (mainly with the pan-PIM inhibitor (PIMi ETP-39010 in a panel of 8 PTCL cell lines. Effects on cell viability, apoptosis, cell cycle, key proteins and gene expression were evaluated. Individual inhibition of each of the PIM genes did not affect PTCL cell survival, partially because of a compensatory mechanism among the three PIM genes. In contrast, pharmacological inhibition of all PIM kinases strongly induced apoptosis in all PTCL cell lines, without cell cycle arrest, in part through the induction of DNA damage. Therefore, pan-PIMi synergized with Cisplatin. Importantly, pharmacological inhibition of PIM reduced primary tumoral T cell viability without affecting normal T cells ex vivo. Since anaplastic large cell lymphoma (ALK+ ALCL cell lines were the most sensitive to the pan-PIMi, we tested the simultaneous inhibition of ALK and PIM kinases and found a strong synergistic effect in ALK+ ALCL cell lines. Our findings suggest that PIM kinase inhibition could be of therapeutic value in a subset of PTCL, especially when combined with ALK inhibitors, and might be clinically beneficial in ALK+ ALCL.

  19. Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma.

    Science.gov (United States)

    Damm-Welk, Christine; Mussolin, Lara; Zimmermann, Martin; Pillon, Marta; Klapper, Wolfram; Oschlies, Ilske; d'Amore, Emanuele S G; Reiter, Alfred; Woessmann, Wilhelm; Rosolen, Angelo

    2014-01-16

    Detection of minimal disseminated disease (MDD) at diagnosis correlates with relapse risk in children with anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphoma (ALCL). We investigated whether minimal residual disease (MRD) positivity by qualitative reverse-transcriptase polymerase chain reaction (RT-PCR) for Nucleophosmin (NPM)-ALK during treatment identifies patients at the highest relapse risk. Blood and/or bone marrow of 180 patients with NPM-ALK-positive ALCL treated with Berlin-Frankfurt-Münster-type protocols were screened for NPM-ALK transcripts at diagnosis; 103 were found to be MDD-positive. MRD before the second therapy course could be evaluated in 52 MDD-positive patients. MRD positivity correlated with uncommon histology. The cumulative incidence of relapses (CIR) of 26 MDD-positive/MRD-positive patients (81% ± 8%) was significantly higher than the CIR of 26 MDD-positive/MRD-negative (31% ± 9%) and 77 MDD-negative patients (15% ± 5%) (P NPM-ALK-positive ALCL identifies patients with a very high relapse risk and inferior survival.

  20. ALK and c-myc gene of anaplastic large cell lymphoma%间变性大细胞淋巴瘤的ALK和c-myc基因研究

    Institute of Scientific and Technical Information of China (English)

    于冉; 周春菊; 陈刚; 高子芬; 时云飞; 石岩; 谢建兰; 周小鸽; 宫丽平

    2010-01-01

    目的 探讨间变性大细胞淋巴瘤(ALCL)中间变性淋巴瘤激酶(ALK)基因与c-myc基因的分子遗传学改变.方法 收集原发系统性ALCL石蜡包埋组织标本72例,利用间期荧光原位杂交(FISH)技术检测ALCL肿瘤组织中ALK和c-myc基因结构与数目的变化.结果 72例ALCL中,ALK阳性者42例,40例存在涉及ALK基因的染色体易位,其中17例同时伴有ALK基因的多拷贝;ALK阴性的30例均未发现ALK基因的易位,但其中14例存在ALK基因的多拷贝.ALK基因多拷贝的发生率在ALK阳性与阴性组中的差异无统计学意义(P>0.05).72例病例中,均未发现涉及c-myc基因的染色体易位,但其中24例存在c-myc基因的多拷贝.结论 大部分ALCL伴有ALK基因的异常(75.0%).以涉及ALK基因的染色体易位最为多见(55.6%),ALK基因多拷贝也是ALCL较为常见的遗传学改变(43.1%).前者只出现于ALK阳性ALCL中,后者既可出现在ALK阳性也可出现在ALK阴性的ALCL中.ALCL中不见或罕见涉及c-myc基因的染色体易位,但c-myc基因多拷贝的现象较为常见(33.3%).%Objective To investigate the molecular genetic changes of anaplastic lymphoma kinase (ALK) gene and c-myc gene in anaplastic large cell lymphoma (ALCL). Methods The structural aberrations and changes of copy numbers in ALK and c-myc genes in 72 paraffin-embedded ALCL specimens were detected by interphase fluorescence in situ hybridization (FISH). Results Among 72 ALCL specimens, ALK protein was expressed in 42, ALK gene translocation was detected in 40 specimens in which extra copies of ALK gene were detected in 17. ALK gene translocation was not found in all 30 ALK negative specimens, but extra copies of ALK gene were detected in 14 cases. The difference of incidence rates of extra copies in ALK gene between ALK positive and ALK negative specimens was not significant (P>0.05). c-myc gene translocation was not found in any of 72 ALCL specimens, but extra copies were detected in 24

  1. Systemic Capillary Leak Syndrome as an Initial Presentation of ALK-Negative Anaplastic Large Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Laura S. Lourdes

    2012-01-01

    Full Text Available Systemic capillary leak syndrome (SCLS is a rare disease characterized by third spacing of plasma into the extravascular compartment, leading to anasarca, hemoconcentration, and hypovolemic shock. It has been rarely associated with lymphomas, and reports usually indicate that it occurs after antineoplastic treatment. We present the case of a patient with ALK-negative anaplastic large cell lymphoma who presented with SCLS as the initial manifestation of her lymphoma. The SCLS resolved with treatment of the malignancy with steroids and chemotherapy.

  2. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein.

    Science.gov (United States)

    Vishwamitra, Deeksha; Curry, Choladda V; Shi, Ping; Alkan, Serhan; Amin, Hesham M

    2015-09-01

    Nucleophosmin-anaplastic lymphoma kinase-expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  3. Current Status of Targeted Therapy for Anaplastic Lymphoma Kinase in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li MA

    2014-12-01

    Full Text Available The rate of the anaplastic lymphoma kinase (ALK gene rearrangements in non-small cell lung cancer (NSCLC tissues is 3%-5%. The first-in-class ALK tyrosine kinase inhibitor, crizotinib, can effectively target these tumors represent a significant advance in the evolution of personalized medicine for NSCLC. A randomized phase III clinical trial in which superiority of crizotinib over chemotherapy was seen in previously treated ALK-positive NSCLC patients demonstrated durable responses and well tolerance in the majority of ALK-positive NSCLC patients treated with crizotinib. However, despite the initial responses, most patients develop acquired resistance to crizotinib. Several novel therapeutic approaches targeting ALK-positive NSCLC are currently under evaluation in clinical trials, including second-generation ALK inhibitors, such as LDK378, CH5424802 (RO5424802, and AP26113, and new agents shock protein 90 inhibitors. This review aims to present the current knowledge on this fusion gene, the treatment advances, and novel drug clinical trials in ALK rearranged NSCLC.

  4. Anaplastic lymphoma kinase positive large B-cell lymphoma: Literature review and report of an endoscopic fine needle aspiration case with tigroid backgrounds mimicking seminoma.

    Science.gov (United States)

    Sakr, Hany; Cruise, Michael; Chahal, Prabhleen; Cotta, Claudiu; Cook, James; Chalikonda, Sricharan; Rosenblatt, Steven; Hamadeh, Fatima; Al-Nourhji, Omar; Sturgis, Charles D

    2017-02-01

    Anaplastic lymphoma kinase-positive large B-cell lymphoma (ALK+ LBCL) is a rare distinct type of non-Hodgkin's lymphoma that arises in association with alterations of the ALK gene. This distinct disease entity is typically associated with an aggressive clinical course and appears in light microscopic preparations as a monomorphic population of large, immunoblast-like cells. In this report, we describe a case of ALK+ LBCL diagnosed by transgastric endoscopic ultrasound-guided fine needle aspiration (EUS FNA) of splenic hilar lymph nodes. Modified Giemsa stained direct smears from the FNA sample demonstrated large lesional cells with foamy cytoplasm and macronucleoli admixed with small lymphocytes in tigroid backgrounds, mimicking the cytologic appearance of seminoma. Ancillary immunohistochemical studies subsequently confirmed the diagnosis of ALK+ LBCL with the lesional cells being immunoreactive for CD138, VS38c, MUM1, ALK1, and lambda light chain. The cohesiveness of the cells, the cellular morphology, and the tigroid backgrounds were all pitfalls for accurate diagnosis of this rare specific type of lymphoid malignancy by cytology. To our knowledge this is the first case report detailing the diagnosis of ALK+ LBCL by EUS FNA and the first report describing a glycogen-rich tigroid background in direct FNA smears. Establishing a refined diagnosis in cases of this rare form of LBCL is necessary, as therapies targeting ALK may be of value in clinical management. Diagn. Cytopathol. 2017;45:148-155. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Primary pancreatic anaplastic large cell lymphoma, ALK negative:A case report

    Institute of Scientific and Technical Information of China (English)

    Christos G Savopoulos; NE Tsesmeli; GD Kaiafa; AT Zantidis; MT Bobos; AI Hatzitolios; ST Papavramidis; IS Kostopoulos

    2005-01-01

    We present the fourth case of a primary pancreatic anaplastic large cell lymphoma (ALCL), ALK-. An 80-year-old man was admitted to our clinic for further investigation of a fever of unknown origin. He noted anorexia, weight loss and fatigue. His laboratory tests showed anemia and a great elevation of ESR, LDH, and β2 microglobulin. In CT and MRI scan, a soft tissue mass in the pancreas was observed. A repeated endoscopy after his admission revealed an ulcerated mass-like deformity of the duodenal bulb. Explorative laparotomy confirmed a diffuse spread of an unresectable malignant pancreatic mass extending to the adjacent organs. Duodenal and surgical biopsies identified an ALCL of T-cell lineage, ALK-. The patient died in the Intensive Care Unit due to hemodynamic instability.Our case is the first one indicating that primary pancreatic lymphoma should be suspected in a patient with pancreatic mass and elevated serum LDH and β2 microglobulin.

  6. ALK1-Negative Anaplastic Large Cell Lymphoma of the Breast from a Nonprosthesis Cyst

    Directory of Open Access Journals (Sweden)

    Christopher Mulligan, MBBS

    2014-10-01

    Full Text Available Summary: Anaplastic large cell lymphoma of the breast is a rare malignancy associated with prosthetic breast implants. We present a case of a woman with no prior history of breast implants who developed anaplastic lymphoma kinase-1 negative anaplastic large cell lymphoma on a background of a previous benign cyst aspiration.

  7. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target.

    Science.gov (United States)

    Chiarle, Roberto; Simmons, William J; Cai, Honjying; Dhall, Girish; Zamo, Alberto; Raz, Regina; Karras, James G; Levy, David E; Inghirami, Giorgio

    2005-06-01

    Anaplastic large cell lymphomas (ALCLs) are caused by chromosomal translocations that juxtapose the anaplastic lymphoma kinase (ALK) proto-oncogene to a dimerization partner, resulting in constitutive expression of ALK and ALK tyrosine kinase activity. One substrate of activated ALK in human ALCLs is the transcription factor Stat3, and its phosphorylation is accurately recapitulated in a new nucleophosmin (NPM)-ALK transgenic mouse model of lymphomagenesis. Here we show by gene targeting that Stat3 is required for the transformation of mouse embryonic fibroblasts in vitro, for the development of B-cell lymphoma in transgenic mice and for the growth and survival of both human and mouse NPM-ALK-transformed B and T cells. Ablation of Stat3 expression by antisense oligonucleotides significantly (P < 0.0001) impaired the growth of human and mouse NPM-ALK tumors in vivo. Pharmacological ablation of Stat3 represents a new candidate approach for the treatment of human lymphoma

  8. Combination therapy with brentuximab vedotin and cisplatin/cytarabine in a patient with primarily refractory anaplastic lymphoma kinase positive anaplastic large cell lymphoma.

    Science.gov (United States)

    Heidegger, Simon; Beer, Ambros J; Geissinger, Eva; Rosenwald, Andreas; Peschel, Christian; Ringshausen, Ingo; Keller, Ulrich

    2014-01-01

    Anaplastic large cell lymphoma (ALCL) is a common subtype of the heterogeneous group of peripheral T-cell lymphomas, which is characterized by large pleomorphic cells with strong expression of CD30. Translocations involving ALK, the anaplastic lymphoma kinase gene, are associated with a favorable clinical outcome. Such ALK-positive ALCLs are usually responsive to a multidrug chemotherapy with CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone). However, there is no general consensus on the optimal therapy for relapsed or refractory ALCL. We report the case of a 24-year-old male suffering from ALK-positive ALCL with an uncommon manifestation of only extranodal disease in the gastric cardia region that showed primary refractoriness to standard CHOP chemotherapy. A combination therapy consisting of the anti-CD30 drug conjugate, brentuximab vedotin, and classical lymphoma salvage regimen DHAP (cisplatin, high-dose cytarabine and dexamethasone) was administered. Following two treatment cycles in 21-day intervals, the lymphoma showed considerable regression based on imaging diagnostics and no evidence of vital lymphoma in a subsequent biopsy. We did not observe any increase in toxicity; in particular, polyneuropathy and febrile neutropenia were not observed. In summary, we report that the antibody-drug conjugate brentuximab vedotin and a classical regimen used for aggressive lymphoma, DHAP, could be combined as salvage therapy in a case of refractory ALK-positive ALCL. Phase I/II studies will be required for safety and efficacy analysis.

  9. Crizotinib and testing for ALK.

    Science.gov (United States)

    Shaw, Alice T; Solomon, Benjamin; Kenudson, Mari Mino

    2011-12-01

    Crizotinib was recently approved by the US FDA for the treatment of advanced non-small cell lung cancer (NSCLC) harboring the ALK (anaplastic lymphoma kinase) gene rearrangement. To ensure identification of patients most likely to benefit, the FDA approved crizotinib concurrently with a companion diagnostic test-the Vysis ALK Break Apart FISH Probe Kit. This kit was used in 1 of the 2 pivotal trials leading to the FDA approval of crizotinib and has become the gold standard for detecting ALK rearrangement in NSCLC. Although ALK FISH is clinically validated, the assay can be technically challenging and costly. Therefore, other diagnostic modalities are being explored, including immunohistochemistry (IHC) and reverse transcriptase-polymerase chain reaction. This article provides an overview of the diagnostic assays available for detecting ALK rearrangement. Each assay, including ALK FISH, has its strengths and weaknesses. Recent work with commercially available ALK antibodies suggests that IHC-based tests may represent a reliable and cost-effective screening strategy; however, large multicenter studies comparing IHC with FISH are needed to validate ALK IHC. While ALK FISH remains the current standard for diagnosing ALK positivity, large-scale screening of patients with newly diagnosed advanced NSCLC, as recommended by NCCN, may require development and validation of alternative screening strategies, such as combination IHC and FISH.

  10. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein

    Directory of Open Access Journals (Sweden)

    Deeksha Vishwamitra

    2015-09-01

    Full Text Available Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+ T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5(p23;q35 that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.

  11. Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase.

    Science.gov (United States)

    Huang, Wei-Sheng; Liu, Shuangying; Zou, Dong; Thomas, Mathew; Wang, Yihan; Zhou, Tianjun; Romero, Jan; Kohlmann, Anna; Li, Feng; Qi, Jiwei; Cai, Lisi; Dwight, Timothy A; Xu, Yongjin; Xu, Rongsong; Dodd, Rory; Toms, Angela; Parillon, Lois; Lu, Xiaohui; Anjum, Rana; Zhang, Sen; Wang, Frank; Keats, Jeffrey; Wardwell, Scott D; Ning, Yaoyu; Xu, Qihong; Moran, Lauren E; Mohemmad, Qurish K; Jang, Hyun Gyung; Clackson, Tim; Narasimhan, Narayana I; Rivera, Victor M; Zhu, Xiaotian; Dalgarno, David; Shakespeare, William C

    2016-05-26

    In the treatment of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase positive (ALK+) non-small-cell lung cancer (NSCLC), secondary mutations within the ALK kinase domain have emerged as a major resistance mechanism to both first- and second-generation ALK inhibitors. This report describes the design and synthesis of a series of 2,4-diarylaminopyrimidine-based potent and selective ALK inhibitors culminating in identification of the investigational clinical candidate brigatinib. A unique structural feature of brigatinib is a phosphine oxide, an overlooked but novel hydrogen-bond acceptor that drives potency and selectivity in addition to favorable ADME properties. Brigatinib displayed low nanomolar IC50s against native ALK and all tested clinically relevant ALK mutants in both enzyme-based biochemical and cell-based viability assays and demonstrated efficacy in multiple ALK+ xenografts in mice, including Karpas-299 (anaplastic large-cell lymphomas [ALCL]) and H3122 (NSCLC). Brigatinib represents the most clinically advanced phosphine oxide-containing drug candidate to date and is currently being evaluated in a global phase 2 registration trial.

  12. Anaplastic lymphoma kinase-positive lung adenocarcinoma patient with development of sick sinus syndrome while on targeted treatment with crizotinib.

    Science.gov (United States)

    Jiang, Hao; Li, Mei-Mei; Jin, Shu-Xian

    2015-03-01

    The anaplastic lymphoma kinase (ALK) positive non-small cell lung cancer (NSCLC) patients are younger and have never smoked, while pathologically are predominately adenocarcinomas. Crizotinib as an ALK inhibitor has been used in treating ALK positive NSCLC patients for several years and some adverse effects should be paid attention to. We now describe a case of ALK positive NSCLC patient with development of sick sinus syndrome (SSS) while on targeted treatment with crizotinib. A 46-year-old non-smoking woman with right hilar mass and underwent transesophageal endoscopic ultrasonography lymph node biopsy showed low differentiation adenocarcinoma, immunohistochemistry (IHC) of tumor samples revealed the ALK overexpression. The severe sinus bradycardia and RR interval prolongation were detected 3 months after crizotinib treatment, she underwent pacemaker implantation. Although the severe sinus bradycardia and RR interval prolongation were unusual adverse effects, physicians should be aware of these side effects when using crizotinib.

  13. Aberrant anaplastic lymphoma kinase activity induces a p53 and Rb-dependent senescence-like arrest in the absence of detectable p53 stabilization.

    Directory of Open Access Journals (Sweden)

    Fiona Kate Elizabeth McDuff

    Full Text Available Anaplastic Lymphoma Kinase (ALK is a receptor tyrosine kinase aberrantly expressed in a variety of tumor types, most notably in Anaplastic Large Cell Lymphoma (ALCL where a chromosomal translocation generates the oncogenic fusion protein, Nucleophosmin-ALK (NPM-ALK. Whilst much is known regarding the mechanism of transformation by NPM-ALK, the existence of cellular defence pathways to prevent this pathological process has not been investigated. Employing the highly tractable primary murine embryonic fibroblast (MEF system we show that cellular transformation is not an inevitable consequence of NPM-ALK activity but is combated by p53 and Rb. Activation of p53 and/or Rb by NPM-ALK triggers a potent proliferative block with features reminiscent of senescence. While loss of p53 alone is sufficient to circumvent NPM-ALK-induced senescence and permit cellular transformation, sole loss of Rb permits continued proliferation but not transformation due to p53-imposed restraints. Furthermore, NPM-ALK attenuates p53 activity in an Rb and MDM2 dependent manner but this activity is not sufficient to bypass senescence. These data indicate that senescence may constitute an effective barrier to ALK-induced malignancies that ultimately must be overcome for tumor development.

  14. {sup 18}F-FDG PET in Patients with Primary Systemic Anaplastic Large Cell Lymphoma: Differential Features According to Expression of Anaplastic Lymphoma Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yun; Lee, Jong Jin; Park, Seol Hoon; Chae, Sunyoung; Kim, Shin; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung; Ryu, Jinsook [Univ. of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2013-12-15

    Primary systemic anaplastic large cell lymphoma (ALCL) is divided into two entities according to the expression of anaplastic lymphoma kinase (ALK). We investigated {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) findings in primary systemic ALCL according to ALK expression. Thirty-seven patients who had baseline PET before CHOP (cyclophosphamide, doxorubicin, vincristine and prednisolone)-based chemotherapy were enrolled. Among them, patients who underwent interim and/or post-therapy PET were further investigated for the treatment response and survival analysis. Baseline PET was analyzed visually and semi-quantitatively using peak SUV, and interim and post-therapy PETs were visually analyzed. All cases were {sup 18}F-FDG-avid on baseline PET. The peak SUV of ALK-positive ALCL (n =16, 18.7±10.5) was higher than that of ALK-negative ALCL (n =21, 10.0±4.9) (P =0.006). In ALK-negative ALCL, complete response (CR) rate in negative-interim PET was higher than positive-interim PET (100 % vs 37.5 %, P=0.02); however, there was no such difference in ALK-positive ALCL (100 % vs 75 %, P =0.19). The 3-year progression-free survival (PFS) was not significantly different between ALK-positive and ALK-negative ALCL (72.7 % vs 47.6 %, P =0.34). In ALK-negative ALCL, negative interim and post-therapy PET patients had better 3-year PFS than positive interim (83.3 % vs 25.0 %, P =0.06) and post-therapy PET patients (70.0%vs 20.0 %, P =0.04). In contrast, ALK-positive ALCL had no such differences between PFS and PET results. On baseline PET, all cases showed {sup 18}F-FDG avidity, and ALK expression was related to higher {sup 18}F-FDG uptake. ALK-positive patients tend to have better PFS than ALK-negative patients. Negative-interim PET was a good indicator of CR, and interim or post-therapy PET was helpful for predicting the prognosis only in the ALK-negative group.

  15. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma.

    Science.gov (United States)

    Matsuyama, Hironori; Suzuki, Hiroshi I; Nishimori, Hikaru; Noguchi, Masaaki; Yao, Takashi; Komatsu, Norio; Mano, Hiroyuki; Sugimoto, Koichi; Miyazono, Kohei

    2011-12-22

    Many transformed lymphoma cells show immune-phenotypes resembling the corresponding normal lymphocytes; thus, they provide a guide for proper diagnosis and present promising routes to improve their pathophysiologic understanding and to identify novel therapeutic targets. However, the underlying molecular mechanism(s) of these aberrant immune-phenotypes is largely unknown. Here, we report that microRNA-135b (miR-135b) mediates nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-driven oncogenicity and empowers IL-17-producing immunophenotype in anaplastic large cell lymphoma (ALCL). NPM-ALK oncogene strongly promoted the expression of miR-135b and its host gene LEMD1 through activation of signal transducer and activator of transcription (STAT) 3. In turn, elevated miR-135b targeted FOXO1 in ALCL cells. miR-135b introduction also decreased chemosensitivity in Jurkat cells, suggesting its contribution to oncogenic activities of NPM-ALK. Interestingly, miR-135b suppressed T-helper (Th) 2 master regulators STAT6 and GATA3, and miR-135b blockade attenuated IL-17 production and paracrine inflammatory response by ALCL cells, indicating that miR-135b-mediated Th2 suppression may lead to the skewing to ALCL immunophenotype overlapping with Th17 cells. Furthermore, antisense-based miR-135b inhibition reduced tumor angiogenesis and growth in vivo, demonstrating significance of this "Th17 mimic" pathway as a therapeutic target. These results collectively illuminated unique contribution of oncogenic kinase-linked microRNA to tumorigenesis through modulation of tumor immune-phenotype and microenvironment.

  16. A New Target in Non-small Cell Lung Cancer: EML4-ALK Fusion Gene

    Directory of Open Access Journals (Sweden)

    Huijuan WANG

    2011-06-01

    Full Text Available It was only 3 years ago that the fusion gene between echinoderm microtubule-associated protein-like4 (EML4 and anaplastic lymphoma kinase (ALK has been identified in a subset of non-small cell lung cancer (NSCLC. EML4-ALK is most often detected in never smokers with lung adenocarcinoma and has unique pathologic features. EML4-ALK fusion gene is oncogenic, which could be suppressed by ALK-inhibitor through blocking the downstream signaling passway of EML4-ALK. This review will focus on the molecular structure, function, biology, detection method and the diagnostic and therapeutic meaning of EML4-ALK of lung cancer.

  17. Combination therapy with brentuximab vedotin and cisplatin/cytarabine in a patient with primarily refractory anaplastic lymphoma kinase positive anaplastic large cell lymphoma

    Directory of Open Access Journals (Sweden)

    Heidegger S

    2014-06-01

    Full Text Available Simon Heidegger,1 Ambros Beer,2 Eva Geissinger,3 Andreas Rosenwald,3 Christian Peschel,1 Ingo Ringshausen,1 Ulrich Keller11III Medical Department, 2Nuclear Medicine Department, Technische Universität München, Munich, Germany; 3Institute of Pathology, University of Würzburg, Würzburg, GermanyAbstract: Anaplastic large cell lymphoma (ALCL is a common subtype of the heterogeneous group of peripheral T-cell lymphomas, which is characterized by large pleomorphic cells with strong expression of CD30. Translocations involving ALK, the anaplastic lymphoma kinase gene, are associated with a favorable clinical outcome. Such ALK-positive ALCLs are usually responsive to a multidrug chemotherapy with CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone. However, there is no general consensus on the optimal therapy for relapsed or refractory ALCL. We report the case of a 24-year-old male suffering from ALK-positive ALCL with an uncommon manifestation of only extranodal disease in the gastric cardia region that showed primary refractoriness to standard CHOP chemotherapy. A combination therapy consisting of the anti-CD30 drug conjugate, brentuximab vedotin, and classical lymphoma salvage regimen DHAP (cisplatin, high-dose cytarabine and dexamethasone was administered. Following two treatment cycles in 21-day intervals, the lymphoma showed considerable regression based on imaging diagnostics and no evidence of vital lymphoma in a subsequent biopsy. We did not observe any increase in toxicity; in particular, polyneuropathy and febrile neutropenia were not observed. In summary, we report that the antibody-drug conjugate brentuximab vedotin and a classical regimen used for aggressive lymphoma, DHAP, could be combined as salvage therapy in a case of refractory ALK-positive ALCL. Phase I/II studies will be required for safety and efficacy analysis.Keywords: anaplastic large cell lymphoma (ALCL, refractory/relapsed lymphoma, anti-CD30 drug conjugate, DHAP

  18. Mechanisms of Acquired Resistance to ALK Inhibitors and the Rationale for Treating ALK-positive Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Isozaki, Hideko [Department of Clinical Pharmaceutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558 (Japan); Takigawa, Nagio, E-mail: ntakigaw@gmail.com [Department of General Internal Medicine 4, Kawasaki Medical School, Okayama 700-8505 (Japan); Kiura, Katsuyuki [Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama 700-8558 (Japan)

    2015-04-30

    The discovery of an echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene led to improved clinical outcomes in patients with lung cancer after the development of the first ALK-targeting agent, crizotinib. Some second-generation ALK tyrosine kinase inhibitors (TKIs), which might be more potent than crizotinib or effective on crizotinib-resistant patients, have been developed. Although these ALK-TKIs show an excellent response initially, most patients eventually acquire resistance. Therefore, careful consideration of the resistance mechanisms might lead to superior therapeutic strategies. Here, we summarize the history of ALK-TKIs and their underlying resistance mechanisms in both the preclinical and clinical settings. In addition, we discuss potential future treatment strategies in ALK-TKI-naïve and -resistant patients with lung cancer harboring the EML4-ALK fusion gene.

  19. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration

    DEFF Research Database (Denmark)

    Voena, Claudia; Conte, Chiara; Ambrogio, Chiara;

    2007-01-01

    in the activation loop of Src, resulting in impaired ALCL cell proliferation and growth disadvantage. Finally, migration of ALCL cells was reduced by Shp2 shRNA. These findings show a direct involvement of Shp2 in NPM-ALK lymphomagenesis, highlighting its critical role in lymphoma cell proliferation and migration....

  20. Successful treatment of hepatic oligometastases with stereotactic ablative radiotherapy and radiofrequency ablation in an anaplastic lymphoma kinase fusion-positive lung cancer patient

    DEFF Research Database (Denmark)

    Weber, Britta; Liu, Mitchell; Sobkin, Paul

    2016-01-01

    Local ablative therapy with stereotactic ablative radiotherapy may improve survival in oncogene‐addicted lung cancer patients with extracranial oligometastatic disease treated with targeted therapies. There is limited data on the use of radiofrequency ablation (RFA) in this same setting. We present...... a case of an anaplastic lymphoma kinase (ALK)‐positive lung cancer patient with hepatic oligometastatic progression who was successfully treated with both stereotactic ablative radiation and RFA while continuing with an ALK inhibitor....

  1. The proteomic signature of NPM/ALK reveals deregulation of multiple cellular pathways.

    Science.gov (United States)

    Lim, Megan S; Carlson, Mary L; Crockett, David K; Fillmore, G Chris; Abbott, David R; Elenitoba-Johnson, Olaotan F; Tripp, Sheryl R; Rassidakis, George Z; Medeiros, L Jeffrey; Szankasi, Philippe; Elenitoba-Johnson, Kojo S J

    2009-08-20

    Constitutive expression of the chimeric NPM/ALK fusion protein encoded by the t(2;5)(p32;q35) is a key oncogenic event in the pathogenesis of most anaplastic large cell lymphomas (ALCLs). The proteomic network alterations produced by this aberration remain largely uncharacterized. Using a mass spectrometry (MS)-driven approach to identify changes in protein expression caused by the NPM/ALK fusion, we identified diverse NPM/ALK-induced changes affecting cell proliferation, ribosome synthesis, survival, apoptosis evasion, angiogenesis, and cytoarchitectural organization. MS-based findings were confirmed using Western blotting and/or immunostaining of NPM/ALK-transfected cells and ALK-deregulated lymphomas. A subset of the proteins distinguished NPM/ALK-positive ALCLs from NPM/ALK-negative ALCLs and Hodgkin lymphoma. The multiple NPM/ALK-deregulated pathways identified by MS analysis also predicted novel biologic effects of NPM/ALK expression. In this regard, we showed loss of cell adhesion as a consequence of NPM/ALK expression in a kinase-dependent manner, and sensitivity of NPM/ALK-positive ALCLs to inhibition of the RAS, p42/44ERK, and FRAP/mTOR signaling pathways. These findings reveal that the NPM/ALK alteration affects diverse cellular pathways, and provide novel insights into NPM/ALK-positive ALCL pathobiology. Our studies carry important implications for the use of MS-driven approaches for the elucidation of neoplastic pathobiology, the identification of novel diagnostic biomarkers, and pathogenetically relevant therapeutic targets.

  2. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    de Kroon, Laurie M. G.; Narcisi, Roberto; Blaney Davidson, Esmeralda N.; Cleary, Mairéad A.; van Beuningen, Henk M.; Koevoet, Wendy J. L. M.; van Osch, Gerjo J. V. M.; van der Kraan, Peter M.

    2015-01-01

    Introduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor β (TGFβ) is crucial for inducing chondrogenic differentiation of BMSCs and is known to signal via Activin receptor-Like Kinase (ALK) receptors ALK5 and ALK1. Since the specific role of these two TGFβ receptors in chondrogenesis is unknown, we investigated whether ALK5 and ALK1 are expressed in BMSCs and whether both receptors are required for chondrogenic differentiation of BMSCs. Materials & Methods ALK5 and ALK1 gene expression in human BMSCs was determined with RT-qPCR. To induce chondrogenesis, human BMSCs were pellet-cultured in serum-free chondrogenic medium containing TGFβ1. Chondrogenesis was evaluated by aggrecan and collagen type IIα1 RT-qPCR analysis, and histological stainings of proteoglycans and collagen type II. To overexpress constitutively active (ca) receptors, BMSCs were transduced either with caALK5 or caALK1. Expression of ALK5 and ALK1 was downregulated by transducing BMSCs with shRNA against ALK5 or ALK1. Results ALK5 and ALK1 were expressed in in vitro-expanded as well as in pellet-cultured BMSCs from five donors, but mRNA levels of both TGFβ receptors did not clearly associate with chondrogenic induction. TGFβ increased ALK5 and decreased ALK1 gene expression in chondrogenically differentiating BMSC pellets. Neither caALK5 nor caALK1 overexpression induced cartilage matrix formation as efficient as that induced by TGFβ. Moreover, short hairpin-mediated downregulation of either ALK5 or ALK1 resulted in a strong inhibition of TGFβ-induced chondrogenesis. Conclusion ALK5 as well as ALK1 are required for TGFβ-induced chondrogenic differentiation of BMSCs, and TGFβ not only directly induces chondrogenesis, but also modulates ALK5 and ALK1 receptor signaling in BMSCs. These results imply that optimizing cartilage formation by

  3. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma.

    Science.gov (United States)

    Kim, Eun Kyung; Kim, Sewha

    2017-01-01

    Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  4. Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer.

    Science.gov (United States)

    Gainor, Justin F; Dardaei, Leila; Yoda, Satoshi; Friboulet, Luc; Leshchiner, Ignaty; Katayama, Ryohei; Dagogo-Jack, Ibiayi; Gadgeel, Shirish; Schultz, Katherine; Singh, Manrose; Chin, Emily; Parks, Melissa; Lee, Dana; DiCecca, Richard H; Lockerman, Elizabeth; Huynh, Tiffany; Logan, Jennifer; Ritterhouse, Lauren L; Le, Long P; Muniappan, Ashok; Digumarthy, Subba; Channick, Colleen; Keyes, Colleen; Getz, Gad; Dias-Santagata, Dora; Heist, Rebecca S; Lennerz, Jochen; Sequist, Lecia V; Benes, Cyril H; Iafrate, A John; Mino-Kenudson, Mari; Engelman, Jeffrey A; Shaw, Alice T

    2016-10-01

    Advanced, anaplastic lymphoma kinase (ALK)-positive lung cancer is currently treated with the first-generation ALK inhibitor crizotinib followed by more potent, second-generation ALK inhibitors (e.g., ceritinib and alectinib) upon progression. Second-generation inhibitors are generally effective even in the absence of crizotinib-resistant ALK mutations, likely reflecting incomplete inhibition of ALK by crizotinib in many cases. Herein, we analyzed 103 repeat biopsies from ALK-positive patients progressing on various ALK inhibitors. We find that each ALK inhibitor is associated with a distinct spectrum of ALK resistance mutations and that the frequency of one mutation, ALK(G1202R), increases significantly after treatment with second-generation agents. To investigate strategies to overcome resistance to second-generation ALK inhibitors, we examine the activity of the third-generation ALK inhibitor lorlatinib in a series of ceritinib-resistant, patient-derived cell lines, and observe that the presence of ALK resistance mutations is highly predictive for sensitivity to lorlatinib, whereas those cell lines without ALK mutations are resistant. Secondary ALK mutations are a common resistance mechanism to second-generation ALK inhibitors and predict for sensitivity to the third-generation ALK inhibitor lorlatinib. These findings highlight the importance of repeat biopsies and genotyping following disease progression on targeted therapies, particularly second-generation ALK inhibitors. Cancer Discov; 6(10); 1118-33. ©2016 AACRSee related commentary by Qiao and Lovly, p. 1084This article is highlighted in the In This Issue feature, p. 1069. ©2016 American Association for Cancer Research.

  5. An International Interpretation Study Using the ALK IHC Antibody D5F3 and a Sensitive Detection Kit Demonstrates High Concordance between ALK IHC and ALK FISH and between Evaluators

    NARCIS (Netherlands)

    Wynes, Murry W.; Sholl, Lynette M.; Dietel, Manfred; Schuuring, Ed; Tsao, Ming S.; Yatabe, Yasushi; Tubbs, Raymond R.; Hirsch, Fred R.

    2014-01-01

    Introduction: The goal of personalized medicine is to treat patients with a therapy predicted to be efficacious based on the molecular characteristics of the tumor, thereby sparing the patient futile or toxic therapy. Anaplastic lymphoma kinase (ALK) inhibitors are effective against ALK-positive non

  6. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth.

    Science.gov (United States)

    Hoareau-Aveilla, Coralie; Valentin, Thibaud; Daugrois, Camille; Quelen, Cathy; Mitou, Géraldine; Quentin, Samuel; Jia, Jinsong; Spicuglia, Salvatore; Ferrier, Pierre; Ceccon, Monica; Giuriato, Sylvie; Gambacorti-Passerini, Carlo; Brousset, Pierre; Lamant, Laurence; Meggetto, Fabienne

    2015-09-01

    The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(-) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation-mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies.

  7. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth

    Science.gov (United States)

    Hoareau-Aveilla, Coralie; Valentin, Thibaud; Daugrois, Camille; Quelen, Cathy; Mitou, Géraldine; Quentin, Samuel; Jia, Jinsong; Spicuglia, Salvatore; Ferrier, Pierre; Ceccon, Monica; Giuriato, Sylvie; Gambacorti-Passerini, Carlo; Brousset, Pierre; Lamant, Laurence; Meggetto, Fabienne

    2015-01-01

    The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(–) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation–mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies. PMID:26258416

  8. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK.

    Science.gov (United States)

    Fontana, Diletta; Ceccon, Monica; Gambacorti-Passerini, Carlo; Mologni, Luca

    2015-07-01

    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor involved in both solid and hematological tumors. About 80% of ALK-positive anaplastic large-cell lymphoma (ALCL) cases are characterized by the t(2;5)(p23;q35) translocation, encoding for the aberrant fusion protein nucleophosmin (NPM)-ALK, whereas 5% of non-small-cell lung cancer (NSCLC) patients carry the inv(2)(p21;p23) rearrangement, encoding for the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion. The ALK/c-MET/ROS inhibitor crizotinib successfully improved the treatment of ALK-driven diseases. However, several cases of resistance appeared in NSCLC patients, and ALK amino acid substitutions were identified as a leading cause of resistance to crizotinib. Second-generation ALK inhibitors have been developed in order to overcome crizotinib resistance. In this work, we profiled in vitro the activity of crizotinib, AP26113, ASP3026, alectinib, and ceritinib against six mutated forms of ALK associated with clinical resistance to crizotinib (C1156Y, L1196M, L1152R, G1202R, G1269A, and S1206Y) and provide a classification of mutants according to their level of sensitivity/resistance to the drugs. Since the biological activity of ALK mutations extends beyond the specific type of fusion, both NPM-ALK- and EML4-ALK-positive cellular models were used. Our data revealed that most mutants may be targeted by using different inhibitors. One relevant exception is represented by the G1202R substitution, which was highly resistant to all drugs (>10-fold increased IC50 compared to wild type) and may represent the most challenging mutation to overcome. These results provide a prediction of cross-resistance of known crizotinib-resistant mutations against all second-generation tyrosine kinase inhibitors (TKIs) clinically available, and therefore could be a useful tool to help clinicians in the management of crizotinib-resistance cases.

  9. Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3

    DEFF Research Database (Denmark)

    Marzec, Michal; Kasprzycka, Monika; Ptasznik, Andrzej;

    2005-01-01

    Aberrant expression of the ALK tyrosine kinase as a chimeric protein with nucleophosmin (NPM) and other partners plays a key role in malignant cell transformation of T-lymphocytes and other cells. Here we report that two small-molecule, structurally related, quinazoline-type compounds, WHI-131...... and WHI-154, directly inhibit enzymatic activity of NPM/ALK as demonstrated by in vitro kinase assays using a synthetic tyrosine-rich oligopeptide and the kinase itself as the substrates. The inhibition of NPM/ALK activity resulted in malignant T cells in suppression of their growth, induction...... of apoptosis and inhibition of tyrosine phosphorylation of STAT3, the key effector of the NPM/ALK-induced oncogenesis. We also show that the STAT3 tyrosine phosphorylation is mediated in the malignant T cells by NPM/ALK independently of Jak3 kinase as evidenced by the presence of STAT3 phosphorylation...

  10. Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor

    NARCIS (Netherlands)

    Debelenko, LV; Arthur, DC; Pack, SD; Helman, LJ; Schrump, DS; Tsokos, M

    2003-01-01

    Inflammatory myofibroblastic tumor (IMT) is a rare childhood neoplasm. The natural history of this disease is poorly understood. Recently chromosomal rearrangements involving the anaplastic lymphoma kinase (ALK) gene have been implicated in this tumor. We have studied a case of ALK-positive soft tis

  11. The ALK inhibitor ASP3026 eradicates NPM-ALK⁺ T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model.

    Science.gov (United States)

    George, Suraj Konnath; Vishwamitra, Deeksha; Manshouri, Roxsan; Shi, Ping; Amin, Hesham M

    2014-07-30

    NPM-ALK⁺ T-cell anaplastic large-cell lymphoma (ALCL) is an aggressive type of cancer. Standard treatment of NPM-ALK⁺ ALCL is CHOP polychemotherapy. Although patients initially respond favorably to CHOP, resistance, relapse, and death frequently occur. Recently, selective targeting of ALK has emerged as an alternative therapeutic strategy. ASP3026 is a second-generation ALK inhibitor that can overcome crizotinib resistance in non-small cell lung cancer, and is currently being evaluated in clinical trials of patients with ALK⁺ solid tumors. However, NPM-ALK⁺ ALCL patients are not included in these trials. We studied the effects of ASP3026 on NPM-ALK⁺ ALCL cell lines in vitro and on systemic lymphoma growth in vivo. ASP3026 decreased the viability, proliferation, and colony formation, as well as induced apoptotic cell death of NPM-ALK⁺ ALCL cells. In addition, ASP3026 significantly reduced the proliferation of 293T cells transfected with NPM-ALK mutants that are resistant to crizotinib and downregulated tyrosine phosphorylation of these mutants. Moreover, ASP3026 abrogated systemic NPM-ALK⁺ ALCL growth in mice. Importantly, the survival of ASP3026-treated mice was superior to that of control and CHOP-treated mice. Our data suggest that ASP3026 is an effective treatment for NPM-ALK⁺ ALCL, and support the enrollment of patients with this lymphoma in the ongoing clinical trials.

  12. Leukemic phase of anaplastic lymphoma kinase positive, anaplastic large cell lymphoma

    Directory of Open Access Journals (Sweden)

    Vijaya S Gadage

    2011-01-01

    Full Text Available Anaplastic large cell lymphoma (ALCL is a distinct type of CD30+ T/null-cell non-Hodgkin′s lymphoma that frequently involves nodal and extranodal sites. The presence of leukemic phase in ALCL is extremely rare and occurs exclusively with ALK1-positive ALCL. We describe two patients with ALK1-positive ALCL who developed a leukemic phase with rapid progression of the disease. Immunophenotypic pattern assessed on peripheral blood by flow cytometry revealed CD45, CD30, and CD25 positivity in both cases but NPM-ALK1 was expressed in only one case. Both patients developed leukemic phase as a terminal event of the disease and we share the immunophenotypic features of both cases.

  13. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency.

    Science.gov (United States)

    Ceccon, M; Merlo, M E Boggio; Mologni, L; Poggio, T; Varesio, L M; Menotti, M; Bombelli, S; Rigolio, R; Manazza, A D; Di Giacomo, F; Ambrogio, C; Giudici, G; Casati, C; Mastini, C; Compagno, M; Turner, S D; Gambacorti-Passerini, C; Chiarle, R; Voena, C

    2016-07-21

    Most of the anaplastic large-cell lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK (nucleophosmin-anaplastic lymphoma kinase). NPM-ALK-deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines, NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive because of heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or relocalization of NPM-ALK to the cytoplasm by NPM genetic knockout or knockdown caused ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) increased phosphorylation and cell death through the engagement of an ATM/Chk2- and γH2AX (phosphorylated H2A histone family member X)-mediated DNA-damage response. Remarkably, human NPM-ALK-amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A 'drug holiday' where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification.

  14. Inhibition of N-linked glycosylation impairs ALK phosphorylation and disrupts pro-survival signaling in neuroblastoma cell lines

    Directory of Open Access Journals (Sweden)

    Del Grosso Federica

    2011-12-01

    Full Text Available Abstract Background The Anaplastic Lymphoma Kinase (ALK is an orphan receptor tyrosine kinase, which undergoes post-translational N-linked glycosylation. The catalytic domain of ALK was originally identified in the t(2;5 translocation that produces the unglycosylated oncogenic protein NPM-ALK, which occurs in Anaplastic Large Cell Lymphoma (ALCL. Recently, both germline and somatic activating missense mutations of ALK have been identified in neuroblastoma (NB, a pediatric cancer arising from neural crest cells. Moreover, we previously reported that ALK expression is significantly upregulated in advanced/metastatic NB. We hypothesized that ALK function may depend on N-linked glycosylation and that disruption of this post-translational modification would impair ALK activation, regardless the presence of either gene mutations or overexpression. Methods We employed tunicamycin to inhibit N-linked glycosylation. The following ALK-positive NB cell lines were used: SH-SY5Y and KELLY (ALK mutation F1174L, UKF-NB3 (ALK mutation R1275Q and NB1 (ALK amplification. As a control, we used the NB cell lines LA1-5S and NB5 (no ALK expression, and the ALCL cell line SU-DHL1 (NPM-ALK. Results Tunicamycin treatment of ALK-positive NB cells resulted in a hypoglycosylated ALK band and in decreased amounts of mature full size receptor. Concomitantly, we observed a marked reduction of mature ALK phosphorylation. On the contrary, tunicamycin had no effects on NPM-ALK phosphorylation in SU-DHL1 cells. Moreover, phosphorylation levels of ALK downstream effectors (AKT, ERK1/2, STAT3 were clearly impaired only in ALK mutated/amplified NB cell lines, whereas no significant reduction was observed in both ALK-negative and NPM-ALK-positive cell lines. Furthermore, inhibition of N-linked glycosylation considerably impaired cell viability only of ALK mutated/amplified NB cells. Finally, the cleavage of the Poly-ADP-ribose-polymerase (PARP suggested that apoptotic pathways may be

  15. Efficiency of Crizotinib on an ALK-Positive Inflammatory Myofibroblastic Tumor of the Central Nervous System: A Case Report

    Science.gov (United States)

    Chennouf, Anas; Arslanian, Elizabeth; Roberge, David; Berthelet, France; Bojanowski, Michel; Bahary, Jean-Paul; Masucci, Laura; Belanger, Karl; Florescu, Marie

    2017-01-01

    Inflammatory myofibroblastic tumors (IMT) of the central nervous system (CNS) are rare entities that have a predilection for local recurrences. Approximately half of the inflammatory myofibroblastic tumors contain translocations that result in the over-expression of the anaplastic lymphoma kinase (ALK) gene. We hereby present the case of a patient diagnosed with a left parieto-occipital IMT that recurred after multiple surgeries and radiotherapy. Immuno-histochemical examination of the tumor demonstrated ALK overexpression and the presence of an ALK rearrangement observed in lung cancers. The patient was subsequently started on an ALK inhibitor. A response evaluation criteria in solid tumors (RECIST) partial response was observed by the seventh month of ALK inhibition and the tumor remained in control for 14 months. The current case reiterates the activity of ALK inhibitors within the CNS and suggests that radiotherapy may potentiate the permeability of ALK inhibitors in CNS tumors addicted to ALK signalling. PMID:28409069

  16. Clinicopathologic characteristics andtherapeutic responses ofChinese patients withnon-small cell lung cancer who harbor an anaplastic lymphoma kinase rearrangement

    Institute of Scientific and Technical Information of China (English)

    ShaFu; HaiYunWang; FangWang; MaYanHuang; LingDeng; XiaoZhang; ZuLuYe; JianYong Shao

    2015-01-01

    Introduction:The rearrangement of the anaplastic lymphoma kinase (ALK) gene accounts for approximately 1%–6%of lung adenocarcinoma cases and deifnes a molecular subgroup of tumors characterized by clinical sensitivity toALK inhibitors such as crizotinib. This study aimed to identify the relationship betweenALK rearrangement and the clinico‑pathologic characteristics of non‑small cell lung cancer (NSCLC) and to analyze the therapeutic responses of crizotinib and conventional chemotherapy toALK rearrangement in NSCLC patients. Methods:A total of 487 lung cancer patients who underwent testing forALK rearrangement in our department were included in this study.ALK rearrangement was examined by using lfuorescence insitu hybridization (FISH) assay. Results:Among the 487 patients, 44 (9.0%) were diagnosed withALK rearrangement by using FISH assay. In 123 patients with adenocarcinoma who were non‑smokers and of a young age (≤58years old), the frequency ofALK rearrangement was 20.3% (25/123). Short overall survival (OS) was associated with non‑adenocarcinoma tumor type (P=0.006), poorly differentiated tumors (P=0.001), advanced‑stage tumors (P<0.001), smoking history (P=0.008), and wild‑type epidermal growth factor receptor (EGFR) (P=0.008). Moreover, patients with poorly differentiated and advanced‑stage tumors had a shorter time to cancer progression compared with those with well differentiated (P=0.023) and early‑stage tumors (P=0.001), respectively. Conclusions:ALK‑rearranged NSCLC tends to occur in younger individuals who are either non‑smokers or light smokers with adenocarcinoma. Patients withALK rearrangement might beneift fromALK inhibitor therapy.

  17. Identification of anaplastic lymphoma kinase break points and oncogenic mutation profiles in acral/mucosal melanomas.

    Science.gov (United States)

    Niu, Hai-Tao; Zhou, Qi-Ming; Wang, Fang; Shao, Qiong; Guan, Yuan-Xiang; Wen, Xi-Zhi; Chen, Li-Zhen; Feng, Qi-Sheng; Li, Wei; Zeng, Yi-Xin; Zhang, Xiao-Shi

    2013-09-01

    Acral and mucosal melanomas, the two most common subtypes of melanoma in China, exhibit different genetic alterations and biologic behavior compared with other subtypes of melanomas. The purpose of this study was to identify the genetic alterations in patients with acral or mucosal melanomas in southern China. Fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) analysis, polymerase chain reaction (PCR), and quantitative real-time reverse transcriptase PCR (qRT-PCR) were used to assess the anaplastic lymphoma kinase (ALK) break points. Furthermore, a mass spectrometry-based genotyping platform was used to analyze 30 acral melanomas and 28 mucosal melanomas to profile 238 known somatic mutations in 19 oncogenes. ALK break points were identified in four acral cases (6.9%). Eight (13.8%) cases harbored BRAF mutations, six (10.3%) had NRAS mutations, four (6.9%) had KIT mutations, two (3.5%) had EGFR mutations, two (3.5%) had KRAS mutations, two (3.5%) had MET mutations, one (1.7%) had an HRAS mutation, and one (1.7%) had a PIK3CA mutation. Two cases exhibited co-occurring mutations, and one case with a BRAF mutation had a translocation in ALK. This study represents a comprehensive and concurrent analysis of the major recurrent oncogenic mutations involved in melanoma cases from southern China. These data have implications for both clinical trial designs and therapeutic strategies.

  18. French multicentric validation of ALK rearrangement diagnostic in 547 lung adenocarcinomas.

    Science.gov (United States)

    Lantuejoul, Sylvie; Rouquette, Isabelle; Blons, Hélène; Le Stang, Nolwenn; Ilie, Marius; Begueret, Hugues; Grégoire, Valerie; Hofman, Paul; Gros, Audrey; Garcia, Stephane; Monhoven, Nathalie; Devouassoux-Shisheboran, Mojgan; Mansuet-Lupo, Audrey; Thivolet, Françoise; Antoine, Martine; Vignaud, Jean-Michel; Penault-Llorca, Frederique; Galateau-Sallé, Françoise; McLeer-Florin, Anne

    2015-07-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements in lung adenocarcinoma result in kinase activity targetable by crizotinib. Although fluorescence in situ hybridisation (FISH) is the reference diagnostic technique, immunohistochemistry (IHC) could be useful for pre-screening. Diagnostic yields of ALK IHC, FISH and quantitative reverse transcriptase PCR performed in 14 French pathology/molecular genetics platforms were compared. 547 lung adenocarcinoma specimens were analysed using 5A4 and D5F3 antibodies, two break-apart FISH probes and TaqMan kits. Clinicopathological data were recorded. 140 tumours were ALK rearranged (FISH with ≥15% of rearranged cells) and 400 were ALK FISH negative (20%. Variants were undetected in 36% of ALK tumours. Discordances predominated with FISH ranging from 10% to 20% of rearranged cells and were centre dependent. IHC remains a reliable pre-screening method for ALK rearrangement detection. Copyright ©ERS 2015.

  19. Crizotinib-resistant NPM-ALK mutants confer differential sensitivity to unrelated Alk inhibitors.

    Science.gov (United States)

    Ceccon, Monica; Mologni, Luca; Bisson, William; Scapozza, Leonardo; Gambacorti-Passerini, Carlo

    2013-02-01

    The dual ALK/MET inhibitor crizotinib was recently approved for the treatment of metastatic and late-stage ALK+ NSCLC, and is currently in clinical trial for other ALK-related diseases. As predicted after other tyrosine kinase inhibitors' clinical experience, the first mutations that confer resistance to crizotinib have been described in patients with non-small cell lung cancer (NSCLC) and in one patient inflammatory myofibroblastic tumor (IMT). Here, we focused our attention on the anaplastic large cell lymphoma (ALCL), where the oncogenic fusion protein NPM-ALK, responsible for 70% to 80% of cases, represents an ideal crizotinib target. We selected and characterized 2 human NPM-ALK+ ALCL cell lines, KARPAS-299 and SUP-M2, able to survive and proliferate at different crizotinib concentrations. Sequencing of ALK kinase domain revealed that a single mutation became predominant at high crizotinib doses in each cell line, namely L1196Q and I1171N in Karpas-299 and SUP-M2 cells, respectively. These mutations also conferred resistance to crizotinib in Ba/F3 cells expressing human NPM-ALK. The resistant cell populations, as well as mutated Ba/F3 cells, were characterized for sensitivity to two additional ALK inhibitors: the dual ALK/EGFR inhibitor AP26113 and NVP-TAE684. While L1196Q-positive cell lines were sensitive to both inhibitors, cells carrying I1171N substitution showed cross-resistance to all ALK inhibitors tested. This study provides potentially relevant information for the management of patients with ALCL that may relapse after crizotinib treatment.

  20. Composite ALK-negative anaplastic large cell lymphoma and small lymphocytic lymphoma involving the right inguinal lymph node.

    Science.gov (United States)

    Persad, Paul; Pang, Changlee S

    2014-02-01

    Anaplastic large cell lymphoma and small lymphocytic lymphoma are two lymphoid malignancies with completely distinct morphologies and natural histories. We present a rare case of composite anaplastic large cell lymphoma and small lymphocytic lymphoma in an inguinal lymph node of an otherwise healthy 47-year-old male patient. Immunohistochemical and molecular studies identified the two populations clearly. Their separation is imperative as anaplastic large cell lymphoma can be an aggressive neoplasm and easily overlooked in cases of small lymphocytic lymphoma with a small population of anaplastic large cell lymphoma cells.

  1. The molecular detection and clinical significance of ALK rearrangement in selected advanced non-small cell lung cancer: ALK expression provides insights into ALK targeted therapy.

    Directory of Open Access Journals (Sweden)

    Ning-Ning Zhang

    Full Text Available BACKGROUND: This study aimed to elucidate clinical significance of anaplastic lymphoma kinase (ALK rearrangement in selected advanced non-small cell lung cancer (NSCLC, to compare the application of different ALK detection methods, and especially evaluate a possible association between ALK expression and clinical outcomes in crizotinib-treated patients. METHODS: ALK status was assessed by fluorescent in situ hybridization (FISH, immunohistochemistry (IHC and quantitative RT-PCR (qRT-PCR in 173 selected advanced NSCLC patients. Clinicopathologic data, genotype status and survival outcomes were analyzed. Moreover, the association of ALK expression with clinical outcomes was evaluated in ALK FISH-positive crizotinib-treated patients including two patients with concurrent epidermal growth factor receptor (EGFR mutation. RESULTS: The positivity detection rate of ALK rearrangement by FISH, IHC and qRT-PCR was 35.5% (59/166, 35.7% (61/171, and 27.9% (34/122, respectively. ALK rearrangement was observed predominantly in young patients, never or light smokers, and adenocarcinomas, especially with signet ring cell features and poor differentiation. Median progression-free survival (PFS of crizotinib-treated patients was 7.6 months. The overall survival (OS of these patients was longer compared with that of crizotinib-naive or wild-type cohorts, but there was no significant difference in OS compared with patients with EGFR mutation. ALK expression did not associate with PFS; but, when ALK expression was analyzed as a dichotomous variable, moderate and strong ALK expression had a decreased risk of death (P = 0.026. The two patients with concomitant EGFR and ALK alterations showed difference in ALK expression, response to EGFR and ALK inhibitors, and overall survival. CONCLUSIONS: Selective enrichment according to clinicopathologic features in NSCLC patients could highly improve the positivity detection rate of ALK rearrangement for ALK-targeted therapy

  2. Tyrosine phosphorylation in human lymphomas

    NARCIS (Netherlands)

    Haralambieva, E; Jones, M.; Roncador, GM; Cerroni, L; Lamant, L; Ott, G; Rosenwald, A; Sherman, C; Thorner, P; Kusec, R; Wood, KM; Campo, E; Falini, B; Ramsay, A; Marafioti, T; Stein, H; Kluin, PM; Pulford, K; Mason, DY

    2002-01-01

    In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated

  3. Diagnosis of anaplastic lymphoma kinase rearrangement in cytological samples through a fluorescence in situ hybridization-based assay: Cytological smears versus cell blocks.

    Science.gov (United States)

    Zito Marino, Federica; Rossi, Giulio; Brunelli, Matteo; Malzone, Maria Gabriella; Liguori, Giuseppina; Bogina, Giuseppe; Morabito, Alessandro; Rocco, Gaetano; Franco, Renato; Botti, Gerardo

    2017-05-01

    Anaplastic lymphoma kinase (ALK) status analysis of lung cytological specimens should be successfully encouraged in routine practice because biopsy specimens are not always available. To date, the US Food and Drug Administration has approved both fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) as diagnostic tests for identifying ALK-positive patients eligible for treatment with crizotinib. Although ALK IHC is an optimal diagnostic tool, FISH becomes mandatory in equivocal cases. ALK FISH of paraffin-embedded tissue material is still the gold standard, whereas the cytological specimen assay has not yet been completely standardized. Many controversial data have been reported on the adequacy of cytology cell blocks (CBs) versus conventional smears for FISH testing. This review discusses some critical issues related to ALK FISH of cytological samples, including the triaging of collected specimens to optimize the material, the use of CBs versus conventional smears, and alternative methods for an ALK rearrangement diagnosis. Conventional smears have the advantages of an immediate evaluation, no probe tissue-related artifactual loss, no fixation-related alterations, and usually sufficient material for an analytic preparation. On the other hand, CBs have several advantages, including the appropriate conservation of the tissue architecture, an absence of problems related to cell overlapping, and the ability to evaluate neoplastic cells in a dark field. Cancer Cytopathol 2017;125:303-312. © 2017 American Cancer Society. © 2017 American Cancer Society.

