WorldWideScience

Sample records for lymphocyte dna synthesis

  1. Spontaneous unscheduled DNA synthesis in human lymphocytes

    International Nuclear Information System (INIS)

    Forell, B.; Myers, L.S. Jr.; Norman, A.

    1979-01-01

    The rate of spontaneous unscheduled DNA synthesis in human lymphocytes was estimated from measurements of tritiated thymidine incorporation into double-stranded DNA (ds-DNA) during incubation of cells in vitro. The contribution of scheduled DNA synthesis to the observed incorporation was reduced by inhibiting replication with hydroxyurea and by separating freshly replicated single-stranded DNA (ss-DNA) from repaired ds-DNA by column chromatography. The residual contribution of scheduled DNA synthesis was estimated by observing effects on thymidine incorporation of: (a) increasing the rate of production of apurinic sites, and alternatively, (b) increasing the number of cells in S-phase. Corrections based on estimates of endogenous pool size were also made. The rate of spontaneous unscheduled DNA synthesis is estimated to be 490 +- 120 thymidine molecules incorporated per cell per hour. These results compare favorably with estimates made from rates of depurination and depyrimidination of DNA, measured in molecular systems if we assume thymidine is incorporated by a short patch mechanism which incorporates an average of four bases per lesion

  2. Radiation effect and response of DNA synthesis in lymphocytes induced by low dose irradiation

    International Nuclear Information System (INIS)

    Zhao Yujie; Su Liaoyuan; Zou Huawei; Kong Xiangrong

    1999-01-01

    The ability of DNA synthesis in lymphocytes were measured by using 3 H-TdR incorporation method. This method was used to observe the damage of lymphocytes irradiated by several challenge doses (0.5-0.8 Gy) and adaptive response induced by previous low dose irradiation. The results show that DNA synthesis was inhibited by challenge dose of radiation and was adapted by previous 0.048 Gy irradiation

  3. Stimulatory effect of low dose radionuclide on DNA synthesis and UDS in splenic lymphocytes

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Yang Zhanshan

    1999-12-01

    To study the stimulatory effect on DNA synthesis and unscheduled DNA synthesis (UDS) in splenic lymphocytes induced by low dose enriched uranium 235 U. By using 3 H-TdR incorporation assay technique, the DNA replicative synthesis in PHA and LPS stimulated splenic lymphocytes was observed. By using DNA synthesis inhibitor such as hydroxyurea, the UV-induced unscheduled DNA synthesis in splenic lymphocytes occurred. When the injected low dose of enriched uranium 235 u was 0.1 μg/kg body weight, the transformation capacity was elevated for splenic T lymphocytes, simultaneously the stimulative index increased. The UDS of splenic lymphocytes induced by ultra-violate revealed a statistically significant increase by low dose of enriched uranium 235 U at the range of 0.1-20 μg/kg body weight. A stimulatory action of low dose enriched uranium 235 U on DNA replicative synthesis as well as on UV-induced UDS in splenic lymphocytes was detected

  4. Sister chromatid exchanges in X-ray irradiated blood lymphocytes from patients with hereditary diseases with radioresistant DNA synthesis

    International Nuclear Information System (INIS)

    Pleskach, N.M.; Andriadze, M.I.; Mikhel'son, V.M.; Zhestyanikov, V.D.

    1988-01-01

    X-ray irradiation induced sister chromatid exchanges (SCE) in blood lymphocytes from patient with Down's syndrome and adult progeria (in both the cases radioresistant DNA synthesis takes place). In normal lymphocytes (in which ionizing radiation inhibits the replicative synthesis of DNA) the rate of SCE rises with the rise of radiation dose. Thus, the rate of SCE in X-ray irradiated lymphocytes is in reverse dependence with radioresistance of replicative synthesis of DNA. The data obtained are explained in accordance with the replicative hypothesis of the SCE nature (Painter, 1980a): in cells of patients with Down's syndrome, xeroderma pigmentosum from 2 and progeria of adults the time of existence of partly replicated clusters of replicons is decreased due to radioresistant replicative synthesis of DNA, but the presence of partly replicated clusters of replicons in necessary for SCE formation. Therefore the rate of SCF in X-irradiated cells of these patients decreases

  5. Glucocorticoid suppression of human lymphocyte DNA synthesis. Influence of phytohemagglutinin concentration

    International Nuclear Information System (INIS)

    Segel, G.B.; Lukacher, A.; Gordon, B.R.; Lichtman, M.A.

    1980-01-01

    Glucocorticoids have been shown to suppress lectin-stimulated lymphocyte DNA synthesis in some studies, whereas in other studies, the hormones have had little effect. We have found that the position on the PHA dose-response curve that is studied is the most important determinant of whether cortisol inhibits 3 H-thymidine incorporation into lymphocyte DNA. The proportion of monocytes in culture also influenced the cortisol effect, but it was quantitatively less important than PHA concentration. Cortisol (5 nM to 100 μM) had little effect on blastogenesis or thymidine incorporation into DNA in cultures that contained both a high concentration (14% +- 2 (S.E.)) of monocytes and a concentration of PHA (0.6 to 1.2 μg/ml) that produced maximal stimulation of mitogenesis. When monocytes were reduced from 14 to 1.4%, cortisol (5 μM) caused a 30% reduction in thymidine incorporation in cultures stimulated by 0.6 to 1.2 μg/ml PHA. Much greater cortisol suppression of thymidine incorporation occurred if the concentration of PHA was reduced. For example, reduction of the PHA concentration from 1.2 to 0.075 μg/ml resulted in an increase in suppression by 5 μM cortisol from 5 to 90% even in the presence of 14% monocytes. These data indicate that the suppressive effects of glucocorticoids on blastogenesis and thymidine incorporation in vitro depend principally on the concentration of PHA used to stimulate blastogenesis and secondarily on the proportion of monocytes in the culture system

  6. DNA-synthesis of lymphocytes in hyperthyroid and enthyroid subjects. Effect of 131I therapy on hyperthyroidism

    International Nuclear Information System (INIS)

    Lundell, G.; Wasserman, J.; Einhorn, N.; Granberg, P.-O.

    1976-01-01

    The DNA-synthesis of human lymphoid cells as estimated by the measurement of thymidine incorporation in vitro was investigated in healthy controls and in patients with various thyroid disorders before and after therapy. Hyperthyroid patients treated with 131 I and surgery (euthyroid at initial blood sampling before surgery), patients with atoxic nodular goitre treated by surgery and healthy untreated control individuals comprised the material. The synthesis of DNA in lymphocytes was higher in hyperthyroid patients in comparison with euthyroid individuals, and decreased subsequent to 131 I therapy in the hyperthyroid patients. No decrease was recorded in the other groups of patients. No evidence suggesting a change in the lymphocyte reactivity to thyroglobulin was found in any of the patient groups. (author)

  7. Increased cellular levels of spermidine or spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A.

    Science.gov (United States)

    Fillingame, R H; Jorstad, C M; Morris, D R

    1975-01-01

    There are large increases in cellular levels of the polyamines spermidine and spermine in lymphocytes induced to transform by concanavalin A. The anti-leukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) blocks synthesis of these polyamines by inhibiting S-adenosylmethionine decarboxylase. Previous results showed that when cells are activated in the presence of MGBG the synthesis and processing of RNA, as well as protein synthesis, proceed as in the absence of the drug. In contrast, the incorporation of [methyl-3H]thymidine into DNA and the rate of entry of the cells into mitosis are inhibited by 60% in the presence of MGBG. Several experiments suggest that MGBG inhibits cell proliferation by directly blocking polyamine synthesis and not by an unrelated pharmacological effect: (1) the inhibitory action of MGBG is reversed by exogenously added spermidine or spermine; (2) inhibition of DNA synthesis by MGBG shows the same dose-response curve as does inhibition of spermidine and spermine synthesis; and (3) if MGBG is added to cells which have been allowed to accumulate their maximum complement of polyamines, there is no inhibition of thymidine incorporation. MGBG-treated and control cultures initiate DNA synthesis at the same time and show the same percentage of labeled cells by autoradiography. Therefore, it appears that in the absence of increased cellular levels of polyamines, lymphocytes progress normally from G0 through G1 and into S-phase. Furthermore, these experiments suggest that the increased levels of spermidine and spermine generally seen in rapidly proliferating eukaryotic systems are necessary for enhanced rates of DNA replication. PMID:1060087

  8. Age-related variation in the DNA-repair synthesis after UV-C irradiation in unstimulated lymphocytes of healthy blood donors

    International Nuclear Information System (INIS)

    Kovacs, E.; Weber, W.; Mueller, H.

    1984-01-01

    UV-C light-induced DNA-repair synthesis was studied in unstimulated lymphocytes of 51 healthy blood donors aged between 17 and 74 years. The evaluation included (1) the spontaneous DNA-synthesis in unirradiated lymphocytes with and without hydroxyurea, (2) the DNA-repair synthesis in lymphocytes irradiated with UV-light. The interindividual variation was significantly higher than the methodological variation ascertained in 24 persons in whom 2 determinations were carried out. In blood donors aged between 17 and 39 years, the spontaneous DNA synthesis, both with and without hydroxyurea, was significantly lower than in older individuals. The DNA-repair synthesis was dependent on the dose of UV-C light between 2 and 16 J/m 2 . There were no significant differences in DNA-repair synthesis in the age range 17-74 years. The variations in rate of DNA-repair synthesis were wider in older (44-74 years), than in younger individuals. (orig.)

  9. Dynamic changes of peripheral blood T-lymphocyte DNA-Synthesis in rabbits after fractionated and single exposure to 60Co-γ rays

    International Nuclear Information System (INIS)

    Wang Zongwu; Chen Tiehe; Yu Zhijie; Han Ling; Pan Yusha; Su Fuqiang

    1988-01-01

    The experiments in 59 rabbits γ-irradiated with doses of 0, 0.5, 1.0, 2.0, and 3.0 Gy in fractional and single exposure to 60 Co-γ rays were reported, respectively · Dynamics of the changes of DNA-Synthesis in T-lymphocytes of peripheral blood was obserced during 29 days after γ-irradiation. Marked inhibition in DNA-synthesis was found on 1st day after irradiation. Recovery was observed in 3rd day after irradiation. The levels of DNA-synthesis before irradiation was recovered on 7th day after exposure for all groups. For fractionated irradiation, however, an increase, rather than a decrese, of DNA-synthesis was in the group of 1.0 Gy

  10. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    Directory of Open Access Journals (Sweden)

    Hansen Peter J

    2008-01-01

    Full Text Available Abstract Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS, inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3 cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth.

  11. Influence of metronidazole on the survival rate of whole-body irradiated mice and on the DNA repair synthesis of lymphocytes

    International Nuclear Information System (INIS)

    Magdon, E.; Schroeder, E.

    1978-01-01

    With reference to literature reports the effect of Metronidazole [1-(hydroxyethyl)-5-nitro-2-methyl-imidazole] on the survival rate of C 3 H inbred mice following whole-body doses ranging from 5 to 15 Gy was determined under oxic and hypoxic conditions. Ehrlich ascites tumor cells were used to study the influence of Metronidazole on radiation-induced alterations of the DNA sedimentation behavior in the alkaline sucrose gradient under oxic conditions in vitro. The effect of Metronidazole on the semiconservative DNA synthesis was investigated under oxic and hypoxic conditions in Ehrlich ascites carcinoma cells and L5178Y lymphoma cells. Furthermore, it was examined whether the radiation-induced inhibition of semiconservative DNA synthesis in L5178Y lymphoma cells and the radiation-induced repair synthesis in lymphocytes is influenced by Metronidazole. From the values of the LDsub(50/30) after whole-body irradiation a sensitilization factor of 1.3 was derived for Metronidazole under hypoxic conditions. Under atmospheric conditions an increase of the radiation effect by a factor of 1.1 was obtained. The protective factor of hypoxia was 1.6 and thus greater than the radiosensibilization caused by Metronidazole. The DNA synthesis was slightly inhibited by Metronidazole under both hypoxic and euoxic conditions. The studies revealed no significant influence of Metronidazole on radiation-induced changes of the DNA sedimentation behavior and of the DNA repair synthesis as well as on the radiation induced inhibition of semiconservative DNA synthesis. (author)

  12. Cell interactions in concanavalin A activated cation flux and DNA synthesis of mouse lymphocytes

    DEFF Research Database (Denmark)

    Owens, T; Kaplan, J G

    1980-01-01

    Co-culture at constant cell density of nude mouse spleen cells (by themselves unresponsive to the T-cell mitogen concanavalin A (Con A)), with congenic T-enriched lymphocyte suspensions and Con A caused anomalously high activation of K+ transport (measured by 86Rb uptake) and of incorporation...... cells. Attempts to demonstrate a diffusible factor in the supernatants of stimulated T cells were unsuccessful. The measured interaction is sufficient to explain our previous paradoxical findings that enrichment of T cells as measured by membrane markers did not cause a corresponding enrichment...

  13. Inhibition of the synthesis of polyamines and DNA in activated lymphocytes by a combination of alpha-methylornithine and methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Morris, D R; Jorstad, C M; Seyfried, C E

    1977-09-01

    The cancer chemotherapeutic drug, methylglyoxal bis(guanylhydrazone), inhibits the synthesis of spermidine and spermine, but allows continued putrescine production in small lymphocytes stimulated by concanavalin A. DNA replication in these cells is inhibited 50% while the synthesis of protein and RNA continues normally. When excess putrescine accumulation in the presence of methylglyoxal bis(guanylhydrazone) was inhibited with alpha-methylornithine, a competitive inhibitor of ornithine decarboxylase, the inhibition of DNA replication was accentuated, with still no effect on protein or RNA synthesis. No inhibition of DNA synthesis by the combination of alpha-methylornithine and methylglyoxal bis(guanylhydrazone) was observed when the inhibitors were added after accumulation of cellular polyamines. In addition, inhibition was reversed by exogenous putrescine, spermidine, or spermine. We conclude that putrescine can fulfill in part the role normally played by spermidine and spermine in DNA replication, and that blocking putrescine synthesis in the presence of methylglyoxal bis(guanylhydrazone) amplifies the polyamine requirement. The implications of this with regard to polyamine synthesis as a site of chemotherapy are discussed.

  14. Inhibition of DNA synthesis in cultured lymphocytes and tumor cells by extracts of betel nut, tobacco, and miang leaf, plant substances associated with cancer of the ororespiratory epithelium.

    Science.gov (United States)

    Yang, J A; Huber, S A; Lucas, Z J

    1979-12-01

    The high incidence of oropharyngeal, esophageal, and laryngeal cancers in certain parts of the world has been ascribed to conjugated tannins found in certain folk medicinal herbs. We extracted miang leaf and betel nut with phosphate-buffered saline (0.14 M NaCl, 0.15 M potassium phosphate buffer, pH 7.4) and found that the extracts inhibited [3H]thymidine incorporation by phytohemagglutinin-stimulated human lymphocytes and by rat mammary tumor and mouse L-cells in logarithmic growth. Pretreating the lymphocytes for 1 or 4 hr with the extracts inhibited phytohemagglutinin-induced thymidine incorporation 72 hr later. At concentrations of 2.5 volumes % or lower, miang and betel nut extracts inhibited thymidine incorporation by 40 to 98% without any apparent signs of toxicity as demonstrated by the 66Rb equilibrium assay. In addition, neither extract inhibited cytotoxicity of rat mammary tumor cells by immune syngeneic spleen cells. The molecular weights of the inhibitory factors were between 1,000 and 10,000 daltons as determined by ultrafiltration and were unaffected by boiling for 3 min or by treatment with alcohol and, therefore, are probably not proteins. This in vitro demonstration of inhibition of DNA synthesis by these plant extracts presumably enriched for conjugated tannins may relate to inhibition of growth of rats and chicks fed conjugated tanin-contaminated sorghum feed. The carcinogenic potential of either these extracts or conjugated tannins is not yet established.

  15. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  16. DNA metabolism in peripheral lymphocytes of UV-B wholebody irradiated men

    International Nuclear Information System (INIS)

    Klein, W.; Kocsis, F.; Altmann, H.

    1983-02-01

    Healthy probands were UV-B irradiated and different times after the treatment blood was taken and lymphocytes were isolated. Semiconservative DNA-synthesis was enhanced after 4 in vivo expositions. DNA repair replication in lymphocytes after in vitro UV-C damage was initially increased in UV-B wholebody irradiated people. With nucleoidsedimentation DNA strand breaks after in vivo UV-B irradiation were detected. (Author) [de

  17. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A. (Queensland Univ., St. Lucia (Australia). Dept. of Biochemistry; Queensland Univ., St. Lucia (Australia). Dept. of Veterinary Pathology; Queensland Univ. St. Lucia (Australia). Dept. of Public Health)

    1982-05-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m/sup 2/. These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes.

  18. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    International Nuclear Information System (INIS)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A.; Queensland Univ., St. Lucia; Queensland Univ. St. Lucia

    1982-01-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m 2 . These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes. (author)

  19. High frequencies of chromatid aberrations produced during G/sub 2/ in human lymphocytes by very low doses (0. 025-0. 4 Gy) of X-rays in combination with inhibitors of DNA synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, H.C.; Kihlman, B.A. (Uppsala Univ. (Sweden). Dept. of Genetics)

    1984-09-01

    Whole-blood cultures of human lymphocytes were exposed in the G/sub 2/-phase (3.5 h before harvesting) to various doses of X-rays and post-treated for 3 h with inhibitors of DNA synthesis. The inhibitors used were 2'-deoxyadenosine (dAdo), hydroxyurea (HU) and 1-..beta..-D-arabinofuranosylcytosine (ara-C). To prevent deamination of dAdo by adenosine deaminase (ADA), the dAdo treatments were carried out in the presence of the ADA inhibitor coformycin. HU and ara-C were used either alone or in combination. After the 3-h inhibitor treatments, the cultures were harvested and slides prepared and analyzed for chromatid aberrations in metaphase. When the inhibitors were used at concentrations high enough to cause marked chromosome damage by themselves, very low doses of X-rays (0.025-0.2 Gy) were sufficient to produce a dramatic increase in the frequency of chromatid aberrations. High frequencies of chromatid aberrations were also obtained when cultures that had received moderate doses of X-rays (0.4-0.8 Gy) were post-treated with low inhibitor concentrations that produce no or only a few aberrations by themselves.

  20. Mitochondrial DNA copy number and chronic lymphocytic leukemia/small lymphocytic lymphoma risk in two prospective studies

    NARCIS (Netherlands)

    Kim, Christopher; Bassig, Bryan A; Seow, Wei Jie; Hu, Wei; Purdue, Mark P; Huang, Wen-Yi; Liu, Chin-San; Cheng, Wen-Ling; Männistö, Satu; Vermeulen, Roel; Weinstein, Stephanie J; Lim, Unhee; Hosgood, H Dean; Bonner, Matthew R; Caporaso, Neil E; Albanes, Demetrius; Lan, Qing; Rothman, Nathaniel

    BACKGROUND: Mitochondrial DNA copy number (mtDNA CN) may be modified by mitochondria in response to oxidative stress. Previously, mtDNA CN was associated with non-Hodgkin lymphoma (NHL) risk, particularly chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). We conducted a replication

  1. Relationship between DNA replication and DNA repair in human lymphocytes proliferating in vitro in the presence and in absence of mutagen

    International Nuclear Information System (INIS)

    Szyfter, K.; Wielgosz, M.Sz.; Kujawski, M.; Jaloszynski, P.; Zajaczek, S.

    1995-01-01

    The effects of mutagens on DNA replication and DNA repair were studied in peripheral blood lymphocytes (PBL) obtained from 21 healthy subjects, 2 samples from healthy heterozygote of ''Xeroderma pigmentosum'' (XP) and 2 samples from patient with clinically recognised XP. Inter-individual variations were found in DNA replication and in the level of spontaneous DNA repair measured under standard culture condition. Exposure of human PBL proliferating in vitro to B(a)P was followed by a partial inhibition of replicative DNA synthesis in all subjects and by an induction of DNA repair in healthy subjects. In XP patients DNA repair synthesis remained at the level attributed to spontaneous DNA repair. The response to mutagen varied individually. Results were analysed statistically. It was established that the studied indices of DNA synthesis correlate well with each other. The highest correlation was found between the levels of spontaneous and B(a)P-induced DNA repair. It is concluded that the level of spontaneous DNA repair is predictive for an estimation of cells ability to repair DNA damage. Inter-individual variations in the inhibition of DNA replication and in DNA repair synthesis are also dependent on the type of mutagen as shown by effects of other mutagens. Different effects of mutagen exposure on the inhibition of DNA replicative synthesis and induction of DNA repair can be explained by genetically controlled differences in the activity of enzymes responsible for mutagen processing and lesion removal. (author). 37 refs, 2 figs, 2 tabs

  2. Correspondence: chromosomal localization of uv-induced unscheduled DNA synthesis

    International Nuclear Information System (INIS)

    Berliner, J.; Mello, R.S.; Norman, A.

    1976-01-01

    We have measured the grain density - the number of grains per unit length - over the centromere and noncentromere regions of metaphase chromosomes in autoradiographs of human lymphocytes. When the chromosomes were labeled in G 0 by uv-induced unscheduled DNA synthesis, the grain density was two to four times larger over the centromere than over the noncentromere regions. When the labeling was done by scheduled DNA synthesis in S or unscheduled synthesis in M, the grain densities were approximately equal over both regions

  3. DNA repair deficiency in lymphocytes from patients with actinic keratosis

    International Nuclear Information System (INIS)

    Abo-Darub, J.M.; Mackie, R.; Pitts, J.D.

    1978-01-01

    DNA repair activity was measured in peripheral blood lymphocytes from 18 patients with Actinic Keratosis and 18 age-matched control subjects, by comparing the incorporation of 3 H-thymidine into cells after irradiation with ultraviolet light with that into unirradiated cells. The incorporation was followed autoradiographically or by measuring acid insoluble radioactivity in cells labelled in the presence of hydroxyurea. The repair activity in lymphocytes from Actinic keratosis patients was only 47.1% (+-6.5%) of that in cells from the control subjects

  4. 1-{beta}-D-arabinofuranosylcytosine is cytotoxic in quiescent normal lymphocytes undergoing DNA excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Takahiro; Kawai, Yasukazu; Ueda, Takanori [Fukui Medical Univ., Matsuoka (Japan)

    2002-12-01

    We have sought to clarify the potential activity of the S-phase-specific antileukemic agent 1-{beta}-D-arabinofuranosylcytosine (ara-C), an inhibitor of DNA synthesis, in quiescent cells that are substantially non-sensitive to nucleoside analogues. It was hypothesized that the combination of ara-C with DNA damaging agents that initiate DNA repair will expand ara-C cytotoxicity to non-cycling cells. The repair kinetics, which included incision of damaged DNA, gap-filling by DNA synthesis and rejoining by ligation, were evaluated using the single cell gel electrophoresis (Comet) assay and the thymidine incorporation assay. When normal lymphocytes were treated with ultraviolet C or with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), the processes of DNA excision repair were promptly initiated and rapidly completed. When the cells were incubated with ara-C prior to irradiation or BCNU treatment, the steps of DNA synthesis and rejoining in the repair processes were both inhibited. The ara-C-mediated inhibition of the repair processes was concentration-dependent, with the effect peaking at 10{mu}M. The combination of ara-C with these DNA repair initiators exerted subsequent cytotoxicity, which was proportional to the extent of the repair inhibition in the presence of ara-C. In conclusion, ara-C was cytotoxic in quiescent cells undergoing DNA repair. This might be attributed to unrepaired DNA damage that remained in the cells, thereby inducing lethal cytotoxicity. Alternatively, ara-C might exert its own cytotoxicity by inhibiting DNA synthesis in the repair processes. Such a strategy may be effective against a dormant subpopulation in acute leukemia that survives chemotherapy. (author)

  5. 1-β-D-arabinofuranosylcytosine is cytotoxic in quiescent normal lymphocytes undergoing DNA excision repair

    International Nuclear Information System (INIS)

    Yamauchi, Takahiro; Kawai, Yasukazu; Ueda, Takanori

    2002-01-01

    We have sought to clarify the potential activity of the S-phase-specific antileukemic agent 1-β-D-arabinofuranosylcytosine (ara-C), an inhibitor of DNA synthesis, in quiescent cells that are substantially non-sensitive to nucleoside analogues. It was hypothesized that the combination of ara-C with DNA damaging agents that initiate DNA repair will expand ara-C cytotoxicity to non-cycling cells. The repair kinetics, which included incision of damaged DNA, gap-filling by DNA synthesis and rejoining by ligation, were evaluated using the single cell gel electrophoresis (Comet) assay and the thymidine incorporation assay. When normal lymphocytes were treated with ultraviolet C or with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), the processes of DNA excision repair were promptly initiated and rapidly completed. When the cells were incubated with ara-C prior to irradiation or BCNU treatment, the steps of DNA synthesis and rejoining in the repair processes were both inhibited. The ara-C-mediated inhibition of the repair processes was concentration-dependent, with the effect peaking at 10μM. The combination of ara-C with these DNA repair initiators exerted subsequent cytotoxicity, which was proportional to the extent of the repair inhibition in the presence of ara-C. In conclusion, ara-C was cytotoxic in quiescent cells undergoing DNA repair. This might be attributed to unrepaired DNA damage that remained in the cells, thereby inducing lethal cytotoxicity. Alternatively, ara-C might exert its own cytotoxicity by inhibiting DNA synthesis in the repair processes. Such a strategy may be effective against a dormant subpopulation in acute leukemia that survives chemotherapy. (author)

  6. Synthesis of DNA

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  7. Ultraviolet-induced DNA excision repair in human B and T lymphocytes. II

    International Nuclear Information System (INIS)

    Yew, F.F.-H.; Johnson, R.T.

    1979-01-01

    Despite their great sensitivity to ultraviolet light purified human B and T lymphocytes are capable of complete repair provided that the ultraviolet dose does not exceed 0.5 Jm -2 . Their capacity to repair, as measured by the restoration of DNA supercoiling in preparations of nucleoids, and their survival are significantly increased in the presence of deoxyribonucleosides. Certain agents which inhibit semi-conservative DNA synthesis (hydroxyurea, 1-β-D-arabino-furanosylcytosine (arafCyt) either stop or delay the repair process in lymphocytes. The effect of hydroxyurea is eventually overcome spontaneously, but changes in the sedimentation behaviour of ultraviolet-irradiated nucleoids caused by arafCyt can only be neutralized by addition of deoxycytidine. The effective inhibition of repair by arafCyt permits the detection of extremely small amounts of ultraviolet damage and also the estimation of when repair is complete. (Auth.)

  8. Cytogenetic effects of tritium incorporated into DNA of human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Beno, M [Inst. of Preventive and Clinical Medicine, 83301 Bratislava (Slovakia)

    1996-12-31

    In the reported in vitro experiments the numbers of chromosomal aberrations (CA) in correlation to the physical dose as assessed by determining the specific radioactivity of DNA have been followed in vitro human lymphocytes from adult donors. Lymphocytes from healthy adult donors of age from 20 to 59 of both sexes (24 males and 20 females) were isolated from blood by centrifugation. After washing the cells were irradiated from tritium incorporated during in vitro incubation in phytohemagglutinin containing medium with tritium labelled thymidine. Slides for standard CA counting have been done from every sample 48 hours after the begin cultivation. The CA were counted in at least 200 metaphases on each slide. Parallel samples of lymphocytes served for preparation smears for autoradiography to determine the labeling index. Other parallel samples were used for the determination of tritium concentration in DNA by the diphenylamine method, as well as determination of the specific radioactivity in lymphocyte DNA by scintillation counting. The dose absorbed in DNA was estimated using the conversion factor implicating that 37 kBq of tritium uniformly distributed per gram of tissue of unit density delivers a dose rate of 121.4 {sup m}i{sup G}y/hour. The contamination of cells by precursors of nucleic acids - like tritiated thymidine - causes an uneven distribution of doses in the cell population. A proportion of the population of cells remains unlabelled. The dose-response curve is flat showing signs of loss of heavily damaged cells and signs of repair of damage. Both these signs are based on the nature of biological processes which lead to internal contamination of cells and to expression of effects in terms of numbers of CA. (J.K.) 5 figs., 4 refs.

  9. 67Ga-citrate incorporation and DNA synthesis in tumors

    International Nuclear Information System (INIS)

    Hammersley, P.A.G.; Taylor, D.M.

    1975-01-01

    The results obtained in these studies suggest that in the tumors studied there is some form of relationship between 67 Ga uptake and the rate of DNA synthesis. However, the observations in the HP melanoma, in which small tumors showed a negative correlation between 67 Ga uptake and rate of DNA synthesis and larger tumors showed a positive correlation, coupled with the virtually constant uptake of 67 Ga over a wide range of rates of DNA synthesis in the drug- and radiation-treated tumors, suggest that the uptake of the radionuclide is not simply related to the rate of DNA synthesis per se. Studies in embryonic mouse tissues suggested that 67 Ga uptake was not related to the rate of DNA synthesis and regenerating liver does not show a greater 67 Ga uptake than normal liver. Phytohemagglutinin-treated human lymphocytes show increased 67 Ga uptake compared to unstimulated lymphocytes, and it has been suggested that this is related to the stimulus to divide rather than to events occurring in a specific phase of the cell cycle. This suggests that proliferating cells may exhibit membrane changes which either result in increased transport of 67 Ga into the cell or permit a greater degree of binding of the radionuclide to the cell membrane than can occur in resting cells. The membrane-binding hypothesis is supported by the observations on phytohemagglutinin-stimulated lymphocytes but not by observations of the subcellular distribution of 67 Ga in these tumors which confirm the suggestion that the radionuclide is concentrated in lysosomes. Thus it appears that although in tumor cells, at least, there is some correlation between 67 Ga uptake and the rate of DNA synthesis and hence by implication of cell proliferation, the nature of this link remains obscure, and more detailed studies are needed to increase our understanding of the relationship

  10. Physiological effects in bovine lymphocytes of inhibiting polyamine synthesis with ethylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Igarashi, K; Morris, D R

    1984-11-01

    Previous results have suggested that ethylglyoxal bis(guanylhydrazone) is a more specific inhibitor of polyamine biosynthesis than the widely used methylglyoxal bis(guanylhydrazone). The physiological effects on mitogenically activated lymphocytes of polyamine depletion with ethylglyoxal bis(guanylhydrazone) were examined. In the presence of ethylglyoxal bis(guanylhydrazone) and the ornithine decarboxylase inhibitor alpha-difluoromethylornithine, the cellular contents of putrescine, spermidine, and spermine were decreased by 75 to 90, 65 to 80, and 40 to 60%, respectively, compared with control cultures. Inhibition of DNA synthesis in these polyamine-deficient cells was always greater than that of protein synthesis. Upon addition of spermidine to the deficient cells, the cellular spermidine content was restored within 4 hr, but the complete recovery of macromolecular synthesis took 10 to 20 hr. Thymidine kinase and DNA polymerase alpha activities in polyamine-deficient cells were lower than those in normal cells, whereas RNA polymerase II and leucyl transfer RNA synthase activities were nearly equal to those in normal cells. These results and studies with 2-dimensional gel electrophoresis raise the possibility that polyamines may regulate the synthesis of specific proteins. Decreased synthesis of replication proteins in polyamine-deficient cells may be one reason for the reduced synthesis of DNA.

  11. DNA repair and DNA synthesis in leukemic and virus infected cells

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Stacher, A.; Fanta, D.