  4. EML4-ALK融合基因阳性肺腺癌合并淋巴瘤1例并文献复习%A Case Report:an EML4-ALK Positive Lung Adenocarcinoma Diagnosed with Lymphoma Previously

    Institute of Scientific and Technical Information of China (English)

    刘丽; 衡伟

    2015-01-01

    近年来随着分子生物学研究的不断深入,靶向治疗成为当前肺癌治疗的趋势。目前肺癌个体化的最佳治疗效果日益受到重视,棘皮动物微管相关蛋白4-间变型淋巴瘤激酶(echinoderm microtubule associated protein like 4 anaplastic lymphoma kinase, EML4-ALK)融合基因作为新兴生物标记物是当前肺癌治疗领域研究热点。与此同时,随着抗肿瘤治疗水平的不断提高,生存期明显延长,发生多原发癌(multiple primary carcinomas, MPC)的机会增多。EML4-ALK融合基因阳性的肺腺癌合并淋巴瘤发生于同一患者文献报道罕见。本文报道1例ALK融合基因阳性的非小细胞肺癌(non-small cell lung cancer, NSCLC)合并淋巴瘤病例,同时对异时性肺癌合并淋巴瘤的文献进行复习。%In recent years, with the deepening of the research of molecular biology, targeted therapy has become one of the trend of lung cancer treatment. hTe individualized treatment of lung cancer is attached great importance at present. Echinoderm microtubule associated protein like 4 anaplastic lymphoma kinase (EML4-ALK) as a new biological marker is a hot topic in the ifeld of lung cancer treatment. Meanwhile, with the improvement of anticancer treatment and survival, the inci-dence of multiple primary carcinomas (MPC) has become increasingly. But the report that malignant lymphoma complicated with lung adenocarcinoma harboring EML4-ALK fusion gene in one individual is rare. Here, we report an EML4-ALK positive non-small cell lung cancer (NSCLC) in a patient previously diagnosed with T cell lymphoma and review literature on meta-chronous lung cancer complicating with lymphoma.

  5. Malignant transformation of mature T cells after gammaretrovirus mediated transfer of nucleophosmin-anaplastic lymphoma kinase oncogene

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    2015-01-01

    Full Text Available Background: Gene therapy has been in use to cure hereditary and acquired diseases by incorporating the desired gene into the cells with the help of gammaretroviral vectors. Despite the success of this therapy in X-linked severe combined immunodeficiency syndrome, few patients developed leukemia as a major adverse event due to retroviral insertional mutagenesis within stem cells. In experimental animals also, retroviral-mediated gene transfer technique resulted in the development of leukemia. On the other hand, evidence suggests that mature T cells (TC are relatively resistant to transformation even after retroviral-mediated transfer of potent oncogenes Tcl1, ΔTrkA and LMO2 with no reported side effects yet. Aims: To further address the safety issue for TC use in gene therapy, this study investigated susceptibility of mature polyclonal TC to malignant transformation by the retroviral-mediated transfer of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK oncogene. Materials and Methods: Wild-type mature TC, isolated from C57BL/6 donor mice (genetic background Ly5.1 were transduced with gamma-retroviral vectors encoding the potent TC oncogene NPM-ALK or the control vector enhanced green fluorescent protein eGFP. The cells were then transplanted into RAG-1 deficient recipient mice (genetic background Ly5.2. Results: Two out of five mice from NPM-ALK oncogene group developed leukemia/lymphoma after latency periods (153 and 250 days, respectively. None of the mice from the control group developed any malignancy throughout the observational period. Conclusion: Mature polyclonal TC are relatively susceptible to malignant transformation after gamma-retroviral mediated transfer of NPM-ALK oncogene; hence safety of TC use in gene therapy should be further investigated to avoid the possible side-effect of development of leukemia/lymphoma.

  6. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer

    Science.gov (United States)

    Kelly, Lindsey M.; Barila, Guillermo; Liu, Pengyuan; Evdokimova, Viktoria N.; Trivedi, Sumita; Panebianco, Federica; Gandhi, Manoj; Carty, Sally E.; Hodak, Steven P.; Luo, Jianhua; Dacic, Sanja; Yu, Yan P.; Nikiforova, Marina N.; Ferris, Robert L.; Altschuler, Daniel L.; Nikiforov, Yuri E.

    2014-01-01

    Thyroid cancer is a common endocrine malignancy that encompasses well-differentiated as well as dedifferentiated cancer types. The latter tumors have high mortality and lack effective therapies. Using a paired-end RNA-sequencing approach, we report the discovery of rearrangements involving the anaplastic lymphoma kinase (ALK) gene in thyroid cancer. The most common of these involves a fusion between ALK and the striatin (STRN) gene, which is the result of a complex rearrangement involving the short arm of chromosome 2. STRN-ALK leads to constitutive activation of ALK kinase via dimerization mediated by the coiled-coil domain of STRN and to a kinase-dependent, thyroid-stimulating hormone–independent proliferation of thyroid cells. Moreover, expression of STRN-ALK transforms cells in vitro and induces tumor formation in nude mice. The kinase activity of STRN-ALK and the ALK-induced cell growth can be blocked by the ALK inhibitors crizotinib and TAE684. In addition to well-differentiated papillary cancer, STRN-ALK was found with a higher prevalence in poorly differentiated and anaplastic thyroid cancers, and it did not overlap with other known driver mutations in these tumors. Our data demonstrate that STRN-ALK fusion occurs in a subset of patients with highly aggressive types of thyroid cancer and provide initial evidence suggesting that it may represent a therapeutic target for these patients. PMID:24613930

  7. ALK inhibitors, a pharmaceutical perspective

    Directory of Open Access Journals (Sweden)

    Arturo eGalvani

    2012-02-01

    Full Text Available In 2007, the ALK tyrosine kinase, already known to be translocated and activated in Anaplastic Large Cell Lymphoma, and a few other rare cancers, was described as a potential therapeutic target for a subset of non small-cell lung cancer (NSCLC patients. Clinical proof of concept, culminating in the recent approval by the FDA of the Pfizer drug Xalkori (crizotinib, formerly known as PF-02341066 followed in record time. The drug was approved together with a companion diagnostic, the Vysis ALK Break Apart FISH Probe Kit (Abbott Molecular, Inc. for detection of eligible patients. This remarkable example of the coming of age of personalized medicine in cancer therapy is hopefully only an auspice of things to come in this rapidly developing field. Perhaps unsurprisingly, however, the appearance of clinical acquired resistance to crizotinib has already been observed early on in clinical testing, with the identification of several ALK secondary point mutations which diminish drug efficacy, and which open the way for development of second-generation inhibitors. It is also emerging that acquired resistance to crizotinib may also occur through ALK-independent mechanisms, which still need to be elucidated in detail.

  8. Fluorescence in situ hybridization and immunohistochemistry as diagnostic methods for ALK positive non-small cell lung cancer patients.

    Directory of Open Access Journals (Sweden)

    Pablo Martinez

    Full Text Available BACKGROUND: Anaplastic Lymphoma Kinase (ALK positivity represents a novel molecular target in a subset of Non-Small Cell Lung Cancers (NSCLC. We explore Fluorescence in situ Hybridization (FISH and Immunohistochemistry (IHC as diagnostic methods for ALK positive patients and to describe its prevalence and outcomes in a population of NSCLC patients. METHODS: NSCLC patients previously screened for Epidermal Growth Factor Receptor (EGFR at our institution were selected. ALK positive patients were identified by FISH and the value of IHC (D5F3 was explored. RESULTS: ninety-nine patients were identified. Median age was 61.5 years (range 35-83, all were caucasians, eighty percent were adenocarcinomas, fifty-one percent were male and thirty-eight percent were current smokers. Seven (7.1% patients were ALK positive by FISH, thirteen (13.1% were EGFR mutant, and 65 (65.6% were negative/Wild Type (WT for both ALK and EGFR. ALK positivity and EGFR mutations were mutually exclusive. ALK positive patients tend to be younger than EGFR mutated or wt patients. ALK positive patients were predominantly never smokers (71.4% and adenocarcinoma (71.4%. ALK positive and EGFR mutant patients have a better outcome than negative/WT. All patients with ALK FISH negative tumours were negative for ALK IHC. Out of 6 patients positive for ALK FISH with more tissue available, 5 were positive for ALK IHC and 1 negative. CONCLUSIONS: ALK positive patients represent 7.1% of a population of selected NSCLC. ALK positive patients have different clinical features and a better outcome than EGFR WT and ALK negative patients. IHC is a promising method for detecting ALK positive NSCLC patients.

  9. The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling.

    Science.gov (United States)

    Staber, Philipp B; Vesely, Paul; Haq, Naznin; Ott, Rene G; Funato, Kotaro; Bambach, Isabella; Fuchs, Claudia; Schauer, Silvia; Linkesch, Werner; Hrzenjak, Andelko; Dirks, Wilhelm G; Sexl, Veronika; Bergler, Helmut; Kadin, Marshall E; Sternberg, David W; Kenner, Lukas; Hoefler, Gerald

    2007-11-01

    Anaplastic large cell lymphomas (ALCLs) are highly proliferating tumors that commonly express the AP-1 transcription factor JunB. ALK fusions occur in approximately 50% of ALCLs, and among these, 80% have the t(2;5) translocation with NPM-ALK expression. We report greater activity of JunB in NPM-ALK-positive than in NPM-ALK-negative ALCLs. Specific knockdown of JUNB mRNA using small interfering RNA and small hairpin RNA in NPM-ALK-expressing cells decreases cellular proliferation as evidenced by a reduced cell count in the G2/M phase of the cell cycle. Expression of NPM-ALK results in ERK1/2 activation and transcriptional up-regulation of JUNB. Both NPM-ALK-positive and -negative ALCL tumors demonstrate active ERK1/2 signaling. In contrast to NPM-ALK-negative ALCL, the mTOR pathway is active in NPM-ALK-positive lymphomas. Pharmacological inhibition of mTOR in NPM-ALK-positive cells down-regulates JunB protein levels by shifting JUNB mRNA translation from large polysomes to monosomes and ribonucleic particles (RNPs), and decreases cellular proliferation. Thus, JunB is a critical target of mTOR and is translationally regulated in NPM-ALK-positive lymphomas. This is the first study demonstrating translational control of AP-1 transcription factors in human neoplasia. In conjunction with NPM-ALK, JunB enhances cell cycle progression and may therefore represent a therapeutic target.

  10. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only.

    Directory of Open Access Journals (Sweden)

    Yuki Togashi

    Full Text Available The promising results of anaplastic lymphoma kinase (ALK inhibitors have changed the significance of ALK fusions in several types of cancer. These fusions are no longer mere research targets or diagnostic markers, but they are now directly linked to the therapeutic benefit of patients. However, most available tumor tissues in clinical settings are formalin-fixed and paraffin-embedded (FFPE, and this significantly limits detailed genetic studies in many clinical cases. Although recent technical improvements have allowed the analysis of some known mutations in FFPE tissues, identifying unknown fusion genes by using only FFPE tissues remains difficult. We developed a 5'-rapid amplification of cDNA ends-based system optimized for FFPE tissues and evaluated this system on a lung cancer tissue with ALK rearrangement and without the 2 known ALK fusions EML4-ALK and KIF5B-ALK. With this system, we successfully identified a novel ALK fusion, KLC1-ALK. The result was confirmed by reverse transcription-polymerase chain reaction and fluorescence in situ hybridization. Then, we synthesized the putative full-length cDNA of KLC1-ALK and demonstrated the transforming potential of the fusion kinase with assays using mouse 3T3 cells. To the best of our knowledge, KLC1-ALK is the first novel oncogenic fusion identified using only FFPE tissues. This finding will broaden the potential value of archival FFPE tissues and provide further biological and clinical insights into ALK-positive lung cancer.

  11. Detection of Echinoderm Microtubule Associated Protein Like 4-Anaplastic Lymphoma Kinase Fusion Genes in Non-small Cell Lung Cancer Clinical Samples by a Real-time Quantitative Reverse Transcription Polymerase Chain Reaction Method.

    Science.gov (United States)

    Zhao, Jing; Zhao, Jin-Yin; Chen, Zhi-Xia; Zhong, Wei; Li, Long-Yun; Liu, Li-Cheng; Hu, Xiao-Xu; Chen, Wei-Jun; Wang, Meng-Zhao

    2016-12-20

    Objective To establish a real-time quantitative reverse transcription polymerase chain reaction assay (qRT-PCR) for the rapid, sensitive, and specific detection of echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) fusion genes in non-small cell lung cancer. Methods The specific primers for the four variants of EML4-ALK fusion genes (V1, V2, V3a, and V3b) and Taqman fluorescence probes for the detection of the target sequences were carefully designed by the Primer Premier 5.0 software. Then, using pseudovirus containing EML4-ALK fusion genes variants (V1, V2, V3a, and V3b) as the study objects, we further analyzed the lower limit, sensitivity, and specificity of this method. Finally, 50 clinical samples, including 3 ALK-fluorescence in situ hybridization (FISH) positive specimens, were collected and used to detect EML4-ALK fusion genes using this method. Results The lower limit of this method for the detection of EML4-ALK fusion genes was 10 copies/μl if no interference of background RNA existed. Regarding the method's sensitivity, the detection resolution was as high as 1% and 0.5% in the background of 500 and 5000 copies/μl wild-type ALK gene, respectively. Regarding the method's specificity, no non-specific amplification was found when it was used to detect EML4-ALK fusion genes in leukocyte and plasma RNA samples from healthy volunteers. Among the 50 clinical samples, 47 ALK-FISH negative samples were also negative. Among 3 ALK-FISH positive samples, 2 cases were detected positive using this method, but another was not detected because of the failure of RNA extraction. Conclusion The proposed qRT-PCR assay for the detection of EML4-ALK fusion genes is rapid, simple, sensitive, and specific, which is deserved to be validated and widely used in clinical settings.

  12. Incidence and patterns of ALK FISH abnormalities seen in a large unselected series of lung carcinomas

    Directory of Open Access Journals (Sweden)

    Dai Zunyan

    2012-12-01

    Full Text Available Abstract Background Anaplastic lymphoma receptor tyrosine kinase (ALK gene rearrangements have been reported in 2-13% of patients with non-small cell lung cancer (NSCLC. Patients with ALK rearrangements do not respond to EGFR-specific tyrosine kinase inhibitors (TKIs; however, they do benefit from small molecule inhibitors targeting ALK. Results In this study, fluorescence in situ hybridization (FISH using a break-apart probe for the ALK gene was performed on formalin fixed paraffin-embedded tissue to determine the incidence of ALK rearrangements and hybridization patterns in a large unselected cohort of 1387 patients with a referred diagnosis of non-small cell lung cancer (1011 of these patients had a histologic diagnosis of adenocarcinoma. The abnormal FISH signal patterns varied from a single split signal to complex patterns. Among 49 abnormal samples (49/1387, 3.5%, 32 had 1 to 3 split signals. Fifteen samples had deletions of the green 5′ end of the ALK signal, and 1 of these 15 samples showed amplification of the orange 3′ end of the ALK signal. Two patients showed a deletion of the 3′ALK signal. Thirty eight of these 49 samples (38/1011, 3.7% were among the 1011 patients with confirmed adenocarcinoma. Five of 8 patients with ALK rearrangements detected by FISH were confirmed to have EML4-ALK fusions by multiplex RT-PCR. Among the 45 ALK-rearranged samples tested, only 1 EGFR mutation (T790M was detected. Two KRAS mutations were detected among 24 ALK-rearranged samples tested. Conclusions In a large unselected series, the frequency of ALK gene rearrangement detected by FISH was approximately 3.5% of lung carcinoma, and 3.7% of patients with lung adenocarcinoma, with variant signal patterns frequently detected. Rare cases with coexisting KRAS and EGFR mutations were seen.

  13. A case of tonsillar anaplastic large cell lymphoma-anaplastic lymphoma kinase negative: An unusual site of involvement with review of literature

    Directory of Open Access Journals (Sweden)

    Umesh Das

    2014-01-01

    Full Text Available We present this unusual case of the clinical importance of a 50-year-old male patient who presented with foreign body sensation in the throat and halitosis of 20 days duration. On examination, there were no palpable lymph nodes and oral cavity revealed an ulcero proliferative growth over the right tonsil. Computed tomography of the paranasal sinuses and neck revealed a heterogeneously enhancing mass involving the right tonsil measuring 3.8 cm × 3 cm. Biopsy of the tonsillar mass was suggestive of anaplastic large cell lymphoma (ALCL with neoplastic large cells positive for CD30, epithelial membrane antigen and CD3 and negative for Tdt, CD56, anaplastic lymphoma kinase (ALK and cytokeratin. A diagnosis of ALK negative ALCL Stage IA was made and the patient was started on chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone every 3 weeks. He received six cycles of chemotherapy followed by 33 gray involved region radiotherapy and reassessment showed total regression of the tonsillar lesion. The patient is in complete remission and now under follow-up for the last 2 years

  14. Identification of multiple SNT-binding sites on NPM-ALK oncoprotein and their involvement in cell transformation.

    Science.gov (United States)

    Chikamori, M; Fujimoto, J; Tokai-Nishizumi, N; Yamamoto, T

    2007-05-01

    The t(2;5) chromosomal translocation occurs in anaplastic large-cell lymphoma arising from activated T lymphocytes. This genomic rearrangement generates the nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) oncoprotein that is a chimeric protein consisting of parts of the nuclear protein NPM and ALK receptor protein-tyrosine kinase. We used yeast two-hybrid screening to identify an adaptor protein Suc1-associated neurotrophic factor-induced tyrosine-phosphorylated target (SNT)-2 as a new partner that interacted with the cytoplasmic domain of ALK. Immunoprecipitation assay revealed that SNT-1 and SNT-2 interacted with NPM-ALK and kinase-negative NPM-ALK mutant. Y156, Y567 and a 19-amino-acid sequence (aa 631-649) of NPM-ALK were essential for this interaction. The interaction through Y156 and Y567 was dependent on phosphorylation of these tyrosines, whereas the interaction through the 19-amino-acid sequence was independent of phosphorylation. NPM-ALK mutant protein mutated at these three binding sites showed significantly reduced transforming activity. This transformation-defective NPM-ALK mutant still interacted with signal transducing proteins such as phospholipase C-gamma and phosphatidylinositol 3-kinase, which were previously reported to be relevant to NPM-ALK-dependent tumorigenesis. These observations indicate that the three SNT-binding sites of NPM-ALK are important for its transforming activity. This raises a possibility that SNT family proteins play significant roles in cellular transformation triggered by NPM-ALK, which though remains to be verified.

  15. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.

    Science.gov (United States)

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-11-24

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.

  16. Rapamycin reverses NPM-ALK-induced glucocorticoid resistance in lymphoid tumor cells by inhibiting mTOR signaling pathway, enhancing G1 cell cycle arrest and apoptosis.

    Science.gov (United States)

    Gu, L; Gao, J; Li, Q; Zhu, Y P; Jia, C S; Fu, R Y; Chen, Y; Liao, Q K; Ma, Z

    2008-11-01

    The anaplastic lymphoma kinase (ALK) is an oncogene product involved in hematopoietic and non-hematopoietic malignancies. Recent studies have demonstrated that nucleophosmin (NPM)-ALK, originated from the fusion of NPM and ALK genes, causes cell transformation through diverse mechanisms. Here, we show a novel mechanism by which NPM-ALK transforms lymphoid tumor cells to become resistant to glucocorticoid (GC) or dexamethasone (Dex) treatment. Transformed BaF3 cells by NPM-ALK were much more resistant to Dex compared with their parental cells, and concurrently had a constitutive activation of mammalian target of rapamycin (mTOR) signaling, as evidenced by hyperphosphorylation of its downstream effectors, p70 S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The mTOR inhibitor rapamycin suppressed activation of p70S6K in BaF3/NPM-ALK cells and reversed GC resistance by synergistically inhibiting mTOR signaling pathway, enhancing cell cycle arrest at G(1) phase and promoting apoptotic cell death. In conclusion, our data indicate that the ALK fusion kinase, NPM-ALK, induces GC resistance by activating mTOR signaling, and addition of mTOR inhibitors to the chemotherapeutic regimen of ALK+ lymphomas may improve the prognosis.

  17. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ichinose, Junji [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nakajima, Jun [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nagase, Takahide; Ohishi, Nobuya [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Takai, Daiya, E-mail: dtakai-ind@umin.ac.jp [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  18. Case report: a unique pediatric case of a primary CD8 expressing ALK-1 positive anaplastic large cell lymphoma of skeletal muscle

    Directory of Open Access Journals (Sweden)

    Gaiser Timo

    2012-04-01

    Full Text Available Abstract Primary involvement of skeletal muscle is a very rare event in ALK-1 positive anaplastic large cell lymphoma (ALCL. We describe a case of a 10-year old boy presenting with a three week history of pain and a palpable firm swelling at the dorsal aspect of the left thigh. Histological examination of the lesion revealed a tumoral and diffuse polymorphic infiltration of the muscle by large lymphoid cells. Tumor cells displayed eccentric, lobulated "horse shoe" or "kidney-shape" nuclei. The cells showed immunohistochemical positivity for CD30, ALK-1, CD2, CD3, CD7, CD8, and Perforin. Fluorescence in situ hybridization analysis revealed a characteristic rearrangement of the ALK-1 gene in 2p23 leading to the diagnosis of ALK-1 positive ALCL. Chemotherapy according to the ALCL-99-NHL-BFM protocol was initiated and resulted in a complete remission after two cycles. This case illustrates the unusual presentation of a pediatric ALCL in soft tissue with a good response to chemotherapy.

  19. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression

    Directory of Open Access Journals (Sweden)

    Zhang Xuchao

    2010-07-01

    Full Text Available Abstract Background The anaplastic lymphoma kinase (ALK gene is frequently involved in translocations that lead to gene fusions in a variety of human malignancies, including lymphoma and lung cancer. Fusion partners of ALK include NPM, EML4, TPM3, ATIC, TFG, CARS, and CLTC. Characterization of ALK fusion patterns and their resulting clinicopathological profiles could be of great benefit in better understanding the biology of lung cancer. Results RACE-coupled PCR sequencing was used to assess ALK fusions in a cohort of 103 non-small cell lung carcinoma (NSCLC patients. Within this cohort, the EML4-ALK fusion gene was identified in 12 tumors (11.6%. Further analysis revealed that EML4-ALK was present at a frequency of 16.13% (10/62 in patients with adenocarcinomas, 19.23% (10/52 in never-smokers, and 42.80% (9/21 in patients with adenocarcinomas lacking EGFR and KRAS mutations. The EML4-ALK fusion was associated with non-smokers (P = 0.03, younger age of onset (P = 0.03, and adenocarcinomas without EGFR/KRAS mutations (P = 0.04. A trend towards improved survival was observed for patients with the EML4-ALK fusion, although it was not statistically significant (P = 0.20. Concurrent deletion in EGFR exon 19 and fusion of EML4-ALK was identified for the first time in a Chinese female patient with an adenocarcinoma. Analysis of ALK expression revealed that ALK mRNA levels were higher in tumors positive for the EML-ALK fusion than in negative tumors (normalized intensity of 21.99 vs. 0.45, respectively; P = 0.0018. However, expression of EML4 did not differ between the groups. Conclusions The EML4-ALK fusion gene was present at a high frequency in Chinese NSCLC patients, particularly in those with adenocarcinomas lacking EGFR/KRAS mutations. The EML4-ALK fusion appears to be tightly associated with ALK mRNA expression levels. RACE-coupled PCR sequencing is a highly sensitive method that could be used clinically for the identification of EML4-ALK

  20. [Molecular abnormalities in lymphomas].

    Science.gov (United States)

    Delsol, G

    2010-11-01

    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  1. Heterogeneity of epidermal growth factor receptor mutations in lung adenocarcinoma harboring anaplastic lymphoma kinase rearrangements: A case report.

    Science.gov (United States)

    Sun, Qiong; Wu, Jian-Yu; Jiao, Shun-Chang

    2014-11-01

    Lung cancer is a heterogeneous and complex disease that remains the leading cause of cancer-related mortality worldwide. The identification of epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangements has changed the treatment of non-small cell lung cancer, creating a personalized treatment era that is based on the appropriate molecular selection of patients. In spite of the efficacy of tyrosine kinase inhibitors (TKIs), acquired resistance remains inevitable due to various mechanisms. The present study reports the case of a 30-year-old patient with stage IV lung adenocarcinoma initially harboring an EGFR mutation. However, following disease progression and a series of treatments, the wild-type EGFR gene was observed and the ALK rearrangements were revealed. Erlotinib administration resulted in a good response in the patient initially, but crizotinib did not. This indicated an association between the secondary mutations in kinases and the drug resistance to TKIs. This case should also highlight the clinical significance of repeat biopsies for the subsequent therapeutic choices at the onset of clinical progression.

  2. Positron emission tomographic monitoring of dual phosphatidylinositol-3-kinase and mTOR inhibition in anaplastic large cell lymphoma

    Directory of Open Access Journals (Sweden)

    Graf N

    2014-05-01

    Full Text Available Nicolas Graf,1 Zhoulei Li,2 Ken Herrmann,2,4 Daniel Weh,2 Michaela Aichler,3 Jolanta Slawska,2 Axel Walch,3 Christian Peschel,1 Markus Schwaiger,2 Andreas K Buck,2,4 Tobias Dechow,1,* Ulrich Keller1,* 1III Medical Department, 2Department of Nuclear Medicine, Technische Universität München, Munich, Germany; 3Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany; 4Department of Nuclear Medicine, Universitätsklinikum Würzburg, Würzburg, Germany *These authors contributed equally to this work Background: Dual phosphatidylinositol-3-kinase (PI3K/mammalian target of rapamycin (mTOR inhibition offers an attractive therapeutic strategy in anaplastic large cell lymphoma depending on oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK signaling. We tested the efficacy of a novel dual PI3K/mTOR inhibitor, NVP-BGT226 (BGT226, in two anaplastic large cell lymphoma cell lines in vitro and in vivo and performed an early response evaluation with positron emission tomography (PET imaging using the standard tracer, 2-deoxy-2-[18F]fluoro-D-glucose (FDG and the thymidine analog, 3'-deoxy-3'-[18F]fluorothymidine (FLT. Methods: The biological effects of BGT226 were determined in vitro in the NPM-ALK positive cell lines SU-DHL-1 and Karpas299 by 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, propidium iodide staining, and biochemical analysis of PI3K and mTOR downstream signaling. FDG-PET and FLT-PET were performed in immunodeficient mice bearing either SU-DHL-1 or Karpas299 xenografts at baseline and 7 days after initiation of treatment with BGT226. Lymphomas were removed for immunohistochemical analysis of proliferation and apoptosis to correlate PET findings with in vivo treatment effects. Results: SU-DHL-1 cells showed sensitivity to BGT226 in vitro, with cell cycle arrest in G0/G1 phase and an IC50 in the low nanomolar range, in contrast with Karpas299 cells, which were mainly resistant to BGT226. In

  3. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F.

    Science.gov (United States)

    Shaw, Alice T; Friboulet, Luc; Leshchiner, Ignaty; Gainor, Justin F; Bergqvist, Simon; Brooun, Alexei; Burke, Benjamin J; Deng, Ya-Li; Liu, Wei; Dardaei, Leila; Frias, Rosa L; Schultz, Kate R; Logan, Jennifer; James, Leonard P; Smeal, Tod; Timofeevski, Sergei; Katayama, Ryohei; Iafrate, A John; Le, Long; McTigue, Michele; Getz, Gad; Johnson, Ted W; Engelman, Jeffrey A

    2016-01-07

    In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT01970865.).

  4. EML4-ALK induces epithelial–mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fuchun; Liu, Xiaoke, E-mail: liuxk57@163.com; Qing, Qin, E-mail: qinqingscu@126.com; Sang, Yaxiong, E-mail: yaxiongsang@gmail.com; Feng, Chengjun, E-mail: leymj@163.com; Li, Xiaoyu, E-mail: lixiaoyu2012huaxi@163.com; Jiang, Li, E-mail: summer.jl06@foxmail.com; Su, Pei, E-mail: keyanxiaozhu@163.com; Wang, Yongsheng, E-mail: wangys@scu.edu.cn

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4) – anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. - Highlights: • EML4-ALK induced epithelial–mesenchymal transition in H1299 cells. • Expression of EML4-ALK promotes invasion and migration in vitro. • EML4-ALK enhanced sphere formation and stem cell-like properties in H1299 cells. • Blockage of ERK1/2 reverse Epithelial–Mesenchymal transition induced by EML4-ALK.

  5. A screening method for the ALK fusion gene in NSCLC

    Directory of Open Access Journals (Sweden)

    Yoshiko eMurakami

    2012-03-01

    Full Text Available Lung cancer research has recently made significant progress in understanding the molecular pathogenesis and even the treatment of lung cancer. Such achievements are directly utilized in clinical practice. Indeed, the EML4-ALK fusion in non-small cell lung cancer (NSCLC was first described in 2007, and a molecularly targeted drug against the fusion was approved in 2011. However, lung cancer with the anaplastic lymphoma kinase (ALK fusion constitutes only a small fraction of lung cancers; thus, efficient patient selection is crucial for successful treatment using the ALK inhibitor. Currently, RT-PCR, fluorescent in-situ hybridization (FISH and immunohistochemistry are commonly used to detect the ALK fusion. Although FISH is currently the gold standard, there are no perfect methods for detecting the genetic alterations. This article discusses the advantages and disadvantages of the individual methods and possible criteria for selecting patients more likely to have the ALK fusion. If we can successfully screen patients, then ALK inhibitor treatment will be the best example of personalized therapy in terms of selecting patients with an uncommon genotype from those with the same tumor phenotype. In other words, it may offer a new challenge for current clinical oncology.

  6. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors.

    Science.gov (United States)

    Davare, Monika A; Vellore, Nadeem A; Wagner, Jacob P; Eide, Christopher A; Goodman, James R; Drilon, Alexander; Deininger, Michael W; O'Hare, Thomas; Druker, Brian J

    2015-09-29

    Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib's dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1(G2032R) mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure-function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies.

  7. Managing Resistance to EFGR- and ALK-Targeted Therapies.

    Science.gov (United States)

    Lovly, Christine M; Iyengar, Puneeth; Gainor, Justin F

    2017-01-01

    Targeted therapies have transformed the management of non-small cell lung cancer (NSCLC) and placed an increased emphasis on stratifying patients on the basis of genetic alterations in oncogenic drivers. To date, the best characterized molecular targets in NSCLC are the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK). Despite steady advances in targeted therapies within these molecular subsets, however, acquired resistance to therapy is near universal. Recent preclinical models and translational efforts have provided critical insights into the molecular mechanisms of resistance to EGFR and ALK inhibitors. In this review, we present a framework for understanding resistance to targeted therapies. We also provide overviews of the molecular mechanisms of resistance and strategies to overcome resistance among EGFR-mutant and ALK-rearranged lung cancers. To date, these strategies have centered on the development of novel next-generation inhibitors, rationale combinations, and use of local ablative therapies, such as radiotherapy.

  8. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1.

    Science.gov (United States)

    Voena, Claudia; Varesio, Lydia M; Zhang, Liye; Menotti, Matteo; Poggio, Teresa; Panizza, Elena; Wang, Qi; Minero, Valerio G; Fagoonee, Sharmila; Compagno, Mara; Altruda, Fiorella; Monti, Stefano; Chiarle, Roberto

    2016-05-31

    A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy.

  9. Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP

    Directory of Open Access Journals (Sweden)

    Hsueh Chung-Tsen

    2011-04-01

    Full Text Available Abstract We reviewed preclinical data and clinical development of MDM2 (murine double minute 2, ALK (anaplastic lymphoma kinase and PARP (poly [ADP-ribose] polymerase inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC. Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation.

  10. The lymphoma-associated NPM-ALK oncogene elicits a p16INK4a/pRb-dependent tumor-suppressive pathway.

    Science.gov (United States)

    Martinelli, Paola; Bonetti, Paola; Sironi, Cristina; Pruneri, Giancarlo; Fumagalli, Caterina; Raviele, Paola Rafaniello; Volorio, Sara; Pileri, Stefano; Chiarle, Roberto; McDuff, Fiona Kate Elizabeth; Tusi, Betsabeh Khoramian; Turner, Suzanne D; Inghirami, Giorgio; Pelicci, Pier Giuseppe; Colombo, Emanuela

    2011-06-16

    Oncogene-induced senescence (OIS) is a barrier for tumor development. Oncogene-dependent DNA damage and activation of the ARF/p53 pathway play a central role in OIS and, accordingly, ARF and p53 are frequently mutated in human cancer. A number of leukemia/lymphoma-initiating oncogenes, however, inhibit ARF/p53 and only infrequently select for ARF or p53 mutations, suggesting the involvement of other tumor-suppressive pathways. We report that NPM-ALK, the initiating oncogene of anaplastic large cell lymphomas (ALCLs), induces DNA damage and irreversibly arrests the cell cycle of primary fibroblasts and hematopoietic progenitors. This effect is associated with inhibition of p53 and is caused by activation of the p16INK4a/pRb tumor-suppressive pathway. Analysis of NPM-ALK lymphomagenesis in transgenic mice showed p16INK4a-dependent accumulation of senescent cells in premalignant lesions and decreased tumor latency in the absence of p16INK4a. Accordingly, human ALCLs showed no expression of either p16INK4a or pRb. Up-regulation of the histone-demethylase Jmjd3 and de-methylation at the p16INK4a promoter contributed to the effect of NPM-ALK on p16INK4a, which was transcriptionally regulated. These data demonstrate that p16INK4a/pRb may function as an alternative pathway of oncogene-induced senescence, and suggest that the reactivation of p16INK4a expression might be a novel strategy to restore the senescence program in some tumors.

  11. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma.

    Science.gov (United States)

    Crescenzo, Ramona; Abate, Francesco; Lasorsa, Elena; Tabbo', Fabrizio; Gaudiano, Marcello; Chiesa, Nicoletta; Di Giacomo, Filomena; Spaccarotella, Elisa; Barbarossa, Luigi; Ercole, Elisabetta; Todaro, Maria; Boi, Michela; Acquaviva, Andrea; Ficarra, Elisa; Novero, Domenico; Rinaldi, Andrea; Tousseyn, Thomas; Rosenwald, Andreas; Kenner, Lukas; Cerroni, Lorenzo; Tzankov, Alexander; Ponzoni, Maurilio; Paulli, Marco; Weisenburger, Dennis; Chan, Wing C; Iqbal, Javeed; Piris, Miguel A; Zamo', Alberto; Ciardullo, Carmela; Rossi, Davide; Gaidano, Gianluca; Pileri, Stefano; Tiacci, Enrico; Falini, Brunangelo; Shultz, Leonard D; Mevellec, Laurence; Vialard, Jorge E; Piva, Roberto; Bertoni, Francesco; Rabadan, Raul; Inghirami, Giorgio

    2015-04-13

    A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.

  12. Cytomorphological features of ALK-positive lung adenocarcinomas: psammoma bodies and signet ring cells.

    Science.gov (United States)

    Pareja, Fresia; Crapanzano, John P; Mansukhani, Mahesh M; Bulman, William A; Saqi, Anjali

    2015-03-01

    Correlation between histology and genotype has been described in lung adenocarcinomas. For example, studies have demonstrated that adenocarcinomas with an anaplastic lymphoma kinase (ALK) gene rearrangement may have mucinous features. The objective of the current study was to determine whether a similar association can be identified in cytological specimens. A retrospective search for ALK-rearranged cytopathology (CP) and surgical pathology (SP) lung carcinomas was conducted. Additional ALK-negative (-) lung adenocarcinomas served as controls. For CP and SP cases, the clinical data (i.e., age, sex, and smoking history), architecture, nuclear features, presence of mucin-containing cells (including signet ring cells), and any additional salient characteristics were evaluated. The search yielded 20 ALK-positive (+) adenocarcinomas. Compared with patients with ALK(-) lung adenocarcinomas (33 patients; 12 with epidermal growth factor receptor [EGFR]-mutation, 11 with Kristen rat sarcoma [KRAS]-mutation, and 10 wild-type adenocarcinomas), patients with ALK(+) adenocarcinoma presented at a younger age; and there was no correlation noted with sex or smoking status. The most common histological pattern in SP was papillary/micropapillary. Mucinous features were associated with ALK rearrangement in SP specimens. Signet ring cells and psammoma bodies were evident in and significantly associated with ALK(+) SP and CP specimens. However, psammoma bodies were observed in rare adenocarcinomas with an EGFR mutation. Both the ALK(+) and ALK(-) groups had mostly high nuclear grade. Salient features, including signet ring cells and psammoma bodies, were found to be significantly associated with ALK(+) lung adenocarcinomas and are identifiable on CP specimens. Recognizing these may be especially helpful in the molecular triage of scant CP samples. © 2014 American Cancer Society.

  13. A citrus flavonoid, 6-demethoxytangeretin, suppresses production and gene expression of interleukin-6 in human mast cell-1 via anaplastic lymphoma kinase and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Kim, Young-Mi; Chae, Hee-Sung; Lee, Eun Joo; Yang, Min Hye; Park, Jin Hee; Yoon, Kee Dong; Kim, Jinwoong; Ahn, Hee Chul; Choi, Young Hee; Chin, Young-Won

    2014-01-01

    Citrus species has been traditionally used in Korea for the treatment of coughing, sputum and dyspepsia. Of the known citrus flavonoids, 6-demethoxytangeretin was reported to exert anti-inflammatory activity. In order to determine the anti-allergic activity of 6-demethoxytangeretin, we examined whether or not 6-demethoxytangeretin was able to suppress activation of the human mast cell line, HMC-1, induced by phorbol 12-myristate 13-acetate (PMA) plus A23187. Interleukin-6 production and relevant gene expression in activated HMC-1 cells were determined by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis. Also, the involvement of the anaplastic lymphoma kinase (ALK) and mitogen-activated protein kinases (MAPKs) in activated HMC-1 cells were studied. 6-Demethoxytangeretin suppresses interleukin-6 production, tumor necrosis factor-alpha gene expression, ALK and MAPKs in HMC-1 cells stimulated by PMA plus A23187. Therefore, it was evident that 6-demethoxytangeretin suppressed activation of HMC-1 cells by PMA plus A23187 by inhibiting the activity of ALK and MAPKs and subsequently suppressing gene expression, which suggest that 6-demethoxytangeretin may be involved in the regulation of mast cell-mediated inflammatory responses.

  14. De novo cystic brain lesions mimicking neurocysticercosis in ALK-positive lung cancer.

    Science.gov (United States)

    Kim, Su-Hyun; Hyun, Jae-Won; Kim, Ho Jin; Gwak, Ho-Shin; Lee, Sang Hyun; Hong, Eun-Kyung; Lee, Youngjoo

    2017-08-01

    Cystic brain metastases (CBM) have been recently reported in a minority of patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). All previously reported ALK-positive CBM developed during crizotinib treatment and were often asymptomatic and indolent, even without CNS-directed therapy. Thus, crizotinib was suggested as an etiologic agent for the development of CBM. Here, we report a case of de novo CBM in a patient with ALK-positive NSCLC prior to crizotinib treatment; the ALK-positive NSCLC had initially been misdiagnosed as neurocysticercosis because of the atypical radiological presentation of brain metastases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Destaining of Diff-Quik stained cytologic smears is not necessary for the detection of anaplastic lymphoma kinase gene rearrangement in lung adenocarcinoma by fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Weisheng Xu

    2016-01-01

    Full Text Available Background: Anaplastic lymphoma kinase (ALK gene rearrangement analysis by fluorescence in situ hybridization (FISH is one of the standard molecular tests for targeted therapy of lung adenocarcinoma. However, insufficient cell block cellularity may impede molecular testing. A recent study showed that Diff-Quik (DQ stained cytology smear is suitable for ALK by FISH. Aims: The aim of our study was to observe the impact of destaining intervals on the quality of FISH signals and determine if DQ smears without destaining would allow FISH analysis. Materials and Methods: Thirty-five DQ smears from 27 cases of lung adenocarcinoma were analyzed for ALK gene rearrangement by FISH. Twenty three DQ smears were destained for different intervals, including 30 s (13 cases, 1 min (6 cases, or 2 min (4 cases. Twelve DQ smears were not subjected to destaining. For further validation, FISH signals in 8 smears and 6 cell blocks were compared with the paired destained DQ smears. The signal quality was semi-quantified and analyzed with Chi-squared test. Results: Of the total 27 selected cases, three (11% were positive for ALK gene rearrangement, whereas 24 (89% were negative. FISH signal was satisfactory in all DQ smears. There was no significant difference in the quality of signal among smears with different destaining intervals (P = 0.55 or between smears with and without destaining (P = 0.41. DQ smears without destaining showed identical FISH results and similar or better signals as compared with paired destained smears and cell blocks in all cases. Conclusions: Duration of destaining intervals does not impact the quality of FISH signal on DQ smears. Destaining of DQ smears is not necessary for ALK by FISH.

  16. Quantitative PCR detection of NPM/ALK fusion gene and CD30 gene expression in patients with anaplastic large cell lymphoma--residual disease monitoring and a correlation with the disease status.

    Science.gov (United States)

    Kalinova, Marketa; Krskova, Lenka; Brizova, Helena; Kabickova, Edita; Kepak, Tomas; Kodet, Roman

    2008-01-01

    Anaplastic large cell lymphoma (ALCL) represents a heterogeneous group of malignant lymphoproliferative diseases with a consistent expression of the cytokine receptor CD30. ALCL is frequently associated with a NPM/ALK fusion gene which is found in up to 75% of pediatric ALCLs. Real-time quantitative RT-PCR (RQ-RT-PCR) of NPM/ALK and CD30 gene expression was employed to analyze minimal residual disease (MRD) in 10 patients with NPM/ALK positive ALCL in 79 follow-up bone marrow (BM) and/or peripheral blood (PB) samples. In all BM samples from relapses and/or closely before a relapse, BM samples revealed NPM/ALK and CD30 positivity in at least one of the iliac BM trephines. Five out of nine relapses were preceded or were accompanied by minimally half log increased NPM/ALK levels in the BM. We found that RQ-RT-PCR of the CD30 expression is not suitable for MRD detection--only two relapses were accompanied by an increase of the CD30 level above a level which was detected in BM/PB samples from healthy individuals. RQ-RT-PCR of NPM/ALK expression is a promising and rapid approach for monitoring MRD.

  17. Comparative analysis of clinicoradiologic characteristics of lung adenocarcinomas with ALK rearrangements or EGFR mutations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.Y.; Zheng, J.; Chen, X.; Zhou, J.Y. [Zhejiang University, Department of Respiratory Disease, Thoracic Disease Center, First Affiliated Hospital, College of Medicine, Hangzhou (China); Yu, Z.F.; Xiao, W.B.; Jiang, L.N. [Zhejiang University, Department of Radiology, First Affiliated Hospital, College of Medicine, Hangzhou (China); Zhao, J.; Sun, K.; Wang, B.; Ding, W. [Zhejiang University, Department of Pathology, First Affiliated Hospital, College of Medicine, Hangzhou (China)

    2015-05-01

    To compare the clinicoradiologic features of tumours with echinoderm anaplastic lymphoma kinase (ALK) rearrangements, epidermal growth factor receptor (EGFR) mutations, or wild type (WT) for both genes in a cohort of patients with lung adenocarcinoma to identify useful characteristics of different gene statuses. In 346 lung adenocarcinoma patients, ALK rearrangements were confirmed with fluorescence in situ hybridisation, and EGFR mutations were determined by pyrosequencing assay. Patients were divided into three groups: ALK rearrangement (ALK+ group, n = 48), EGFR mutation (EGFR+ group, n = 166), and WT for both genes (WT group, n = 132). Chest computed tomography (CT) examinations were performed in all patients. The percentages of ground-glass opacity volume (pGGO) and tumour shadow disappearance rate (TDR) were measured using semi-automated nodule assessment software. The pGGO was significantly lower in the ALK+ group (25.1 % ± 24.3) than in the EGFR+ group (37.2 % ± 25.7, p < 0.001) and the WT group (36.1 % ± 24.6, p = 0.001). The TDR in the ALK+ group (17.3 % ± 25.1) was significantly lower than in the EGFR+ group (26.8 % ± 24.9, p = 0.002) and the WT group (25.7 % ± 24.6, p = 0.003). Solid pattern with lower incidence of lobulated border, finely spiculated margins, pleural retraction, and bubble-like lucency on CT imaging are the main characteristics of ALK rearrangement tumours. (orig.)

  18. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar.

    NARCIS (Netherlands)

    Tang, S.C.; Nguyen, L.N.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H.

    2014-01-01

    Crizotinib is an oral tyrosine kinase inhibitor approved for treating patients with non-small cell lung cancer (NSCLC) containing an anaplastic lymphoma kinase (ALK) rearrangement. We used knockout mice to study the roles of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) in

  19. Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods.

    Directory of Open Access Journals (Sweden)

    Leilei Liu

    Full Text Available Anaplastic lymphoma kinase (ALK and echinoderm microtubule-associated protein-like 4 (EML4 gene rearrangements occur in approximately 5% of non-small-cell lung cancers (NSCLC, leading to the overexpression of anaplastic lymphoma kinase and predicting a response to the targeted inhibitor, crizotinib. Malignant pleural effusion occurs in most patients with advanced lung cancer, especially adenocarcinoma, and tissue samples are not always available from these patients. We attempted to clarify the feasibility of detecting the EML4-ALK fusion gene in pleural effusion cells using different methods. We obtained 66 samples of pleural effusion from NSCLC patients. The pleural effusion fluid was centrifuged, and the cellular components obtained were formalin fixed and paraffin embedded. The EML4-ALK fusion gene status was determined with fluorescent in situ hybridization (FISH, reverse transcription-polymerase chain reaction (RT-PCR, and immunohistochemistry (IHC. EML4-ALK was detected in three of 66 patient samples (4.5% with RT-PCR. When the RT-PCR data were used as the standard, one false positive and one false negative samples were identified with IHC; and one false negative sample was identified with FISH. These results suggest that a block of pleural effusion cells can be used to detect the EML4-ALK fusion gene. IHC had good sensitivity, but low specificity. FISH had low sensitivity, but high specificity. RT-PCR is a good candidate method for detecting EML4-ALK in blocks of pleural effusion cells from lung cancer patients.

  20. Severe acute interstitial lung disease in a patient with anaplastic lymphoma kinase rearrangement-positive non-small cell lung cancer treated with alectinib.

    Science.gov (United States)

    Yamamoto, Yuzo; Okamoto, Isamu; Otsubo, Kohei; Iwama, Eiji; Hamada, Naoki; Harada, Taishi; Takayama, Koichi; Nakanishi, Yoichi

    2015-10-01

    Alectinib, the second generation anaplastic lymphoma kinase (ALK) inhibitor, has significant potency in patients with ALK rearrangement positive non-small cell lung cancer (NSCLC), and its toxicity is generally well tolerable. We report a patient who developed severe acute interstitial lung disease after alectinib treatment. An 86-year-old woman with stage IV lung adenocarcinoma positive for rearrangement of ALK gene was treated with alectinib. On the 215th day after initiation of alectinib administration, she was admitted to our hospital with the symptom of progressive dyspnea. Computed tomography (CT) revealed diffuse ground glass opacities and consolidations in both lungs, and analysis of bronchoalveolar lavage fluid revealed pronounced lymphocytosis. There was no evidence of infection or other specific causes of her condition, and she was therefore diagnosed with interstitial lung disease induced by alectinib. Her CT findings and respiratory condition improved after steroid pulse therapy. As far as we are aware, this is the first reported case of alectinib-induced severe interstitial lung disease (ILD). We should be aware of the possibility of such a severe adverse event and should therefore carefully monitor patients treated with this drug.

  1. A comprehensive comparative analysis of the histomorphological features of ALK-rearranged lung adenocarcinoma based on driver oncogene mutations: frequent expression of epithelial-mesenchymal transition markers than other genotype.

    Directory of Open Access Journals (Sweden)

    Hyojin Kim

    Full Text Available Molecular classification of lung cancer correlates well with histomorphological features. However, specific histomorphological features that differentiate anaplastic lymphoma kinase (ALK-rearranged tumors from ALK-negative tumors have not been fully evaluated. Eighty ALK-rearranged and 213 ALK-negative (91 epidermal growth factor receptor-mutated; 29 K-ras-mutated; 93 triple-negative resected lung adenocarcinomas were analyzed for several histomorphological parameters and histological subtype. ALK-rearranged tumors were associated with younger age at presentation, frequent nodal metastasis, and higher stage of disease at diagnosis. ALK-rearranged tumors were more likely to show a solid predominant pattern than ALK-negative tumors (43.8%; 35/80; p<0.001. Unlike ALK-negative tumors, a lepidic predominant pattern was not observed in ALK-rearranged tumors (p<0.001. In multivariate analysis, the most significant morphological features that distinguished ALK-rearranged tumors from ALK-negative tumors were cribriform formation (odds ratio [OR], 3.253; p = 0.028, presence of mucin-containing cells (OR, 4.899; p = 0.008, close relationship to adjacent bronchioles (OR, 5.361; p = 0.001, presence of psammoma bodies (OR, 4.026; p = 0.002, and a solid predominant pattern (OR, 13.685; p = 0.023. ALK-rearranged tumors exhibited invasive histomorphological features, aggressive behavior and frequent expression of epithelial-mesenchymal transition markers (loss of E-cadherin and expression of vimentin compared with other genotype (p = 0.015. Spatial proximity between bronchus and ALK-rearranged tumors and frequent solid histologic subtype with p63 expression may cause diagnostic difficulties to differentiate squamous cell carcinoma in the small biopsy, whereas p40 was rarely expressed in ALK-rearranged adenocarcinoma. Knowledge of these features may improve the diagnostic accuracy and lead to a better understanding of the characteristic behavior of ALK

  2. Profile of ceritinib in the treatment of ALK+ metastatic non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Burns MW

    2015-05-01

    Full Text Available Mark W Burns, Eric S Kim Wilmot Cancer Center, University of Rochester, Rochester, NY, USA Abstract: Lung cancer has become one of the leading causes of death in both men and women in the United States, with approximately 230,000 new cases and 160,000 deaths each year. Approximately 80% of lung cancer patients are diagnosed with non-small-cell lung cancer (NSCLC, a subset of epithelial lung cancers that are generally insensitive to chemotherapy. An estimated 3%–7% of NSCLC patients harbor tumors containing anaplastic lymphoma kinase (ALK gene rearrangement as an oncogenic driver. Subsequent development of the first-generation tyrosine kinase inhibitor crizotinib demonstrated substantial initial ALK+-tumor regression, yet ultimately displayed resistance in treated patients. The recently approved tyrosine kinase inhibitor ceritinib has been shown to be an effective antitumor agent against crizotinib-naïve and -resistant ALK+-NSCLC patients. In this review, we will provide an overview of biology and management of ALK+-NSCLC with a special focus on clinical development of ceritinib. Keywords: ceritinib, anaplastic lymphoma kinase, non-small-cell lung cancer

  3. Mechanisms of resistance to EML4-ALK inhibitors in non-small cell lung cancer%非小细胞肺癌 EML4-ALK 抑制剂的耐药机制研究进展

    Institute of Scientific and Technical Information of China (English)

    印薇薇; 杨振华; 叶亮; 谷伟

    2014-01-01

    Echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase is recently identified as an oncogenic transforming fusion gene in non-small cell lung cancer (NSCLC),which participated in the process of NSCLC.ALK tyrosine kinase inhibitors,including crizotinib,are effective treatments in preclinical models and patients with ALK+ NSCLC.However,due to the high resistance rate of crizotinib,the drug resistance problem has aroused the attention of all.This review aims to discuss molecular mechanisms of resistance to crizotinib in patients with ALK+ NSCLC as well as the current strategies.%棘皮动物微管相关蛋白样4-间变性淋巴瘤激酶(echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase,EML4-ALK)作为近年来新发现的一个致癌基因,参与了非小细胞肺癌(NSCLC)的发生过程。以 EML4-ALK 为靶点的分子靶向药物成为治疗 NSCLC 的焦点,包括crizotinib 在内的多种 ALK 酪氨酸激酶抑制剂在临床前期研究及 ALK 融合基因阳性的 NSCLC 患者中疗效显著。然而,随之出现的耐药问题也引起了大家的关注。现对 EML4-ALK 酪氨酸激酶抑制剂耐药机制的研究进展和克服耐药的新策略进行综述。

  4. NPM-ALK up-regulates iNOS expression through a STAT3/microRNA-26a-dependent mechanism.

    Science.gov (United States)

    Zhu, Haifeng; Vishwamitra, Deeksha; Curry, Choladda V; Manshouri, Roxsan; Diao, Lixia; Khan, Aarish; Amin, Hesham M

    2013-05-01

    NPM-ALK chimeric oncogene is aberrantly expressed in an aggressive subset of T-cell lymphomas that frequently occurs in children and young adults. The mechanisms underlying the oncogenic effects of NPM-ALK are not completely elucidated. Inducible nitric oxide synthase (iNOS) promotes the survival and maintains the malignant phenotype of cancer cells by generating NO, a highly active free radical. We tested the hypothesis that iNOS is deregulated in NPM-ALK(+) T-cell lymphoma and promotes the survival of this lymphoma. In line with this possibility, an iNOS inhibitor and NO scavenger decreased the viability, adhesion, and migration of NPM-ALK(+) T-cell lymphoma cells, and an NO donor reversed these effects. Moreover, the NO donor salvaged the viability of lymphoma cells treated with ALK inhibitors. In further support of an important role of iNOS, we found iNOS protein to be highly expressed in NPM-ALK(+) T-cell lymphoma cell lines and in 79% of primary tumours but not in human T lymphocytes. Although expression of iNOS mRNA was identified in NPM-ALK(+) T-cell lymphoma cell lines and tumours, iNOS mRNA was remarkably elevated in T lymphocytes, suggesting post-transcriptional regulation. Consistently, we found that miR-26a contains potential binding sites and interacts with the 3'-UTR of iNOS. In addition, miR-26a was significantly decreased in NPM-ALK(+) T-cell lymphoma cell lines and tumours compared with T lymphocytes and reactive lymph nodes. Restoration of miR-26a in lymphoma cells abrogated iNOS protein expression and decreased NO production and cell viability, adhesion, and migration. Importantly, the effects of miR-26a were substantially attenuated when the NO donor was simultaneously used to treat lymphoma cells. Our investigation of the mechanisms underlying the decrease in miR-26a in this lymphoma revealed novel evidence that STAT3, a major downstream substrate of NPM-ALK tyrosine kinase activity, suppresses MIR26A1 gene expression.

  5. Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non–Small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuyuan Dong

    2016-03-01

    Full Text Available Crizotinib is the first anaplastic lymphoma kinase (ALK inhibitor to have been approved for the treatment of non–small cell lung cancer (NSCLC harboring an ALK fusion gene, but it has been found that, in the clinic, patients develop resistance to it. Alectinib and ceritinib are second-generation ALK inhibitors which show remarkable clinical responses in both crizotinib-naive and crizotinib-resistant NSCLC patients harboring an ALK fusion gene. Despite their impressive activity, clinical resistance to alectinib and ceritinib has also emerged. In the current study, we elucidated the resistance mechanisms to these second-generation ALK inhibitors in the H3122 NSCLC cell line harboring the EML4-ALK variant 1 fusion in vitro. Prolonged treatment of the parental H3122 cells with alectinib and ceritinib led to two cell lines which are 10 times less sensitive to alectinib and ceritinib than the parental H3122 cell line. Although mutations of ALK in its kinase domain are a common resistance mechanism for crizotinib, we did not detect any ALK mutation in these resistant cell lines. Rather, overexpression of phospho-ALK and alternative receptor tyrosine kinases such as phospho-EGFR, phospho-HER3, and phospho-IGFR-1R was observed in both resistant cell lines. Additionally, NRG1, a ligand for HER3, is upregulated and responsible for resistance by activating the EGFR family pathways through the NRG1-HER3-EGFR axis. Combination treatment with EGFR inhibitors, in particular afatinib, was shown to be effective at overcoming resistance. Our study provides new mechanistic insights into adaptive resistance to second-generation ALK inhibitors and suggests a potential clinical strategy to combat resistance to these second-generation ALK inhibitors in NSCLC.

  6. Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non-Small Cell Lung Cancer Cells.

    Science.gov (United States)

    Dong, Xuyuan; Fernandez-Salas, Ester; Li, Enxiao; Wang, Shaomeng

    2016-03-01

    Crizotinib is the first anaplastic lymphoma kinase (ALK) inhibitor to have been approved for the treatment of non-small cell lung cancer (NSCLC) harboring an ALK fusion gene, but it has been found that, in the clinic, patients develop resistance to it. Alectinib and ceritinib are second-generation ALK inhibitors which show remarkable clinical responses in both crizotinib-naive and crizotinib-resistant NSCLC patients harboring an ALK fusion gene. Despite their impressive activity, clinical resistance to alectinib and ceritinib has also emerged. In the current study, we elucidated the resistance mechanisms to these second-generation ALK inhibitors in the H3122 NSCLC cell line harboring the EML4-ALK variant 1 fusion in vitro. Prolonged treatment of the parental H3122 cells with alectinib and ceritinib led to two cell lines which are 10 times less sensitive to alectinib and ceritinib than the parental H3122 cell line. Although mutations of ALK in its kinase domain are a common resistance mechanism for crizotinib, we did not detect any ALK mutation in these resistant cell lines. Rather, overexpression of phospho-ALK and alternative receptor tyrosine kinases such as phospho-EGFR, phospho-HER3, and phospho-IGFR-1R was observed in both resistant cell lines. Additionally, NRG1, a ligand for HER3, is upregulated and responsible for resistance by activating the EGFR family pathways through the NRG1-HER3-EGFR axis. Combination treatment with EGFR inhibitors, in particular afatinib, was shown to be effective at overcoming resistance. Our study provides new mechanistic insights into adaptive resistance to second-generation ALK inhibitors and suggests a potential clinical strategy to combat resistance to these second-generation ALK inhibitors in NSCLC.