    1978-09-01

    Autoradiographic determinations of unscheduled DNA synthesis in peripheral lymphocytes of leukemic patients showed strongly different results according to various types of disease of different forms of therapy, respectively. Similar investigations performed with lymphocytes of Herpes simplex infected persons during symptom-free intervals revealed imbalances of the repair system caused by virus infection. BND cellulose chromatography and measurement of 3 H-thymidine incorporation into single- and double stranded DNA fractions showed an increase in velocity of the rejoining process, but a decrease in total incorporation. Because of these results and the demonstration of the supercoiled structure of DNA it is suggested that virusinfections cause a faster rejoining of gaps, but at the same time leave a number of failures within DNA unrecognized. (author)

  12. Quantitative analysis of DNA methylation in chronic lymphocytic leukemia patients.

    Science.gov (United States)

    Lyko, Frank; Stach, Dirk; Brenner, Axel; Stilgenbauer, Stephan; Döhner, Hartmut; Wirtz, Michaela; Wiessler, Manfred; Schmitz, Oliver J

    2004-06-01

    Changes in the genomic DNA methylation level have been found to be closely associated with tumorigenesis. In order to analyze the relation of aberrant DNA methylation to clinical and biological risk factors, we have determined the cytosine methylation level of 81 patients diagnosed with chronic lymphocytic leukemia (CLL). The analysis was based on DNA hydrolysis followed by derivatization of the 2'-desoxyribonucleoside-3'-monophosphates with BODIPY FL EDA. Derivatives were separated by micellar electrokinetic chromatography, and laser-induced fluorescence was used for detection. We analyzed potential correlations between DNA methylation levels and numerous patient parameters, including clinical observations and biological data. As a result, we observed a significant correlation with the immunoglobulin variable heavy chain gene (VH) mutation status. This factor has been repeatedly proposed as a reliable prognostic marker for CLL, which suggests that the methylation level might be a valuable factor in determining the prognostic outcome of CLL. We are now in the process of refining our method to broaden its application potential. In this context, we show here that the oxidation of the fluorescence marker in the samples and the evaporation of methanol in the electrolytes can be prevented by a film of paraffin oil. In summary, our results thus establish capillary electrophoresis as a valuable tool for analyzing the DNA methylation status of clinical samples.

  13. Lymphocyte DNA damage in elevator manufacturing workers in Guangzhou, China.

    Science.gov (United States)

    Lam, Tai Hing; Zhu, Chang Qi; Jiang, Chao Qiang

    2002-03-25

    To study the effect of smoking, passive smoking, alcohol drinking, and occupational exposure to low level of benzene on DNA strand breaks in elevator manufacturing workers in Guangzhou, China. Three hundred and fifty-nine workers (252 men and 107 women) of a modern elevator manufacturing factory, 205 were from production departments and 154 from managerial department. Information on the workers' health conditions, smoking, passive smoking, alcohol consumption and occupational exposure history was collected by personal interview. Lymphocyte DNA damage was measured by the Comet assay. None of the women smoked and 20.6% of the men were daily smokers. In non-smokers, the prevalence of passive smoking at work was 25% for men and 11.2% for women, and at home, 37.8 and 48.6%, respectively. Smoking significantly increased tail moment (P<0.001). Daily smokers had the largest tail moment (geometric mean, 95% CI) (0.93 microm (0.81-0.94)), followed by occasional smokers (0.76 microm (0.59-0.95)), ex-smokers (0.70 microm (0.58-0.85)), and never smokers (0.56 microm (0.53-0.60)). Tail moment increased significantly with daily tobacco consumption (cigarettes per day) (r=0.26, P<0.001) after adjusting for age, gender, occupational exposure, passive smoking, and drinking. Analysis of covariance (ANCOVA) showed that smoking (P<0.001), passive smoking at home (P=0.026), occupational exposure (P<0.001), male gender (P<0.001), and age (P=0.001) had independent effects on tail moment, whereas passive smoking at work and alcohol drinking had no significant effect. Smoking, passive smoking at home, male gender, age and occupational exposure independently increased lymphocyte DNA strand breaks. The presence of excess DNA damage under low level of occupational exposure to benzene or other solvents suggest that the current allowance concentrations may not be safe to prevent genotoxicity.

  14. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  15. DNA damage in human lymphocytes due to synergistic interaction between ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Kim, J. K.; Lee, K. H.; Lee, B. H.; Chun, K. J.

    2001-01-01

    Biological risks may arise from the possibility of the synergistic interaction between harmful factors such as ionizing radiation and pesticide. The effect of pesticide on radiation-induced DNA damage in human in human blood lymphocytes was evaluated by the single cell gel electrophoresis (SCGE) assay. The lymphocytes, with or without pretreatment of the pesticide, were exposed to 2.0 Gy of gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed an excellent dose-response relationship. The present study confirms that the pesticide has the cytotoxic effect on lymphocytes and that it interacts synergistically with ionizing radiationon DNA damage, as well

  16. Studies on the DNA-excision repair in lymphocytes of patients with recurrent Herpes simplex

    International Nuclear Information System (INIS)

    Fanta, D.; Topaloglou, A.; Altmann, H.

    1978-01-01

    Investigations of the semiconservatrive DNA replication and the excision repair in lymphocytes of patients with recurrent herpes simplex showed defects that could lead to mutations in the DNA with following lower immuncompetence and possibility for activation of already present oncogenic virus formations within the cellular DNA

  17. Effect of low dose tritium on mouse lymphocyte DNA estimated by comet assay

    International Nuclear Information System (INIS)

    Ichimasa, Yusuke; Otsuka, Kensuke; Maruyama, Satoko; Tauchi, Hiroshi; Ichimasa, Michiko; Uda, Tatsuhiko

    2003-01-01

    This paper deals with low dose effect of HTO on mouse lymphocytes DNA (in vitro irradiation) estimated by the comet assay using ICR male mouse of 20 to 23 weeks old. Lymphocytes were isolated by centrifugation of whole blood sample on Ficoll-Paque solution and embedded in agarose gel just after mixed with HTO. After lymphocytes were exposed to 17-50 mGy of HTO, the agarose gel slides were washed to remove HTO and cell lysis treatment on the slides was conducted before electrophoresis. The individual comets on stained slides after electrophoresis were analyzed using imaging software. No significant DNA damages were observed. (author)

  18. Assessment of DNA damage in blood lymphocytes of bakery workers by comet assay.

    Science.gov (United States)

    Kianmehr, Mojtaba; Hajavi, Jafar; Gazeri, Javad

    2017-09-01

    The comet assay is widely used in screening and identification of genotoxic effects of different substances on people in either their working or living environment. Exposure to fuel smoke leads to DNA damage and ultimately different types of cancer. Using a comet assay, the present study aimed to assess peripheral blood lymphocyte DNA damage in people working in bakeries using natural gas, kerosene, diesel, or firewood for fuel compared to those in the control group. The subjects of this study were 55 people in total who were divided into four experimental groups, each of which comprised of 11 members (based on the type of fuel used), and one control group comprised of 11 members. Using CometScore, the subjects' peripheral blood lymphocytes were examined for DNA damage. All bakers, that is, experimental subjects, showed significantly greater peripheral blood lymphocyte DNA damage compared to the individuals in the control group. There was greater peripheral blood lymphocyte DNA damage in bakers who had been using firewood for fuel compared to those using other types of fuel to such an extent that tail moments (µm) for firewood-burning bakers was 4.40 ± 1.98 versus 1.35 ± 0.84 for natural gas, 1.85 ± 1.33 for diesel, and 2.19 ± 2.20 for kerosene. The results indicated that burning firewood is the greatest inducer of peripheral blood lymphocytes DNA damage in bakers. Nonetheless, there was no significant difference in peripheral blood lymphocyte DNA damage among diesel and kerosene burning bakers.

  19. The influence of radio- and chemotherapy on DNA repair of peripheral lymphocytes of tumor patients

    International Nuclear Information System (INIS)

    Klein, W.; Alth, G.; Klein, H.; Koren, H.

    1979-07-01

    The influence of radiotherapy and chemotherapy, respectively, on DNA excision repair was investigated in lymphocytes of the peripheral blood of 10 and 5 patients with malignancies. No effects on DNA repair were found using only betatrone of 60 Co-irradiation under normal conditions. Combination of both irradiation schedules over a longer period of therapy provoked an inhibition of DNA repair. Chemotherapy inhibits DNA repair immediately after starting therapy, but after relatively short time, the extent of DNA repair increases above normal level. (author)

  20. The Effect of a Grape Seed Extract on Radiation-Induced DNA Damage in Human Lymphocytes

    Science.gov (United States)

    Dicu, Tiberius; Postescu, Ion D.; Foriş, Vasile; Brie, Ioana; Fischer-Fodor, Eva; Cernea, Valentin; Moldovan, Mircea; Cosma, Constantin

    2009-05-01

    Plant-derived antioxidants due to their phenolic compounds content are reported as potential candidates for reducing the levels of oxidative stress in living organisms. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities. Hydroethanolic (50/50, v/v) standardized extract was obtained from red grape seed (Vitis vinifera, variety Burgund Mare—BM). The total polyphenols content was evaluated by Folin-Ciocalteu procedure and expressed as μEq Gallic Acid/ml. The aim of this study was to evaluate the potential antioxidant effects of different concentrations of BM extract against 60Co γ-rays induced DNA damage in human lymphocytes. Samples of human lymphocytes were incubated with BM extract (12.5, 25.0 and 37.5 μEq GA/ml, respectively) administered at 30 minutes before in vitro irradiation with γ-rays (2 Gy). The DNA damage and repair in lymphocytes were evaluated using alkaline comet assay. Using the lesion score, the radiation-induced DNA damage was found to be significantly different (pextract (except the lymphocytes treated with 37.5 μEq GA/ml BM extract). DNA repair analyzed by incubating the irradiated cells at 37° C and 5% CO2 atmosphere for 2 h, indicated a significant difference (pextract, immediately and two hours after irradiation. These results suggest radioprotective effects after treatment with BM extract in human lymphocytes.

  1. Edaravone protects human peripheral blood lymphocytes from γ-irradiation-induced apoptosis and DNA damage.

    Science.gov (United States)

    Chen, Liming; Liu, Yinghui; Dong, Liangliang; Chu, Xiaoxia

    2015-03-01

    Radiation-induced cellular injury is attributed primarily to the harmful effects of free radicals, which play a key role in irradiation-induced apoptosis. In this study, we investigated the radioprotective efficacy of edaravone, a licensed clinical drug and a powerful free radical scavenger that has been tested against γ-irradiation-induced cellular damage in cultured human peripheral blood lymphocytes in studies of various diseases. Edaravone was pre-incubated with lymphocytes for 2 h prior to γ-irradiation. It was found that pretreatment with edaravone increased cell viability and inhibited generation of γ-radiation-induced reactive oxygen species (ROS) in lymphocytes exposed to 3 Gy γ-radiation. In addition, γ-radiation decreased antioxidant enzymatic activity, such as superoxide dismutase and glutathione peroxidase, as well as the level of reduced glutathione. Conversely, treatment with 100 μM edaravone prior to irradiation improved antioxidant enzyme activity and increased reduced glutathione levels in irradiated lymphocytes. Importantly, we also report that edaravone reduced γ-irradiation-induced apoptosis through downregulation of Bax, upregulation of Bcl-2, and consequent reduction of the Bax:Bcl-2 ratio. The current study shows edaravone to be an effective radioprotector against γ-irradiation-induced cellular damage in lymphocytes in vitro. Finally, edaravone pretreatment significantly reduced DNA damage in γ-irradiated lymphocytes, as measured by comet assay (% tail DNA, tail length, tail moment, and olive tail moment) (p edaravone offers protection from radiation-induced cytogenetic alterations.

  2. Radiation metagenesis and inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Dubinina, L.G.; Sergievskaya, S.P.; Kurashova, Z.I.; Dubinin, N.P.

    1983-01-01

    The study of modification of radiation mutagenesis and inhibition of the DNA synthesis by means of 1-β-D arabinofuranosylcytosine (ara-C) is carried out. It is shown that ara-C-acting on chromosomes in the G 1 phase and G 2 phase does not cause mutations in the C capillaris cells. The modification by means of ara-C radiation effect in the G 1 phase and G 2 phase correlates with duration and time of administering ara-C before and after irradiation. A new form of ara-C DNA synthesis inhibitor interaction with mutation processes has been found out. Protective effect of the DNA synthesis inhibitor (ara-C) from mutageneous radiation effect is stressed. Sensibilization of the radiation mutagenesis during cell treafment by the DNA synthesis inhibitor (ara-C) is shown. It is pointed out that emergence of sensibilization or protective effect, i. e. antimutagenesis phenomenon depends on conditions under which the synthesis inhibitor acted in G 1 and G 2 phases

  3. DNA-protein crosslinks in peripheral lymphocytes of individuals exposed to hexavalent chromium compounds.

    Science.gov (United States)

    Zhitkovich, A; Lukanova, A; Popov, T; Taioli, E; Cohen, H; Costa, M; Toniolo, P

    1996-01-01

    Abstract DNA-protein crosslinks were measured in peripheral blood lymphocytes of chrome-platers and controls from Bulgaria in order to evaluate a genotoxic effect of human exposure to carcinogenic Cr(VI) compounds. Chrome-platers and most of the unexposed controls were from the industrial city of Jambol; some additional controls were recruited from the seaside town of Burgas. The chrome-platers had significantly elevated levels of chromium in pre- and post-shift urine, erythrocytes and lymphocytes compared with the control subjects. The largest differences between the two groups were found in erythrocyte chromium concentrations which are considered to be indicative of Cr(VI) exposure. Despite the significant differences in internal chromium doses, levels of DNA-protein crosslinks were not significantly different between the combined controls and exposed workers. Individual DNA-protein crosslinks, however, correlated strongly with chromium in erythrocytes at low and moderate doses but at high exposures, such as among the majority of chrome-platers, these DNA adducts were saturated at maximum levels. The saturation of DNA-protein crosslinks seems to occur at 7-8 μg I-(1) chromium in erythrocytes whereas a mean erythrocyte chromium among the chrome platers was as high as 22.8 μg l(-1). Occupationally unexposed subjects exhibited a significant variability with respect to the erythrocyte chromium concentration, however erythrocyte chromium levels correlated closely with DNA-protein crosslinks in lymphocytes. The controls from Jambol had higher chromium concentrations in erythrocytes and elevated levels of DNA-protein crosslinks compared with Burgas controls. Occupational exposure to formaldehyde among furniture factory workers did not change levels of DNA-protein crosslinks in peripheral lymphocytes. DNA-protein crosslink measurements showed a low intraindividual variability and their levels among both controls and exposed indivduals were not affected by smoking, age

  4. DNA synthesis in ataxia telangiectasia

    OpenAIRE

    Jaspers, Nicolaas

    1985-01-01

    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by a reduced ability to properly remove UV-induced DNA damage. The evidence for a DNA repair defect in AT cells is not as strong as in the case of XP (see section 2.2.5 of this thesis). Different XP p...

  5. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (ptotal antioxidant capacity was significantly lower (ptotal antioxidant capacity and hemoglobin levels (r=0.706, ptotal antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  6. Is the Oxidative DNA Damage Level of Human Lymphocyte Correlated with the Antioxidant Capacity of Serum or the Base Excision Repair Activity of Lymphocyte?

    Directory of Open Access Journals (Sweden)

    Yi-Chih Tsai

    2013-01-01

    Full Text Available A random screening of human blood samples from 24 individuals of nonsmoker was conducted to examine the correlation between the oxidative DNA damage level of lymphocytes and the antioxidant capacity of serum or the base excision repair (BER activity of lymphocytes. The oxidative DNA damage level was measured with comet assay containing Fpg/Endo III cleavage, and the BER activity was estimated with a modified comet assay including nuclear extract of lymphocytes for enzymatic cleavage. Antioxidant capacity was determined with trolox equivalent antioxidant capacity assay. We found that though the endogenous DNA oxidation levels varied among the individuals, each individual level appeared to be steady for at least 1 month. Our results indicate that the oxidative DNA damage level is insignificantly or weakly correlated with antioxidant capacity or BER activity, respectively. However, lymphocytes from carriers of Helicobacter pylori (HP or Hepatitis B virus (HBV tend to give higher levels of oxidative DNA damage (P<0.05. Though sera of this group of individuals show no particular tendency with reduced antioxidant capacity, the respective BER activities of lymphocytes are lower in average (P<0.05. Thus, reduction of repair activity may be associated with the genotoxic effect of HP or HBV infection.

  7. Studies on the DNA excision repair in lymphocytes of patients with recurrent herpes simplex

    International Nuclear Information System (INIS)

    Fanta, D.; Topaloglou, A.; Altmann, H.

    1979-01-01

    DNA repair was investigated in lymphocytes from patients with recurrent herpes simplex and from healthy controls. From the results - depressed UV type repair, depressed gamma type repair, reduced RF - it may be concluded that mutations can be expected due to the faults remaining in the DNA. This may not only lower cellular immunocompetence, but also activate already present oncogenic virus informations within the cellular DNA. Thus, irrespective of the possible oncogenic potential of HSV, there seems to be an increased risk of late effects in patients with recurrent herpetic manifestations. (Auth.)

  8. Mercuric dichloride induces DNA damage in human salivary gland tissue cells and lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Katharina; Kroemer, Susanne [University of Regensburg, Regensburg (Germany); Sassen, Andrea [University of Regensburg, Department of Pathology, Regensburg (Germany); Staudenmaier, Rainer [Technical University of Munich, Department of Otorhinolaryngology, Head and Neck Surgery, Munich (Germany); Reichl, Franz-Xaver [University of Munich, Institute of Pharmacology and Toxicology, Munich (Germany); Harreus, Ulrich [University of Munich, Department of Otorhinolaryngology, Head and Neck Surgery, Munich (Germany); Hagen, Rudolf; Kleinsasser, Norbert [University of Wuerzburg, Department of Otorhinolaryngology, Head and Neck Surgery, Wuerzburg (Germany)

    2007-11-15

    Amalgam is still one of the most frequently used dental filling materials. However, the possible adverse effects especially that of the mercuric component have led to continued controversy. Considering that mercury may be released from amalgam fillings into the oral cavity and also reach the circulating blood after absorption and resorption, it eventually may contribute to tumorigenesis in a variety of target cells. The present investigation focuses on genotoxic effects below a cytotoxic dose level of mercuric dichloride (HgCl{sub 2}) in human samples of salivary glands and lymphocytes to elucidate a possible role in tumor initiation. DNA migration due to single strand breaks, alkali labile sites and incomplete excision repair was quantified with the aid of the single cell microgel electrophoresis (Comet) assay. The concepts of Olive Tail Moment, percentage of DNA in the Tail and Tail Length were used as measures of DNA damage. To control for cytotoxic effects, the trypan blue exclusion test was applied. Human samples of the parotid salivary gland and lymphocytes of ten donors were exposed to HgCl{sub 2} concentrations from 1 to 50 {mu}M. N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and dimethyl sulfoxide (DMSO) served as controls. Increasing dose-dependent DNA migration could be demonstrated after exposure to HgCl{sub 2} in cells of the salivary glands and lymphocytes. In both cell types a significant increase in DNA migration could be shown starting from HgCl{sub 2} concentrations of 5 {mu}M in comparison to the negative control. The viability of the cell systems was not affected except at the highest concentration (50 {mu}M) tested. These data indicate genotoxic effects of mercuric dichloride in human salivary glands and lymphocytes at concentrations not leading to cytotoxic effects or cell death. Consequently, a contributory role in oral salivary gland tumor initiation warrants further investigation. (orig.)

  9. Curcumin blocks interleukin (IL)-2 signaling in T-lymphocytes by inhibiting IL-2 synthesis, CD25 expression, and IL-2 receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Forward, Nicholas A.; Conrad, David M. [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Power Coombs, Melanie R.; Doucette, Carolyn D. [Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Furlong, Suzanne J. [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Lin, Tong-Jun [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia (Canada); Hoskin, David W., E-mail: d.w.hoskin@dal.ca [Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Surgery, Dalhousie University, Halifax, Nova Scotia (Canada)

    2011-04-22

    Highlights: {yields} Curcumin inhibits CD4{sup +} T-lymphocyte proliferation. {yields} Curcumin inhibits interleukin-2 (IL-2) synthesis and CD25 expression by CD4{sup +} T-lymphocytes. {yields} Curcumin interferes with IL-2 receptor signaling by inhibiting JAK3 and STAT5 phosphorylation. {yields} IL-2-dependent regulatory T-lymphocyte function and Foxp3 expression is downregulated by curcumin. -- Abstract: Curcumin (diferulomethane) is the principal curcuminoid in the spice tumeric and a potent inhibitor of activation-induced T-lymphocyte proliferation; however, the molecular basis of this immunosuppressive effect has not been well studied. Here we show that micromolar concentrations of curcumin inhibited DNA synthesis by mouse CD4{sup +} T-lymphocytes, as well as interleukin-2 (IL-2) and CD25 ({alpha} chain of the high affinity IL-2 receptor) expression in response to antibody-mediated cross-linking of CD3 and CD28. Curcumin acted downstream of protein kinase C activation and intracellular Ca{sup 2+} release to inhibit I{kappa}B phosphorylation, which is required for nuclear translocation of the transcription factor NF{kappa}B. In addition, IL-2-dependent DNA synthesis by mouse CTLL-2 cells, but not constitutive CD25 expression, was impaired in the presence of curcumin, which demonstrated an inhibitory effect on IL-2 receptor (IL-2R) signaling. IL-2-induced phosphorylation of STAT5A and JAK3, but not JAK1, was diminished in the presence of curcumin, indicating inhibition of critical proximal events in IL-2R signaling. In line with the inhibitory action of curcumin on IL-2R signaling, pretreatment of CD4{sup +}CD25{sup +} regulatory T-cells with curcumin downregulated suppressor function, as well as forkhead box p3 (Foxp3) expression. We conclude that curcumin inhibits IL-2 signaling by reducing available IL-2 and high affinity IL-2R, as well as interfering with IL-2R signaling.

  10. Curcumin blocks interleukin (IL)-2 signaling in T-lymphocytes by inhibiting IL-2 synthesis, CD25 expression, and IL-2 receptor signaling

    International Nuclear Information System (INIS)

    Forward, Nicholas A.; Conrad, David M.; Power Coombs, Melanie R.; Doucette, Carolyn D.; Furlong, Suzanne J.; Lin, Tong-Jun; Hoskin, David W.

    2011-01-01

    Highlights: → Curcumin inhibits CD4 + T-lymphocyte proliferation. → Curcumin inhibits interleukin-2 (IL-2) synthesis and CD25 expression by CD4 + T-lymphocytes. → Curcumin interferes with IL-2 receptor signaling by inhibiting JAK3 and STAT5 phosphorylation. → IL-2-dependent regulatory T-lymphocyte function and Foxp3 expression is downregulated by curcumin. -- Abstract: Curcumin (diferulomethane) is the principal curcuminoid in the spice tumeric and a potent inhibitor of activation-induced T-lymphocyte proliferation; however, the molecular basis of this immunosuppressive effect has not been well studied. Here we show that micromolar concentrations of curcumin inhibited DNA synthesis by mouse CD4 + T-lymphocytes, as well as interleukin-2 (IL-2) and CD25 (α chain of the high affinity IL-2 receptor) expression in response to antibody-mediated cross-linking of CD3 and CD28. Curcumin acted downstream of protein kinase C activation and intracellular Ca 2+ release to inhibit IκB phosphorylation, which is required for nuclear translocation of the transcription factor NFκB. In addition, IL-2-dependent DNA synthesis by mouse CTLL-2 cells, but not constitutive CD25 expression, was impaired in the presence of curcumin, which demonstrated an inhibitory effect on IL-2 receptor (IL-2R) signaling. IL-2-induced phosphorylation of STAT5A and JAK3, but not JAK1, was diminished in the presence of curcumin, indicating inhibition of critical proximal events in IL-2R signaling. In line with the inhibitory action of curcumin on IL-2R signaling, pretreatment of CD4 + CD25 + regulatory T-cells with curcumin downregulated suppressor function, as well as forkhead box p3 (Foxp3) expression. We conclude that curcumin inhibits IL-2 signaling by reducing available IL-2 and high affinity IL-2R, as well as interfering with IL-2R signaling.

  11. The effect of UV-light on DNA metabolism of lymphocytes during radiotherapy

    International Nuclear Information System (INIS)

    Klein, W.; Altmann, H.; Klein, H.; Alth, G.; Koren, H.

    1980-02-01

    The effects of gamma plus electron therapy and only gammatherapy, respectively, were investigated in lymphocytes of the peripheral blood of 10 patients with malignancies. The efficiency of DNA repair was tested by an irradiation of the cells with UV light beside radiotherapy. Using only gamma rays for therapy, the effects by UV light were not so pronounced than for using gamma plus electron therapy. (author)

  12. Effect and adaptive response of lymphocytes DNA induced by low dose irradiation

    International Nuclear Information System (INIS)

    Du Zeji; Su Liaoyuan; Tian Hailin

    1994-09-01

    Fluorometric analysis of DNA unwinding (FADU) was conducted and was proved to be an optimal method for studying DNA strand breaks induced by low dose irradiation. The linear dose response curve was obtained. The minimum detected dose was 0.3 Gy. There was no effect of low dose γ-rays (0.5∼8.0 cGy) on DNA strand breaks of quiescent and mitogen-induced lymphocytes. The 0.5∼4.0 cGy γ-rats could induce adaptive response of lymphocytes' DNA strand breaks, especially, at the doses of 2.0 and 4.0 cGy. The challenge doses of 5∼20 Gy could make the adaptive response appearance, and the 15 Gy was the best one. The 3-AB could powerfully inhibit the adaptive response. The repair of DNA strand breaks (37 degree C, 15∼60 min) caused by 15 Gy γ-rays could be promoted by the low dose γ-ray irradiation (2.0 cGy), but no difference was found at 37 degree C, 120 min

  13. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    International Nuclear Information System (INIS)

    Zana, Marianna; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Szabo, Krisztina; Vetro, Agnes; Szucs, Peter; Varkonyi, Agnes; Pakaski, Magdolna; Boda, Krisztina; Rasko, Istvan; Janka, Zoltan; Kalman, Janos

    2006-01-01

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults

  14. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    Science.gov (United States)

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  15. DNA Damage Induction and Repair Evaluated in Human Lymphocytes Irradiated with X-Rays an Neutrons

    International Nuclear Information System (INIS)

    Niedzwiedz, W.; Cebulska-Wasilewska, A.

    2000-12-01

    The objective of this study was to evaluate the kinetic of the DNA damage induction and their subsequent repair in human lymphocytes exposed to various types of radiation. PBLs cells were isolated from the whole blood of two young healthy male subjects and one skin cancer patient, and than exposed to various doses of low LET X-rays and high LET neutrons from 252 Cf source. To evaluate the DNA damage we have applied the single cell get electrophoresis technique (SCGE) also known as the comet assay. In order to estimate the repair efficiency, cells, which had been irradiated with a certain dose, were incubated at 37 o C for various periods of time (0 to 60 min). The kinetic of DNA damage recovery was investigated by an estimation of residual DNA damage persisted at cells after various times of post-irradiation incubation (5, 10, 15, 30 and 60 min). We observed an increase of the DNA damage (reported as a Tail DNA and Tail moment parameters) in linear and linear-quadratic manner, with increasing doses of X-rays and 252 Cf neutrons, respectively. Moreover, for skin cancer patient (Code 3) at whole studied dose ranges the higher level of the DNA damage was observed comparing to health subjects (Code 1 and 2), however statistically insignificant (for Tail DNA p=0.056; for Tail moment p=0.065). In case of the efficiency of the DNA damage repair it was observed that after 1 h of post-irradiation incubation the DNA damage induced with both, neutrons and X-rays had been significantly reduced (from 65% to 100 %). Furthermore, in case of skin cancer patient we observed lover repair efficiency of X-rays induced DNA damage. After irradiation with neutrons within first 30 min, the Tail DNA and Tail moment decreased of about 50%. One hour after irradiation, almost 70% of residual and new formed DNA damage was still observed. In this case, the level of unrepaired DNA damage may represent the fraction of the double strand breaks as well as more complex DNA damage (i.e.-DNA or DNA

  16. DNA-repair synthesis in ataxia telangiectasia lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Ford, M.D.; Houldsworth, J.; Lavin, M.F. (Queensland Univ., Brisbane (Australia). Dept. of Biochemistry)

    1981-12-01

    The ability of a number of Epstein-Barr virus-transformed lymphoblastoid cells from ataxia telangiectasia (AT) patients to repair ..gamma..-radiation damage to DNA was determined. All of these AT cells were previously shown to be hypersensitive to ..gamma..-radiation. Two methods were used to determine DNA-repair synthesis: isopycnic gradient analysis and a method employing hydroxyurea to inhibit semiconservative DNA synthesis. Control, AT heterozygote and AT homozygote cells were demonstrated to have similar capacities for repair of radiation damage to DNA. In addition at high radiation doses (10-40 krad) the extent of inhibition of DNA synthesis was similar in the different cell types.

  17. Taurine protects DNA of lymphocytes against oxidative alteration in riding horses

    DEFF Research Database (Denmark)

    Sokól, Janusz Leszek; Sawosz, Ewa; Niemiec, Tomasz

    2009-01-01

    The study aimed at evaluation the effect of dietary supplement of taurine on the oxidation-reduction status in riding horses, and especially on the extent of oxidative DNA degradation in lymphocytes. Ten Thoroughbred and half-bred geldings aged 6-13 years were classified according to breed...... and amount of work done into two groups - control (C, n=5) and experimental (E, n=5), the latter fed the diet with addition of 40 g taurine/horse/day. Blood samples were withdrawn from the horses' jugular vein before commencing the riding season and then after 30 days of working. In the blood some selected....... The addition of taurine to feed caused smaller oxidative stress, manifested by lower concentration of TBA-RS in plasma and of 8-oxo-dG in lymphocytes. The taurine lowered the lipid peroxidation intensity that occurred in horses due to the oxidative stress caused by physical effort. Furthermore, taurine...

  18. Investigations on DNA repair in peripheric lymphocytes of arthritic patients treated at Badgastein

    International Nuclear Information System (INIS)

    Egg, D.; Guenther, R.; Klein, W.; Kocsis, F.; Altmann, H.

    1976-01-01

    The DNA repair capacity in peripheric lymphocytes was studied in 18 arthritic patients after completion of a therapy at Badgastein. It was found that excision repair determined by the ''student test'' was significantly increased for 11 patients as compared to the level before treatment. In 4 patients no significant change was found. A clear decrease of DNA excision repair was encountered in 2 patients. One patient showed a complete inhibition of DNA excision repair before as well as after the treatment. The role of different parameters such as environmental radiaton exposure, altitude, ambient temperature for the observed changes cannot be deduced from the results obtained as yet and shall be clarified in subsequent investigation. (G.G.)

  19. Adaptive response of DNA strand breaks in lymphocytes to low dose and γ-rays

    International Nuclear Information System (INIS)

    Du Zeji; Su Liaoyuan; Kong Xiangrong; Tian Hailin

    1996-01-01

    Fluorometric analysis of DNA unwinding was used to study the adaptive response of DNA strand breaks induced by low dose γ-rays and the effect of pADPRT inhibitor-3-AB on the adaptive response. The results indicated that 0.5-4 cGy γ-rays could induce adaptive response of DNA strand breaks in lymphocytes, especially at the doses of 2.0 and 4.0 cGy. This response was not obvious after 8.0 cGy γ-rays irradiation. A challenge dose of 5-20 Gy could make the response expressed, 15 Gy was the best one and 30 Gy was too high to give an adaptive response . 0.5 mM 3-AB could inhibit the response vigorously. As the concentration increased, the adaptive response could be inhibited completely

  20. Monitoring of DNA and cytogenetic damage in lymphocytes from persons with skin cancer diseases

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Dyga, W.; Krasnowolski, S.; Wierzewska, A.; Budzanowska, E.

    1999-01-01

    There is a lot of interest in the studies that would help to understand whether there is a casual association between cancer and various types of molecular or cytogenetic damage detected in human cells. One major oncogenesis process is activation of proto-oncogenes by point mutations or chromosomal translocation. There are substantial evidence that indicates that the loss of heterozygosity of certain chromosomes is involved in human cancerogenesis. Our study aimed to elicit the possible association between cancer and DNA and cytogenetic abnormalities induced in lymphocytes of people bearing various categories of skin cancer cells. Fresh blood was collected by venipuncture from 25 individuals (including nine prior to cancer treatment). All patients were nonsmoking males, however 42.3 % of them were former smokers. Blood samples were divided into two parts and in the first part of samples cytogenetic studies were performed immediately, while from the second part lymphocytes were isolated and stored at -70 o C for further studies in vitro. In the later one a single cell gel electrophoresis assay (SCGE) known as a Comet assay was performed to study individual susceptibility to the induction of DNA damage by UV or radiation and to estimate variability in cellular repair capabilities. An average of 220 per sample of good metaphase spreads in the first mitotic division, and 100 per sample in the second division, were accepted for analysis of cytogenetic damage. Chromosome and chromatid type aberrations were scored in the cells in the first mitosis and expressed as total aberration frequency including gaps and excluding gaps. Sister chromatid exchanges, high frequency cells and proliferative rate index were screened and evaluated in the second mitosis. Each of the patient revealed exceeding in at least one of the cytogenetic biomarkers level from the biomarker's level detected in a reference group. In order to estimate susceptibility of people to environmentally induced

  1. Monitoring of DNA and cytogenetic damage in lymphocytes in patients with skin cancer disease

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Dyga, W.; Krasnowolski, S.; Wierzewska, A.; Budzanowska, E.

    1999-01-01

    One major oncogenesis process is activation of proto-oncogenes by point mutations or chromosomal translocations. There is substantial evidence that indicates that human carcinogenesis involves loss of heterozygosity of certain chromosomes. Our study aimed at searching the possible association between cancer and DNA and cytogenetic abnormalities induced in lymphocytes of people with various categories of skin cancer cells. Fresh blood was collected by venepuncture from 25 individuals (including nine prior to cancer treatment). All patients were nonsmoking males, however 42.3% of them were former smokers. Blood samples were divided into two parts; in the first part of samples cytogenetic studies were performed immediately, while lymphocytes from the other part were isolated and stored at -70 0C for further studies in vitro. A single cell gel electrophoresis assay (SCGE), known as a Comet assay, was performed on them to study individual susceptibility to the induction of DNA damage by UV or radiation and to estimate variability in cellular repair capabilities. On average 220 good metaphase spreads per sample in the first mitotic division, and 100 spreads per sample in the second division were accepted for analysis of the cytogenetic damage. Chromosome and chromatid type aberrations were scored in the cells in the first mitosis, and expressed as total aberration frequency including and excluding gaps. Sister chromatid exchanges , high frequency cells and proliferating rate index were screened and evaluated in the second mitosis. Each patient showed a level exceeding (in at least one of the cytogenetic biomarker) the biomarker level in a reference group. In order to estimate susceptibility of people to environmentally induced damage, the isolated lymphocytes were irradiated with 2 Gy dose of X-rays or 6 J/m 2 of UV radiation, and the single cell gel electrophoresis (SCGE assay) was performed. To compare various individual capabilities to repair the induced damage

  2. 1,4 Naphthoquinone protects radiation induced cell death and DNA damage in lymphocytes by activation Nrf2/are pathway and enhancing DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nazir M; Sandur, Santosh K; Checker, Rahul; Sharma, Deepak; Poduval, T.B., E-mail: nazirbiotech@rediffmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai (India)

    2012-07-01

    1,4-Naphthoquinone (NQ) is the parent molecule of many clinically approved anticancer, anti-infective, and antiparasitic drugs such as anthracycline, mitomycin, daunorubicin, doxorubicin, diospyrin, and malarone. Presence of NQ during a-irradiation (4Gy) significantly reduced the death of irradiated murine splenic lymphocytes in a dose dependent manner (0.05-liM), with complete protection at liM as assessed by PI staining. Radioprotection by NQ was further confirmed by inhibition of caspase activation, decrease in cell size, DNA-fragmentation, nuclear-blebbing and clonogenic assay. All trans retinoic acid which is inhibitor of Nrf-2 pathway, completely abrogated the radioprotective effect of NQ, suggesting that radioprotective activity of NQ may be due to activation of Nrf-2 signaling pathways. Further, addition of NQ to lymphocytes activated Nrf-2 in time dependent manner as shown by confocal microscopy, electrophoretic mobility shift assay and quantitative real time PCR. It also increased the expression of Nrf-2 dependent cytoprotective genes like hemeoxygenase-1, MnSOD, catalse as demonstrated by real time PCR and flowcytometry. NQ protected lymphocytes significantly against radiation-induced cell death even when added after irradiation. Complete protection was observed by addition of NQ up to 2 h after irradiation. However, percentage protection decreased with increasing time interval. These results suggested that NQ may offer protection to lymphocytes activating repair pathways. Repair of radiation induced DNA strand breaks was studied by comet assay. Pretreatment of lymphocytes with NQ induced single strand breaks up to 6h but not double strand breaks in DNA. However, NQ mediated single strand breaks were repaired completely at longer time intervals. Addition of NQ to lymphocytes prior to 4 Gy a-radiation exposure showed decrease in the yield of DNA double strand breaks. The observed time-dependent decrease in the DNA strand breaks could be attributed to

  3. Signalling detection of DNA damage induced by low doses of ionizing radiation in human lymphocytes

    International Nuclear Information System (INIS)

    Valente, M.

    2011-01-01

    Individuals spontaneously present different sensitivities to ionizing radiation, measured by the severity of their post-radiotherapy side-effects. Cells from some patients with extreme clinical radiosensitivity have shown altered cellular radiosensitivity measured by different endpoints as apoptosis or DNA damage. Linking clinical and cellular sensitivity is of fundamental importance to establish a clinical test capable of predicting a person's radiosensitivity from a sample. Easily sampled, peripheral blood lymphocytes (PBL) are an appealing cellular model to study individual radiosensitivity as they have been shown to be the most radiosensitive hematopoietic cells. DNA damages and repair can be visualized by observing the kinetics of appearance and disappearance of gamma-H2AX foci on DNA double-strand breaks through immunofluorescence microscopy. The experimental strategy chosen here was to follow lymphocyte gamma-H2AX foci kinetics in response to different levels of irradiation as delayed gamma-H2AX foci disappearance has been observed in cells of individuals with high clinical radiosensitivity. For our initial study we irradiated in vitro samples of radiotherapy patients with different clinical radiosensitivities. The groups of distinct clinical sensitivities showed no corresponding differences in their cellular gamma-H2AX response. In addition, several samples were lost, mainly due to the long transportation period before being treated in our lab. To render this method usable for clinical applications, several changes were made: after improving sample viability, speed was increased by automation of image acquisition (Metasystem) and gamma-H2AX focus scoring (freeware CellProfiler). This technique was able to detect doses as low as 0.005 Gy and gave similar results to manual focus scoring. The possibility of discriminating different lymphocyte subsets (CD4, CD8 and CD19) during analysis was added to identify among the lymphocyte subsets the one producing more

  4. Neurotensin enhances estradiol induced DNA synthesis in immature rat uterus

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, A.; Vijayan, E.

    1985-05-27

    Systemic administration of Neurotensin, a tridecapeptide, in immature rats treated with estradiol benzoate significantly enhances uterine DNA synthesis as reflected by the incorporation of /sup 3/H-thymidine. The peptide may have a direct action on the uterus. Substance P, a related peptide, had no effect on uterine DNA synthesis. 18 references, 4 tables.

  5. Differential sensitivity to aphidicolin of replicative DNA synthesis and ultraviolet-induced unscheduled DNA synthesis in vivo in mammalian cells

    International Nuclear Information System (INIS)

    Seki, Shuji; Hosogi, Nobuo; Oda, Takuzo

    1984-01-01

    In vivo in mammalian cells, ultraviolet-induced unscheduled DNA synthesis was less sensitive to aphidicolin than was replicative DNA synthesis. Replicative DNA synthesis in HeLa, HEp-2, WI-38 VA-13 and CV-1 cells was inhibited more than 97 % by aphidicolin at 10 μg/ml, whereas aphidicolin inhibition of DNA synthesis in ultraviolet-irradiated cells varied between 30 % and 90 % depending on cell types and assay conditions. Aphidicolin inhibition of unscheduled DNA synthesis (UDS) in HeLa cells increased gradually with increasing aphidicolin concentration and reached approximately 90 % at 100 μg/ml aphidicolin. A significant fraction of UDS in ultraviolet-irradiated HEp-2 cells was resistant to aphidicolin even at 300 μg/ml. Considered along with related information reported previously, the present results suggest that both aphidicolin-sensitive and insensitive DNA polymerases, DNA polymerase α and a non-α DNA polymerase (possibly DNA polymerase β), are involved in in situ UDS in these ultraviolet-irradiated cells. Comparison of staphylococcal nuclease sensitivity between DNAs repaired in the presence and in the absence of aphidicolin in HEp-2 cells suggested that the involvement of DNA polymerase α in UDS favored DNA synthesis in the intranucleosomal region. (author)

  6. DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human

    DEFF Research Database (Denmark)

    Simar, David; Versteyhe, Soetkin; Donkin, Ida

    2014-01-01

    (T2D). The aim of this study was to determine the global DNA methylation profile of immune cells in obese and T2D individuals in a cell type-specific manner. Material and methods Fourteen obese subjects and 11 age-matched lean subjects, as well as 12 T2D obese subjects and 7 age-matched lean subjects.......001). Results Global DNA methylation in peripheral blood mononuclear cells, monocytes, lymphocytes or T cells was not altered in obese or T2D subjects. However, analysis of blood fractions from lean, obese, and T2D subjects showed increased methylation levels in B cells from obese and T2D subjects...

  7. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    DEFF Research Database (Denmark)

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe

    2011-01-01

    We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilizati...

  8. Mobile phone radiofrequency exposure has no effect on DNA double strand breaks (DSB) in human lymphocytes.

    Science.gov (United States)

    Danese, Elisa; Lippi, Giuseppe; Buonocore, Ruggero; Benati, Marco; Bovo, Chiara; Bonaguri, Chiara; Salvagno, Gian Luca; Brocco, Giorgio; Roggenbuck, Dirk; Montagnana, Martina

    2017-07-01

    The use of mobile phones has been associated with an increased risk of developing certain type of cancer, especially in long term users. Therefore, this study was aimed to investigate the potential genotoxic effect of mobile phone radiofrequency exposure on human peripheral blood mononuclear cells in vitro. The study population consisted in 14 healthy volunteers. After collection of two whole blood samples, the former was placed in a plastic rack, 1 cm from the chassis of a commercial mobile phone (900 MHz carrier frequency), which was activated by a 30-min call. The second blood sample was instead maintained far from mobile phones or other RF sources. The influence of mobile phone RF on DNA integrity was assessed by analyzing γ-H2AX foci in lymphocytes using immunofluorescence staining kit on AKLIDES. No measure of γ-H2AX foci was significantly influenced by mobile phone RF exposure, nor mobile phone exposure was associated with significant risk of genetic damages in vitro (odds ratio comprised between 0.27 and 1.00). The results of this experimental study demonstrate that exposure of human lymphocytes to a conventional 900 MHz RF emitted by a commercial mobile phone for 30 min does not significantly impact DNA integrity.

  9. DNA damage in human lymphocytes exposed to four food additives in vitro.

    Science.gov (United States)

    Yilmaz, Serkan; Unal, Fatma; Yüzbaşıoğlu, Deniz; Celik, Mustafa

    2014-11-01

    In vitro genotoxic effects of antioxidant additives, such as citric acid (CA) and phosphoric acid (PA) and their combination, as well as antimicrobial additives, such as benzoic acid (BA) and calcium propionate (CP), on human lymphocytes were determined using alkaline single-cell gel electrophoresis. There was a significant increase in the DNA damage in human lymphocytes after 1 h of in vitro exposure to CA, PA, BA and CP (200, 25-200, 50-500, 50-1000 μg/mL, respectively). The combination of CA and PA significantly increased the mean tail intensity at all the concentrations used (25-200 μg/mL) and significantly increased the mean tail length mainly after higher concentrations (100 and 200 μg/mL). Data in this study showed that the concentrations of food additives used induce DNA damage and PA was the most genotoxic and CA was less genotoxic additives among them. © The Author(s) 2012.

  10. Fungal beta glucan protects radiation induced DNA damage in human lymphocytes.

    Science.gov (United States)

    Pillai, Thulasi G; Maurya, Dharmendra K; Salvi, Veena P; Janardhanan, Krishnankutty K; Nair, Cherupally K K

    2014-02-01

    Ganoderma lucidum (Ling Zhi), a basidiomycete white rot macrofungus has been used extensively for therapeutic use in China, Japan, Korea and other Asian countries for 2,000 years. The present study is an attempt to investigate its DNA protecting property in human lymphocytes. Beta glucan (BG) was isolated by standard procedure and the structure and composition were studied by infrared radiation (IR) and nuclear magnetic resonance (NMR) spectroscopy, gel filtration chromatography and paper chromatography. The radioprotective properties of BG isolated from the macro fungi Ganoderma lucidum was assessed by single cell gel electrophoresis (comet assay). Human lymphocytes were exposed to 0, 1, 2 and 4 Gy gamma radiation in the presence and absence of BG. The comet parameters were reduced by BG. The results indicate that the BG of G. lucidum possessed significant radioprotective activity with DNA repairing ability and antioxidant activity as the suggestive mechanism. The findings suggest the potential use of this mushroom for the prevention of radiation induced cellular damages.

  11. Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro.

    Science.gov (United States)

    Djelić, Ninoslav; Radaković, Milena; Spremo-Potparević, Biljana; Zivković, Lada; Bajić, Vladan; Stevanović, Jevrosima; Stanimirović, Zoran

    2015-02-01

    Catechol groups can be involved in redox cycling accompanied by generation of reactive oxygen species (ROS) which may lead to oxidative damage of cellular macromolecules including DNA. The objective of this investigation was to evaluate possible genotoxic effects of a natural catecholamine adrenaline in cultured human lymphocytes using cytogenetic (sister chromatid exchange and micronuclei) and the single cell gel electrophoresis (Comet) assay. In cytogenetic tests, six experimental concentrations of adrenaline were used in a range from 0.01-500 μM. There were no indications of genotoxic effects of adrenaline in sister chromatid exchange and micronucleus tests. However, at four highest concentrations of adrenaline (5 μM, 50 μM, 150 μM and 300 μM) we observed a decreased mitotic index and cell-cycle delay. In addition, in the Comet assay we used adrenaline in a range from 0.0005-500 μM, at two treatment times: 15 min or 60 min. In contrast to cytogenetic analysis, there was a dose-dependent increase of DNA damage detected in the Comet assay. These effects were significantly reduced by concomitant treatment with quercetin or catalase. Therefore, the obtained results indicate that adrenaline may exhibit genotoxic effects in cultured human lymphocytes, most likely due to production of reactive oxygen species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Taei, M.; Rahmani, H.R.; Khayamian, T.

    2011-01-01

    Highlights: → Chronic lymphocytic leukemia causes an increase in the number of white blood cells. → We introduced a highly sensitive biosensor for the detection of chronic lymphocytic leukemia. → A suitable 25-mer ssDNA probe was immobilized on the surface of the gold nanoparticles. → We used electrochemical impedance spectroscopy as a suitable tool for the detection. → Detection of chronic lymphocytic leukemia in blood sample was checked using the sensor. - Abstract: A simple and sensitive DNA impedance sensor was prepared for the detection of chronic lymphocytic leukemia. The DNA electrochemical biosensor is worked based on the electrochemical impedance spectroscopic (EIS) detection of the sequence-specific DNA related to chronic lymphocytic leukemia. The ssDNA probe was immobilized on the surface of the gold nanoparticles. Compared to the bare gold electrode, the gold nanoparticles-modified electrode could improve the density of the probe DNA attachment and hence the sensitivity of the DNA sensor greatly. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were performed in a solution containing 1.0 mmol L -1 K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] and 50 mmol L -1 phosphate buffer saline pH 6.87 plus 50 mmol L -1 KCl. In the CV studied, the potential was cycled from 0.0 to +0.65 V with a scan rate of 50 mV s -1 . Using EIS, the difference of the electron transfer resistance (ΔR et ) was linear with the logarithm of the complementary oligonucleotides sequence concentrations in the range of 7.0 x 10 -12 -2.0 x 10 -7 mol L -1 , with a detection limit of 1.0 x 10 -12 mol L -1 . In addition, the DNA sensor showed a good reproducibility and stability during repeated regeneration and hybridization cycles.

  13. Phosphatidylinositol response and proliferation of oxidative enzyme-activated human T lymphocytes: suppression by plasma lipoproteins

    International Nuclear Information System (INIS)

    Akeson, A.L.; Scupham, D.W.; Harmony, J.A.

    1984-01-01

    The phosphatidylinositol (PI) response and DNA synthesis of neuraminidase and galactose oxidase (NAGO)-stimulated human T lymphocytes are suppressed by low density lipoproteins (LDL). To understand the mechanism of lymphocyte activation more fully, the PI response and DNA synthesis and suppression of these events by LDL in NAGO-stimulated T lymphocytes were characterized. Between 30 min and 6 hr after NAGO stimulation, there was an increase of 32 Pi incorporation into PI without increased incorporation into the phosphorylated forms of PI or into other phospholipids. DNA synthesis as determined by [ 3 H]thymidine incorporation depended on the lymphocyte-accessory monocyte ratio and total cell density. Optimal stimulation of the PI response and DNA synthesis occurred at the same concentration of neuraminidase and galactose oxidase. While the PI response was only partially suppressed by LDL with optimal suppression at 10 to 20 micrograms of protein/ml, DNA synthesis was completely suppressed although at much higher LDL concentrations, greater than 100 micrograms protein/ml. As monocyte numbers are increased, LDL suppression of DNA synthesis is decreased. The ability of NAGO to stimulate the PI response and DNA synthesis in a similar way, and the suppression of both events by LDL, suggests the PI response is important for lymphocyte activation and proliferation. Stimulation of human T lymphocytes by oxidative mitogens, neuraminidase, and galactose oxidase caused increased phosphatidylinositol metabolism and increased DNA synthesis. Both responses were suppressed by low density lipoproteins

  14. The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA

    International Nuclear Information System (INIS)

    Hanif, Sarmad; Shamim, Uzma; Ullah, M.F.; Azmi, Asfar S.; Bhat, Showket H.; Hadi, S.M.

    2008-01-01

    Epidemiological and experimental evidence exists to suggest that pomegranate and its juice possess chemopreventive and anticancer properties. The anthocyanidin delphinidin is a major polyphenol present in pomegranates and has been shown to be responsible for these effects. Plant polyphenols are recognized as naturally occurring antioxidants but also catalyze oxidative DNA degradation of cellular DNA either alone or in the presence of transition metal ions such as copper. In this paper we show that similar to various other classes of polyphenols, delphinidin is also capable of causing oxidative degradation of cellular DNA. Lymphocytes were exposed to various concentrations of delphinidin (10, 20, 50 μM) for 1 h and the DNA breakage was assessed using single cell alkaline gel electrophoresis (Comet assay). Inhibition of DNA breakage by several scavengers of reactive oxygen species (ROS) indicated that it is caused by the formation of ROS. Incubation of lymphocytes with neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation in intact lymphocytes in a dose dependent manner. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. We have further shown that delphinidin is able to degrade DNA in cell nuclei and that such DNA degradation is also inhibited by neocuproine suggesting that nuclear copper is mobilized in this reaction. These results indicate that the generation of ROS possibly occurs through mobilization of endogenous copper ions. The results are in support of our hypothesis that the prooxidant activity of plant polyphenols may be an important mechanism for their anticancer properties

  15. Modification of lymphocyte DNA damage by carotenoid supplementation in postmenopausal women.

    Science.gov (United States)

    Zhao, Xianfeng; Aldini, Giancarlo; Johnson, Elizabeth J; Rasmussen, Helen; Kraemer, Klaus; Woolf, Herb; Musaeus, Nina; Krinsky, Norman I; Russell, Robert M; Yeum, Kyung-Jin

    2006-01-01

    Oxidative stress has been implicated in the pathogenesis of chronic diseases related to aging such as cancer and cardiovascular disease. Carotenoids could be a part of a protective strategy to minimize oxidative damage in vulnerable populations, such as the elderly. Our aim was to determine the protective effect of carotenoids against DNA damage. A randomized, double-blind, placebo-controlled intervention study was conducted. Thirty-seven healthy, nonsmoking postmenopausal women aged 50-70 y were randomly assigned to 1 of 5 groups and were instructed to consume a daily dose of mixed carotenoids (beta-carotene, lutein, and lycopene; 4 mg each), 12 mg of a single carotenoid (beta-carotene, lutein, or lycopene), or placebo for 56 d. Plasma carotenoid concentrations were analyzed by using HPLC, and lymphocyte DNA damage was measured by using a single-cell gel electrophoresis (comet) assay. At day 57, all carotenoid-supplemented groups showed significantly lower endogenous DNA damage than at baseline (P lutein, beta-carotene, and lycopene), an intake that can be achieved by diet, or a larger dose (12 mg) of individual carotenoids exerts protection against DNA damage.

  16. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Korzeneva, Inna B., E-mail: inna.korzeneva@molgen.vniief.ru [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Kostuyk, Svetlana V.; Ershova, Liza S. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation); Osipov, Andrian N. [Federal Medial and Biological Center named after Burnazyan of the Federal Medical and Biological Agency (FMBTz named after Burnazyan of FMBA), Moscow (Russian Federation); State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya, 46, Moscow, 123098 (Russian Federation); Zhuravleva, Veronika F.; Pankratova, Galina V. [Russian Federal Nuclear Center – All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region (Russian Federation); Porokhovnik, Lev N.; Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str. (Russian Federation)

    2015-09-15

    Highlights: • The chronic exposure to low-dose IR induces DSBs in human lymphocytes (TM index). • Exposure to IR decreases the level of human circulating DNA (cfDNA index). • IR induces an increase of DNase1 activity (DNase1 index) in plasma. • IR induces an increase of the level of antibodies to DNA (Ab DNA index) in plasma. • The ratio cfDNA/(DNase 1 × Ab DNA × TM) is a potential marker of human exposure to IR. - Abstract: The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism’s cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1 × Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab

  17. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  18. Cloning and Sequencing of Protein Kinase cDNA from Harbor Seal (Phoca vitulina Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2004-01-01

    Full Text Available Protein kinases (PKs play critical roles in signal transduction and activation of lymphocytes. The identification of PK genes provides a tool for understanding mechanisms of immunotoxic xenobiotics. As part of a larger study investigating persistent organic pollutants in the harbor seal and their possible immunomodulatory actions, we sequenced harbor seal cDNA fragments encoding PKs. The procedure, using degenerate primers based on conserved motifs of human protein tyrosine kinases (PTKs, successfully amplified nine phocid PK gene fragments with high homology to human and rodent orthologs. We identified eight PTKs and one dual (serine/threonine and tyrosine kinase. Among these were several PKs important in early signaling events through the B- and T-cell receptors (FYN, LYN, ITK and SYK and a MAP kinase involved in downstream signal transduction. V-FGR, RET and DDR2 were also expressed. Sequential activation of protein kinases ultimately induces gene transcription leading to the proliferation and differentiation of lymphocytes critical to adaptive immunity. PKs are potential targets of bioactive xenobiotics, including persistent organic pollutants of the marine environment; characterization of these molecules in the harbor seal provides a foundation for further research illuminating mechanisms of action of contaminants speculated to contribute to large-scale die-offs of marine mammals via immunosuppression.

  19. Quantification of cell-free DNA in blood plasma and DNA damage degree in lymphocytes to evaluate dysregulation of apoptosis in schizophrenia patients.

    Science.gov (United States)

    Ershova, E S; Jestkova, E M; Chestkov, I V; Porokhovnik, L N; Izevskaya, V L; Kutsev, S I; Veiko, N N; Shmarina, G; Dolgikh, O; Kostyuk, S V

    2017-04-01

    Oxidative DNA damage has been proposed as one of the causes of schizophrenia (SZ), and post mortem data indicate a dysregulation of apoptosis in SZ patients. To evaluate apoptosis in vivo we quantified the concentration of plasma cell-free DNA (cfDNA index, determined using fluorescence), the levels of 8-oxodG in cfDNA (immunoassay) and lymphocytes (FL1-8-oxodG index, flow cytometry) of male patients with acute psychotic disorders: paranoid SZ (total N = 58), schizophreniform (N = 11) and alcohol-induced (N = 14) psychotic disorder, and 30 healthy males. CfDNA in SZ (N = 58) does not change compared with controls. In SZ patients. Elevated levels of 8-oxodG were found in cfDNA (N = 58) and lymphocytes (n = 45). The main sources of cfDNA are dying cells with oxidized DNA. Thus, the cfDNA/FL1-8-oxodG ratio shows the level of apoptosis in damaged cells. Two subgroups were identified among the SZ patients (n = 45). For SZ-1 (31%) and SZ-2 (69%) median values of cfDNA/FL1-8-oxodG index are related as 1:6 (p DNA in the patient's body tissues and may be a contributing cause of acute psychotic disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, L.M. (Department of Molecular Genetics, Institute of Genetics, Sofia (Bulgaria)); Mullenders, L.H.F.; Natarajan, A.T. (J.A. Cohen Institute, Interuniversity Research Institute for Radiopathology and Radiation Protection, Leiden (Netherlands))

    1994-12-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations.

  1. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    International Nuclear Information System (INIS)

    Stoilov, L.M.; Mullenders, L.H.F.; Natarajan, A.T.

    1994-01-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations

  2. Electron microscopic in situ hybridization and autoradiography: Localization and transcription of rDNA in human lymphocyte nucleoli

    International Nuclear Information System (INIS)

    Wachtler, F.; Mosgoeller, W.S.; Schwarzacher, H.G.

    1990-01-01

    The distribution of ribosomal DNA (rDNA) in the nucleoli of human lymphocytes was revealed by in situ hybridization with a nonautoradiographic procedure at the electron microscopic level. rDNA is located in the dense fibrillar component of the nucleolus but not in the fibrillar centers. In the same cells the incorporation of tritiated uridine takes place in the dense fibrillar component of the nucleolus as seen by autoradiography followed by gold latensification. From these findings it can be concluded that the transcription of ribosomal DNA takes place in the dense fibrillar component of the nucleolus

  3. DNA damage in blood lymphocytes in patients after {sup 177}Lu peptide receptor radionuclide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Uta; Bluemel, Christina; Buck, Andreas Konrad; Werner, Rudolf Alexander; Lassmann, Michael [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nowak, Carina; Scherthan, Harry [Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich (Germany)

    2015-10-15

    The aim of the study was to investigate DNA double strand break (DSB) formation and its correlation with the absorbed dose to the blood lymphocytes of patients undergoing their first peptide receptor radionuclide therapy (PRRT) with {sup 177}Lu-labelled DOTATATE/DOTATOC. The study group comprised 16 patients receiving their first PRRT. At least six peripheral blood samples were obtained before, and between 0.5 h and 48 h after radionuclide administration. From the time-activity curves of the blood and the whole body, residence times for blood self-irradiation and whole-body irradiation were determined. Peripheral blood lymphocytes were isolated, fixed with ethanol and subjected to immunofluorescence staining for colocalizing γ-H2AX/53BP1 DSB-marking foci. The average number of DSB foci per cell per patient sample was determined as a function of the absorbed dose to the blood and compared with an in vitro calibration curve established in our laboratory with {sup 131}I and {sup 177}Lu. The average number of radiation-induced foci (RIF) per cell increased over the first 5 h after radionuclide administration and decreased thereafter. A linear fit from 0 to 5 h as a function of the absorbed dose to the blood agreed with our in vitro calibration curve. At later time-points the number of RIF decreased, indicating progression of DNA repair. Measurements of RIF and the absorbed dose to the blood after systemic administration of {sup 177}Lu may be used to obtain data on the individual dose-response relationships in vivo. Individual patient data were characterized by a linear dose-dependent increase and an exponential decay function describing repair. (orig.)

  4. Nitrate contamination of drinking water: relationship with HPRT variant frequency in lymphocyte DNA and urinary excretion of N-nitrosamines

    NARCIS (Netherlands)

    van Maanen, J.M.S.; Welle, I.J.; Hageman, G.J.; Dallinga, J.W.; Mertens, P.L.; Kleinjans, J.C.S.

    1996-01-01

    Nitrate contamination of drinking water: relationship with HPRT variant frequency in lymphocyte DNA and urinary excretion of N-nitrosamines. van Maanen JM, Welle IJ, Hageman G, Dallinga JW, Mertens PL, Kleinjans JC. Department of Health Risk Analysis and Toxicology, University of Limburg,

  5. Programme DNA Lattices: Design, Synthesis and Applications

    National Research Council Canada - National Science Library

    Reif, John

    2006-01-01

    .... Self-assembled DNA nanostructures provide a methodology for bottom-up nanoscale construction of highly patterned systems, utilizing macromolecular DNA tiles" composed of branched DNA, self-assembled...

  6. DNA synthesis in vitro in human fibroblast preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, W.K.

    1983-01-01

    When confluent cultures of human fibroblasts were ultraviolet irradiated and either permeabilized or lysed, three types of DNA synthesis were subsequently observed during incubation in vitro: (A) a low level of DNA replication, which ceased after 15-30 min incubation at 37/sup 0/C; (B) radiation-dependent reparative gap-filling, which also ceased after 15 min at 37/sup 0/C; and (C) radiation-independent DNA synthesis, which was not semiconservative and proceeded at a linear rate for 1 hr at 37/sup 0/C. Normal and xeroderma pigmentosum fibroblasts displayed different rates of radiation-dependent reparative gap-filling after lysis but similar rates of radiation-independent DNA synthesis. The rates of DNA replication and radiation-independent DNA synthesis were less in the permeable cell system than in the lysed cell system, whereas radiation-dependent reparative gap-filling was the same in both. Preparations of permeable and lysed cells activated radiation-dependent reparative gap-filling at about 15% of the rate estimated for intact cells. No radiation-dependent DNA strand breaks, as assayed by alkaline elution, were observed in the lysed cell preparation. Some radiation-dependent breaks were observed in the permeable cell preparation, but radiation-dependent DNA breakage was less than that seen in intact cells. This inability to incise DNA at damaged sites could account for the low rate of activation of reparative gap-filling in vitro. DNA strand breaks were produced in fibroblast preparations nonspecifically during lysis or permeabilization and incubation in vitro, and this breakage of DNA probably was responsible for the radiation-independent DNA synthesis.

  7. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    Science.gov (United States)

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-05

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  8. Variability in the level of UV induced DNA damage in lymphocytes from unexposed and exposed to pesticides donors from Hungary

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Dyga, W.; Krasnowolski, S.; Florjan, D.; Siffel, C.

    2000-01-01

    In this study we investigated whether agrochemicals, which are in use among the farmers could show any genotoxic character in lymphocytes, change the radiosensitivity of cells or efficiency of their repair capacities. The potential influence of pesticides on the level of DNA damage and variation of the DNA damage repair capacity were investigated by use of the single cell gel-electrophoresis method (SCGE), also known as the Comet assay. Human lymphocytes were isolated from whole blood samples collected from 139 donors from Hungary and transported in dry ice for analysis into DERB laboratory. Among the donors 63 persons were treated as the reference group (no occupational exposure), average age was 45.1. Non exposed group consist mostly from males (86%) among that group 52 % of donors were recent or former smokers. The other 59 donors were occupationally exposed to pesticides, (61 % of males) average age was 42.5 years, and among them 56% were recent or former smokers. Additionally we have separated 17 males donors who was highly exposed to pesticides. Their average age was 42.3 y. and 88 % of them were recent or former smokers. Previously cryopreserved lymphocytes were defrosted and viability of the cells and DNA damage in lymphocytes prior to irradiation was investigated. It was found that due to cryopreservation or transportation process, the letter one was significantly lowered. Then cells were split into four parts. In one part SCGE was performed immediately, the other three were exposed to 6 J/m 2 of UVC radiation. In order to evaluate capacity of repair process, the levels of DNA damage were estimated immediately after exposure and after two hours of the incubation in presence or absence of phytohemoglutinin (PHA) cells division-stimulating agent. The same procedures were performed on the samples from people unexposed and exposed to pesticides. The majority of samples in both groups revealed much lower slope of curve describing increasing damage during

  9. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-07-01

    Full Text Available DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1 an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies, incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2 an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031 and waist-hip ratio (p-value = 2.4×10-5, but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

  10. Mevinolin-induced changes in cholesterol synthesis and protein glycosylation in lymphocytes of hypercholesterolemics

    International Nuclear Information System (INIS)

    Goel, V.; Premkumar, N.D.; Ramachandran, C.K.; Melnykovych, G.; Dujovne, C.A.