  7. Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non–Small Cell Lung Cancer Cells

    Science.gov (United States)

    Dong, Xuyuan; Fernandez-Salas, Ester; Li, Enxiao; Wang, Shaomeng

    2016-01-01

    Crizotinib is the first anaplastic lymphoma kinase (ALK) inhibitor to have been approved for the treatment of non–small cell lung cancer (NSCLC) harboring an ALK fusion gene, but it has been found that, in the clinic, patients develop resistance to it. Alectinib and ceritinib are second-generation ALK inhibitors which show remarkable clinical responses in both crizotinib-naive and crizotinib-resistant NSCLC patients harboring an ALK fusion gene. Despite their impressive activity, clinical resistance to alectinib and ceritinib has also emerged. In the current study, we elucidated the resistance mechanisms to these second-generation ALK inhibitors in the H3122 NSCLC cell line harboring the EML4-ALK variant 1 fusion in vitro. Prolonged treatment of the parental H3122 cells with alectinib and ceritinib led to two cell lines which are 10 times less sensitive to alectinib and ceritinib than the parental H3122 cell line. Although mutations of ALK in its kinase domain are a common resistance mechanism for crizotinib, we did not detect any ALK mutation in these resistant cell lines. Rather, overexpression of phospho-ALK and alternative receptor tyrosine kinases such as phospho-EGFR, phospho-HER3, and phospho-IGFR-1R was observed in both resistant cell lines. Additionally, NRG1, a ligand for HER3, is upregulated and responsible for resistance by activating the EGFR family pathways through the NRG1-HER3-EGFR axis. Combination treatment with EGFR inhibitors, in particular afatinib, was shown to be effective at overcoming resistance. Our study provides new mechanistic insights into adaptive resistance to second-generation ALK inhibitors and suggests a potential clinical strategy to combat resistance to these second-generation ALK inhibitors in NSCLC. PMID:26992917

  8. Personalized treatment options for ALK-positive metastatic non-small-cell lung cancer: potential role for Ceritinib

    Directory of Open Access Journals (Sweden)

    El-Osta H

    2015-09-01

    Full Text Available Hazem El-Osta,1 Rodney Shackelford2 1Department of Medicine, 2Department of Pathology, Feist-Weiller Cancer Center, Louisiana State University Health Science Center-Shreveport, Shreveport, LA, USA Abstract: The fusion of echinoderm microtubule-associated protein-like 4 with the anaplastic lymphoma kinase (EML4-ALK is found in 3%–7% of non-small-cell lung cancer (NSCLC cases and confers sensitivity to crizotinib, the first United States Food and Drug Administration (FDA-approved ALK inhibitor drug. Although crizotinib has an excellent initial therapeutic effect, acquired resistance to this drug invariably develops within the first year of treatment. Resistance may involve secondary gatekeeper mutations within the ALK gene interfering with crizotinib–ALK interactions, or compensatory activation of aberrant bypass signaling pathways. New therapeutic strategies to overcome crizotinib resistance are needed. Ceritinib, a second-generation ALK inhibitor, overcomes several crizotinib-resistant ALK mutations and has demonstrated efficacy against tumor growth in several in vitro and in vivo preclinical models of crizotinib resistance. Notably, the dose-escalation Phase I ASCEND-1 trial has shown a marked activity of ceritinib in both crizotinib-naïve and crizotinib-resistant ALK-rearranged lung cancer. The overall response rate was 58% in a subgroup of patients with ALK-rearranged late-stage NSCLC. Drug discontinuation rate due to toxicity was 10%. The standard dose was established at 750 mg daily. This paper outlines the pathogenesis and treatment of ALK-positive lung cancer, focuses on the preclinical and clinical results surrounding the accelerated FDA approval of ceritinib for the treatment of ALK-positive metastatic NSCLC patients who have progressed on/or are crizotinib intolerant, and discusses the potential efforts seeking to maximize ceritinib efficacy and expand its usage to other indications in cancer therapy. Keywords: crizotinib, EML4

  9. Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma.

    Science.gov (United States)

    Damm-Welk, Christine; Busch, Kerstin; Burkhardt, Birgit; Schieferstein, Jutta; Viehmann, Susanne; Oschlies, Ilske; Klapper, Wolfram; Zimmermann, Martin; Harbott, Jochen; Reiter, Alfred; Woessmann, Willi

    2007-07-15

    Clinical and histopathological characteristics have limited prognostic value for children with anaplastic large-cell lymphoma (ALCL). We evaluated the presence, extent, and prognostic impact of circulating tumor cells in bone marrow (BM) and peripheral blood (PB) of children and adolescents with NPM-ALK-positive ALCL at diagnosis using qualitative and quantitative polymerase chain reaction (PCR) for NPM-ALK. Numbers of NPM-ALK transcripts were normalized to 10(4) copies ABL (NCNs). BM was analyzed from 80 patients and PB from 52. BM was positive for NPM-ALK in 47.5% of patients, and positivity was significantly correlated with clinical stage, mediastinal or visceral involvement, microscopic BM involvement, and histologic subtype. Qualitative and quantitative PCR results in BM and PB strongly correlated. BM PCR was associated with the cumulative incidence of relapses (CI-Rs): CI-R was 50% +/- 10% for 38 PCR-positive and 15% +/- 7% for 42 PCR-negative patients (P NPM-ALK in BM had a CI-R of 71% +/- 14% compared with a CI-R of 18% +/- 6% for 59 patients with 10 or fewer NCNs (P < .001). PB PCR results led to a similar grouping. Thus, quantitative PCR in BM or PB allows identification of 20% of patients experiencing 60% of all relapses with an event-free survival of 20%.

  10. NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair.

    Science.gov (United States)

    Bone, K M; Wang, P; Wu, F; Wu, C; Li, L; Bacani, J T; Andrew, S E; Lai, R

    2015-05-15

    The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography-mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2(Y238F) mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2(Y238F) into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2(Y238F) abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2(Y238F) into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR.

  11. Bruton's tyrosine kinase inhibitors in chronic lymphocytic leukemia and lymphoma.

    Science.gov (United States)

    Varma, Gaurav; Johnson, Tyler P; Advani, Ranjana H

    2016-07-01

    The development of Bruton's tyrosine kinase (BTK) inhibitors and their introduction into clinical practice represent a major advance in the treatment of chronic lymphocytic leukemia (CLL) and other B-cell lymphomas. Although ibrutinib is the only BTK inhibitor that has been approved by the US Food and Drug Administration, several others are under investigation. Ibrutinib is currently approved for use in relapsed/refractory CLL, CLL with 17p deletion (del[17p]), relapsed or refractory mantle cell lymphoma, and Waldenström macroglobulinemia. Although it is clear that ibrutinib has altered treatment paradigms and outcomes in these diseases, several questions remain regarding (1) its role in frontline vs salvage therapy; (2) its use as a single agent vs in combination with biologic agents, other small molecules, or traditional chemoimmunotherapy; (3) the optimal duration of treatment; and (4) the treatment of patients who cannot tolerate or have disease resistant to ibrutinib. Because sparse clinical data are available on other BTK inhibitors, it is unclear at present whether their clinical efficacy and toxicity will differ from those of ibrutinib.

  12. Proteome-wide identification of novel binding partners to the oncogenic fusion gene protein, NPM-ALK, using tandem affinity purification and mass spectrometry.

    Science.gov (United States)

    Wu, Fang; Wang, Peng; Young, Leah C; Lai, Raymond; Li, Liang

    2009-02-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion gene protein that is characteristically found in a subset of anaplastic large cell lymphomas, promotes tumorigenesis through its functional and physical interactions with various biologically important proteins. The identification of these interacting proteins has proven to be useful to further our understanding of NPM-ALK-mediated tumorigenesis. For the first time, we performed a proteome-wide identification of NPM-ALK-binding proteins using tandem affinity purification and a highly sensitive mass spectrometric technique. Tandem affinity purification is a recently developed method that carries a lower background and higher sensitivity compared with the conventional immunoprecipitation-based protein purification protocols. The NPM-ALK gene was cloned into an HB-tagged vector and expressed in GP293 cells. Three independent experiments were performed and the reproducibility of the data was 68%. The vast majority of the previously reported NPM-ALK-binding proteins were detected. We also identified proteins that are involved in various cellular processes that were not previously described in association with NPM-ALK, such as MCM6 and MSH2 (DNA repair), Nup98 and importin 8 (subcellular protein transport), Stim1 (calcium signaling), 82Fip (RNA regulation), and BAG2 (proteosome degradation). We believe that these data highlight the functional diversity of NPM-ALK and provide new research directions for the study of the biology of this oncoprotein.

  13. Analysis of EML4-ALK Gene Fusion Mutation in Patients 
with Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xuzhou WANG

    2015-02-01

    Full Text Available Background and objective Non-small cell lung cancer (NSCLC is the main type of lung cancer, and the related locus mutation detection research has become a hot direction of molecular targeted therapy, studying on gene mutation status of echinodem microtubule associated protein like 4-Anaplastic lymphoma kinase (EML4-ALK and epidermal growth factor receptor (EGFR, detecting the sensitivity of EML4-ALK gene fusion and gene mutation of EGFR. Methods EML4-ALK gene fusion in 85 cases of paraffin embedded tumor tissue and adjacent lung tissue was detected with the application of immunohistochemistry (IHC, Scorpions amplification refractory mutation system (Scorpions ARMS fluorescence quantitative PCR and fluorescence in situ hybridization (FISH technology, and EGFR gene in 18, 19, 20 and 21 exon mutation status was detected with the application of ARMS method. Results In 115 cases of NSCLC, IHC showed 32 cases with ALK (D5F3 expression, the expression rate was 27.8%; ARMS showed 27 cases with EML4-ALK fusion gene mutation, the mutation detection rate was 23.5%; 53 cases were detected with EGFR mutation, the mutation rate was 46%. While FISH showed 23 cases with EML4-ALK fusion gene mutation, the detection rate was 20%, slightly lower than the ARMS detection results, suggesting that ARMS more sensitive. Conclusion The application of IHC, ARMS fluorescence quantitative PCR and FISH technology can make a rapid and accurate evaluation of EML4-ALK gene fusion.

  14. Determining the contribution of NPM1 heterozygosity to NPM-ALK-induced lymphomagenesis.

    Science.gov (United States)

    Mduff, Fiona K E; Hook, C Elizabeth; Tooze, Reuben M; Huntly, Brian J; Pandolfi, Pier Paolo; Turner, Suzanne D

    2011-09-01

    Heterozygous expression of Nucleophosmin (NPM1) predisposes to hematological malignancies in the mouse and cooperates with Myc in lymphomagenesis. NPM1 is therefore regarded as a haploinsufficient tumor suppressor. Heterozygous loss of NPM1 occurs as a result of the t(2;5), which generates the oncogenic fusion tyrosine kinase, NPM-anaplastic lymphoma kinase (ALK), a molecule underlying the pathogenesis of anaplastic large cell lymphoma (ALCL). Given the aforementioned role of NPM1 as a tumor suppressor, we hypothesized that NPM1 heterozygosity would cooperate with NPM-ALK in lymphomagenesis. In the event, we observed no difference in tumor latency, incidence or phenotype in NPM-ALK-transgenic mice heterozygous for NPM1 relative to transgenic mice expressing both NPM1 alleles. We propose that although the t(2;5) simultaneously reduces NPM1 allelic dosage and creates the NPM-ALK fusion protein, the two events do not cooperate in the pathogenesis of ALCL in our mouse model. These data indicate that a tumor-suppressive role for NPM1 may depend on cellular and/or genetic context.

  15. Atractylodin Inhibits Interleukin-6 by Blocking NPM-ALK Activation and MAPKs in HMC-1.

    Science.gov (United States)

    Chae, Hee-Sung; Kim, Young-Mi; Chin, Young-Won

    2016-09-02

    Atractylodin is one of the major constituents of the rhizome of Atractylodes lancea, which is widely used in Korean traditional medicine as a remedy for the treatment of gastritis and gastric ulcers. Despite of a major constituent of widely used botanical to treat inflammatory responses little is known about anti-inflammatory effect of atractylodin in the human mast cell (HMC-1). Hence, we evaluated the effect of atractylodin on the release of IL-6, the involvement of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) and mitogen-activated protein kinases (MAPKs) in phorbol-12-myristate-13-acetate and A23187-induced HMC-1. In addition, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), phospholipase C (PLC) gamma 1, and AKT phosphorylation relevant to NPM-ALK signal pathway were assessed. IL-6 levels in the HMC-1 stimulated by phorbol-12-myristate-13-acetate and A23187 were apparently decreased by the treatment of atractylodin. Concurrently, atractylodin not only inhibited the phosphorylation of NPM-ALK, but also suppressed the phosphorylation of JAK2, STAT3, PLC gamma 1, and AKT. Furthermore, the activated mitogen-activated protein kinases (MAPKs) by phorbol-12-myristate-13-acetate and A23187 were inhibited by atractylodin. These results suggested that atractylodin might have a potential regulatory effect on inflammatory mediator expression through blockade of both the phosphorylation of MAPKs and the NPM-ALK signaling pathway.

  16. Atractylodin Inhibits Interleukin-6 by Blocking NPM-ALK Activation and MAPKs in HMC-1

    Directory of Open Access Journals (Sweden)

    Hee-Sung Chae

    2016-09-01

    Full Text Available Atractylodin is one of the major constituents of the rhizome of Atractylodes lancea, which is widely used in Korean traditional medicine as a remedy for the treatment of gastritis and gastric ulcers. Despite of a major constituent of widely used botanical to treat inflammatory responses little is known about anti-inflammatory effect of atractylodin in the human mast cell (HMC-1. Hence, we evaluated the effect of atractylodin on the release of IL-6, the involvement of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK and mitogen-activated protein kinases (MAPKs in phorbol-12-myristate-13-acetate and A23187-induced HMC-1. In addition, Janus kinase 2 (JAK2, signal transducer and activator of transcription 3 (STAT3, phospholipase C (PLC gamma 1, and AKT phosphorylation relevant to NPM-ALK signal pathway were assessed. IL-6 levels in the HMC-1 stimulated by phorbol-12-myristate-13-acetate and A23187 were apparently decreased by the treatment of atractylodin. Concurrently, atractylodin not only inhibited the phosphorylation of NPM-ALK, but also suppressed the phosphorylation of JAK2, STAT3, PLC gamma 1, and AKT. Furthermore, the activated mitogen-activated protein kinases (MAPKs by phorbol-12-myristate-13-acetate and A23187 were inhibited by atractylodin. These results suggested that atractylodin might have a potential regulatory effect on inflammatory mediator expression through blockade of both the phosphorylation of MAPKs and the NPM-ALK signaling pathway.

  17. 非小细胞肺癌中EML4-ALK融合基因的生物学特性及其治疗%Biological characteristics and therapeutic application of EML4-ALK fusion gene in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    杨彦卓; 潘乐康; 安广宇

    2012-01-01

    在非小细胞肺癌(non-small cell lung cancer,NSCLC)中已发现棘皮动物微管相关蛋白样4(echinoderm microtubule-associated protein-like 4,EML4)和间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)的融合基因.在不吸烟的NSCLC患者中大多可检测出EML4-ALK,其具有独特的病理学特征.EML4-ALK在体内外均有致癌性.ALK抑制剂(crizotinib)在EML4-ALK阳性的NSCLC患者中已取得较好的治疗效果.本综述重点阐述NSCLC中EML4-ALK的生物学特性、临床特征和治疗.%The fusion gene between echinoderm EMLA (microtubule-associated protein-like 4) and ALK (anaplastic lymphoma kinase) has been identified in non-small cell lung cancer (NSCLC). EML4-ALK is most commonly detected in never smokers with NSCLC and has unique pathologic features. EML4-ALK is oncogenic both in vitro and in vitro. ALK inhibitor (crizotinib) has demonstrated a remarkable clinical efficacy in EML4-ALK-positive NSCLC patients. This review emphasizes the biological and clinical characteristics and the therapeutic application of EML4-ALK in NSCLC.

  18. Clinical and laboratory characteristics of systemic anaplastic large cell lymphoma in Chinese patients

    Directory of Open Access Journals (Sweden)

    Wang Yan-Fang

    2012-07-01

    Full Text Available Abstract Background Systemic anaplastic large cell lymphoma (S-ALCL is a rare disease with a highly variable prognosis and no standard chemotherapy regimen. Anaplastic lymphoma kinase (ALK has been reported as an important prognostic factor correlated with S-ALCL in many but not all studies. In our study, we retrospectively analyzed 92 patients with S-ALCL from the Peking University Lymphoma Center for clinical and molecular prognostic factors to make clear the role of ALK and other prognostic factors in Han Chinese S-ALCL. Results The majority of Chinese S-ALCL patients were young male patients (median age 26, male/female ratio 1.7 and the median age was younger than previous reports regardless of ALK expression status. The only statistically significant different clinical characteristic in S-ALCL between ALK positive (ALK+ and ALK negative (ALK- was age, with a younger median age of 22 for ALK+ compared with 30 for ALK-. However, when pediatric patients (≤18 were excluded, there was no age difference between ALK+ and ALK-. The groups did not differ in the proportion of males, those with clinical stage III/IV (49 vs 51% or those with extranodal disease (53 vs 59%. Of 73 evaluable patients, the 3-year and 5-year survival rates were 60% and 47%, respectively. Univariate analysis showed that three factors: advanced stage III/IV, lack of expression of ALK, and high Ki-67 expression, were associated with treatment failure in patients with S-ALCL. However, ALK expression correlated with improved survival only in patients younger than 14 years, while not in adult patients. In multivariate analysis, only clinical stage was an independent prognostic factor for survival. Expressions of Wilms tumor 1 (WT1 and B-cell lymphoma 2 protein (BCL-2 correlated with the expression of ALK, but they did not have prognostic significance. High Ki-67 expression was also a poor prognostic factor. Conclusions Our results show that ALK expression alone is not

  19. Anaplastic lymphoma kinase gene alteration in gastric signet ring cell carcinoma%间变性淋巴瘤激酶融合基因在胃印戒细胞癌中的表达

    Institute of Scientific and Technical Information of China (English)

    赵瑞华; 姜文静; 张伟杰; 周亚楠; 宗红

    2016-01-01

    目的 观察间变性淋巴瘤激酶(ALK)融合基因在胃印戒细胞癌患者中的表达,探讨ALK融合基因与胃癌临床病理的关系.方法 搜集177例我院病理检查确诊的胃印戒细胞癌患者的组织标本,采用免疫组织化学染色(IHC)法观察ALK蛋白的表达.随后,针对ALK蛋白阳性的病理标本,采用荧光原位杂交技术(FISH)验证其ALK基因重排.结果 IHC显示177例胃印戒细胞癌中4例(2.3%)ALK蛋白表达阳性.4例ALK蛋白表达阳性的患者FISH检测均为阳性.结论 IHC及FISH为检测胃印戒细胞癌ALK表达的可靠方法,ALK阳性的胃印戒细胞癌患者的肿瘤浸润性可能更强,确诊时淋巴结阳性率高,人类表皮生长因子受体-2 (HER-2)多为阴性.%Objective To investigate the frequency of anaplastic lymphoma kinase (ALK) alterations in patients with gastric signet ring cell carcinoma (SRC) and the correlations between ALK alterations and the clinicopathological features.Methods The expression of ALK protein was determined in paraffin-embedded tissue specimens (FFPE) from 177 pathologically confirmed SRC patients by Ventana immunohistochemistry (IHC).The patients with positive ALK detected by IHC were assayed in ALK rearrangement by fluorescence in situ hybridization (FISH).Results We assessed 4 of 177 cases (2.3%) as positive by IHC.Three of the 4 patients had T4 tumors and positive nodal status,and rest one had metastasis.All of them were human epidermalgrowth factor receptor-2 (HER-2) negative.All of the 4 patients were positive for ALK rearrangement using the standard criteria of FISH.Conclusion Ventana IHC and FISH were both of the reliable approaches in SRC patients.Patients with positive ALK seemed to have deep infiltration and positive lymph nodes and negative HER-2.

  20. Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-GP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2)

    NARCIS (Netherlands)

    Kort, Anita; Sparidans, Rolf; Wagenaar, Els; Beijnen, Jacob; Schinkel, Alfred H.

    2015-01-01

    We aimed to clarify the roles of the multidrug transporters ABCB1 and ABCG2 in oral availability and brain accumulation of ceritinib, an oral anaplastic lymphoma kinase (ALK) inhibitor used to treat metastatic non-small cell lung cancer (NSCLC) after progression on crizotinib. Importantly, NSCLC is

  1. ALK阳性的弥漫性大B细胞淋巴瘤%ALK-positive diffuse large B cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    张彤; 侯宁; 曲渊; 莫伏根

    2005-01-01

    目的探讨间变性淋巴瘤激酶(ALK)阳性的弥漫性大B细胞淋巴瘤的组织病理形态和免疫组化表达的意义.方法参照WHO 2001年恶性淋巴瘤分类,对222例弥漫性大B细胞淋巴瘤进行形态学观察和免疫组化Polymer两步法标记.结果 6例弥漫性大B细胞淋巴瘤免疫组化ALK阳性表达,阳性反应物质定位于细胞质内,成粗大的颗粒状,1例合并CD30阳性表达,全部表达B系列抗原CD20、CD79α和CD138,4例不表达CD45.组织病理形态:3例为浆母细胞性,2例为免疫母细胞性伴浆细胞样分化,1例为间变性. 结论 ALK阳性的弥漫性大B细胞淋巴瘤是组织形态和免疫表型独特的变异类型,与CLTC-ALK基因易位和NPM-ALK融合基因易位有关,其分子遗传学的异质性不同于以往的认识.

  2. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui-Yong [Shandong University of Technology, Zibo 255049 (China); Ji, Feng-Qin, E-mail: fengqinji@mail.hzau.edu.cn [National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070 (China)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  3. Jeb/Alk signalling regulates the Lame duck GLI family transcription factor in the Drosophila visceral mesoderm.

    Science.gov (United States)

    Popichenko, Dmitry; Hugosson, Fredrik; Sjögren, Camilla; Dogru, Murat; Yamazaki, Yasuo; Wolfstetter, Georg; Schönherr, Christina; Fallah, Mahsa; Hallberg, Bengt; Nguyen, Hanh; Palmer, Ruth H

    2013-08-01

    The Jelly belly (Jeb)/Anaplastic Lymphoma Kinase (Alk) signalling pathway regulates myoblast fusion in the circular visceral mesoderm (VM) of Drosophila embryos via specification of founder cells. However, only a limited number of target molecules for this pathway are described. We have investigated the role of the Lame Duck (Lmd) transcription factor in VM development in relationship to Jeb/Alk signal transduction. We show that Alk signalling negatively regulates Lmd activity post-transcriptionally through the MEK/MAPK (ERK) cascade resulting in a relocalisation of Lmd protein from the nucleus to cytoplasm. It has previously been shown that downregulation of Lmd protein is necessary for the correct specification of founder cells. In the visceral mesoderm of lmd mutant embryos, fusion-competent myoblasts seem to be converted to 'founder-like' cells that are still able to build a gut musculature even in the absence of fusion. The ability of Alk signalling to downregulate Lmd protein requires the N-terminal 140 amino acids, as a Lmd(141-866) mutant remains nuclear in the presence of active ALK and is able to drive robust expression of the Lmd downstream target Vrp1 in the developing VM. Our results suggest that Lmd is a target of Jeb/Alk signalling in the VM of Drosophila embryos.

  4. L1198F Mutation Resensitizes Crizotinib to ALK by Altering the Conformation of Inhibitor and ATP Binding Sites.

    Science.gov (United States)

    Li, Jian; Sun, Rong; Wu, Yuehong; Song, Mingzhu; Li, Jia; Yang, Qianye; Chen, Xiaoyi; Bao, Jinku; Zhao, Qi

    2017-02-24

    The efficacy of anaplastic lymphoma kinase (ALK) positive non-small-cell lung cancer (NSCLC) treatment with small molecule inhibitors is greatly challenged by acquired resistance. A recent study reported the newest generation inhibitor resistant mutation L1198F led to the resensitization to crizotinib, which is the first Food and Drug Administration (FDA) approved drug for the treatment of ALK-positive NSCLC. It is of great importance to understand how this extremely rare event occurred for the purpose of overcoming the acquired resistance of such inhibitors. In this study, we exploited molecular dynamics (MD) simulation to dissect the molecular mechanisms. Our MD results revealed that L1198F mutation of ALK resulted in the conformational change at the inhibitor site and altered the binding affinity of ALK to crizotinib and lorlatinib. L1198F mutation also affected the autoactivation of ALK as supported by the identification of His1124 and Tyr1278 as critical amino acids involved in ATP binding and phosphorylation. Our findings are valuable for designing more specific and potent inhibitors for the treatment of ALK-positive NSCLC and other types of cancer.

  5. L1198F Mutation Resensitizes Crizotinib to ALK by Altering the Conformation of Inhibitor and ATP Binding Sites

    Directory of Open Access Journals (Sweden)

    Jian Li

    2017-02-01

    Full Text Available The efficacy of anaplastic lymphoma kinase (ALK positive non-small-cell lung cancer (NSCLC treatment with small molecule inhibitors is greatly challenged by acquired resistance. A recent study reported the newest generation inhibitor resistant mutation L1198F led to the resensitization to crizotinib, which is the first Food and Drug Administration (FDA approved drug for the treatment of ALK-positive NSCLC. It is of great importance to understand how this extremely rare event occurred for the purpose of overcoming the acquired resistance of such inhibitors. In this study, we exploited molecular dynamics (MD simulation to dissect the molecular mechanisms. Our MD results revealed that L1198F mutation of ALK resulted in the conformational change at the inhibitor site and altered the binding affinity of ALK to crizotinib and lorlatinib. L1198F mutation also affected the autoactivation of ALK as supported by the identification of His1124 and Tyr1278 as critical amino acids involved in ATP binding and phosphorylation. Our findings are valuable for designing more specific and potent inhibitors for the treatment of ALK-positive NSCLC and other types of cancer.

  6. Analysis of human T-cell lymphotropic virus in CD25+ anaplastic large cell lymphoma in children.

    Science.gov (United States)

    Gualco, Gabriela; Chioato, Lucimara; Weiss, Lawrence M; Harrington, William J; Bacchi, Carlos E

    2009-07-01

    Anaplastic large cell lymphoma (ALCL) is recognized as 2 distinct diseases: anaplastic lymphoma kinase (ALK)+ ALCL and ALK- ALCL. ALK+ ALCL occurs in younger patients and has a better prognosis. Human T-cell lymphotropic virus (HTLV-1) is linked to the development of adult T-cell leukemia/lymphoma (ATLL), which frequently expresses CD25. CD25 is significantly expressed in childhood ALCL. In Brazil, HTLV-1 infection is endemic, and vertical transmission is responsible for spread to children. Of HTLV-1 carriers, 90% or more remain asymptomatic. Some cases of adult HTLV-1-related lymphomas have characteristics of ALCL but are considered CD30+ ATLL subtypes. No similar cases have been described in children. We analyzed 33 cases of pediatric ALCL, CD25+ and CD25-, for proviral HTLV-1 DNA. All cases corresponded to the common histologic ALCL type and were CD30+ in virtually all neoplastic cells. ALK expression was observed in 31 (94%) of 33 cases; CD25 was positive in 27 (82%), including 1 ALK- ALCL case. There was a strong positive correlation between ALK and CD25 expression. None of the cases showed proviral HTLV-1 DNA. ALCL in children has no relationship with HTLV-1; the frequent CD25 expression must be explained by a mechanism different from that in ATLL.

  7. Comparison of IHC, FISH and RT-PCR methods for detection of ALK rearrangements in 312 non-small cell lung cancer patients in Taiwan.

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Wu

    Full Text Available BACKGROUND: Recently Echinoderm microtubule-associated protein-like 4- anaplastic lymphoma kinase (EML4-ALK fusion gene has become an important biomarker for ALK tyrosine kinase inhibitor (crizotinib treatment in NSCLC. However, the best detection method and the significance of EML4-ALK variant types remain uncertain. METHODS: Reverse transcriptase-polymerase chain reaction (RT-PCR, fluorescence in Situ hybridization (FISH and Immunohistochemical (IHC stain were performed on tumor tissues of 312 NSCLC patients for detection of ALK rearrangements. Mutation analyses for EGFR and KRAS genes were also performed. RESULTS: Thirteen of the 312 patients (4.17% had ALK rearrangements detected by RT-PCR. If RT-PCR data was used as the gold standard, FISH tests had a low sensitivity (58.33%, but very good specificity (99.32%. IHC stain had better sensitivity (91.67% than FISH, but lower specificity (79.52%, when the cut off was IHC2+. All of the 8 patients with high abundance of EML4-ALK positive cells in tumor tissues (assessed by the signal intensities of the RT-PCR product, were also have high expression of ALK protein (IHC3+, and positive for FISH, except one failed in FISH. Variants 3a+3b (4/5, 80% of EML4-ALK fusion gene were more common to have high abundance of EML4-ALK positive cells in tumor tissues than variant 1 (1/3, 33.3%. Meta-analysis of the published data of 2273 NSCLC patients revealed that variant 3 (23/44, 52.3% was the most common type in Chinese population, while variant 1 (28/37, 75.7% was most common in Caucasian. CONCLUSIONS: Among the three detection methods, RT-PCR could detect not only the presence of EML4-ALK fusion gene and their variant types, but also the abundance of EML4-ALK positive cells in NSCLC tumor tissues. The latter two factors might affect the treatment response to anti-ALK inhibitor. Including RT-PCR as a diagnostic test for ALK inhibitor treatment in the prospective clinical trials is recommended.

  8. CTOP/ITE/MTX Compared With CHOP as the First-line Therapy for Newly Diagnosed Young Patients With T Cell Lymphoma

    Science.gov (United States)

    2013-11-24

    ALK-negative Anaplastic Large Cell Lymphoma; Peripherial T Cell Lymphoma,Not Otherwise Specified; Angioimmunoblastic T Cell Lymphoma; Enteropathy Associated T Cell Lymphoma; Hepatosplenic T Cell Lymphoma; Subcutaneous Panniculitis Like T Cell Lymphoma

  9. PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma.

    Science.gov (United States)

    Boi, Michela; Rinaldi, Andrea; Kwee, Ivo; Bonetti, Paola; Todaro, Maria; Tabbò, Fabrizio; Piva, Roberto; Rancoita, Paola M V; Matolcsy, András; Timar, Botond; Tousseyn, Thomas; Rodríguez-Pinilla, Socorro Maria; Piris, Miguel A; Beà, Sílvia; Campo, Elias; Bhagat, Govind; Swerdlow, Steven H; Rosenwald, Andreas; Ponzoni, Maurilio; Young, Ken H; Piccaluga, Pier Paolo; Dummer, Reinhard; Pileri, Stefano; Zucca, Emanuele; Inghirami, Giorgio; Bertoni, Francesco

    2013-10-10

    Anaplastic large cell lymphoma (ALCL) is a mature T-cell lymphoma that can present as a systemic or primary cutaneous disease. Systemic ALCL represents 2% to 5% of adult lymphoma but up to 30% of all pediatric cases. Two subtypes of systemic ALCL are currently recognized on the basis of the presence of a translocation involving the anaplastic lymphoma kinase ALK gene. Despite considerable progress, several questions remain open regarding the pathogenesis of both ALCL subtypes. To investigate the molecular pathogenesis and to assess the relationship between the ALK(+) and ALK(-) ALCL subtypes, we performed a genome-wide DNA profiling using high-density, single nucleotide polymorphism arrays on a series of 64 cases and 7 cell lines. The commonest lesions were losses at 17p13 and at 6q21, encompassing the TP53 and PRDM1 genes, respectively. The latter gene, coding for BLIMP1, was inactivated by multiple mechanisms, more frequently, but not exclusively, in ALK(-)ALCL. In vitro and in vivo experiments showed that that PRDM1 is a tumor suppressor gene in ALCL models, likely acting as an antiapoptotic agent. Losses of TP53 and/or PRDM1 were present in 52% of ALK(-)ALCL, and in 29% of all ALCL cases with a clinical implication.

  10. Ectopic expression of B-lymphoid kinase in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn; Vetter-Kauczok, Claudia S; Woetmann, Anders;

    2009-01-01

    B-lymphoid kinase (Blk) is exclusively expressed in B cells and thymocytes. Interestingly, transgenic expression of a constitutively active form of Blk in the T-cell lineage of mice results in the development of T-lymphoid lymphomas. Here, we demonstrate nuclear factor-kappa B (NF......-kappaB)-mediated ectopic expression of Blk in malignant T-cell lines established from patients with cutaneous T-cell lymphoma (CTCL). Importantly, Blk is also expressed in situ in lesional tissue specimens from 26 of 31 patients with CTCL. Already in early disease the majority of epidermotropic T cells express Blk...... phosphorylated in malignant CTCL cell lines and spontaneously active in kinase assays. Furthermore, targeting Blk activity and expression by Src kinase inhibitors and small interfering RNA (siRNA) inhibit the proliferation of the malignant T cells. In conclusion, this is the first report of Blk expression...

  11. Bruton's tyrosine kinase (Btk) is a useful marker for Hodgkin and B cell non-Hodgkin lymphoma.

    Science.gov (United States)

    Fernández-Vega, Iván; Quirós, Luis M; Santos-Juanes, Jorge; Pane-Foix, María; Marafioti, Teresa

    2015-02-01

    Bruton's tyrosine kinase (Btk) is a member of the Tec family of protein tyrosine kinases involved in B cell development and proliferation in neoplastic human lymphoid tissues. We used immunohistochemistry to evaluate a polyclonal anti-Btk antibody on formalin-fixed paraffin-embedded tissue blocks. The tested samples included normal lymphoid tissues, tissue samples of 395 different lymphomas and 14 malignant lymphoid cell lines. Btk was expressed more often in B cell lymphomas than in T cell lymphomas. This correlated well with the results obtained on B cell lymphoma cell lines, which strongly expressed Btk, in contrast to T cell lymphoma cell lines. More than 60% of myelomas expressed Btk. Among Hodgkin lymphomas, the nodular lymphocyte predominant variant was more often positive (14/16) than the classical variant (6/27). Only one out of three Hodgkin lymphoma-derived cell lines showed a few atypical large cells expressing Btk. Btk represents a useful marker to identify B cell non-Hodgkin lymphomas. Furthermore, Btk might help to distinguish the nodular lymphocyte predominant variant of Hodgkin lymphomas from the classical form. Finally, in view of the recently discovered therapeutic potential of Btk inhibitors in lymphoma, we report the pattern of expression of Btk in a large collection of different types of lymphoma.

  12. Multi-gene epigenetic silencing of tumor suppressor genes in T-cell lymphoma cells; delayed expression of the p16 protein upon reversal of the silencing

    DEFF Research Database (Denmark)

    Nagasawa, T; Zhang, Q; Raghunath, P N

    2006-01-01

    To understand better T-cell lymphomagenesis, we examined promoter CpG methylation and mRNA expression of closely related genes encoding p16, p15, and p14 tumor suppressor genes in cultured malignant T-cells that were derived from cutaneous, adult type, and anaplastic lymphoma kinase (ALK)-express...

  13. 神经母细胞瘤中间变性淋巴瘤激酶基因改变%Genetic aberration of ALK in neuroblastoma

    Institute of Scientific and Technical Information of China (English)

    殷敏智; 陈洁枫; 沈萍; 马靖; 张忠德

    2014-01-01

    目的:观察国内儿童散发性神经母细胞瘤( neuroblastoma, NB)中间变性淋巴瘤激酶( anaplastic lymphoma kinase, ALK)的表达,探讨其在NB发生、发展中的作用。方法应用荧光原位杂交法( fluorescence in situ hybridization, FISH)检测56例ALK蛋白异常表达的NB中ALK基因的表达。结果 FISH检测显示56例NB中ALK基因46例为正常,10例为异常,其中9例为ALK增多(16%),1例为扩增(1.8%)。结论 ALK基因是NB一个主要的易感基因,国内儿童ALK基因异常的发生率与国外文献报道相近,其有可能成为治疗NB的主要靶点之一。%Purpose To investigate the genetic changes of ALK gene in sporadic neuroblastoma in China, and to explore its role in neuroblastoma. Methods Total 56 cases of NB with overexpressed ALK protein were studied by fluorescence in situ hybridization ( FISH) , using interphase Vysis LSI ALK dual-color and break apart rearrangement probes. Literature under the subject was searched through PubMed. Results Of the 56 cases, ALK gain was found in 9 (16%) cases, ALK amplification was found in 1 (1. 8%) case only. No alterations of ALK were detected in the remaining 46 cases. Conclusion As a major predisposition gene as well as a poten-tial therapeutic target for neuroblastoma, the frequency of aberrant copy numbers of ALK gene in Chinese NB patients is closely similar with previously published results.

  14. A New Target in Non-small Cell Lung Cancer: EML4-ALK Fusion Gene%非小细胞肺癌治疗的新靶点:EML4-ALK融合基因

    Institute of Scientific and Technical Information of China (English)

    王慧娟; 袁静

    2011-01-01

    It was only 3 years ago that the fusion gene between echinoderm microtubule-associated protein-like4 (EML4) and anaplastic lymphoma kinase (ALK) has been identified in a subset of non-small cell lung cancer (NSCLC).EML4-ALK is most often detected in never smokers with lung adenocarcinoma and has unique pathologic features.EML4ALK fusion gene is oncogenic, which could be suppressed by ALK-inhibitor through blocking the downstream signaling passway of EML4-ALK.This review will focus on the molecular structure, function, biology, detection method and the diagnostic and therapeutic meaning of EML4-ALK of lung cancer.%3年前棘皮动物微管相关类蛋白4 (echinoderm microtubule-associated protein-like4,EML4)与间变性淋巴瘤激酶 (anaplastic lymphoma kinase,ALK)融合基因被发现存在于部分非小细胞肺癌(non-small cell lung cancer,NSCLC)中.该融合基因常见于不吸烟的肺腺癌患者,有其独特的病理学特征,可以诱导肿瘤生成.ALK抑制剂能够作用于该基因的下游信号传导通路并拮抗其促肿瘤生成活性.本文旨在介绍EML4-ALK基因的结构、功能、生物学特征、检测方法 及其在肺癌诊断治疗中的意义.

  15. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN

    Directory of Open Access Journals (Sweden)

    J. Guan

    2016-09-01

    Full Text Available The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori, has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo. In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALKF1174L/MYCN. Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients.

  16. Advances in understanding the pathogenesis of systemic anaplastic large cell lymphomas.

    Science.gov (United States)

    Boi, Michela; Zucca, Emanuele; Inghirami, Giorgio; Bertoni, Francesco

    2015-03-01

    The currently used 2008 World Health Organization classification recognizes two types of systemic anaplastic large T cell lymphoma according to ALK protein expression in tumour cells. First, the 'anaplastic large cell lymphoma, ALK positive' (ALK(+) ALCL) that is characterized by the presence of ALK gene rearrangements and consequent ALK protein expression, and, second, the 'anaplastic large cell lymphoma, ALK negative' (ALK(-) ALCL) that is a provisional entity lacking ALK protein expression but cannot be distinguished morphologically from ALK(+) ALCL. In this review we summarize the current knowledge on the genetic lesions and biological features that underlie the pathogenesis of ALK(+) and the ALK(-) ALCL and that can lead to the use of targeted anti-cancer agents.

  17. Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn; Easterly,Evangeline; Barcellos-Hoff, Mary Helen; Yingling, Jonathan M.; Zent, Roy; Arteaga, Carlos L.

    2005-01-02

    The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3. Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in

  18. Trials to overcome drug resistance to EGFR and ALK targeted therapies - past, present and future

    Directory of Open Access Journals (Sweden)

    Glenwood Dillon Goss

    2014-08-01

    Full Text Available Molecularly targeted agents (MTAs are changing the therapeutic landscape in advanced non-small cell lung cancer (NSCLC. Since the discovery of sensitizing mutations in the epidermal growth factor receptor (EGFR and anaplastic lymphoma kinase (ALK domain, clinical investigations have focused on optimizing the efficacy of EGFR and ALK tyrosine kinase inhibitors by addressing therapeutic resistance that commonly develops within a year of treatment initiation. Here, we review the clinical trials of novel therapies and combination regimens that have been undertaken in response to our evolving understanding of the mechanisms of resistance to therapy. The aim of these trials was to enhance the therapeutic efficacy of targeted therapies by improving targeted blockade and/or inhibiting parallel or compensatory signalling pathways. We have documented the sequential conduct of EGFR an ALK biomarker driven trials in order to highlight particular pitfalls and successes which should be considered in the design of future trials. Although there remain significant challenges, substantial gains have been made in our understanding of cellular resistance. This knowledge will drive the design of future trials, to the benefit of lung cancer patients.

  19. Clinical and pathological response to pre-operative crizotinib in a patient with ALK-translocated NSCLC

    Directory of Open Access Journals (Sweden)

    Catania C

    2016-11-01

    Full Text Available A 65-year-old non-smoker female was diagnosed with lung adenocarcinoma clinically staged as IV M1a because of bilateral pulmonary lesions. After a differential response to chemotherapy, further analyses allowed us to re-stage the tumor as a synchronous bilateral local disease with unilateral ALK (Anaplastic lymphoma kinase rearrangement. Combined treatment with chemotherapy, crizotinib and surgery, with clinical and pathological tumor-response to pre-operative crizotinib, obtained complete tumors remission, and the patient is still disease free after 11 months since the last tumor resection. As far as we know this is the first report of a clinical and pathological regression of an early-stage ALK-rearranged NSCLC treated with neo-adjuvant crizotinib. This report supports further studies to assess activity and efficacy of ALK–inhibitors in neoadjuvant setting.

  20. 免疫组化染色及FISH法检测肺鳞状细胞癌中ALK蛋白的表达%Detection of ALK protein in lung squamous cell carcinoma with immunohistochemistry and FISH

    Institute of Scientific and Technical Information of China (English)

    王建东; 余波; 孙绪; 王璇; 王海; 马捷; 周晓军; 石群立

    2014-01-01

    Purpose To investigate the occurrence of echinoderm microtubule-associated protein-like 4 (EML4) gene and the anaplas-tic lymphoma kinase (ALK) gene rearrangements in lung squamous cell carcinomas (SCC), and to provide with a test for targeted therapy of SCC. Methods In this study, we analyzed ALK protein expression with a specific rabbit monoclonal Ig antibody ( D5F3 clone) in 219 cases of lung SCC. The positive cases were confirmed with ALK fluorescence in situ hybridization ( FISH) . Results 4 out of 219 (1. 8%) cases of lung SCC were ALK positive detected by immunohistochemistry (IHC) staining, which were confirmed by ALK FISH. Conclusions There are SCC having EML4-ALK gene rearrangement. The response of SCC patients with ALK expression to targeted therapy of Crizotinib should be explored. Strong positive expression of ALK protein can be interpreted as EML4-ALK gene rearrangement.%目的:探讨棘皮类微管蛋白4(echinoderm microtubule-associated protein-like 4, EML4)与间变性淋巴瘤激酶基因(ana-plastic lymphoma kinase, ALK)融合在肺鳞状细胞癌中的发生率,为进一步开展靶向治疗提供参考。方法采用高度特异性和敏感性的ALK抗体(D5F3)对219例肺鳞状细胞癌石蜡包埋组织标本进行免疫组化染色,并对阳性标本行EML4-ALK荧光原位杂交技术(fluorescence in situ hybridization, FISH)检测。结果免疫组化染色检出ALK强阳性标本4例(1.8%,4/219)、中等强度3例和弱阳性6例。 FISH检测确认ALK强阳性标本存在EML4-ALK基因融合,中等和弱阳性标本为假阳性。结论肺鳞状细胞癌中存在少量EML4-ALK基因融合,其是否对Crizotinib治疗敏感亟需进行临床研究;免疫组化检测ALK蛋白强阳性才能判断为EML4-ALK基因融合。

  1. Crizotinib Treatment in a Lung Adenocarcinoma Harboring ALK Fusion Gene with Bone Marrow Metastasis: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Xiaoyan LI

    2015-02-01

    Full Text Available Background and objective Distant metastasis was common in lung cancer, especially patients with bone marrow metastasis had poor prognosis and there were few effective methods. Crizotinib had been confirmed to be used in anaplastic lymphoma kinase (ALK positive lung adenocarcinoma, but the efficacy in lung cancer with bone marrow metastasis was unknown. In the present study, we reported one case of ALK-positive lung adenocarcinoma with bone marrow matastasis given crizotinib treatment, the safety and efficacy was summarized. Methods ALK fusion was tested by fluorescence in situ hybridization (FISH. Crizotinib was given with dose of 250 mg, bid. Objective response was evaluated by Response Evaluation Criteriation in Solid Tumours (RECIST v1.1 and bone marrow response was evaluated by bone marrow puncture and biopsy. Adeverse events were evaluated according to Common Terminology Criteria for Adverse Events (CTC AE v4.0. Results The patient achieved partial response (PR after 6 weeks of crizotinib, especially the objective response of bone marrow metastasis was complete response (CR. The patient stopped crizotinib because of pneumonia. The progression free survival (PFS and overall survival (OS was 20 weeks and 22 weeks respectively. Conclusion Crizotinib could be an effective method for ALK-positive lung cancer with bone marrow metastasis and showed good tolerance.

  2. Interleukin-9 (IL-9) and NPM-ALK each generate mast cell hyperplasia as single 'hit' and cooperate in producing a mastocytosis-like disease in mice.

    Science.gov (United States)

    Merz, Hartmut; Kaehler, Christian; Hoefig, Kai P; Branke, Biggi; Uckert, Wolfgang; Nadrowitz, Roger; Cerny-Reiterer, Sabine; Herrmann, Harald; Feller, Alfred C; Valent, Peter

    2010-06-01

    Mast cell neoplasms are characterized by abnormal growth and focal accumulation of mast cells (MC) in one or more organs. Although several cytokines, including stem cell factor (SCF) and interleukin-9 (IL-9) have been implicated in growth of normal MC, little is known about pro-oncogenic molecules and conditions triggering differentiation and growth of MC far enough to lead to the histopathological picture of overt mastocytosis. The anaplastic lymphoma kinase (ALK) has recently been implicated in growth of neoplastic cells in malignant lymphomas. Here, we describe that transplantation of NPM-ALK-transplanted mouse bone marrow progenitors into lethally irradiated IL-9 transgenic mice not only results in lymphoma-formation, but also in the development of a neoplastic disease exhibiting histopathological features of systemic mastocytosis, including multifocal dense MC-infiltrates, occasionally with devastating growth in visceral organs. Transplantation of NPM-ALK-transduced progenitors into normal mice or maintenance of IL-9-transgenic mice without NPM-ALK each resulted in MC hyperplasia, but not in mastocytosis. Neoplastic MC in mice not only displayed IL-9, but also the IL-9 receptor, and the same was found to hold true for human neoplastic MC. Together, our data show that neoplastic MC express IL-9 receptors, that IL-9 and NPM-ALK upregulate MC-production in vivo, and that both'hits' act in concert to induce a mastocytosis-like disease in mice. These data may have pathogenetic and clinical implications and fit well with the observation that neoplastic MC in advanced SM strongly express NPM and multiple "lymphoid" antigens including CD25 and CD30.

  3. Extrinsic apoptotic pathways: A new potential "Target" for more sufficient therapy in a case of cutaneous anaplastic large CD30+ ALK-T--cell lymphoma

    Directory of Open Access Journals (Sweden)

    Georgi Tchernev

    2011-01-01

    Full Text Available The primary cutaneous T-cell lymphomas (CTCL represent a clonal T-lymphocyte proliferation infiltrating the skin. CD30+ T-cell lymphomas present clinically as nodules with a diameter between 1 and 15 cm, mostly in elderly patients. The role of the CD30 molecule in patients suffering from T-cell lymphomas is not completely clear yet. The signal transduction pathway which includes CD30 seems to play a key role in tumor progression. In certain forms of T-cellular lymphomas, the interaction between CD30/CD30-ligand is able to provoke apoptosis of the "tumor lymphocytes". The modern conceptions of the pathogenesis of T-cell lymphomas include disorders in the pathways involved in programmed cellular death and disregulation in the expression of certain of its regulatory molecules. We are presenting an unusual case of a female patient with a primary cutaneous form of CD30 + /ALK− anaplastic large T-cell lymphoma. Upon the introduction of systemic PUVA, (psoralen plus ultraviolet light radiation combined with beam therapy, a complete remission could be noticed. Eight months later, we observed a local recurrence, which was overcome by CHOP chemotherapy (Cyclophosphamide, Hydroxydaunorubicin (Doxorubicin, Vincristin (Oncovin®, Predniso(lon. Six months later, new cutaneous lesions had been noticed again. A new therapeutic hope for the patients with anaplastic large CTCL is actually based on the influence of the activity of the different apoptotic pathways. Death ligands, including tumor necrosis factor (TNF-α, CD95L/FasL, and TRAIL, mediate also some important safeguard mechanisms against tumor growth in patients with CD30 + cutaneous anaplastic large T-cell lymphomas and critically contribute to lymphocyte homeostasis.

  4. Correction: Bruton's tyrosine kinase inhibitors in chronic lymphocytic leukemia and lymphoma.

    Science.gov (United States)

    2016-09-01

    An article in the July 2016 issue, "Bruton's tyrosine kinase inhibitors in chronic lymphocytic leukemia and lymphoma" by Gaurav Varma, MSPH, Tyler P. Johnson, MD, and Ranjana H. Advani, MD, described ONO/GS-4059 as a "reversible" inhibitor of BTK when it is in fact an "irreversible" inhibitor. We have made the correction to pages 546 and 552 of the online version at www.hematologyandoncology.net. Many thanks to an astute reader for pointing out the error. This corrects the article pmid:27379948.

  5. ALK evaluation in the world of multiplex testing: Network Genomic Medicine (NGM): the Cologne model for implementing personalised oncology.

    Science.gov (United States)

    Heydt, C; Kostenko, A; Merkelbach-Bruse, S; Wolf, J; Büttner, R

    2016-09-01

    Comprehensive molecular genotyping of lung cancers has become a key requirement for guiding therapeutic decisions. As a paradigm model of implementing next-generation comprehensive diagnostics, Network Genomic Medicine (NGM) has established central diagnostic and clinical trial platforms for centralised testing and decentralised personalised treatment in clinical practice. Here, we describe the structures of the NGM network and give a summary of technologies to identify patients with anaplastic lymphoma kinase (ALK) fusion-positive lung adenocarcinomas. As unifying test platforms will become increasingly important for delivering reliable, quick and affordable tests, the NGM diagnostic platform is currently implementing a comprehensive hybrid capture-based parallel sequencing pan-cancer assay.

  6. Recurrence of lung adenocarcinoma after an interval of 15 years revealed by demonstration of the same type of EML4-ALK fusion gene.

    Science.gov (United States)

    Tsukamoto, Yoshitane; Kanamori, Kiyonobu; Watanabe, Takahiro; Mikami, Koji; Ieki, Ryuji; Nakano, Takashi; Kajimoto, Kazuyoshi; Hirota, Seiichi

    2014-12-01

    We carried out an experiment on a 58-year-old man with multiple left lung tumors and swelling of multiple lymph nodes. For clinical staging and therapeutic purposes, bronchoalveolar lavage (BAL) cytology and lung biopsy were performed. The biopsy specimen revealed the left lower lung mass to be immunohistochemically ALK (anaplastic lymphoma kinase)-positive adenocarcinoma. Using the BAL specimen from the left lower lung, EML4 (echinoderm microtubule-associated protein-like 4)-ALK variant 1 fusion gene was detected by reverse transcription-polymerase chain reaction (RT-PCR). His past history showed that he had undergone an operation for lung adenocarcinoma of the right lower lobe 15 years before, and the pathological specimen at that time revealed that the lung adenocarcinoma with pleural invasion and single metastasis of mediastinal lymph node showed a mucinous cribriform pattern and/or signet-ring cell pattern. The typical histology led us to examine the ALK rearrangement in the primary lung cancer and mediastinal metastatic tumor. Immunohistochemistry (IHC) for ALK was positive, and ALK break apart fluorescence in situ hybridization (FISH) showed a positive result. Moreover, RT-PCR using formalin-fixed, paraffin-embedded tissue from the right lung cancer also demonstrated EML4-ALK variant 1 fusion gene. Although there is a possibility that the left lung cancer is de novo one with multiple metastases, detection of the same fusion gene of the very rare EML4-ALK variant 1 in both tumors suggests that the left cancer is a recurrence of the right lung cancer after an interval of 15 years. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Fluorescence in situ hybridization analysis of the ALK gene in 2,045 non-small cell lung cancer patients from North-Western Spain (Galicia).

    Science.gov (United States)

    Sánchez-Ares, María; Cameselle-Teijeiro, José M; Vázquez-Estévez, Sergio; Lázaro-Quintela, Martín; Vázquez-Boquete, Ángel; Afonso-Afonso, Francisco J; Casal-Rubio, Joaquín; González-Piñeiro, Ana L; Rico-Rodríguez, Yolanda; Fírvida-Pérez, José L; Ruíz-Bañobre, Juan; Couso, Elena; Santomé, Lucía; Pérez-Becerra, Raquel; García-Campelo, Rosario; Amenedo, Margarita; Azpitarte-Raposeiras, Cristina; Antúnez, José; Abdulkader, Ihab

    2016-08-01

    Identification of anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements is a standard diagnostic test in patients with advanced non-small cell lung cancer (NSCLC). The current study describes the experience of ALK rearrangement detection of a referral center in the public health care system of Galicia in North-Western Spain. The fluorescence in situ hybridization (FISH) patterns of the ALK gene and the clinical and pathological features of these patients are reported. This study is also of interest for comparative purposes due to the relative geographical isolation of the area, which could have contributed to particular genetic features. A total of 2,045 tissue samples from NSCLC patients were collected between October 2010 and July 2015 and tested for ALK rearrangements by FISH. Examination of 1,686 paraffin-embedded tissue specimens and 395 cytological samples (306 cell block preparations and 53 cytological smears) was conducted, and any associations between the FISH results and clinicopathological features were assessed. The rate of successful evaluation was marginally higher in tissue samples than in cytological samples (92.9% vs. 84.1%); this difference was not significant. ALK rearrangements were identified in 82 patients(4%): 65 (79.3%) in tissue specimens, 15 (18.3%) in cell block samples and 2 (2.4%) in cytological smears. This genetic translocation appeared to be associated with a non-smoking history, younger age, female gender, stage IV and adenocarcinoma histological type. The findings demonstrate that ALK evaluation by FISH is feasible in tissue and cytological samples. The clinical and pathological features of the ALK-positive series of patients are similar to those previously reported in the literature.

  8. Bruton's tyrosine kinase inhibitors in B-cell lymphoma: current experience and future perspectives.

    Science.gov (United States)

    Seiler, T; Dreyling, M

    2017-08-01

    The Bruton tyrosine kinase (BTK) is a central hub in the B cell receptor (BCR) pathway and strongly influences B cell maturation, differentiation and proliferation. Not surprisingly, BTK plays an essential role in the pathogenesis of various B cell lymphomas. Inhibitors of BTK have broadened our therapeutic options in several B cell lymphomas and already are an integral element in the treatment of Mantle Cell Lymphoma (MCL), chronic lymphocytic leukemia (CLL) and Waldenström's marcoglobulinemia. Several second generation BTK inhibitors are in clinical development and might further improve tolerability and efficacy of therapy in advanced stage CLL and MCL. Areas covered: This review illustrates the mechanism of action of BTK inhibitors and provides a comprehensive summary of key clinical trials in the development of BTK inhibitors. Characteristics of second generation BTK-inhibitors are described. Expert opinion: With accumulation of clinical experience after drug approval, longer patient follow-up and larger numbers of treated patients, future development will focus on the identification of intelligent treatment combinations. Individual selection of patients with distinct biologically properties might guide treatment decisions. While BTK inhibitors are moving to earlier treatment lines, the incorporation of these drugs into a comprehensive therapeutic strategy is still difficult to date.

  9. PHOX2B-mediated regulation of ALK expression: in vitro identification of a functional relationship between two genes involved in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Tiziana Bachetti

    Full Text Available BACKGROUND: Neuroblastoma (NB is a severe pediatric tumor originating from neural crest derivatives and accounting for 15% of childhood cancer mortality. The heterogeneous and complex genetic etiology has been confirmed with the identification of mutations in two genes, encoding for the receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK and the transcription factor Paired-like Homeobox 2B (PHOX2B, in a limited proportion of NB patients. Interestingly, these two genes are overexpressed in the great majority of primary NB samples and cell lines. These observations led us to test the hypothesis of a regulatory or functional relationship between ALK and PHOX2B underlying NB pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Following this possibility, we first confirmed a striking correlation between the transcription levels of ALK, PHOX2B and its direct target PHOX2A in a panel of NB cell lines. Then, we manipulated their expression in NB cell lines by siRNA-mediated knock-down and forced over-expression of each gene under analysis. Surprisingly, PHOX2B- and PHOX2A-directed siRNAs efficiently downregulated each other as well as ALK gene and, consistently, the enhanced expression of PHOX2B in NB cells yielded an increment of ALK protein. We finally demonstrated that PHOX2B drives ALK gene transcription by directly binding its promoter, which therefore represents a novel PHOX2B target. CONCLUSIONS/SIGNIFICANCE: These findings provide a compelling explanation of the concurrent involvement of these two genes in NB pathogenesis and are going to foster a better understanding of molecular interactions at the base of the disease. Moreover, this work opens new perspectives for NBs refractory to conventional therapies that may benefit from the design of novel therapeutic RNAi-based approaches for multiple gene targets.

  10. Uncommon features of surgically resected ALK-positive cavitary lung adenocarcinoma: a case report.

    Science.gov (United States)

    Takamori, Shinkichi; Yamaguchi, Masafumi; Taguchi, Kenichi; Edagawa, Makoto; Shimamatsu, Shinichiro; Toyozawa, Ryo; Nosaki, Kaname; Hirai, Fumihiko; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito

    2017-12-01

    Some features found on chest computed tomography (CT), such as central tumor location, large pleural effusion, and the absence of a pleural tail, and a patient age of less than 60 years, have been suggested to be useful in predicting anaplastic lymphoma kinase (ALK) rearrangement in patients with non-small cell lung cancer (NSCLC).A 68-year-old female patient with a history of gynecological treatment was found to have a cavitary mass in the right lower lobe on an annual chest roentgenogram. The tumor was located in the peripheral area with a pleural tail showing no pleural effusion. In addition, two pure ground-glass-opacity nodules (p-GGNs) in the right upper lobe of the lung were detected on consecutive chest CT scans. The patient underwent right lower lobectomy, partial resection of the right upper lobe, and hilar mediastinal lymph node dissection for complete resection of each tumor. The pathological diagnosis was invasive mucinous adenocarcinoma with signet-ring cells for the cavitary mass in the right lower lobe and invasive adenocarcinoma for the rest of the p-GGNs; subcarinal lymph node metastasis was also detected. The ALK rearrangement was detected by fluorescence in situ hybridization from the cavitary mass. The patient underwent four cycles of cisplatin and vinorelbine chemotherapy as standard adjuvant chemotherapy for pStage III NSCLC. The ALK fusion gene status of NSCLC with atypical CT features should also be investigated.

  11. CT-guided aspiration lung biopsy for EGFR and ALK gene mutation analysis of lung cancer

    Science.gov (United States)

    Lian, Weisheng; Ouyang, Yong

    2017-01-01

    The present study investigated the rates of detection and the positive rates of computed tomography (CT)-guided aspiration of lung biopsy for epidermal growth factor receptor (EGFR) gene and anaplastic lymphoma kinase (ALK) gene, and analyzed the relationship between gene mutation and clinical characteristics to improve the rate of related factors of gene detection. The clinical data and CT-guided aspiration biopsy specimen of 250 patients with lung cancer. Data showed that the rate of EGFR gene mutation was 41.2% (103/250) in biopsy specimens of non-small cell lung cancer patients. The rate of EGFR gene mutation of adenocarcinoma (56.6%, P50 was higher. The rate of ALK protein immunohistochemical detection was 87.2%, and the rate of coarse needle biopsy detection was higher than that of the fine needle (91 and 72%, Pneedle biopsy and fine needle biopsy had no difference (P>0.05). The rate of detection was associated with tumor cell number (P0.05). The rate of detection of EGFR and ALK genes was associated with tumor cell number and had no correlation with the proportion of tumor cells. The rate of detection is higher when the number of tumor cells is more than 50. PMID:28521447

  12. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fei [Department of Neurology, Sichuan Medical Science Institute and Sichuan Provincial Hospital, Chengdu 610072 (China); Li, Hongling [Department of Radiotherapy, Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Sun, Yong, E-mail: sunfanqi2010@163.com [Department of Burn and Plastic Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an 223300 (China)

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effect of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.

  13. ABNORMAL PROTEIN TYROSINE KINASES ASSOCIATED WITH HUMAN HAEMATOLOGICAL MALIGNANCIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective: To survey the role of protein tyrosine kinases (PTKs) in the pathogenesis of several hematopoietic malignancies. Methods: By reviewing the published laboratory and clinical studies on PTK-related oncoproteins and their causative role in some leukemias and lymphomas. Results: Protein tyrosine kinases are key participants in signal transduction pathways that regulate cellular growth, activation and differentiations. Aberrant PTK activity resulting from gene mutation (often accompanying chromosome translocation) plays an etiologic role in several clonal hematopoietic malignancies. For example, the PTK product of the BCR-ABL fusion gene resulting from the t (9; 22) translocation exhibits several fold higher tyrosine kinase activity than the product of the ABL gene. Evidence suggests that the BCR-ABL oncoprotein alone is sufficient to case chronic myelogenous leukemia (CML) and other Ph positive acute leukemia. PTK over-activity resulting from chromosomal translocations creating TEL-ABL, TEL-JAK2 and TEL-PDGFR( fusion proteins plays an important role in the pathogenesis of other types of leukemia. Another example occurs in anaplastic large cell lymphoma (ALCL). Experimental and clinical evidences indicate that translocations involving ALK gene on chromosome 2p23, most commonly resulting in an NPM-ALK fusion oncogene, result in constitutive activation of ALK and cause ALCL. This group of lymphomas is now named ALK positive lymphoma or ALKoma. Conclusion: Genetic lesions creating aberrant fusion proteins that result in excessive PTK activity are increasingly being recognized as central to the pathogenesis of hemotopoietic malignancies. These chimeric PTK molecules represent attractive disease-specific targets against which new classes therapeutic agents are being developed.

  14. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.

  15. Anaplastic lymphoma kinase-positive adenocarcinoma of lung:a cytopathologic analysis%间变性淋巴瘤激酶阳性肺腺癌细胞病理学特点初探

    Institute of Scientific and Technical Information of China (English)

    陈颖; 杨文韬; 宋以菊; 曾欢; 张静; 柏乾明; 周晓燕; 平波; 高丽丽; 王彦丽; 桂贤; 张皓; 王龙富; 顾良宏; 冯丽青; 吴佳文

    2015-01-01

    Objective To study the cytomorphologic features of anaplastic lymphoma kinase ( ALK )-rearranged pulmonary adenocarcinoma.Methods The morphologic features in 153 pulmonary adenocarcinoma cytology specimens encountered during the period from September, 2011 to April, 2015 in Shanghai Cancer Hospital were retrospectively reviewed.Fluorescence in-situ hybridization ( FISH) and/or immunohistochemistry ( Ventana D5F3) for ALK gene rearrangement were carried out.The samples studied included 34 pleural effusion specimens, 40 endobronchial ultrasound-guided transbronchial needle aspirates ( EBUS-TBNA) and 79 fine needle aspirates of palpable masses on body surface.Results Thirty-nine cases (25.5%) of ALK-rearranged samples were identified by FISH and/or immunohistochemistry, including 3 cases diagnosed by FISH and 36 cases by both technologies.The median age of the ALK-positive group was 50 years, significantly younger than that of the ALK-negative group (60 years old,P=0.002) .Only 4 of the ALK-positive patients were smokers, which was significantly less than that of the ALK-negative group (P<0.01).In ALK-positive group, 3 cases showed cribriform pattern with prominent nucleoli, 3 cases showed cribriform pattern with mucin-rich cells and 8 cases showed extracellular mucus with mucin-rich cells.The above cytomorphologic patterns were significantly less common in ALK-negative tumors ( P <0.01 ) . Conclusions ALK-rearranged lung adenocarcinoma is associated with certain distinctive morphologic patterns, including cribriform architecture, presence of prominent nucleoli, mucin-rich cells and extracellular mucus, which can be observed in cytology specimens ( including conventional smears and cell block sections) .These findings, when combined with clinical features, may give clues to detection of ALK-positive cases.%目的探讨间变性淋巴瘤激酶( ALK)基因重排阳性肺腺癌的细胞病理学特点。方法回顾性分析2011年9月至2015年4月在复旦大学

  16. 原发系统型间变性大细胞淋巴瘤间变性淋巴瘤激酶基因异常与其融合蛋白表达及预后分析%Anaplastic lymphoma kinase gene abnormality and the expression of its fusion protein in primary systemic anaplastic large cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    时云飞; 刘翠苓; 周春菊; 宫丽平; 董丽娜; 李敏; 黄欣; 高子芬

    2008-01-01

    目的:回顾性研究原发系统型间变性大细胞淋巴瘤(primary systemic anaplastic large cell lymphoma,S-ALCL)间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)融合蛋白表达及ALK基因异常情况,探讨两者关系及预后意义.方法:收集北京大学基础医学院病理学系淋巴瘤研究室及北京儿童医院28例确诊S-ALCL的病例,重新进行常规形态观察,复习及补充必要免疫组化标记以核实诊断.采用EnVision法进行免疫组织化学染色(immu-nohistochemical stainining,IHC).应用ALK-1单克隆抗体检测ALK融合蛋白表达,应用位点特异性间期荧光原位杂交(locus specific interphase fluorescence in situ hybridization,LSI-FISH)方法检测石蜡包埋组织中肿瘤细胞ALk基因断裂及其他异常情况.收集临床资料,随访.结果:8例S-ALCL病例IHC检测ALK-1蛋白阳性19例,阴性9例.用LSI-FISH法检测到ALK基因断裂14例,其余14例无ALK基因断裂的病例中,5例呈2个拷贝,9例呈多个拷贝.全部病例中有完整随访的共22例,随访截止时16例生存,6例死亡,生存期0.5~36.0个月,平均生存期12.8个月;1年累计生存率73.9%.ALk基因多个完整拷贝者1年累计生存率仅47.6%,预后相对较差.结论:-ALcL病例肿瘤细胞有ALK-1融合蛋白表达,在S-ALCL诊断中高度特异.S-ALCL病例ALK基因的异常改变很复杂,ALK-l融合蛋白表达与ALK基因断裂不完全吻合.S-ALCL中ALK基因异常的不同类型间预后可能有差异.ALK基因呈多个完整拷贝病例的预后可能更差.

  17. Investigation of Rho-Kinase Expressions and Polymorphisms in Mantle Cell Lymphoma Patients

    Directory of Open Access Journals (Sweden)

    Didar Yanardağ Açık

    2016-05-01

    Full Text Available Objective: Mantle cell lymphoma (MCL is a rare but aggressive form of B-cell non-Hodgkin lymphoma characterized by excessive expression of cyclin D1. Intracellular signaling enzyme Rho-kinase (ROCK can contribute to cellular migration, proliferation, and differentiation, as well as tumor development and metastasis. However, ROCK gene and protein expressions or polymorphisms have never been investigated in MCL patients. The purpose of this study was to investigate the role of ROCK gene and protein expressions in MCL patients. We also examined ROCK2 gene polymorphisms in this study. Materials and Methods: A total of 60 patients with MCL and 60 healthy controls were included in this retrospective study. Hematoxylin and eosin-stained lymph node tissue slides in the entire archive were reevaluated and used for immunohistochemistry, gene expression, and polymerase chain reaction studies. Results: In immunohistochemical studies, there were significant increases in ROCK1 (p=0.0009 and ROCK2 (p<0.0001 protein expressions in MCL patients when compared with the control group. Although a marked increase in ROCK1 gene expression (p=0.0215 was noted, no significant change was observed in ROCK2 gene expression in MCL patients. Seven ROCK2 polymorphisms were studied, but the results showed no significant differences between the groups. Conclusion: This is the first study to show that ROCK1 gene and ROCK protein expressions may contribute to the development of MCL.

  18. Bruton's tyrosine kinase inhibitors in B-cell non-Hodgkin's lymphomas.

    Science.gov (United States)

    Alinari, L; Quinion, C; Blum, K A

    2015-05-01

    The B-cell receptor pathway (BCR) is aberrantly activated in select B-cell malignancies. This knowledge has allowed for the development of inhibitors of different crucial steps of this pathway. Bruton's tyrosine kinase (BTK) is a key component of BCR signaling and functions as an important regulator of multiple cell functions including differentiation, proliferation, and survival in various B-cell malignancies. Ibrutinib is a potent, selective BTK inhibitor that has shown significant activity in specific subtypes of B-cell non-Hodgkin's lymphomas (NHLs). Given the high response rates, tolerability, and acceptable toxicities, ibrutinib was recently approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed mantle cell lymphoma and chronic lymphocytic leukemia. It is also currently being evaluated in combination with chemotherapy and as frontline therapy in B-cell NHL. This review summarizes the preclinical and clinical development of ibrutinib in the treatment of B-cell NHL. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  19. Emergence of Bruton's tyrosine kinase-negative Hodgkin lymphoma during ibrutinib treatment of chronic lymphocytic leukaemia.

    Science.gov (United States)

    Glavey, Siobhan; Quinn, John; McCloy, Mary; Sargent, Jeremy; McCartney, Yvonne; Catherwood, Mark; Marafioti, Teresa; Leader, Mary; Murphy, Philip; Thornton, Patrick

    2017-10-01

    Chronic lymphocytic leukaemia (CLL) is a chronic B-cell lympho-proliferative disorder in which lymphomatous transformations occur in 5%-15% of patients. Histologically these cases resemble diffuse large B-cell lymphoma, or Richter's transformation, in over 80% of cases. Rare cases of transformation to Hodgkin lymphoma (HL) have been reported in the literature with an estimated prevalence of 0.4%. We report a case of a 67-year-old female with CLL treated with the novel Bruton's tyrosine kinase (Btk) inhibitor, ibrutinib, who subsequently presented with intractable fevers. Bone marrow trephine, and lymph node biopsy revealed classical HL with negative immuno-histochemistry for Btk in HL cells, on a backdrop of CLL. The patient commenced treatment with Adriamycin, Vinblastine and Dacarbazine (AVD), which resulted in an excellent response. Hodgkin transformation of CLL is rare with a single retrospective study of 4121 CLL patients reporting only 18 cases. Btk expression in HL cells is recently recognised in classical HL; however, the majority of HLs are Btk negative. Given that Btk inhibitors have recently been shown to induce genomic instability in B cells, in the context of their widespread use, such emerging cases are increasingly relevant. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Fisetin targets phosphatidylinositol-3-kinase and induces apoptosis of human B lymphoma Raji cells

    Directory of Open Access Journals (Sweden)

    Ji Yeon Lim

    2015-01-01

    Full Text Available Aberrant regulation of phosphatidylinositol-3-kinases (PI3Ks is known to be involved in the progression of cancers. PI3K-binding flavonoids such as quercetin and myricetin have been shown to inhibit PI3K activity, but the direct targeting of fisetin to PI3K has not been established. Here, we carried out an in silico investigation of fisetin binding to PI3K and determined fisetin’s inhibitory activity in enzymatic and cell-based assays. In addition, fisetin induced apoptosis in human Burkitt’s lymphoma Raji cells by inhibiting both PI3Ks and mammalian target of rapamycin (mTOR. Our results indicate that fisetin may serve as a natural backbone for the development of novel dual inhibitors of PI3Ks and mTOR for the treatment of cancer.

  1. Expression and clinical significance of EML4-ALK in non-small cell lung cancer%EML4-ALK在非小细胞肺癌中的检测及其临床意义

    Institute of Scientific and Technical Information of China (English)

    马丽; 韩晓红; 石远凯

    2011-01-01

    The fusion gene between echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) has recently been identified as a new molecular target of non-small cell lung cancers (NSCLC). Stage Ⅰ and stage Ⅱ clinical trials have observed remarkably clinical efficacy of ALK inhibitors in NSCLC patients harboring EML4-ALK translocations, with response rates exceeding > 80%. Investigation of EML4-ALK's biological functions and its correlation with clinical characteristics may shed some light on a new treatment strategy for NSCLC.%棘皮动物微管结合蛋白4(EML4)与间变淋巴瘤激酶(ALK)形成的融合基因被认为是非小细胞肺癌(NSCLC)新的分子靶点.最近,Ⅰ期和Ⅱ期临床研究运用ALK抑制剂治疗携带重组ALK基因的NSCLC患者的反应率达80%以上.因此,研究EML4-ALK的生物学特性、与临床病理特征的关系以及目前存在的问题,可为临床治疗此类患者提供新的思路.

  2. EML4-ALK阳性表达非小细胞肺癌患者的临床特征及治疗现状%Clinicopathologic characteristics and treatment of non-small cell lung cancer with EML4-ALK fusion gene

    Institute of Scientific and Technical Information of China (English)

    孙霞; 魏嘉; 刘宝瑞

    2013-01-01

    棘皮动物微管相关类蛋白4(EML4)与间变性淋巴瘤激酶(ALK)融合基因首次被发现存在于部分非小细胞肺癌中.该融合基因是由2号染色体上2区1带和2区3带易位形成,可以诱导肿瘤生成,而ALK抑制剂能够拮抗其促肿瘤生成活性.本文旨在介绍EML4-ALK基因阳性表达肺癌患者的临床特征及该基因在肺癌诊断、治疗中的意义.%The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase(EML4-ALK) fusion gene resulting from the chromosome inversion inv(2) (p21 ;p23) recently was identified in non-small cell lung cancer. EML4-ALK fusion gene is oncogenic, which could be suppressed by ALK-inhibitor through blocking the downstream signaling pass-way of EML4-ALK. This review will focus on the clinicopathologic characteristics and targeted therapy of EML4-ALK in lung cancer.

  3. Cytological Diagnosis of Bilateral Breast Implant-Associated Lymphoma of the ALK-Negative Anaplastic Large-Cell Type. Clinical Implications of Peri-Implant Breast Seroma Cytological Reporting.

    Science.gov (United States)

    Granados, Rosario; Lumbreras, Eva M; Delgado, Manuel; Aramburu, José A; Tardío, Juan C

    2016-07-01

    The cytological examination of peri-prosthetic breast effusions allowed the diagnosis of bilateral breast-implant ALK-negative anaplastic large cell lymphoma (BI-ALCL) in the case reported. Ten years after reconstructive surgery with bilateral breast implants, a large unilateral seroma developed and was cytologically analyzed. The presence of CD30 and CD4-positive large-sized atypical lymphoid cells exhibiting horseshoe-shaped nuclei and a brisk mitotic activity rendered the diagnosis of BI-ALCL. Similar cells were seen in the peri-prosthetic fluid intraoperatively collected from the contralateral breast. Although initial histological analysis of the capsulectomy specimens showed unilateral tumor, the cytological findings prompted a more thorough tissue sampling, resulting in the diagnosis of bilateral disease. BI-ALCL usually follows an indolent clinical course; however, there are reported cases with an aggressive behavior. While the presence of bilateral disease is a putative risk factor for a bad prognosis, the small number of cases reported precludes a definitive assessment of this risk. Since most BI-ALCL present with late seromas, cytologic analysis of these effusions in women with breast implants should be mandatory. Cytology is a safe tool for diagnosis and follow-up of patients with breast implant-related late seromas, sometimes proven more sensitive than histological analysis. Complete bilateral capsulectomy and a detailed histological analysis should follow a cytological diagnosis of BI-ALCL in a breast effusion in order to avoid false negative diagnoses. Our case constitutes the first published report of a bilateral BI-ALCL diagnosed by cytology. Diagn. Cytopathol. 2016;44:623-627. © 2016 Wiley Periodicals, Inc.

  4. RNAi阻断NPM-ALK基因表达及对大细胞间变性淋巴瘤细胞的影响%Effects of RNA interference on NPM-ALK fusion gene expression in anaplastic large-cell lymphoma cells

    Institute of Scientific and Technical Information of China (English)

    赵艳霞; 顾龙君; 叶启东; 赵金彩

    2005-01-01

    目的应用RNA干扰技术抑制大细胞间变性淋巴瘤细胞系(Karpas299)中NPM-ALK融合基因表达,观察其对肿瘤细胞生长的影响.方法针对NPM-ALK融合位点设计两个siRNA序列siRNA-I与siRNA-II, 经PCR反应构建含U6启动子siRNA正义和反义线性表达载体,通过脂质体转染Karpas299细胞,应用实时荧光定量RT-PCR、Western blot检测siRNA片段对NPM-ALK mRNA和蛋白表达的抑制作用,MTT、Hoechst荧光染色检测siRNA对肿瘤细胞生长的影响.结果 siRNA-I可导致NPM-ALK mRNA下降约75%(P<0.05),转染72 h后可导致蛋白表达下降;转染siRNA-II细胞NPM-ALK mRNA下降为35%(P<0.05),但蛋白水平无明显改变.转染siRNA-I的细胞可抑制Karpas299细胞的增殖和诱导凋亡发生,siRNA-II则无明显的抑制增殖和诱导凋亡作用.结论含有针对NPM-ALK融合位点特异siRNA序列 的U6表达载体,可特异地抑制NPM-ALK基因mRNA和蛋白的表达,并能抑制大细胞间变性淋巴瘤肿瘤细胞株Karpas299细胞的增殖,导致肿瘤细胞凋亡增加,提示NPM-ALK融合基因的异常表达与大细胞间变性淋巴瘤形成密切相关,为研究NPM-ALK基因功能和大细胞间变性淋巴瘤基因靶向治疗提供了新策略.%Objective To evaluate two small interfering RNAs (siRNAs) on the NPM-ALK fusion gene expression in anaplastic large-cell lymphoma cell line Karpas299, and to study the effect of RNA interference on Karpas299 cells proliferation. Methods Two siRNAs sequences (siRNA- I and siRNA-II) were designed to target the NPM-ALK fusion site in anaplastic large-cell lymphoma cell line Karpas299. An siRNA U6 expression system including U6 RNA-based polymerase III promoter was set up. The two siRNAs designed for down-regulation of the NPM-ALK fusion mRNA were transfected into Karpas299 cells by liposomal transfection reagents. The effect of RNAi on NPM-ALK mRNA expression was detected by real-time RT-PCR and Western blot. The anti-proliferative effects of the si

  5. Lymphoma in acquired generalized lipodystrophy.

    Science.gov (United States)

    Brown, Rebecca J; Chan, Jean L; Jaffe, Elaine S; Cochran, Elaine; DePaoli, Alex M; Gautier, Jean-Francois; Goujard, Cecile; Vigouroux, Corinne; Gorden, Phillip

    2016-01-01

    Acquired generalized lipodystrophy (AGL) is a rare disease thought to result from autoimmune destruction of adipose tissue. Peripheral T-cell lymphoma (PTCL) has been reported in two AGL patients. We report five additional cases of lymphoma in AGL, and analyze the role of underlying autoimmunity and recombinant human leptin (metreleptin) replacement in lymphoma development. Three patients developed lymphoma during metreleptin treatment (two PTCL and one ALK-positive anaplastic large cell lymphoma), and two developed lymphomas (mycosis fungoides and Burkitt lymphoma) without metreleptin. AGL is associated with high risk for lymphoma, especially PTCL. Autoimmunity likely contributes to this risk. Lymphoma developed with or without metreleptin, suggesting metreleptin does not directly cause lymphoma development; a theoretical role of metreleptin in lymphoma progression remains possible. For most patients with AGL and severe metabolic complications, the proven benefits of metreleptin on metabolic disease will likely outweigh theoretical risks of metreleptin in lymphoma development or progression.

  6. An integrated molecular modeling approach for in silico design of new tetracyclic derivatives as ALK inhibitors.

    Science.gov (United States)

    Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha

    2016-10-01

    Anaplastic lymphoma kinase (ALK), a promising therapeutic target for treatment of human cancers, is a receptor tyrosine kinase that instigates the activation of several signal transduction pathways. In the present study, in silico methods have been employed in order to explore the structural features and functionalities of a series of tetracyclic derivatives displaying potent inhibitory activity toward ALK. Initially docking was performed using GLIDE 5.6 to probe the bioactive conformation of all the compounds and to understand the binding modes of inhibitors. The docking results revealed that ligand interaction with Met 1199 plays a crucial role in binding of inhibitors to ALK. Further to establish a robust 3D-QSAR model using CoMFA and CoMSIA methods, the whole dataset was divided into three splits. Model obtained from Split 3 showed high accuracy ([Formula: see text] of 0.700 and 0.682, [Formula: see text] of 0.971 and 0.974, [Formula: see text] of 0.673 and 0.811, respectively for CoMFA and CoMSIA). The key structural requirements for enhancing the inhibitory activity were derived from CoMFA and CoMSIA contours in combination with site map analysis. Substituting small electronegative groups at Position 8 by replacing either morpholine or piperidine rings and maintaining hydrophobic character at Position 9 in tetracyclic derivatives can enhance the inhibitory potential. Finally, we performed molecular dynamics simulations in order to investigate the stability of protein ligand interactions and MM/GBSA calculations to compare binding free energies of co-crystal ligand and newly designed molecule N1. Based on the coherence of outcome of various molecular modeling studies, a set of 11 new molecules having potential predicted inhibitory activity were designed.

  7. Clinical application of immunocytochemical detection of ALK rearrangement on cytology slides for detection or screening of lung adenocarcinoma.

    Science.gov (United States)

    Tanaka, Hisashi; Tone, Kiyoshi; Hayashi, Akihito; Morimoto, Takeshi; Taima, Kageaki; Tanaka, Yoshihito; Nakagawa, Hideyuki; Takanashi, Shingo; Okumura, Ken; Kurose, Akira

    2013-06-01

    Immunohistochemical screening of Anaplastic lymphoma kinase (ALK) rearrangement has been regarded essential and routinely carried out to select treatment for lung adenocarcinoma. However, difficulty to approach a tumor by transbronchial lung biopsy (TBLB), it often fails to obtain tumor tissues whereas tumor cells are contained in cytology specimens simultaneously obtained when the bronchoscopy is done. Therefore we evaluated the expression of ALK protein by using immunohistochemistry (IHC) on TBLB specimens and immunocytochemistry (ICC) on brushing smear cytology slides in the same cases, and compared the concordance rate of IHC and ICC results. ICC was carried out on routine Papanicolau-stained slides after cytology diagnosis and decolorization. Eighteen patients with adenocarcinoma were extracted in the Hirosaki University Hospital and the Hirosaki National Hospital. IHC and ICC results showed a very high concordance rate: sensitivity of ICC in comparison with IHC was 85.7% (6/7), specificity was 100% (11/11), positive predictive value was 100% (6/6), and negative predictive value was 91.6% (11/12). Detection of ALK rearrangement using ICC on routine Papanicolau cytology slides is considered to be advantageous for lung cancer treatments. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Systemic treatment in EGFR-ALK NSCLC patients:second line therapy and beyond

    Institute of Scientific and Technical Information of China (English)

    Niki Karachaliou; Rafael Rosell

    2014-01-01

    Lung cancer is the most frequently diagnosed cancer and a leading cause of cancer mortality worldwide, with adenocarcinoma being the most common histological subtype. Deeper understanding of the pathobiology of non-small cell lung cancer (NSCLC) has led to the development of small molecules that target genetic mutations known to play critical roles in progression to metastatic disease and to inlfuence response to targeted therapies. hTe principle goal of precision medicine is to deifne those patient populations most likely to respond to targeted therapies. However, the cancer genome landscape is composed of relatively few “mountains” [representing the most commonly mutated genes like KARS, epidermal growth factor (EGFR), and anaplastic lymphoma kinase (ALK)] and a vast number of “hills” (representing low frequency but potentially actionable mutations). Low-frequency lesions that affect a druggable gene product allow a relatively small population of cancer patients for targeted therapy to be selected.

  9. Efficacy of ALK5 inhibition in myelofibrosis

    Science.gov (United States)

    Zhao, Wanke; Ho, Wanting Tina; Han, Ying; Murdun, Cem; Mailloux, Adam W.; Zhang, Ling; Wang, Xuefeng; Budhathoki, Anjali; Pradhan, Kith; Rapaport, Franck; Wang, Huaquan; Shao, Zonghong; Ren, Xiubao; Steidl, Ulrich; Levine, Ross L.; Zhao, Zhizhuang Joe; Verma, Amit; Epling-Burnette, Pearlie K.

    2017-01-01

    Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-β family members are profibrotic cytokines and we observed significant TGF-β1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-β1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-β1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-β receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-β/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF.

  10. A phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory mantle cell lymphoma

    NARCIS (Netherlands)

    F. Morschhauser; J.F. Seymour; H.C. Kluin-Nelemans (Hanneke); A. Grigg; M. Wolf; M. Pfreundschuh (Michael); H. Tilly (Herve); J. Raemaekers; M.B. van 't Veer (Mars); N. Milpied; G. Cartron; A. Pezzutto; A. Spencer; F. Reyes; M. Dreyling (Martin)

    2008-01-01

    textabstractBackground: Protein kinase C beta (PKCβ), a pivotal enzyme in B-cell signaling and survival, is overexpressed in most cases of mantle cell lymphoma (MCL). Activation of PI3K/AKT pathway is involved in pathogenesis of MCL. Enzastaurin, an oral serine/threonine kinase inhibitor, suppresses

  11. A phase II study of enzastaurin, a protein kinase C beta inhibitor, in patients with relapsed or refractory mantle cell lymphoma

    NARCIS (Netherlands)

    Morschhauser, F.; Seymour, J. F.; Kluin-Nelemans, H. C.; Grigg, A.; Wolf, M.; Pfreundschuh, M.; Tilly, H.; Raemaekers, J.; van 't Veer, M. B.; Milpied, N.; Cartron, G.; Pezzutto, A.; Spencer, A.; Reyes, F.; Dreyling, M.

    2008-01-01

    Background: Protein kinase C beta (PKC beta), a pivotal enzyme in B-cell signaling and survival, is overexpressed in most cases of mantle cell lymphoma (MCL). Activation of PI3K/AKT pathway is involved in pathogenesis of MCL. Enzastaurin, an oral serine/threonine kinase inhibitor, suppresses signali

  12. Prognostic significance of the NPM-ALK fusion gene in bone marrow and peripheral blood for patients with anaplastic large cell lymphoma%间变性大细胞淋巴瘤患者骨髓及外周血NPM-ALK融合基因表达与预后的关系

    Institute of Scientific and Technical Information of China (English)

    杨菁; 赵晓曦; 金铃; 段彦龙; 黄爽; 张梦; 张蕊; 周春菊; 张永红

    2013-01-01

    Objective To investigate the expression of NPM-ALK fusion gene in bone marrow (BM) and peripheral blood (PB) in anaplastic large cell lymphoma (ALCL) patients and its prognostic significance.Methods NPM-ALK fusion gene of 21 BM and 15 PB samples from patients with NPMALK positive ALCL was detected by RT-PCR,and the relationship between NPM-ALK expression and prognosis and clinical characters was evaluated.Results Of the 21 patients,12 cases were male and 9 case were female with a median age of 9 (range,2-14) years old.The median follow-up was 31months.Patients with a positive NPM-ALK expression in BM had a 3-years EFS of (35.6± 18.6)%,compared with (91.7±8.0)% for patients with negative NPM-ALK (P=0.038).The incidence of positive expression in BM was significantly higher in patients who had more than 3 organs involved by tumor (P=0.032).86.7%patients had a concordant results of NPM-ALK expression in PB and BM.Conclusion We could evaluate the minimal disseminated disease of NPM-ALK positive ALCL patients by screening the NPM-ALK fusion gene in BM and PB by RT-PCR.The positive expression is associated with a poor prognosis and could be used for stratification of ALCL.%目的 探讨间变性大细胞淋巴瘤(ALCL)患者骨髓及外周血NPM-ALK融合基因的表达与预后的关系.方法 应用RT-PCR法检测21例ALCL患者骨髓(21份标本)及外周血(15份标本)细胞NPM-ALK融合基因的表达,并对其与患者的预后及临床特征之间的关系进行统计学分析.结果 21例患者中男12例,女9例,中位年龄9(2~14)岁.21例患者中位随访时间31个月.骨髓细胞NPM-ALK阳性患者3年无事件生存率为(35.6±18.6)%,阴性患者为(91.7士8.0)%,差异有统计学意义(P=0.038).患者骨髓细胞NPM-ALK阳性与其有3个以上器官受累(P=0.032)有相关性.86.7%的患者外周血与骨髓NPM-ALK检测结果一致.结论 通过RT-PCR法检测ALCL患者骨髓及外周血NPM-ALK融合基因表达,可以证实患者血

  13. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B;

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine....../threonine kinases in MHC-I-mediated apoptosis in human B-cells and suggest the presence of several MHC-I signaling pathways leading to diverse effects in these cells....

  14. New treatment options for ALK+ advanced non-small-cell lung cancer: critical appraisal of ceritinib

    Directory of Open Access Journals (Sweden)

    Rothschild SI

    2016-05-01

    Full Text Available Sacha I Rothschild Department of Internal Medicine, Medical Oncology, University Hospital Basel, Basel, Switzerland Abstract: Rearrangements in ALK gene and EML4 gene were first described in 2007. This genomic aberration is found in about 2%–8% of non-small-cell lung cancer (NSCLC patients. Crizotinib was the first ALK tyrosine kinase inhibitor licensed for the treatment of metastatic ALK-positive NSCLC based on a randomized Phase III trial. Despite the initial treatment response of crizotinib, disease progression inevitably develops after approximately 10 months of therapy. Different resistance mechanisms have recently been described. One relevant mechanism of resistance is the development of mutations in ALK. Novel ALK tyrosine kinase inhibitors have been developed to overcome these mutations. Ceritinib is an oral second-generation ALK inhibitor showing clinical activity not only in crizotinib-resistant ALK-positive NSCLC but also in treatment-naïve ALK-positive disease. In this paper, preclinical and clinical data of ceritinib are reviewed, and its role in the clinical setting is put into perspective. Keywords: lung cancer, ALK, ceritinib, crizotinib

  15. Deltex1 promotes protein kinase Cθ degradation and sustains Casitas B-lineage lymphoma expression.

    Science.gov (United States)

    Hsu, Tzu-Sheng; Hsiao, Huey-Wen; Wu, Pei-Jung; Liu, Wen-Hsien; Lai, Ming-Zong

    2014-08-15

    The generation of T cell anergy is associated with upregulation of ubiquitin E3 ligases including Casitas B-lineage lymphoma (Cbl-b), Itch, gene related to anergy in lymphocyte, and deltex1 (DTX1). These E3 ligases attenuate T cell activation by targeting to signaling molecules. For example, Cbl-b and Itch promote the degradation of protein kinase Cθ (PKCθ) and phospholipase C-γ1 (PLC-γ1) in anergic Th1 cells. How these anergy-associated E3 ligases coordinate during T cell anergy remains largely unknown. In the current study, we found that PKCθ and PLC-γ1 are also downregulated by DTX1. DTX1 interacted with PKCθ and PLC-γ1 and stimulated the degradation of PKCθ and PLC-γ1. T cell anergy-induced proteolysis of PKCθ was prevented in Dtx1(-/-) T cells, supporting the essential role of DTX1 in PKCθ downregulation. Similar to Cbl-b and Itch, DTX1 promoted monoubiquitination of PKCθ. Proteasome inhibitor did not inhibit DTX1-directed PKCθ degradation, but instead DTX1 directed the relocalization of PKCθ into the lysosomal pathway. In addition, DTX1 interacted with Cbl-b and increased the protein levels of Cbl-b. We further demonstrated the possibility that, through the downregulation of PKCθ, DTX1 prevented PKCθ-induced Cbl-b degradation and increased Cbl-b protein stability. Our results suggest the coordination between E3 ligases during T cell anergy; DTX1 acts with Cbl-b to assure a more extensive silencing of PKCθ, whereas DTX1-mediated PKCθ degradation further stabilizes Cbl-b.

  16. Protein kinase C-associated kinase is required for NF-kappaB signaling and survival in diffuse large B-cell lymphoma cells.

    Science.gov (United States)

    Kim, Sang-Woo; Oleksyn, David W; Rossi, Randall M; Jordan, Craig T; Sanz, Ignacio; Chen, Luojing; Zhao, Jiyong

    2008-02-01

    Diffuse large B-cell lymphoma (DLBCL) is an aggressive and the most common type of non-Hodgkin lymphoma. Despite recent advances in treatment, less than 50% of the patients are cured with current multiagent chemotherapy. Abnormal NF-kappaB activity not only contributes to tumor development but also renders cancer cells resistant to chemotherapeutic agents. Identifying and targeting signaling molecules that control NF-kappaB activation in cancer cells may thus yield more effective therapy for DLBCL. Here, we show that while overexpression of protein kinase C-associated kinase (PKK) activates NF-kappaB signaling in DLBCL cells, suppression of PKK expression inhibits NF-kappaB activity in these cells. In addition, we show that NF-kappaB activation induced by B cell-activating factor of tumor necrosis factor family (BAFF) in DLBCL cells requires PKK. Importantly, we show that knockdown of PKK impairs the survival of DLBCL cells in vitro and inhibits tumor growth of xenografted DLBCL cells in mice. Suppression of PKK expression also sensitizes DLBCL cells to treatment with chemotherapeutic agents. Together, these results indicate that PKK plays a pivotal role in the survival of human DLBCL cells and represents a potential target for DLBCL therapy.

  17. Polo-Like Kinase 1: A Novel Target for the Treatment of Therapy-Resistant Mantle Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Adam K. Ahrens

    2013-01-01

    Full Text Available Mantle cell lymphoma (MCL is a B-cell non-Hodgkin lymphoma (NHL which is one of the most aggressive lymphomas. Despite recent improvements in therapies, the development of therapy-resistance is still a major problem; therefore, in order to understand the molecular basis of therapy-resistance, stable therapy-resistant MCL cell lines have been established by us. Based on the gene expression profiles of these cell lines, Polo-like kinase 1 (PLK1 was chosen as a therapeutic target. In this paper, we demonstrate a significant antilymphoma effect of targeting PLK1 in therapy-resistant MCL cells and primary MCL cells from refractory patients. PLK1 knockdown with the antisense oligonucleotide (ASO/or small molecule inhibitor BI2536 showed significantly decreased proliferation and increased apoptosis in therapy-resistant MCL cell lines and MCL primary cells. Additionally, the direct protein-protein interaction partners of PLK1 were mapped using ingenuity pathway and confirmed the level of association of these partners with PLK1 based on their expression changes following PLK1 knockdown using real-time PCR. Results suggest that PLK1 is a viable target for the treatment of therapy-resistant MCL.

  18. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    Science.gov (United States)

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

  19. 全自动免疫组化筛查ALK基因融合非小细胞肺癌及其病理特征%Screen of Non-small Cell Lung Cancer with Anaplastic Lymphoma Kinase Fusion Gene by Automatic Immunohistochemical Method and Its Pathological Features

    Institute of Scientific and Technical Information of China (English)

    冯强; 彭森; 刘霞

    2016-01-01

    目的 探讨全自动免疫组化筛查间变性淋巴瘤激酶(ALK)基因融合非小细胞肺癌的临床特点及病理特征.方法 选取经病理检查确诊的554例非小细胞肺癌组织,采用Ventana抗ALK试剂和全自动免疫组化(IHC)染色检测ALK状态,分析ALK基因融合非小细胞肺癌的临床特点和病理特征.结果 本次研究的554例非小细胞肺癌患者组织中,共筛选出34例ALK阳性,占6.14%;年龄0.05).组织形态学方面,34例ALK阳性非小细胞肺癌中28例为肺腺癌,6例为非肺腺癌.16例实体型为主腺癌合并黏液产生,7例腺泡型为主腺癌,1例为乳头型为主腺癌,4例为浸润性黏液腺癌,4例为鳞状细胞癌.EGFR基因突变检测显示:仅有1例合并该基因突变,其余均为野生型.9例IHC阳性样本,9例ALK基因融合非小细胞肺癌,9例IHC阴性样本经荧光原位杂交技术检测和RT-PCR检测均为阴性结果,6例IHC染色可能为阳性,经荧光原位杂交技术检测均显示为ALK融合阴性.结论 ALK基因融合肺癌是非小细胞肺癌一新的分子亚型,具有独特的临床表现和病理形态;Ventana抗ALK试剂和IHC染色是检测ALK阳性非小细胞肺癌首选方法,对提高该类型肺癌的检出率及个体化治疗具有重要意义.%Objective To explore the automatic immunohistochemical method for the screen of non-small cell lung cancer with anaplastic lymphoma kinase( ALK) and its clinical pathological features.Methods 554 cases of non-small cell lung cancer diagnosed by pathological examination were enrolled in this study.The status of ALK was detected by Ventana anti ALK reagent and IHC staining, and the clinical characteristics and pathological features of ALK gene were analyzed.Results Among of 554 patients with non-small cell lung cancer,34 cases showed positive ALK(6.14%).The positive rate of the patients under 60 years old(8.69%) was significantly higher than that of the elder patients ( 3 .62%) ( P0.05).The results of

  20. 间变性淋巴瘤激酶阴性的间变性大细胞淋巴瘤泛发性皮肤侵犯一例%Anaplastic lymphoma kinase-negative anaplastic large cell lymphoma with generalized cutaneous involvement:a case report

    Institute of Scientific and Technical Information of China (English)

    孙春秋; 唐旭; 王松; 沈宏

    2012-01-01

    A rare case of anaplastic lymphoma kinase(ALK)-negative anaplastic large cell lymphoma (ALCL)with generalized cutaneous involvement is reported in a 37-year-old man.Seven months prior to the presentation,he developed a goose egg-sized mass in his right thigh without obvious triggers,which gradually grew and no significant discomfort was felt.Diffuse and nonpitting edema gradually appeared in his right thigh and hip.Two months prior to the presentation,multiple dark red papules,nodules,and plaques emerged over the body surface with erosions and ulcers of varying size arising on some of the plaques.Laboratory examination revealed reduced albumin and significantly elevated lactate dehydrogenase in serum.B-mode sonography showed swelling and mutual fusion of superficial lymph nodes,and color Doppler flow imaging revealed markedly increased branch blood flow signals in lymph nodes.Computed tomography(CT)displayed generalized swelling of lymph nodes associated with soft-tissue edema in the right thigh and perineal region,as well as extensive enlargement of epigastric and mediastinal lymph nodes.Pathological examination of the skin lesion revealed a dense dermal infiltrate with mononuclear cells,some of which presented with cellular atypia and atypical nuclear division.Immunohistochemistry of the skin lesion showed that the mononuclear cells stained positive for CD3,CD8,CD30(80% positive),CD4,CD45RO and granzyme B,but negative for CD56,ALK and T cell intracellular antigen-1(TIA-1).Pathology of lymph nodes indicated that the lymph node structure was completely destroyed with a diffuse growth of tumor cells,which were larger than common large cell lymphoma cells,and contained basophilic or bi-color abundant cytoplasm,deviating,horseshoe-,kidney-shaped,or lobulated cell nuclei,sparse nuclear chromatin and single or multiple small basophilic nucleoli.Angiogenesis,stromal fibrosis and infiltration of varying number of plasma cells and lymphocytes were seen in pathological

  1. Patients harboring EGFR mutation after primary resistance to crizotinib and response to EGFR-tyrosine kinase inhibitor

    Directory of Open Access Journals (Sweden)

    Wang WX

    2016-01-01

    Full Text Available Wenxian Wang,1 Xiaowen Jiang,1 Zhengbo Song,1,2 Yiping Zhang1,2 1Department of Chemotherapy, Zhejiang Cancer Hospital, 2Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang, People’s Republic of China Abstract: Anaplastic lymphoma kinase (ALK rearrangement lung cancer responds to ALK tyrosine kinase inhibitors. It is known that many cases ultimately acquired resistance to crizotinib. However, a case of primary resistance is rare. We present a case of harboring exon 19 deletion in epidermal growth factor receptor in ALK rearranged lung adenocarcinoma, who experienced a partial tumor response to icotinib after failure with crizotinib therapy and chemotherapy. Considering the partial response, we conclude that it is important to find the cause of resistance to crizotinib. We detected gene mutations with plasma by the next-generation sequencing; the next-generation sequencing demonstrates an attractive system to identify mutations improving the outcome of patients with a deadly disease. Keywords: non-small cell lung cancer, anaplastic lymphoma kinase, crizotinib, epidermal growth factor receptor

  2. USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling.

    Science.gov (United States)

    Herhaus, Lina; Al-Salihi, Mazin A; Dingwell, Kevin S; Cummins, Timothy D; Wasmus, Lize; Vogt, Janis; Ewan, Richard; Bruce, David; Macartney, Thomas; Weidlich, Simone; Smith, James C; Sapkota, Gopal P

    2014-05-01

    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis.

  3. The enzymatic activity of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) is enhanced by NPM-ALK

    DEFF Research Database (Denmark)

    Boccalatte, Francesco E; Voena, Claudia; Riganti, Chiara;

    2009-01-01

    documented in cell lines and primary tumors carrying ALK proteins and other tyrosine kinases, including TPR-Met and wild type c-Met. Functional analyses revealed that ALK-mediated ATIC phosphorylation enhanced its enzymatic activity, dampering the methotrexate-mediated transformylase activity inhibition...

  4. Molecular Characterization of Inflammatory Myofibroblastic Tumors With Frequent ALK and ROS1 Gene Fusions and Rare Novel RET Rearrangement

    NARCIS (Netherlands)

    Antonescu, Cristina R.; Suurmeijer, Albert J. H.; Zhang, Lei; Sung, Yun-Shao; Jungbluth, Achim A.; Travis, William D.; Al-Ahmadie, Hikmat; Fletcher, Christopher D. M.; Alaggio, Rita

    2015-01-01

    Approximately 50% of conventional inflammatory myofibroblastic tumors (IMTs) harbor ALK gene rearrangement and overexpress ALK. Recently, gene fusions involving other kinases have been implicated in the pathogenesis of IMT, including ROS1 and in 1 patient PDGFRB. However, it remains uncertain whethe

  5. Expression of PIM kinases in Reed-Sternberg cells fosters immune privilege and tumor cell survival in Hodgkin lymphoma.

    Science.gov (United States)

    Szydłowski, Maciej; Prochorec-Sobieszek, Monika; Szumera-Ciećkiewicz, Anna; Derezińska, Edyta; Hoser, Grażyna; Wasilewska, Danuta; Szymańska-Giemza, Olga; Jabłońska, Ewa; Białopiotrowicz, Emilia; Sewastianik, Tomasz; Polak, Anna; Czardybon, Wojciech; Gałęzowski, Michał; Windak, Renata; Zaucha, Jan Maciej; Warzocha, Krzysztof; Brzózka, Krzysztof; Juszczyński, Przemysław

    2017-09-21

    Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (cHL) express multiple immunoregulatory proteins that shape the cHL microenvironment and allow tumor cells to evade immune surveillance. Expression of certain immunoregulatory proteins is modulated by prosurvival transcription factors, such as NFκB and STATs. Because these factors also induce expression of the oncogenic PIM1/2/3 serine/threonine kinases, and as PIMs modulate transcriptional activity of NFκB and STATs, we hypothesized that these kinases support RS cell survival and foster their immune privilege. Here, we investigated PIM1/2/3 expression in cHL and assessed their role in developing RS cell immune privilege and survival. PIM1/2/3 were ubiquitously expressed in primary and cultured RS cells, and their expression was driven by JAK-STAT and NFκB activity. Genetic or chemical PIM inhibition with a newly developed pan-PIM inhibitor, SEL24-B489, induced RS cell apoptosis. PIM inhibition decreased cap-dependent protein translation, blocked JAK-STAT signaling, and markedly attenuated NFκB-dependent gene expression. In a cHL xenograft model, SEL24-B489 delayed tumor growth by 95.8% (P = .0002). Furthermore, SEL24-B489 decreased the expression of multiple molecules engaged in developing the immunosuppressive microenvironment, including galectin-1 and PD-L1/2. In coculture experiments, T cells incubated with SEL24-B489-treated RS cells exhibited higher expression of activation markers than T cells coincubated with control RS cells. Taken together, our data indicate that PIM kinases in cHL exhibit pleiotropic effects, orchestrating tumor immune escape and supporting RS cell survival. Inhibition of PIM kinases decreases RS cell viability and disrupts signaling circuits that link these cells with their niches. Thus, PIM kinases are promising therapeutic targets in cHL. © 2017 by The American Society of Hematology.

  6. Uterine ALK3 is essential during the window of implantation

    Science.gov (United States)

    Monsivais, Diana; Clementi, Caterina; Peng, Jia; Titus, Mary M.; Barrish, James P.; Creighton, Chad J.; Lydon, John P.; DeMayo, Francesco J.; Matzuk, Martin M.

    2016-01-01

    The window of implantation is defined by the inhibition of uterine epithelial proliferation, structural epithelial cell remodeling, and attenuated estrogen (E2) response. These changes occur via paracrine signaling between the uterine epithelium and stroma. Because implantation defects are a major cause of infertility in women, identifying these signaling pathways will improve infertility interventions. Bone morphogenetic proteins (BMPs) are TGF-β family members that regulate the postimplantation and midgestation stages of pregnancy. In this study, we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. Conditional knockout (cKO) of ALK3 in the uterus was obtained by producing Alk3flox/flox-Pgr-cre–positive females. Alk3 cKO mice are sterile and have defects in the luminal uterine epithelium, including increased microvilli density and maintenance of apical cell polarity. Moreover, Alk3 cKO mice exhibit an elevated uterine E2 response and unopposed epithelial cell proliferation during the window of implantation. We determined that dual transcriptional regulation of Kruppel-like factor 15 (Klf15), by both the transforming growth factor β (TGF-β) transcription factor SMAD family member 4 (SMAD4) and progesterone receptor (PR), is necessary to inhibit uterine epithelial cell proliferation, a key step for embryo implantation. Our findings present a convergence of BMP and steroid hormone signaling pathways in the regulation of uterine receptivity. PMID:26721398

  7. Uterine ALK3 is essential during the window of implantation.

    Science.gov (United States)

    Monsivais, Diana; Clementi, Caterina; Peng, Jia; Titus, Mary M; Barrish, James P; Creighton, Chad J; Lydon, John P; DeMayo, Francesco J; Matzuk, Martin M

    2016-01-19

    The window of implantation is defined by the inhibition of uterine epithelial proliferation, structural epithelial cell remodeling, and attenuated estrogen (E2) response. These changes occur via paracrine signaling between the uterine epithelium and stroma. Because implantation defects are a major cause of infertility in women, identifying these signaling pathways will improve infertility interventions. Bone morphogenetic proteins (BMPs) are TGF-β family members that regulate the postimplantation and midgestation stages of pregnancy. In this study, we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. Conditional knockout (cKO) of ALK3 in the uterus was obtained by producing Alk3(flox) (/flox)-Pgr-cre-positive females. Alk3 cKO mice are sterile and have defects in the luminal uterine epithelium, including increased microvilli density and maintenance of apical cell polarity. Moreover, Alk3 cKO mice exhibit an elevated uterine E2 response and unopposed epithelial cell proliferation during the window of implantation. We determined that dual transcriptional regulation of Kruppel-like factor 15 (Klf15), by both the transforming growth factor β (TGF-β) transcription factor SMAD family member 4 (SMAD4) and progesterone receptor (PR), is necessary to inhibit uterine epithelial cell proliferation, a key step for embryo implantation. Our findings present a convergence of BMP and steroid hormone signaling pathways in the regulation of uterine receptivity.

  8. Relationship between expression of anaplastic lymphoma kinase in pleural effusion and clinicopathological features of patients with lung adenocarcinoma and the response to crizotinib%肺腺癌胸腔积液沉渣间变性淋巴瘤激酶融合基因蛋白表达与临床病理特征的关系及克唑替尼疗效观察

    Institute of Scientific and Technical Information of China (English)

    穆晶; 曲杨; 赵丹; 董宇杰; 王重利; 张晨; 张莉; 张海青

    2015-01-01

    Objective To explore the expression of anaplastic lymphoma kinase (ALK) protein in pleural effusion cells from patients with lung adenocarcinoma and to investigate the relationship between ALK status and the clinicopathological features,and the response to crizotinib.Methods Eighty-five cases were reviewed from Sept.2013-Nov.2014 at Beijing Chest Hospital.There were 42 males and 43 females,with a median age of 58 (30-87).ALK rearrangements were screened by using immunohistochemistry on Benchmark XT auto-stainer.Results The frequency of ALK positive reactivity was 15.3% among the 85 patients.The incidence of ALK expression was more frequent in patients < 60 years as compared with patients≥60 years of age(26.1%,2.6%,x2 =9.015,P =0.002).Among the ALK-positive patients,8 were males and 5 were females (19.1%,11.6%,x2 =0.903,P =0.259).There were 8 never-smokers and 5 smokers harboring ALK rearrangement(17.0%,13.5%,x2 =0.379,P =0.827).Among patients with ALK rearrangement,6 received EGFR detection,and 5 showed no EGFR mutation,and 1 showed 19del EGFR mutation.Among the 13 ALK-positive patients,4 received crizotinib therapy,and all showed partial response.Conclusion Patients with lung adenocarcinoma with ALK rearrangement were significantly younger than those with ALK wild-type,and ALK rearrangement was rarely concur with EGFR mutation.Screening ALK fusion protein expression in patients with lung adenocarcinoma by paraffin-embedded sediments of pleural effusion was useful in guide of crizotinib therapy.%目的 探讨原发性肺腺癌胸腔积液沉渣间变性淋巴瘤激酶(ALK)蛋白表达与临床病理特征的关系及克唑替尼的治疗效果.方法 回顾性分析2013年9月至2014年1 1月首都医科大学附属北京胸科医院以胸腔积液沉渣包埋标本进行ALK基因重排检测的原发性肺腺癌病例85例,男42例,女43例,年龄30~87岁,平均58岁.采用Ventana全自动免疫组织化学染色和D5F3抗体试剂盒检测ALK

  9. Resistance to mTOR kinase inhibitors in lymphoma cells lacking 4EBP1.

    Directory of Open Access Journals (Sweden)

    Sharmila Mallya

    Full Text Available Inhibitors of the mechanistic target of rapamycin (mTOR hold promise for treatment of hematological malignancies. Analogs of the allosteric mTOR inhibitor rapamycin are approved for mantle cell lymphoma but have limited efficacy in other blood cancers. ATP-competitive "active-site" mTOR inhibitors produce more complete mTOR inhibition and are more effective than rapamycin in preclinical models of leukemia, lymphoma and multiple myeloma. In parallel to clinical trials of active-site mTOR inhibitors, it will be important to identify resistance mechanisms that might limit drug efficacy in certain patients. From a panel of diffuse large B-cell lymphoma cell lines, we found that the VAL cell line is particularly resistant to apoptosis in the presence of active-site mTOR inhibitors. Mechanistic investigation showed that VAL does not express eukaryotic initiation factor 4E-binding protein-1 (4EBP1, a key negative regulator of translation controlled by mTOR. Although VAL cells express the related protein 4EBP2, mTOR inhibitor treatment fails to displace eukaryotic initiation factor 4G from the mRNA cap-binding complex. Knockdown of eukaryotic initiation factor 4E, or re-expression of 4EBP1, sensitizes cells to apoptosis when treated with active-site mTOR inhibitors. These findings provide a naturally occurring example of 4EBP deficiency driving lymphoma cell resistance to active-site mTOR inhibitors.

  10. Phorbol esters, but not the hormonal form of vitamin D, induce changes in protein kinase C during differentiation of human histiocytic lymphoma cell line (U-937)

    Energy Technology Data Exchange (ETDEWEB)

    Mezzetti, G.; Bagnara, G.P.; Monti, M.G.; Casolo, L.P.; Bonsi, l.; Brunelli, M.A.

    1987-05-25

    Human histiocytic lymphoma cells (U-937) undergo similar differentiation when incubated with the phorbol ester 12-0-tetradecanoyl phorbol-13-acetate (TPA) and 1,25-dihydroxycholecalciferol. In this action, TPA somehow implicates calcium-sensitive and phospholipid-dependent protein kinase (protein kinase C), which is rapidly and significantly affected by this inducer. On the contrary, 1,25-dihydroxy-cholecalciferol in its differentiating action does not involve protein kinase C thus suggesting that the secosteroid induces monocytic differentiation possibly through a different mechanism of that of phorbol ester. 13 references, 2 figures, 1 table.

  11. Characterization of an adenosine deaminase-deficient human histiocytic lymphoma cell line (DHL-9) and selection of mutants deficient in adenosir kinase and deoxycytidine kinase.

    Science.gov (United States)

    Kubota, M; Kamatani, N; Daddona, P E; Carson, D A

    1983-06-01

    The association of adenosine deaminase (ADA) deficiency with immunodeficiency disease has emphasized the importance of this purine metabolic enzyme for human lymphocyte growth and function. This report describes the natural occurrence of ADA deficiency in a human histiocytic lymphoma cell line, DHL-9. The minimal ADA activity in DHL-9 extracts, 0.028 nmol/min/mg protein, was less than 50% of the activity in two B-lymphoblastoid cell lines from ADA-deficient patients and was resistant to the potent ADA inhibitor deoxycoformycin. A sensitive radioimmunoassay failed to detect immunoreactive ADA in DHL-9 cells. Moreover, in DHL-9 cells, deoxycoformycin did not augment either the growth-inhibitory effects of adenosine and deoxyadenosine or the accumulation of deoxyadenosine triphosphate from deoxyadenosine. When compared to six other human hematopoietic cell lines, DHL-9 had 5.6-fold-higher levels of adenosylhomocysteinase. Chromosome 20, which bears the structural gene for ADA and adenosylhomocysteinase, was diploid and had a normal Giemsa banding pattern. The parental DHL-9 cell line was used for the selection and cloning of secondary mutants deficient in deoxycytidine kinase and adenosine kinase.

  12. NPM/ALK mutants resistant to ASP3026 display variable sensitivity to alternative ALK inhibitors but succumb to the novel compound PF-06463922.

    Science.gov (United States)

    Mologni, Luca; Ceccon, Monica; Pirola, Alessandra; Chiriano, Gianpaolo; Piazza, Rocco; Scapozza, Leonardo; Gambacorti-Passerini, Carlo

    2015-03-20

    ALK is involved in the onset of several tumors. Crizotinib (XalkoriTM), a potent ALK inhibitor, represents the current front-line treatment for ALK+ NSCLC and shows great clinical efficacy. However, resistant disease often develops after initial response. ASP3026 is a novel second-generation ALK inhibitor with activity on crizotinib-resistant ALK-L1196M gatekeeper mutant. As resistance is likely to be a relevant hurdle for any drug, we sought to determine the resistance profile of ASP3026 in the context of NPM/ALK+ ALCL. We selected six ASP3026-resistant cell lines by culturing human ALCL cells in the presence of increasing concentrations of drug. The established resistant cell lines carry several point mutations in the ALK kinase domain (G1128S, C1156F, I1171N/T, F1174I, N1178H, E1210K and C1156F/D1203N were the most frequent) that are shown to confer resistance to ASP3026 in the Ba/F3 cell model. All mutants were profiled for cross-resistance against a panel of clinically relevant inhibitors including ceritinib, alectinib, crizotinib, AP26113 and PF-06463922. Finally, a genetically heterogeneous ASP3026-resistant cell line was exposed to second-line treatment simulations with all inhibitors. The population evolved according to relative sensitivity of its mutant subclones to the various drugs. Compound PF-06463922 did not allow the outgrowth of any resistant clone, at non-toxic doses.