    1987-01-01

    Mevinolin (lovastatin, MVN), a potent competitive inhibitor of HMG CoA reductase (HMGR), has proven to be an effective hypolipidemic agent in patients with non-homozygous primary hypercholesterolemia. Since inhibition of HMGR can also reduce the synthesis of non-sterol mevalonate products such as dolichols, it was of interest to examine the dolichol-mediated cellular reactions in MVN-treated patients. Blood was collected from patients after various durations of MVN therapy. Peripheral lymphocytes were isolated using Ficoll-Paque gradient. The cells were suspended in RPMI-1640 medium and pulsed in the presence of 14 C-2-acetate or 3 H-mannose for 30 min. At the end of incubation the radioactivity recovered in non-saponifiable fraction ( 14 C) or TCA precipitable protein ( 3 H) was measured. Cholesterol synthesis continued to fall gradually and remained low throughout, in direct correlation with falls in plasma LDL cholesterol levels. Incorporation of mannose into protein fraction was reduced by the 1st month of therapy, remained low until the 7th month and recovered by the 10th month while on MVN. In summary, MVN appears to reduce cholesterol synthesis continuously but its inhibitory effect on glycosylation seems to be overcome after prolonged therapy. This escape effect could result from a rebound increase in HMGR in response to its competitive inhibition by MVN

  11. Effects on DNA repair in human lymphocytes exposed to the food dye tartrazine yellow.

    Science.gov (United States)

    Soares, Bruno Moreira; Araújo, Taíssa Maíra Thomaz; Ramos, Jorge Amando Batista; Pinto, Laine Celestino; Khayat, Bruna Meireles; De Oliveira Bahia, Marcelo; Montenegro, Raquel Carvalho; Burbano, Rommel Mario Rodríguez; Khayat, André Salim

    2015-03-01

    Tartrazine is a food additive that belongs to a class of artificial dyes and contains an azo group. Studies about its genotoxic, cytotoxic and mutagenic effects are controversial and, in some cases, unsatisfactory. This work evaluated the potential in vitro cytotoxicity, genotoxicity and effects on DNA repair of human lymphocytes exposed to the dye. We assessed the cytotoxicity of tartrazine by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide test and the response of DNA repair through comet assay (alkaline version). We used different concentrations of the dye, ranging from 0.25-64.0 mM. The results demonstrated that tartrazine has no cytotoxic effects. However, this dye had a significant genotoxic effect at all concentrations tested. Although most of the damage was amenable to repair, some damage remained higher than positive control after 24 h of repair. These data demonstrate that tartrazine may be harmful to health and its prolonged use could trigger carcinogenesis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. In vitro effect of the antimalarial drug proguanil hydrochloride on viability and DNA damage in human peripheral blood lymphocytes.

    Science.gov (United States)

    Gajski, Goran; Dinter, Domagoj; Garaj-Vrhovac, Vera

    2010-11-01

    This study aimed to evaluate the effect of proguanil, a chemical substance used for treatment and prevention of malaria on viability and DNA integrity in human lymphocytes in vitro. Two different concentrations of proguanil obtained from the plasma concentrations were used: 130ng/ml used for prophylactic treatment and 520ng/ml used in treatment of malaria. Testing was done with and without metabolic activation. Viability of lymphocytes decreased in time and dose dependent manner. Comet assay parameters showed similar effects, indicating that some damage to DNA molecule can occur. Frequency of sister chromatid exchanges did not show significant deviation from the control samples. As for the proliferation kinetics no significant changes were noticed. Since majority of DNA damaging effect is induced after metabolic activation it is to be concluded that activity of proguanil is dependent upon the active metabolite cycloguanil and that monitoring should be conducted especially among frequent travellers. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Further studies of immunoglobulin synthesis by guinea-pig leukaemic lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hough, D W; Chapple, J C; Stevenson, F K; Stevenson, G T [Southampton General Hospital (UK)

    1978-05-01

    The L/sub 2/C leukemia is a B-lymphocytic neoplasm of strain 2 guinea pigs maintained by passaging in vivo. It synthesizes ..mu.. and lambda immunoglobulin chains. These combine to form monomeric (7S) IgM molecules which are inserted into the plasma membrane. From here they are shed as monomeric IgM and as a species of higher molecular weight which has not been further defined. The synthesis of lambda chain is in excess of that required for the IgM molecule, the surplus being exported directly from the cell without any intervening phase in the plasma membrane. Quantitative estimates of synthetic rates and pool sizes for these immunoglobulin species are presented.

  14. Measurement of T-lymphocyte responses in whole-blood cultures using newly synthesized DNA and ATP.

    Science.gov (United States)

    Sottong, P R; Rosebrock, J A; Britz, J A; Kramer, T R

    2000-03-01

    The proliferative response is most frequently determined by estimating the amount of [(3)H]thymidine incorporated into newly synthesized DNA. The [(3)H]thymidine procedure requires the use of radioisotopes as well as lengthy periods of incubation (>72 h). An alternative method of assessing T-lymphocyte activation in whole-blood cultures involves the measurement of the nucleotide ATP instead of [(3)H]thymidine incorporation. In addition, the Luminetics assay of T-cell activation measures specific T-lymphocyte subset responses through the use of paramagnetic particles coated with monoclonal antibodies against CD antigens. This assay permits rapid (24 h) analysis of lymphocyte subset activation responses to mitogens and recall antigens in small amounts of blood.

  15. Effects of inhibitors of DNA synthesis and protein synthesis on the rate of DNA synthesis after exposure of mammalian cells to ultraviolet light

    International Nuclear Information System (INIS)

    Griffiths, T.D.; Dahle, D.B.; Meechan, P.J.; Carpenter, J.G.

    1981-01-01

    Chinese hamster V-79 cells were treated with metabolic inhibitors of DNA or protein synthesis for various intervals of time after exposure of 3.0 or 5.0 J m -2 . After removal of the metabolic block(s) the rate of DNA synthesis was followed by measuring the incorporation of [ 14 C]thymidine into acid-insoluble material. A 2.5 or 5.0h incubation with cycloheximide or hydroxyurea was effective in delaying the onset of the recovery in the rate of DNA synthesis that normally becomes evident several hours after exposure to ultraviolet light. By using concentrations of cycloheximide or hydroxyurea that inhibit DNA synthesis by a similar amount (70%), but protein synthesis by vastly different amounts (95% for cycloheximide; 0% for hydroxyurea), it was apparent that the delay in recovery caused by the treatment of the cells with cycloheximide could be accounted for entirely by its inhibitory effect on DNA synthesis. This suggests that the recovery in DNA synthetic rates following exposure of V-79 cells to ultraviolet light does not appear to require de novo protein synthesis, and therefore does not appear to require the involvement of an inducible DNA repair process. (Auth.)

  16. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation.

    Science.gov (United States)

    Korzeneva, Inna B; Kostuyk, Svetlana V; Ershova, Liza S; Osipov, Andrian N; Zhuravleva, Veronika F; Pankratova, Galina V; Porokhovnik, Lev N; Veiko, Natalia N

    2015-09-01

    The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism's cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1×Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab DNA and TM values may provide the information about the human organism's cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly - at survival of the cells, including the cells with the damaged DNA. Copyright © 2015. Published by Elsevier B.V.

  17. Potency of carcinogens derived from covalent DNA binding and stimulation of DNA synthesis in rat liver

    International Nuclear Information System (INIS)

    Lutz, W.K.; Buesser, M.T.; Sagelsdorff, P.

    1984-01-01

    In order to investigate the role of the stimulation of cell division for the initiation (and possibly promotion) of liver tumors by chemical carcinogens, the incorporation of radiolabelled thymidine into liver DNA was determined in male rats. Single doses of various levels of aflatoxin B1, benzidine and carbon tetrachloride (all known to be genotoxic via DNA binding) did not affect cell division, whereas several hepatocarcinogens known not to bind to DNA (alpha-HCH, clofibrate, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) gave rise to a dose-dependent stimulation of liver DNA synthesis within 24 h. An equation combining the influences of mitotic stimulation, expressed as dose required to double the control level of DNA synthesis, and DNA binding potency, expressed as the Covalent Binding Index, correlated well with the carcinogenic potency for both classes of hepatocarcinogens

  18. Nucleobase-Based Barbiturates: Their Protective Effect against DNA Damage Induced by Bleomycin-Iron, Antioxidant, and Lymphocyte Transformation Assay

    Directory of Open Access Journals (Sweden)

    Bhaveshkumar D. Dhorajiya

    2014-01-01

    Full Text Available A number of nucleobase-based barbiturates have been synthesized by combination of nucleic acid bases and heterocyclic amines and barbituric acid derivatives through green and efficient multicomponent route and one pot reaction. This approach was accomplished efficiently using aqueous medium to give the corresponding products in high yield. The newly synthesized compounds were characterized by spectral analysis (FT-IR, 1H NMR, 13C NMR, HMBC, and UV spectroscopy and elemental analysis. Representative of all synthesized compounds was tested and evaluated for antioxidant, bleomycin-dependent DNA damage, and Lymphocyte Transformation studies. Compounds TBC > TBA > TBG showed highest lymphocyte transformation assay, TBC > TBA > BG showed inhibitory antioxidant activity using ABTS methods, and TBC > BPA > BAMT > TBA > 1, 3-TBA manifested the best protective effect against DNA damage induced by bleomycin.

  19. Influence of occupational exposure to pesticides on the level of DNA damage induced in human lymphocytes (Polish group) by UV-C and X-rays

    International Nuclear Information System (INIS)

    Dyga, W.; Drag, Z.; Cebulska-Wasilewska, A.

    2002-01-01

    The aim of this study was to find out whether occupational exposure to pesticides might affect the individual susceptibility of various donors to the induction of DNA damage by genotoxic agents (UV-C, X-rays) and the efficiency of cellular repair. Previously cryo preserved lymphocytes were defrosted, and DNA damage in the lymphocytes prior to any in vitro studies was investigated with the application of the Comet assay. In order to evaluate the susceptibilities of human lymphocytes to genotoxic agents and the variability of repair capacities, the DNA migrations were estimated immediately after exposure to UV-C light or X-rays and after two hours. On average, the DNA damage detected in untreated lymphocytes was significantly higher in the group exposed to pesticides than in reference group. UV-C treated lymphocytes from group exposed to pesticides shows a greater statistically significant level of DNA migration compared to the reference group, detected after 2 hours incubation in the absence of PHA. Significantly lower responses to X-rays and higher levels of residual DNA damage were detected in the lymphocytes of donors from the group exposed to pesticides compared with the reference group. In conclusion, our results suggest that occupational exposure to pesticides influences the level of induced DNA damage, and the cellular capabilities of repair. (author)

  20. Inhibition of DNA replication, DNA repair synthesis, and DNA polymerases α and δ by butylphenyl deoxyguanosine triphosphate

    International Nuclear Information System (INIS)

    Dreslor, S.L.; Frattini, M.G.

    1987-01-01

    Semiconservative DNA replication in growing mammalian cells and ultraviolet (UV)-induced DNA repair synthesis in nongrowing mammalian cells are mediated by one or both of the aphidicolin-sensitive DNA polymerases, α and/or δ. They have studied the inhibition of replication and repair synthesis in permeable human cells by N 2 (p-n-butylphenyl)-2'-deoxyguanosine-5'-triphosphate (BuPh dGTP), an agent which inhibits polymerase α strongly and polymerase δ weakly. Both processes are inhibited by BuPh-dGTP in competition with dGTP. The K/sub i/'s are, for replication, 2-3 μM and, for repair synthesis, 3-4 μM, consistent with the involvement of the same DNA polymerase in both processes. Inhibition of isolated human polymerase α by BuPh-dGTP is also competitive with dGTP, but the K/sub i/ is approximately 10 nM, several hundred-fold lower than the K/sub i/'s of replication and repair synthesis. Isolated polymerase δ is inhibited by BuPh-dGTP at doses similar to those which inhibit replication and repair synthesis, however, attempts to determine the K/sub i/ of polymerase δ were hampered by the finding that the dependence of δ activity on deoxyribunucleotide concentration is parabolic at low doses. This behavior differs from the behavior of polymerase α and of cellular DNA replication and repair synthesis, all of which show a simple, hyperbolic relationship between activity and deoxyribonucleotide concentration. Thus, inhibition of DNA replication and UV induced DNA repair synthesis by BuPh dGTP is quantitatively similar to DNA polymerase δ, but some other characteristics of the cellular processes are more similar to those of polymerase α

  1. Unscheduled synthesis of DNA and poly(ADP-ribose) in human fibroblasts following DNA damage

    International Nuclear Information System (INIS)

    McCurry, L.S.; Jacobson, M.K.

    1981-01-01

    Unscheduled DNA synthesis has been measured in human fibroblasts under conditions of reduced rates of conversion of NAD to poly)ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of uv induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with uv or N-methyl-N'-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis

  2. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  3. DNA synthesis in permeabilized WI38 and MRC5 cells

    International Nuclear Information System (INIS)

    Griffiths, T.D.; Carpenter, J.G.

    1980-01-01

    DNA synthesis was examined in cultures of growing WI38 and MRC5 cells made permeable to deoxyribonucleotides. Cells from late passage cultures showed a reduced rate of deoxythymidine triphosphate (dTTP) uptake as compared to cells from early- to mid-passage cultures. This reduction became evident earlier in WI38 cultures (passage 33) than in MRC5 cultures (passage 41). Although this reduced rate of incorporation appeared to be primarily due to a reduced percentage of replicating (S phase) cells in later passage cultures, some effect on the rate of DNA synthesis in replicating cells was also evident

  4. Replication stress activates DNA repair synthesis in mitosis

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A

    2015-01-01

    Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps...... into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early...... mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest...

  5. Structure of human DNA polymerase iota and the mechanism of DNA synthesis.

    Science.gov (United States)

    Makarova, A V; Kulbachinskiy, A V

    2012-06-01

    Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX-XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.

  6. Stimulation of DNA synthesis in bacterial DNA-membrane complexes after low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, D K [Hammersmith Hospital, London (UK). M.R.C. Experimental Radiopathology Unit

    1980-09-01

    DNA-membrane complexes from three strains of E. coli were irradiated and changes in the rates of DNA synthesis were observed. Doses from 1-10 krad to complexes from W3110 and pol A1 strains gave up to a 100 per cent increase in DNA synthesis; under the same conditions, no change was observed in Bsub(s-1). The degree of stimulation did not depend on the presence of oxygen during irradiation, and a post-irradiation incubation was necessary to achieve activation. The properties of all three complexes were similar when unirradiated. Irradiation of intact organisms under conditions which produced marked, oxygen-dependent inhibition of the Bsub(s-1) complex had no significant effect on those from W3110 and pol A1. Enhanced DNA synthesis is concluded to be due wholly to repair of pre-existing DNA. It is further postulated that DNA synthesis in untreated complexes (E.coli B's,W3110 and pol A1) is mainly of the repair-type and does not necessarily take place at the site of DNA-membrane attachment.

  7. DNA-Compatible Nitro Reduction and Synthesis of Benzimidazoles.

    Science.gov (United States)

    Du, Huang-Chi; Huang, Hongbing

    2017-10-18

    DNA-encoded chemical libraries have emerged as a cost-effective alternative to high-throughput screening (HTS) for hit identification in drug discovery. A key factor for productive DNA-encoded libraries is the chemical diversity of the small molecule moiety attached to an encoding DNA oligomer. The library structure diversity is often limited to DNA-compatible chemical reactions in aqueous media. Herein, we describe a facile process for reducing aryl nitro groups to aryl amines. The new protocol offers simple operation and circumvents the pyrophoric potential of the conventional method (Raney nickel). The reaction is performed in aqueous solution and does not compromise DNA structural integrity. The utility of this method is demonstrated by the versatile synthesis of benzimidazoles on DNA.

  8. Investigations on the influence of radiotherapy on the extent of DNA-repair in peripheral lymphocytes and tumor cells of patients with cancer

    International Nuclear Information System (INIS)

    Klein, W.; Koren, H.; Alth, G.; Klein, H.

    1977-02-01

    The influence of radiotherapy on DNA excision repair after setting UV-lesions in peripheral lymphocytes and tumor cells of 11 patients with different forms of cancer was investigated. The effect of short term radiotherapy was compared with that after irradiation over a longer period. Radiotherapy provoked inhibition of DNA repair in tumor cells in every case, whereas changes in lymphocytes were dependent on irradiation schedule. (author)

  9. DNA-synthesis inhibition and repair DNA-synthesis in CHO Ade- C cells: An alternative approach to genotoxicity testing

    International Nuclear Information System (INIS)

    Slamenova, D.; Papsova, E.; Gabelova, A.; Dusinska, M.; Collins, A.; Wsolova, L.

    1997-01-01

    We describe an alternative assay to determine genotoxicity. Its main feature is that it combines two measures in a single experiment; the inhibition of replicative DNA synthesis together with the stimulation of DNA repair. We show that, in tests of four different genotoxic agents, the assay gives results that are entirely consistent with what is known about the mode of action of these agents. In addition, we have demonstrated that chemical carcinogens requiring metabolic activation can be examined using a standard procedure of incubation with a microsomal activating fraction. We consider the combined assay for DNA synthesis inhibition and repair synthesis to be a useful way for the rapid pre-screening of chemicals suspected of genotoxic activity on the level of mammalian cells. (author)

  10. DNA-membrane complex restoration in Micrococcus radiodurans after X-irradiation: relation to repair, DNA synthesis and DNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dardalhon-Samsonoff, M; Averbeck, D [Institut du Radium, 75 - Paris (France). Lab. Curie

    1980-07-01

    The DNA-membrane complex in Micrococcus radiodurans was shown to be essentially constituted of proteins, lipids and DNA. The complex was dissociated immediately after X-irradiation of cells and restored during post-incubation in complete medium. In X-irradiated protoplasts some DNA remained associated with the complex. Restoration of the complex during post-incubation was only seen in a medium favouring DNA polymerase and ligase activities. Under this condition no DNA synthesis occurred, suggesting that complex restoration may involve ligase activity. The complex restoration in the wild type and the X-ray sensitive mutant UV17 of M. radiodurans was strictly dependent on the X-ray dose. It was correlated with survival and DNA degradation but always preceded the onset of DNA synthesis after X-irradiation. At the same dose the complex restoration was about 2 fold lower in mutant than in wild type cells indicating that the restoration of the complex is related to repair capacity. The results are consistent with the idea that the complex protects X-irradiated DNA of M. radiodurans from further breakdown and, subsequently, permits DNA synthesis and repair to occur.

  11. Continuous induction of unscheduled DNA synthesis by gamma irradiation

    International Nuclear Information System (INIS)

    Weniger, P.; Klein, W.; Ott, E.; Kocsis, F.; Altmann, H.

    1990-01-01

    The induction of DNA-synthesis in non-S-phase cells is a very sensitive measure of a preceding damage of DNA. Usually, in an in vivo - in vitro test (treatment of an animal, incorporation of H3-thymidine in a cell suspension) the damaging of DNA takes place hours to days before the evaluation. In this case, the time course of the UDS-induction after a single dose of 1 Gy gamma irradiation was observed over a long period of time (21 months). C57 black mice served as test animals. In an age of about 80 days they were irradiated and the induction of unscheduled DNA synthesis was measured at ten time intervals during the whole life-span of the animals. Although the repair in this gamma radiation damage in DNA is a very quick process - with centrifugation in alkaline sucrose a half-life of some minutes is found - an induction of unscheduled DNA synthesis could be seen at the irradiated animals until the end of their life (640 days). The reason for this could be permanent disorders in cellular regulation caused by the gamma irradiation. (author) 4 figs

  12. Continuous induction of unscheduled DNA synthesis by gamma irradiation

    International Nuclear Information System (INIS)

    Weniger, P.; Klein, W.; Ott, E.; Kocsis, F.; Altmann, H.

    1988-08-01

    The induction of DNA-synthesis in non-S-phase cells is a very sensitive measure of a preceding damage of the DNA. Usually, in an in vivo -in vitro test (treatment of an animal, incorporation of H3-thymidine in a cell suspension) the damaging of DNA takes place hours to days before the evaluation. In this case, the time course of the UDS-induction after a single dose of 1 Gy gamma irradiation should be observed for a long time (21 months). C57 black mice served as test animals. In an age of about 80 days they were irradiated and the induction of unscheduled DNA synthesis was measured at ten points of time during the whole life-span of the animals. Although the repair in this gamma radiation damage in DNA is a very quick process - with centrifugation in alkaline sucrose you find a half time of some minutes - an induction of unscheduled DNA synthesis could be seen at the irradiated animals until the end of their life (640 days). The reason for this could be permanent disorders in cellular regulation caused by the gamma irradiation. 4 figs. (Author)

  13. DnaB gene product-independence of DNA polymerase III-directed repair synthesis in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1977-01-01

    An investigation has been carried out into the role of dnaB gene product in X-ray-induced repair synthesis carried out by DNA polymerase III in toluene-treated Escherichia coli K-12. A polAl polBlOO dnaB mutant deficient in both DNA polymerase I and II activities was used, and it was shown that the level of X-ray-induced, ATP-dependent, non-conservative DNA synthesis was, unlike semi-conservative DNA synthesis, unaffected by a temperature shift from 30 0 to 42 0 C. The dnaB gene product was not therefore necessary for DNA polymerase III-directed repair synthesis, which occurred in the absence of replicative synthesis. (U.K.)

  14. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: Evidence for differential gene expression

    International Nuclear Information System (INIS)

    Kim, Sunyoung; Baltimore, D.; Byrn, R.; Groopman, J.

    1989-01-01

    The kinetics of retroviral DNA and RNA synthesis are parameters vital to understanding viral growth, especially for human immunodeficiency virus (HIV), which encodes several of its own regulatory genes. The authors have established a single-cycle growth condition for HIV in H9 cells, a human CD4 + lymphocyte line. The full-length viral linear DNA is first detectable by 4 h postinfection. During a one-step growth of HIV, amounts of viral DNA gradually increase until 8 to 12 h postinfection and then decrease. The copy number of unintegrated viral DNA is not extraordinarily high even at its peak. Most strikingly, there is a temporal program of RNA accumulation: the earliest RNA is greatly enriched in the 2-kilobase subgenomic mRNA species, while the level of 9.2-kilobase RNA which is both genomic RNA and mRNA remains low until after 24 h of infection. Virus production begins at about 24 h postinfection. Thus, viral DNA synthesis is as rapid as for other retroviruses, but viral RNA synthesis involves temporal alteration in the species that accumulate, presumably as a consequence of viral regulatory genes

  15. Action of some drugs on enzymes involved in DNA-repair and semiconservative DNA-synthesis

    International Nuclear Information System (INIS)

    Wawra, E.; Klein, W.; Kocsis, F.; Weniger, P.

    1975-07-01

    Different antirheumatic and cytostatic drugs had been tested by measurement of the thymidine incorporation into DNA of spleen cells under conditions, under which either DNA-synthesis or repair after gamma- or UV-irradiation takes place. There are substances, which inhibit either only the semiconservative DNA-synthesis (vinblastine, isonicotinic acid hydracide) or only DNA-repair after gamma-irradiation (mixture of penicillin-G and procaine-penicillin-G) or both (cyclophosphamide, phenylbutazone, procarbazine, nalidixic acid). Vincristine shows no effect on the thymidine incorporation in DNA, but by density gradient centrifugation it has been found that it influences the ligase reaction. Two DNA polymerases had been isolated from spleen cells, one of the low molecular and one of the high molecular weight type. The influences of the described drugs on these enzymes and on a deoxyribonuclease I from beef pancreas have been tested in ''in vitro'' systems. In all cases, it has been found that there is no effect or only a very small one, compared with the action of well known inhibitors as e.g. ethidium bromide and p-chloromercuribenzoate, and this cannot be responsible for the suppressions found in DNA-repair and semiconservative DNA-synthesis. (author)

  16. Unexpected Hydration of a Triple Bond During DNA Synthesis

    DEFF Research Database (Denmark)

    Fatthalla, Maha I.; Pedersen, Erik B.

    2016-01-01

    acidic conditions, polarizes the triple bond in the intercalator and this makes hydration of the triple bond possible during the DNA synthesis and an oligonucleotide with 1-(indol-3-yl)-2-(pyren-1-yl)ethanone as the intercalator is formed. Insertion of the unhydrated and hydrated linker systems gave...

  17. Intestinal DNA concentration and protein synthesis in response to ...

    African Journals Online (AJOL)

    Performance, protein synthesis and mucosal DNA in small intestine of Leghorn hens may be affected by low quality feedstuff. An experiment was conducted in completely randomized design (CRD) in 2 × 2 factorial arrangement. Main factors included diets containing 20 and 40 % barley and black and blue strains of leghorn ...

  18. Comparison of specificity of inhibition of polyamine synthesis in bovine lymphocytes by ethylglyoxal bis(guanylhydrazone) and methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Igarashi, K; Porter, C W; Morris, D R

    1984-11-01

    Ethylglyoxal bis(guanylhydrazone) (EGBG) was compared as an inhibitor of polyamine biosynthesis with methylglyoxal bis(guanylhydrazone) (MGBG) in bovine small lymphocytes stimulated by concanavalin A. EGBG brought about a decrease in spermidine and spermine levels equal to that found with MGBG, but at a 5-fold lower intracellular drug concentration. Despite identical polyamine levels, the degree of inhibition of DNA and protein synthesis by EGBG was smaller than that observed with MGBG, in either the presence or absence of the ornithine decarboxylase inhibitor, alpha-difluoromethylornithine. It was found that in vitro protein synthesis and in vivo mitochondrial function were inhibited by concentrations of MGBG necessary to inhibit polyamine synthesis in cells (1 to 3 mM), but not by efficacious levels of EGBG (0.2 to 0.6 mM). These results suggest that EGBG is more suitable as a specific inhibitor of polyamine biosynthesis and that use of this drug, rather than MGBG, in combination with alpha-difluoromethylornithine may be useful for studying the physiological functions of polyamines in animal cells.

  19. Jatropha curcas leaf and bark fractions protect against ultraviolet radiation-B induced DNA damage in human peripheral blood lymphocytes.

    Science.gov (United States)

    Sundari, J; Selvaraj, R; Rajendra Prasad, N; Elumalai, R

    2013-11-01

    The present study is conducted to investigate the antioxidant potential of Jatropha curcas root bark extract (RB4 fraction) and leaf extract (L1 fraction), and to study their effects on UVB-radiation-induced DNA damage in cultured human blood lymphocytes. In this study, J. curcas showed strong antioxidant property in different free radical scavenging systems. Both the fractions effectively scavenged hydroxyl (OH), superoxide anion (O₂(·-)), 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid radical cation (ABTS(·+)) in a concentration-dependent manner. The IC₅₀ (Inhibitory Concentration 50) values of J. curcas fractions were compared to standard ascorbic acid used in this study. The antioxidant potential of a compound was directly proportional to the photoprotective effect. In this study, human peripheral blood lymphocytes (HPBL) were exposed to UVB-radiation and there was an increase in comet attributes (% tail DNA, tail length, tail movement and Olive tail moment). Jatropha curcas RB4 fraction and L1 fraction treatment before UVB-irradiation significantly decreased the % tail DNA, tail length, tail moment and Olive tail moment in irradiated HPBL. These results suggested that J. curcas exhibited strong antioxidant property and RB4 and L1 fractions protected UVB-radiation-induced DNA damage in HPBL. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. DNA double-strand breaks measured by pulsed-field gel electrophoresis in irradiated lymphocytes from normal humans and those with Alzheimer's disease

    International Nuclear Information System (INIS)

    Tobi, S.E.; Itzhaki, R.F.

    1993-01-01

    The authors previously found that radiation-induced chromosome aberrations (dicentrics) are more numerous in lymphocytes from Alzheimer's disease (AD) patients than in those from age-matched normal individuals (Tobi et al. 1990). They have examined double-strand breaks (dsb) produced by g amma - irradiation in the DNA of AD and normal lymphocytes by using pulsed-field gel electrophoresis. The percentage of DNA migrating into the gels is an indirect measure of the number of dsb; DNA content of sequential slices of the gel was assayed by direct fluorometry and the percentage migrating was dose dependent. Results show that the level of damage is similar in AD and normal lymphocytes and preliminary assays of the rate of repair suggest that the half-time is also similar, the value being > 1 h. The latter is consistent with the known rate of rejoining of chromosome fragments in interphase lymphocytes (Pantelias and Maillie 1985). (Author)

  1. Impairment of DNA synthesis in Gunn rat cerebellum.

    Science.gov (United States)

    Yamada, N; Sawasaki, Y; Nakajima, H

    1977-05-06

    Brain DNA synthesis was developmentally investigated in Gunn rat with marked cerebellar hypoplasia due to hereditary hyperbilirubinemia. In this mutant rat, the Purkinje cell was nearly selectively affected in the cerebellar cortex by bilirubin. The impaired DNA synthesis was observed in homozygous (jj) Gunn rat cerebellum, in which the DNA content and [3H]thymidine incorporation rate into DNA decreased after 10 days of age compared to those in the heterozygous (Jj)littermate. In contrast, these impairments were not found in the non-cerebellar parts of the brain and liver of jj Gunn rat. The activity of cerebellar thymidine kinase in jj Gunn rat decreased from a very early stae, being 80% of Jj rat at 6 days, and 50% at 10 days of age. The enzyme activity was not affected in the non-cerebellar parts of the brain. Although bilirubin competitively inhibited cerebellar thymidine kinase activity in vitro (15% at 10(-5) M), such bilirubin level was found to be about 1000-fold that in vivo. Moreover, photo-degradation of bilirubin in jj cerebellum exhibited no improvement in thymidine kinase activity, and the presence of an enzyme inactivator was not suggested in jj cerebellum. These results seem to indicate that the induction of thymidine kinase might be affected in jj Gunn rat cerebellum. The possibility that the impaired DNA synthesis in the external granular cells in jj cerebellum may be due to Purkinje cell damage is discussed.

  2. Unscheduled DNA synthesis and elimination of DNA damage in liver cells of. gamma. -irradiated senescent mice

    Energy Technology Data Exchange (ETDEWEB)

    Gaziev, A.I.; Malakhova, L.V. (AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki)

    1982-10-01

    The level of 'spontaneous' and ..gamma..-radiation-induced DNA synthesis which is not inhibited with hydroxyurea (unscheduled synthesis) is considerably lower in hepatocytes of 18-22-month-old mice than that of 1.5-2-month-old mice. The dose-dependent increase (10-300 Gy) of unscheduled DNA synthesis (UDS) in hepatocytes of senescent mice is higher than in young animals. The elimination of damage in DNA of ..gamma..-irradiated hepatocytes (100 Gy) was examined by using an enzyme system (M. luteus extract and DNA-polymerase I of E. coli). It was found that the rate of elimination of the DNA damage in hepatocytes of 20-month-old mice is lower than that of 2-month-old mice although the activities of DNA-polymerase ..beta.. and apurinic endonuclease remain equal in the liver of both senescent and young mice. However, the nucleoids from ..gamma..-irradiated liver nuclei of 2-month-old mice are relaxed to a greater extent (as judged by the criterion of ethidium-binding capacity) than those of 20-month-old mice. The results suggest that there are limitations in the functioning of repair enzymes and in their access to damaged DNA sites in the chromatin of senescent mouse liver cells.

  3. Radioprotective effect of methanolic root extract of Loeseneriella arnottiana on radiation induced DNA damage in human lymphocytes in vitro

    International Nuclear Information System (INIS)

    Prajna, P.S.