  13. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas

    Science.gov (United States)

    Palomero, Teresa; Couronné, Lucile; Khiabanian, Hossein; Kim, Mi-Yeon; Ambesi-Impiombato, Alberto; Perez-Garcia, Arianne; Carpenter, Zachary; Abate, Francesco; Allegretta, Maddalena; Haydu, J. Erika; Jiang, Xiaoyu; Lossos, Izidore S.; Nicolas, Concha; Balbin, Milagros; Bastard, Christian; Bhagat, Govind; Piris, Miguel Angel; Campo, Elias; Bernard, Olivier; Rabadan, Raul; Ferrando, Adolfo

    2014-01-01

    Peripheral T-cell lymphomas (PTCLs) are a heterogeneous and poorly understood group of non Hodgkin lymphomas1,2. Here we combined whole exome sequencing of 12 tumor-normal DNA pairs, RNAseq analysis and targeted deep sequencing to identify new genetic alterations in PTCL transformation. These analyses identified highly recurrent epigenetic factor mutations in TET2, DNMT3A and IDH2 as well as a new highly prevalent RHOA p.Gly17Val (NM_001664) mutation present in 22/35 (67%) of angioimmunoblastic T-cell lymphomas (AITL) and in 8/44 (18%) not otherwise specified PTCL (PTCL NOS) samples. Mechanistically, the RHOA Gly17Val protein interferes with RHOA signaling in biochemical and cellular assays, an effect potentially mediated by the sequestration of activated Guanine Exchange Factor (GEF) proteins. In addition, we describe new and recurrent, albeit less frequent, genetic defects including mutations in FYN, ATM, B2M and CD58 implicating SRC signaling, impaired DNA damage response and escape from immune surveillance mechanisms in the pathogenesis of PTCL. PMID:24413734

  14. Stimulation of receptor-associated kinase, tyrosine kinase, and MAP kinase is required for prolactin-mediated macromolecular biosynthesis and mitogenesis in Nb2 lymphoma.

    Science.gov (United States)

    Carey, G B; Liberti, J P

    1995-01-10

    Lactogens [prolactin (Prl) and growth hormone] stimulate phosphorylation of the 40S ribosomal protein, S6, in Nb2 cells by mechanisms that do not involve participation of cAMP or protein kinase A, protein kinase C, or cGMP-dependent protein kinase. However, inhibition of tyrosine kinase (TK) abrogates Prl-mediated macromolecular biosynthesis. Inasmuch as lactogen signaling may involve sequential activation of protein kinases, the effect of Prl on the well-characterized mitogen-activated protein kinase (MAPK) and S6 kinase (S6K), the enzyme responsible for S6 phosphorylation in vivo, and their relationship to Nb2 macromolecular biosynthesis and mitogenesis were investigated. The results show that MAPK stimulation is transient (peak activity, 30 min) and precedes that of S6K, which reaches a maximum at 1.5-2 h, and slowly returns towards control levels at 6 h. Both staurosporine which inhibits GH receptor-associated kinase (JAK2) and genistein (GEN), an inhibitor of membrane-associated and cytoplasmic TKs, abrogate Prl-stimulated TK, MAPK, and S6K. Rapamycin (RAP), a specific inhibitor of p70S6K, completely blocks S6K but does not affect TK and MAPK. TK and MAPK activity correlates with Prl-stimulated anabolism, i.e., protein and DNA synthesis and mitogenesis. Thus, concentrations of STR and GEN which abrogate TK and MAPK inhibit anabolism virtually 100%. However, RAP, which inhibits S6K (ca. 100%) but not TK or MAPK, only delays Prl-mediated anabolism. These results indicate that Prl signaling in Nb2 cells involves a protein kinase cascade and that regulation of receptor-associated kinase, TK, and MAPK correlates with anabolism. The role of S6K (and S6 phosphorylation) appears to be ancillary.

  15. Crizotinib as a personalized alternative for targeted anaplastic lymphoma kinase rearrangement in previously treated patients with non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Guo L

    2015-10-01

    Full Text Available Liting Guo,1,* Haijun Zhang,1,* Weiwei Shao,2 Baoan Chen1 1Department of Hematology and Oncology (Key Department of Jiangsu Medicine, The Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, 2Department of Pathology, the First People’s Hospital of Yancheng, Yancheng, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: Crizotinib, the first clinically designed and synthesized as a tyrosine kinase inhibitor targeting mesenchymal–epithelial transition factor, indicating marked anticancer activity in patients with advanced, anaplastic lymphoma kinase-positive non-small-cell lung cancer, was approved by the US Food and Drug Administration in 2011. In this review, we focus on the efficacy of crizotinib compared with chemotherapy in advanced anaplastic lymphoma kinase-positive lung cancer and present the role of crizotinib as a personalized alternative in previously treated patients with non-small-cell lung cancer. Keywords: crizotinib, anaplastic lymphoma kinase rearrangement, non-small-cell lung cancer 

  16. Deficient BIM Expression as a Mechanism of Intrinsic and Acquired Resistance to Targeted Therapies in EGFR Mutant and ALK Positive Lung Cancers

    Science.gov (United States)

    2016-10-01

    EGFR-Mutant and ALK-Positive Lung Cancers PRINCIPAL INVESTIGATOR: Lecia Sequist MD. CONTRACTING ORGANIZATION: Massachusetts General Hospital...Intrinsic and Acquired Resistance to Targeted Therapies in EGFR-Mutant and ALK-Positive Lung Cancers 5b. GRANT NUMBER W81XWH-13-1-0227 5c. PROGRAM...submitted) have been written this year describing our findings. 15. SUBJECT TERMS BIM, apoptosis, targeted therapy, BCL-XL, kinase, EGFR, ALK, lung

  17. Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib

    Science.gov (United States)

    Collier, Thomas Lee; Normandin, Marc D.; Stephenson, Nickeisha A.; Livni, Eli; Liang, Steven H.; Wooten, Dustin W.; Esfahani, Shadi A.; Stabin, Michael G.; Mahmood, Umar; Chen, Jianqing; Wang, Wei; Maresca, Kevin; Waterhouse, Rikki N.; El Fakhri, Georges; Richardson, Paul; Vasdev, Neil

    2017-06-01

    Lorlatinib (PF-06463922) is a next-generation small-molecule inhibitor of the orphan receptor tyrosine kinase c-ros oncogene 1 (ROS1), which has a kinase domain that is physiologically related to anaplastic lymphoma kinase (ALK), and is undergoing Phase I/II clinical trial investigations for non-small cell lung cancers. An early goal is to measure the concentrations of this drug in brain tumour lesions of lung cancer patients, as penetration of the blood-brain barrier is important for optimal therapeutic outcomes. Here we prepare both 11C- and 18F-isotopologues of lorlatinib to determine the biodistribution and whole-body dosimetry assessments by positron emission tomography (PET). Non-traditional radiolabelling strategies are employed to enable an automated multistep 11C-labelling process and an iodonium ylide-based radiofluorination. Carbon-11-labelled lorlatinib is routinely prepared with good radiochemical yields and shows reasonable tumour uptake in rodents. PET imaging in non-human primates confirms that this radiotracer has high brain permeability.

  18. CK1δ in lymphoma: gene expression and mutation analyses and validation of CK1δ kinase activity for therapeutic application

    Directory of Open Access Journals (Sweden)

    Brigitte Sophia Winkler

    2015-02-01

    Full Text Available The prognosis of lymphoid neoplasms has improved considerably during the last decades. However, treatment response for some lymphoid neoplasms is still poor, indicating the need for new therapeutic approaches. One promising new strategy is the inhibition of kinases regulating key signal transduction pathways, which are of central importance in tumorigenesis. Kinases of the CK1 family may represent an attractive drug target since CK1 expression and/or activity are associated with the pathogenesis of malignant diseases. Over the last years efforts were taken to develop highly potent and selective CK1-specific inhibitor compounds and their therapeutic potential has now to be proved in pre-clinical trials. Therefore, we analyzed expression and mutational status of CK1δ in several cell lines representing established lymphoma entities, and also measured the mRNA expression level in primary lymphoma tissue as well as non-neoplastic blood cells. For a selection of lymphoma cell lines we furthermore determined CK1δ kinase activity and demonstrated therapeutic potential of CK1-specific inhibitors as a putative therapeutic option in the treatment of lymphoid neoplasms.

  19. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study.

    Science.gov (United States)

    Zwaenepoel, Karen; Merkle, Dennis; Cabillic, Florian; Berg, Erica; Belaud-Rotureau, Marc-Antoine; Grazioli, Vittorio; Herelle, Olga; Hummel, Michael; Le Calve, Michele; Lenze, Dido; Mende, Stefanie; Pauwels, Patrick; Quilichini, Benoit; Repetti, Elena

    2015-02-01

    In the past several years we have observed a significant increase in our understanding of molecular mechanisms that drive lung cancer. Specifically in the non-small cell lung cancer sub-types, ALK gene rearrangements represent a sub-group of tumors that are targetable by the tyrosine kinase inhibitor Crizotinib, resulting in significant reductions in tumor burden. Phase II and III clinical trials were performed using an ALK break-apart FISH probe kit, making FISH the gold standard for identifying ALK rearrangements in patients. FISH is often considered a labor and cost intensive molecular technique, and in this study we aimed to demonstrate feasibility for automation of ALK FISH testing, to improve laboratory workflow and ease of testing. This involved automation of the pre-treatment steps of the ALK assay using various protocols on the VP 2000 instrument, and facilitating automated scanning of the fluorescent FISH specimens for simplified enumeration on various backend scanning and analysis systems. The results indicated that ALK FISH can be automated. Significantly, both the Ikoniscope and BioView system of automated FISH scanning and analysis systems provided a robust analysis algorithm to define ALK rearrangements. In addition, the BioView system facilitated consultation of difficult cases via the internet.

  20. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB

    Science.gov (United States)

    Haddad, Yazan; Heger, Zbyněk; Adam, Vojtech

    2017-01-01

    Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of “good modeling practice” to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level. PMID:28163672

  1. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB.

    Science.gov (United States)

    Haddad, Yazan; Heger, Zbyněk; Adam, Vojtech

    2017-01-01

    Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of "good modeling practice" to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level.

  2. ALK+间变性大细胞淋巴瘤的临床特征、病理学研究进展及治疗策略

    Institute of Scientific and Technical Information of China (English)

    郑爱青; 穆海玉

    2012-01-01

    @@ 对间变性大细胞淋巴瘤(anaplastic large-cell lymphoma,ALCL)的认识最初是基于其形态学特征和恒表达CD30,由Stein等[1]在1985年首先报道.现已明确ALCL起源于T或null淋巴细胞免疫表型.最新的WHO分类中将ALCL归类于外周T细胞淋巴瘤.40%~60%的ALCL患者有一个显著的临床病理学特征,即染色体t(2;5)(p23;q35)易位[2].这一染色体易位诱导形成核磷酸蛋白-间变性淋巴瘤激酶(nucleophosmin–anaplastic lymphoma kinase,NPM-ALK)融合蛋白.NPM- ALK由于持续激活酪氨酸激酶ALK而有显著的致癌潜力.下面,主要介绍ALK+ALCL的临床特征和病理学研究进展.

  3. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas.

    Science.gov (United States)

    Naylor, Tara L; Tang, Huaping; Ratsch, Boris A; Enns, Andreas; Loo, Alice; Chen, Liqing; Lenz, Peter; Waters, Nigel J; Schuler, Walter; Dörken, Bernd; Yao, Yung-Mae; Warmuth, Markus; Lenz, Georg; Stegmeier, Frank

    2011-04-01

    The activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) correlates with poor prognosis. The ABC subtype of DLBCL is associated with constitutive activation of the NF-κB pathway, and oncogenic lesions have been identified in its regulators, including CARD11/CARMA1 (caspase recruitment domain-containing protein 11), A20/TNFAIP3, and CD79A/B. In this study, we offer evidence of therapeutic potential for the selective PKC (protein kinase C) inhibitor sotrastaurin (STN) in preclinical models of DLBCL. A significant fraction of ABC DLBCL cell lines exhibited strong sensitivity to STN, and we found that the molecular nature of NF-κB pathway lesions predicted responsiveness. CD79A/B mutations correlated with STN sensitivity, whereas CARD11 mutations rendered ABC DLBCL cell lines insensitive. Growth inhibitory effects of PKC inhibition correlated with NF-κB pathway inhibition and were mediated by induction of G₁-phase cell-cycle arrest and/or cell death. We found that STN produced significant antitumor effects in a mouse xenograft model of CD79A/B-mutated DLBCL. Collectively, our findings offer a strong rationale for the clinical evaluation of STN in ABC DLBCL patients who harbor CD79 mutations also illustrating the necessity to stratify DLBCL patients according to their genetic abnormalities.

  4. Pediatric lymphomas in Brazil

    Directory of Open Access Journals (Sweden)

    Gabriela Gualco

    2010-01-01

    Full Text Available OBJECTIVE: This study provides the clinical pathological characteristics of 1301 cases of pediatric/adolescent lymphomas in patients from different geographic regions of Brazil. METHODS: A retrospective analyses of diagnosed pediatric lymphoma cases in a 10-year period was performed. We believe that it represents the largest series of pediatric lymphomas presented from Brazil. RESULTS: Non-Hodgkin lymphomas represented 68% of the cases, including those of precursor (36% and mature (64% cell origin. Mature cell lymphomas comprised 81% of the B-cell phenotype and 19% of the T-cell phenotype. Hodgkin lymphomas represented 32% of all cases, including 87% of the classical type and 13% of nodular lymphocyte predominant type. The geographic distribution showed 38.4% of the cases in the Southeast region, 28.7% in the Northeast, 16.1% in the South, 8.8% in the North, and 8% in the Central-west region. The distribution by age groups was 15-18 years old, 33%; 11-14 years old, 26%; 6-10 years old, 24%; and 6 years old or younger, 17%. Among mature B-cell lymphomas, most of the cases were Burkitt lymphomas (65%, followed by diffuse large B-cell lymphomas (24%. In the mature T-cell group, anaplastic large cell lymphoma, ALK-positive was the most prevalent (57%, followed by peripheral T-cell lymphoma, then not otherwise specified (25%. In the group of classic Hodgkin lymphomas, the main histological subtype was nodular sclerosis (76%. Nodular lymphocyte predominance occurred more frequently than in other series. CONCLUSION: Some of the results found in this study may reflect the heterogeneous socioeconomical status and environmental factors of the Brazilian population in different regions.

  5. The mTOR kinase inhibitor everolimus synergistically enhances the anti-tumor effect of the Bruton's tyrosine kinase (BTK) inhibitor PLS-123 on Mantle cell lymphoma.

    Science.gov (United States)

    Li, Jiao; Wang, Xiaogan; Xie, Yan; Ying, Zhitao; Liu, Weiping; Ping, Lingyan; Zhang, Chen; Pan, Zhengying; Ding, Ning; Song, Yuqin; Zhu, Jun

    2017-09-14

    Mantle cell lymphoma (MCL) is an aggressive and incurable malignant disease. Despite of general chemotherapy, relapse and mortality are common, highlighting the need for the development of novel targeted drugs or combination of therapeutic regimens. Recently, several drugs that target the B-cell receptor (BCR) signaling pathway, especially the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicate that pharmacological inhibition of BCR pathway holds promise in MCL treatment. Here, we have developed a novel irreversible BTK inhibitor, PLS-123, that has more potent and selective anti-tumor activity than ibrutinib in vitro and in vivo. Using in vitro screening, we discovered that the combination of PLS-123 and the mammalian target of rapamycin (mTOR) inhibitor, everolimus exert synergistic activity in attenuating proliferation and motility of MCL cell lines. Simultaneous inhibition of BTK and mTOR resulted in marked induction of apoptosis and cell cycle arrest in the G1 phase, which were accompanied by upregulation of pro-apoptotic proteins (cleaved Caspase-3, cleaved PARP and Bax), repression of anti-apoptotic proteins (Mcl-1, Bcl-xl and XIAP), and downregulation of regulators of the G1/S phase transition (CDK2, CDK4, CDK6 and Cyclin D1). Gene expression profile analysis revealed simultaneous treatment with these agents led to inhibition of the JAK2/STAT3, AKT/mTOR signaling pathways and SGK1 expression. Finally, the anti-tumor and pro-apoptotic activities of combination strategy have also been demonstrated using xenograft mice models. Taken together, simultaneous suppression of BTK and mTOR may be indicated as a potential therapeutic modality for the treatment of MCL. This article is protected by copyright. All rights reserved. © 2017 UICC.

  6. Protein tyrosine kinases p53/56lyn and p72syk in MHC class I-mediated signal transduction in B lymphoma cells

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Skov, S

    1998-01-01

    Crosslinking of major histocompatibility complex class I (MHC-I) molecules on the surface of human B lymphoma cells was shown to induce protein tyrosine phosphorylation and mobilization of intracellular free calcium. Immunoprecipitations indicated that the protein tyrosine kinases p53/56lyn and p72...... and the results indicate that these two kinases have different substrate specificity and regulate intracellular free calcium differently in response to MHC-I crosslinking. In addition MHC-I crosslinking of a sIgM-negative DT40 chicken B cell variant results in less activity of tyrosine kinases and less...... mobilization of intracellular free calcium compared with MHC-I crosslinking of wild-type DT40 cells. Thus, expression of BCR at the cell surface is likely to be important for the signal cascade initiated by MHC-I crosslinking. Our data suggest that signal transduction initiated through ligation of the MHC...

  7. Excellent Outcome of Immunomodulation or Bruton's Tyrosine Kinase Inhibition in Highly Refractory Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type.

    Science.gov (United States)

    Gupta, Eva; Accurso, Joseph; Sluzevich, Jason; Menke, David M; Tun, Han W

    2015-12-29

    Primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL-LT) is a rare diffuse large B-cell lymphoma confined to the skin of the legs. The typical presentation is characterized by solitary or multiple growing plaques, usually confined to one leg. We report a case of PCDLBCL-LT of activated B-cell subtype characterized by multiple local relapses in the legs, initially, and systemic relapses about seven years after the diagnosis. Local relapses were sensitive to radiation therapy. Cutaneous and systemic relapses responded well to immunomodulatory therapy with lenalidomide followed by Bruton's tyrosine kinase inhibition with ibrutinib. Ibrutinib is the only treatment that resulted in long-lasting complete remission. Lenalidomide and especially ibrutinib appear to have a significant activity against this lymphoma and should be incorporated in the treatment of this resistant and aggressive lymphoma. To our knowledge, this is the first case of PCDLBCL-LT reported in the literature exhibiting a complete response to ibrutinib.

  8. ALK and crizotinib: after the honeymoon…what else? Resistance mechanisms and new therapies to overcome it.

    Science.gov (United States)

    Rolfo, Christian; Passiglia, Francesco; Castiglia, Marta; Raez, Luis E; Germonpre, Paul; Gil-Bazo, Ignacio; Zwaenepoel, Karen; De Wilde, Annemieke; Bronte, Giuseppe; Russo, Antonio; Van Meerbeeck, Jan P; Van Schil, Paul; Pauwels, Patrick

    2014-08-01

    The last few decades have witnessed a silent revolution in the war against NSCLC, thanks to the discovery of "oncogenic drivers" and the subsequent development of targeted therapies. The discovery of the EML4-ALK fusion gene in a subgroup of patients with NSCLC and the subsequent clinical development of crizotinib has been an amazing success story in lung cancer translational-research, and its accelerated approval [only 4 years from the discovery of ALK rearrangement in NSCLC to the approval by the Food and Drug Administration (FDA)] marked the beginning of the new decade of targeted therapy. However, common to all targeted therapies, despite an initial benefit, patients inevitably experience tumor progression, due to the development of resistance. Several molecular mechanisms are responsible for acquired resistance, such as secondary mutations of ALK kinase domain or amplification of ALK fusion gene, or the activation of other oncogenic drivers, which may cause resistance independently of ALK genetic alterations. Pre-clinical data and early clinical trials showed the promising efficacy of a new class of ALK-inhibitors in overcoming acquired resistance. The inhibition of the molecular chaperone, HSP90, represents another promising strategy to overcome crizotinib resistance in ALK-rearranged NSCLC. Several molecules are currently under investigation in order to establish their specific role in the treatment of ALK-rearranged NSCLC.

  9. Hodgkin's Lymphoma

    Science.gov (United States)

    ... behavior. Your type determines your treatment options. Classical Hodgkin's lymphoma Classical Hodgkin's lymphoma is the more common ... Hodgkin's lymphoma Lymphocyte-rich Hodgkin's lymphoma Lymphocyte-predominant Hodgkin's lymphoma This much rarer type of Hodgkin's lymphoma ...

  10. ALK7 Gene Polymorphism is Associated with Metabolic Syndrome Risk and Cardiovascular Remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenchao; Wang, Hui; Zhang, Wei [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Lv, Ruijuan [Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wang, Zhihao [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Department of Geriatrics, Qilu Hospital of Shandong University, Jinan (China); Shang, Yuanyuan; Zhang, Yun; Zhong, Ming [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo; Tang, Mengxiong, E-mail: tangmengxiongsdu8@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China)

    2013-08-15

    Activin receptor-like kinase 7 (ALK7) is a type I receptor for the TGF-β superfamily and has recently been demonstrated to play an important role in the maintenance of metabolic homeostasis. To investigate the association of the ALK7 gene polymorphism with metabolic syndrome (MetS) and cardiovascular remodeling in MetS patients. The single nucleotide polymorphism rs13010956 in the ALK7 gene was genotyped in 351 Chinese subjects undergoing carotid and cardiac ultrasonography. The associations of the ALK7 gene polymorphism with the MetS phenotype, MetS parameters, and cardiovascular ultrasonic features were analyzed. The rs13010956 polymorphism in the ALK7 gene was found to be significantly associated with the MetS phenotype in females (p < 0.05) and was also significantly associated with blood pressure in the total (p < 0.05) and female populations (p < 0.01). Further analysis revealed that rs13010956 was associated with mean intima-media thickness of the carotid arteries in females (p < 0.05). After control for body mass index, blood pressure, fasting blood glucose, and triglycerides, rs13010956 was also found to be significantly associated with left ventricular mass index in the total (p < 0.05) and female populations (p < 0.05). Our findings suggested that the ALK7 gene polymorphism rs13010956 was significantly associated with MetS risk in females and may be involved in cardiovascular remodeling in MetS patients.

  11. Stereotactic Radiation Therapy can Safely and Durably Control Sites of Extra-Central Nervous System Oligoprogressive Disease in Anaplastic Lymphoma Kinase-Positive Lung Cancer Patients Receiving Crizotinib

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Gregory N., E-mail: gregory.gan@ucdenver.edu [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Weickhardt, Andrew J.; Scheier, Benjamin; Doebele, Robert C. [Department of Medical Oncology, University of Colorado, Aurora, Colorado (United States); Gaspar, Laurie E.; Kavanagh, Brian D. [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Camidge, D. Ross [Department of Medical Oncology, University of Colorado, Aurora, Colorado (United States)

    2014-03-15

    Purpose: To analyze the durability and toxicity of radiotherapeutic local ablative therapy (LAT) applied to extra-central nervous system (eCNS) disease progression in anaplastic lymphoma kinase-positive non-small cell lung cancer (NSCLC) patients. Methods and Materials: Anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib and manifesting ≤4 discrete sites of eCNS progression were classified as having oligoprogressive disease (OPD). If subsequent progression met OPD criteria, additional courses of LAT were considered. Crizotinib was continued until eCNS progression was beyond OPD criteria or otherwise not suitable for further LAT. Results: Of 38 patients, 33 progressed while taking crizotinib. Of these, 14 had eCNS progression meeting OPD criteria suitable for radiotherapeutic LAT. Patients with eCNS OPD received 1-3 courses of LAT with radiation therapy. The 6- and 12-month actuarial local lesion control rates with radiation therapy were 100% and 86%, respectively. The 12-month local lesion control rate with single-fraction equivalent dose >25 Gy versus ≤25 Gy was 100% versus 60% (P=.01). No acute or late grade >2 radiation therapy-related toxicities were observed. Median overall time taking crizotinib among those treated with LAT versus those who progressed but were not suitable for LAT was 28 versus 10.1 months, respectively. Patients continuing to take crizotinib for >12 months versus ≤12 months had a 2-year overall survival rate of 72% versus 12%, respectively (P<.0001). Conclusions: Local ablative therapy safely and durably eradicated sites of individual lesion progression in anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib. A dose–response relationship for local lesion control was observed. The suppression of OPD by LAT in patients taking crizotinib allowed an extended duration of exposure to crizotinib, which was associated with longer overall survival.

  12. Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis.

    Science.gov (United States)

    Mussolin, L; Damm-Welk, C; Pillon, M; Zimmermann, M; Franceschetto, G; Pulford, K; Reiter, A; Rosolen, A; Woessmann, W

    2013-02-01

    We studied the prognostic value of minimal disseminated disease (MDD) and anti-ALK immune response in children with NPM-ALK-positive anaplastic-large cell lymphoma (ALCL) and evaluated their potential for risk stratification. NPM-ALK transcripts were analyzed by RT-PCR in bone marrow/peripheral blood of 128 ALCL patients at diagnosis, whereas ALK antibody titers in plasma were assessed using an immunocytochemical approach. MDD was positive in 59% of patients and 96% showed an anti-ALK response. Using MDD and antibody titer results, patients could be divided into three biological risk groups (bRG) with different prognosis: high risk (bHR): MDD-positive and antibody titer ≤ 1/750, 26/128 (20%); low risk (bLR): MDD negative and antibody titer >1/750, 40/128 (31%); intermediate risk (bIR): all remaining patients, 62/128 (48%). Progression-free survival was 28% (s.e., 9%), 68% (s.e., 6%) and 93% (s.e., 4%) for bHR, bIR and bLR, respectively (P<0.0001). Survival was 71% (s.e., 9%), 83% (s.e., 5%) and 98% (s.e., 2%) for bHR, bIR and bLR (P=0.02). Only bHR and histology other than common type were predictive of higher risk of failure (hazard ratio 4.9 and 2.7, respectively) in multivariate analysis. Stratification of ALCL patients based on MDD and anti-ALK titer should be considered in future ALCL trials to optimize treatment.

  13. 增强免疫组化和原位杂交方法检测非小细胞肺癌的ALK重排的临床可行性%Assessment of ALK Rearrangement in Non-small Cell Lung Cancer:Using Enhancing Immunohistochemical Way and Fluorescence in situ Hybridization

    Institute of Scientific and Technical Information of China (English)

    孟辉; 高献争; 张岚; 刘芳; 李文才

    2015-01-01

    Background and objective Besides epidermal growth factor receptor (EGFR) mutation, the non-small cell lung cancer (NSCLC) of anaplastic lymphoma kinase (ALK) rearrangement becomes another important clinical subtype. A speciifc and high-sensitive and economical detection way is convenience for identiifcation of ALK positive NSCLC quickly and accurately. So the objective of our research is to detect ALK rearrangement in 172 cases of NSCLC by using enhancing immunohistochemical way (ventana-IHC, V-IHC). Methods ALK rearrangement in 172 NSCLC samples was detected by us-ing V-IHC, and positive staining cases were further veriifed by lfuorescence in situ hybridization (FISH). Results Among 172 NSCLC cases, there were 12 positive staining. hTe positive results were conifrmed by FISH and 11 cases were FISH positive. hTe overall concordance between V-IHC and FISH is 91.7%(11/12). Conclusion hTe V-IHC method is a reliable method for ALK arrangement and could be used in clinical screen and diagnosis.%背景与目的继表皮生长因子(epidermal growth factor receptor, EGFR)突变之后,间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK)基因重排的非小细胞肺癌(non-small cell lung cancer, NSCLC)已经成为了肺癌的又一重要的临床分型。在临床上需要选择一种特异,灵敏并且价廉的方法准确快速地找到ALK阳性的NSCLC患者。为此本研究探讨增强免疫组化法(ventana-IHC, V-IHC)检测ALK重排的临床可行性。方法利用V-IHC检测172例NSCLC患者ALK重排,阳性患者以荧光原位杂交法(lfuorescence in situ hybridization, FISH)验证。结果172例NSCLC患者中有12例为ALK阳性,经过FISH验证,11例患者为阳性,符合率为91.7%。结论在NSCLC中,V-IHC是ALK检测切实可行的方法,适用于ALK重排的NSCLC的筛查和诊断。

  14. EML4-ALK与EGFR基因突变共存型非小细胞肺癌研究进展%Research Progress in Non-small Cell Lung Cancer with Concomitant EML4-ALK Fusion Gene and EGFR Gene Mutation

    Institute of Scientific and Technical Information of China (English)

    曾珠; 吴一龙

    2011-01-01

    Lung cancer is one of the most prevalence malignances, of which non-small cell lung cancer (NSCLC) account for 80%-85% of lung cancer. Molecular target therapy is one of the most popular and promising field of NSCLC treatment, and its hotspots includes EGFR (epidermal growth factor receptor), EML4-ALK (echinoderm microtubule associated protein like4-anaplastic lymphoma kinase), etc. Former researches indicated that EML4-ALK fusion and EGFR mutation were excluded mutually. However, cases of patients harbored concomitant EML4-ALK fusion gene and EGFR mutation have been reported continuously at recent. This review aims to summarize the incidence and molecular structure of EML4-ALK fusion gene and EGFR mutation, as well as clinical features of patients with the concomitant genes induced NSCLC.%肺癌是最常见的恶性肿瘤之一,其中非小细胞肺癌( non-small cell lung cancer,NSCLC)占肺癌的80%-85%.分子靶向治疗是目前NSCLC最热门也是最具前景的领域之一,其中的热点分子包括表皮生长因子受体(epidermal growth factor receptor,EGFR)、棘皮动物微管样蛋白4-间变淋巴瘤激酶(echinoderm microtubule associated protein like4-anaplastic lymphoma kinase,EML4-ALK)等.既往研究认为EML4-ALK融合基因与EGFR突变不能共存.近期陆续报道了EML4-ALK融合基因与EGFR突变共存的病例.本文就EML4-ALK融合基因及EGFR突变基因的分子结构、发生率和目前已报道双突变患者的临床特点等进行综述.

  15. Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth.

    Science.gov (United States)

    Pizzi, Marco; Piazza, Francesco; Agostinelli, Claudio; Fuligni, Fabio; Benvenuti, Pietro; Mandato, Elisa; Casellato, Alessandro; Rugge, Massimo; Semenzato, Gianpietro; Pileri, Stefano A

    2015-03-30

    Serine-threonine kinase CK2 is highly expressed and pivotal for survival and proliferation in multiple myeloma, chronic lymphocytic leukemia and mantle cell lymphoma. Here, we investigated the expression of α catalytic and β regulatory CK2 subunits by immunohistochemistry in 57 follicular (FL), 18 Burkitt (BL), 52 diffuse large B-cell (DLBCL) non-Hodgkin lymphomas (NHL) and in normal reactive follicles. In silico evaluation of available Gene Expression Profile (GEP) data sets from patients and Western blot (WB) analysis in NHL cell-lines were also performed. Moreover, the novel, clinical-grade, ATP-competitive CK2-inhibitor CX-4945 (Silmitasertib) was assayed on lymphoma cells. CK2 was detected in 98.4% of cases with a trend towards a stronger CK2α immunostain in BL compared to FL and DLBCL. No significant differences were observed between Germinal Center B (GCB) and non-GCB DLBCL types. GEP data and WB confirmed elevated CK2 mRNA and protein levels as well as active phosphorylation of specific targets in NHL cells. CX-4945 caused a dose-dependent growth-arresting effect on GCB, non-GCB DLBCL and BL cell-lines and it efficiently shut off phosphorylation of NF-κB RelA and CDC37 on CK2 target sites. Thus, CK2 is highly expressed and could represent a suitable therapeutic target in BL, FL and DLBCL NHL.

  16. The potent oncogene NPM-ALK mediates malignant transformation of normal human CD4(+) T lymphocytes.

    Science.gov (United States)

    Zhang, Qian; Wei, Fang; Wang, Hong Yi; Liu, Xiaobin; Roy, Darshan; Xiong, Qun-Bin; Jiang, Shuguang; Medvec, Andrew; Danet-Desnoyers, Gwenn; Watt, Christopher; Tomczak, Ewa; Kalos, Michael; Riley, James L; Wasik, Mariusz A

    2013-12-01

    With this study we have demonstrated that in vitro transduction of normal human CD4(+) T lymphocytes with NPM-ALK results in their malignant transformation. The transformed cells become immortalized and display morphology and immunophenotype characteristic of patient-derived anaplastic large-cell lymphomas. These unique features, which are strictly dependent on NPM-ALK activity and expression, include perpetual cell growth, proliferation, and survival; activation of the key signal transduction pathways STAT3 and mTORC1; and expression of CD30 (the hallmark of anaplastic large-cell lymphoma) and of immunosuppressive cytokine IL-10 and cell-surface protein PD-L1/CD274. Implantation of NPM-ALK-transformed CD4(+) T lymphocytes into immunodeficient mice resulted in formation of tumors indistinguishable from patients' anaplastic large-cell lymphomas. Our findings demonstrate that the key aspects of human carcinogenesis closely recapitulating the features of the native tumors can be faithfully reproduced in vitro when an appropriate oncogene is used to transform its natural target cells; this in turn points to the fundamental role in malignant cell transformation of potent oncogenes expressed in the relevant target cells. Such transformed cells should permit study of the early stages of carcinogenesis, and in particular the initial oncogene-host cell interactions. This experimental design could also be useful for studies of the effects of early therapeutic intervention and likely also the mechanisms of malignant progression.

  17. Clinicopathological features of lung adenocarcinoma harboring anaplastic lymphoma kinase rearrangements%间变性淋巴瘤激酶融合基因阳性肺腺癌的临床病理特征

    Institute of Scientific and Technical Information of China (English)

    董宇杰; 周立娟; 王敬慧; 蔡毅然; 穆晶; 张海青

    2015-01-01

    Objective To analyze the clinicopathological characteristics of patients with anaplastic lymphoma kinase( ALK) rearrangements in lung adenocarcinoma, and the clinical therapy and prognosis of the patients. Methods Clinicopathological data of 34 cases of ALK⁃positive patients treated in the Beijing Chest Hospital from 2005 to 2014 were reviewed. The expression of ALK proteins in the resected tumors was detected by immunohistochemistry, and EGFR mutations were examined by polymerase chain reaction and a direct DNA sequencing method. Results Among the 34 patients, 20 were male and 14 were female, the median age was 49, and 11 were smokers and 23 were never smokers. The clinical stages of the patients were stage ⅠA in 5 patients,ⅠB in one patient,ⅡA in two patients,ⅢA in 16 patients,ⅢB in 5 patients,Ⅳin 4 patients, and one patient of unknown stage. ALK⁃positive tumors showed strong granular staining in cell cytoplasm by immunohistochemistry. Forteen patients were solid predominant subtype with mucin production, 10 of acinar predominant subtype, 6 of papillary predominant subtype, 3 of micropapillary predominant subtype, and one was of colloid variant. There were 18 cases with mucin production, 6 cases had signet⁃ring cell morphology, and 10 cases showed cribriform pattern. Only one patient had coexistence of ALK rearrangement and EGFR mutation ( L858R at exon 21) . Of the 34 patients, 24 patients were followed up. The median follow up of the 24 patients was 11.0 months (1.7⁃48.7 months). Conclusions ALK⁃positive tumors as a molecular subtype of lung adenocarcinoma have distinct clinicopathological features. The histological findings of ALK⁃positive tumors are characterized by solid predominant subtype with mucin production, acinar predominant subtype, signet⁃ring cells and cribriform structures. They were rarely co⁃mutated with EGFR mutation.%目的:探讨间变性淋巴瘤激酶( ALK)融合基因阳性肺腺癌的临床病理特征

  18. Bortezomib and Fenretinide Induce Synergistic Cytotoxicity in Mantle Cell Lymphoma Via Apoptosis, Cell Cycle Dysregulation, and IκBα Kinase Down-regulation

    Science.gov (United States)

    Cowan, Andrew J.; Frayo, Shani L.; Press, Oliver W.; Palanca-Wessels, Maria C.; Pagel, John M.; Green, Damian J.; Gopal, Ajay K.

    2015-01-01

    Background Mantle cell lymphoma (MCL) remains incurable for most patients and proteasome inhibitors like bortezomib induce responses in a minority of patients with relapsed disease. Fenretinide is a retinoid that has shown preclinical activity in B-cell lymphomas. We hypothesized that these agents could yield augmented anti-tumor activity. Methods Mantle cell lymphoma lines (Granta-519, Jeko-1, Rec-1) were treated with escalating concentrations of bortezomib and fenretinide singly and in combination. Cytotoxicity was assessed using the MTT assay. Flow cytometric methods assessed apoptosis and necrosis with annexin V-FITC/propidium iodide and G1 and G2 cell cycle changes with DAPI staining. Changes in Cyclin D1, Cyclin B, IκBα, and IKKα expression were quantified by Western blot. Results Cytotoxicity was mediated via apoptosis; both agents showed observed vs expected cytotoxicity in Granta-519 of 92.2% vs 55.1%, in Jeko-1 of 87.6% vs 36.3%, and in Rec-1 of 63.2% vs 29.8%. Isobolographic analysis confirmed synergy in Jeko-1 and Rec-1. Bortezomib induced G2 phase arrest with a 1.7 fold-increase over control, and fenretinide resulted in G1 phase arrest, with an increase of 1.3 fold over control. In combination G2 phase arrest predominated, with a 1.4 fold-increase compared to control, and reduced expression of Cyclin D1 to 24%, Cyclin B to 52% and 64%, Cyclin D3 to 25% and 43%, IκBα to 23% and 46%, and IκBα kinase to 34% and 44%. Conclusions Bortezomib and fenretinide exhibit synergistic cytotoxicity against MCL cell lines. This activity is mediated by IκBα kinase modulation, decreased cyclin expression, cell cycle dysregulation, and apoptotic cell death. PMID:26237500

  19. Nivolumab With or Without Varlilumab in Treating Patients With Relapsed or Refractory Aggressive B-cell Lymphomas

    Science.gov (United States)

    2017-03-13

    Activated B-Cell-Like Diffuse Large B-Cell Lymphoma; ALK-Positive Large B-Cell Lymphoma; Atypical Burkitt/Burkitt-Like Lymphoma; Diffuse Large B-Cell Lymphoma Associated With Chronic Inflammation; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; Epstein-Barr Virus Positive Diffuse Large B-Cell Lymphoma of the Elderly; Epstein-Barr Virus-Positive Mucocutaneous Ulcer; Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma; High-Grade B-Cell Lymphoma With MYC and BCL2 and/or BCL6 Rearrangements; Human Herpesvirus-8-Positive Neoplastic Cells Present; Intravascular Large B-Cell Lymphoma; MYC-Negative B-Cell Lymphoma With 11q Aberration Resembling Burkitt Lymphoma; Plasmablastic Lymphoma; Primary Cutaneous Diffuse Large B-Cell Lymphoma; Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type; Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System; Primary Effusion Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Lymphomatoid Granulomatosis; Recurrent Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Burkitt Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Skin Ulcer; Small Intestinal B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; T-Cell/Histiocyte-Rich Large B-Cell Lymphoma

  20. Toward a better understanding of the interaction between TGF-β family members and their ALK receptors

    KAUST Repository

    Romano, Valentina

    2012-02-22

    Transforming growth factor-beta (TGF-β) proteins are a family of structurally related extracellular proteins that trigger their signaling functions through interaction with the extracellular domains of their cognate serine/threonine kinase receptors. The specificity of TGF-β/receptor binding is complex and gives rise to multiple functional roles. Additionally, it is not completely understood at the atomic level. Here, we use the most reliable computational methods currently available to study systems involving activin-like kinase (ALK) receptors ALK4 and ALK7 and their multiple TGF-β ligands. We built models for all these proteins and their complexes for which experimental structures are not available. By analyzing the surfaces of interaction in six different TGF-β/ALK complexes we could infer which are the structural distinctive features of the ligand-receptor binding mode. Furthermore, this study allowed us to rationalize why binding of the growth factors GDF3 and Nodal to the ALK4 receptor requires the Cripto co-factor, whilst binding to the ALK7 receptor does not. © Springer-Verlag 2012.

  1. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV)+ B cell lymphomas.

    Science.gov (United States)

    Hatton, Olivia; Lambert, Stacie L; Krams, Sheri M; Martinez, Olivia M

    2012-01-01

    The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1), activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR)-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.

  2. Src kinase and Syk activation initiate PI3K signaling by a chimeric latent membrane protein 1 in Epstein-Barr virus (EBV+ B cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Olivia Hatton

    Full Text Available The B lymphotrophic γ-herpesvirus EBV is associated with a variety of lymphoid- and epithelial-derived malignancies, including B cell lymphomas in immunocompromised and immunosuppressed individuals. The primary oncogene of EBV, latent membrane protein 1 (LMP1, activates the PI3K/Akt pathway to induce the autocrine growth factor, IL-10, in EBV-infected B cells, but the mechanisms underlying PI3K activation remain incompletely understood. Using small molecule inhibition and siRNA strategies in human B cell lines expressing a chimeric, signaling-inducible LMP1 protein, nerve growth factor receptor (NGFR-LMP1, we show that NGFR-LMP1 utilizes Syk to activate PI3K/Akt signaling and induce IL-10 production. NGFR-LMP1 signaling induces phosphorylation of BLNK, a marker of Syk activation. Whereas Src kinases are often required for Syk activation, we show here that PI3K/Akt activation and autocrine IL-10 production by NGFR-LMP1 involves the Src family kinase Fyn. Finally, we demonstrate that NGFR-LMP1 induces phosphorylation of c-Cbl in a Syk- and Fyn-dependent fashion. Our results indicate that the EBV protein LMP1, which lacks the canonical ITAM required for Syk activation, can nevertheless activate Syk, and the Src kinase Fyn, resulting in downstream c-Cbl and PI3K/Akt activation. Fyn, Syk, and PI3K/Akt antagonists thus may present potential new therapeutic strategies that target the oncogene LMP1 for treatment of EBV+ B cell lymphomas.

  3. [Gene expression profiling by suppression subtractive hybridization (SSH): a example for its application to the study of lymphomas].

    Science.gov (United States)

    Villalva, C; Trempat, P; Zenou, R C; Delsol, G; Brousset, P

    2001-03-01

    Suppression subtractive hybridization (SSH) was used to isolate genes that were differentially expressed in anaplastic lymphoma kinase (ALK)-positive and ALK-negative anaplastic large cell lymphoma. In addition, this approach was applied to Hodgkin's disease cases with different clinical outcomes. SSH combines a normalization step that equalizes the abundance of cDNAs within the sequences to be tested and a subtraction step that excludes the common sequences between the target and the control. In a model system, the SSH technique enriches for rare sequences up to 5,000-fold in one round. We have isolated several genes whose expression varied significantly with regard to the tumour subtypes. There were different genes with known or unknown functions. We aim to compare the results of the SSH approach with those obtained with high density filters. In a near future, we would like to design DNA chips specific of each pathology that could be used for clinical purposes (evaluation of prognosis and therapeutic response).

  4. Clinical significance of cyclin-dependent kinase inhibitor p27Kip1 expression and proliferation in non-Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Skjødt, Karsten; Mortensen, Leif Spange;

    1999-01-01

    between p27Kip1 and Ki-67 expression. Low expression of p27Kip1, defined as nuclear p27Kip1 expression in ... expression tended to do better. Likewise, a high proliferation rate (Ki-67 >40%) was associated with poor survival in indolent and aggressive lymphomas. Multivariate analysis using the proportional hazards model showed that only p27Kip1, and not Ki-67, maintained independent prognostic significance...

  5. Inhibition of the checkpoint kinase Chk1 induces DNA damage and cell death in human Leukemia and Lymphoma cells.

    Science.gov (United States)

    Bryant, Christopher; Scriven, Kirsten; Massey, Andrew J

    2014-06-10

    Chk1 forms a core component of the DNA damage response and small molecule inhibitors are currently being investigated in the clinic as cytotoxic chemotherapy potentiators. Recent evidence suggests that Chk1 inhibitors may demonstrate significant single agent activity in tumors with specific DNA repair defects, a constitutively activated DNA damage response or oncogene induced replicative stress. Growth inhibition induced by the small molecule Chk1 inhibitor V158411 was assessed in a panel of human leukemia and lymphoma cell lines and compared to cancer cell lines derived from solid tumors. The effects on cell cycle and DNA damage response markers were further evaluated. Leukemia and lymphoma cell lines were identified as particularly sensitive to the Chk1 inhibitor V158411 (mean GI50 0.17 μM) compared to colon (2.8 μM) or lung (6.9 μM) cancer cell lines. Chk1 inhibition by V158411 in the leukemia and lymphoma cell lines induced DNA fragmentation and cell death that was both caspase dependent and independent, and prevented cells undergoing mitosis. An analysis of in vitro pharmacodynamic markers identified a dose dependent decrease in Chk1 and cyclin B1 protein levels and Cdc2 Thr15 phosphorylation along with a concomitant increase in H2AX phosphorylation at Ser139 following V158411 treatment. These data support the further evaluation of Chk1 inhibitors in hematopoietic cancers as single agents as well as in combination with standard of care cytotoxic drugs.

  6. Pathobiology of Anaplastic Large Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Pier Paolo Piccaluga

    2010-01-01

    Full Text Available The authors revise the concept of anaplastic large cell lymphoma (ALCL in the light of the recently updated WHO classification of Tumors of Hematopoietic and Lymphoid Tissues both on biological and clinical grounds. The main histological findings are illustrated with special reference to the cytological spectrum that is indeed characteristic of the tumor. The phenotype is reported in detail: the expression of the ALK protein as well as the chromosomal abnormalities is discussed with their potential pathogenetic implications. The clinical features of ALCL are presented by underlining the difference in terms of response to therapy and survival between the ALK-positive and ALK-negative forms. Finally, the biological rationale for potential innovative targeted therapies is presented.

  7. Blockade of oncogenic IκB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors.

    Science.gov (United States)

    Ceribelli, Michele; Kelly, Priscilla N; Shaffer, Arthur L; Wright, George W; Xiao, Wenming; Yang, Yibin; Mathews Griner, Lesley A; Guha, Rajarshi; Shinn, Paul; Keller, Jonathan M; Liu, Dongbo; Patel, Paresma R; Ferrer, Marc; Joshi, Shivangi; Nerle, Sujata; Sandy, Peter; Normant, Emmanuel; Thomas, Craig J; Staudt, Louis M

    2014-08-01

    In the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), NF-κB activity is essential for viability of the malignant cells and is sustained by constitutive activity of IκB kinase (IKK) in the cytoplasm. Here, we report an unexpected role for the bromodomain and extraterminal domain (BET) proteins BRD2 and BRD4 in maintaining oncogenic IKK activity in ABC DLBCL. IKK activity was reduced by small molecules targeting BET proteins as well as by genetic knockdown of BRD2 and BRD4 expression, thereby inhibiting downstream NF-κB-driven transcriptional programs and killing ABC DLBCL cells. Using a high-throughput platform to screen for drug-drug synergy, we observed that the BET inhibitor JQ1 combined favorably with multiple drugs targeting B-cell receptor signaling, one pathway that activates IKK in ABC DLBCL. The BTK kinase inhibitor ibrutinib, which is in clinical development for the treatment of ABC DLBCL, synergized strongly with BET inhibitors in killing ABC DLBCL cells in vitro and in a xenograft mouse model. These findings provide a mechanistic basis for the clinical development of BET protein inhibitors in ABC DLBCL, particularly in combination with other modulators of oncogenic IKK signaling.

  8. Small-molecule inhibitors of Ataxia Telangiectasia and Rad3 related kinase (ATR) sensitize lymphoma cells to UVA radiation

    DEFF Research Database (Denmark)

    Biskup, Edyta; Naym, David Gram; Gniadecki, Robert

    2016-01-01

    and require more aggressive therapies. OBJECTIVE: The aim of this project was to investigate whether inhibition of Ataxia Telangiectasia and Rad3 related kinase (ATR) may enhance efficacy of phototherapy. METHODS: CTCL cell lines (MyLa2000, SeAx and Mac2a) served as in vitro cell models. ATR and Chk1 were...

  9. The relevance of external quality assessment for molecular testing for ALK positive non-small cell lung cancer: results from two pilot rounds show room for optimization.

    Directory of Open Access Journals (Sweden)

    Lien Tembuyser

    Full Text Available Molecular profiling should be performed on all advanced non-small cell lung cancer with non-squamous histology to allow treatment selection. Currently, this should include EGFR mutation testing and testing for ALK rearrangements. ROS1 is another emerging target. ALK rearrangement status is a critical biomarker to predict response to tyrosine kinase inhibitors such as crizotinib. To promote high quality testing in non-small cell lung cancer, the European Society of Pathology has introduced an external quality assessment scheme. This article summarizes the results of the first two pilot rounds organized in 2012-2013.Tissue microarray slides consisting of cell-lines and resection specimens were distributed with the request for routine ALK testing using IHC or FISH. Participation in ALK FISH testing included the interpretation of four digital FISH images.Data from 173 different laboratories was obtained. Results demonstrate decreased error rates in the second round for both ALK FISH and ALK IHC, although the error rates were still high and the need for external quality assessment in laboratories performing ALK testing is evident. Error rates obtained by FISH were lower than by IHC. The lowest error rates were observed for the interpretation of digital FISH images.There was a large variety in FISH enumeration practices. Based on the results from this study, recommendations for the methodology, analysis, interpretation and result reporting were issued. External quality assessment is a crucial element to improve the quality of molecular testing.

  10. Translational research on crizotinib in EML4-ALK positive advanced non-small cell lung cancer%Crizotinib治疗EML4-ALK阳性晚期非小细胞肺癌的临床转化研究

    Institute of Scientific and Technical Information of China (English)

    李嘉瑜; 李雪飞; 周彩存

    2012-01-01

    棘皮动物微管相关蛋白样4(echinoderm microtubule associated protein like 4,EMLA)间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)融合基因(EML4-ALK)是近年来新发现的癌变驱动基因,该融合基因阳性的非小细胞肺癌(non-small cell lung cancer,NSCLC)患者有其独特的临床特征,可能与表皮生长因子受体(epidermal growth factor receptor,EGFR)酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI)耐药相关.针对EML4-ALK基因突变的新靶向药物-ALK抑制剂crizotinib,现已经进入Ⅲ期临床试验.Ⅰ期及Ⅱ期临床试验均证实,crizotinib治疗EML4-ALK阳性晚期NSCLC患者有效,能够改善肿瘤患者症状,患者的无进展生存期(progression free survival,PFS)延长,总体有效率(overall response rate,ORR)提高.且crizotinib的毒性作用较小,与传统化疗相比,患者耐受性较好.与其他TKI一样,crizotinib也存在获得性耐药现象,其耐药机制有待进一步研究.本文就crizotinib从基础研究向治疗EML4-ALK阳性晚期NSCLC患者临床应用的转化过程作一回顾.

  11. EML4-ALK在非小细胞肺癌中的表达及检测%Detection and Expression of the Transforming EML4-ALK Fusion Gene in Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    梁宁

    2011-01-01

    Non-small cell lung cancer ( NSCLC ) is one of the most common malignant tumors with rapidly increasing incidence and mortality, and has become the top cancer related death cause.Molecular target therapy has become one of the hot research points for treatments for late NSCLC, and the pertinent application of the target drug is the key of the treatment.Fusion genes of echinoderm microtubule associated protein like 4 ( EML4 ) and anaplastic lymphoma kinase ( ALK ) are mainly expressed in NSCLC ,which is probably the new target related to resistance of NSCLC epidermal growth factor receptor to tyrosine kinase inhibitors.%非小细胞肺癌(NSCLC)为当今最常见的恶性肿瘤之一,近年来我国肺癌的发病率和病死率增长迅速,已居癌症相关死亡首位.分子靶向治疗已成为晚期NSCLC治疗的研究热点之一,靶向药物如何针对性地用于患者的治疗是关键.棘皮动物微管结合蛋白4(EML4)与间变淋巴瘤激酶(ALK)形成的融合基因主要表达于NSCLC中,这可能是与NSCLC表皮生长因子受体酪氨酸激酶抑制剂耐药相关的新靶点.

  12. 克唑替尼在ALK阳性中晚期非小细胞肺癌中的疗效观察%Efficacy of crizotinib in advanced ALK positive non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    朱礼阳; 许春伟; 于忠和

    2016-01-01

    目的:探讨克唑替尼治疗晚期间变淋巴瘤激酶(anaplastic lymphoma kinase,ALK)融合基因阳性中晚期非小细胞肺癌(non-small cell lung cancer,NSCLC)的近期疗效及毒副反应。方法:回顾性分析43例ALK阳性的中晚期NSCLC患者,服用克唑替尼治疗,服用至病情进展或出现不可耐受的毒副反应,随访12个月,观察疗效。结果:克唑替尼治疗ALK阳性NSCLC的疾病控制率(disease control rate,DCR)为93%(3/43),客观缓解率(objective response rate,ORR)为62%(26/43),中位无进展生存时间(progression free survival,PFS)为7.0个月(95% CI,6.0~8.0月),不良反应主要为消化道症状,其次是谷丙转氨酶升高,视觉障碍,大部分为1~2级。结论:克唑替尼作为NSCLC患者的多靶点靶向治疗,具有良好的疗效及安全性,不良反应轻微。%Objective: To explore clinical effcacy and side effects of crizotinib in advanced anaplastic lymphoma kinase (ALK) positive non-small cell lung cancer.Methods: Retrospectively analysed 43 cases of ALK positive NSCLC patients, receiving oral treatment with crizotinib (250 mg) twice daily until the progress of the disease or the emergence of the side effects. Clinical effcacy was observed atfer 12-month followed-up.Results: hTe DCR of the patients treated with crizotinib was 93% (3/43), ORR was 62% (26/43), and median PFS was 7.0 months (95% CI, 6.0~8.0 months). hTe most frequent treatment-related AEs were gastrointestinal disturbance, followed by increased glutamic-pyruvic transaminase, vision disorder, and most toxicities were grade 1 and 2.Conclusion: Crizotinib, as targets for NSCLC patients with targeted therapy, has good effect and safety, minor adverse reactions.

  13. Expression of p63 in anaplastic large cell lymphoma but not in classical Hodgkin's lymphoma.

    Science.gov (United States)

    Gualco, Gabriela; Weiss, Lawrence M; Bacchi, Carlos E

    2008-10-01

    Immunohistochemical determination of p63 protein is frequently used in the pathologic diagnosis of nonhematological solid tumors. In malignant hematological disease, p63 expression has been reported in 22% of follicular lymphoma, about 35% of diffuse large B-cell lymphoma, 23% of chronic lymphocytic leukemia, and in some cases of blast crisis of chronic myelogenous leukemia. Anaplastic large cell lymphoma is a rare disease that accounts for less than 5% of all cases of non-Hodgkin's lymphoma. There is little information concerning p63 expression in this specific type of lymphoma. In some cases, the morphological and phenotypic features between anaplastic large cell lymphoma and classical Hodgkin's lymphoma are similar, making this differential diagnosis challenging. We studied p63 expression using a tissue microarray approach in 154 cases of anaplastic large cell lymphoma, including 38% anaplastic large cell kinase positive and 62% anaplastic large cell kinase negative, and 58 Hodgkin's lymphoma cases. Sixty-eight cases of anaplastic large cell lymphoma (44%) showed p63 nuclear positivity (41% of anaplastic large cell kinase positive and 47% of anaplastic large cell kinase negative). Of 130 cases of systemic-anaplastic large cell lymphoma, 42% showed p63 positivity. The neoplastic cells expressed p63 in 38% of the cases of CD45-negative/anaplastic large cell kinase-negative null cell-type anaplastic large cell lymphoma, a subgroup that offers the most difficulties in the differential diagnosis with classical Hodgkin's lymphoma. In contrast, none of the cases of classical Hodgkin's lymphoma demonstrated any p63 expression. These results demonstrate that p63 protein expression is frequently expressed in a subset of anaplastic large cell lymphoma cases and may be used as a potential tool in the differential diagnosis between anaplastic large cell lymphoma and classical Hodgkin's lymphoma.

  14. Value of Immunohistochemical Methods in Detecting EML4-ALK Fusion Mutations: 
A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Chang LIU

    2016-01-01

    Full Text Available Background and objective The fusion between echinoderm microtubule-associated protein 4 (EML4 and anaplastic lymphatic tumor kinase (ALK rearrangement is present in approximately 5% of non-small cell lung cancer (NSCLC patients. It has been regarded as another new target gene after epidermal growth factor receptor (EGFR and K-ras. Figures showed that the disease control rate could reach up to 80% in NSCLC patients with EML4-ALK fusion gene after treated with ALK inhibitors. Thus, exploring an accurate and rapid detecting method is the key in screening NSCLC patients with EML4-ALK expressions. The aim of this study is to analyze the specificity and sensitivity of IHC in detecting EML4-ALK fusion mutations. To evaluate the accuracy and clinical value of this method, and then provide basis for individual molecular therapy of NSCLC patients. Methods Using Pubmed database to search all documents required. The deadline of retrieval was February 25, 2015. Then further screening the articles according to the inclusion and exclusion criteria. Using diagnostic test meta-analysis methods to analyze the sensitivity and specificity of the immunohistochemistry (IHC method compared with fluorescence in situ hybridization (FISH method. Results Eleven literatures were added into the meta analysis, there were 3,234 of total cases. The diagnositic odds ratio (DOR was 1,135.00 (95%CI: 337.10-3,821.46; the area under curve (AUC of summary receiver operating characteristic curve (SROC curve was 0.992,3 (SEAUC=0.003,2, the Q* was 0.964,4 (SEQ*=0.008,7. Conclusion Immunohistochemical detection of EML4-ALK fusion gene mutation with specific antibody is feasible. It has high sensitivity and specificity. IHC can be a simple and rapid way in screening EML4-ALK fusion gene mutation and exhibits important clinical values.

  15. Antioxidant α-tocopherol checks lymphoma promotion via regulation of expression of protein kinase C-α and c-Myc genes and glycolytic metabolism.

    Science.gov (United States)

    Sharma, Renu; Vinayak, Manjula

    2012-06-01

    Overproduction of reactive oxygen species (ROS) due to environmental challenge or metabolic imbalance leads to oxidative stress, causing overactivation of a number of oncogenes that promote cancer development. Therefore, antioxidants should be able to check cancer growth by modulating oncogene activity. The requirement of high energy during unlimited cell proliferation is fulfilled by the switching of cancerous cells to a fast glycolytic pathway bypassing the oxygen dependent respiratory pathway. Almost all cancers exhibit a high expression of lactate dehydrogenase A (LDH-A) to ensure a high energy supply. The present study focused on modulating redox-sensitive oncogenes such as protein kinase C (PKC) and c-Myc by treatment of lymphoma bearing mice with the antioxidant α-tocopherol, the most active component of vitamin E. Further, the impact of α-tocopherol on LDH activity was tested. The results showed down-regulation of expression of stress-activated genes PKC-α, c-Myc and LDH-A by α-tocopherol in cancerous mice. α-Tocopherol contributes to the check of cell proliferation by decreasing the activity of LDH-A.

  16. Egress of CD19(+)CD5(+) cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients.

    Science.gov (United States)

    Chang, Betty Y; Francesco, Michelle; De Rooij, Martin F M; Magadala, Padmaja; Steggerda, Susanne M; Huang, Min Mei; Kuil, Annemieke; Herman, Sarah E M; Chang, Stella; Pals, Steven T; Wilson, Wyndham; Wiestner, Adrian; Spaargaren, Marcel; Buggy, Joseph J; Elias, Laurence

    2013-10-03

    Ibrutinib (PCI-32765) is a highly potent oral Bruton tyrosine kinase (BTK) inhibitor in clinical development for treating B-cell lymphoproliferative diseases. Patients with chronic lymphocytic leukemia (CLL) often show marked, transient increases of circulating CLL cells following ibrutinib treatments, as seen with other inhibitors of the B-cell receptor (BCR) pathway. In a phase 1 study of ibrutinib, we noted similar effects in patients with mantle cell lymphoma (MCL). Here, we characterize the patterns and phenotypes of cells mobilized among patients with MCL and further investigate the mechanism of this effect. Peripheral blood CD19(+)CD5(+) cells from MCL patients were found to have significant reduction in the expression of CXCR4, CD38, and Ki67 after 7 days of treatment. In addition, plasma chemokines such as CCL22, CCL4, and CXCL13 were reduced 40% to 60% after treatment. Mechanistically, ibrutinib inhibited BCR- and chemokine-mediated adhesion and chemotaxis of MCL cell lines and dose-dependently inhibited BCR, stromal cell, and CXCL12/CXCL13 stimulations of pBTK, pPLCγ2, pERK, or pAKT. Importantly, ibrutinib inhibited migration of MCL cells beneath stromal cells in coculture. We propose that BTK is essential for the homing of MCL cells into lymphoid tissues, and its inhibition results in an egress of malignant cells into peripheral blood. This trial was registered at www.clinicaltrials.gov as #NCT00114738.

  17. EML4-ALK fusion gene and non-small cell lung cancer%EML4-ALK融合基因与非小细胞肺癌

    Institute of Scientific and Technical Information of China (English)

    赵静; 余永伟; 郑建明

    2014-01-01

    棘皮动物微管结合蛋白4 (echinoderm microtubule associated protein-like 4,EML4)与间变淋巴瘤激酶(anaplastic lymphoma kinase,ALK)形成的融合基因,被认为是非小细胞肺癌(NSCLC)新的分子靶点.EML 4-ALK融合基因的发生率为3%~11%,该融合基因在年轻、腺癌、不吸烟或轻度吸烟的NSCLC患者中发生率较高,表达阳性者可以受益于ALK抑制剂(如克唑替尼)的治疗.本文重点阐述NSCLC中EML4-ALK融合基因的生物学特性、检测方法、临床特征和治疗方式.

  18. A Novel Aziridine-based Bruton's Tyrosine Kinase Inhibitor Induces Apoptosis Through Down-regulation of p65/RelA Phosphorylation on Serine 536 and ERK1/2 in Mantle Cell Lymphoma.

    Science.gov (United States)

    Romanchikova, Nadezhda; Strods, Arnis; Strazdina, Julija; Strumfs, Boriss; Trapencieris, Peteris

    2016-11-01

    Mantle cell lymphoma (MCL) is an aggressive non-Hodgkin's lymphoma characterized by hyperactive neoplastic B-cells and extended tumor cell survival. Bruton's tyrosine kinase (BTK), a crucial kinase in the B-cell antigen receptor signaling pathway, has emerged as a novel target of MCL therapy. A novel BTK-targeting inhibitor, JuSt-23F was prepared. The WST-8 assay was used to determine cytotoxicity and half-maximal inhibitory concentration (IC50) values for JuSt-23F against the MCL cell lines Mino and Maver-1. JuSt-23F-mediated apoptosis was assessed using the annexin V assay. We detected phosphorylation of p65/RelA on serine 536 in whole Jurkat, Mino and Maver-1 cells treated with JuSt-23F and stimulated with tumor necrosis factor (TNFα). We assessed JuSt-23F-mediated phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in T-cell lymphoma and MCL cells stimulated by phorbol-12-myristate-13-acetate (PMA). Our study suggests that JuSt-23F inhibits apoptosis selectively in B-cell lymphoma cells. JuSt-23F exerts its antiproliferative effects on MCL cells through targeting the downstream BTK signaling cascade via down-regulation of nuclear factor kappa-light-chain-enhancer of activated B-cells and ERK1/2 pathways. Thus, our findings propose the novel BTK inhibitor JuSt-23F as an attractive potential agent for investigation and treatment of MCL. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Comparative study of ALK antibody with manual and automatic immunohistochemical detec-tion in non-small cell lung cancer%手工免疫组化检测非小细胞肺癌 ALK蛋白表达的对比分析

    Institute of Scientific and Technical Information of China (English)

    沈勤; 王璇; 余波; 刘标; 徐艳; 王艳芬; 夏秋媛; 周晓军

    2015-01-01

    Purpose To explore the immunohistochemical ( IHC) expression of ALK antibodies with different clones in anaplastic lym-phoma kinase ( ALK) gene fusion non-small cell lung cancer ( NSCLC) . Methods ALK expression in 60 NSCLCs were detected by IHC including autostainer (D5F3, Ventana+BenchMark) and manual staining using 4 different antibodies of D5F3 (Ventana), D5F3 (Cell Signaling), 1A4/1H7 (OriGene), 5A4 (Abcam), and all cases were verified with ALK FISH. Their expressions with 4 anti-bodies were compared with those by D5F3 (Ventana+BenchMark). Results 32 ALK gene rearrangement NSCLCs and 28 negative cases were identified by FISH and D5F3 (Ventana+BenchMark). The sensitivity of D5F3 (Ventana), D5F3 (Cell Signaling), 1A4/1H7 (OriGene), 5A4 (Abcam) was 93. 8%, 84. 4%, 93. 8%, 56. 3%, and all the speciticity was 100%. The consistency with D5F3 (Ventana+BenchMark) was 96. 7%, 91. 7%, 96. 7% and 76. 7%, respectively. The validity of immunohistochemical staining in surgical resection specimens was better than in small biopsies. Conclusion Effective routine manual immunohistochemistry with high-affinity antibody clone may provide a more economic and widespread pre-screening technique.%目的:探讨手工免疫组化( immunohistochemistry, IHC)法检测不同克隆号 ALK抗体在间变性淋巴瘤激酶( anaplastie lymphoma kinase, ALK)融合的非小细胞肺癌( non-small cell lung cancer, NSCLC)中ALK蛋白表达,并与全自动免疫组化染色法进行比较。方法选取60例NSCLC石蜡样本,运用4种抗体D5F3(Ventana)、D5F3(Cell Signaling)、1A4/1H7(OriGene)、5A4(Abcam)联合常规手工IHC分别检测NSCLC中ALK蛋白水平,与抗体D5F3(Ventana)采用全自动IHC(BenchMark)结果进行对比分析。结果 D5F3(Ventana+BenchMark)检测发现ALK融合阳性NSCLC者32例,ALK融合阴性NSCLC者28例,经FISH法验证结果一致。采用手工IHC法检测4种抗体D5F3(Ventana)、D5F3(Cell Signaling)、1A4/1H7、5A4染色灵敏性分别为93.8%、84.4%

  20. 非小细胞肺癌组织中EML4-ALK融合基因与ERCC1和RRM1 mRNA表达的关系%The relations of EML4-ALK fusion gene and the mRNA expression of ERCC1 and RRM1 in NSCLC tissue

    Institute of Scientific and Technical Information of China (English)

    田宁; 张侠; 高文斌; 许春伟; 张玉萍

    2013-01-01

    目的:探讨NSCLC组织中棘皮动物微管样蛋白4-间变淋巴瘤激酶(EML4-ALK)融合基因与切除修复交叉互补蛋白1(ERCC1)和核苷酸还原酶亚单位M1(RRM1)mRNA表达的关系。方法应用实时荧光定量PCR方法检测257例NSCLC组织中EML4-ALK基因以及ERCC1和RRM1 mRNA的表达。结果 NSCLC组织中EML4-ALK融合基因阳性率占4.28%(11/257),在不吸烟患者中较高(P<0.05);ERCC1 mRNA 高表达占47.47%(122/257),RRM1 mRNA 高表达占61.87%(159/257)。与未检测到EML4-ALK融合基因阳性的NSCLC患者比较,EML4-ALK融合基因阳性与ERCC1 mRNA表达水平无关(P>0.05);NSCLC组织中,EML4-ALK融合基因阳性与RRM1 mRNA表达水平无关(P>0.05);但ERCC1 mRNA表达水平与RRM1 mRNA表达水平相关(P<0.05)。结论 NSCLC组织中EML4-ALK融合基因阳性患者不能从以铂类和他滨类一线化疗药中获益,因此仍需进一步探索更有效的个体化治疗方案,特别是对EML4-ALK融合基因选择性抑制剂克唑替尼原发或继发耐药部分患者的个体化治疗方案。%Objective To study the relationship of echinoderm microtubule-like protein 4-anaplastic Lymphoma kinase (echinoderm microtubule associated protein like 4-anaplastic Lymphoma kinase, EML4-ALK) integration and excision repair cross complement protein 1 gene (excision repair cross-complementation Group 1, ERCC1) and nucleotide reductase subunits M1 (ribonucleotide reductase subunit, M1) mRNA expression in NSCLC tissue. Methods Application of real-time fluorescent quantitative PCR method to detected the EML4-ALK gene in 257 patients and the expression of ERCC1 and RRM1mRNA. Results EML4-ALK fusion gene-positive rate was 4.28%(11/257),not in smokers was higher (P0.05); in NSCLC tissue, EML4-ALK fusion gene-positive had nothing to do with the level of RRM1mRNA expression (P>0.05), and also the level of expression of RRM1mRNA and ERCC1mRNA (P<0.05). Conclusion EML

  1. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice

    Directory of Open Access Journals (Sweden)

    María González-Núñez

    2015-11-01

    Full Text Available The activin receptor-like kinase 1 (ALK-1 is a type I cell-surface receptor for the transforming growth factor-β (TGF-β family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1+/−. We observed that systolic and diastolic AP were significantly higher in Alk1+/− than in Alk1+/+ mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography were similar in both groups. Alk1+/− mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1+/+ mice during most of the light period. Higher AP in Alk1+/− mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1+/− and not in Alk1+/+ mice. Alk1+/− mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1+/+ mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1+/− mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1+/− mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons.

  2. ALK Positive Lung Cancer: Clinical Profile, Practice and Outcomes in a Developing Country

    Science.gov (United States)

    Chougule, Anuradha; Kane, Subhadha; Kumar, Rajiv; Mahajan, Abhishek; Janu, Amit

    2016-01-01

    Objectives To evaluate the performance and treatment profile of advanced EML4—ALK positive Non-small cell lung cancer (NSCLC) patients in a developing country with potentially restricted access to Crizotinib. Materials and Methods A retrospective analysis of advanced ALK positive NSCLC patients who were treated from June 2012 to September 2015 was conducted. The primary goal was to evaluate outcomes of advanced ALK positive NSCLC in our practice and examine the logistic constraints in procuring Crizotinib. Results 94 patients were available for analysis. 21 (22.3%) patients were started on Crizotinib upfront, 60 (63.8%) on chemotherapy, 10 (10.6%) on Tyrosine kinase inhibitors (in view of poor PS) and 3 (3.2%) patients were offered best supportive care. Reasons for not starting Crizotinib upfront included symptomatic patients needing early initiation of therapy (23.3%), ALK not tested upfront (23.3%) and financial constraints (21.9%). 69 patients (73.4%) received Crizotinib at some stage during treatment. Dose interruptions (> 1 week) with Crizotinib were seen in 20 patients (29%), with drug toxicity being the commonest reason (85%). Median Progression free survival (PFS) on first line therapy for the entire cohort was 10 months, with a significant difference between patients receiving Crizotinib and those who did not ever receive Crizotinib (10 months vs. 2 months, p = 0.028). Median Overall Survival (OS) was not reached for the entire cohort, with 1 year survival being 81.2%. Patients with an ECOG Performance Status (PS) of >2 had a significantly reduced PFS compared to patients with PS schemes. Conclusion A majority of our ALK positive NSCLC patients were exposed to Crizotinib through the help of various support mechanisms and these patients had similar outcomes to that reported from previously published literature. PMID:27637025

  3. Discovery of a series of 2-(1H-pyrazol-1-yl)pyridines as ALK5 inhibitors with potential utility in the prevention of dermal scarring.

    Science.gov (United States)

    Boys, Mark L; Bian, Feng; Kramer, James B; Chio, Christopher L; Ren, Xiao-Dan; Chen, Huifen; Barrett, Stephen D; Sexton, Karen E; Iula, Donna M; Filzen, Gary F; Nguyen, Maria N; Angell, Paul; Downs, Victoria L; Wang, Zhi; Raheja, Neil; Ellsworth, Edmund L; Fakhoury, Stephen; Bratton, Larry D; Keller, Paul R; Gowan, Richard; Drummond, Elena M; Maiti, Samarendra N; Hena, Mostofa A; Lu, Leroy; McConnell, Patrick; Knafels, John D; Thanabal, Venkataraman; Sun, Fang; Alessi, Diane; McCarthy, Ann; Zhang, Erli; Finzel, Barry C; Patel, Sneha; Ciotti, Susan M; Eisma, Rone; Payne, N A; Gilbertsen, Richard B; Kostlan, Catherine R; Pocalyko, David J; Lala, Deepak S

    2012-05-15

    A series of 2-(1H-pyrazol-1-yl)pyridines are described as inhibitors of ALK5 (TGFβ receptor I kinase). Modeling compounds in the ALK5 kinase domain enabled some optimization of potency via substitutions on the pyrazole core. One of these compounds PF-03671148 gave a dose dependent reduction in TGFβ induced fibrotic gene expression in human fibroblasts. A similar reduction in fibrotic gene expression was observed when PF-03671148 was applied topically in a rat wound repair model. Thus these compounds have potential utility for the prevention of dermal scarring. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. 非小细胞肺癌间变性淋巴瘤激酶融合基因的荧光原位杂交检测规范化流程探讨%Standard protocol of ALK fusion gene assessment by fluorescent in situ hybridization in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    郭蕾; 郑闪; 谢永强

    2013-01-01

    Objective To investigate the standard protocol for anaplastic lymphoma kinase (ALK) fusion gene assessment by fluorescent in situ hybridization (FISH) in non-small cell lung cancer (NSCLC).Methods Tissue specimens of NSCLC cases were retrospectively collected from Jan.2011 to July 2012.ALK fusion gene was examined by FISH using break-apart ALK gene probes (Vysis company).The identification of ALK fusion gene was determined by fluorescent signals under a fluorescence microscope.Results One hundred and forty-six eligible NSCLC tumor specimens were tested for ALK fusion gene by FISH.The specimens included 110 cases (75.4%) of surgically-removed tissues,11 cases (7.5%) of biopsy,19 cases (13.0%) of lymph node and 6 cases (4.1%) of other metastatic tissues.The positivity of ALK fusion gene was 8.9% (13/146).Conclusions The assessment of ALK fusing gene by FISH using standard protocol for formalin-fixed,paraffin-embedded (FFPE) tissue is feasible.The protocol can used to test in surgically-removed tissues,biopsies,metastatic lymph nodes and other metastastic specimens.%目的 探讨非小细胞肺癌(NSCLC)患者荧光原位杂交(FISH)方法检测间变性淋巴瘤激酶(ALK)融合基因的操作规范.方法 收集中国医学科学肿瘤医院病理科2011年1月至2012年7月共146例NSCLC患者肿瘤病理组织学标本,应用Vysis公司的ALK基因断裂探针、采用FISH方法对ALK融合基因进行检测,荧光显微镜下根据荧光信号进行结果判读.结果 146例合格NSCLC患者病理组织学标本,其中手术切除标本110例(75.4%),肺活检标本11例(7.5%),淋巴结转移标本19例(13.0%),其他转移灶6例(4.1%).ALK融合基因阳性率为8.9% (13/146).结论 采用标准化的流程进行病理组织标本切片、切片预处理、FISH方法检测ALK融合基因是可行的.该流程适用于检测包括手术切除和支气管镜活检标本、淋巴结及其他转移灶标本在内的常见标本ALK融合基因的检测.

  5. The correlation of clinical pathological features with the expressions of epidermal growth factor receptor gene and echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase gene in non-small-cell lung cancer patient%非小细胞肺癌患者表皮生长因子受体和棘皮动物微管相关蛋白样4-间变性淋巴瘤激酶与病理特征的相关性

    Institute of Scientific and Technical Information of China (English)

    徐利芬; 陈佳; 龙昭玲; 宋翼

    2016-01-01

    目的 检测表皮生长因子受体(EGFR)基因、棘皮动物微管相关蛋白样4(EML4)-间变性淋巴瘤激酶(ALK)基因在非小细胞肺癌(NSCLC)患者中的突变率,并分析其与临床病理特征的关系. 方法 应用Taqman-ARMS方法检测119例NSCLC患者石蜡组织中EGFR基因与53例EML4-ALK基因改变情况,并对其临床病理特征进行相关性分析. 结果 119例NSCLC中EGFR基因总突变率为44.5 %(53/119),外显子18、19、20和21单突变率分别为1.7%(2/119)、25.2%(30/119)、0.8%(1/119)和13.4%(16/119);EGFR基因各外显子之间双重突变共4例(3.4%);ALK融合基因总阳性率为15.1% (8/53);EGFR基因突变与ALK融合基因阳性共存型1例(0.8%),其临床病理特征表现为腺癌高于非腺癌;不吸烟患者高于吸烟患者;女性患者高于男性患者. 结论 NSCILC患者中,EGFR基因19和21外显子突变和ALK融合基因均存在较高的突变率,基因突变亚型分类能指导精准医学的个体化靶向治疗,而基因双突变共存型基因突变率虽低但不容忽视.EGFR及EML4-ALK阳性患者在临床病理上有一些相同或相似的特征,即女性、非吸烟、腺癌患者中较为多见,但也有一些不同的特征:EML4-ALK阳性患者中,腺癌中多伴有黏液产生的腺泡样结构,不同时合并EGFR突变.%Objective To detect the mutation rates of epidermal growth factor receptor(EGFR) gene and echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase(ALK) gene in non-small-cell lung cancer (NSCLC)patients and to analyze their relation with clinical pathological features.Methods EGFR gene of 119 NSCLC patients and EML4-ALK gene of 53 NSCLC patients were detected using gene mutation detection kits(Taqman-ARMS),and the correlation analysis on their clinical pathological features was taken.Results The total mutation rate of the EGFR gene was 44.5%(53/119),and a single mutation rate of the 18th,19th,20th and 21st exons was 1.7%(2

  6. Ⅳ期维吾尔族NSCLC患者EML4-ALK、EGFR基因突变状态及生存分析%EML4-ALK and EGFR mutation status and survival analysis in Uygur with stageⅣNSCLC

    Institute of Scientific and Technical Information of China (English)

    王强; 张峤; 曹燕珍; 陶洁; 单莉

    2016-01-01

    目的 探讨棘皮动物微管样蛋白4-间变淋巴瘤激酶(EML4-ALK)和表皮生长因子受体(EGFR)基因突变状态与未经系统酪氨酸激酶抑制剂(TKIs)治疗的Ⅳ期维吾尔族非小细胞肺癌(NSCLC)患者长期生存的关系.方法 收集97例未经TKIs治疗的Ⅳ期维吾尔族NSCLC患者的组织标本,分别运用FISH及ARMS方法检测EML4-ALK基因融合及EGFR基因突变状态并进行生存分析.结果 97例Ⅳ期维吾尔族NSCLC组织中,6例(6.2%)存在EML4-ALK基因融合,26例(26.8%)存在EGFR基因突变.生存分析显示,EML4-ALK基因融合患者与EML4-ALK基因未融合患者总生存期(OS)差异无统计学意义(P=0.941),EGFR基因突变患者与EGFR野生型患者OS比较差异无统计学意义(P=0.607).EGFR/EML4-ALK综合突变对Ⅳ期维吾尔族NSCLC患者长期生存发现,EGFR突变型组、EML4-ALK阳性组、EML4-ALK阴性+EGFR野生型组患者中位OS分别为17.7、17.3、16.2个月,差异无统计学意义(P=0.915).结论 在排除TKIs治疗影响的情况下,EML4-ALK融合基因与EGFR基因突变状态尚不能作为评估Ⅳ期维吾尔族NSCLC患者预后的独立因素.%Objective To investigate the relationship between the echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) and epithelial growth factor receptor (EGFR) mutation status and overall survival (OS) in Uygur patients with stageⅣnon-small cell lung cancer (NSCLC) who did not accept tyrosine kinase inhibitor treat-ment. Methods Totally 97 tissue samples were collected from Uygur patients with stageⅣNSCLC who did not accept tyro-sine kinase inhibitor treatment. EML4-ALK fusion gene and EGFR mutation status were detected by using FISH and ARMS methods. The survival rates were analysed. Results In 97 tissue samples, EML4-ALK fusion genes were found in 6 (6.2%) samples, EGFR mutations were found in 26 (26.8%) samples. The survival analysis showed that there was no significant dif-ference in OS between EML4

  7. Proteomic and Metabolic Analyses of S49 Lymphoma Cells Reveal Novel Regulation of Mitochondria by cAMP and Protein Kinase A.

    Science.gov (United States)

    Wilderman, Andrea; Guo, Yurong; Divakaruni, Ajit S; Perkins, Guy; Zhang, Lingzhi; Murphy, Anne N; Taylor, Susan S; Insel, Paul A

    2015-09-04

    Cyclic AMP (cAMP), acting via protein kinase A (PKA), regulates many cellular responses, but the role of mitochondria in such responses is poorly understood. To define such roles, we used quantitative proteomic analysis of mitochondria-enriched fractions and performed functional and morphologic studies of wild-type (WT) and kin(-) (PKA-null) murine S49 lymphoma cells. Basally, 75 proteins significantly differed in abundance between WT and kin(-) S49 cells. WT, but not kin(-), S49 cells incubated with the cAMP analog 8-(4-chlorophenylthio)adenosine cAMP (CPT-cAMP) for 16 h have (a) increased expression of mitochondria-related genes and proteins, including ones in pathways of branched-chain amino acid and fatty acid metabolism and (b) increased maximal capacity of respiration on branched-chain keto acids and fatty acids. CPT-cAMP also regulates the cellular rate of ATP-utilization, as the rates of both ATP-linked respiration and proton efflux are decreased in WT but not kin(-) cells. CPT-cAMP protected WT S49 cells from glucose or glutamine deprivation, In contrast, CPT-cAMP did not protect kin(-) cells or WT cells treated with the PKA inhibitor H89 from glutamine deprivation. Under basal conditions, the mitochondrial structure of WT and kin(-) S49 cells is similar. Treatment with CPT-cAMP produced apoptotic changes (i.e. decreased mitochondrial density and size and loss of cristae) in WT, but not kin(-) cells. Together, these findings show that cAMP acts via PKA to regulate multiple aspects of mitochondrial function and structure. Mitochondrial perturbation thus likely contributes to cAMP/PKA-mediated cellular responses. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Apigenin induces apoptosis via downregulation of S-phase kinase-associated protein 2-mediated induction of p27Kip1 in primary effusion lymphoma cells.

    Science.gov (United States)

    Hussain, A R; Khan, A S; Ahmed, S O; Ahmed, M; Platanias, L C; Al-Kuraya, K S; Uddin, S

    2010-04-01

    The mechanisms that regulate mitogenic and antiapoptotic signals in primary effusion lymphoma (PEL) are not well known. In efforts to identify novel approaches to block the proliferation of PEL cells, we assessed the effect of apigenin (4',5,7-trihydroxyflavone), a flavonoid on a panel of PEL cell lines. We studied the effect of apigenin on four PEL cell lines. Apoptosis was measured by annexin V/PI dual staining and DNA laddering. Protein expression was measured by immunoblotting. Apigenin induced apoptosis in PEL cell lines in a dose dependent manner. Such effects of apigenin appeared to result from suppression of constitutively active kinase AKT resulting in down-regulation of SKP2, hypo-phosphorylation of Rb and accumulation of p27Kip1. Apigenin treatment of PEL cells caused dephosphorylation of p-Bad protein leading to down regulation of the anti-apoptotic protein, Bcl-2 and an increase in Bax/Bcl2 ratio. Apigenin treatment also triggered Bax conformational change and subsequently translocation from cytosole to mitochondria causing loss of mitochondrial membrane potential with subsequent release of cytochrome c. Released cytochrome c onto the cytosole activated caspase-9 and caspase-3, followed by polyadenosin-5'-diphosphate-ribose polymerase (PARP) cleavage. Finally, treatment of PEL cells with apigenin down-regulated the expression of inhibitor of apoptosis protein (IAPs). Altogether, these data suggest a novel function for apigenin, acting as a suppressor of AKT/PKB pathway in PEL cells, and raise the possibility that this agent may have a future therapeutic role in PEL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.

  9. Phase I study of MLN8237--investigational Aurora A kinase inhibitor--in relapsed/refractory multiple myeloma, non-Hodgkin lymphoma and chronic lymphocytic leukemia.

    Science.gov (United States)

    Kelly, Kevin R; Shea, Thomas C; Goy, André; Berdeja, Jesus G; Reeder, Craig B; McDonagh, Kevin T; Zhou, Xiaofei; Danaee, Hadi; Liu, Hua; Ecsedy, Jeffrey A; Niu, Huifeng; Benaim, Ely; Iyer, Swaminathan Padmanabhan

    2014-06-01

    Amplification or over-expression of the mitotic Aurora A kinase (AAK) has been reported in several heme-lymphatic malignancies. MLN8237 (alisertib) is a novel inhibitor of AAK that is being developed for the treatment of advanced malignancies. The objectives of this phase I study were to establish the safety, tolerability, and pharmacokinetic profiles of escalating doses of MLN8237 in patients with relapsed or refractory heme-lymphatic malignancies. Sequential cohorts of patients received MLN8237 orally as either a powder-in-capsule (PIC) or enteric-coated tablet (ECT) formulation. Patients received MLN8237 PIC 25-90 mg for 14 or 21 consecutive days plus 14 or 7 days' rest, respectively, or MLN8237 ECT, at a starting dose of 40 mg/day once-daily (QD) for 14 days plus 14 days' rest, all in 28-day cycles. Subsequent cohorts received MLN8237 ECT 30-50 mg twice-daily (BID) for 7 days plus 14 days' rest in 21-day cycles. Fifty-eight patients were enrolled (PIC n = 28, ECT n = 30). The most frequent grade ≥3 drug-related toxicities were neutropenia (45 %), thrombocytopenia (28 %), anemia (19 %), and leukopenia (19 %). The maximum tolerated dose on the ECT 7-day schedule was 50 mg BID. The terminal half-life of MLN8237 was approximately 19 h. Six (13 %) patients achieved partial responses and 13 (28 %) stable disease. The recommended phase II dose of MLN8237 ECT is 50 mg BID for 7 days in 21-day cycles, which is currently being evaluated as a single agent in phase II/III trials in patients with peripheral T-cell lymphoma.

  10. Primary anaplastic large T cell lymphoma of central nervous system

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2013-01-01

    Full Text Available Background Primary anaplastic large T cell lymphoma (ALCL of central nervous system (CNS can occur in people of all ages, and is usually unrelated with immunodeficiency. It is often misdiagnosed as meningitis, especially tuberculous meningitis, on clinical practice and imaging examination. In pathological diagnosis, the morphological changes of primary ALCL of CNS are similar to the systemic ALCL and the anaplastic lymphoma kinase-1 (ALK-1 can be positive or negative. Being misdiagnosed as meningitis, hormone therapy with glucocorticoid before biopsy is always used, and massive necrosis and a lot of histocyte proliferation and phagocytosis can be found under histological findings. Therefore, when the material is not enough, primary ALCL of CNS is often misdiagnosed as cerebral infarction or malignant histocytosis and so on. This paper reports a case of primary ALCL of CNS and makes a review of relevant literature, so as to summarize the clinical manifestations and elevate the recognition of clinicians and pathologists on this disease. Methods and Results A 12-year-old boy was admitted because of fever, worsening headache, numbness and weakness of right limbs. MRI showed local gyri swelling and abnormal enhancement of pia mater in the right parietal lobe, expanding to the right temporal lobe, and pia mater enhancement in the left parietal lobe. The right temporo-parietal lobe lesion biopsy revealed irregularly shaped tumor cells of large size, rich and eosinophilic cytoplasm and horseshoe-shaped or kidney-shaped nuclei. Immunohistochemical examination showed tumor cells positive for CD3, CD45RO, CD30, ALK-1 and epithelial membrane antigen (EMA, and negative for CD20 and CD79a. Conclusion Primary ALCL of CNS is an extremely rare tumor which is usually misdiagnosed as meningitis according to clinical and imaging examinations. Therefore, for those patients who are considered as meningitis but with poor treatment effect and replase of illness, brain

  11. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications.

    Science.gov (United States)

    Ardini, Elena; Menichincheri, Maria; Banfi, Patrizia; Bosotti, Roberta; De Ponti, Cristina; Pulci, Romana; Ballinari, Dario; Ciomei, Marina; Texido, Gemma; Degrassi, Anna; Avanzi, Nilla; Amboldi, Nadia; Saccardo, Maria Beatrice; Casero, Daniele; Orsini, Paolo; Bandiera, Tiziano; Mologni, Luca; Anderson, David; Wei, Ge; Harris, Jason; Vernier, Jean-Michel; Li, Gang; Felder, Eduard; Donati, Daniele; Isacchi, Antonella; Pesenti, Enrico; Magnaghi, Paola; Galvani, Arturo

    2016-04-01

    Activated ALK and ROS1 tyrosine kinases, resulting from chromosomal rearrangements, occur in a subset of non-small cell lung cancers (NSCLC) as well as other tumor types and their oncogenic relevance as actionable targets has been demonstrated by the efficacy of selective kinase inhibitors such as crizotinib, ceritinib, and alectinib. More recently, low-frequency rearrangements of TRK kinases have been described in NSCLC, colorectal carcinoma, glioblastoma, and Spitzoid melanoma. Entrectinib, whose discovery and preclinical characterization are reported herein, is a novel, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins. Proliferation profiling against over 200 human tumor cell lines revealed that entrectinib is exquisitely potent in vitro against lines that are dependent on the drug's pharmacologic targets. Oral administration of entrectinib to tumor-bearing mice induced regression in relevant human xenograft tumors, including the TRKA-dependent colorectal carcinoma KM12, ROS1-driven tumors, and several ALK-dependent models of different tissue origins, including a model of brain-localized lung cancer metastasis. Entrectinib is currently showing great promise in phase I/II clinical trials, including the first documented objective responses to a TRK inhibitor in colorectal carcinoma and in NSCLC. The drug is, thus, potentially suited to the therapy of several molecularly defined cancer settings, especially that of TRK-dependent tumors, for which no approved drugs are currently available. Mol Cancer Ther; 15(4); 628-39. ©2016 AACR.

  12. Transforming growth factor-beta type 1 receptor (ALK5) and Smad proteins mediate TIMP-1 and collagen synthesis in experimental intestinal fibrosis.

    Science.gov (United States)

    Medina, Carlos; Santos-Martinez, Maria Jose; Santana, Alfredo; Paz-Cabrera, Maria Cristina; Johnston, Michael J; Mourelle, Marisabel; Salas, Antonio; Guarner, Francisco

    2011-08-01

    Transforming growth factor β (TGF-β) is known to play a key role in intestinal fibrosis; however, the underlying mechanisms are not well understood. TGF-β signal transduction is through TGF-β receptors, including the TGF-β type 1 receptor. Most cell types contain a TGF-β type 1 receptor form known as activin receptor-like kinase 5 (ALK5), which propagates the signal to the nucleus through the phosphorylation of Smad2 and Smad3 proteins. Therefore, we assessed the effect of the disruption of TGF-β/ALK5/Smad signalling by an ALK5 inhibitor (SD-208) in two experimental animal models of intestinal fibrosis: anaerobic bacteria- and trinitrobenzensulphonic acid-induced colitis. In addition, isolated myofibroblasts were pretreated with SD-208 and exposed to recombinant TGF-β1. Finally, myofibroblasts were transfected with ALK5, Smad2, and Smad3-specific siRNA. Up-regulation of ALK5 and TIMP-1, phosphorylation of Smad2 and Smad3 proteins, and increased intestinal wall collagen deposition were found in both experimental animal models. These effects were decreased by SD-208. TGF-β1 treatment also induced phosphorylation of Smad2 and Smad3 and up-regulation of ALK5 protein, TIMP-1, and α2 type 1 collagen gene expression in isolated myofibroblasts. Again these effects were inhibited by SD-208. Also, ALK5, Smad2, and Smad3 siRNA abolished the induction of TIMP-1 and α2 type 1 collagen. Our findings provide evidence that the TGF-β/ALK5/Smad pathway participates in the pathogenesis of experimental intestinal fibrosis. These data show promise for the development of an effective therapeutic intervention in this condition.

  13. Evaluation of clinical trial eligibility and prognostic indices in a population-based cohort of systemic peripheral T-cell lymphomas from the Danish Lymphoma Registry

    DEFF Research Database (Denmark)

    Pedersen, Martin Bjerregaard; Hamilton-Dutoit, Stephen Jacques; Bendix, Knud;

    2015-01-01

    patients, approximately half were eligible for multiagent chemotherapy with or without consolidating SCT. Both IPI and PIT are useful prognostic indices in all 'primary nodal' PTCL entities. The prognostic value of ALK protein expression in anaplastic large cell lymphoma is significantly downsized when...

  14. Development of potent ALK inhibitor and its molecular inhibitory mechanism against NSCLC harboring EML4-ALK proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chung Hyo [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Yun, Jeong In [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Lee, Kwangho [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Medicinal & Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Lee, Chong Ock; Lee, Heung Kyoung [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Yun, Chang-Soo; Hwang, Jong Yeon; Cho, Sung Yun; Jung, Heejung; Kim, Pilho [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Medicinal & Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Ha, Jae Du; Jeon, Jeong Hee; Choi, Sang Un [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Jeong, Hye Gwang [College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kim, Hyoung Rae, E-mail: hyungrk@krict.re.kr [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Park, Chi Hoon, E-mail: chpark@krict.re.kr [Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of); Medicinal & Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2015-08-28

    Here, we show the newly synthesized and potent ALK inhibitor having similar scaffold to KRCA-0008, which was reported previously, and its molecular mechanism against cancer cells harboring EML4-ALK fusion protein. Through ALK wild type enzyme assay, we selected two compounds, KRCA-0080 and KRCA-0087, which have trifluoromethyl instead of chloride in R2 position. We characterized these newly synthesized compounds by in vitro and in vivo assays. Enzyme assay shows that KRCA-0080 is more potent against various ALK mutants, including L1196M, G1202R, T1151-L1152insT, and C1156Y, which are seen in crizotinib-resistant patients, than KRCA-0008 is. Cell based assays demonstrate our compounds downregulate the cellular signaling, such as Akt and Erk, by suppressing ALK activity to inhibit the proliferation of the cells harboring EML4-ALK. Interestingly, our compounds induced strong G1/S arrest in H3122 cells leading to the apoptosis, which is proved by PARP-1 cleavage. In vivo H3122 xenograft assay, we found that KRCA-0080 shows significant reduction in tumor size compared to crizotinib and KRCA-0008 by 15–20%. Conclusively, we report a potent ALK inhibitor which shows significant in vivo efficacy as well as excellent inhibitory activity against various ALK mutants. - Highlights: • We synthesized KRCA-0008 derivatives having trifluoromethyl instead of chloride. • KRCA-0080 shows superior activity against several ALK mutants to KRCA-0008. • Cellular assays show our ALK inhibitors suppress only EML4-ALK positive cells. • Our ALK inhibitors induce G1/S arrest to lead apoptosis in H3122 cells. • KRCA-0080 has superior in vivo efficacy to crizotinib and KRCA-0008 by 15–20%.

  15. Non-Hodgkin lymphoma

    Science.gov (United States)

    Lymphoma - non-Hodgkin; Lymphocytic lymphoma; Histiocytic lymphoma; Lymphoblastic lymphoma; Cancer - non-Hodgkin lymphoma ... National Cancer Institute: PDQ adult non-Hodgkin lymphoma treatment. Bethesda, MD: National Cancer Institute. Updated ... . Accessed ...

  16. Deficient signaling via Alk2 (Acvr1 leads to bicuspid aortic valve development.

    Directory of Open Access Journals (Sweden)

    Penny S Thomas

    Full Text Available Bicuspid aortic valve (BAV is the most common congenital cardiac anomaly in humans. Despite recent advances, the molecular basis of BAV development is poorly understood. Previously it has been shown that mutations in the Notch1 gene lead to BAV and valve calcification both in human and mice, and mice deficient in Gata5 or its downstream target Nos3 have been shown to display BAVs. Here we show that tissue-specific deletion of the gene encoding Activin Receptor Type I (Alk2 or Acvr1 in the cushion mesenchyme results in formation of aortic valve defects including BAV. These defects are largely due to a failure of normal development of the embryonic aortic valve leaflet precursor cushions in the outflow tract resulting in either a fused right- and non-coronary leaflet, or the presence of only a very small, rudimentary non-coronary leaflet. The surviving adult mutant mice display aortic stenosis with high frequency and occasional aortic valve insufficiency. The thickened aortic valve leaflets in such animals do not show changes in Bmp signaling activity, while Map kinase pathways are activated. Although dysfunction correlated with some pro-osteogenic differences in gene expression, neither calcification nor inflammation were detected in aortic valves of Alk2 mutants with stenosis. We conclude that signaling via Alk2 is required for appropriate aortic valve development in utero, and that defects in this process lead to indirect secondary complications later in life.

  17. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy

    Science.gov (United States)

    Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A.; Leyton, Patricio A.; Cheng, Juan; Tainsh, Robert E. T.; Mayeur, Claire; Rhee, David K.; Wu, Mei. X.; Scherrer-Crosbie, Marielle; Buys, Emmanuel S.; Zapol, Warren M.; Bloch, Kenneth D.; Bloch, Donald B.

    2016-01-01

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis. PMID:26873969

  18. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    Science.gov (United States)

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis.

  19. Protein kinase CK2 inhibition down modulates the NF-κB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells.

    Science.gov (United States)

    Manni, Sabrina; Brancalion, Alessandra; Mandato, Elisa; Tubi, Laura Quotti; Colpo, Anna; Pizzi, Marco; Cappellesso, Rocco; Zaffino, Fortunato; Di Maggio, Speranza Antonia; Cabrelle, Anna; Marino, Filippo; Zambello, Renato; Trentin, Livio; Adami, Fausto; Gurrieri, Carmela; Semenzato, Gianpietro; Piazza, Francesco

    2013-01-01

    CK2 is a pivotal pro-survival protein kinase in multiple myeloma that may likely impinge on bortezomib-regulated cellular pathways. In the present study, we investigated CK2 expression in multiple myeloma and mantle cell lymphoma, two bortezomib-responsive B cell tumors, as well as its involvement in bortezomib-induced cytotoxicity and signaling cascades potentially mediating bortezomib resistance. In both tumors, CK2 expression correlated with that of its activated targets NF-κB and STAT3 transcription factors. Bortezomib-induced proliferation arrest and apoptosis were significantly amplified by the simultaneous inhibition of CK2 with two inhibitors (CX-4945 and K27) in multiple myeloma and mantle cell lymphoma cell lines, in a model of multiple myeloma bone marrow microenvironment and in cells isolated from patients. CK2 inhibition empowered bortezomib-triggered mitochondrial-dependent cell death. Phosphorylation of NF-κB p65 on Ser529 (a CK2 target site) and rise of the levels of the endoplasmic reticulum stress kinase/endoribonuclease Ire1α were markedly reduced upon CK2 inhibition, as were STAT3 phospho Ser727 levels. On the contrary, CK2 inhibition increased phospho Ser51 eIF2α levels and enhanced the bortezomib-dependent accumulation of poly-ubiquitylated proteins and of the proteotoxic stress-associated chaperone Hsp70. Our data suggest that CK2 over expression in multiple myeloma and mantle cell lymphoma cells might sustain survival signaling cascades and can antagonize bortezomib-induced apoptosis at different levels. CK2 inhibitors could be useful in bortezomib-based combination therapies.

  20. EML4-ALK Fusion Lung Cancer: A Rare Acquired Event

    Directory of Open Access Journals (Sweden)

    Sven Perner

    2008-03-01

    Full Text Available A recurrent gene fusion between EML4 and ALK in 6.7% of non-small cell lung cancers (NSCLCs and NKX2-1 (TTF1, TITF1 high-level amplifications in 12% of adenocarcinomas of the lung were independently reported recently. Because the EML4-ALK fusion was only shown by a reverse transcription-polymerase chain reaction approach, we developed fluorescent in situ hybridization assays to interrogate more than 600 NSCLCs using break-apart probes for EML4 and ALK. We found that EML4-ALK fusions occur in less than 3% of NSCLC samples and that EML4 and/or ALK amplifications also occur. We also observed that, in most cases in which an EML4/ALK alteration is detected, not all of the tumor cells harbor the lesion. By using a detailed multi-fluorescent in situ hybridization probe assay and reverse transcription-polymerase chain reaction, we have evidence that other, more common mechanisms besides gene inversion exist including the possibility of other fusion partners for ALK and EML4. Furthermore, we confirmed the NKX2-1 high-level amplification in a significant subset of NSCLC and found this amplification to be mutually exclusive to ALK and EML4 rearrangements.

  1. Detection of EML4-ALK fusion gene in patient with lung adenocarcinoma%检测EML4-ALK融合基因对肺腺癌患者的临床意义

    Institute of Scientific and Technical Information of China (English)

    金涛; 朱理; 赵琼; 方维嘉; 曾蕾; 彭玲; 王一青

    2013-01-01

      目的探讨检测EML4-ALK融合基因对肺腺癌患者的临床意义。方法收集2012年7至12月手术或活检肺腺癌组织标本37例,所有标本均经病理证实为腺癌,用RT-PCR方法检测EML4-ALK融合基因的表达,设计9种探针检测EML4-ALK融合基因最常见的9种类型,并随访阳性患者的治疗结果。结果37例腺癌标本中,1例检出EML4-ALK融合基因表达阳性,并经测序法证实为1型变异,检出率2.70%。为女性患者,左上肺肿块,T1N0M0,行左肺上叶肺癌根治术,术后给予克唑替尼,随访6个月无复发。结论使用RT-PCR结合测序是一种快速、简便、容易推广的EML4-ALK融合基因检测技术,可以在肺腺癌患者检测中推广使用。%Objective To detect echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma ki-nase (ALK) fusion gene in patients with non-smal cel lung cancer (NSCLC). Methods Biopsy or surgical specimens were col-lected from 37 patients with pathological y confirmed adenocarcinoma from July 2012 to Dec 2012. The expression of ELM4-ALK fusion gene was detected by RT-PCR with primers designed for 9 subtypes of the fusion gene, and the detected gene was veri-fied by sequencing. Results The expression of ELM4-ALK fusion gene was detected and verified in the surgical specimen from a 36y female patient with T1N0M0 lung adenocarcinoma with a detection rate of 2.70%. The radical resection of upper lobe of the left lung was performed and XALKORI was given one month after the surgery. No metastasis was found after 6-months fol-low-up. Conclusion The detection rate for ELM4-ALK fusion gene is similar as reported in patients with lung adenocarcinoma, and the RT-PCR combined with sequencing is a sensitive and effective method for detection of EML4-ALK fusion gene in surgi-cal or biopsy specimens of patients with lung adenocarninoma.

  2. ALK gene fusion associated non-small cell lung cancer:automated immunostainer detection and clinicopathologic perspectives%全自动免疫组织化学筛查间变性淋巴瘤激酶阳性非小细胞肺癌及其临床病理特征

    Institute of Scientific and Technical Information of China (English)

    沈勤; 陆珍凤; 石群立; 周晓军; 潘艺; 余波; 时姗姗; 刘标; 徐艳; 王艳芬; 夏秋媛; 饶秋

    2015-01-01

    目的:探讨全自动免疫组织化学筛查间变性淋巴瘤激酶(ALK)基因融合非小细胞肺癌( NSCLC)和这一分子亚型肺癌的临床病理特征。方法收集2013年1月至2014年4月期间566例非小细胞肺癌,采用Ventana抗ALK抗体及全自动免疫组织化学染色( Ventana-IHC)方法检测ALK状态,并分析ALK基因融合NSCLC临床特征、病理形态及预后治疗。结果566例非小细胞肺癌中筛选出38例ALK阳性(6.7%)。男性患者阳性率(7.1%,25/350)大于女性组(6.0%,13/216),两者差异无统计学意义(χ2=0.270,P=0.604)。年龄≤60岁患者阳性率(9.9%,28/282)高于年龄>60岁组(3.5%,10/284),两者差异有统计学意义(χ2=9.277,P =0.002)。组织学形态上,腺癌(81.6%,31/38)为多,其中18例实体型为主伴黏液产生,9例腺泡型为主,1例乳头型为主,3例浸润性黏液腺癌;非腺癌包括3例鳞状细胞癌,3例腺鳞癌及1例多形性癌。不吸烟(78.9%,30/38)人数多于少量吸烟组及大量吸烟组。30例(78.9%,30/38)肿瘤最大径>3 cm。29例(76.3%,29/38)为(Ⅲ+Ⅳ)期。29例(76.3%,29/38)伴淋巴结转移。20例(52.6%,20/38)伴远处单/多个器官转移,最多见脑、骨转移。1例合并表皮生长因子受体基因突变。12/15接受克唑替尼治疗后病情缓解或稳定。结论 ALK基因融合肺癌是非小细胞肺癌一新的分子亚型,具有独特的临床表现和病理形态。使用Ventana抗ALK试剂及全自动免疫组织化学染色可作为检测ALK阳性非小细胞肺癌首选方法,对提高该类型肺癌的检出率及个体化治疗有着重要意义。%Objective To explore the automated immunostainer screening anaplastic lymphoma kinase ( ALK) gene fusion non-small cell lung cancer ( NSCLC) and clinicopathological

  3. Hodgkin Lymphoma (For Teens)

    Science.gov (United States)

    ... Can I Help Someone Who's Being Bullied? Volunteering Hodgkin Lymphoma KidsHealth > For Teens > Hodgkin Lymphoma Print A ... to check for disease, including lymphoma. What Is Hodgkin Lymphoma? Hodgkin lymphoma is a type of cancer ...

  4. Ovarian metastasis from ALK-positive lung adenocarcinoma: One case report%ALK阳性肺腺癌卵巢转移1例报道

    Institute of Scientific and Technical Information of China (English)

    乔昱; 马家芳; 张萍; 李琳

    2015-01-01

    目的:探讨间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)阳性的非小细胞肺癌(non-small cell lung cancer,NSCLC)卵巢转移患者的临床特征、诊断及治疗.方法:对北京医院收治的1例ALK阳性非小细胞肺癌伴卵巢转移患者的病例资料进行复习,并随访至2015年1月.结果:本例女性患者48岁,初诊为右肺腺癌(Ⅳ期),单发脑转移.右肺中叶切除术后,荧光原位杂交法检测组织标本为ALK阳性.服用克唑替尼治疗2年后,发现单侧卵巢囊性肿块;手术切除后,病理检查显示为肺腺癌转移,且Ventana免疫组织化学法检测转移灶组织标本为ALK阳性.手术后患者继续服用克唑替尼治疗,至随访结束未出现疾病进展.结论:ALK阳性的女性NSCLC患者在随访期间应关注卵巢病变,克唑替尼治疗可能使这类患者获益.

  5. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  6. Epigenetic silencing of the proapoptotic gene BIM in anaplastic large cell lymphoma through an MeCP2/SIN3a deacetylating complex.

    Science.gov (United States)

    Piazza, Rocco; Magistroni, Vera; Mogavero, Angela; Andreoni, Federica; Ambrogio, Chiara; Chiarle, Roberto; Mologni, Luca; Bachmann, Petra S; Lock, Richard B; Collini, Paola; Pelosi, Giuseppe; Gambacorti-Passerini, Carlo

    2013-05-01

    BIM is a proapoptotic member of the Bcl-2 family. Here, we investigated the epigenetic status of the BIM locus in NPM/ALK+ anaplastic large cell lymphoma (ALCL) cell lines and in lymph node biopsies from NPM/ALK+ ALCL patients. We show that BIM is epigenetically silenced in cell lines and lymph node specimens and that treatment with the deacetylase inhibitor trichostatin A restores the histone acetylation, strongly upregulates BIM expression, and induces cell death. BIM silencing occurs through recruitment of MeCP2 and the SIN3a/histone deacetylase 1/2 (HDAC1/2) corepressor complex. This event requires BIM CpG methylation/demethylation with 5-azacytidine that leads to detachment of the MeCP2 corepressor complex and reacetylation of the histone tails. Treatment with the ALK inhibitor PF2341066 or with an inducible shRNA targeting NPM/ALK does not restore BIM locus reacetylation; however, enforced expression of NPM/ALK in an NPM/ALK-negative cell line significantly increases the methylation at the BIM locus. This study demonstrates that BIM is epigenetically silenced in NPM/ALK-positive cells through recruitment of the SIN3a/HDAC1/2 corepressor complex and that NPM/ALK is dispensable to maintain BIM epigenetic silencing but is able to act as an inducer of BIM methylation.

  7. Epigenetic Silencing of the Proapoptotic Gene BIM in Anaplastic Large Cell Lymphoma through an MeCP2/SIN3a Deacetylating Complex

    Directory of Open Access Journals (Sweden)

    Rocco Piazza

    2013-05-01

    Full Text Available BIM is a proapoptotic member of the Bcl-2 family. Here, we investigated the epigenetic status of the BIM locus in NPM/ALK+ anaplastic large cell lymphoma (ALCL cell lines and in lymph node biopsies from NPM/ALK+ ALCL patients. We show that BIM is epigenetically silenced in cell lines and lymph node specimens and that treatment with the deacetylase inhibitor trichostatin A restores the histone acetylation, strongly upregulates BIM expression, and induces cell death. BIM silencing occurs through recruitment of MeCP2 and the SIN3a/histone deacetylase 1/2 (HDAC1/2 corepressor complex. This event requires BIM CpG methylation/demethylation with 5-azacytidine that leads to detachment of the MeCP2 corepressor complex and reacetylation of the histone tails. Treatment with the ALK inhibitor PF2341066 or with an inducible shRNA targeting NPM/ALK does not restore BIM locus reacetylation; however, enforced expression of NPM/ALK in an NPM/ALK-negative cell line significantly increases the methylation at the BIM locus. This study demonstrates that BIM is epigenetically silenced in NPM/ALK-positive cells through recruitment of the SIN3a/HDAC1/2 corepressor complex and that NPM/ALK is dispensable to maintain BIM epigenetic silencing but is able to act as an inducer of BIM methylation.

  8. 间变性淋巴瘤激酶抑制剂的研究进展%Advances in research on anaplastic lympgoma kinase inhibitors

    Institute of Scientific and Technical Information of China (English)

    陈雅琳; 李巍; 汪天洋; 周雪琴; 刘东志

    2016-01-01

    研究发现非小细胞肺癌的形成与多种致癌突变密切相关,其中间变性淋巴瘤激酶重排备受关注,针对棘皮动物微管相关蛋白质4-间变性淋巴瘤激酶融合基因的抑制剂克唑替尼对于治疗晚期ALK阳性非小细胞肺癌患者是有效的,2011年获得美国食品药品监督管理局批准上市,但出现了耐药性,第二代间变性淋巴瘤激酶抑制剂的出现,克服了耐药机制,并显示出治疗非小细胞肺癌患者的活性。本论文按化学结构的不同介绍了克唑替尼、Ceritinib、Alectinib 、Brigatinib、RXDX-101、PF-06463922、ASP3026、X-396、CEP-37440等间变性淋巴瘤激酶抑制剂及临床研究等,为非小细胞肺癌的靶向治疗药物的开发提供了参考。%Researchers have found that multiple oncogenic driver multations are closely related with the progression and prognosis of NSCLC.In the era of molecular targeted treatment,rearrangements in anaplastic lymphoma kinase(ALK)gene and echinoderm microtubule-associated protein-like 4 (EML4)gene were applied in patients with non-small cell lung cancer(NSCLC). Crizotinib,an ALK inhibitor,is effective in treating advanced ALK-positive NSCLC,and the US Food and Drug Administration(FDA)approved it for treating ALK-positive NSCLC. Several mechanisms of acquired resistance to crizotinib have recently been reported. Second-generation ALK inhibitors were developed to overcome these resistance mechanisms and showed activity againstALKpositive NSCLC. The latest development of crizotinib,ceritinib,alectinibetc. were reviewed.

  9. IL-4 protects the B-cell lymphoma cell line CH31 from anti-IgM-induced growth arrest and apoptosis:contribution of the PI-3' kinase/AKT pathway

    Institute of Scientific and Technical Information of China (English)

    Gregory B Carey; Elena Semenova; Xiulan Qi; Achsah D Keegan

    2007-01-01

    Interleukin-4(IL-4)promotes lymphocyte survival and protects primary lymphomas from apoptosis.Previous studies reported differential requirements for the signal transducer and activator of transcription 6(STAT6)and IRS2/phosphatidylinositol 3 kinase(PI-3K)signaling pathways in mediating the IL-4-induced protection from Fas-mediated apoptosis.In this study,we characterized IL-4-activated signals that suppress anti-IgM-mediated apoptosis and growth arrest of CH31,a model B-cell lymphoma line.In CH31,anti-IgM treatment leads to the loss of mitochondrial membrane potential,phospho-Akt,phospho-CDK2,and c-myc protein.These losses are followed by massive induction ofp27Kip1 protein expression,cell cycle arrest,and apoptosis.Strikingly,IL-4 treatment prevented or reversed these changes.Furthermore,IL-4 suppressed the activation of caspases 9 and 3,and,in contrast to previous reports,induced the phosphorylation(deactivation)of BAD.IL-4 treatment also induced expression of BclxL,a STAT6-dependent gene.Pharmacologic inhibitors and dominant inhibitory forms of PI-3K andAkt abrogated the anti-apoptotic function of IL-4.These results suggest that the IL-4 receptor activates several signaling pathways,with the Akt pathway playing a major role in suppression of the apoptotic program activated by anti-IgM.

  10. 非小细胞肺癌EML4-ALK靶向药物耐药机制及逆转耐药的研究进展%Research advance of resistance mechanism of EML4-ALK related targeted drug and reversal resistance in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    刘晓; 贾燕花; 张可; 刘皈阳

    2016-01-01

    非小细胞肺癌是危害人类生命最常见的恶性肿瘤之一,棘皮动物微管蛋白样4-间变性淋巴瘤激酶(echinoderm microtubule-associated protein like 4-anaplastic lymphoma kinase,EML4-ALK)融合基因是新发现的非小细胞肺癌驱动基因,是非小细胞肺癌治疗的新靶点.EML4-ALK融合基因在非小细胞肺癌患者中的发生率约为4% ~5%,并且在不伴有表皮生长因子受体(epidermal growth factor receptor,EGFR)突变或K-Ras突变的腺癌患者中的表达率约为42.80%.目前临床上用于治疗ALK阳性肺癌的药物为克唑替尼,同其他酪胺酸激酶抑制剂(tyrosine kinase inhibitors,TKIs)相似,使用一段时间后也出现耐药.本文旨在介绍EML4-ALK融合基因结构特点、检测方法、ALK靶向药物的耐药机制以及逆转耐药的策略.

  11. Spotlight on crizotinib in the first-line treatment of ALK-positive advanced non-small-cell lung cancer: patients selection and perspectives

    Directory of Open Access Journals (Sweden)

    Giroux Leprieur E

    2016-06-01

    Full Text Available Etienne Giroux Leprieur,1,2 Vincent Fallet,3,4 Jacques Cadranel,3,4 Marie Wislez3,4 1Respiratory Diseases and Thoracic Oncology Department, APHP-Ambroise Paré Hospital, Boulogne-Billancourt, France; 2EA4340 Laboratory, UVSQ, Paris-Saclay University, France; 3Respiratory Diseases Department, APHP – Tenon Hospital, Paris, France; 4Sorbonne University, GRC 04, UPMC Univ Paris 06, France Abstract: Around 4% of advanced non-small-cell lung cancers (NSCLCs have an ALK rearrangement at the time of diagnosis. This molecular feature is more frequent in young patients, with no/light smoking habit and with adenocarcinoma pathological subtype. Crizotinib is a tyrosine kinase inhibitor, targeting ALK, ROS1, RON, and MET. The preclinical efficacy results led to a fast-track clinical development. The US Food and Drug Administration (FDA approval was achieved after the Phase I clinical trial in 2011 in ALK-rearranged advanced NSCLC progressing after a first-line treatment. In 2013, the randomized Phase III trial PROFILE-1007 confirmed the efficacy of crizotinib in ALK-rearranged NSCLC, compared to cytotoxic chemotherapy, in second-line setting or more. In 2014, the PROFILE-1014 trial showed the superiority of crizotinib in the first-line setting compared to the pemetrexed platinum doublet chemotherapy. The response rate was 74%, and the progression-free survival was 10.9 months with crizotinib. Based on these results, crizotinib received approval from the FDA and European Medicines Agency for first-line treatment of ALK-rearranged NSCLC. The various molecular mechanisms at the time of the progression (ALK mutations or amplification, ALK-independent mechanisms encourage performing re-biopsy at the time of progression under crizotinib. The best treatment strategy at the progression (crizotinib continuation beyond progression, switch to second-generation tyrosine kinase inhibitors, or cytotoxic chemotherapy depends on the phenotype of the progression, the

  12. Constitutive activation of extracellular signal-regulated kinase predisposes diffuse large B-cell lymphoma cell lines to CD40-mediated cell death

    DEFF Research Database (Denmark)

    Hollmann, C Annette; Owens, Trevor; Nalbantoglu, Josephine;

    2006-01-01

    CD40 promotes survival, proliferation, and differentiation of normal B cells but can cause activation-induced cell death in malignant B lymphocytes. CD40 ligand and anti-CD40 antibodies have been used successfully to induce apoptosis in lymphoma lines both in vitro and in xenograft tumor models...... a specific cell line or tumor will undergo apoptosis when stimulated with CD40 and to identify targets downstream of CD40 that affect only the apoptotic arm of CD40 signaling. We have analyzed gene expression patterns in CD40-sensitive and CD40-resistant diffuse large B-cell lymphoma (DLBCL) cell lines...... and no increase in ERK activity in response to CD40 stimulation. Our results suggest that constitutive activation of ERK may be required for death signaling by CD40....