    2012-01-01

    Intense exposure to ionization radiation by accidental, occupational or therapeutical purpose causes cellular damage mainly by formation of excessive reactive oxygen species (ROS) or by free radicals. Humans are intentionally exposed to ionising radiation for diagnostic or therapeutic purposes. The use of ionising radiation in cancer therapy may lead to transient and/or permanent injury to normal tissues within the treatment field. To increase the therapeutic index of radiation therapy, various modes of radioprotection have been developed that selectively reduce cytotoxic effects to normal tissues. Because radiation-induced cellular damage is attributed primarily to the harmful effects of free radicals, molecules with radical scavenging properties are particularly promising as radioprotectors. Loeseneriella arnottiana, a member of family Hippocrateaceae, is a climbing shrub used by traditional medicine practitioners. To study the antioxidant activity and radioprotective effect of methanolic root extract of Loeseneriella arnottiana against electron beam radiation induced DNA damage in human lymphocytes. Loeseneriella arnottiana roots were dried and extracted using methanol by solvent extraction method. Antioxidant activity was measured by DPPH method. DNA damage was assessed by comet assay parameters. The lymphocytes were incubated for one hour with two different concentrations 10 μg and 50 μg of root extract before exposure to 2 Gy electron beam radiation. 30 μg of methanolic root extract of Loeseneriella arnottiana exhibited 96% radical scavenging activity comparable to 15 μg of ascorbic acid. In reducing power assay it showed dose dependent increase in absorbance indicating that extract is capable of donating hydrogen atoms. Pretreatment of lymphocytes with 10 μg and 50 μg of root extract before irradiation resulted in reduction in the Comet length, Olive tail moment, percentage of DNA in tail when compared to the radiation control group. Results of this

  4. Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical mutagens on human lymphocyte DNA using comet assay in vitro

    International Nuclear Information System (INIS)

    Wang Baohong; He Jiliang; Jin Lifen; Lu Deqiang; Zheng Wei; Lou Jianlin; Deng Hongping

    2005-01-01

    The aim of this investigation was to study the synergistic DNA damage effects in human lymphocytes induced by 1.8 GHz radiofrequency field radiation (RFR, SAR of 3 W/kg) with four chemical mutagens, i.e. mitomycin C (MMC, DNA crosslinker), bleomycin (BLM, radiomimetic agent), methyl methanesulfonate (MMS, alkylating agent), and 4-nitroquinoline-1-oxide (4NQO, UV-mimetic agent). The DNA damage of lymphocytes exposed to RFR and/or with chemical mutagens was detected at two incubation time (0 or 21 h) after treatment with comet assay in vitro. Three combinative exposure ways were used. Cells were exposed to RFR and chemical mutagens for 2 and 3 h, respectively. Tail length (TL) and tail moment (TM) were utilized as DNA damage indexes. The results showed no difference of DNA damage indexes between RFR group and control group at 0 and 21 h incubation after exposure (P > 0.05). There were significant difference of DNA damage indexes between MMC group and RFR + MMC co-exposure group at 0 and 21 h incubation after treatment (P 0.05). The experimental results indicated 1.8 GHz RFR (SAR, 3 W/kg) for 2 h did not induce the human lymphocyte DNA damage effects in vitro, but could enhance the human lymphocyte DNA damage effects induced by MMC and 4NQO. The synergistic DNA damage effects of 1.8 GHz RFR with BLM or MMS were not obvious

  5. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K.

    1990-01-01

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  6. Control of DNA synthesis in inhibited and activated Agrostemma githago seeds

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, M [Sektion Biologie, FG Algemeine Botanik und Pflanzenphysiologie, Universitaet Greifswald (German Democratic Republic)

    1975-01-01

    The relationships between DNA synthesis and germination capacity of Agrostemma seeds had been studied. Protein synthesis and RNA synthesis were activated at the very beginning of imbibition, whereas DNA synthesis started in the second part of the imbibition phase. Agrostemma seeds inhibited by higher temperature (30 degC), or aged seeds with a low germination capacity were characterized by a significantly reduced protein synthesis. DNA synthesis was also reduced. The inhibition of the protein synthesis of Agrostemma embryos fed with cycloheximide or actinomycin D caused a depression of DNA synthesis. The results indicated that the initiation of DNA synthesis of imbibing Agrostemma seeds depended on the synthesis of special proteins. Abscisic acid inhibited the growth as well as DNA synthesis of isolated Agrostemma embryos. Nitomycin inhibited germination and DNA synthesis to the same extent. Dormant seeds with an undiminished intensity of protein synthesis also showed a reduced incorporation of /sup 3/H-thymidine by DNA. It is suggested that DNA synthesis of imbibed seeds, which is a necessary prerequisite for the radicle protrusion, was involved in the mechanism of ripening of the Agrostemma seeds.

  7. Control of DNA synthesis in inhibited and activated Agrostemma githago seeds

    International Nuclear Information System (INIS)

    Hecker, M.

    1975-01-01

    The relationships between DNA synthesis and germination capacity of Agrostemma seeds had been studied. Protein synthesis and RNA synthesis were activated at the very beginning of imbibition, whereas DNA synthesis started in the second part of the imbibition phase. Agrostemma seeds inhibited by higher temperature (30 degC), or aged seeds with a low germination capacity were characterized by a significantly reduced protein synthesis. DNA synthesis was also reduced. The inhibition of the protein synthesis of Agrostemma embryos fed with cycloheximide or actinomycin D caused a depression of DNA synthesis. The results indicated that the initiation of DNA synthesis of imbibing Agrostemma seeds depended on the synthesis of special proteins. Abscisic acid inhibited the growth as well as DNA synthesis of isolated Agrostemma embryos. Nitomycin inhibited germination and DNA synthesis to the same extent. Dormant seeds with an undiminished intensity of protein synthesis also showed a reduced incorporation of 3 H-thymidine by DNA. It is suggested that DNA synthesis of imbibed seeds, which is a necessary prerequisite for the radicle protrusion, was involved in the mechanism of ripening of the Agrostemma seeds. (author)

  8. Synthesis, spectral characterization, antimicrobial, DNA interactions ...

    Indian Academy of Sciences (India)

    KUNCHE SUDEEPA

    2018-05-04

    May 4, 2018 ... structural aspects of FMBC and its Cu(II), Ni(II) and. Zn(II) complexes ... of DNA was down- loaded from protein data bank24 (www.rcsb.org) pdb id: ... the reaction mixture was refluxed on water bath for 4–8 h maintaining the ...

  9. The effect of ultraviolet radiation on early stages of activation of human lymphocytes: inhibition is independent of effects on DNA

    DEFF Research Database (Denmark)

    Castellanos, G; Owens, T; Rudd, C

    1982-01-01

    whether activation was measured by the incorporation of labelled leucine, uridine, or thymidine. If UV was applied at 44 h after culture in presence of Con A, the incorporation of [3H]thymidine measured 4 h later was seen to be inhibited but transcription and translation were scarcely affected. UV...... lymphocytes, when this was measured by means of 86Rb uptake after 2-4 h culture. The mitogen-stimulated activation of cation pump function has previously been shown to be unaffected by concentrations of cycloheximide and actinomycin D which produce virtually complete inhibition of protein and RNA synthesis...

  10. Variability in the susceptibility to UV induced DNA damage and repair capacity observed in lymphocytes from unexposed and exposed to pesticides Polish donors

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Dyga, W.; Drag, Z.

    2000-01-01

    The aim of this study was to find out whether occupational exposure to pesticides may affect the individual susceptibility to the induction of the DNA damage by genotoxic agents. Differences in sensitivity of human lymphocytes to UV and variability of the DNA damage repair capacity were investigated by use of the single cell gel-electrophoresis method (SCGE), also known as the Comet assay. Human lymphocytes were isolated from whole blood samples collected from 100 male donors from Poland. Among the donors 50 males were treated as reference group (no occupational exposure), average age was 38.7, and among them 68 % were recent or former smokers, the other 50 males were occupationally exposed to pesticides, average age was 39.1, and among them 58 % were recent or former smokers. Previously cryopreserved lymphocytes were defrosted and viability of the cells and DNA damage in lymphocytes prior to any in vitro studies was investigated. On the average the DNA damage detected in lymphocytes and expressed as the mean Comet tail moment was significantly higher in the exposed group than in the reference group. In order to evaluate sensitivity of human lymphocytes to UV and variability of the DNA damage repair capacity, defrosted cells were irradiated with 6 J/m 2 of UVC radiation and the DNA damages were estimated immediately after exposure to UV and after two hours of the incubation in presence or absence of phytohemoglutinin (PHA) cells division-stimulating agent. The same procedures were performed on the samples from aloud exposed an unexposed to pesticides. Comet assay detectable levels of the DNA damage were increasing during the incubation of cells following UVC exposure. Average levels of damage detected after incubation in presence of PHA of exposed to UV lymphocytes were lower than without PHA. In presence of phytohemoglutinin (PHA) results showed statistically significant (p=0.001) repair of the DNA damage for both reference and exposed group. No difference due to

  11. Second-strand cDNA synthesis: classical method

    International Nuclear Information System (INIS)

    Gubler, U.

    1987-01-01

    The classical scheme for the synthesis of double-stranded cDNA as it was reported in 1976 is described. Reverse transcription of mRNA with oligo(dT) as the primer generates first strands with a small loop at the 3' end of the cDNA (the end that corresponds to the 5' end of the mRNA). Subsequent removal of the mRNA by alkaline hydrolysis leaves single-stranded cDNA molecules again with a small 3' loop. This loop can be used by either reverse transcriptase or Klenow fragment of DNA polymerase I as a primer for second-strand synthesis. The resulting products are double-stranded cDNA molecules that are covalently closed at the end corresponding to the 5' end of the original mRNA. Subsequent cleavage of the short piece of single-stranded cDNA within the loop with the single-strand-specific S 1 nuclease generate open double-stranded molecules that can be used for molecular cloning in plasmids or in phage. Useful variations of this scheme have been described

  12. DNA repair synthesis dependent on the uvrA,B gene products

    International Nuclear Information System (INIS)

    Moses, R.E.; Moody, E.E.M.

    1975-01-01

    Ultraviolet irradiation of toluene-treated Escherichia coli causes an inhibition of replicative DNA synthesis. This is followed by the appearance of nonconservative DNA repair synthesis which does not require either the polymerase or 5' → 3' exonucleolytic activities of DNA polymerase I. The repair synthesis may be catalyzed by DNA polymerase III activity but does not require a functional DNA polymerase II. The ultraviolet-induced synthesis requires ATP and is dependent on a functional uvrA and uvrB gene product. However, other uvr gene products are not required for the synthesis. The recB function is also not required

  13. Effects of inhibitors of DNA repair on the frequencies of chromosomal aberrations induced by x-rays or alkylating agents in cultured human lymphocytes

    International Nuclear Information System (INIS)

    Kihlman, B.A.; Andersson, H.C.

    1986-01-01

    In the first part of this presentation the authors give examples of the synergistic enhancements that are obtained with various inhibitor combinations in G/sub 2/. The second part of the presentation deals with the effects of two agents, also well known for their capacity to potentiate the frequency of chromosomal aberrations induced by physical and chemical agents, but with a different mechanism of action. These agents are caffeine and 3-aminobenzamide (3AB). Caffeine has for decades been used as an inhibitor of DNA repair although its mechanism of action has not been fully understood. 3AB has more recently come into focus as an efficient inhibitor of the synthesis of poly-(ADP-ribose), a substance believed to be of importance in connection with the repair of certain types of DNA damage. The results presented do not quite fit in with the general idea about the mode of action of these agents. All experiments were carried out with whole-blood cultures of human lymphocytes. When inhibitors were used as post-treatments, chromosomal aberrations were induced by X-rays or by the alkylating agents thiotepa (TT) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). X-rays were generated by a Siemens Stabilipan 200 apparatus, at a dose rate of 0.5 Gy/min. The tube (TR 200f) was operated at 180 kV, 10 mA and the radiation filtered through 4 mm Al

  14. Equine interferon gamma synthesis in lymphocytes after in vivo infection and in vitro stimulation with EHV-1.

    Science.gov (United States)

    Paillot, R; Daly, J M; Juillard, V; Minke, J M; Hannant, D; Kydd, J H

    2005-08-22

    Equine cytotoxic T lymphocyte (CTL) responses to equine herpesvirus-1 (EHV-1) are well characterised but little is known about the cytokine response after infection or vaccination. EHV-1 is common in horses and infects lymphocytes in vivo. This virus was used as a model to measure the synthesis of interferon gamma (IFN-gamma) by equine peripheral blood mononuclear cells (PBMC) after in vivo infection and/or in vitro stimulation with EHV-1. Both flow cytometry and ELISPOT assays were used to quantify equine IFN-gamma using a mouse anti-bovine IFN-gamma monoclonal antibody (clone CC302; shown to cross-react with recombinant equine IFN-gamma) and a rabbit anti-canine IFN-gamma polyclonal antibody. The percentage of PBMC synthesising IFN-gamma after in vitro stimulation with EHV-1 increased with age. In yearlings infected experimentally with EHV-1, PBMC showed two peaks of IFN-gamma synthesis, 11 and 56 days after infection. The IFN-gamma synthesis was principally associated with CD8(+) cells. The patterns of IFN-gamma synthesis detected by intracellular IFN-gamma staining or ELISPOT were compared with CTL data and shown to be similar. These methods were also applied successfully to frozen samples of PBMC. Measurement of equine IFN-gamma using these simple techniques can now be applied to future studies on protective cellular immune responses following virus infection and/or vaccination of horses.

  15. Involvement of DNA polymerase δ in DNA repair synthesis in human fibroblasts at late times after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Dresler, S.L.; Gowans, B.J.; Robinson-Hill, R.M.; Hunting, D.J.

    1988-01-01

    DNA repair synthesis following UV irradiation of confluent human fibroblasts has a biphasic time course with an early phase of rapid nucleotide incorporation and a late phase of much slower nucleotide incorporation. The biphasic nature of this curve suggests that two distinct DNA repair systems may be operative. Previous studies have specifically implicated DNA polymerase δ as the enzyme involved in DNA repair synthesis occurring immediately after UV damage. In this paper, the authors describe studies of DNA polymerase involvement in DNA repair synthesis in confluent human fibroblasts at late times after UV irradiation. Late UV-induced DNA repair synthesis in both intact and permeable cells was found to be inhibited by aphidicolin, indicating the involvement of one of the aphidicolin-sensitive DNA polymerases, α or δ. In permeable cells, the process was further analyzed by using the nucleotide analogue (butylphenyl)-2'-deoxyguanosine 5'-triphosphate, which inhibits DNA polymerase α several hundred times more strongly than it inhibits DNA polymerase δ. The (butylphenyl)-2'-deoxyguanosine 5'-triphosphate inhibition curve for late UV-induced repair synthesis was very similar to that for polymerase δ. It appears that repair synthesis at late time after UV irradiation, like repair synthesis at early times, is mediated by DNA polymerase δ

  16. DNA synthesis in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Painter, R.B.; California Univ., San Francisco; Young, B.R.

    1987-01-01

    One of the first responses observed in S phase mammalian cells that have suffered DNA damage is the inhibition of initiation of DNA replicons. In cells exposed to ionizing radiation, a single-strand break appears to be the stimulus for this effect, whereby the initiation of many adjacent replicons (a replicon cluster) is blocked by a single-strand break in any one of them. In cells exposed to ultraviolet light (u.v.), replicon initiation is blocked at fluences that induce about one pyrimidine dimer per replicon. The inhibition of replicon initiation by u.v. in Chinese hamster cells that are incapable of excising pyrimidine dimers from their DNA is virtually the same as in cells that are proficient in dimer excision. Therefore, a single-strand break formed during excision repair of pyrimidine dimers is not the stimulus for inhibition of replicon initiation in u.v.-irradiated cells. Considering this fact, as well as the comparative insensitivity of human ataxia telangiectasia cells to u.v.-induced inhibition of replicon initiation, we propose that a relatively rare lesion is the stimulus for u.v. -induced inhibition of replicon initiation. (author

  17. Survey of current trends in DNA synthesis core facilities.

    Science.gov (United States)

    Hager, K M; Fox, J W; Gunthorpe, M; Lilley, K S; Yeung, A

    1999-12-01

    The Nucleic Acids Research Group of the Association of Biomolecular Resource Facilities (ABRF) last surveyed DNA synthesis core facilities in April 1995. Because of the introduction of new technologies and dramatic changes in the market, we sought to update survey information and to determine how academic facilities responded to the challenge presented by commercial counterparts. The online survey was opened in January 1999 by notifying members and subscribers to the ABRF electronic discussion group. The survey consisted of five parts: general facility information, oligonucleotide production profile, oligonucleotide charges, synthesis protocols, and trends in DNA synthesis (including individual comments). All submitted data were anonymously coded. Respondents from DNA synthesis facilities were primarily from the academic category and were established between 1984 and 1991. Typically, a facility provides additional services such as DNA sequencing and has upgraded to electronic ordering. There is stability in staffing profiles for these facilities in that the total number of employees is relatively unchanged, the tenure for staff averages 5.9 years, and experience is extensive. On average, academic facilities annually produce approximately 1/16 the number of oligonucleotides produced by the average commercial facilities, but all facilities report an increase in demand. Charges for standard oligonucleotides from academic facilities are relatively higher than from commercial companies; however, the opposite is true for modified phosphoramidites. Subsidized facilities charge less than nonsubsidized facilities. Synthesis protocols and reagents are standard across the categories. Most facilities offer typical modifications such as biotinylation. Despite the competition by large commercial facilities that have reduced costs dramatically, academic facilities remain a stable entity. Academic facilities enhance the quality of service by focusing on nonstandard

  18. The Protective Effect of Whole Honey and Phenolic Extract on Oxidative DNA Damage in Mice Lymphocytes Using Comet Assay.

    Science.gov (United States)

    Cheng, Ni; Wang, Yuan; Cao, Wei

    2017-12-01

    In this study, the antioxidant activity and the protective effect against hydrogen peroxide-induced DNA damage were assessed for five honeys of different botanical origin. Seven phenolic acids were detected in the honey samples. Ferulic acid was the most abundant phenolic acid detected in longan honey, jujube honey and buckwheat honey. Ellagic acid, p-hydroxybenzoic acid and protocatechuic acid were the main phenolic acids detected in vitex honey. Of all honey samples tested, the highest total phenolic content and antioxidant activity were found in buckwheat honey, whereas the lowest total phenolic content and antioxidant activity were found in locust honey. Treatment with hydrogen peroxide induced a 62% increase in tail DNA in mice lymphocytes, and all studied honeys significantly inhibited this effect (P Phenolic extracts of honey displayed greater protective effects than whole honey in comet assay. The hydrogen peroxide-generated increase in 8-hydroxy-2-deoxyguanosine (8-OHdG) was effectively inhibited by the honeys studied (P phenolic acids of honey can penetrate into lymphocytes and protect DNA from oxidative damage by scavenging hydrogen peroxide and/or chelating ferrous ions.

  19. Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis

    Science.gov (United States)

    Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai

    2010-01-01

    The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817

  20. Design and synthesis of DNA four-helix bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rangnekar, Abhijit; Gothelf, Kurt V [Department of Chemistry, Centre for DNA Nanotechnology (CDNA) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C (Denmark); LaBean, Thomas H, E-mail: kvg@chem.au.dk, E-mail: thl@cs.duke.edu [Department of Chemistry, Duke University, Durham, NC 27708 (United States)

    2011-06-10

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  1. Design and synthesis of DNA four-helix bundles

    International Nuclear Information System (INIS)

    Rangnekar, Abhijit; Gothelf, Kurt V; LaBean, Thomas H

    2011-01-01

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  2. Effects of DNA polymerase inhibitors on replicative and repair DNA synthesis in ultraviolet-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Morita, T.; Nakamura, H.; Tsutsui, Y.; Nishiyama, Y.; Yoshida, S.

    1982-01-01

    Aphidicolin specifically inhibits eukaryotic DNA polymerase α, while 2',3'-dideoxythymidine 5'-triphosphate (d 2 TTP) inhibits DNA polymerase ν and ν but not α. 1-ν-D-Arabinofuranosylcytosine 5'-triphosphate (araCTP) inhibits both DNA polymerase α and ν although to a different extent. Here we measured the effects of these inhibitors on repair DNA synthesis of U.V.-irradiated HeLa cells by two different methods. Firstly, aphidicolin, 1-ν-D-arabinofuranosylcytosine (araC, a precursor of araCTP) and 2',3'-dideoxythimidine (d 2 Thd, a precursor of d 2 TTP) were added directly to the culture medium. In this case, aphidicolin and araC strongly inhibited replicative DNA synthesis of HeLa cells, and they also inhibited repair synthesis after U.V.-irradiation but to a much lesser extent. In contrast, high concentrations of d 2 Thd inhibited repair DNA synthesis to a higher extent than replicative DNA synthesis. Secondly, the active form of inhibitor, d 2 TTP, was microinjected directly into cytoplasm or nuclei or U.V.-irradiated HeLa cells. Microinjection of d 2 TTP effectively inhibited repair synthesis. The microinjection of d 2 TTP, into either cytoplasm or nucleus, strongly inhibited replicative synthesis. These results might indicate that multiple DNA polymerases are involved in repair synthesis as well as in replicative synthesis

  3. γ-irradiation induces radioresistant DNA synthesis in HeLa cells

    International Nuclear Information System (INIS)

    Synzynys, B.I.; Aminev, A.G.; Konstantinova, S.A.; Saenko, A.S.

    1987-01-01

    Cells of suspension HeLa culture at the logarithmic phase of growth were exposed to 60 Co-γ-rays (5 Gy), incubated in the nutritious medium, and in 4 h subjected to repeated irradiation: the dose-response function and the dynamics of DNA synthesis inhibition were determined. It was shown that DNA synthesis was inhibited to a lesser extent after preirradiation, in other words, DNA synthesis was radioresistant. A correlation between this synthesis and reproductive cell death is discussed

  4. Synthesis and AFM visualization of DNA nanostructures

    International Nuclear Information System (INIS)

    Mizuno, Rika; Haruta, Hirotaka; Morii, Takashi; Okada, Takao; Asakawa, Takeshi; Hayashi, Kenshi

    2004-01-01

    We propose a novel bottom-up approach for the fabrication of various desired nanostructures, based on self-assembly of oligonucleotides governed by Watson-Crick base pairing. Using this approach, we designed Y-shaped, closed Y-shaped, H-shaped, and hexagonal structures with oligonucleotides. These structures were autonomously fabricated simply by mixing equimolar solutions of oligonucleotides and performing hybridization. After synthesis of the nanostructures, we confirmed their validity by agarose gel electrophoresis and atomic force microscope (AFM) visualization. We detected bands of the desired molecular sizes in the gel electrophoresis and observed the desired structures by AFM analysis. We concluded that the synthesized structures were consistent with our intended design and that AFM visualization is a very useful tool for the observation of nanostructures

  5. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress

    DEFF Research Database (Denmark)

    Bhowmick, Rahul; Minocherhomji, Sheroy; Hickson, Ian D

    2016-01-01

    Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis...... replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective...

  6. Internalization of Staphylococcus aureus in Lymphocytes Induces Oxidative Stress and DNA Fragmentation: Possible Ameliorative Role of Nanoconjugated Vancomycin

    Directory of Open Access Journals (Sweden)

    Subhankari Prasad Chakraborty

    2011-01-01

    Full Text Available Staphylococcus aureus is the most frequently isolated pathogen causing bloodstream infections, skin and soft tissue infections and pneumonia. Lymphocyte is an important immune cell. The aim of the present paper was to test the ameliorative role of nanoconjugated vancomycin against Vancomycin-sensitive Staphylococcus aureus (VSSA and vancomycin-resistant Staphylococcus aureus (VRSA infection-induced oxidative stress in lymphocytes. VSSA and VRSA infections were developed in Swiss mice by intraperitoneal injection of 5×106 CFU/mL bacterial solutions. Nanoconjugated vancomycin was adminstrated to VSSA- and VRSA-infected mice at its effective dose for 10 days. Vancomycin was adminstrated to VSSA- and VRSA-infected mice at a similar dose, respectively, for 10 days. Vancomycin and nanoconjugated vancomycin were adminstrated to normal mice at their effective doses for 10 days. The result of this study reveals that in vivo VSSA and VRSA infection significantly increases the level of lipid peroxidation, protein oxidation, oxidized glutathione level, nitrite generation, nitrite release, and DNA damage and decreases the level of reduced glutathione, antioxidant enzyme status, and glutathione-dependent enzymes as compared to control group, which were increased or decreased significantly near to normal in nanoconjugated vancomycin-treated group. These findings suggest the potential use and beneficial role of nanoconjugated vancomycin against VSSA and VRSA infection-induced oxidative stress in lymphocytes.

  7. Cytogenetic status and oxidative DNA-damage induced by atorvastatin in human peripheral blood lymphocytes: Standard and Fpg-modified comet assay

    International Nuclear Information System (INIS)

    Gajski, Goran; Garaj-Vrhovac, Vera; Orescanin, Visnja

    2008-01-01

    To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay and Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell

  8. Cytogenetic status and oxidative DNA-damage induced by atorvastatin in human peripheral blood lymphocytes: Standard and Fpg-modified comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Gajski, Goran [Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb (Croatia); Garaj-Vrhovac, Vera [Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb (Croatia); Orescanin, Visnja [Ruder Boskovic Institute, 10000 Zagreb (Croatia)

    2008-08-15

    To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay and Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell.

  9. Dissociation of histone and DNA synthesis in x-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.

    1971-01-01

    Although histone synthesis and DNA synthesis are normally very well coordinated in HeLa cells, their histone synthesis proved relatively resistant to inhibition by ionizing radiation. During the first 24 h after 1,000 R the rate of cellular DNA synthesis progressively fell to small fractions of control values while histone synthesis with much less relative reduction. Acrylamide gel electropherograms of the acid soluble nuclear histones synthesized by irradiated HeLa cells were qualitatively normal

  10. Protective effects of aqueous and ethanolic extracts of Portulaca oleracea L. aerial parts on H2O2-induced DNA damage in lymphocytes by comet assay.

    Science.gov (United States)

    Behravan, Javad; Mosafa, Fatemeh; Soudmand, Negar; Taghiabadi, Elahe; Razavi, Bibi Marjan; Karimi, Gholamreza

    2011-09-01

    The comet assay is a standard method for measuring DNA damage. In this study, the protective effects of ethanolic and aqueous extracts of Portulaca oleracea L. (P. oleracea) on human lymphocyte DNA lesions were evaluated with the comet assay. Lymphocytes were isolated from blood samples taken from healthy volunteers. Human lymphocytes were incubated in H(2)O(2) (50,100, and 200 μM), aqueous extract (0.05, 0.1, 0.5, 1, and 2.5mg/ml), and ethanolic extracts (0.05, 0.1, 0.5, 1, and 2.5mg/ml) of P. oleraceae aerial parts alone with a combination of H(2)O(2) (100 μM) with either 1 or 2.5mg/ml of both extracts at 4°C for 30 minutes. The extent of DNA migration was measured using the alkaline single cell gel electrophoresis approach assay, and DNA damage was expressed as percentage tail DNA. We found that the aqueous extract of P. oleracea significantly inhibited DNA damage, while there was no effect of the ethanolic extract. These data suggest that the aqueous extract of P. oleracea can prevent oxidative DNA damage to human lymphocytes, which is likely due to antioxidant constituents in the extract. Copyright © 2011. Published by Elsevier B.V.

  11. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Science.gov (United States)

    Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I

    2011-01-31

    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  12. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    2011-01-01

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  13. An initial DNA damage and the repair efficiency of UV induces damages estimated by SCGE assay in lymphocytes from occupationally exposed to pesticides and reference group from Greece

    International Nuclear Information System (INIS)

    Niedzwiedz, W.; Cebulska-Wasilewska, A.; Piperakis, S.M.

    2000-01-01

    The purpose of this study was to examine the individual susceptibility to UV-C induced DNA damage in lymphocytes of Greece people occupationally exposed to pesticides and from reference group with reported no occupational exposure. We also analyzed if there are any differences in the cellular repair capacity between both groups. Lymphocytes were isolated from fresh blood samples collected in Greece from 50 persons recognized as non-exposed to pesticides and from 50 farmers at the end of the spraying season. The average age in exposed to pesticide and reference group was 42.08 and 42.19, respectively. Frozen lymphocytes were transported in a dry ice into DREB laboratory for DNA damage analysis. The DNA damage was measured with the application of single cell gel electrophoresis method (SCGE technique). Our results show that there was not any statistically significant difference concerning the level of the DNA damage detected in defrosted lymphocytes between exposed and non-exposed group. The photoproducts excision efficiency after exposure to UV-C (6 Jm 2 ) and difference in repair capacity by incubation in present and absent of PHA were also studied. There were no statistically significant differences detected directly after UV irradiation between both investigated groups (p >0.1). However, for group exposed to pesticide the ratio of DNA damage measured right after exposition and two hours later was higher (32.19) comparing to reference group (28.60). It may suggest that in exposed group photoproducts excision efficiency was higher or the rejoining rates of the breaks was lower. The differences between repair efficiency observed in lymphocytes from group exposed and non-exposed to pesticides (with or without stimulation to division) were also statistically insignificant (for Tail Length, Tail DNA and Tail moment parameters - p >0.1). Statistically significant differences in DNA damage repair capacities were observed (for all analyzed parameters) between lymphocytes

  14. Postirradiation DNA synthesis is inversely related to cell survival

    International Nuclear Information System (INIS)

    Kapiszewska, M.; Lange, C.S.

    1987-01-01

    Postirradiation (PI) events which might lead to cellular reproductive death or survival were studied in L5178Y-S (LY-S) cells. PI incubation at 25 0 C protects LY-S cells against the PLD fixation which takes place at 37 0 C. An optimal condition for the repair of PLD is 1h at 37 0 C followed by 4h holding at 25 0 C prior to the second half of a split dose, or 5L holding at 25 0 C without a 37 0 C incubation. Longer incubations at 37 0 C resulted in progressively decreased survivals. Postirradiation inhibition of DNA synthesis at 37 0 C was observed only during the first 30 min; thereafter, /sup 3/H-dThd incorporation was higher than in unirradiated controls. This excess synthesis effect was removed by shifting irradiated cells to 25 0 C holding. The inhibition observed at 25 0 C was reversed by shifting to 37 0 C. Thus the degree of postirradiation DNA synthesis is inversely related to PLD/SLD repair. DNA filter elution shows complete SSB repair by 3h at both temperatures (with faster kinetics at 37 0 C), and DSB repair plateaus at 80% (37 0 C) and 60% (25 0 C) after 90 min

  15. Absolute Quantification of the Host-To-Parasite DNA Ratio in Theileria parva-Infected Lymphocyte Cell Lines.

    Science.gov (United States)

    Gotia, Hanzel T; Munro, James B; Knowles, Donald P; Daubenberger, Claudia A; Bishop, Richard P; Silva, Joana C

    2016-01-01

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field.

  16. Dual TORK/DNA-PK inhibition blocks critical signaling pathways in chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Thijssen, Rachel; ter Burg, Johanna; Garrick, Brett; van Bochove, Gregor G. W.; Brown, Jennifer R.; Fernandes, Stacey M.; Rodríguez, María Solé; Michot, Jean-Marie; Hallek, Michael; Eichhorst, Barbara; Reinhardt, Hans Christian; Bendell, Johanna; Derks, Ingrid A. M.; van Kampen, Roel J. W.; Hege, Kristen; Kersten, Marie José; Trowe, Torsten; Filvaroff, Ellen H.; Eldering, Eric; Kater, Arnon P.

    2016-01-01

    Inhibition of B-cell receptor (BCR) signaling pathways in chronic lymphocytic leukemia (CLL) provides significant clinical benefit to patients, mainly by blocking adhesion of CLL cells in the lymph node microenvironment. The currently applied inhibitors ibrutinib and idelalisib have limited capacity

  17. STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, Hong Y; Woetmann, Anders

    2006-01-01

    In this study, we demonstrated that STAT3, a well-characterized transcription factor expressed in continuously activated oncogenic form in the large spectrum of cancer types, induces in malignant T lymphocytes the expression of DNMT1, the key effector of epigenetic gene silencing. STAT3 binds in ...

  18. Effect of postirradiation anoxia on radiosensitivity of lymphocytes

    International Nuclear Information System (INIS)

    Schrek, R.

    1976-01-01

    Radiosensitivity was measured by viable-lymphocyte counts and by uridine uptake. The viability of the lymphocytes was based on morphologic characteristics visualized by phase contrast microscopy of the cells in a special slide chamber. Low doses of x rays (10 to 1000 R) and incubation at 37 0 C killed lymphocytes in interphase with the production of pyknotic nuclei (nuclear death), and large doses (6000 R) produced nuclei with clear nucleoplasm (cytoplasmic death). Nuclear, but not cytoplasmic, death was inhibited by incubation of the irradiated cells at 27 0 C. Postirradiation anoxia had no effect on development of the nuclear and cytoplasmic death of lymphocytes irradiated with 100 to 6000 R. Anoxia had no effect on the early response of lymphocytes to phytohemagglutinin (PHA) [increase in ribonucleic acid (RNA) and protein synthesis] but inhibited completely the late effects [increase in deoxyribonucleic acid (DNA) synthesis and transformation into lymphoblastoid cells]. The PHA caused relative radioresistance of lymphocytes under aerobic conditions and, to a lesser extent, under anaerobic conditions. The slight radioresistance induced by PHA in anoxic lymphocytes apparently did not depend on an increase in DNA synthesis or on the transformation to lymphoblastoid cells

  19. DNA synthesis in the pituitary gland of the rat: effect of sulpiride and clomiphene.

    Science.gov (United States)

    Burdman, J A; Szijan, I; Jahn, G A; Machiavelli, G; Kalbermann, L E

    1979-09-15

    Sulpiride administration to rats releases prolactin and increases DNA replication in the anterior pituitary gland. Clomiphene prevents the stimulation of DNA synthesis produced by sulpiride, but does not affect prolactin release from the gland. These findings suggest that the intracellular prolactin content of the anterior pituitary gland plays a role in the regulation of DNA synthesis through a mechanism mediated by oestrogens.

  20. Computational method and system for modeling, analyzing, and optimizing DNA amplification and synthesis

    Science.gov (United States)

    Vandersall, Jennifer A.; Gardner, Shea N.; Clague, David S.

    2010-05-04

    A computational method and computer-based system of modeling DNA synthesis for the design and interpretation of PCR amplification, parallel DNA synthesis, and microarray chip analysis. The method and system include modules that address the bioinformatics, kinetics, and thermodynamics of DNA amplification and synthesis. Specifically, the steps of DNA selection, as well as the kinetics and thermodynamics of DNA hybridization and extensions, are addressed, which enable the optimization of the processing and the prediction of the products as a function of DNA sequence, mixing protocol, time, temperature and concentration of species.

  1. Induction of unscheduled DNA synthesis on the nuclear matrix of rat hepatocytes after whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Bezlepkin, V.G.; Malinovskij, Yu.Yu.; Kuznetsova, E.A.; Namvar, R.A.; Gaziev, A.I.

    1986-01-01

    DNA synthesis in hepatocytes was studied by incorporation of [ 3 H]thymidine administered of portal vein of γ-irradiated (80 Gy) rats. It was shown that the rate of replicative DNA synthesis decreased in hepatocytes of the regenerating liver and unscheduled DNA synthesis was induced at the nuclear matrix of resting cells of the intact liver. In addition to repair synthesis, DNA synthesis resembling replicative one (''aberrant'' DNA synthesis) accounts for a considerable fraction of γ-radiation-induced synthesis of DNA at the nuclear matrix

  2. Psoralen plus ultraviolet radiation-induced inhibition of DNA synthesis and viability in human lymphoid cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, K H; Waters, H L [National Cancer Inst., Bethesda, MD (USA); Ellingson, O L; Tarone, R E

    1979-08-01

    The present study investigated whether conditions of 8-methoxypsoralen (8-MOP) concentration and of exposure to high intensity long wavelength ultraviolet radiation (UV-A) during psoriasis and mycosis fungoides therapy might be sufficient to result directly in decreased lymphoid cell DNA synthesis and viability in vitro. Tritiated thymidine (/sup 3/HtdR) incorporation and cell growth following UV-A exposure alone or with 8-MOP was examined in peripheral blood lymphocytes and in Ebstein-Barr virus transformed human lymphoblastoid cell lines. UV-A exposure alone induced a dose-dependent inhibition of /sup 3/HTdR incorporation in both types of lymphoid cells. Pre-incubation with 0.1 ..mu..g/ml 8-MOP before UV-A exposure induced a significantly greater inhibition of /sup 3/HTdr incorporation. Further inhibition of /sup 3/HTdR incorporation was observed by preincubation of the lymphoblastoid cells with 1.0 ..mu..g/ml 8-MOP but not in the lymphocytes. The concentration of viable lymphoblastoid cells did not decrease below the original concentration after the highest dose of UV-A alone (29,00 J/m/sup 2/) but preincubation with 0.1 ..mu..g/ml 8-MOP resulted in 40% and 0.6% survival respectively after 3000 J/m/sup 2/. This study suggested that the low doses of 8-MOP and UV-A received by patients' lymphocytes may be sufficient to explain the decreased DNA synthesis found in their circulating leucocytes. (author).

  3. Evidence that transferrin supports cell proliferation by supplying iron for DNA synthesis

    International Nuclear Information System (INIS)

    Laskey, J.; Webb, I.; Schulman, H.M.; Ponka, P.

    1988-01-01

    Transferrin is essential for cell proliferation and it was suggested that it may trigger a proliferative response following its interaction with receptors, serving as a growth factor. However, since the only clearly defined function of transferrin is iron transport, it may merely serve as an iron donor. To further clarify this issue, the authors took advantage of an iron chelate, ferric salicylaldehyde isonicotinoyl hydrazone (Fe-SIH), which they developed and previously demonstrated to efficiently supply iron to cells without using physiological transferrin receptor pathway. As expected, they observed that blocking monoclonal antibodies against transferrin receptors inhibited proliferation of both Raji and murine erythroleukemia cells. This inhibited cell growth was rescued upon the addition of Fe-SIH which was also shown to deliver iron to Raji cells in the presence of blocking anti-transferrin receptor antibodies. Moreover, blocking anti-transferrin receptor antibodies inhibited [ 3 H]thymidine incorporation into DNA and this inhibition could be overcome by added Fe-SIH. In addition, Fe-SIH slightly stimulated, while SIH (an iron chelator) significantly inhibited, DNA synthesis in phytohemagglutinin-stimulated peripheral blood lymphocytes. Taken together, these results indicate that the only function of transferrin supporting cell proliferation is to supply cells with iron

  4. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine

    International Nuclear Information System (INIS)

    Xu Wei; Chu Yiwei; Zhang Ruihua; Xu Huanbin; Wang Ying; Xiong Sidong

    2005-01-01

    CD8 + T cells play a critical role in protective immunity against Hepatitis B Virus (HBV). Epitope-based DNA vaccines expressing HBV-dominant CTL epitopes can be used as candidate vaccines capable of inducing cytotoxic T Lymphocytes (CTL) responses. A plasmid DNA encoding a CTL epitope of HBV core antigen, HBc 18-27 , was constructed. Intramuscular immunization of C57BL/6 mice with this DNA vaccine resulted in successful induction of HBV-specific CTL responses. In order to promote transportation of the peptide into endoplasmic reticulum (ER) to bind to MHC class I molecules for optimal class I antigen presentation, an ER targeting sequence (ERTS) was fused with the C 18-27 encoding gene. ERTS fusion significantly enhanced specific CD8 + T cell responses in terms of CTL cytolysis as well as IFN-γ secretion. This enhancement was correlated with promoted epitope presentation on target cell surface. We report here an enhanced immunogenicity of an epitope-based DNA vaccine using an ER targeting signal sequence, which has significant implications for future design of therapeutic HBV vaccine

  5. DNA repair and U.V.-light sensitivity of the lymphocytes in discoid lupus erythematosus

    International Nuclear Information System (INIS)

    Horkay, I.; Nagy, E.; Tamasi, P.; Szabo, M.; Csongor, J.

    1975-01-01

    Excision repair and cell damage induced by U.V.-light were studied in peripheral lymphocyte cultures derived from patients with discoid lupus erythematosus. Radioactivity was measured by means of a Packard liquid-scintillation counter, cell damage after U.V.-irradiation was estimated by vital staining with trypan-blue and by decrease of the cell-count. Repair incorporation of mostly normal rate could be demonstrated in the lymphocyte cultures of all the 22 patients with discoid lupus erythematosus. The cell damaging effect of U.V.-light was more increased in these cultures than in those of the normal controls. The repair inhibiting effect of chloroquine administered orally in therapeutic doses to the patients was generally slight and incidental. The possible correlation of the findings is discussed

  6. DNA damages induced in human lymphocytes by UV or X-rays and repair capacities of healthy donors and skin cancer patients

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Dyga, W.; Budzanowska, E.

    1999-01-01

    The aim of this study was to compare variation in the individual susceptibility of various donors to the induction of the DNA damage by genotoxic agents and their cellular capabilities to repair induced damage. DNA damages induced by UV or X-rays in lymphocytes and cellular repair capability of healthy donors and persons bearing various categories of skin cancer cells were investigated. Fresh blood was collected by venipuncture from 35 individuals (including nine prior to skin cancer treatment). All cancer patients were nonsmoking males, however 42.3 % of them were former smokers. All healthy donors were also males, an average age was 38.6 y and among them 68% were recent or former smokers. Immediately after collecting samples, lymphocytes were isolated and stored at -70 o C for further studies in vitro. Previously cryopreserved lymphocytes were defrosted and viability of the cells was investigated. The single cell gel electrophoresis assay (SCGE), known as a Comet assay, was performed in defrozen lymphocytes to evaluate individual DNA damage levels presented in lymphocytes at the time of sample's collection. To compare individual susceptibility to the induction of DNA damage by UV and ionizing radiation, lymphocytes were exposed to dose of 6 J/m 2 of UV or 2 Gy of X-rays and DNA damages were detected again with an application of the Comet assay. Additionally, to study variation in the individuals cellular capability to repair damages induced, prior to the DNA damage analysis an incubation of cells exposed was also done in presence or absence of phytohemagglutinin (cell divisions processes starting agent). Results showed in untreated lymphocytes of skin cancer patients significantly higher than in the reference group levels of the DNA damages. Significantly different responses to UV and significantly lower capabilities to repair UV induced damage in skin cancer patients were observed. On the average, no differences between reference group and skin cancer patients

  7. Relative ultraviolet radiation sensitivity of certain functions of polyoma virus. Stimulation of cell DNA synthesis

    International Nuclear Information System (INIS)

    Barra, Yves; Imbert, Jean; Planche, Jacqueline; Meyer, Georges.

    1977-01-01

    Peritoneal Mouse macrophages were used to study the stimulation of cell DNA synthesis by polyoma virus. Using ultraviolet-irradiated polyoma virus, it was possible to show a difference between the inactivation of infectivity and of induction of DNA synthesis. By statistical analysis of these two phenomena it was found that 39% of the viral genome is necessary for the induction of cell DNA synthesis [fr

  8. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.

    Science.gov (United States)

    Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo

    2018-01-01

    DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

  9. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  10. Radiosensitive Down syndrome lymphoblastoid lines have normal ionizing-radiation-induced inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Ganges, M.B.; Robbins, J.H.; Jiang, H.; Hauser, C.; Tarone, R.E.

    1988-01-01

    The extent of X-ray-induced inhibition of DNA synthesis was determined in radiosensitive lymphoblastoid lines from 3 patients with Down syndrome and 3 patients with ataxia telangiectasia (AT). Compared to 6 normal control lines, the 3 AT lines were abnormally resistant to X-ray-induced inhibition of DNA synthesis, while the 3 Down syndrome lines had normal inhibition. These results demonstrate that radiosensitive human cells can have normal X-ray-induced inhibition of DNA synthesis and provide new evidence for the dissociation of radioresistant DNA synthesis. (author). 27 refs.; 1 fig.; 1 tab

  11. On DNA synthesis during C14O2 assimilation by peas seedlings

    International Nuclear Information System (INIS)

    Karimov, Kh.Kh.; Nikolaeva, M.I.

    1976-01-01

    In this article authors try to determine how much p articipate t hephotosynthesis in the new formation of DNA seedlings, depends this processfrom the light and realize at this the synthesis DNA in chloroplasts

  12. The regulation of protein synthesis and translation factors by CD3 and CD28 in human primary T lymphocytes

    Directory of Open Access Journals (Sweden)

    Proud Christopher G

    2002-05-01

    Full Text Available Abstract Background Activation of human resting T lymphocytes results in an immediate increase in protein synthesis. The increase in protein synthesis after 16–24 h has been linked to the increased protein levels of translation initiation factors. However, the regulation of protein synthesis during the early onset of T cell activation has not been studied in great detail. We studied the regulation of protein synthesis after 1 h of activation using αCD3 antibody to stimulate the T cell receptor and αCD28 antibody to provide the co-stimulus. Results Activation of the T cells with both antibodies led to a sustained increase in the rate of protein synthesis. The activities and/or phosphorylation states of several translation factors were studied during the first hour of stimulation with αCD3 and αCD28 to explore the mechanism underlying the activation of protein synthesis. The initial increase in protein synthesis was accompanied by activation of the guanine nucleotide exchange factor, eukaryotic initiation factor (eIF 2B, and of p70 S6 kinase and by dephosphorylation of eukaryotic elongation factor (eEF 2. Similar signal transduction pathways, as assessed using signal transduction inhibitors, are involved in the regulation of protein synthesis, eIF2B activity and p70 S6 kinase activity. A new finding was that the p38 MAPK α/β pathway was involved in the regulation of overall protein synthesis in primary T cells. Unexpectedly, no changes were detected in the phosphorylation state of the cap-binding protein eIF4E and the eIF4E-binding protein 4E-BP1, or the formation of the cap-binding complex eIF4F. Conclusions Both eIF2B and p70 S6 kinase play important roles in the regulation of protein synthesis during the early onset of T cell activation.

  13. Membrane receptors for very low density lipoprotein (VLDL) inhibitor of lymphocyte proliferation

    International Nuclear Information System (INIS)

    Yi, P.I.; Beck, G.; Zucker, S.

    1981-01-01

    Physiologic concentrations of human plasma very low density lipoproteins inhibit the DNA synthesis of lymphocytes stimulated by allogeneic cells or lectins. In this report reachers have compared the effects of isolated lipoproteins [very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)] and lipoprotein-depleted plasma (LDP) on DNA synthesis by phytohemagglutinin-stimulated human lymphocytes. The relative potency for the inhibition of lymphocyte proliferation was VLDL greater than LDL greater than HDL greater than LDP. Fifty percent inhibition of DNA synthesis was observed at a VLDL protein concentration of 1.5--2.0 microgram/ml. Researchers have further demonstrated the presence of specific receptors for VLDL on human lymphocytes. Native VLDL was more effective than LDL in competing for 125I-VLDL binding sites. Subsequent to binding to lymphocytes, 125I-VLDL was internalized and degraded to acid-soluble products. Based on a Scatchard analysis of VLDL binding at 4 degrees C, the number of VLDL receptors per lymphocyte was estimated at 28,000 +/- 1300. Based on an estimated mean binding affinity for the VLDL receptor complex at half saturation of approximately 8.8 X 10(7) liter/mole, it is estimated that 91% of lymphocyte VLDL receptors are occupied at physiologic VLDL concentrations in blood. Although the immune regulatory role of plasma lipoproteins is uncertain, researchers suggest tha VLDL and LDL-In may maintain circulating blood lymphocytes in a nonproliferative state via their respective cell receptor mechanisms

  14. Opportunities for measuring DNA synthesis time by quantitative autoradiography

    International Nuclear Information System (INIS)

    Vasileva, D.

    1980-01-01

    DNA sysntesis time (Tsub(s)) in cells of the canine erythropoiesis and myelopoiesis pools was determined by quantitative autoradiography according to Doermer. In contrast to mitosis labelling for Tsub(s) estimation as so far applied, this technique uses well-differentiated cells. After blocking endogeneous DNA synthesis with 5-fluorodeoxyuridine, its further course becomes dependent on exogeneous supply of thymidine, in the form of 14 C-thymidine. From incroporation of the latter into the individual cell within a definite time span (3-7 min) and taking into account its total amount, Tsub(s) may be calculated. The data thus obtained were found to agree with Tsub(s) values as estimated from the labelled mitosis curve

  15. Dissociation between insulin secretion and DNA synthesis in cultured pancreatic islets

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1985-01-01

    -Tdr incorporation. However, long-term exposure to IBMX did not result in increased DNA content of the islets. Inhibition of the DNA synthesis by 5 mM hydroxyurea resulted in a marked reduction in DNA content of the islets but no decrease in either insulin release or insulin content when expressed per ng DNA...

  16. Common genomic signaling among initial DNA damage and radiation-induced apoptosis in peripheral blood lymphocytes from locally advanced breast cancer patients

    DEFF Research Database (Denmark)

    Henríquez-Hernández, Luis Alberto; Pinar, Beatriz; Carmona-Vigo, Ruth

    2013-01-01

    PURPOSE: To investigate the genomic signaling that defines sensitive lymphocytes to radiation and if such molecular profiles are consistent with clinical toxicity; trying to disclose the radiobiology mechanisms behind these cellular processes. PATIENTS AND METHODS: Twelve consecutive patients...... suffering from locally advanced breast cancer and treated with high-dose hyperfractionated radiotherapy were recruited. Initial DNA damage was measured by pulsed-field gel electrophoresis and radiation-induced apoptosis was measured by flow cytometry. Gene expression was assessed by DNA microarray. RESULTS...

  17. No indications of an enhanced UV-light-induced unscheduled DNA synthesis in splenocytes of mice following a low-dose irradiation in vivo or in vitro

    International Nuclear Information System (INIS)

    Wojcik, A.; Seemayer, C.A.; Mueller, W.U.; Streffer, C.

    1995-01-01

    One of the open questions regarding the adaptive response to ionizing radiation is whether it can be induced in G 0 lymphocytes. In the majority of experiments in which an adaptive response in G 0 lymphocytes was observed, the adapting dose was applied in vivo. In order to investigate whether there is some in vivo component of adaptive response, mouse splenocytes of the C57BL/6 strain were irradiated with 0.1 Gy x-rays either in vivo or in vitro, and their UV-light-induced unscheduled DNA synthesis (UDS) levels were determined autoradiographically. An augmented UV-light-induced UDS following an adapting dose applied in vivo has previously been described by several authors in splenocytes of C57BL/6 mice, indicating that the adapting dose enhanced the DNA repair capacity of lymphocytes. In the present investigation, however, no evidence of an adaptive response could be seen regardless of whether the adapting dose was given in vivo or in vitro. Those results present a further indication for the fact that the adaptive response to ionizing radiation is not always inducible, even in lymphocytes of an inbred mouse strain in which its existence has been reported before. (orig.)

  18. Lymphocytic subsets and low-dose exposure

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Eybl, E.

    1993-03-01

    The present investigations proved the differential radiosensitivity of lymphocytic subpopulations: From in vivo and in vitro irradiations it may be followed that the most sensitive subset are CD8 positive suppressor T cells. CD4/CD8 ratios are increased both in peripheral blood and after mitogen stimulation of lymphocytes of exposed persons. The decrease in B cells is pronounced only at higher radiation doses. Though the rate of DNA synthesis after mitogen stimulation was reduced in some exposed persons, that was no general phenomenon. Especially after tritium exposure, the observed lymphopenia correlated with an increased stimulation by PHA and an increased rate of DNA synthesis in some probands. Thus the present investigations indicate that - despite an inhibition of some immune parameters by radioexposure - the body is able to maintain its immunological homoeostasis. (authors)

  19. Effects of carcinogen treatment on rat liver DNA synthesis in vivo and on nascent DNA synthesis and elongation in cultured hepatocytes

    International Nuclear Information System (INIS)

    Zurlo, J.; Mignano, J.E.; Eustice, D.C.; Poirier, M.C.; Yager, J.D.

    1986-01-01

    One objective of this study was to determine the effects of N-hydroxy-2-acetylaminofluorene (N-OH-AAF) treatment on DNA synthesis in regenerating rat liver. It was found that N-OH-AAF caused a dose-dependent inhibition of [ 3 H]thymidine incorporation into liver DNA. This inhibition was followed by a gradual, but incomplete recovery. The second objective of the study was to determine the effects of DNA damage on the size distribution and elongation of nascent hepatocyte DNA. Hepatocytes, which have been shown to demonstrate a pattern of inhibition and subsequent recovery of DNA synthesis following UV irradiation similar to that seen in vivo upon treatment with N-OH-AAF were cultured. The size distribution of nascent DNA after UV irradiation was determined by pH step gradient alkaline elution analysis. The results show that UV irradiation caused a dose-dependent decrease in the size distribution of nascent DNA suggesting an inhibition of elongation. The results show that resumption of DNA synthesis and nascent strand elongation occur on damaged templates. These observations along with previous studies support the idea that DNA damage leading to inhibition of DNA synthesis may induce SOS-type processes which if mutagenic may play a role in the initiation of carcinogenesis. (Auth.)

  20. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    International Nuclear Information System (INIS)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M.

    1988-01-01

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K m values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 μM. For UV-induced DNA repair synthesis, the apparent K m values were substantially lower, ranging from 0.11 to 0.44 μM for AG1518 cells and from 0.06 to 0.24 μM for IMR-90 cells. Recent data implicate DNA polymerase δ in UV-induced repair synthesis and suggest that DNA polymerases α and δ are both involved in semiconservative replication. They measured K m values for dGTP and dTTP for polymerases α and δ, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K m values for DNA polymerase δ are much greater than the K m values for UV-induced repair synthesis, suggesting that when polymerase δ functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K m values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K m for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo

  1. Growth of the parvovirus minute virus of mice MVMp3 in EL4 lymphocytes is restricted after cell entry and before viral DNA amplification: cell-specific differences in virus uncoating in vitro.

    Science.gov (United States)

    Previsani, N; Fontana, S; Hirt, B; Beard, P

    1997-10-01

    Two murine parvoviruses with genomic sequences differing only in 33 nucleotides (8 amino acids) in the region coding for the capsid proteins show different host cell specificities: MVMi grows in EL4 T lymphocytes and MVMp3 grows in A9 fibroblasts. In this study we compared the courses of infections with these two viruses in EL4 cells in order to investigate at which step(s) the infection process of MVMp3 is interrupted. The two viruses bound equally well to EL4 cells, and similar amounts of MVMi and MVMp3 input virion DNA appeared in the nuclear fractions of EL4 cells 1 h after infection. However, double-stranded replicative-form (RF) DNA of the two viruses appeared at different times, at 10 h postinfection with MVMi and at 24 h postinfection with MVMp3. The amount of MVMp3 RF DNA detected at 24 h was very small because it was produced only in a tiny subset of the population of EL4 cells that proved to be permissive for MVMp3. Replication of double-stranded viral DNA in EL4 cells was measured after transfection of purified RF DNA, cloned viral DNA, and cloned viral DNA with a mutation preventing synthesis of the capsid proteins. In each of these cases, DNA replication was comparable for MVMi and MVMp3. Production of virus particles also appeared to be similar after transfection of the two types of RF DNA into EL4 cells. Conversion of incoming 32P-labeled single-stranded MVM DNA to 32P-labeled double-stranded RF DNA was detected only after RF DNA amplification, indicating that few molecules serve as templates for viral DNA amplification. We showed that extracts of EL4 cells contain a factor which can destabilize MVMi virions but not MVMp3 by testing the sensitivity of viral DNA to DNase and by CsCl gradient analyses of viral particles. We therefore conclude that the MVMp3 life cycle is arrested after the transport of virions to the nucleus and prior to the replication of RF DNA, most likely at the stage of viral decapsidation.

  2. DNA repair in modeled microgravity: Double strand break rejoining activity in human lymphocytes irradiated with γ-rays

    International Nuclear Information System (INIS)

    Mognato, Maddalena; Girardi, Cristina; Fabris, Sonia; Celotti, Lucia

    2009-01-01

    Cell response to ionising radiation depends, besides on genetic and physiological features of the biological systems, on environmental conditions occurring during DNA repair. Many data showed that microgravity, experienced by astronauts during space flights or modeled on Earth, causes apoptosis, cytoskeletal alteration, cell growth inhibition, increased frequency of mutations and chromosome aberrations. In this study, we analysed the progression of the rejoining of double strand breaks (DSBs) in human peripheral blood lymphocytes (PBLs) irradiated with γ-rays and incubated in static condition (1g) or in modeled microgravity (MMG). γ-H2AX foci formation and disappearance, monitored during the repair incubation, showed that the kinetics of DSBs rejoining was different in the two gravity conditions. The fraction of foci-positive cells decreased slower in MMG than in 1g at 6 and 24 h after irradiation (P < 0.01) and the mean number of γ-H2AX foci per nucleus was significantly higher in MMG than in 1g at the same time-points (P < 0.001). In the same samples we determined apoptotic level and the rate of DSB rejoining during post-irradiation incubation. A significant induction of apoptosis was observed in MMG at 24 h after irradiation (P < 0.001), whereas at shorter times the level of apoptosis was slightly higher in MMG respect to 1g. In accordance with the kinetics of γ-H2AX foci, the slower rejoining of radiation-induced DSBs in MMG was observed by DNA fragmentation analyses during the repair incubation; the data of pulsed-field gel electrophoresis assay showed that the fraction of DNA released in the gel was significantly higher in PBL incubated in MMG after irradiation with respect to cells maintained in 1g. Our results provide evidences that MMG incubation during DNA repair delayed the rate of radiation-induced DSB rejoining, and increased, as a consequence, the genotoxic effects of ionising radiation.

  3. DNA repair in modeled microgravity: Double strand break rejoining activity in human lymphocytes irradiated with {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Mognato, Maddalena, E-mail: maddalena.mognato@unipd.it [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Girardi, Cristina; Fabris, Sonia [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Celotti, Lucia [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Laboratori Nazionali di Legnaro, INFN, Padova (Italy)

    2009-04-26

    Cell response to ionising radiation depends, besides on genetic and physiological features of the biological systems, on environmental conditions occurring during DNA repair. Many data showed that microgravity, experienced by astronauts during space flights or modeled on Earth, causes apoptosis, cytoskeletal alteration, cell growth inhibition, increased frequency of mutations and chromosome aberrations. In this study, we analysed the progression of the rejoining of double strand breaks (DSBs) in human peripheral blood lymphocytes (PBLs) irradiated with {gamma}-rays and incubated in static condition (1g) or in modeled microgravity (MMG). {gamma}-H2AX foci formation and disappearance, monitored during the repair incubation, showed that the kinetics of DSBs rejoining was different in the two gravity conditions. The fraction of foci-positive cells decreased slower in MMG than in 1g at 6 and 24 h after irradiation (P < 0.01) and the mean number of {gamma}-H2AX foci per nucleus was significantly higher in MMG than in 1g at the same time-points (P < 0.001). In the same samples we determined apoptotic level and the rate of DSB rejoining during post-irradiation incubation. A significant induction of apoptosis was observed in MMG at 24 h after irradiation (P < 0.001), whereas at shorter times the level of apoptosis was slightly higher in MMG respect to 1g. In accordance with the kinetics of {gamma}-H2AX foci, the slower rejoining of radiation-induced DSBs in MMG was observed by DNA fragmentation analyses during the repair incubation; the data of pulsed-field gel electrophoresis assay showed that the fraction of DNA released in the gel was significantly higher in PBL incubated in MMG after irradiation with respect to cells maintained in 1g. Our results provide evidences that MMG incubation during DNA repair delayed the rate of radiation-induced DSB rejoining, and increased, as a consequence, the genotoxic effects of ionising radiation.

  4. DNA synthesis in the imaginal wing discs of the American bollworm ...

    Indian Academy of Sciences (India)

    Unknown

    The effect of two insect growth regulators of plant origin viz. plumbagin and azadirachtin and the ecdysteroids. 20-hydroxyecdysone, makisterone A and a phytoecdysteroid on DNA synthesis in imaginal wing discs of day 4 final instar Helicoverpa armigera larvae was studied. DNA synthesis increased with increase in time of.

  5. The proofreading 3'→5' exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis

    International Nuclear Information System (INIS)

    Khare, Vineeta; Eckert, Kristin A.

    2002-01-01

    The 3'→5' exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase γ (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3'→5' exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity

  6. Oral and intraperitoneal administration of quercetin decreased lymphocyte DNA damage and plasma lipid peroxidation induced by TSA in vivo.

    Science.gov (United States)

    Chan, Shu-Ting; Lin, Yi-Chin; Chuang, Cheng-Hung; Shiau, Rong-Jen; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2014-01-01

    Our previous study showed that quercetin enhances the anticancer effect of trichostatin A (TSA) in xenograft mice given quercetin intraperitoneally (10 mg/kg, 3 times/week). Herein, we investigate whether quercetin administered orally exerts such an effect and prevents the cytotoxic side effects of TSA. We found that quercetin given orally (20 and 100 mg/kg, 3 times/week) failed to enhance the antitumor effect of TSA although it increased the total quercetin concentration more than quercetin administered intraperitoneally in the plasma. The compound quercetin-3-glucuronide (Q3G) increased the most. However, quercetin administered intraperitoneally increased the total quercetin level in tumor tissues more than oral quercetin. Oral and intraperitoneal administration of quercetin similarly decreased lymphocyte DNA damage and plasma lipid peroxidation level induced by TSA. Furthermore, we found that the enhancing effect of Q3G on the antitumor effect of TSA and the incorporation of Q3G was less than that of quercetin in A549 cells. However, we found that A549 cells possessed the ability to convert Q3G to quercetin. In conclusion, different from quercetin administered intraperitoneally, quercetin administered orally failed to enhance the antitumor effect of TSA because of its metabolic conversion. However, it prevented TSA-induced DNA damage and lipid peroxidation.

  7. Evaluation of radio-induced DNA damage and their repair in human lymphocytes by comet assay or single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Nascimento, Patricia A. do; Suzuki, Miriam F.; Okazaki, Kayo

    1997-01-01

    The comet assay, also called single cell gel electrophoresis technique, permits to evaluate quantitatively DNA breakage induced by chemical and physical agents at the level of the single cell. The present paper refers to the construction of dose-response curves to DNA damage and repair studies in human peripheral lymphocytes, utilizing the comet assay for the radiosensitivity analysis. So, the blood samples were obtained from healthy donors (40-50 year old), irradiated in a 60 Co source (GAMMACEL 220) with doses of 0.17, 0.25, 0.57, 1.10, 2.12 and 4.22 Gy (0.59 Gy/min.) and processed 1 and 24 hours after the exposition. Results obtained showed a increase in the total lenght of comet (DNA migration) as a function of radiation dose in samples processed 1 and 24 hours after the treatment. The DNA lesion in irradiated lymphocytes with 4.22 Gy (means value of 101.4 μm) were 3.4 times higher than in the untreated lymphocytes (mean value of 30 μm) instead of 24 hours after the irradiation were 1.5 times higher (mean value of 46.3 μm). This reduction on DNA repair occurred in these cells. It was also possible visualized the presence of subpopulations of the cells with different sensitivity and repair capacity to ionizing radiation in these donors. (author). 8 refs., 3 figs

  8. Radioresistant DNA synthesis in fibroblasts of a patient with Down's syndrome

    International Nuclear Information System (INIS)

    Barenfel'd, L.S.; Bil'din, V.N.; Pleskach, N.M.; Prokof'eva, V.V.

    1985-01-01

    Ionizing radiation effect on DNA replication on fibroblasts of a healthy donor and a patient with Down's syndrome either by direct 3 H-thymidine inclusion into DNA, or by analysis of the sizes of daughter DNA moleculs at the state of stable distribution in acid saccharose, gradients was studied. Gamma-radiation doses (5-10 Gy) suppressing DNA synthesis in normal fibroblasts practically had no effect on DNA synthesisin fibroblasts of a patient with Down's syndrome. Radioresistant DNA synthesis in Down's syndrome is conditioned by a far less supression of replicon initiation as compared with the one in normal cells. So, it is stated that in Down's disease there is no delay in DNA synthesis by ionizing radiation that enables the normal cells to repair DNA damages before replication renewal

  9. Programmable autonomous synthesis of single-stranded DNA

    Science.gov (United States)

    Kishi, Jocelyn Y.; Schaus, Thomas E.; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  10. Automation of cDNA Synthesis and Labelling Improves Reproducibility

    Directory of Open Access Journals (Sweden)

    Daniel Klevebring

    2009-01-01

    Full Text Available Background. Several technologies, such as in-depth sequencing and microarrays, enable large-scale interrogation of genomes and transcriptomes. In this study, we asses reproducibility and throughput by moving all laboratory procedures to a robotic workstation, capable of handling superparamagnetic beads. Here, we describe a fully automated procedure for cDNA synthesis and labelling for microarrays, where the purification steps prior to and after labelling are based on precipitation of DNA on carboxylic acid-coated paramagnetic beads. Results. The fully automated procedure allows for samples arrayed on a microtiter plate to be processed in parallel without manual intervention and ensuring high reproducibility. We compare our results to a manual sample preparation procedure and, in addition, use a comprehensive reference dataset to show that the protocol described performs better than similar manual procedures. Conclusions. We demonstrate, in an automated gene expression microarray experiment, a reduced variance between replicates, resulting in an increase in the statistical power to detect differentially expressed genes, thus allowing smaller differences between samples to be identified. This protocol can with minor modifications be used to create cDNA libraries for other applications such as in-depth analysis using next-generation sequencing technologies.

  11. Studies of DNA and chromosome damage in skin fibroblasts and blood lymphocytes from psoriasis patients treated with 8-methoxypsoralen and UVA irradiation

    International Nuclear Information System (INIS)

    Bredberg, A.; Lambert, B.; Lindblad, A.; Swanbeck, G.; Wennersten, G.

    1983-01-01

    Exposure of human lymphocytes and skin fibroblasts in vitro to a single, clinically used dose of PUVA, i.e., 0.1 micrograms/ml of 8-methoxypsoralen (8-MOP) plus 0.9-4 J/cm2 of longwave ultraviolet radiation (UVA), lead to the formation of DNA damage as determined by alkaline elution, and to chromosome aberrations and sister chromatid exchanges (SCE). When lymphocyte-enriched plasma was obtained from psoriasis patients 2 h after oral intake of 8-MOP and then UVA irradiated (1.8-3.6 J/cm2) in vitro, an increased frequency of chromosome aberrations and SCE was observed. Normal levels of chromosome aberrations and SCE were found in lymphocytes of psoriasis patients after 3-30 weeks of PUVA treatment in vivo. A small but statistically significant increase in the SCE frequency was observed in the lymphocytes of psoriasis patients treated for 1-6 years with PUVA (mean 18.0 SCE/cell) as compared with before PUVA (mean 15.8, p less than 0.05). Skin fibroblasts of psoriasis patients analyzed 5 years after the start of PUVA treatment showed a normal number of SCE but a high fraction of filter-retained DNA in the alkaline elution assay, suggesting the presence of cross-linked DNA

  12. Multi-line split DNA synthesis: a novel combinatorial method to make high quality peptide libraries

    Directory of Open Access Journals (Sweden)

    Ueno Shingo

    2004-09-01

    Full Text Available Abstract Background We developed a method to make a various high quality random peptide libraries for evolutionary protein engineering based on a combinatorial DNA synthesis. Results A split synthesis in codon units was performed with mixtures of bases optimally designed by using a Genetic Algorithm program. It required only standard DNA synthetic reagents and standard DNA synthesizers in three lines. This multi-line split DNA synthesis (MLSDS is simply realized by adding a mix-and-split process to normal DNA synthesis protocol. Superiority of MLSDS method over other methods was shown. We demonstrated the synthesis of oligonucleotide libraries with 1016 diversity, and the construction of a library with random sequence coding 120 amino acids containing few stop codons. Conclusions Owing to the flexibility of the MLSDS method, it will be able to design various "rational" libraries by using bioinformatics databases.

  13. Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study

    Science.gov (United States)

    Arif, Hussain; Rehmani, Nida; Farhan, Mohd; Ahmad, Aamir; Hadi, Sheikh Mumtaz

    2015-01-01

    Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) and galangin (GN). Using single cell alkaline gel electrophoresis (comet assay), we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids. PMID:26569217

  14. Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study

    Directory of Open Access Journals (Sweden)

    Hussain Arif

    2015-11-01

    Full Text Available Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN, fisetin (FN, quercetin (QN, kaempferol (KL and galangin (GN. Using single cell alkaline gel electrophoresis (comet assay, we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids.

  15. Coordinated leading and lagging strand DNA synthesis by using the herpes simplex virus 1 replication complex and minicircle DNA templates.

    Science.gov (United States)

    Stengel, Gudrun; Kuchta, Robert D

    2011-01-01

    The origin-specific replication of the herpes simplex virus 1 genome requires seven proteins: the helicase-primase (UL5-UL8-UL52), the DNA polymerase (UL30-UL42), the single-strand DNA binding protein (ICP8), and the origin-binding protein (UL9). We reconstituted these proteins, excluding UL9, on synthetic minicircular DNA templates and monitored leading and lagging strand DNA synthesis using the strand-specific incorporation of dTMP and dAMP. Critical features of the assays that led to efficient leading and lagging stand synthesis included high helicase-primase concentrations and a lagging strand template whose sequence resembled that of the viral DNA. Depending on the nature of the minicircle template, the replication complex synthesized leading and lagging strand products at molar ratios varying between 1:1 and 3:1. Lagging strand products (∼0.2 to 0.6 kb) were significantly shorter than leading strand products (∼2 to 10 kb), and conditions that stimulated primer synthesis led to shorter lagging strand products. ICP8 was not essential; however, its presence stimulated DNA synthesis and increased the length of both leading and lagging strand products. Curiously, human DNA polymerase α (p70-p180 or p49-p58-p70-p180), which improves the utilization of RNA primers synthesized by herpesvirus primase on linear DNA templates, had no effect on the replication of the minicircles. The lack of stimulation by polymerase α suggests the existence of a macromolecular assembly that enhances the utilization of RNA primers and may functionally couple leading and lagging strand synthesis. Evidence for functional coupling is further provided by our observations that (i) leading and lagging strand synthesis produce equal amounts of DNA, (ii) leading strand synthesis proceeds faster under conditions that disable primer synthesis on the lagging strand, and (iii) conditions that accelerate helicase-catalyzed DNA unwinding stimulate decoupled leading strand synthesis but not

  16. Desoxyribonucleic acid (DNA) synthesis in vitro by thymus and spleen cells of the rat after hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, K.; Spath, A.

    1988-03-01

    The inhibition of the semiconservative and restorative DNA synthesis caused by hyperthermia (30 to 60 min, 43/sup 0/C) was significantly higher in spleen cells than in thymus cells. The DNA repair synthesis of thymus cells measured at 37/sup 0/C was increased by about two times the initial value after a pre-incubation of 30 to 90 min and 30 to 60 min, respectively, with 37 and 43/sup 0/C, respectively. Under the same conditions, the /sup 3/H-thymidine incorporation into the DNA of spleen cells diminished proportionally to the pre-incubation time after a pre-incubation of 30 and 45 min, respectively, with 43 and 37/sup 0/C, respectively. When hyperthermia and inhibitors of DNA synthesis or DNA repair (hydroxyurea, 1-..beta..-D-arabinofuranosylcytosine, 3', 5'-didesoxythymidine, and 3-aminobenzamide) were combined, overadditive effects - without cellspecific particularities - were seen only in the case of 3-aminobenzamide. Only in thymus cells, the inhibitor of DNA topoisomerase II novobiocin caused an overadditive reinforcement of the inhibition induced by hyperthermia of the semiconservative DNA synthesis. The stimulation of DNA repair synthesis in thymus cells caused by novobiocin with the aid of DNA polymerase ..beta.. could be compensated by hyperthermia. The sedimentation of thymus and spleen cell nucleoids was increased after hyperthermia. The results suggest a special importance of DNA topology and of the DNA polymerase ..beta.. activity for the cellular effect of hyperthermia.

  17. Bacillus subtilis DNA polymerases, PolC and DnaE, are required for both leading and lagging strand synthesis in SPP1 origin-dependent DNA replication

    Science.gov (United States)

    Seco, Elena M.

    2017-01-01

    Abstract Firmicutes have two distinct replicative DNA polymerases, the PolC leading strand polymerase, and PolC and DnaE synthesizing the lagging strand. We have reconstituted in vitro Bacillus subtilis bacteriophage SPP1 θ-type DNA replication, which initiates unidirectionally at oriL. With this system we show that DnaE is not only restricted to lagging strand synthesis as previously suggested. DnaG primase and DnaE polymerase are required for initiation of DNA replication on both strands. DnaE and DnaG synthesize in concert a hybrid RNA/DNA ‘initiation primer’ on both leading and lagging strands at the SPP1 oriL region, as it does the eukaryotic Pol α complex. DnaE, as a RNA-primed DNA polymerase, extends this initial primer in a reaction modulated by DnaG and one single-strand binding protein (SSB, SsbA or G36P), and hands off the initiation primer to PolC, a DNA-primed DNA polymerase. Then, PolC, stimulated by DnaG and the SSBs, performs the bulk of DNA chain elongation at both leading and lagging strands. Overall, these modulations by the SSBs and DnaG may contribute to the mechanism of polymerase switch at Firmicutes replisomes. PMID:28575448

  18. Localization of specific sequences and DNA single-strand breaks in individual UV-A-irradiated human lymphocytes by COMET FISH

    Science.gov (United States)

    Bock, Claudia; Rapp, Alexander; Dittmar, Heike; Monajembashi, Shamci; Greulich, Karl-Otto

    1999-01-01

    The COMET assay, a single cell electrophoresis technique which allows to separate electrophoretically fractionated DNA according to size has been combined with fluorescence in situ hybridization (FISH) which allows to localize specific genes or gene regions. This combination (COMET FISH) allows the detection of DNA single strand breaks in specific regions of the genome of human lymphocytes at the single cell level. Various types of DNA probes, e.g. centromere-, (alpha) - satellite-, telomere-, whole chromosome-, single copy- and region specific DNA probes have been used to investigate whether the UV-A induced DNA single strand breaks are distributed randomly all over the human genome or induced at specific sites ('hot spots'). In the investigated human peripheral blood lymphocytes all but one centromere reveal low sensitivity for UV-A irradiation (500 kJ/m2), while telomeres are randomly distributed over COMET heads and tails. The human chromosome 1 is fractionated by irradiation, but remains in the COMET head, indicating an only moderate degree of fractionation. Among three tested single copy probes, c- myc, p53 and p58, the p53 gene located on chromosome 17p13.1 and the p58 gene (1p36) appear to be located in UV-A stable regions of the human genome in 95% of 65 investigated lymphocytes. In contrast, the c-myc proto-oncogene (8q24) is found in the COMET tail in 90% of the 27 investigated lymphocytes and thus appears to be more sensitive to UV-A irradiation.

  19. Protective effect of curcumin and its analog on γ-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes and isolated rat hepatocytes in vitro

    International Nuclear Information System (INIS)

    Menon, Venugopal P.

    2007-01-01

    Ionizing radiation is known to induce oxidative stress through generation of reactive oxygen species (ROS) resulting in an imbalance of the pro-oxidant and antioxidant status in the cells, which is suggested to culminate in cell death. The present work was aimed to evaluate the radioprotective effect of curcumin and its analog on γ-radiation induced toxicity in cultured human lymphocytes and rat hepatocytes. Hepatocytes were isolated from the liver of rats by collagenase perfusion. The cellular changes were estimated using lipid peroxidative indices like thiobarbituric acid reactive substances (TBARS), the antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH). The DNA damage was analyzed by comet assay, cytokinesis blocked micro nucleus assay, dicentric aberrations and translocation frequency. Cell cycle distribution and measurement of the percentage of apoptotic cells were performed by flow cytometry analysis. To investigate whether the dietary agents like curcumin and its analog have a role on cell cycle regulation, we analyzed the changes in cell cycle profiles by using fluorescence activated cell sorter. The increase in the severity of DNA damage was observed with the increase dose (1, 2 and 4 Gy) of γ-radiation in cultured lymphocytes and hepatocytes. TBARS were increased significantly, whereas the levels of GSH and antioxidant enzymes were significantly decreased in γ-irradiated hepatocytes and lymphocytes. On pretreatment with curcumin and its analog (1, 5 and 10 μg/ml) showed a significant decrease in the levels of TBARS and DNA damage. The antioxidant enzymes were increased significantly along with the levels of GSH. The maximum protection of hepatocytes and lymphocytes was observed at 10 μg/ml curcumin and 5 μg/ml curcumin analog pretreatment. Thus, pretreatment with curcumin and its analog helps in protecting the normal hepatocytes and lymphocytes against γ-radiation induced cellular

  20. Method and apparatus for synthesis of arrays of DNA probes

    Science.gov (United States)

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.; Singh-Gasson, Sangeet; Green, Roland

    2002-04-23

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, which may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.

  1. Molecular cloning of human T-cell lymphotrophic virus type I-like proviral genome from the peripheral lymphocyte DNA of a patient with chronic neurologic disorders

    International Nuclear Information System (INIS)

    Reddy, E.P.; Mettus, R.V.; DeFreitas, E.; Wroblewska, Z.; Cisco, M.; Koprowski, H.

    1988-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-I), the etiologic agent of human T-cell leukemia, has recently been shown to be associated with neurologic disorders such as tropical spastic paraparesis, HTLV-associated myelopathy, and possibly with multiple sclerosis. In this communication, the authors have examined one specific case of neurologic disorder that can be classified as multiple sclerosis or tropical spastic paraparesis. The patient suffering from chronic neurologic disorder was found to contain antibodies to HTLV-I envelope and gag proteins in his serum and cerebrospinal fluid. Lymphocytes from peripheral blood and cerebrospinal fluid of the patient were shown to express viral RNA sequences by in situ hybridization. Southern blot analysis of the patient lymphocyte DNA revealed the presence of HTLV-I-related sequences. Blot-hybridization analysis of the RNA from fresh peripheral lymphocytes stimulated with interleukin 2 revealed the presence of abundant amounts of genomic viral RNA with little or no subgenomic RNA. They have clones the proviral genome from the DNA of the peripheral lymphocytes and determined its restriction map. This analysis shows that this proviral genome is very similar if not identical to that of the prototype HTLV-I genome

  2. DNA polymerase I-mediated ultraviolet repair synthesis in toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Dorson, J.W.; Moses, R.E.

    1978-01-01

    DNA synthesis after ultraviolet irradiation is low in wild type toluene-treated cells. The level of repair incorporation is greater in strains deficient in DNA polymerase I. The low level of repair synthesis is attributable to the concerted action of DNA polymerase I and polynucleotide ligase. Repair synthesis is stimulated by blocking ligase activity with the addition of nicotinamide mononucleotide (NMN) or the use of a ligase temperature-sensitive mutant. NMN stimulation is specific for DNA polymerase I-mediated repair synthesis, as it is absent in isogenic strains deficient in the polymerase function or the 5' yields 3' exonuclease function associated with DNA polymerase I. DNA synthesis that is stimulated by NMN is proportional to the ultraviolet exposure at low doses, nonconservative in nature, and is dependent on the uvrA gene product but is independent of the recA gene product. These criteria place this synthesis in the excision repair pathway. The NMN-stimulated repair synthesis requires ATP and is N-ethylmaleimide-resistant. The use of NMN provides a direct means for evaluating the involvement of DNA polymerase I in excision repair

  3. Application of Comet assay to assess the effects of white bean meal on DNA of human lymphocytes

    Directory of Open Access Journals (Sweden)

    Luciana Lopes Silva Pereira

    2012-03-01

    Full Text Available This study was conducted to evaluate the potential induction of genotoxic effects of white bean flour using the Comet assay. The test was conducted with human lymphocytes present in whole blood immediately after collection, by incubation with white bean flour in three concentrations (3.92, 9.52 and 18.18 mg/mL at 37 ºC for 4 h followed by preparation of slides. Samples were considered positive (above 20% damage when the damage observed to cellular DNA was higher than the negative control. No genotoxic potential was found at the doses tested. However, it would be premature to suggest absence of risk to human health of DNA damage since the exposure of cells to the extract was restricted to four hours rather than a whole cell cycle. Additionally, further information on toxicology should be obtained in future studies.Este estudo foi realizado para avaliar o potencial de indução de efeitos genotóxicos da farinha de feijão branco utilizando o teste do Cometa. O ensaio foi realizado com linfócitos humanos presentes no sangue imediatamente após a coleta, por incubação com farinha de feijão branco em três concentrações (3,92, 9,52 e 18,18 mg/mL a 37 ºC por 4 h, seguida de preparação das lâminas. As amostras foram consideradas positivas (acima de 20% de dano, quando os danos observados no DNA celular foram maiores do que o controle negativo. Verificou-se que as doses testadas não mostraram potencial genotóxico. No entanto, seria prematuro fazer recomendações sobre o padrão de riscos para a saúde humana resultantes de danos ao DNA já que exposição das células ao extrato foi restrito ao período de quatro horas e não durante um ciclo celular completo. Além disso, outras informações sobre a toxicologia devem ser obtidas no futuro.

  4. Radiation-induced depression of DNA synthesis in cultured mammalian cells

    International Nuclear Information System (INIS)

    Povirk, L.F.

    1977-01-01

    A 313-nm light source was constructed in order to study the mechanisms by which ultraviolet and ionizing radiations inhibit DNA synthesis. It was found that in CHO, MDBK and HeLa cells, grown for one generation in the DNA sensitizer bromodeoxyuridine (BrdUrd), 313-nm light inhibited DNA synthesis with a pattern similar to that of the effect of x-rays on normal cells. A biphasic dose response curve for inhibition of total synthesis was observed, with a sensitive component representing depression of initiation of new replicons and a resistant component representing interference with elongation of replicons already growing at the time of irradiation. Since the BrdUrd plus 313-nm light treatment produces DNA lesions similar to those produced by x-rays (base damage, strand breaks, crosslinks) these results suggest that the effect of x-rays on DNA synthesis is mediated by DNA damage. In experiments with synchronized cells, it was found that in cells in which about half the chromosomes had incorporated BrdUrd, 313-nm light inhibited replication of the BrdUrd-containing DNA, but had no effect on the replication of the unsubstituted DNA in the same cell. Thus the information that DNA is damaged appears to be propagated along the DNA molecule from the sites of damage to the replication initiation sites as some kind of conformational change, possibly a relaxation of superhelical tension. Target theory calculations suggest that a single DNA lesion prevents the initiation of several adjacent replicons

  5. Detection of individual radiosensitivity by radiation–induced micronuclei in human peripheral blood lymphocytes and polymorphisms in DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Staynova, A.; Hadjidekova, V.; Popova, L.; Hristova, R. [Radiation Genetics Laboratory, National Centre of Radiobology and Radiation Protection, Sofia (Bulgaria); Savov, A. [National Genetic Laboratory, University Hospital of Obstetrics and Gynecology, Sofia (Bulgaria)

    2013-07-01

    Aim: To investigate the association of two polymorphisms – in XRCC1 gene (Arg399Gln) and in APE1 gene (Asp148Glu) and the radiation induced frequency of micronuclei in human peripheral blood lymphocytes. Material and methods: Genomic DNA from 34 cancer patients and 52 controls were genotyped using PCR–RFLP technique. Micronucleus test (MNT) was performed on 15 cancer patients and 15 controls, before and after in vitro irradiation with 2Gy gamma rays. Results: The data showed that cancer patients had a significantly higher spontaneous frequency of cells with micronuclei than controls (P=0.009). No statistical difference was registered when comparing the mean frequency of cells with micronuclei after in vitro irradiation between these groups. Four subjects were selected as radiosensitive after applying cut–off of the mean frequency of radiation induced micronuclei. Three of them are carriers of the XRCC1 399Gln allele and two of them are carriers of the APE1 148Glu allele. (author)

  6. Assessment of vinyl chloride-induced DNA damage in lymphocytes of plastic industry workers using a single-cell gel electrophoresis technique.

    Science.gov (United States)

    Awara, W M; El-Nabi, S H; El-Gohary, M

    1998-06-26

    DNA damage and the formation of stable carcinogen-DNA adducts are considered critical events in the initiation of the carcinogenic process. This study was carried out to assess whether exposure of plastics industry workers to the vinyl chloride monomer (VCM) for different periods of time would cause DNA damage, using the single-cell gel electrophoresis (SCGE) technique. Levels of DNA damage was assessed by both extent of DNA migration and numbers of DNA damaged spots in the peripheral blood lymphocytes from 32 plastics workers with different periods of exposure to VCM; they were evaluated by comparison with a group of non-exposed individuals. It was found that plastics workers who were exposed to VCM for different periods of time showed significantly increased levels of DNA damage compared with the non-exposed subjects. There was a significant correlation between the severity of DNA damage and duration of exposure. However, no significant correlation was found between the age of all subjects and DNA damage. Concentrations of VCM in the air inside the factory were found to be significantly higher than values in non-exposed areas, despite being lower than the threshold limit value (TLV). Our results encourage the application of SCGE as a sensitive, simple, fast and useful technique in the regular health screening of workers occupationally exposed to VCM (even at concentrations below the TLV) to assess the possibility of any DNA damage.

  7. Inhibition by hyperthermia of repair synthesis and chromatin reassembly of ultraviolet-induced damage to DNA

    International Nuclear Information System (INIS)

    Bodell, W.J.; Cleaver, J.E.; Roti Roti, J.L.

    1984-01-01

    The authors have investigated the effects of hyperthermia treatment on sequential steps of the repair of UV-induced DNA damage in HeLa cells. DNA repair synthesis was inhibited by 40% after 15 min of hyperthermia treatment at 45 0 C; greater inhibition of repair synthesis occurred with prolonged incubation at 45 0 C. Enzymatic digestion of repair-labeled DNA with Exonuclease III indicated that once DNA repair was initiated, the DNA repair patch was synthesized to completion and that ligation of the DNA repair patch occurred. Thus, the observed inhibition of UV-induced DNA repair synthesis by hyperthermia treatment may be the result of inhibition of enzymes involved in the initiating steps(s) of DNA repair. DNA repair patches synthesized in UV-irradiated cells labeled at 37 0 C with[ 3 H]Thd were 2.2-fold more sensitive to micrococcal nuclease digestion than was parental DNA; if the length of the labeling period was prolonged, the nuclease sensitivity of the repair patch synthesized approached that of the parental DNA. DNA repair patches synthesized at 45 0 C, however, remained sensitive to micrococcal nuclease digestion even after long labeling periods, indicating that heat treatment inhibits the reassembly of the DNA repair patch into nucleosomal structures. 23 references, 3 figures, 2 tables

  8. DNA synthesis during development and proliferation of glial cells in organotypic rat cerebellar culture

    International Nuclear Information System (INIS)

    Renkawek, K.

    1977-01-01

    DNA synthesis was investigated in glial cells in vitro with 3 H thymidine in concentration 1 μCi/ml medium. Incorporation of isotope into the glial nuclei has been found both in the explant (7-21%) and in the outgrowth (22-56%). DNA synthesis was dependent on the age of culture and due to the contact inhibition in the outgrowth. Results point out that marked DNA synthesis is a characteristic feature of glia differentiation and of reactive character of glial cells in vitro. (author)

  9. DNA damage in lymphocytes induced by cardiac CT and comparison with physical exposure parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Wataru; Tatsugami, Fuminari; Awai, Kazuo [Department of Diagnostic Radiology, Institute of Biomedical Health Sciences, Hiroshima University, Hiroshima (Japan); Ishida, Mari; Sakai, Chiemi [Institute of Biomedical and Health Sciences, Department of Cardiovascular Physiology and Medicine, Hiroshima University, Hiroshima (Japan); Tashiro, Satoshi [Hiroshima University, Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima (Japan); Ishida, Takafumi [Institute of Clinical Research West Medical Center, Hiroshima (Japan); Nakano, Yukiko [Hiroshima University Hospital, Department of Cardiovascular Medicine, Hiroshima (Japan)

    2017-04-15

    To investigate whether physical exposure parameters such as the dose index (CTDI), dose length product (DLP), and size-specific dose estimate (SSDE) are predictive of DNA damage. In vitro, we scanned a phantom containing blood samples from five volunteers at CTDI 50, 100, and 150 mGy. One sample was not scanned. We also scanned samples in three different-size phantoms at CTDI 100 mGy. In vivo, we enrolled 45 patients and obtained blood samples before and after cardiac CT. The γ-H2AX foci were counted. In vitro, in the control and at CTDI 50, 100, and 150 mGy, the number of γ-H2AX was 0.94 ± 0.24 (standard error, SE), 1.28 ± 0.30, 1.91 ± 0.47, and 2.16 ± 0.20. At SSDE 180, 156, and 135 mGy, it was 2.41 ± 0.20, 1.91 ± 0.47, and 1.42 ± 0.20 foci/cell. The γ-H2AX foci were positively correlated with the radiation dose and negatively correlated with the body size. In vivo, the γ-H2AX foci were significantly increased after CT (from 1.21 ± 0.19 to 1.92 ± 0.22 foci/cell) and correlated with CTDI, DLP, and SSDE. DNA damage was induced by cardiac CT. There was a correlation between the physical exposure parameters and γ-H2AX. (orig.)

  10. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  11. Evaluation of radio-induced DNA damage and their repair in human lymphocytes by comet assay or single cell gel electrophoresis; Avaliacao do dano radioinduzido no DNA e reparo em linfocitos humanos pelo metodo do cometa (single cell gel electrophoresis)

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Patricia A. do; Suzuki, Miriam F.; Okazaki, Kayo [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-12-01

    The comet assay, also called single cell gel electrophoresis technique, permits to evaluate quantitatively DNA breakage induced by chemical and physical agents at the level of the single cell. The present paper refers to the construction of dose-response curves to DNA damage and repair studies in human peripheral lymphocytes, utilizing the comet assay for the radiosensitivity analysis. So, the blood samples were obtained from healthy donors (40-50 year old), irradiated in a {sup 60} Co source (GAMMACEL 220) with doses of 0.17, 0.25, 0.57, 1.10, 2.12 and 4.22 Gy (0.59 Gy/min.) and processed 1 and 24 hours after the exposition. Results obtained showed a increase in the total lenght of comet (DNA migration) as a function of radiation dose in samples processed 1 and 24 hours after the treatment. The DNA lesion in irradiated lymphocytes with 4.22 Gy (means value of 101.4 {mu}m) were 3.4 times higher than in the untreated lymphocytes (mean value of 30 {mu}m) instead of 24 hours after the irradiation were 1.5 times higher (mean value of 46.3 {mu}m). This reduction on DNA repair occurred in these cells. It was also possible visualized the presence of subpopulations of the cells with different sensitivity and repair capacity to ionizing radiation in these donors. (author). 8 refs., 3 figs.

  12. A comparative study of radiation induced DNA damage and repair in buccal cells and lymphocytes assessed by single cell gel electrophoresis (comet) assay

    International Nuclear Information System (INIS)

    Dhillon, V.S.; Fenech, M.

    2003-01-01

    Full text: During the past few years, there has been increasing interest in epithelial cells from buccal mucosa for genotoxicity evaluation of different chemical and/or physical agents. In the present study we used the buccal and sublingual epithelial cells to detect both inter- and intra-individual variation in radiation induced DNA damage and repair. For this purpose we used the single cell gel electrophoresis assay which over the years has gained wide spread acceptance as a simple, sensitive and reliable assay to measure genotoxicity related effects as well as kinetics of DNA repair. Buccal and sublingual epithelial cells from six individuals (3 male and 3 females; 35-45 years old) were collected. Cells were then irradiated for 0, 2 and 4 Gy doses using 137 Cs-source (5.58 Gy min-1). After irradiation the cells were either placed immediately on ice or incubated at 37 deg C for 2 1/2 hour to allow cellular repair. We also studied G0 and G1 lymphocytes from the same individuals to compare the radiation-induced DNA damage and repair potential with the two types of buccal cells. Baseline DNA damage rate was significantly greater (p < 0.001) in buccal (28.18%) and sublingual epithelial cells (30.66) as compared to G0 (22.02%) and G1 (21.46%) lymphocytes. Radiation-induced DNA damage in buccal (19.34%, 2Gy; 21.41%, 4 Gy) and sublingual epithelial cells (18.11% and 20.60%) was very similar and significantly lower than that observed in lymphocytes (29.76%, 56.77% for G0 and 32.66%, 59.32% for G1). The extent of DNA repair in buccal and sublingual epithelial cells was significantly lower than that observed in lymphocytes. The results for buccal and sublingual epithelial cells were highly correlated with each other (r 0.9541) as were those of G0 and G1 lymphocytes (r 0.9868). The results suggest a much reduced capacity for cellular repair in buccal and sublingual epithelial cells

  13. Measurement of Epstein-Barr virus DNA loads in whole blood and plasma by TaqMan PCR and in peripheral blood lymphocytes by competitive PCR.

    Science.gov (United States)

    Wadowsky, Robert M; Laus, Stella; Green, Michael; Webber, Steven A; Rowe, David

    2003-11-01

    Epstein-Barr virus (EBV) DNA load values were measured in samples of whole blood (n = 60) and plasma (n = 59) by TaqMan PCR and in samples of peripheral blood lymphocytes (PBLs) (n = 60) by competitive PCR (cPCR). The samples were obtained from 44 transplant recipients. The whole-blood and PBL loads correlated highly (r(2) > 0.900), whereas the plasma and PBL loads correlated poorly (r(2) = 0.512). Testing of whole blood by TaqMan PCR is an acceptable alternative to testing of PBLs by cPCR for quantifying EBV DNA load.

  14. B cells in the appendix and other lymphoid organs of the rabbit: stimulation of DNA synthesis by anti-immunoglobulin

    International Nuclear Information System (INIS)

    Calkins, C.E.; Ozer, H.; Waksman, B.H.

    1975-01-01

    Lymphocytes from rabbit lymphoid organs were cultured in the presence of class specific anti-immunoglobulin sera and of anti-allotype sera. Stimulation of tritiated thymidine uptake into DNA was taken to indicate the presence of the corresponding immunoglobulins on the cell surfaces. Thymus and bone marrow lymphocytes were unresponsive to all reagents tested. Popliteal lymph node contained cells responsive to anti-μ, anti-γ, and anti-α and therefore presumably bearing IgM, IgG, and IgA. Spleen had only IgM- and IgG-bearing cells, and the appendix contained cells with IgM and IgA receptors only. The lymph node, spleen, and appendix cells of rabbits depleted of B lymphocytes by irradiation (900 R) and injection of thymocytes were unresponsive to anti-immunoglobulin but were stimulated at almost normal levels by PHA and Con A. T cell-depleted animals (thymectomy, irradiation with three divided doses of 450 R and bone marrow shielding) had immunoglobulin-bearing lymphocytes but were unresponsive to the mitogens. However a moderate level of mitogen-responsiveness reappeared by 3 to 4 wk after irradiation. Cells of morphologically distinct regions of the appendix, separated manually, showed different responses corresponding to the inferred origins of these anatomic areas. The ''dome'' and ''corona'' contained functional IgM- and IgA-bearing cells. The ''TDA'' reacted well to PHA, Con A, and PWM, but was depleted of immunoglobulin-bearing cells. The ''follicle'' cells, which are almost all in active DNA synthesis or mitosis, were relatively unresponsive to either T or B cell stimuli. Anti-allotype serum stimulated the same populations which responded to class-specific heteroantisera but at a slightly lower level. It was inferred that gut-associated lymphoid tissues like the appendix may play a special role as an amplification site for B-cells destined to produce IgM and IgA elsewhere in the organism

  15. Effects of Long-Term Aerobic Exercise on Antioxidant System and Lymphocyte DNA Damage by Triathlon Distance

    Directory of Open Access Journals (Sweden)

    Dae-Eun Kim

    2018-04-01

    Full Text Available Background and Objective: This study aimed to investigate the effects of long-term aerobic exercise on muscle damage markers, lymphocyte DNA damage, and antioxidant system in amateur athletes. Material and Methods: Eleven healthy men in their 30s and 40s without any medical illness, who did not smoke or drink, and had completed at least two amateur triathlon races (O2 and Olympic courses were enrolled. They underwent physical examination and four blood sampling sessions: at rest, immediately after a race, during recovery (3 and 6 days after the race, and after completing an Olympic course. Blood sampling was performed using the same method one month later. Weight (kg and saturation of peripheral oxygen (SpO2 were measured. Tail intensity, tail moment, and tail length, and levels of superoxide dismutase (SOD, creatine kinase (CK, and lactate dehydrogenase (LDH were analyzed. Results: First, the study found significant changes between the body weight at rest and immediately after the race (p<.001 and between those immediately after the race and 3 and 6 days after the race (p<.001 for both courses. Second, for both courses, SpO2 declined immediately after the race and tended to rise again during recovery, but the difference was not significant. Third, in the Olympic course, significant differences were found between lymphocyte tail moment ™ at rest and that immediately after the race (p<.01 and between those immediately after the race and 3 and 6 days after the race (p<.05, p<.01. In the O2 course, significant differences were found between lymphocyte TM at rest and that immediately after the race (p<.01, between those at rest and 3 days of recovery (p<.001, between those immediately after the race and 3 days of recovery (p<.001, between those at rest and 6 days of recovery (p<.01, and between those at 3 and 6 days after the race (p<.01. Both courses significantly differed in lymphocyte TM immediately after the race (p<.05. Fourth, significant

  16. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    International Nuclear Information System (INIS)

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.

    1988-01-01

    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by [ 3 H]thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3 + lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3 - lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection

  17. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.

    Science.gov (United States)

    Gan, Haiyun; Yu, Chuanhe; Devbhandari, Sujan; Sharma, Sushma; Han, Junhong; Chabes, Andrei; Remus, Dirk; Zhang, Zhiguo

    2017-10-19

    The checkpoint kinase Rad53 is activated during replication stress to prevent fork collapse, an essential but poorly understood process. Here we show that Rad53 couples leading- and lagging-strand synthesis under replication stress. In rad53-1 cells stressed by dNTP depletion, the replicative DNA helicase, MCM, and the leading-strand DNA polymerase, Pol ε, move beyond the site of DNA synthesis, likely unwinding template DNA. Remarkably, DNA synthesis progresses further along the lagging strand than the leading strand, resulting in the exposure of long stretches of single-stranded leading-strand template. The asymmetric DNA synthesis in rad53-1 cells is suppressed by elevated levels of dNTPs in vivo, and the activity of Pol ε is compromised more than lagging-strand polymerase Pol δ at low dNTP concentrations in vitro. Therefore, we propose that Rad53 prevents the generation of excessive ssDNA under replication stress by coordinating DNA unwinding with synthesis of both strands. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Extracellular matrix components influence DNA synthesis of rat hepatocytes in primary culture

    International Nuclear Information System (INIS)

    Sawada, N.; Tomomura, A.; Sattler, C.A.; Sattler, G.L.; Kleinman, H.K.; Pitot, H.C.

    1986-01-01

    The effects of several extracellular matrix components (EMCs) - fibronectin (Fn), laminin (Ln), type I (C-I) and type IV (C-IV) collagen - on DNA synthesis in rat hepatocytes in primary culture were examined by both quantitative scintillation spectrometry and autoradiography of [ 3 H]thymidine incorporation. Hepatocytes cultured on Fn showed the most active DNA synthesis initiated by epidermal growth factor (EGF) with decreasing levels of [ 3 H]thymidine uptake exhibited in the cell cultured on C-IV, C-I, and Ln, respectively. The decreasing level of DNA synthesis in hepatocytes cultured on Fn, C-IV, C-I, and Ln respectively was not influenced by cell density. The number of EGF receptors of hepatocytes was also not influenced by EMCs. These data suggest that EMCs modify hepatocyte DNA synthesis by means of post-EGF-receptor mechanisms which are regulated by both growth factors and cell density

  19. DNA and RNA Synthesis in Animal Cells in Culture--Methods for Use in Schools

    Science.gov (United States)

    Godsell, P. M.; Balls, M.

    1973-01-01

    Describes the experimental procedures used for detecting DNA and RNA synthesis in xenopus cells by autoradiography. The method described is suitable for senior high school laboratory classes or biology projects, if supervised by a teacher qualified to handle radioisotopes. (JR)

  20. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity ...

    Indian Academy of Sciences (India)

    s12039-016-1125-x. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity of lanthanide(III) complexes of 2-benzoylpyridine acetylhydrazone. KARREDDULA RAJA, AKKILI SUSEELAMMA and KATREDDI HUSSAIN REDDY. ∗.

  1. ATP-independent DNA synthesis in Vaccinia-infected L cells

    International Nuclear Information System (INIS)

    Berger, N.A.; Kauff, R.A.; Sikorski, G.W.

    1978-01-01

    Mouse L cells can be made permeable to exogenous nucleotides by a cold shock in 0.01 M Tris . HCl pH 7.8, 0.25 M sucrose, 1 mM EDTA, 30 mM 2-mercaptoethanol and 4 mM MgCl 2 . DNA synthesis in permeabilized L cells requires ATP whereas DNA synthesis in permeabilized L cells that are infected with Vaccinia virus is ATP-independent. Permeabilized L cells that are infected with ultraviolet-irradiated virus show a marked suppression of DNA synthesis which is not corrected by an excess of deoxynucleoside triphosphates and ATP. The ATP-dependent and ATP-independent processes of DNA synthesis are inhibited to the same extent by Mal-Net, pHMB, ara CTP and phosphonoacetate. Concentrations of daunorubicin and cytembena, which cause marked inhibition of the ATP-dependent enzymes, only cause partial inhibition of the ATP-independent enzymes. (Auth.)

  2. Effects of low dose radiation on repair processes in human lymphocytes

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Egg, D.; Guenther, R.

    1978-10-01

    DNA excision repair was investigated in lymphocytes of persons occupationally exposed to low dose radiation of 222 Rn. Autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine incorporation by repair replication into double stranded and single-strand containing DNA fractions obtained by BND cellulose chromatography seem to indicate a stimulatory effect of repeated low dose radiation on repair enzymes. (author)

  3. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases δ and β are involved in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Hammond, R.A.; Miller, M.R.; McClung, J.K.

    1990-01-01

    The involvement of DNA polymerases α, β, and δ in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase α) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [ 3 H]thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 μg of aphidicolin/mL, 6% by 10 μM BuPdGTP, 13% by anti-(DNA polymerse α) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 μg of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase α) antibodies into HF nuclei. These results indicate that both DNA polymerase δ and β are involved in repairing DNA damage caused by MNNG

  4. DNA double-strand break and apoptosis induction in human lymphocytes in different cycle cell phases by 60Co gamma rays and Bragg peak protons of a medical beam

    International Nuclear Information System (INIS)

    Khachenkova, A.A.; Boreyko, A.V.; Mozhaeva, A.V.; Chausov, V.N.; Ravnachka, I.I.; Amov, I.; Tiunchik, S.I.

    2009-01-01

    A comparative analysis is made of the regularities in the formation of DNA double-strand break and apoptosis induction in peripheral human blood lymphocytes in different cell cycle phases after 60 Co gamma and extended Bragg peak proton irradiation. It is shown that the formation of apoptotic cells in a lymphocyte population increases linearly in all the cell cycle stages after proton irradiation. The maximal DNA double-strand break and apoptosis yield in lymphocytes is observed in the S phase of the cell cycle

  5. Effects of gamma- and UV-radiation on DNA synthesis in permeable cells of Bacillus stearothermophilus

    International Nuclear Information System (INIS)

    Trofimenko, A.F.; Vorob'eva, A.M.; Gaziev, A.I.

    1981-01-01

    It was shown that the most of the DNA synthesis is repaired in permeable cells of Bacillus stearothermophilus not affected by injurious agents. γ-irradiation stimulates the reparative synthesis and degradation of DNA whereas UV-radiation decreases the activity of these processes. The reason for such an unusual response of thermophiles to irradiation lies perhaps in high temperatures at which the cells exist

  6. Immediate effects of grenz rays on epidermal DNA synthesis in the flanks of guinea pigs

    International Nuclear Information System (INIS)

    Daikeler, G.

    1976-01-01

    The following findings were obtained by autoradiography: 1) Labelling index (number of labelled cell nuclei per 1,000 based cells): Significant decrease immediately after exposure to grenz rays. 2) Silver grain index (number of silver cells as a function of the labelled basal cells): Significant decrease after irradiation. 3) DNA synthesis index (product of labelling index and silver grain index): Sifnificant decrease of the actual DNA synthesis rate of the reproductive cell cluster after exposure to grenz rays. (orig./AJ) [de

  7. Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells

    International Nuclear Information System (INIS)

    Lee, E.W.; Johnson, J.T.; Garner, C.D.

    1989-01-01

    Effects of endogenously produced and exogenously added benzene metabolites on the nuclear DNA synthetic activity were investigated using a culture system of mouse bone marrow cells. Effects of the metabolites were evaluated by a 30-min incorporation of [ 3 H]thymidine into DNA following a 30-min interaction with the cells in McCoy's 5a medium with 10% fetal calf serum. Phenol and muconic acid did not inhibit nuclear DNA synthesis. However, catechol, 1,2,4-benzenetriol, hydroquinone, and p-benzoquinone were able to inhibit 52, 64, 79, and 98% of the nuclear DNA synthetic activity, respectively, at 24 μM. In a cell-free DNA synthetic system, catechol and hydroquinone did not inhibit the incorporation of [ 3 H]thymidine triphosphate into DNA up to 24 μM but 1,2,4-benzenetriol and p-benzoquinone did. The effect of the latter two benzene metabolites was completely blocked in the presence of 1,4-dithiothreitol (1 mM) in the cell-free assay system. Furthermore, when DNA polymerase α, which requires a sulfhydryl (SH) group as an active site, was replaced by DNA polymerase 1, which does not require an SH group for its catalytic activity, p-benzoquinone and 1,2,4-benzenetriol were unable to inhibit DNA synthesis. Thus, the data imply the p-benzoquinone and 1,2,4-benzenetriol inhibited DNA polymerase α, consequently resulting in inhibition of DNA synthesis in both cellular and cell-free DNA synthetic systems. The present study identifies catechol, hydroquinone, p-benzoquinone, and 1,2,4-benzenetriol as toxic benzene metabolites in bone marrow cells and also suggests that their inhibitory action on DNA synthesis is mediated by mechanism(s) other than that involving DNA damage as a primary cause

  8. Histone gene expression remains coupled to DNA synthesis during in vitro cellular senescence

    International Nuclear Information System (INIS)

    Zambetti, G.; Stein, G.; Stein, J.; Dell'Orco, R.

    1987-01-01

    Despite a decrease in the extent to which confluent monolayers of late compared to early passage CF3 human diploid fibroblasts can be stimulated to proliferate, the time course of DNA synthesis onset is similar regardless of the in vitro age of the cells. A parallel and stoichiometric relationship is maintained between the rate of DNA synthesis and the cellular levels of histone mRNA independent of the age of the cell cultures. Furthermore, DNA synthesis and cellular histone mRNA levels decline in a coordinate manner after inhibition of DNA replication by hydroxyurea treatment. These results indicate that while the proliferative activity of human diploid fibroblasts decreases with passage in culture, those cells that retain the ability to proliferate continue to exhibit a tight coupling of DNA replication and histone gene expression

  9. Relationship between internal dosimetry and DNA double strand breaks in lymphocytes after radionuclide therapy; Zusammenhang zwischen physikalischer Dosimetrie und DNA Doppelstrangbruechen in Lymphozyten nach Radionuklidtherapie

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Uta

    2015-09-30

    cell can be used as a quantitative biomarker for DNA double strand breaks and hence for radiation exposure and radiation effects. Most studies dealing with the DNA damage focus assay performed in the last years were looking only on the effect of external irradiation after external radiation therapy or after diagnostic radiology procedures, but only few with the effects after administration of radiopharmaceuticals. Therefore, the aims of this thesis were: 1. To develop a method to generate an in-vitro calibration curve for the DSB focus assay after internal irradiation with beta-emitting radionuclides by creating a low dose and low dose-rate blood irradiation situation in-vitro, at dose-rates that are similar to the ones that have been observed in nuclear medicine patients. 2. To determine the absorbed dose and the number of radiation-induced foci in lymphocytes by sampling blood from patients after radiopeptide therapy with Lu-177 and radioiodine therapy with I-131. 3. To describe comprehensively the temporal and dose-dependent behavior of the DNA damage focus assay in radiation treatment-naive patients after their first radionuclide therapy using the results of the in-vitro calibration. For the in-vitro calibration with I-131 and Lu-177 blood samples For the in-vitro calibration with I-131 and Lu-177 blood samples were drawn from volunteers. Different activity concentrations were added to the samples for achieving absorbed doses up to 100mGy. As a result it was shown that the number of radiation-induced foci were linearly dependent of the absorbed dose. This is the same result that has been shown after external irradiation. The patient studies addressed the relationship between the absorbed dose to the blood and the number and temporal behavior of radiation-induced DNA double strand breaks in peripheral blood samples under radiopeptide therapy and under radioiodine therapy. The average number of radiation-induced foci showed a linear dose-response relationship within

  10. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Modesto Redrejo-Rodríguez

    2017-11-01

    Full Text Available Family B DNA polymerases (PolBs play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB, that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.

  11. Radioresistant DNA synthesis in cells of patients showing increased chromosomal sensitivity to ionizing radiation

    International Nuclear Information System (INIS)

    Barenfeld, L.S.; Pleskach, N.M.; Bildin, V.N.; Prokofjeva, V.V.; Mikhelson, V.M.

    1986-01-01

    The rate of DNA synthesis after γ-irradiation was studied either by analysis of the steady-state distribution of daughter [ 3 H]DNA in alkaline sucrose gradients or by direct assay of the amount of [ 3 H]thymidine incorporated into DNA of fibroblasts derived from a normal donor (LCH882) and from Down's syndrome (LCH944), Werner's syndrome (WS1LE) and xeroderma pigmentosum (XP2LE) patients with chromosomal sensitivity to ionizing radiation. Doses of γ-irradiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition of DNA synthesis in the cells from the affected individuals. The radioresistant DNA synthesis in Down's syndrome cells was mainly due to a much lower inhibition of replicon initiation than that in normal cells; these cells were also more resistant to damage that inhibited replicon elongation. Our data suggest that radioresistant DNA synthesis may be an intrinsic feature of all genetic disorders showing increased radiosensitivity in terms of chromosome aberrations. (orig.)

  12. Influence of vinyl chloride monomer and vinyl chloride monomer derivatives on hepatic DNA synthesis

    International Nuclear Information System (INIS)

    Brenner, E.A.

    1982-01-01

    Vinyl chloride monomer (VCM) is used extensively in the chemical industry, mainly in the production of polyvinyl chloride. It has recently been found to cause hepatic angiosarcoma. As VCM has also been shown to be mutagenic after metabolic activation the effect of VCM on DNA synthesis was investigated. [ 3 H]Thymidine incorporation into DNA was used to measure the rate of DNA synthesis in regenerating rat liver. A possible direct toxic effect of VCM or its metabolites on liver cell metabolism was examined by two unrelated techniques, viz. the measurement of adenine nucleotide concentrations in regenerating livers and the influence on transmembrane potentials in hepatocytes. The distribution of radioactivity in subcellular fractions following [ 14 C]VCM administration suggested microsomal conversion of VCM to an active form which was selectively retained in the nuclear fraction. Measurement of the activities of thymidine kinase and DNA polymerase in regenerating liver indicated that the induction of these enzymes which normally occurs after partial hepatectomy was not prevented by VCM treatment. Three techniques were used to test the hypothesis that the retardation in DNA synthesis was due to DNA damage: the prophage lambda induction test for DNA damage, autoradiographic detection of unscheduled thymidine incorporation into DNA, and detection of DNA strand breaks in alkaline sucrose gradients. All three provided evidence of DNA damage and led to the development of a novel technique to confirm these findings. This involved centrifugation in neutral sucrose gradients on intact double-stranded DNA contained in hepatocyte nucleoids and showed conclusively that VCM administration causes DNA strand breaks. Subsequent repair of DNA was also assessed by this technique. The site of the VCM/metabolite: DNA reaction was characterized by DNA thermal denaturation and renaturation studies

  13. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C.elegans embryos?

    International Nuclear Information System (INIS)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann

    1991-01-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs

  14. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C. elegans embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann [Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology

    1991-09-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs.

  15. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    Science.gov (United States)

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of a Mangifera indica L. stem bark extract and mangiferin on radiation-induced DNA damage in human lymphocytes and lymphoblastoid cells.

    Science.gov (United States)

    Rodeiro, I; Delgado, R; Garrido, G

    2014-02-01

    Mangifera indica L. (mango) stem bark aqueous extract (MSBE) that has antioxidant, anti-inflammatory and immunomodulatory properties, can be obtained in Cuba. It is rich in polyphenols, where mangiferin is the main component. In this study, we have tested DNA damage and protection effects of MSBE and mangiferin on primary human lymphocytes and lymphoblastoid cells. Cell suspensions were incubated with the products (50-1000 μg/ml) for experiments on damage induction, and evaluation of any potential protective effects (5-100 μg/ml) for 60 min at 37 °C. Irradiation was performed using a γ-ray source, absorbed dose 5 Gy. At the end of exposure, DNA damage, protection and repair processes were evaluated using the comet assay. MSBE (100-1000 μg/ml) induced DNA damage in a concentration dependent manner in both cell types tested, primary cells being more sensitive. Mangiferin (200 μg/ml) only induced light DNA damage at higher concentrations. DNA repair capacity was not affected after MSBE or mangiferin exposure. On the other hand, MSBE (25 and 50 μg/ml) and mangiferin (5-25 ug/ml) protected against gamma radiation-induced DNA damage. These results show MSBE has protector or harmful effects on DNA in vitro depending on the experimental conditions, which suggest that the extract could be acting as an antioxidant or pro-oxidant product. Mangiferin was involved in protective effects of the extract. © 2013 John Wiley & Sons Ltd.

  17. A simple and rapid micromethod for genomic DNA extraction from jugal epithelial cells. Application to human lymphocyte antigen typing in one large family of atopic/asthmatic probands.

    Science.gov (United States)

    Aron, Y; Swierczewski, E; Lockhart, A

    1994-10-01

    We describe a rapid and reliable micromethod for DNA isolation from buccal epithelial cells from the interior mouth mucosa. This convenient, noninvasive method could be applied to genetic typing in a small number of cells (about 2000 cells per cheek). We have shown that DNA released by this method is suitable for further amplification by polymerase chain reaction (PCR). Using this protocol, coupled with the PCR-RFLP (restriction fragment length polymorphism) method, we analyzed the allelic sequence diversity of the human lymphocyte antigen (HLA) class II genes in an extended family of 33 persons containing 14 asthmatic or atopic members. Six of eight DQA1 alleles, and 11 DQB1, 20 DPB1, and 10 DR haplotypes could be identified in a single DNA sample. Our results suggest that the DR53 group haplotype is frequently associated with allergic asthma and atopy. The micromethod described here may be useful in genetic epidemiology, especially in family studies involving small children.

  18. Radioprotective effect of sesamol on γ-radiation induced DNA damage, lipid peroxidation and antioxidants levels in cultured human lymphocytes

    International Nuclear Information System (INIS)

    Prasad, N. Rajendra; Menon, Venugopal P.; Vasudev, V.; Pugalendi, K.V.

    2005-01-01

    Sesamol pretreated (1, 5 and 10 μg/ml) lymphocytes were exposed to different doses of γ-radiation, i.e., 1, 2 and 4 Gray (Gy) and the cellular changes were estimated by using cytokinesis blocked micronucleus assay (MN), dicentric aberration (DC), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Radiation significantly increased MN, DC frequencies, TBARS levels and decreased GSH and antioxidant enzyme levels in a dose dependent manner. The highest damage to lymphocytes was observed at 4 Gy irradiation. On the other hand, sesamol pretreatment significantly decreased MN, DC frequencies, TBARS levels and increased GSH levels and SOD, CAT and GPx activities in a concentration dependent manner. At 1 Gy irradiation all concentrations of sesamol (1, 5 and 10 μg/ml) significantly protects the lymphocytes from radiation damage. At 2 Gy irradiation 5 and 10 μg/ml of sesamol shows significant radioprotection. Since the highest damage was observed at 4 Gy irradiation both 1 and 5 μg/ml of sesamol pretreatment were not sufficient to protect the lymphocytes from radiation damage but 10 μg/ml of sesamol significantly (p < 0.05) protects the lymphocytes from radiation effect. Thus, sesamol pretreatment gives significant protection to cultured human lymphocytes against γ-radiation induced cellular damage. The possible mechanism involved in the radioprotective influence of sesamol is discussed

  19. Cell-free assay measuring repair DNA synthesis in human fibroblasts

    International Nuclear Information System (INIS)

    Ciarrocchi, G.; Linn, S.

    1978-01-01

    Osmotic disruption of confluent cultured human fibroblasts that have been irradiated or exposed to chemical carcinogens allows the specific measurement of repair DNA synthesis using dTTP as a precursor. Fibroblasts similarly prepared from various xeroderma pigmentosum cell lines show the deficiencies of uv-induced DNA synthesis predicted from in vivo studies, while giving normal responses to methylmethanesulfonate. A pyrimidine-dimer-specific enzyme, T4 endonuclease V, stimulated the rate of uv-induced repair synthesis with normal and xeroderma pigmentosum cell lines. This system should prove useful for identifying agents that induce DNA repair, and cells that respond abnormally to such induction. It should also be applicable to an in vitro complementation assay with repair-defective cells and proteins obtained from repair-proficient cells. Finally, by using actively growing fibroblasts and thymidine in the system, DNA replication can be measured and studied in vitro

  20. Ex-vivo and in vitro protective effects of kolaviron against oxygen-derived radical-induced DNA damage and oxidative stress in human lymphocytes and rat liver cells

    DEFF Research Database (Denmark)

    Farombi, E.O.; Moller, P.; Dragsted, L.O.

    2004-01-01

    at concentrations between 30-90 mumol/L and decreased H2O2-induced DNA strand breaks and oxidized bases. Neither alpha-tocopherol nor curcumin decreased H2O2-induced DNA damage in this assay. In lymphocytes incubated with Fe3+ /GSH, Fe3+ was reduced to Fe2+ by GSH initiating a free radical generating reaction which...

  1. Adaptive responses on chromosome aberration and DNA breakage of peripheral lymphocytes from workers exposed to thorium and rare earth mixed dust in Baotou steel plant

    International Nuclear Information System (INIS)

    Liu Qingjie; Feng Jiangbing; Lu Xue; Chen Deqing; Lv Huimin; Su Xu; Liu Yufei; Jia Kejun

    2008-01-01

    Objective: To explore if the occupational exposure to low dose thorium could induce adaptive response in peripheral lymphocytes. Methods: 40 individuals, who exposed to thorium and rare earth mixed dust (exposure group) or control in Baotou Steel Plant, were selected, and chromosome aberrations were analyzed. Then the peripheral blood samples were irradiated in vitro with 2 Gy 60 Co γ-rays, and unstable chromosome aberration or DNA stand breakage analysis using single cell gel electrophoresis was performed. Results: The dicentrics before 2 Gy exposure in exposure group was higher than that in control (P>0.05). But the dicentrics after 2 Gy exposure in exposure group was lower than that in control, but not significantly (P >0.05). The tricentrics in exposure group was significantly lower than that in control (U=3.1622, 0.001< P<0.002). The DNA strand breakage in control group was significantly higher than that in exposure group (t=25, P<0.001). Conclusions: Occupational exposure to low dose thorium could induce the adaptive response on chromosome aberration and DNA strand breakage in peripheral lymphocytes. (authors)

  2. Synthesis, Characterization and DNA Cleavage of Copper(II ...

    African Journals Online (AJOL)

    Keywords: DNA shearing, Copper(II) complex, Dithiothreitol, Attenuated total reflectance-Fourier transform .... confirm the fragmentation of DNA by the newly .... sperm. Biochem Biophys Acta 1986; 884: 124-134. 7. Cornell NW, Crivaro KE.

  3. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Yin, Lina; Zhang, Junxiang; Zhang, Yaping; Zhang, Xuxia; Ding, Defang; Gao, Yun; Li, Qiang; Chen, Honghong [Fudan University, Department of Radiation Biology, Institute of Radiation Medicine, Shanghai (China)

    2016-08-15

    Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies. (orig.)

  4. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays

    International Nuclear Information System (INIS)

    Wang, Jing; Yin, Lina; Zhang, Junxiang; Zhang, Yaping; Zhang, Xuxia; Ding, Defang; Gao, Yun; Li, Qiang; Chen, Honghong

    2016-01-01

    Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies. (orig.)

  5. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays.

    Science.gov (United States)

    Wang, Jing; Yin, Lina; Zhang, Junxiang; Zhang, Yaping; Zhang, Xuxia; Ding, Defang; Gao, Yun; Li, Qiang; Chen, Honghong

    2016-08-01

    Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies.

  6. ATM Protein Physically and Functionally Interacts with Proliferating Cell Nuclear Antigen to Regulate DNA Synthesis*

    Science.gov (United States)

    Gamper, Armin M.; Choi, Serah; Matsumoto, Yoshihiro; Banerjee, Dibyendu; Tomkinson, Alan E.; Bakkenist, Christopher J.

    2012-01-01

    Ataxia telangiectasia (A-T) is a pleiotropic disease, with a characteristic hypersensitivity to ionizing radiation that is caused by biallelic mutations in A-T mutated (ATM), a gene encoding a protein kinase critical for the induction of cellular responses to DNA damage, particularly to DNA double strand breaks. A long known characteristic of A-T cells is their ability to synthesize DNA even in the presence of ionizing radiation-induced DNA damage, a phenomenon termed radioresistant DNA synthesis. We previously reported that ATM kinase inhibition, but not ATM protein disruption, blocks sister chromatid exchange following DNA damage. We now show that ATM kinase inhibition, but not ATM protein disruption, also inhibits DNA synthesis. Investigating a potential physical interaction of ATM with the DNA replication machinery, we found that ATM co-precipitates with proliferating cell nuclear antigen (PCNA) from cellular extracts. Using bacterially purified ATM truncation mutants and in vitro translated PCNA, we showed that the interaction is direct and mediated by the C terminus of ATM. Indeed, a 20-amino acid region close to the kinase domain is sufficient for strong binding to PCNA. This binding is specific to ATM, because the homologous regions of other PIKK members, including the closely related kinase A-T and Rad3-related (ATR), did not bind PCNA. ATM was found to bind two regions in PCNA. To examine the functional significance of the interaction between ATM and PCNA, we tested the ability of ATM to stimulate DNA synthesis by DNA polymerase δ, which is implicated in both DNA replication and DNA repair processes. ATM was observed to stimulate DNA polymerase activity in a PCNA-dependent manner. PMID:22362778

  7. Bovine ocular squamous cell carcinoma: UV sensitivity in lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, M.F.; Jennings, P.A.; Hughes, D.J. (Queensland Univ., Brisbane (Australia))

    1982-05-01

    Increased sensitivity to UV light has been demonstrated in Phytohaemagglutinin stimulated lymphocytes from normal and tumour-bearing Hereford cattle when compared to lymphocytes from other breeds. Trypan blue exclusion and inhibition of DNA synthesis were used to determine cell viability. The results obtained from time course and radiation dose experiments demonstrate biphasic survival kinetics. This is indicative of at least two separate cell populations, exhibiting differential sensitivity to UV. The increased sensitivity to UV observed in Herefords may reflect a general sensitivity to UV or alternatively a different cellular constitution in the mitogen stimulated cultures. DNA repair synthesis, measured in the presence of hydroxyurea, was of similar levels in cell cultures from Herefords and one of the control breeds.

  8. Bovine ocular squamous cell carcinoma: UV sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Lavin, M.F.; Jennings, P.A.; Hughes, D.J.

    1982-01-01

    Increased sensitivity to UV light has been demonstrated in Phytohaemagglutinin stimulated lymphocytes from normal and tumour-bearing Hereford cattle when compared to lymphocytes from other breeds. Trypan blue exclusion and inhibition of DNA synthesis were used to determine cell viability. The results obtained from time course and radiation dose experiments demonstrate biphasic survival kinetics. This is indicative of at least two separate cell populations, exhibiting differential sensitivity to UV. The increased sensitivity to UV observed in Herefords may reflect a general sensitivity to UV or alternatively a different cellular constitution in the mitogen stimulated cultures. DNA repair synthesis, measured in the presence of hydroxyurea, was of similar levels in cell cultures from Herefords and one of the control breeds. (author)

  9. Loss of DNA-membrane interactions and cessation of DNA synthesis in myeloperoxidase-treated Escherichia coli

    International Nuclear Information System (INIS)

    Rosen, H.; Orman, J.; Rakita, R.M.; Michel, B.R.; VanDevanter, D.R.

    1990-01-01

    Neutrophils and monocytes employ a diverse array of antimicrobial effector systems to support their host defense functions. The mechanisms of action of most of these systems are incompletely understood. The present report indicates that microbicidal activity by a neutrophil-derived antimicrobial system, consisting of myeloperoxidase, enzymatically generated hydrogen peroxide, and chloride ion, is accompanied by prompt cessation of DNA synthesis in Escherichia coli, as determined by markedly reduced incorporation of [ 3 H]thymidine into trichloracetic acid-precipitable material. Simultaneously, the myeloperoxidase system mediates a decline in the ability of E. coli membranes to bind hemimethylated DNA sequences containing the E. coli chromosomal origin of replication (oriC). Binding of oriC to the E. coli membrane is an essential element of orderly chromosomal DNA replication. Comparable early changes in DNA synthesis and DNA-membrane interactions were not observed with alternative oxidant or antibiotic-mediated microbicidal systems. It is proposed that oxidants generated by the myeloperoxidase system modify the E. coli membrane in such a fashion that oriC binding is markedly impaired. As a consequence chromosomal DNA replication is impaired and organisms can no longer replicate

  10. Evaluation through comet assay of DNA damage induced in human lymphocytes by alpha particles. Comparison with protons and Co-60 gamma rays

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Kreiner, A. J.; Schuff, J. A.; Vallerga, M. B.; Taja, M. R.; Lopez, F. O.; Alvarez, D. E.; Saint Martin, G.; Burton, A.; Debray, M. E.; Kesque, J. M.; Somacal, H.; Stoliar, P.; Valda, A.; Davidson, J.; Davidson, M.; Ozafran, M. J.; Vazquez, M. E.

    2004-01-01

    Several techniques with different sensitivity to single-strand breaks and/or double strand breaks were applied to detect DNA breaks generated by high LET particles. Tests that assess DNA damage in single cells might be the appropriate tool to estimate damage induced by particles, facilitating the assessment of heterogeneity of damage in a cell population. The microgel electrophoresis (comet) assay is a sensitive method for measuring DNA damage in single cells. The objective of this work was to evaluate the proficiency of comet assay to assess the effect of high LET radiation on peripheral blood lymphocytes, compared to protons and Co-60 gamma rays. Materials and methods: Irradiations of blood samples were performed at TANDAR laboratory (Argentina). Thin samples of human peripheral blood were irradiated with different doses (0-2.5 Gy) of 20.2 MeV helium-4 particles in the track segment mode, at nearly constant LET. Data obtained were compared with the effect induced by a MeV protons and Co-60 gamma rays. Alkaline comet assay was applied. Comets were quantified by the Olive tail moment. Distribution of the helium-4 particle and protons were evaluated considering Poisson distribution in lymphocyte nuclei. The mean dose per nucleus per particle result 0.053 Gy for protons and 0.178 Gy for helium-4 particles. When cells are exposed to a dose of 0.1 Gy, the hit probability model predicts that 43% of the nuclei should have experienced and alpha traversal while with protons, 85% of the nuclei should be hit. The experimental results show a biphasic response for helium-4 particles (0.1 Gy), indicating the existence of two subpopulations: unhit and hit. Distributions of tail moment as a function of fluence and experimental dose for comets induced by helium-4 particles, protons and Co-60 gamma rays were analyzed. With helium-4 irradiations, lymphocyte nuclei show an Olive tail moment distribution flattened to higher tail moments a dose increase. However, for irradiations with

  11. DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications.

    Science.gov (United States)

    Zinchenko, Anatoly; Miwa, Yasuyuki; Lopatina, Larisa I; Sergeyev, Vladimir G; Murata, Shizuaki

    2014-03-12

    DNA cross-linked hydrogel was used as a matrix for synthesis of gold nanoparticles. DNA possesses a strong affinity to transition metals such as gold, which allows for the concentration of Au precursor inside a hydrogel. Further reduction of HAuCl4 inside DNA hydrogel yields well dispersed, non-aggregated spherical Au nanoparticles of 2-3 nm size. The average size of these Au nanoparticles synthesized in DNA hydrogel is the smallest reported so far for in-gel metal nanoparticles synthesis. DNA hybrid hydrogel containing gold nanoparticles showed high catalytic activity in the hydrogenation reaction of nitrophenol to aminophenol. The proposed soft hybrid material is promising as environmentally friendly and sustainable material for catalytic applications.

  12. Herpes virus and viral DNA synthesis in ultraviolet light-irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Coppey, J; Nocentini, S [Institut du Radium, 75 - Paris (France). Lab. Curie

    1976-07-01

    The rate of virus DNA synthesis and the production of infectious virus are impaired in stationary monkey kidney CV-I cells irradiated with u.v. before infection with herpes simplex virus (HSV). The inhibition of HSV multiplication is due to u.v.-induced damage in cell