  13. Ginkgo biloba extract prevents acute myocardial infarction and suppresses the inflammation‑ and apoptosis‑regulating p38 mitogen‑activated protein kinases, nuclear factor‑κB and B‑cell lymphoma 2 signaling pathways.

    Science.gov (United States)

    Li, Yanping; Zhang, Ya; Wen, Min; Zhang, Ju; Zhao, Xia; Zhao, Yuan; Deng, Jiagang

    2017-09-01

    Ginkgo biloba is a plant known from the Mesozoic and has been regarded as one of the first to be used in traditional Chinese medicine (TCM). The plant extract has attracted a great deal of attention in recent years. The Ginkgo biloba leaf contains flavones and diterpenes. In addition, Ginkgo biloba performs certain pharmacologic actions, including antioxidant and anti‑aging activities. The aim of the present study was to examine whether Ginkgo biloba extract prevents acute myocardial infarction (AMI). The results demonstrated that Ginkgo biloba extract significantly inhibited infarct size, increased serum histamine levels and weakened creatine kinase (CK)‑MB activity in AMI mice. Ginkgo biloba extract significantly inhibited serum interleukin (IL)‑6 and IL‑1β levels, and caspase‑3/9 activity. In addition, it suppressed matrix metallopeptidase‑9, transforming growth factor‑β, p38 mitogen‑activated protein kinases (MAPK) and nuclear factor (NF)‑κB protein expression, and promoted B‑cell lymphoma 2 (Bcl‑2) protein expression in AMI mice. The results of in vivo assays demonstrated that Ginkgo biloba extract prevents AMI and suppresses inflammation‑ and apoptosis‑regulating p38 MAPK, NF‑κB and Bcl‑2 signaling pathways.

  14. Gastric lymphoma

    Directory of Open Access Journals (Sweden)

    Sravani Padala

    2016-06-01

    Full Text Available Gastrointestinal lymphomas represent 5-20% of extra nodal lymphomas and mainly occur in the stomach and small intestine. Clinical findings are not specific, thus often determining a delay in the diagnosis. Imaging features at conventional and cross-sectional imaging must be known by the radiologist since he/she plays a pivotal role in the diagnosis and disease assessment, thus assisting in the choice of the optimal treatment to patients. This review focuses on the wide variety of imaging presentation of esophageal, gastric, and small and large bowel lymphoma presenting their main imaging appearances at conventional and cross-sectional imaging, mainly focusing on computed tomography and magnetic resonance, helping in the choice of the best imaging technique for the disease characterization and assessment and the recognition of potential complications. Gastrointestinal tract is the most common extra nodal site involved by lymphoma. Although lymphoma can involve any part of the gastrointestinal tract .The most frequent sites in order of its occurrence are the stomach followed by small intestine and ileocecal region. Gastrointestinal tract lymphoma is usually secondary to the widespread nodal diseases and primary gastrointestinal tract lymphoma is relatively rare. [Int J Res Med Sci 2016; 4(6.000: 2481-2486

  15. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer

    Science.gov (United States)

    Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L.; Huang, Stephen; Lira, Maruja E.; Emmanuel, Yvette; Perez, Omar D.; Irwin, Darryl; Fellowes, Andrew P.; Wong, Stephen Q.; Fox, Stephen B.

    2017-01-01

    ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86–96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof–of–principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting. PMID:28181564

  16. Targeted Therapies in Non-Small Cell Lung Cancer—Beyond EGFR and ALK

    Directory of Open Access Journals (Sweden)

    Sacha I. Rothschild

    2015-05-01

    Full Text Available Systemic therapy for non-small cell lung cancer (NSCLC has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called “driver mutations” for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK translocation are the most effectively targeted oncogenes in NSCLC. EGFR mutations and ALK gene rearrangements are successfully being targeted with specific tyrosine kinase inhibitors. The number of molecular subgroups of NSCLC continues to grow. The scope of this review is to discuss recent data on novel molecular targets as ROS1, BRAF, KRAS, HER2, c-MET, RET, PIK3CA, FGFR1 and DDR2. Thereby the review will focus on therapeutic strategies targeting these aberrations. Moreover, the emerging challenge of acquired resistance to initially effective therapies will be discussed.

  17. Hodgkin lymphoma - children

    Science.gov (United States)

    Lymphoma - Hodgkin - children; Hodgkin disease - children; Cancer - Hodgkin lymphoma - children; Childhood Hodgkin lymphoma ... In children, Hodgkin lymphoma is more likely to occur between ages 15 to 19 years. The cause of this type of ...

  18. Hodgkin Lymphoma (For Kids)

    Science.gov (United States)

    ... Too Tall or Too Short All About Puberty Hodgkin Lymphoma KidsHealth > For Kids > Hodgkin Lymphoma Print A ... of the cool things he's missed. What Is Hodgkin Lymphoma? Lymphoma (say: lim-FOH-mah) is cancer ...

  19. Breast lymphoma

    African Journals Online (AJOL)

    Expression of oestrogen receptor protein as determined by ... lymphomas. While this classification has been fairly widely accepted, a ... minimum a full history and physical examination, chest radiographs ... and hepatic function. A number ...

  20. Hodgkin's Lymphoma

    Science.gov (United States)

    ... for information in your local library and on the Internet. Start your information search with the National Cancer ... www.mayoclinic.org/diseases-conditions/hodgkins-lymphoma/basics/definition/CON-20030667 . Mayo Clinic Footer Legal Conditions and ...

  1. Primary lymphoma of the brain

    Science.gov (United States)

    Brain lymphoma; Cerebral lymphoma; Primary lymphoma of the central nervous system; Lymphoma - brain ... The cause of primary brain lymphoma is not known. People with a weakened immune system are at high risk for primary lymphoma of the brain. ...

  2. T-Cell Lymphoma

    Science.gov (United States)

    Getting the Facts T-Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are Hodgkin lymphoma ... develop into lymphomas: B-lymphocytes (B-cells) and T-lymphocytes (T-cells). T-cell lymphomas account for ...

  3. A phase i study of the cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced solid tumors and lymphomas

    NARCIS (Netherlands)

    Infante, Jeffrey R.; Cassier, Philippe A.; Gerecitano, John F.; Witteveen, Petronella O.; Chugh, Rashmi; Ribrag, Vincent; Chakraborty, Abhijit; Matano, Alessandro; Dobson, Jason R.; Crystal, Adam S.; Parasuraman, Sudha; Shapiro, Geoffrey I.

    2016-01-01

    Purpose: Ribociclib (an oral, highly specific cyclin-dependent kinase 4/6 inhibitor) inhibits tumor growth in preclinical models with intact retinoblastoma protein (Rb+). This first-in-human study investigated the MTD, recommended dose for expansion (RDE), safety, preliminary activity, pharmacokinet

  4. A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function

    Directory of Open Access Journals (Sweden)

    Aileen Balkow

    2015-08-01

    Conclusions: We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in brown adipocytes.

  5. Apoptosis of HL-60 human leukemia cells induced by Asiatic acid through modulation of B-cell lymphoma 2 family proteins and the mitogen-activated protein kinase signaling pathway.

    Science.gov (United States)

    Wu, Qiuling; Lv, Tingting; Chen, Yan; Wen, Lu; Zhang, Junli; Jiang, Xudong; Liu, Fang

    2015-07-01

    The toxicities of conventional chemotherapeutic agents to normal cells restrict their dosage and clinical efficacy in acute leukemia; therefore, it is important to develop novel chemotherapeutics, including natural products, which selectively target cancer-specific pathways. The present study aimed to explore the effect of the chemopreventive agent asiatic acid (AA) on the proliferation and apoptotic rate of the leukemia cell line HL-60 and investigated the mechanisms underlying its anti-tumor activity. The effect of AA on the proliferation of HL-60 cells was evaluated using the MTT assay. Annexin V-fluorescein isothiocyanate/propidium iodide double staining followed by flow cytometric analysis as well as Hoechst 33258 staining were used to analyze the apoptotic rate of the cells. Furthermore, changes of survivin, B-cell lymphoma 2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 expressions were detected by western blot analysis. AA blocked the growth of HL-60 cells in a dose- and time-dependent manner. The IC50-value of AA on HL-60 cells was 46.67 ± 5.08 µmol/l for 24 h. AA induced apoptosis in a dose-dependent manner, which was inhibited in the presence of Z-DEVD-FMK, a specific inhibitor of caspase. The anti-apoptotic proteins Bcl-2, Mcl-1 and survivin were downregulated by AA in a dose-dependent manner. Concurrently, AA inhibited ERK and p38 phosphorylation in a dose-dependent manner, while JNK phosphorylation was not affected. In conclusion, the present study indicated that the p38 and ERK pathways, as well as modulation of Bcl-2 family and survivin proteins were key regulators of apoptosis induced in HL-60 cells in response to AA.

  6. Methylation Status of theSOCS3 Gene Promoter in H2228 Cells and EML4-ALK-positive Lung Cancer Tissues%H2228细胞和EML4-ALK阳性肺癌组织中SOCS3基因启动子区甲基化状态的研究

    Institute of Scientific and Technical Information of China (English)

    刘春来; 李永文; 董云龙; 张洪兵; 李颖; 刘红雨; 陈军

    2016-01-01

    Background and objective TheEML4-ALK fusion gene is a newly discovered driver gene of non-small cell lung cancer and exhibits special clinical and pathological features. hTe JAK-STAT signaling pathway, an important downstream signaling pathway of EML4-ALK, is aberrantly sustained and activated in EML4-ALK-positive lung cancer cells fusion gene, but the underlying reason remains unknown. hTe suppressor of cytokine signaling (SOCS) is a negative regula-tory factor that mainly inhibits the proliferation, differentiation, and induction of apoptotic cells by inhibiting the JAK-STAT signaling pathway. hTe aberrant methylation of theSOCS gene leads to inactivation of tumors and abnormal activation of the JAK2-STAT signaling pathway. hTe aim of this study is to investigate the methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 cells and lung cancer tissues.Methods hTe methylation status of the SOCS3 promoter in EML4-ALK-positive H2228 lung cancer cells and lung cancer tissues was detected by methylation-speciifc PCR (MSP) analysis and veri-ifed by DNA sequencing. hTe expression levels of SOCS3 in H2228 cells were detected by Western blot and Real-time PCR analyses atfer treatment with the DNA methyltransferase inhibitor 5'-Aza-dC.Results MSP and DNA sequencing assay results indicated the presence of SOCS3 promoter methylation in H2228 cells as well as in three cases of seven EML4-ALK-positive lung cancer tissues. hTe expression level of SOCS3 signiifcantly increased in H2228 cells atfer 5′-Aza-dC treatment.Conclu-sion hTe aerrant methylation of the SOCS3 promoter region in EML4-ALK (+) H2228 cells and lung cancer tissues may be signiifcantly involved in the pathogenesis of EML4-ALK-positive lung cancer.%背景与目的人类棘皮动物微管相关蛋白样4(echinoderm microtubule-associated-protein-like 4,EML4)和人类间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)融合基因EML4-ALK是新发现的非小细胞肺癌的驱动基因,

  7. Co-active receptor tyrosine kinases mitigate the effect of FGFR inhibitors in FGFR1-amplified lung cancers with low FGFR1 protein expression.

    Science.gov (United States)

    Kotani, H; Ebi, H; Kitai, H; Nanjo, S; Kita, K; Huynh, T G; Ooi, A; Faber, A C; Mino-Kenudson, M; Yano, S

    2016-07-07

    Targeted therapies are effective in subsets of lung cancers with EGFR mutations and anaplastic lymphoma kinase (ALK) translocations. Large-scale genomics have recently expanded the lung cancer landscape with FGFR1 amplification found in 10-20% of squamous cell carcinomas (SCCs). However, the response rates have been low for biomarker-directed fibroblast growth factor receptor (FGFR) inhibitor therapy in SCC, which contrasts to the relatively high rates of response seen in EGFR mutant and ALK-translocated lung cancers treated with epidermal growth factor receptor (EGFR) inhibitors and ALK inhibitors, respectively. In order to better understand the low response rates of FGFR1-amplified lung cancers to FGFR inhibitors, relationships between gene copy number, mRNA expression and protein expression of FGFR1 were assessed in cell lines, tumor specimens and data from The Cancer Genome Atlas. The importance of these factors for the sensitivity to FGFR inhibitors was determined by analyzing drug screen data and conducting in vitro and in vivo experiments. We report that there was a discrepancy between FGFR1 amplification level and FGFR1 protein expression in a number of these cell lines, and the cancers with unexpectedly low FGFR1 expression were uniformly resistant to the different FGFR inhibitors. Further interrogation of the receptor tyrosine kinase activity in these discordant cell lines revealed co-activation of HER2 and platelet-derived growth factor receptor-α (PDGFRα) caused by gene amplification or ligand overexpression maintained phosphoinositide 3-kinase (PI3K) and MEK/ERK signaling even in the presence of FGFR inhibitor. Accordingly, co-inhibition of FGFR1 and HER2 or PDGFRα led to enhanced drug responses. In contrast, FGFR1-amplified high FGFR1 protein-expressing lung cancers are sensitive to FGFR inhibitor monotherapy by downregulating ERK signaling. Addition of a PI3K inhibitor to these high FGFR1 protein-expressing cancers further sensitized them to FGFR

  8. Lymphoma cytogenetics.

    Science.gov (United States)

    Dave, Bhavana J; Nelson, Marilu; Sanger, Warren G

    2011-12-01

    Lymphomas are a heterogeneous group of neoplasms with distinct morphologic, immunologic, and cytogenetic characteristics. Overlapping morphologic and immunophenotypic features often makes accurate diagnosis difficult. Cytogenetics helps simplify the diagnostic complexities presented in transforming and progressive lymphoid malignancies. Genetic studies using technical advances such as fluorescence in situ hybridization and the newer approaches of array comparative genomic hybridization and gene expression profiling play a critical and often defining role in the diagnosis, progression, prognosis, and therapeutic stratification. This article reviews characteristic cytogenetic abnormalities in specific subtypes of lymphomas at diagnosis, disease progression, and prognosis.

  9. Secreted Stress-Induced Phosphoprotein 1 Activates the ALK2-SMAD Signaling Pathways and Promotes Cell Proliferation of Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chia-Lung Tsai

    2012-08-01

    Full Text Available Stress-induced phosphoprotein 1 (STIP1, a cochaperone that organizes other chaperones, heat shock proteins (HSPs, was recently shown to be secreted by human ovarian cancer cells. In neuronal tissues, binding to prion protein was required for STIP1 to activate the ERK (extracellular-regulated MAP kinase signaling pathways. However, we report that STIP1 binding to a bone morphogenetic protein (BMP receptor, ALK2 (activin A receptor, type II-like kinase 2, was necessary and sufficient to stimulate proliferation of ovarian cancer cells. The binding of STIP1 to ALK2 activated the SMAD signaling pathway, leading to transcriptional activation of ID3 (inhibitor of DNA binding 3, promoting cell proliferation. In conclusion, ovarian-cancer-tissue-secreted STIP1 stimulates cancer cell proliferation by binding to ALK2 and activating the SMAD-ID3 signaling pathways. Although animal studies are needed to confirm these mechanisms in vivo, our results may pave the way for developing novel therapeutic strategies for ovarian cancer.

  10. Lobatin B inhibits NPM/ALK and NF-κB attenuating anaplastic-large-cell-lymphomagenesis and lymphendothelial tumour intravasation.

    Science.gov (United States)

    Kiss, Izabella; Unger, Christine; Huu, Chi Nguyen; Atanasov, Atanas Georgiev; Kramer, Nina; Chatruphonprasert, Waranya; Brenner, Stefan; McKinnon, Ruxandra; Peschel, Andrea; Vasas, Andrea; Lajter, Ildiko; Kain, Renate; Saiko, Philipp; Szekeres, Thomas; Kenner, Lukas; Hassler, Melanie R; Diaz, Rene; Frisch, Richard; Dirsch, Verena M; Jäger, Walter; de Martin, Rainer; Bochkov, Valery N; Passreiter, Claus M; Peter-Vörösmarty, Barbara; Mader, Robert M; Grusch, Michael; Dolznig, Helmut; Kopp, Brigitte; Zupko, Istvan; Hohmann, Judit; Krupitza, Georg

    2015-01-28

    An apolar extract of the traditional medicinal plant Neurolaena lobata inhibited the expression of the NPM/ALK chimera, which is causal for the majority of anaplastic large cell lymphomas (ALCLs). Therefore, an active principle of the extract, the furanoheliangolide sesquiterpene lactone lobatin B, was isolated and tested regarding the inhibition of ALCL expansion and tumour cell intravasation through the lymphendothelium. ALCL cell lines, HL-60 cells and PBMCs were treated with plant compounds and the ALK inhibitor TAE-684 to measure mitochondrial activity, proliferation and cell cycle progression and to correlate the results with protein- and mRNA-expression of selected gene products. Several endpoints indicative for cell death were analysed after lobatin B treatment. Tumour cell intravasation through lymphendothelial monolayers was measured and potential causal mechanisms were investigated analysing NF-κB- and cytochrome P450 activity, and 12(S)-HETE production. Lobatin B inhibited the expression of NPM/ALK, JunB and PDGF-Rβ, and attenuated proliferation of ALCL cells by arresting them in late M phase. Mitochondrial activity remained largely unaffected upon lobatin B treatment. Nevertheless, caspase 3 became activated in ALCL cells. Also HL-60 cell proliferation was attenuated whereas PBMCs of healthy donors were not affected by lobatin B. Additionally, tumour cell intravasation, which partly depends on NF-κB, was significantly suppressed by lobatin B most likely due to its NF-κB-inhibitory property. Lobatin B, which was isolated from a plant used in ethnomedicine, targets malignant cells by at least two properties: I) inhibition of NPM/ALK, thereby providing high specificity in combating this most prevalent fusion protein occurring in ALCL; II) inhibition of NF-κB, thereby not affecting normal cells with low constitutive NF-κB activity. This property also inhibits tumour cell intravasation into the lymphatic system and may provide an option to manage this

  11. Recurrent fusion of the genes FN1 and ALK in gastrointestinal leiomyomas.

    Science.gov (United States)

    Panagopoulos, Ioannis; Gorunova, Ludmila; Lund-Iversen, Marius; Lobmaier, Ingvild; Bjerkehagen, Bodil; Heim, Sverre

    2016-11-01

    Leiomyomas of the gastrointestinal tract are mostly found in the esophagus, stomach, and colon. Genetic information about them is very limited and no fusion genes have been described. We present herein cytogenetic and molecular genetic analyses of two gastrointestinal leiomyomas found in the esophagus and small intestine. The esophageal leiomyoma had the karyotype 45,Y,der(X)t(X;6)(p22;p21),inv(2)(p23q35),add(6)(p21),-11[cp6]/46,XY[7]. The intestinal leiomyoma karyotype was 46,X,add(X)(q2?),der(2)add(2)(p23)add(2)(q33),add(4)(p14),add(14)(q22)[10]/47,XX,+12[2]/46,XX[1]. RNA-sequencing detected FN1-ALK fusion transcripts in both tumors. RT-PCR together with Sanger sequencing verified the presence of the FN1-ALK fusion transcripts. Fluorescence in situ hybridization using an ALK breakapart probe further confirmed the rearrangement of the ALK gene. Immunohistochemical investigation of ALK in the leiomyoma of the small intestine revealed positivity with strong granular cytoplasmatic staining in the tumor cells. This is the first ever ALK fusion reported in gastrointestinal leiomyomas. Our results are of potential clinical importance because crizotinib, a selective ALK inhibitor, has demonstrated effect in patients whose tumors harbor ALK rearrangements. Thus, ALK emerges as a possible therapeutic target in patients whose tumors, including gastrointestinal leiomyomas, carry ALK fusions.

  12. Characterization of the AlkS/P-alkB-expression system as an efficient tool for the production of recombinant proteins in Escherichia coli fed-batch fermentations

    NARCIS (Netherlands)

    Makart, Stefan; Heinemann, Matthias; Panke, Sven

    2007-01-01

    The availability of suitable, well-characterized, and robust expression systems remains an essential requirement for successful metabolic engineering and recombinant protein production. We investigated the suitability of the Pseudomonas putida GPo1-derived AlkS/P-alkB expression system in strictly a

  13. Activin-Like Kinase 2 Functions in Peri-implantation Uterine Signaling in Mice and Humans

    Science.gov (United States)

    Clementi, Caterina; Tripurani, Swamy K.; Large, Michael J.; Edson, Mark A.; Creighton, Chad J.; Hawkins, Shannon M.; Kovanci, Ertug; Kaartinen, Vesa; Lydon, John P.; Pangas, Stephanie A.; DeMayo, Francesco J.; Matzuk, Martin M.

    2013-01-01

    Implantation of a blastocyst in the uterus is a multistep process tightly controlled by an intricate regulatory network of interconnected ovarian, uterine, and embryonic factors. Bone morphogenetic protein (BMP) ligands and receptors are expressed in the uterus of pregnant mice, and BMP2 has been shown to be a key regulator of implantation. In this study, we investigated the roles of the BMP type 1 receptor, activin-like kinase 2 (ALK2), during mouse pregnancy by producing mice carrying a conditional ablation of Alk2 in the uterus (Alk2 cKO mice). In the absence of ALK2, embryos demonstrate delayed invasion into the uterine epithelium and stroma, and upon implantation, stromal cells fail to undergo uterine decidualization, resulting in sterility. Mechanistically, microarray analysis revealed that CCAAT/enhancer-binding protein β (Cebpb) expression is suppressed during decidualization in Alk2 cKO females. These findings and the similar phenotypes of Cebpb cKO and Alk2 cKO mice lead to the hypothesis that BMPs act upstream of CEBPB in the stroma to regulate decidualization. To test this hypothesis, we knocked down ALK2 in human uterine stromal cells (hESC) and discovered that ablation of ALK2 alters hESC decidualization and suppresses CEBPB mRNA and protein levels. Chromatin immunoprecipitation (ChIP) analysis of decidualizing hESC confirmed that BMP signaling proteins, SMAD1/5, directly regulate expression of CEBPB by binding a distinct regulatory sequence in the 3′ UTR of this gene; CEBPB, in turn, regulates the expression of progesterone receptor (PGR). Our work clarifies the conserved mechanisms through which BMPs regulate peri-implantation in rodents and primates and, for the first time, uncovers a linear pathway of BMP signaling through ALK2 to regulate CEBPB and, subsequently, PGR during decidualization. PMID:24244176

  14. Activin-like kinase 2 functions in peri-implantation uterine signaling in mice and humans.

    Science.gov (United States)

    Clementi, Caterina; Tripurani, Swamy K; Large, Michael J; Edson, Mark A; Creighton, Chad J; Hawkins, Shannon M; Kovanci, Ertug; Kaartinen, Vesa; Lydon, John P; Pangas, Stephanie A; DeMayo, Francesco J; Matzuk, Martin M

    2013-11-01

    Implantation of a blastocyst in the uterus is a multistep process tightly controlled by an intricate regulatory network of interconnected ovarian, uterine, and embryonic factors. Bone morphogenetic protein (BMP) ligands and receptors are expressed in the uterus of pregnant mice, and BMP2 has been shown to be a key regulator of implantation. In this study, we investigated the roles of the BMP type 1 receptor, activin-like kinase 2 (ALK2), during mouse pregnancy by producing mice carrying a conditional ablation of Alk2 in the uterus (Alk2 cKO mice). In the absence of ALK2, embryos demonstrate delayed invasion into the uterine epithelium and stroma, and upon implantation, stromal cells fail to undergo uterine decidualization, resulting in sterility. Mechanistically, microarray analysis revealed that CCAAT/enhancer-binding protein β (Cebpb) expression is suppressed during decidualization in Alk2 cKO females. These findings and the similar phenotypes of Cebpb cKO and Alk2 cKO mice lead to the hypothesis that BMPs act upstream of CEBPB in the stroma to regulate decidualization. To test this hypothesis, we knocked down ALK2 in human uterine stromal cells (hESC) and discovered that ablation of ALK2 alters hESC decidualization and suppresses CEBPB mRNA and protein levels. Chromatin immunoprecipitation (ChIP) analysis of decidualizing hESC confirmed that BMP signaling proteins, SMAD1/5, directly regulate expression of CEBPB by binding a distinct regulatory sequence in the 3' UTR of this gene; CEBPB, in turn, regulates the expression of progesterone receptor (PGR). Our work clarifies the conserved mechanisms through which BMPs regulate peri-implantation in rodents and primates and, for the first time, uncovers a linear pathway of BMP signaling through ALK2 to regulate CEBPB and, subsequently, PGR during decidualization.

  15. Activin-like kinase 2 functions in peri-implantation uterine signaling in mice and humans.

    Directory of Open Access Journals (Sweden)

    Caterina Clementi

    2013-11-01

    Full Text Available Implantation of a blastocyst in the uterus is a multistep process tightly controlled by an intricate regulatory network of interconnected ovarian, uterine, and embryonic factors. Bone morphogenetic protein (BMP ligands and receptors are expressed in the uterus of pregnant mice, and BMP2 has been shown to be a key regulator of implantation. In this study, we investigated the roles of the BMP type 1 receptor, activin-like kinase 2 (ALK2, during mouse pregnancy by producing mice carrying a conditional ablation of Alk2 in the uterus (Alk2 cKO mice. In the absence of ALK2, embryos demonstrate delayed invasion into the uterine epithelium and stroma, and upon implantation, stromal cells fail to undergo uterine decidualization, resulting in sterility. Mechanistically, microarray analysis revealed that CCAAT/enhancer-binding protein β (Cebpb expression is suppressed during decidualization in Alk2 cKO females. These findings and the similar phenotypes of Cebpb cKO and Alk2 cKO mice lead to the hypothesis that BMPs act upstream of CEBPB in the stroma to regulate decidualization. To test this hypothesis, we knocked down ALK2 in human uterine stromal cells (hESC and discovered that ablation of ALK2 alters hESC decidualization and suppresses CEBPB mRNA and protein levels. Chromatin immunoprecipitation (ChIP analysis of decidualizing hESC confirmed that BMP signaling proteins, SMAD1/5, directly regulate expression of CEBPB by binding a distinct regulatory sequence in the 3' UTR of this gene; CEBPB, in turn, regulates the expression of progesterone receptor (PGR. Our work clarifies the conserved mechanisms through which BMPs regulate peri-implantation in rodents and primates and, for the first time, uncovers a linear pathway of BMP signaling through ALK2 to regulate CEBPB and, subsequently, PGR during decidualization.

  16. Plasma Cell-Free DNA in Paediatric Lymphomas

    Science.gov (United States)

    Mussolin, Lara; Burnelli, Roberta; Pillon, Marta; Carraro, Elisa; Farruggia, Piero; Todesco, Alessandra; Mascarin, Maurizio; Rosolen, Angelo

    2013-01-01

    Background: Extracellular circulating DNA (cfDNA) can be found in small amounts in plasma of healthy individuals. Increased levels of cfDNA have been reported in patients with cancer of breast, cervix, colon, liver and it was shown that cfDNA can originate from both tumour and non-tumour cells. Objectives: Levels of cfDNA of a large series of children with lymphoma were evaluated and analyzed in relation with clinical characteristics. Methods: plasma cfDNA levels obtained at diagnosis in 201 paediatric lymphoma patients [43 Hodgkin lymphomas (HL), 45 anaplastic large cell lymphomas (ALCL), 88 Burkitt lymphomas (BL), 17 lymphoblastic (LBL), 8 diffuse large B cell lymphoma (DLBCL)] and 15 healthy individuals were determined using a quantitative PCR assay for POLR2 gene and, in addition, for NPM-ALK fusion gene in ALCL patients. Wilcoxon rank sum test was used to compare plasma levels among different patient subgroups and controls and to analyze relationship between levels of cfDNA and clinical characteristics. Results: Levels of cfDNA in lymphoma patients were significantly higher compared with controls (p<0.0001). CfDNA was associated with median age (p=0.01) in HL, and with stage in ALCL (p=0.01). In HL patients high cfDNA levels were correlated with poor prognosis (p=0.03). In ALCL we found that most of the cfDNA (77%) was non-tumor DNA. Conclusion: level of plasma cfDNA might constitute an important non-invasive tool at diagnosis in lymphoma patients' management; in particular in patients with HL, cfDNA seems to be a promising prognostic biomarker. PMID:23678368

  17. Construction and Activity Assay of Transcription Activator-like Effector Nuclease (TALEN) Plasmids for ALK4 Gene Knock-out%针对ALK4基因的TALEN质粒构建与活性鉴定

    Institute of Scientific and Technical Information of China (English)

    曾凡才; 顾洪; 王轲; 周红

    2014-01-01

    旨在利用类转录激活因子效应物核酸酶(Transcription activator-like effector nuclease,TALEN)技术构建具有活性的敲除类激活素激酶受体4(Activin receptor-like kinase 4,ALK4)的TALEN质粒.利用TALEN在线设计工具,根据TALEN设计原则和ALK4剪接异构体的共同序列确定基因敲除的靶位点、TALEN识别序列和用于活性验证的限制性酶切位点.利用质粒文库试剂盒快速构建TALEN质粒,并通过酶切、测序和BLAST比对加以验证.应用脂质体转染法将构建质粒导入HEK293T细胞,通过共转染的pEGFP-N1质粒判断转染效率.利用嘌呤霉素进行阳性筛选后提取基因组DNA,PCR扩增靶序列,HhaⅠ酶切纯化后的PCR产物.结果显示,来自转染TALEN质粒细胞基因组的PCR产物的酶切效率明显下降,提示部分细胞的ALK4基因发生了突变.首次成功构建了在HEK293T细胞中有活性的TALEN质粒.

  18. [Plasmablastic lymphoma].

    Science.gov (United States)

    Fernández-Álvarez, Rubén; Sancho, Juan-Manuel; Ribera, Josep-María

    2016-11-04

    Plasmablastic lymphoma (PBL) is a rare and aggressive subtype of non-Hodgkin lymphoma that commonly occurs in human immunodeficiency virus (HIV)-positive individuals, and affects oral sites. Occasionally, it has been described in HIV-negative patients and involving non-oral sites. Pathologically, PBL is a high-grade B-cell lymphoma that displays the immunophenotype of a terminally differentiated B-lymphocyte with loss of B-cell markers (CD20) and expression of plasma-cell antigens. Epstein-Barr virus infection and MYC rearrangements are frequently observed. Treatment of PBL is challenging because of the lack of established treatment and poor outcomes, with median survival times shorter than one year. In this review, we discuss the clinical and epidemiologic spectrum of PBL as well as its distinct pathological features. Finally, we summarize the currently available approaches for the treatment of patients with PBL. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  19. Lymphoma of the eyelid

    DEFF Research Database (Denmark)

    Svendsen, Frederik H; Heegaard, Steffen

    2017-01-01

    Lymphoma of the eyelid constitutes 5% of ocular adnexal lymphoma. In previously published cases, 56% of lymphomas of the eyelid are of B-cell origin and 44% are of T-cell origin. The most frequent B-cell lymphomas are extranodal marginal zone lymphoma (27 cases-14%) and diffuse large B-cell lymph......Lymphoma of the eyelid constitutes 5% of ocular adnexal lymphoma. In previously published cases, 56% of lymphomas of the eyelid are of B-cell origin and 44% are of T-cell origin. The most frequent B-cell lymphomas are extranodal marginal zone lymphoma (27 cases-14%) and diffuse large B...... chemotherapy with or without adjuvant treatment is the treatment of choice for high-grade or disseminated lymphomas. The majority of subtypes, especially low-grade subtypes, have a good prognosis with few recurrences or progression. Some subtypes, including mycosis fungoides, have a poorer prognosis...

  20. AlkB recognition of a bulky DNA base adduct stabilized by chemical cross-linking

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    E.coli AlkB is a direct DNA/RNA repair protein that oxidatively reverses N1 alkylated purines and N3 alkylated pyrimidines to regular bases.Previous crystal structures have revealed N1-methyl adenine(1-meA) recognition by AlkB and a unique base flipping mechanism,but how the AlkB active site can accommodate bulky base adducts is largely unknown.Employing a previously developed chemical cross-linking technique,we crystallized AlkB with a duplex DNA containing a caged thymine base(cagedT).The structure revealed a flexible hairpin lid and a reorganized substrate recognition loop used by AlkB to accommodate cagedT.These observations demonstrate,at the molecular level,how bulky DNA adducts may be recognized and processed by AlkB.

  1. Non-Invasive Methods to Monitor Mechanisms of Resistance to Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer: Where Do We Stand?

    Science.gov (United States)

    Ulivi, Paola

    2016-07-22

    The induction of resistance mechanisms represents an important problem for the targeted therapy of patients with non-small-cell lung cancer (NSCLC). The best-known resistance mechanism induced during treatment with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is EGFR T790M mutation for which specific drugs are have been developed. However, other molecular alterations have also been reported as induced resistance mechanisms to EGFR-TKIs. Similarly, there is growing evidence of acquired resistance mechanisms to anaplastic lymphoma kinase (ALK)-TKI treatment. A better understanding of these acquired resistance mechanisms is essential in clinical practice as patients could be treated with specific drugs that are active against the induced alterations. The use of free circulating tumor nucleic acids or circulating tumor cells (CTCs) enables resistance mechanisms to be characterized in a non-invasive manner and reduces the need for tumor re-biopsy. This review discusses the main resistance mechanisms to TKIs and provides a comprehensive overview of innovative strategies to evaluate known resistance mechanisms in free circulating nucleic acids or CTCs and potential future orientations for these non-invasive approaches.

  2. Activin receptor-like kinase 7 suppresses lipolysis to accumulate fat in obesity through downregulation of peroxisome proliferator-activated receptor γ and C/EBPα.

    Science.gov (United States)

    Yogosawa, Satomi; Mizutani, Shin; Ogawa, Yoshihiro; Izumi, Tetsuro

    2013-01-01

    We previously identified a quantitative trait locus for adiposity, non-insulin-dependent diabetes 5 (Nidd5), on mouse chromosome 2. In the current study, we identified the actual genetic alteration at Nidd5 as a nonsense mutation of the Acvr1c gene encoding activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors, which results in a COOH-terminal deletion of the kinase domain. We further showed that the ALK7 dysfunction causes increased lipolysis in adipocytes and leads to decreased fat accumulation. Conversely, ALK7 activation inhibits lipolysis by suppressing the expression of adipose lipases. ALK7 and activated Smads repress those lipases by downregulating peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBP) α. Although PPARγ and C/EBPα act as adipogenic transcription factors during adipocyte differentiation, they are lipolytic in sum in differentiated adipocytes and are downregulated by ALK7 in obesity to accumulate fat. Under the obese state, ALK7 deficiency improves glucose tolerance and insulin sensitivity by preferentially increasing fat combustion in mice. These findings have uncovered a net lipolytic function of PPARγ and C/EBPα in differentiated adipocytes and point to the ALK7-signaling pathway that is activated in obesity as a potential target of medical intervention.

  3. Activin Receptor-Like Kinase 7 Suppresses Lipolysis to Accumulate Fat in Obesity Through Downregulation of Peroxisome Proliferator–Activated Receptor γ and C/EBPα

    Science.gov (United States)

    Yogosawa, Satomi; Mizutani, Shin; Ogawa, Yoshihiro; Izumi, Tetsuro

    2013-01-01

    We previously identified a quantitative trait locus for adiposity, non-insulin-dependent diabetes 5 (Nidd5), on mouse chromosome 2. In the current study, we identified the actual genetic alteration at Nidd5 as a nonsense mutation of the Acvr1c gene encoding activin receptor-like kinase 7 (ALK7), one of the type I transforming growth factor-β receptors, which results in a COOH-terminal deletion of the kinase domain. We further showed that the ALK7 dysfunction causes increased lipolysis in adipocytes and leads to decreased fat accumulation. Conversely, ALK7 activation inhibits lipolysis by suppressing the expression of adipose lipases. ALK7 and activated Smads repress those lipases by downregulating peroxisome proliferator–activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBP) α. Although PPARγ and C/EBPα act as adipogenic transcription factors during adipocyte differentiation, they are lipolytic in sum in differentiated adipocytes and are downregulated by ALK7 in obesity to accumulate fat. Under the obese state, ALK7 deficiency improves glucose tolerance and insulin sensitivity by preferentially increasing fat combustion in mice. These findings have uncovered a net lipolytic function of PPARγ and C/EBPα in differentiated adipocytes and point to the ALK7-signaling pathway that is activated in obesity as a potential target of medical intervention. PMID:22933117

  4. Targeted Disruption of ALK Reveals a Potential Role in Hypogonadotropic Hypogonadism.

    Directory of Open Access Journals (Sweden)

    Barbara Witek

    Full Text Available Mice lacking ALK activity have previously been reported to exhibit subtle behavioral phenotypes. In this study of ALK of loss of function mice we present data supporting a role for ALK in hypogonadotropic hypogonadism in male mice. We observed lower level of serum testosterone at P40 in ALK knock-out males, accompanied by mild disorganization of seminiferous tubules exhibiting decreased numbers of GATA4 expressing cells. These observations highlight a role for ALK in testis function and are further supported by experiments in which chemical inhibition of ALK activity with the ALK TKI crizotinib was employed. Oral administration of crizotinib resulted in a decrease of serum testosterone levels in adult wild type male mice, which reverted to normal levels after cessation of treatment. Analysis of GnRH expression in neurons of the hypothalamus revealed a significant decrease in the number of GnRH positive neurons in ALK knock-out mice at P40 when compared with control littermates. Thus, ALK appears to be involved in hypogonadotropic hypogonadism by regulating the timing of pubertal onset and testis function at the upper levels of the hypothalamic-pituitary gonadal axis.

  5. O polimorfismo do gene AKL7 está associado ao risco de síndrome metabólica e à remodelação cardiovascular ALK7 gene polymorphism is associated with metabolic syndrome risk and cardiovascular remodeling

    Directory of Open Access Journals (Sweden)

    Wenchao Zhang

    2013-01-01

    Full Text Available FUNDAMENTO: Quinase Tipo Receptor de Ativina 7 (ALK7 é um tipo de receptor I para a superfamília TGF-β e recentemente apresentou ter uma função importante na manutenção de homeostase metabólica. OBJETIVO: Investigar a associação do polimorfismo do gene ALK7 à síndrome metabólica (SMet e remodelação cardiovascular em pacientes com SMet. MÉTODOS: O polimorfismo de nucleotídeo único rs13010956 no gene ALK7 foi genotipado em 351 indivíduos chineses submetidos à ultrassonografia cardíaca e das carótidas. As associações do polimorfismo do gene ALK7 ao fenótipo e aos parâmetros da síndrome metabólica e características ultrassônicas cardiovasculares foram analisadas. RESULTADOS: O polimorfismo de rs13010956 no gene ALK7 foi considerado significativamente relacionado ao fenótipo de SMet em mulheres (p BACKGROUND: Activin receptor-like kinase 7 (ALK7 is a type I receptor for the TGF-β superfamily and has recently been demonstrated to play an important role in the maintenance of metabolic homeostasis. OBJECTIVE: To investigate the association of the ALK7 gene polymorphism with metabolic syndrome (MetS and cardiovascular remodeling in MetS patients. METHODS: The single nucleotide polymorphism rs13010956 in the ALK7 gene was genotyped in 351 Chinese subjects undergoing carotid and cardiac ultrasonography. The associations of the ALK7 gene polymorphism with the MetS phenotype, MetS parameters, and cardiovascular ultrasonic features were analyzed. RESULTS: The rs13010956 polymorphism in the ALK7 gene was found to be significantly associated with the MetS phenotype in females (p < 0.05 and was also significantly associated with blood pressure in the total (p < 0.05 and female populations (p < 0.01. Further analysis revealed that rs13010956 was associated with mean intima-media thickness of the carotid arteries in females (p < 0.05. After control for body mass index, blood pressure, fasting blood glucose, and triglycerides, rs

  6. The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria.

    Directory of Open Access Journals (Sweden)

    Diogo Jurelevicius

    Full Text Available The alkane monooxygenase AlkB, which is encoded by the alkB gene, is a key enzyme involved in bacterial alkane degradation. To study the alkB gene within bacterial communities, researchers need to be aware of the variations in alkB nucleotide sequences; a failure to consider the sequence variations results in the low representation of the diversity and richness of alkane-degrading bacteria. To minimize this shortcoming, the use of a combination of three alkB-targeting primers to enhance the detection of the alkB gene in previously isolated alkane-degrading bacteria was proposed. Using this approach, alkB-related PCR products were detected in 79% of the strains tested. Furthermore, the chosen set of primers was used to study alkB richness and diversity in different soils sampled in Carmópolis, Brazil and King George Island, Antarctica. The DNA extracted from the different soils was PCR amplified with each set of alkB-targeting primers, and clone libraries were constructed, sequenced and analyzed. A total of 255 alkB phylotypes were detected. Venn diagram analyses revealed that only low numbers of alkB phylotypes were shared among the different libraries derived from each primer pair. Therefore, the combination of three alkB-targeting primers enhanced the richness of alkB phylotypes detected in the different soils by 45% to 139%, when compared to the use of a single alkB-targeting primer. In addition, a dendrogram analysis and beta diversity comparison of the alkB composition showed that each of the sampling sites studied had a particular set of alkane-degrading bacteria. The use of a combination of alkB primers was an efficient strategy for enhancing the detection of the alkB gene in cultivable bacteria and for better characterizing the distribution of alkane-degrading bacteria in different soil environments.

  7. The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria

    Science.gov (United States)

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Peixoto, Raquel; Rosado, Alexandre S.; Seldin, Lucy

    2013-01-01

    The alkane monooxygenase AlkB, which is encoded by the alkB gene, is a key enzyme involved in bacterial alkane degradation. To study the alkB gene within bacterial communities, researchers need to be aware of the variations in alkB nucleotide sequences; a failure to consider the sequence variations results in the low representation of the diversity and richness of alkane-degrading bacteria. To minimize this shortcoming, the use of a combination of three alkB-targeting primers to enhance the detection of the alkB gene in previously isolated alkane-degrading bacteria was proposed. Using this approach, alkB-related PCR products were detected in 79% of the strains tested. Furthermore, the chosen set of primers was used to study alkB richness and diversity in different soils sampled in Carmópolis, Brazil and King George Island, Antarctica. The DNA extracted from the different soils was PCR amplified with each set of alkB-targeting primers, and clone libraries were constructed, sequenced and analyzed. A total of 255 alkB phylotypes were detected. Venn diagram analyses revealed that only low numbers of alkB phylotypes were shared among the different libraries derived from each primer pair. Therefore, the combination of three alkB-targeting primers enhanced the richness of alkB phylotypes detected in the different soils by 45% to 139%, when compared to the use of a single alkB-targeting primer. In addition, a dendrogram analysis and beta diversity comparison of the alkB composition showed that each of the sampling sites studied had a particular set of alkane-degrading bacteria. The use of a combination of alkB primers was an efficient strategy for enhancing the detection of the alkB gene in cultivable bacteria and for better characterizing the distribution of alkane-degrading bacteria in different soil environments. PMID:23825163

  8. Testicular lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; d'Amore, F; Christensen, Bjarne Egelund

    1994-01-01

    In a Danish population-based non-Hodgkin's lymphoma registry, 2687 newly diagnosed patients were registered from 1983 to 1992. 39 had testicular involvement (TL) (incidence 0.26/10(5)/year). Median age was 71 years. 24 cases had localised and 15 had disseminated disease. Histologically, all cases...... were diffuse (65% diffuse centroblastic type). Of the 27 tested, 11% were of T- and 89% of B-immunophenotype. In localised cases, where surgery was supplemented by combination chemotherapy (CCT), the relapse rate was 15.4%. The relapse rate for cases with localised disease treated with other regimens...

  9. Alterations in genes other thanEGFR/ALK/ROS1 in non-small cell lung cancer:trials and treatment options

    Institute of Scientific and Technical Information of China (English)

    Arpita Desai; Smitha P Menon; Grace K Dy

    2016-01-01

    During the last decade, we have seen tremendous progress in the therapy of lung cancer. Discovery of actionable mutations in EGFR and translocations inALK andROS1 have identified subsets of patients with excellent tumor response to oral targeted agents with manageable side effects. In this review, we highlight treatment options including corresponding clinical trials for oncogenic alterations affecting the receptor tyrosine kinases MET, FGFR, NTRK, RET, HER2, HER3, and HER4 as well as components of the RAS-RAF-MEK signaling pathway.

  10. Stages of Adult Hodgkin Lymphoma

    Science.gov (United States)

    ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ...

  11. Stages of Childhood Hodgkin Lymphoma

    Science.gov (United States)

    ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ...

  12. The Chemistry of Alk-1-yn-1-yl DisulfidesA Review

    DEFF Research Database (Denmark)

    Senning, Alexander Erich Eugen

    2009-01-01

    The preparation and the properties of the elusive alk-1-yn-1-yl disulfides are reviewed, including the most recent quantum chemical findings with regard to their reactivity.......The preparation and the properties of the elusive alk-1-yn-1-yl disulfides are reviewed, including the most recent quantum chemical findings with regard to their reactivity....

  13. Fusion genes with ALK as recurrent partner in ependymoma-like gliomas

    DEFF Research Database (Denmark)

    Olsen, Thale Kristin; Panagopoulos, Ioannis; Meling, Torstein R

    2015-01-01

    , we identified the 2 first ever reported ALK rearrangements in CNS tumors. Such rearrangements may represent the hallmark of a new entity of pediatric glioma characterized by both ependymal and astrocytic features. Our findings are of particular importance because crizotinib, a selective ALK inhibitor...

  14. Isolated cutaneous involvement in a child with nodal anaplastic large cell lymphoma

    Directory of Open Access Journals (Sweden)

    Vibhu Mendiratta

    2016-01-01

    Full Text Available Non-Hodgkin lymphoma is a common childhood T-cell and B-cell neoplasm that originates primarily from lymphoid tissue. Cutaneous involvement can be in the form of a primary extranodal lymphoma, or secondary to metastasis from a non-cutaneous location. The latter is uncommon, and isolated cutaneous involvement is rarely reported. We report a case of isolated secondary cutaneous involvement from nodal anaplastic large cell lymphoma (CD30 + and ALK + in a 7-year-old boy who was on chemotherapy. This case is reported for its unusual clinical presentation as an acute febrile, generalized papulonodular eruption that mimicked deep fungal infection, with the absence of other foci of systemic metastasis.

  15. Treatment Options for Non-Hodgkin Lymphoma

    Science.gov (United States)

    ... Lymphoma Treatment AIDS-Related Lymphoma Treatment Chronic Lymphocytic Leukemia Treatment (small lymphocytic lymphoma) Mycosis Fungoides (Including Sézary Syndrome) Treatment (cutaneous T-cell lymphoma) Primary CNS Lymphoma Treatment Non-Hodgkin lymphoma ...

  16. Stages of Adult Non-Hodgkin Lymphoma

    Science.gov (United States)

    ... Lymphoma Treatment AIDS-Related Lymphoma Treatment Chronic Lymphocytic Leukemia Treatment (small lymphocytic lymphoma) Mycosis Fungoides (Including Sézary Syndrome) Treatment (cutaneous T-cell lymphoma) Primary CNS Lymphoma Treatment Non-Hodgkin lymphoma ...

  17. Peripheral T-Cell Lymphoma

    Science.gov (United States)

    Getting the Facts Peripheral T-Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are Hodgkin lymphoma and ... develop into lymphomas: B-lymphocytes (B-cells) and T-lymphocytes (T-cells). Peripheral T-cell lymphoma (PTCL) ...

  18. Non-small cell lung cancer (NSCLC) and central nervous system (CNS) metastases: role of tyrosine kinase inhibitors (TKIs) and evidence in favor or against their use with concurrent cranial radiotherapy

    Science.gov (United States)

    Economopoulou, Panagiota

    2016-01-01

    Central nervous system (CNS) metastases, including brain metastases (BM) and leptomeningeal metastases (LM) represent a frequent complication of non-small cell lung cancer (NSCLC). Patients with BM comprise a heterogeneous group, with a median survival that ranges from 3 to 14 months. However, in the majority of patients, the occurrence of CNS metastases is usually accompanied by severe morbidity and substantial deterioration in quality of life. Local therapies, such as whole brain radiotherapy (WBRT), stereotactic radiosurgery (SRS) or surgical resection, either alone or as part of a multimodality treatment are available treatment strategies for BM and the choice of therapy varies depending on patient group and prognosis. Meanwhile, introduction of tyrosine kinase inhibitors (TKIs) in clinical practice has led to individualization of therapy based upon the presence of the exact abnormality, resulting in a major therapeutic improvement in patients with NSCLC who harbor epidermal growth factor receptor (EGFR) activating mutations or anaplastic lymphoma kinase (ALK) gene rearrangements, respectively. Based on their clinical activity in systemic disease, such molecular agents could offer the promise of improved BM control without substantial toxicity; however, their role in combination with radiotherapy is controversial. In this review, we discuss the controversy regarding the use of TKIs in combination with radiotherapy and illustrate future perspectives in the treatment of BM in NSCLC. PMID:28149754

  19. Profile of Ventana ALK (D5F3) companion diagnostic assay for non-small-cell lung carcinomas.

    Science.gov (United States)

    Conde, Esther; Hernandez, Susana; Prieto, Mario; Martinez, Rebeca; Lopez-Rios, Fernando

    2016-06-01

    The development of several ALK inhibitors means that the importance of accurately identifying ALK-positive lung cancer has never been greater. Therefore, it is crucial that ALK testing assays become more standardized. The aim of this review is to comment on the recently FDA-approved VENTANA ALK (D5F3) Companion Diagnostic (CDx) Assay. This kit provides high sensitivity and specificity for the detection of ALK rearrangements and seamless integration into the laboratory workflow, with a fully automated analytical phase and fast interpretation. The use of controls increases the sensitivity and specificity and a dichotomous scoring approach enhances reproducibility.

  20. International Lymphoma Epidemiology Consortium

    Science.gov (United States)

    The InterLymph Consortium, or formally the International Consortium of Investigators Working on Non-Hodgkin's Lymphoma Epidemiologic Studies, is an open scientific forum for epidemiologic research in non-Hodgkin's lymphoma.

  1. Non-Hodgkin's Lymphoma

    Science.gov (United States)

    ... These include the lymphatic vessels, tonsils, adenoids, spleen, thymus and bone marrow. Occasionally, non-Hodgkin's lymphoma involves ... understand the possible link between pesticides and the development of non-Hodgkin's lymphoma. Older age. Non-Hodgkin's ...

  2. Lymphomagenesis in Hodgkin lymphoma.

    Science.gov (United States)

    Matsuki, Eri; Younes, Anas

    2015-10-01

    Hodgkin lymphoma (HL) accounts for approximately 0.6% of all new cancer cases, 10% of all lymphomas in the USA, leading to an approximate 9000 new cases per year. It is very unique in that the neoplastic Hodgkin and Reed-Sternberg (HRS) cells of classical HL account for only 1% of the tumor tissue in most cases, with various inflammatory cells including B-cells, T-cells, mast cells, macrophages, eosinophils, neutrophils, and plasma cells comprising the tumor microenvironment. Recent research has identified germinal center B-cells to be the cellular origin of HRS cells. Various transcription factor dysregulation in these neoplastic cells that explains for the loss of B-cell phenotype as well as acquisition of survival and anti-apoptotic features of HRS cells has been identified. Aberrant activation of nuclear factor-kappa B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), and phosphoinositide 3-kinase (PI3K) pathways play a central role in HL pathogenesis. Both intrinsic genetic mechanisms as well as extrinsic signals have been identified to account for the constitutive activation of these pathways. The extrinsic factors that regulate the activation of transcription pathways in HRS cells have also been studied in detail. Cytokines and chemokines produced both by the HRS cells as well as cells of the microenvironment of HL work in an autocrine and/or paracrine manner to promote survival of HRS cells as well as providing mechanisms for immune escape from the body's antitumor immunity. The understanding of various mechanisms involved in the lymphomagenesis of HL including the importance of its microenvironment has gained much interest in the use of these microenvironmental features as prognostic markers as well as potential treatment targets. In this article, we will review the pathogenesis of HL starting with the cellular origin of neoplastic cells and the mechanisms supporting its pathogenesis, especially focusing on the

  3. Role of mTOR signaling pathway in crizotinib-induced apoptosis of EML4-ALK fusion gene-positive lung adenocarcinoma cell line H2228%mTOR 信号通路在克唑替尼诱导的 EML4-ALK融合基因阳性肺癌细胞株 H2228凋亡中的作用

    Institute of Scientific and Technical Information of China (English)

    戴辉; 宋向群; 潘星辰; 彭海燕; 韦江; 周韶璋

    2014-01-01

    AIM:To investigate the mammalian target of rapamycin ( mTOR) signaling pathway as the center playing a role in the crizotinib-induced apoptosis of non-small cell lung cancer (NSCLC) cell line H2228, which represents positive echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene. METHODS:H2228 cells were processed according to different purposes .Fluorescence quantitative PCR is used to ob-serve the gene states .MTT assay is used to detect the cell inhibition rates .The cell apoptosis and cell cycle were analyzed by flow cytometry .The expression and activation levels of the key proteins in the mTOR signaling pathway were determined by Western blotting .RESULTS:Crizotinib promoted the apoptosis of H 2228 cells in a time-and dose-dependent manner . Crizotinib blocked the H2228 cells staying at the G1 phase.In apoptotic H2228 cells processed with crizotinib, the activa-tion level of mTOR was decreased , and the activation levels of the key proteins in upstream and downstream of mTOR path -way were both declined .The expression level of the fusion protein EML 4-ALK variant 3 was not affected , but its active form of p-ALK was significantly suppressed .CONCLUSION:mTOR signaling pathway has a certain relationship with the crizotinib-induced apoptosis of lung cancer cell H 2228, which represents positive EML4-ALK fusion gene.%目的:探讨以磷脂酰肌醇3-激酶相关激酶蛋白家族成员哺乳动物雷帕霉素靶蛋白( mTOR)为中心的信号通路在克唑替尼( crizotinib)诱导的棘皮动物微管结合蛋白样蛋白4-间变性淋巴瘤激酶( EML4-ALK)融合基因阳性的非小细胞肺癌细胞株H2228凋亡中的作用。方法:根据不同的实验目的处理H2228细胞后,荧光定量PCR检测基因状态,MTT法检测细胞抑制率;流式细胞术检测细胞凋亡和细胞周期;Western blotting 检测细胞mTOR信号通路中关键蛋白的表

  4. Ocular Adnexal Follicular Lymphoma

    DEFF Research Database (Denmark)

    Rasmussen, Peter K; Coupland, Sarah E; Finger, Paul T

    2014-01-01

    , and 31 (45%) had stage IIE lymphoma. Patients with disseminated lymphoma had stage IIIE (9 of 19 [47%]) and stage IV (10 of 19 [53%]) disease, whereas patients with a relapse of systemic lymphoma presented with stage IE (8 of 10 [80%]), stage IIE (1 of 10 [10%]), and stage IIIE (1 of 10 [10%]) disease...

  5. Plasmablastic lymphoma

    Science.gov (United States)

    Han, Xiao; Duan, Minghui; Hu, Lixing; Zhou, Daobin; Zhang, Wei

    2017-01-01

    Abstract Background: Plasmablastic lymphoma (PBL) is a B-cell malignancy associated with human immunodeficiency virus (HIV). PBL could also influence the HIV-negative patients. The study aimed to identify prognostic factors for survival among Chinese PBL patients. Materials and methods: Eligible patients from literature and Peking Union Medical College Hospital (PUMCH) were included in this study. Clinical characteristics and immunophenotypic data were extracted. Kaplan–Meier curve was used to describe the survival status. Cox regression was used for multivariate analysis. Results: A total of 60 Chinese PBL patients were included, including 54 patients from 36 published articles and 6 new patients that have not been reported. The median overall survival was 7 months (95% confidence interval 3.853–10.147 months). An overwhelming majority (79.31%) of the included cases were Ann Arbor stage IV patients. All the Chinese PBL patients were HIV-negative; 46.81% were Epstein-Barr virus-positive. CD38, CD138, or MUM1 was positively expressed in more than 80% of patients; CD20 expression was also found in 22.03% of cases. Kaplan–Meier curve revealed obvious differences in patient survival between patients in primary stages and advanced stages, as well as between patients with kidney involvement and those without kidney involvement. Cox regression analysis indicated that stage and age were 2 prognostic factors for patient survival. Conclusions: Advanced stage might be associated with poor prognosis among PBL HIV-negative patients in Chinese. PMID:28248855

  6. Relations of EML4-ALK fusion gene and the mRNA expression of TYMS in NSCLC tissue%非小细胞肺癌组织中EML4-ALK融合基因与TYMS mRNA表达的关系

    Institute of Scientific and Technical Information of China (English)

    田玉旺; 许春伟; 高文斌; 张玉萍; 李扬; 亓岽东

    2014-01-01

    目的 探讨非小细胞肺癌(nonsmall-cell lung cancer,NSCLC)组织中棘皮动物微管样蛋白4-间变淋巴瘤激酶(echinoderm microtubule associated protein like 4-anaplastic Lymphoma kinase,EML4ALK)融合基因与胸苷酸合成酶(Thymidylate synthase,TYMS) mRNA表达的关系.方法 应用实时荧光定量PCR方法检测257例NSCLC组织中EML4-ALK融合基因、TYMS mRNA的表达.结果 非小细胞肺癌组织中EML4-ALK融合基因阳性率占4.28%(11/257),在不吸烟患者中较高(P<0.05);TYMSmRNA高表达占63.42%(163/257).与未检测到EML4-ALK融合基因阳性的非小细胞肺癌患者比较,EML4-ALK融合基因阳性与TYMS mRNA表达水平相关(P<0.05).结论 非小细胞肺癌组织中EML4-ALK融合基因阳性患者TYMS倾向低表达,可能从一线化疗药的培美曲塞中受益.

  7. Crizotinib: Potential standard treatment for EML4-ALK positive patients with advanced non-small cell lung cancer%克里唑蒂尼:晚期EML4-ALK阳性非小细胞肺癌患者的潜在标准治疗

    Institute of Scientific and Technical Information of China (English)

    楚慧丽

    2013-01-01

    EML4-ALK为棘皮动物微管相关蛋白样4(echinoderm microtubule associated protein-like4,EML4)和间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK)的融合基因,自在非小细胞肺癌(non-small cell lung cancer,NSCLC)首次被发现以来受到越来越多的关注,EML4-ALK最常见于从不/轻度吸烟的肺腺癌患者,EML4-ALK阳性NSCLC代表了NSCLC患者一个独特的亚型.所有EML4-ALK变体(variant)均具有生物学功能,其表达产物为嵌合酪氨酸激酶,可持续性促进细胞增殖,导致肿瘤的发生和转移.以EML4-ALK为靶点的ALK抑制剂克里唑蒂尼(crizotinib)治疗该亚型晚期NSCLC效果较佳.未来的挑战是寻找最佳的EML4-ALK检测方法,能简单、快速、灵敏和准确地鉴定出EML4-ALK阳性晚期NSCLC患者,以促使克里唑蒂尼早日成为晚期NSCLC患者的一线标准治疗.本研究对EML4-ALK在NSCLC患者中的突变情况、EML4-ALK的检测方法及克里唑蒂尼在治疗NSCLC中的潜在价值与临床应用进展作一综述.

  8. Critical role of SHP2 (PTPN11) signaling in germinal center-derived lymphoma.

    Science.gov (United States)

    Jiang, Xin; Guo, Honggang; Wu, Jianguo; He, Qiang; Li, Yiqiao; Wang, Miao; Pan, Hongyang; Li, Wande; Wang, Jinjie; Wang, Qingqing; Shen, Jing; Ke, Yuehai; Zhou, Ren

    2014-12-01

    Germinal center lymphoma is a heterogeneous human lymphoma entity. Here we report that constitutive activity of SHP2 (PTPN11) and its downstream kinase ERK is essential for the viability of germinal center lymphoma cells and disease progression. Mechanistically, SHP2/ERK inhibition impedes c-Myc transcriptional activity, which results in the repression of proliferative phenotype signatures of germinal center lymphoma. Furthermore, SHP2/ERK signaling is required to maintain the CD19/c-Myc loop, which preferentially promotes survival of a distinct subtype of germinal center lymphoma cells carrying the MYC/IGH translocation. These findings demonstrate a critical function for SHP2/ERK signaling upstream of c-Myc in germinal center lymphoma cells and provide a rationale for targeting SHP2 in the therapy of germinal center lymphoma.

  9. Malignant lymphoma of the conjunctiva

    DEFF Research Database (Denmark)

    Kirkegaard, Marina M; Coupland, Sarah E; Prause, Jan U;

    2015-01-01

    Conjunctival lymphomas constitute 25% of all ocular adnexal lymphomas. The majority are B-cell non-Hodgkin lymphomas (NHLs) (98%), whereas conjunctival T-cell NHLs are rare (2%). The most frequent subtype of conjunctival B-cell lymphoma is extranodal marginal zone lymphoma (EMZL; 81%), followed b...

  10. Structure-function studies of an unusual 3-methyladenine DNA glycosylase II (AlkA) from Deinococcus radiodurans.

    Science.gov (United States)

    Moe, Elin; Hall, David R; Leiros, Ingar; Monsen, Vivi Talstad; Timmins, Joanna; McSweeney, Sean

    2012-06-01

    3-Methyladenine DNA glycosylase II (AlkA) is a DNA-repair enzyme that removes alkylated bases in DNA via the base-excision repair (BER) pathway. The enzyme belongs to the helix-hairpin-helix (HhH) superfamily of DNA glycosylases and possesses broad substrate specificity. In the genome of Deinococcus radiodurans, two genes encoding putative AlkA have been identified (Dr_2074 and Dr_2584). Dr_2074 is a homologue of human AlkA (MPG or AAG) and Dr_2584 is a homologue of bacterial AlkAs. Here, the three-dimensional structure of Dr_2584 (DrAlkA2) is presented and compared with the previously determined structure of Escherichia coli AlkA (EcAlkA). The results show that the enzyme consists of two helical-bundle domains separated by a wide DNA-binding cleft and contains an HhH motif. Overall, the protein fold is similar to the two helical-bundle domains of EcAlkA, while the third N-terminal mixed α/β domain observed in EcAlkA is absent. Substrate-specificity analyses show that DrAlkA2, like EcAlkA, is able to remove both 3-methyladenine (3meA) and 7-methylguanine (7meG) from DNA; however, the enzyme possesses no activity towards 1,N(6)-ethenoadenine (ℇA) and hypoxanthine (Hx). In addition, it shows activity towards the AlkB dioxygenase substrates 3-methylcytosine (3meC) and 1-methyladenine (1meA). Thus, the enzyme seems to preferentially repair methylated bases with weakened N-glycosidic bonds; this is an unusual specificity for a bacterial AlkA protein and is probably dictated by a combination of the wide DNA-binding cleft and a highly accessible specificity pocket.

  11. Effects of Pharmacologic and Genetic Inhibition of Alk on Cognitive Impairments in NF1 Mutant Mice

    Science.gov (United States)

    2016-08-01

    behavioral and cognitive testing than originally anticipated. In addition, as a minimal number of mice was provided to us for breeding of the NF1 and Alk...AWARD NUMBER: W81XWH-13-1-0117 TITLE: Effects of Pharmacologic and Genetic Inhibition of Alk on Cognitive Impairments in NF1 Mutant Mice...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and

  12. Effects of Pharmacologic and Genetic Inhibition of Alk on Cognitive Impairments in NF1 Mutant Mice

    Science.gov (United States)

    2015-06-01

    in the general population. Specific learning disabilities in reading, spelling and math occur in 20% of children without overt central nervous...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We studied the expression of Alk and the effects of Alk mutations on learning and memory...even rescue learning impairments in mice. We describe the breeding data for the genetic study and the behavioral data so far for the genetic study

  13. Occurrence of anaplastic large cell lymphoma following IgG4-related autoimmune pancreatitis and cholecystitis and diffuse large B-cell lymphoma.

    Science.gov (United States)

    Ishida, Mitsuaki; Hodohara, Keiko; Yoshida, Keiko; Kagotani, Akiko; Iwai, Muneo; Yoshii, Miyuki; Okuno, Hiroko; Horinouchi, Akiko; Nakanishi, Ryota; Harada, Ayumi; Yoshida, Takashi; Okabe, Hidetoshi

    2013-01-01

    IgG4-related sclerosing disease is an established disease entity with characteristic clinicopathological features. Recently, the association between IgG4-related sclerosing disease and the risk of malignancies has been suggested. IgG4-related autoimmune pancreatitis with pancreatic cancer has been reported. Further, a few cases of extraocular malignant lymphoma in patients with IgG4-related sclerosing disease have also been documented. Herein, we describe the first documented case of anaplastic large cell lymphoma (ALCL) following IgG4-related autoimmune pancreatitis and cholecystitis and diffuse large B-cell lymphoma (DLBCL). A 61-year-old Japanese male, with a past history of DLBCL, was detected with swelling of the pancreas and tumorous lesions in the gallbladder. Histopathological study of the resected gallbladder specimen revealed diffuse lymphoplasmacytic infiltration with fibrosclerosis in the entire gallbladder wall. Eosinophilic infiltration and obliterative phlebitis were also noted. Immunohistochemically, many IgG4-positive plasma cells had infiltrated into the lesion, and the ratio of IgG4/IgG-positive plasma cells was 71.6%. Accordingly, a diagnosis of IgG4-related cholecystitis was made. Seven months later, he presented with a painful tumor in his left parotid gland. Histopathological study demonstrated diffuse or cohesive sheet-like proliferation of large-sized lymphoid cells with rich slightly eosinophilic cytoplasm and irregular-shaped large nuclei. These lymphoid cells were positive for CD30, CD4, and cytotoxic markers, but negative for CD3 and ALK. Therefore, a diagnosis of ALK-negative ALCL was made. It has been suggested that the incidence of malignant lymphoma may be high in patients with IgG4-related sclerosing disease, therefore, intense medical follow-up is important in patients with this disorder.

  14. Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity.

    Science.gov (United States)

    Guo, Tingqing; Marmol, Patricia; Moliner, Annalena; Björnholm, Marie; Zhang, Chao; Shokat, Kevan M; Ibanez, Carlos F

    2014-08-25

    Obesity is associated with blunted β-adrenoreceptor (β-AR)-mediated lipolysis and lipid oxidation in adipose tissue, but the mechanisms linking nutrient overload to catecholamine resistance are poorly understood. We report that targeted disruption of TGF-β superfamily receptor ALK7 alleviates diet-induced catecholamine resistance in adipose tissue, thereby reducing obesity in mice. Global and fat-specific Alk7 knock-out enhanced adipose β-AR expression, β-adrenergic signaling, mitochondrial biogenesis, lipid oxidation, and lipolysis under a high fat diet, leading to elevated energy expenditure, decreased fat mass, and resistance to diet-induced obesity. Conversely, activation of ALK7 reduced β-AR-mediated signaling and lipolysis cell-autonomously in both mouse and human adipocytes. Acute inhibition of ALK7 in adult mice by a chemical-genetic approach reduced diet-induced weight gain, fat accumulation, and adipocyte size, and enhanced adipocyte lipolysis and β-adrenergic signaling. We propose that ALK7 signaling contributes to diet-induced catecholamine resistance in adipose tissue, and suggest that ALK7 inhibitors may have therapeutic value in human obesity. Copyright © 2014, Guo et al.

  15. Distribution of alkB genes within n-alkane-degrading bacteria.

    Science.gov (United States)

    Vomberg, A; Klinner, U

    2000-08-01

    Fifty-four bacterial strains belonging to 37 species were tested for their ability to assimilate short chain and/or medium chain liquid n-alkanes. A gene probe derived from the alkB gene of Pseudomonas oleovorans ATCC 29347 was utilized in hybridization experiments. Results of Southern hybridization of PCR-amplificates were compared with those of colony hybridization and dot blot hybridization. Strongest signals were received only from Gram-negative bacteria growing solely with short n-alkanes (C10). Hybridization results with soil isolates growing with n-alkanes of different chain lengths suggested as well that alkB genes seem to be widespread only in solely short-chain n-alkane-degrading pseudomonads. PCR products of Rhodococcus sp., Nocardioides sp., Gordona sp. and Sphingomonas sp. growing additionally or solely with medium-chain n-alkane as hexadecane had only few sequence identity with alkB though hybridizing with the gene probe. The derived amino acid sequence of the alkB-amplificate of Pseudomonas aureofaciens showed high homology (95%) with AlkB from Ps. oleovorans. alkB gene disruptants were not able to grow with decane.

  16. Arteriovenous malformations in hereditary haemorrhagic telangiectasia: looking beyond ALK1-NOTCH interactions.

    Science.gov (United States)

    Peacock, Hanna M; Caolo, Vincenza; Jones, Elizabeth A V

    2016-02-01

    Hereditary haemorrhagic telangiectasia (HHT) is characterized by the development of arteriovenous malformations--enlarged shunts allowing arterial flow to bypass capillaries and enter directly into veins. HHT is caused by mutations in ALK1 or Endoglin; however, the majority of arteriovenous malformations are idiopathic and arise spontaneously. Idiopathic arteriovenous malformations differ from those due to loss of ALK1 in terms of both location and disease progression. Furthermore, while arteriovenous malformations in HHT and Alk1 knockout models have decreased NOTCH signalling, some idiopathic arteriovenous malformations have increased NOTCH signalling. The pathogenesis of these lesions also differs, with loss of ALK1 causing expansion of the shunt through proliferation, and NOTCH gain of function inducing initial shunt enlargement by cellular hypertrophy. Hence, we propose that idiopathic arteriovenous malformations are distinct from those of HHT. In this review, we explore the role of ALK1-NOTCH interactions in the development of arteriovenous malformations and examine a possible role of two signalling pathways downstream of ALK1, TMEM100 and IDs, in the development of arteriovenous malformations in HHT. A nuanced understanding of the precise molecular mechanisms underlying idiopathic and HHT-associated arteriovenous malformations will allow for development of targeted treatments for these lesions.

  17. Lymphomas of large cells.

    Science.gov (United States)

    Staples, W G; Gétaz, E P

    1977-09-03

    Historial aspects of the classification of large-cell lymphomas are described. Immunological characterization of the lymphomas has been made possible by identification of T and B lymphocytes according to their cell membrane surface characteristics. The pathogenesis of lymphomas has been clarified by the germinal (follicular) centre cell concepts of Lennert and Lukes and Collins. The various classifications are presented and compared. Whether these subdivisions will have any relevance in the clinical context remains to be seen.

  18. Lymphoma Microenvironment and Immunotherapy.

    Science.gov (United States)

    Xu, Mina L; Fedoriw, Yuri

    2016-03-01

    Understanding of the lymphoma tumor microenvironment is poised to expand in the era of next-generation sequencing studies of the tumor cells themselves. Successful therapies of the future will rely on deeper appreciation of the interactions between elements of the microenvironment. Although the phenotypic, cytogenetic, and molecular characterization of tumor cells in lymphomas has progressed faster than most other solid organ tumors, concrete advancements in understanding the lymphoma microenvironment have been fewer. This article explores the composition of the lymphoma tumor microenvironment; its role in immune surveillance, evasion, and drug resistance; and its potential role in the development of targeted therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Bilateral primary breast lymphoma

    Institute of Scientific and Technical Information of China (English)

    Jung Im Yi; Byung Joo Chae; Ja Seong Bae; Bong Joo Kang; Ahwon Lee; Byung Joo Song; Sang Seol Jung

    2010-01-01

    @@ Primary breast lymphoma (PBL) is rare, accounting for 0.04%-0.50% of breast malignancies and 1.7% of extranodal lymphoma.1,2 The originally described diagnostic criteria for PBL2 remains the standard definition for this disease. These criteria are breast location as the clinical site of presentation, absence of history of previous lymphoma or evidence of widespread disease at diagnosis, close association of lymphoma with breast tissue in pathologic specimens, and involvement of ipsilateral lymph nodes if they develop simultaneously with PBL.

  20. Primary gastrointestinal lymphoma

    Institute of Scientific and Technical Information of China (English)

    Prasanna Ghimire; Guang-Yao Wu; Ling Zhu

    2011-01-01

    Gastrointestinal tract is the most common extranodal site involved by lymphoma with the majority being non-Hodgkin type. Although lymphoma can involve any part of the gastrointestinal tract, the most frequent sites in order of its occurrence are the stomach followed by small intestine and ileocecal region. Gastrointestinal tract lymphoma is usually secondary to the widespread nodal diseases and primary gastrointestinal tract lymphoma is relatively rare. Gastrointestinal lymphomas are usually not clinically specific and indistinguishable from other benign and malignant conditions. Diffuse large B-cell lymphoma is the most common pathological type of gastrointestinal lymphoma in essentially all sites of the gastrointestinal tract, although recently the frequency of other forms has also increased in certain regions of the world. Although some radiological features such as bulky lymph nodes and maintenance of fat plane are more suggestive of lymphoma, they are not specific,thus mandating histopathological analysis for its definitive diagnosis. There has been a tremendous leap in the diagnosis, staging and management of gastrointestinal lymphoma in the last two decades attributed to a better insight into its etiology and molecular aspect as well as the knowledge about its critical signaling pathways.

  1. Bilateral Primary Intraocular Lymphoma

    Directory of Open Access Journals (Sweden)

    Mehrdad Karimi

    2011-01-01

    Full Text Available Purpose: To report a case of bilateral primary intraocular lymphoma. Case report: A 33-year-old man presented with bilateral blurred vision since two years ago. Examination revealed large keratic precipitates, anterior chamber reaction, posterior subcapsular cataracts, and vitreous infiltration. After a short trial of topical and periocular steroids, diagnostic 25-gauge pars plana vitrectomy was performed and cytologic evaluation of the aspirate confirmed a diagnosis of intraocular lymphoma. The patient was subsequently managed with intravitreal methotrexate in both eyes and responded favorably. Central nervous system workup for lymphoma was negative. Conclusion: Primary intraocular lymphoma should be considered in young adults suffering from chronic recalcitrant panuveitis.

  2. Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments?

    Energy Technology Data Exchange (ETDEWEB)

    Paisse, Sandrine; Duran, Robert; Goni-Urriza, Marisol [Pau Univ. (France). Equipe Environnement et Microbiologie-UMR IPREM5254; Coulon, Frederic [Cranfield Univ. (United Kingdom). Centre for Resource Management and Efficiency

    2011-11-15

    The diversity of alkB-related alkane hydroxylase sequences and the relationship between alkB gene expression and the hydrocarbon contamination level have been investigated in the chronically polluted Etang-de-Berre sediments. For this purpose, these sediments were maintained in microcosms and submitted to a controlled oil input miming an oil spill. New degenerated PCR primers targeting alkB-related alkane hydroxylase sequences were designed to explore the diversity and the expression of these genes using terminal restriction fragment length polymorphism fingerprinting and gene library analyses. Induction of alkB genes was detected immediately after oil addition and their expression detected only during 2 days, although the n-alkane degradation was observed throughout the 14 days of incubation. The alkB gene expression within triplicate microcosms was heterogeneous probably due to the low level of alkB transcripts. Moreover, the alkB gene expression of dominant OTUs has been observed in unoiled microcosms indicating that the expression of this gene cannot be directly related to the oil contamination. Although the dominant alkB genes and transcripts detected were closely related to the alkB of Marinobacter aquaeolei isolated from an oil-producing well, and to alkB genes related to the obligate alkanotroph Alcanivorax borkumensis, no clear relationship between the oil contamination and the expression of the alkB genes could be established. This finding suggests that in such coastal environments, alkB gene expression is not a function relevant enough to monitor bacterial response to oil contamination. (orig.)

  3. Are alkane hydroxylase genes (alkB) relevant to assess petroleum bioremediation processes in chronically polluted coastal sediments?

    Science.gov (United States)

    Paisse, Sandrine; Duran, Robert; Coulon, Frédéric; Goñi-Urriza, Marisol

    2011-11-01

    The diversity of alkB-related alkane hydroxylase sequences and the relationship between alkB gene expression and the hydrocarbon contamination level have been investigated in the chronically polluted Etang-de-Berre sediments. For this purpose, these sediments were maintained in microcosms and submitted to a controlled oil input miming an oil spill. New degenerated PCR primers targeting alkB-related alkane hydroxylase sequences were designed to explore the diversity and the expression of these genes using terminal restriction fragment length polymorphism fingerprinting and gene library analyses. Induction of alkB genes was detected immediately after oil addition and their expression detected only during 2 days, although the n-alkane degradation was observed throughout the 14 days of incubation. The alkB gene expression within triplicate microcosms was heterogeneous probably due to the low level of alkB transcripts. Moreover, the alkB gene expression of dominant OTUs has been observed in unoiled microcosms indicating that the expression of this gene cannot be directly related to the oil contamination. Although the dominant alkB genes and transcripts detected were closely related to the alkB of Marinobacter aquaeolei isolated from an oil-producing well, and to alkB genes related to the obligate alkanotroph Alcanivorax borkumensis, no clear relationship between the oil contamination and the expression of the alkB genes could be established. This finding suggests that in such coastal environments, alkB gene expression is not a function relevant enough to monitor bacterial response to oil contamination.

  4. Oncogenic kinase NPM/ALK induces expression of HIF1a mRNA

    DEFF Research Database (Denmark)

    Marzec, M; Liu, X; Wong, W;

    2011-01-01

    to the HIF1a gene promoter as shown by the chromatin immunoprecipitation assay and is required for HIF1a gene expression as demonstrated by its small interfering RNA-mediated depletion. In turn, depletion of HIF1a increases mammalian target of rapamycin complex 1 activation, cell growth and proliferation...

  5. Transforming growth factor-beta induces nerve growth factor expression in pancreatic stellate cells by activation of the ALK-5 pathway.

    Science.gov (United States)

    Haas, Stephan L; Fitzner, Brit; Jaster, Robert; Wiercinska, Eliza; Gaitantzi, Haristi; Jesnowski, Ralf; Jesenowski, Ralf; Löhr, J-Matthias; Singer, Manfred V; Dooley, Steven; Breitkopf, Katja

    2009-10-01

    Nerve growth factor (NGF), a survival factor for neurons enforces pain by sensitizing nociceptors. Also in the pancreas, NGF was associated with pain and it can stimulate the proliferation of pancreatic cancer cells. Hepatic stellate cells (HSC) respond to NGF with apoptosis. Transforming growth factor (TGF)-beta, one of the strongest pro-fibrogenic activators of pancreatic stellate cells (PSC) induced NGF and its two receptors in an immortalized human cell line (ihPSC) and primary rat PSC (prPSC) as determined by RT-PCR, western blot, and immunofluorescence. In contrast to HSC, PSC expressed both NGF receptors, although p75(NTR) expression was weak in prPSC. In contrast to ihPSC TGF-beta activated both Smad signaling cascades in prPSC. NGF secretion was diminished by the activin-like kinase (ALK)-5 inhibitor SB431542, indicating the predominant role of ALK5 in activating the NGF system in PSC. While NGF did not affect proliferation or survival of PSC it induced expression of Inhibitor of Differentiation-1. We conclude that under conditions of upregulated TGF-beta, like fibrosis, NGF levels will also increase in PSC which might contribute to pancreatic wound healing responses.

  6. Sarcoidosis Occurring After Lymphoma

    Science.gov (United States)

    London, Jonathan; Grados, Aurélie; Fermé, Christophe; Charmillon, Alexandre; Maurier, François; Deau, Bénédicte; Crickx, Etienne; Brice, Pauline; Chapelon-Abric, Catherine; Haioun, Corinne; Burroni, Barbara; Alifano, Marco; Le Jeunne, Claire; Guillevin, Loïc; Costedoat-Chalumeau, Nathalie; Schleinitz, Nicolas; Mouthon, Luc; Terrier, Benjamin

    2014-01-01

    Abstract Sarcoidosis is a granulomatous disease that most frequently affects the lungs with pulmonary infiltrates and/or bilateral hilar and mediastinal lymphadenopathy. An association of sarcoidosis and lymphoproliferative disease has previously been reported as the sarcoidosis-lymphoma syndrome. Although this syndrome is characterized by sarcoidosis preceding lymphoma, very few cases of sarcoidosis following lymphoma have been reported. We describe the clinical, biological, and radiological characteristics and outcome of 39 patients presenting with sarcoidosis following lymphoproliferative disease, including 14 previously unreported cases and 25 additional patients, after performing a literature review. Hodgkin lymphoma and non-Hodgkin lymphoma were equally represented. The median delay between lymphoma and sarcoidosis was 18 months. Only 16 patients (41%) required treatment. Sarcoidosis was of mild intensity or self-healing in most cases, and overall clinical response to sarcoidosis was excellent with complete clinical response in 91% of patients. Sarcoidosis was identified after a follow-up computerized tomography scan (CT-scan) or 18fluorodeoxyglucose-positron emission tomography/computerized tomography (18FDG-PET/CT) evaluation in 18/34 patients (53%). Sarcoidosis is therefore a differential diagnosis to consider when lymphoma relapse is suspected on a CT-scan or 18FDG-PET/CT, emphasizing the necessity to rely on histological confirmation of lymphoma relapse. PMID:25380084

  7. Biomarkers for lymphoma

    Science.gov (United States)

    Zangar, Richard C.; Varnum, Susan M.

    2014-09-02

    A biomarker, method, test kit, and diagnostic system for detecting the presence of lymphoma in a person are disclosed. The lymphoma may be Hodgkin's lymphoma or non-Hodgkin's lymphoma. The person may be a high-risk subject. In one embodiment, a plasma sample from a person is obtained. The level of at least one protein listed in Table S3 in the plasma sample is measured. The level of at least one protein in the plasma sample is compared with the level in a normal or healthy subject. The lymphoma is diagnosed based upon the level of the at least one protein in the plasma sample in comparison to the normal or healthy level.

  8. [Secondary orbital lymphoma].

    Science.gov (United States)

    Basanta, I; Sevillano, C; Álvarez, M D

    2015-09-01

    A case is presented of an 85 year-old Caucasian female with lymphoma that recurred in the orbit (secondary ocular adnexal lymphoma). The orbital tumour was a diffuse large B-cell lymphoma according to the REAL classification (Revised European-American Lymphoma Classification). Orbital lymphomas are predominantly B-cell proliferations of a variety of histological types, and most are low-grade tumours. Patients are usually middle-aged or elderly, and it is slightly more common in women. A palpable mass, proptosis and blepharoptosis are the most common signs of presentation. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Change in the diagnosis from classical Hodgkin's lymphoma to anaplastic large cell lymphoma by (18)F flourodeoxyglucose positron emission tomography/computed tomography: Importance of recognising disease pattern on imaging and immunohistochemistry.

    Science.gov (United States)

    Senthil, Raja; Mohapatra, Ranjan Kumar; Sampath, Mouleeswaran Koramadai; Sundaraiya, Sumati

    2016-01-01

    Anaplastic large cell lymphoma (ALCL) is a rare type of nonHodgkin's lymphoma (NHL), but one of the most common subtypes of T-cell lymphoma. It is an aggressive T-cell lymphoma, and some ALCL may mimic less aggressive classical HL histopathlogically. It may be misdiagnosed unless careful immunohistochemical examination is performed. As the prognosis and management of these two lymphomas vary significantly, it is important to make a correct diagnosis. We describe a case who was diagnosed as classical HL by histopathological examination of cervical lymph node, in whom (18)F-flouro deoxyglucose positron emission tomography/computed tomography appearances were unusual for HL and warranted review of histopathology that revealed anaplastic lymphoma kinase-1 negative anaplastic large T-cell lymphoma, Hodgkin-like variant, thereby changing the management.

  10. Angioimmunoblastic T-Cell Lymphoma

    Science.gov (United States)

    Angioimmunoblastic T-Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are ... develop into lymphomas: B-lymphocytes (B-cells) and T-lymphocytes (T-cells). Cancerous lymphocytes can travel to ...

  11. Kinase impact assessment in the landscape of fusion genes that retain kinase domains: a pan-cancer study.

    Science.gov (United States)

    Kim, Pora; Jia, Peilin; Zhao, Zhongming

    2016-12-24

    Assessing the impact of kinase in gene fusion is essential for both identifying driver fusion genes (FGs) and developing molecular targeted therapies. Kinase domain retention is a crucial factor in kinase fusion genes (KFGs), but such a systematic investigation has not been done yet. To this end, we analyzed kinase domain retention (KDR) status in chimeric protein sequences of 914 KFGs covering 312 kinases across 13 major cancer types. Based on 171 kinase domain-retained KFGs including 101 kinases, we studied their recurrence, kinase groups, fusion partners, exon-based expression depth, short DNA motifs around the break points and networks. Our results, such as more KDR than 5'-kinase fusion genes, combinatorial effects between 3'-KDR kinases and their 5'-partners and a signal transduction-specific DNA sequence motif in the break point intronic sequences, supported positive selection on 3'-kinase fusion genes in cancer. We introduced a degree-of-frequency (DoF) score to measure the possible number of KFGs of a kinase. Interestingly, kinases with high DoF scores tended to undergo strong gene expression alteration at the break points. Furthermore, our KDR gene fusion network analysis revealed six of the seven kinases with the highest DoF scores (ALK, BRAF, MET, NTRK1, NTRK3 and RET) were all observed in thyroid carcinoma. Finally, we summarized common features of 'effective' (highly recurrent) kinases in gene fusions such as expression alteration at break point, redundant usage in multiple cancer types and 3'-location tendency. Collectively, our findings are useful for prioritizing driver kinases and FGs and provided insights into KFGs' clinical implications.

  12. Primary pediatric gastrointestinal lymphoma

    Directory of Open Access Journals (Sweden)

    Ranjana Bandyopadhyay

    2011-01-01

    Full Text Available Background: Primary non-Hodgkin′s lymphoma (NHL of the gastrointestinal (GI tract is the most common extranodal lymphoma in pediatric age group. Yet, the overall incidence is very low. The rarity of the disease as well as variable clinical presentation prevents early detection when the possibility of cure exists. Materials and Methods: We studied six cases of primary GI NHL in pediatric age group with reference to their clinical presentation, anatomic distribution and histopathologic characteristics. Results: All were males except one. Intestinal obstruction was the presenting feature in 50%. Half the cases showed ileocaecal involvement, while large bowel was involved in 16%. Histology showed four cases of diffuse large B-cell lymphoma (DLBCL, one case of Burkitt lymphoma, and one Burkitt-like lymphoma. Immunohistochemistry for Tdt, CD20, CD3, CD30, bcl2, bcl6 confirmed the morphological diagnosis. Conclusion: Pediatric GI lymphoma commonly involves the ileocaecal region and presents with intestinal obstruction. A higher prevalence of DLBCL is found compared to other series. A high proliferative index is useful in differentiating Burkitt-like lymphoma from DLBCL.

  13. Primary leptomeningeal lymphoma

    Science.gov (United States)

    Taylor, Jennie W.; Flanagan, Eoin P.; O'Neill, Brian P.; Siegal, Tali; Omuro, Antonio; DeAngelis, Lisa; Baehring, Joachim; Nishikawa, Ryo; Pinto, Fernando; Chamberlain, Marc; Hoang-Xuan, Khe; Gonzalez-Aguilar, Alberto; Batchelor, Tracy; Blay, Jean-Yves; Korfel, Agnieszka; Betensky, Rebecca A.; Lopes, Maria-Beatriz S.

    2013-01-01

    Objective: To evaluate clinical presentation, optimal diagnostic evaluation and treatment, and outcome in primary leptomeningeal lymphoma, a rare form of primary CNS lymphoma without parenchymal or systemic involvement. Methods: The International Primary CNS Lymphoma Collaborative Group, a multidisciplinary group of physicians with a particular interest in primary CNS lymphoma, retrospectively identified cases of lymphoma isolated to the leptomeninges as diagnosed by CSF cytology, flow cytometry, or biopsy, without systemic or parenchymal brain/spinal cord lymphoma or immunodeficiency. Results: Forty-eight patients were identified, with median age at diagnosis of 51 years and median Eastern Cooperative Oncology Group performance status of 2. Presenting symptoms were multifocal in 68%. Leptomeningeal enhancement was seen in 74% and CSF profile was abnormal in all cases. CSF cytology detected malignant lymphocytes in 67%. Flow cytometry identified monoclonal population in 80%, as did receptor gene rearrangement studies in 71%. Sixty-two percent had B-cell lymphoma, 19% T-cell, and 19% unclassified. Treatment varied and included fractionated radiotherapy (36%), systemic chemotherapy (78%), and intra-CSF chemotherapy (66%), with 66% receiving ≥2 modalities. Seventy-one percent had a favorable clinical response; ultimately, 44% received salvage treatment. Median overall survival was 24 months, with 11 patients still alive at 50 months follow-up. Conclusion: Primary leptomeningeal lymphoma is a rare form of primary CNS lymphoma. Patients usually present with multifocal symptoms, with evidence of leptomeningeal enhancement and diagnostic CSF analysis. Although treatment is highly variable, patients have a better prognosis than previously reported and a subset may be cured. PMID:24107866

  14. Uterine activin receptor-like kinase 5 is crucial for blastocyst implantation and placental development

    Science.gov (United States)

    Peng, Jia; Monsivais, Diana; You, Ran; Zhong, Hua; Pangas, Stephanie A.; Matzuk, Martin M.

    2015-01-01

    Members of the transforming growth factor β (TGF-β) superfamily are key regulators in most developmental and physiological processes. However, the in vivo roles of TGF-β signaling in female reproduction remain uncertain. Activin receptor-like kinase 5 (ALK5) is the major type 1 receptor for the TGF-β subfamily. Absence of ALK5 leads to early embryonic lethality because of severe defects in vascular development. In this study, we conditionally ablated uterine ALK5 using progesterone receptor-cre mice to define the physiological roles of ALK5 in female reproduction. Despite normal ovarian functions and artificial decidualization in conditional knockout (cKO) mice, absence of uterine ALK5 resulted in substantially reduced female reproduction due to abnormalities observed at different stages of pregnancy, including implantation defects, disorganization of trophoblast cells, fewer uterine natural killer (uNK) cells, and impairment of spiral artery remodeling. In our microarray analysis, genes encoding proteins involved in cytokine–cytokine receptor interactions and NK cell-mediated cytotoxicity were down-regulated in cKO decidua compared with control decidua. Flow cytometry confirmed a 10-fold decrease in uNK cells in cKO versus control decidua. According to these data, we hypothesize that TGF-β acts on decidual cells via ALK5 to induce expression of other growth factors and cytokines, which are key regulators in luminal epithelium proliferation, trophoblast development, and uNK maturation during pregnancy. Our findings not only generate a mouse model to study TGF-β signaling in female reproduction but also shed light on the pathogenesis of many pregnancy complications in human, such as recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction. PMID:26305969

  15. Uterine activin receptor-like kinase 5 is crucial for blastocyst implantation and placental development.

    Science.gov (United States)

    Peng, Jia; Monsivais, Diana; You, Ran; Zhong, Hua; Pangas, Stephanie A; Matzuk, Martin M

    2015-09-08

    Members of the transforming growth factor β (TGF-β) superfamily are key regulators in most developmental and physiological processes. However, the in vivo roles of TGF-β signaling in female reproduction remain uncertain. Activin receptor-like kinase 5 (ALK5) is the major type 1 receptor for the TGF-β subfamily. Absence of ALK5 leads to early embryonic lethality because of severe defects in vascular development. In this study, we conditionally ablated uterine ALK5 using progesterone receptor-cre mice to define the physiological roles of ALK5 in female reproduction. Despite normal ovarian functions and artificial decidualization in conditional knockout (cKO) mice, absence of uterine ALK5 resulted in substantially reduced female reproduction due to abnormalities observed at different stages of pregnancy, including implantation defects, disorganization of trophoblast cells, fewer uterine natural killer (uNK) cells, and impairment of spiral artery remodeling. In our microarray analysis, genes encoding proteins involved in cytokine-cytokine receptor interactions and NK cell-mediated cytotoxicity were down-regulated in cKO decidua compared with control decidua. Flow cytometry confirmed a 10-fold decrease in uNK cells in cKO versus control decidua. According to these data, we hypothesize that TGF-β acts on decidual cells via ALK5 to induce expression of other growth factors and cytokines, which are key regulators in luminal epithelium proliferation, trophoblast development, and uNK maturation during pregnancy. Our findings not only generate a mouse model to study TGF-β signaling in female reproduction but also shed light on the pathogenesis of many pregnancy complications in human, such as recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction.

  16. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice.

    Science.gov (United States)

    Gao, Zhenyu; Zeng, Dali; Cheng, Fangmin; Tian, Zhixi; Guo, Longbiao; Su, Yan; Yan, Meixian; Jiang, Hua; Dong, Guojun; Huang, Yuchen; Han, Bin; Li, Jiayang; Qian, Qian

    2011-09-01

    Gelatinization temperature (GT) is an important parameter in evaluating the cooking and eating quality of rice. Indeed, the phenotype, biochemistry and inheritance of GT have been widely studied in recent times. Previous map-based cloning revealed that GT was controlled by ALK gene, which encodes a putative soluble starch synthase II-3. Complementation vector and RNAi vector were constructed and transformed into Nipponbare mediated by Agrobacterium. Phenotypic and molecular analyses of transgenic lines provided direct evidence for ALK as a key gene for GT. Meanwhile, amylose content, gel consistency and pasting properties were also affected in transgenic lines. Two of four nonsynonymous single nucleotide polymorphisms in coding sequence of ALK were identified as essential for GT. Based on the single nucleotide polymorphisms (SNPs), two new sets of SNP markers combined with one cleaved amplified polymorphic sequence marker were developed for application in rice quality breeding. © 2011 Institute of Botany, Chinese Academy of Sciences.

  17. Radiotherapy for Hodgkin lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Lena [Rigshospitalet Copenhagen Univ. (Denmark). Depts. of Oncology and Haematology; Yahalom, Joachim (eds.) [Memorial Sloan-Kettering Cancer, New York, NY (United States). Dept. of Radiation Oncology

    2011-07-01

    This book deals in detail with all aspects of the best practice in modern radiotherapy for Hodgkin lymphoma. It provides the background and rationale for the inclusion of radiotherapy in today's combined-modality approach, including special clinical situations such as Hodgkin lymphoma in children, in the pregnant patient, and in the elderly. Radiotherapy planning using state-of-the-art imaging, target definition, planning software, and treatment equipment is expounded in detail. Acute and long-term side effects of radiotherapy are analyzed, and the implications for modern radiotherapy approaches in Hodgkin lymphomas are explained. (orig.)

  18. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water.

    Science.gov (United States)

    Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain

    2015-12-30

    Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains.

  19. Treatment Options for Adult Hodgkin Lymphoma

    Science.gov (United States)

    ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ...

  20. General Information about AIDS-Related Lymphoma

    Science.gov (United States)

    ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ...

  1. General Information about Adult Hodgkin Lymphoma

    Science.gov (United States)

    ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ...

  2. Treatment Options for AIDS-Related Lymphoma

    Science.gov (United States)

    ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ...

  3. Treatment Option Overview (Childhood Hodgkin Lymphoma)

    Science.gov (United States)

    ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ...

  4. Treatment Option Overview (Adult Hodgkin Lymphoma)

    Science.gov (United States)

    ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ...

  5. Stages of Childhood Non-Hodgkin Lymphoma

    Science.gov (United States)

    ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ...

  6. Treatment Options for Hodgkin Lymphoma during Pregnancy

    Science.gov (United States)

    ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ... Treatment Adult NHL Treatment AIDS-Related Lymphoma Treatment Mycosis Fungoides & Sézary Syndrome Treatment Primary CNS Lymphoma Treatment ...

  7. Non-Hodgkin Lymphoma (For Parents)

    Science.gov (United States)

    ... Kids to Be Smart About Social Media Non-Hodgkin Lymphoma KidsHealth > For Parents > Non-Hodgkin Lymphoma Print ... harmful things out of the body. About Non-Hodgkin Lymphoma No n-Hodgkin lymphoma is a disease ...

  8. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    Science.gov (United States)

    2015-09-01

    development and testing. Finally, our collection of tumors and sympathetic ganglia during different developmental stages will enable us to delineate the...resistance to crizotinib in patients with ALK-translocated cancers.10 Several structurally unrelated small molecule ALK inhibitors have been developed such... Products …………………………………….……….….…………….9 7. Participants & Other Collaborating Organizations……………10 8. Special Reporting Requirements……………………………………11 9

  9. Biological effects of rAAV-caAlk2 coating on structural allograft healing

    DEFF Research Database (Denmark)

    Koefoed, Mette; Ito, Hiromu; Gromov, Kirill

    2005-01-01

    that 4-mm murine femoral allografts coated with rAAV-LacZ are capable of transducing adjacent inflammatory cells and osteoblasts in the fracture callus following transplantation. While this LacZ vector had no effect on allograft healing, bone morphogenetic protein signals delivered via rAAV-caAlk2......AAV-LacZ- vs rAAV-caAlk2-coated allografts after 42 days of healing demonstrated a significant increase in new bone formation (0.67 +/- 0.21 vs 2.49 +/- 0.40 mm(3); P

  10. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice.

    Science.gov (United States)

    Gao, Zhenyu; Zeng, Dali; Cui, Xia; Zhou, Yihua; Yan, Meixian; Huang, Danian; Li, Jiayang; Qian, Qian

    2003-12-01

    Gelatinization temperature (GT) is an important parameter for evaluating the cooking and eating quality of rice besides amylose content (AC). The inheritance of the genes affecting GT has been widely studied and is considered to be controlled by a major gene. Here, we report the map-based cloning of rice ALK that encodes the soluble starch synthase II (SSSII). Comparison between the DNA sequences from different rice varieties, together with the results obtained with digestion of the rice seeds in alkali solution, indicates that the base substitutions in coding sequence of ALK may cause the alteration in GT.

  11. Lymphoma Research Foundation

    Science.gov (United States)

    ... the stem cell transplantation process. Read More LYMPHOMA RESEARCH Featured Researcher – David Scott, MBChB, PhD Dr. Scott ... and Advocacy News Action Center Advocacy Tool Kit Research LRF Research Portfolio Disease-Specific Focus Areas Grants ...

  12. General Information about Adult Non-Hodgkin Lymphoma

    Science.gov (United States)

    ... Lymphoma Treatment AIDS-Related Lymphoma Treatment Chronic Lymphocytic Leukemia Treatment (small lymphocytic lymphoma) Mycosis Fungoides (Including Sézary Syndrome) Treatment (cutaneous T-cell lymphoma) Primary CNS Lymphoma Treatment Non-Hodgkin lymphoma ...

  13. Treatment Option Overview (Adult Non-Hodgkin Lymphoma)

    Science.gov (United States)

    ... Lymphoma Treatment AIDS-Related Lymphoma Treatment Chronic Lymphocytic Leukemia Treatment (small lymphocytic lymphoma) Mycosis Fungoides (Including Sézary Syndrome) Treatment (cutaneous T-cell lymphoma) Primary CNS Lymphoma Treatment Non-Hodgkin lymphoma ...

  14. Novel Bruton’s tyrosine kinase inhibitors currently in development

    Science.gov (United States)

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Bruton’s tyrosine kinase (Btk) is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas. PMID:23493945

  15. T-Cell Lymphomas in South America and Europe

    Directory of Open Access Journals (Sweden)

    Monica Bellei

    2012-01-01

    Full Text Available Peripheral T-cell lymphomas are a group of rare neoplasms originating from clonal proliferation of mature post-thymic lymphocytes with different entities having specific biological characteristics and clinical features. As natural killer cells are closely related to T-cells, natural killer-cell lymphomas are also part of the group. The current World Health Organization classification recognizes four categories of T/natural killer-cell lymphomas with respect to their presentation: disseminated (leukemic, nodal, extranodal and cutaneous. Geographic variations in the distribution of these diseases are well documented: nodal subtypes are more frequent in Europe and North America, while extranodal forms, including natural killer-cell lymphomas, occur almost exclusively in Asia and South America. On the whole, T-cell lymphomas are more common in Asia than in western countries, usually affect adults, with a higher tendency in men, and, excluding a few subtypes, usually have an aggressive course and poor prognosis. Apart from anaplastic lymphoma kinase-positive anaplastic large cell lymphoma, that have a good outcome, other nodal and extranodal forms have a 5-year overall survival of about 30%. According to the principal prognostic indexes, the majority of patients are allocated to the unfavorable subset. In the past, the rarity of these diseases prevented progress in the understanding of their biology and improvements in the efficaciousness of therapy. Recently, international projects devoted to these diseases created networks promoting investigations on T-cell lymphomas. These projects are the basis of forthcoming cooperative, large scale trials to detail biologic characteristics of each sub-entity and to possibly individuate targets for new therapies.

  16. Chidamide in the treatment of peripheral T-cell lymphoma

    Science.gov (United States)

    Chan, Thomas S; Tse, Eric; Kwong, Yok-Lam

    2017-01-01

    Mature T-cell lymphomas are aggressive malignancies. Treatment outcome is poor with conventional chemotherapy. They are about twice as common in Asia as compared with other non-Asian countries. Histone proteins form the basic structure of chromatin, and their acetylation at lysine residues relaxes chromatin structure, facilitating gene transcription. Conversely, histone deacetylation, catalyzed by histone deacetylases, compacts chromatin and represses gene transcription. Histone deacetylase inhibitors are an important class of antineoplastic agents. Chidamide is a novel orally active benzamide-type histone deacetylase inhibitor that has shown in vitro activities against a wide array of neoplasms. In Phase I trials, chidamide showed preferential efficacy in mature T-cell lymphomas. In a pivotal Phase II trial of chidamide in 79 patients with relapsed or refractory mature T-cell lymphomas, an overall response rate of 28% (complete remission/complete remission unconfirmed: 14%) was achieved, with most responses occurring within the first 6 weeks of treatment. The median duration of response (DOR) was 9.9 (1.1–40.8) months. Of 22 responders, 19 patients (86%) had a DOR of ≥3 months and eight patients (36%) had a DOR of >12 months. Angioimmunoblastic T-cell lymphoma and anaplastic large cell lymphoma (anaplastic lymphoma kinase-negative) showed better response rates, with the most durable responses observed in angioimmunoblastic T-cell lymphoma patients. Safety profile was favorable, with very few cases of grade 3/4 toxicities observed. Chidamide is approved by the China Food and Drug Administration for the treatment of relapsed and refractory peripheral T-cell lymphomas. PMID:28138258

  17. Frequent and Focal FGFR1 Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer

    NARCIS (Netherlands)

    Weiss, Jonathan; Sos, Martin L.; Seidel, Danila; Peifer, Martin; Zander, Thomas; Heuckmann, Johannes M.; Ullrich, Roland T.; Menon, Roopika; Maier, Sebastian; Soltermann, Alex; Moch, Holger; Wagener, Patrick; Fischer, Florian; Heynck, Stefanie; Koker, Mirjam; Schoettle, Jakob; Leenders, Frauke; Gabler, Franziska; Dabow, Ines; Querings, Silvia; Heukamp, Lukas C.; Balke-Want, Hyatt; Ansen, Sascha; Rauh, Daniel; Baessmann, Ingelore; Altmueller, Janine; Wainer, Zoe; Conron, Matthew; Wright, Gavin; Russell, Prudence; Solomon, Ben; Brambilla, Elisabeth; Brambilla, Christian; Lorimier, Philippe; Sollberg, Steinar; Brustugun, Odd Terje; Engel-Riedel, Walburga; Ludwig, Corinna; Petersen, Iver; Saenger, Joerg; Clement, Joachim; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Danielle; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Hallek, Michael; Beroukhim, Rameen; Pao, William; Klebl, Bert; Baumann, Matthias; Buettner, Reinhard; Ernestus, Karen; Stoelben, Erich; Wolf, Juergen; Nuernberg, Peter; Perner, Sven; Thomas, Roman K.

    2010-01-01

    Lung cancer remains one of the leading causes of cancer-related death in developed countries. Although lung adenocarcinomas with EGFR mutations or EML4-ALK fusions respond to treatment by epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) inhibition, respectively, squamous

  18. Nasogastric tube-administered alectinib achieved long-term survival in a crizotinib-refractory nonsmall cell lung cancer patient with a poor performance status.

    Science.gov (United States)

    Kanai, Osamu; Kim, Young Hak; Nakatani, Koichi; Fujita, Kohei; Mio, Tadashi

    2017-06-01

    Alectinib shows remarkable efficacy against anaplastic lymphoma kinase (ALK)-positive nonsmall cell lung cancer (NSCLC), with minimal adverse effects. Therefore, alectinib may provide a survival benefit to ALK-positive NSCLC patients with a poor performance status. If the medication cannot be taken by mouth, the patient may be given alectinib through a nasogastric tube.

  19. Central nervous system involvement in T-cell lymphoma: A single center experience.

    Science.gov (United States)

    Gurion, Ronit; Mehta, Neha; Migliacci, Jocelyn C; Zelenetz, Andrew; Moskowitz, Alison; Lunning, Matthew; Moskowitz, Craig; Hamlin, Paul; Horwitz, Steven

    2016-05-01

    Background We characterized the incidence of central nervous system (CNS) involvement, risk factors and outcome in a large single institution dataset of peripheral T-cell lymphoma (PTCL). Methods Retrospective review of the PTCL database at Memorial Sloan Kettering Cancer Center. We identified 231 patients with any subtype of PTCL between 1994-2011 with a minimum six months of follow-up or an event defined as relapse or death. Results Histologies included peripheral T-cell lymphoma-not otherwise specified (PTCL-NOS) (31.6%), angioimmunoblastic (16.9%), anaplastic large cell lymphoma (ALCL), ALK- (12.1%), ALCL, ALK + (6.1%), extranodal NK/T-cell lymphoma (7.4%), adult T-cell leukemia/lymphoma (ATLL) (7.4%), and transformed mycosis fungoides (8.7%). Seventeen patients had CNS disease (7%). Fifteen had CNS involvement with PTCL and two had diffuse large B-cell lymphoma and glioblastoma. Median time to CNS involvement was 3.44 months (0.16-103.1). CNS prophylaxis was given to 24 patients (primarily intrathecal methotrexate). Rates of CNS involvement were not different in patients who received prophylaxis. Univariate analysis identified stage III-IV, bone marrow involvement, >1 extranodal site and ATLL as risk factors for CNS disease. On multivariate analysis, >1 extranodal site and international prognostic index (IPI) ≥ 3 were predictive for CNS involvement. The median survival of patients with CNS involvement was 2.63 months (0.10-75). Conclusions Despite high relapse rates, PTCL, except ATLL, carries a low risk of CNS involvement. Prognosis with CNS involvement is poor and risk factors include: >1 extra nodal site and IPI ≥3.

  20. Novel Bruton's tyrosine kinase inhibitors currently in development

    Directory of Open Access Journals (Sweden)

    D'Cruz OJ

    2013-03-01

    Full Text Available Osmond J D'Cruz,1 Fatih M Uckun1,21Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA; 2Department of Pediatrics, University of Southern California, Los Angeles, CA, USAAbstract: Bruton's tyrosine kinase (Btk is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas.Keywords: tyrosine kinase, personalized therapy, kinase inhibitors, Btk, leukemia, lymphoma

  1. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy.

    Science.gov (United States)

    Kim, S-M; Kim, H; Yun, M R; Kang, H N; Pyo, K-H; Park, H J; Lee, J M; Choi, H M; Ellinghaus, P; Ocker, M; Paik, S; Kim, H R; Cho, B C

    2016-07-18

    Aberrant fibroblast growth factor receptor (FGFR) activation/expression is a common feature in lung cancer (LC). In this study, we evaluated the antitumor activity of and the mechanisms underlying acquired resistance to two potent selective FGFR inhibitors, AZD4547 and BAY116387, in LC cell lines. The antitumor activity of AZD4547 and BAY1163877 was screened in 24 LC cell lines, including 5 with FGFR1 amplification. Two cell lines containing FGFR1 amplifications, H1581 and DMS114, were sensitive to FGFR inhibitors (IC50FGFR1-amplified H1581 cells resistant to AZD4547 or BAY116387 (H1581AR and H1581BR cells, respectively) were established. Receptor tyrosine kinase (RTK) array and immunoblotting analyses showed strong overexpression and activation of Met in H1581AR/BR cells, compared with that in the parental cells. Gene set enrichment analysis against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that cytokine-cytokine receptor interaction pathways were significantly enriched in H1581AR/BR cells, with Met contributing significantly to the core enrichment. Genomic DNA quantitative PCR and fluorescent in situ hybridization analyses showed MET amplification in H1581AR, but not in H1581BR, cells. Met amplification drives acquired resistance to AZD4547 in H1581AR cells by activating ErbB3. Combination treatment with FGFR inhibitors and an anaplastic lymphoma kinase (ALK)/Met inhibitor, crizotinib, or Met-specific short interfering RNA (siRNA) synergistically inhibited cell proliferation in both H1581AR and H1581BR cells. Conversely, ectopic expression of Met in H1581 cells conferred resistance to AZD4547 and BAY1163877. Acquired resistance to FGFR inhibitors not only altered cellular morphology, but also promoted migration and invasion of resistant clones, in part by inducing epithelial-to-mesenchymal transition. Taken together, our data suggest that Met activation is sufficient to bypass dependency on FGFR signaling. Concurrent inhibition of the Met

  2. Permeability changes of erythrocytes and liposomes by 5-(n-alk(en)yl) resorcinols from rye

    NARCIS (Netherlands)

    Kozubek, A.; Demel, R.A.

    1980-01-01

    5-(n-Alk(en)yl) resorcinols can induce potassium release from liposomes and erythrocytes. The results suggest that 5-(n-pentyl)resorcinol can induce a specific permeability to protons as well as to potassium and other small molecules. The highest permeability changes were found in the presence of 5-

  3. ClogP(alk): a method for predicting alkane/water partition coefficient.

    Science.gov (United States)

    Kenny, Peter W; Montanari, Carlos A; Prokopczyk, Igor M

    2013-05-01

    Alkane/water partition coefficients (P(alk)) are less familiar to the molecular design community than their 1-octanol/water equivalents and access to both data and prediction tools is much more limited. A method for predicting alkane/water partition coefficient from molecular structure is introduced. The basis for the ClogP(alk) model is the strong (R² = 0.987) relationship between alkane/water partition coefficient and molecular surface area (MSA) that was observed for saturated hydrocarbons. The model treats a molecule as a perturbation of a saturated hydrocarbon molecule with the same MSA and uses increments defined for functional groups to quantify the extent to which logP(alk) is perturbed by the introduction each functional group. Interactions between functional groups, such as intramolecular hydrogen bonds are also parameterized within a perturbation framework. The functional groups and interactions between them are specified substructurally in a transparent and reproducible manner using SMARTS notation. The ClogP(alk) model was parameterized using data measured for structurally prototypical compounds that dominate the literature on alkane/water partition coefficients and then validated using an external test set of 100 alkane/water logP measurements, the majority of which were for drugs.

  4. Cytokeratin positive anaplastic large cell lymphoma: Difficulty in differentiation from metastatic carcinoma

    Directory of Open Access Journals (Sweden)

    Nishat Afroz

    2015-01-01

    Full Text Available Cytokeratin and epithelial membrane antigen (EMA are usually included in the first panel of immunomarkers used to differentiate metastatic carcinoma from lymphoma in cases presenting with enlarged lymph nodes. While carcinomas are cytokeratin and EMA positive, most lymphomas are negative for the above. However, recently few cases of cytokeratin positive lymphomas have also been reported. Here, we describe a very rare case of cytokeratin positive anaplastic large cell lymphoma (ALCL masquerading as a poorly differentiated carcinoma. Simultaneously, we also discuss the differential diagnosis and difficulty in differentiation from metastatic carcinoma in such a scenario. Review of literature shows that this is probably the first case report of anaplastic lymphoma kinase negative-ALCL seen in a young adult.

  5. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    Directory of Open Access Journals (Sweden)

    Hafner Mathias

    2006-04-01

    Full Text Available Abstract Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT. Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling.

  6. Drugs Approved for Hodgkin Lymphoma

    Science.gov (United States)

    ... Ask about Your Treatment Research Drugs Approved for Hodgkin Lymphoma This page lists cancer drugs approved by ... that are not listed here. Drugs Approved for Hodgkin Lymphoma Adcetris (Brentuximab Vedotin) Ambochlorin (Chlorambucil) Amboclorin (Chlorambucil) ...

  7. Intravascular large B cell lymphoma

    Directory of Open Access Journals (Sweden)

    Ricardo García-Muñoz

    2014-01-01

    Full Text Available Intravascular large B cell lymphoma (IVBCL is a rare type of extranodal large B cell lymphoma characterized by selective growth of lymphoma cells within the microvasculature. We present an illustrative case of intravascular B cell lymphoma suspected by the presence of a very small monoclonal B cell population identified by immunophenotype and polymerase chain reaction in bone marrow. The diagnosis was confirmed by skin biopsy.

  8. 506U78 in Treating Patients With Recurrent or Refractory Non-Hodgkin's Lymphoma or T-cell Lymphoma

    Science.gov (United States)

    2013-01-22

    Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Waldenström Macroglobulinemia

  9. Intratumor Heterogeneity of ALK-Rearrangements and Homogeneity of EGFR-Mutations in Mixed Lung Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Federica Zito Marino

    Full Text Available Non Small Cell Lung Cancer is a highly heterogeneous tumor. Histologic intratumor heterogeneity could be 'major', characterized by a single tumor showing two different histologic types, and 'minor', due to at least 2 different growth patterns in the same tumor. Therefore, a morphological heterogeneity could reflect an intratumor molecular heterogeneity. To date, few data are reported in literature about molecular features of the mixed adenocarcinoma. The aim of our study was to assess EGFR-mutations and ALK-rearrangements in different intratumor subtypes and/or growth patterns in a series of mixed adenocarcinomas and adenosquamous carcinomas.590 Non Small Cell Lung Carcinomas tumor samples were revised in order to select mixed adenocarcinomas with available tumor components. Finally, only 105 mixed adenocarcinomas and 17 adenosquamous carcinomas were included in the study for further analyses. Two TMAs were built selecting the different intratumor histotypes. ALK-rearrangements were detected through FISH and IHC, and EGFR-mutations were detected through IHC and confirmed by RT-PCR.10/122 cases were ALK-rearranged and 7 from those 10 showing an intratumor heterogeneity of the rearrangements. 12/122 cases were EGFR-mutated, uniformly expressing the EGFR-mutated protein in all histologic components.Our data suggests that EGFR-mutations is generally homogeneously expressed. On the contrary, ALK-rearrangement showed an intratumor heterogeneity in both mixed adenocarcinomas and adenosquamous carcinomas. The intratumor heterogeneity of ALK-rearrangements could lead to a possible impact on the therapeutic responses and the disease outcomes.

  10. Alkane Hydroxylase Gene (alkB Phylotype Composition and Diversity in Northern Gulf of Mexico Bacterioplankton

    Directory of Open Access Journals (Sweden)

    Conor Blake Smith

    2013-12-01

    Full Text Available Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM, a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene se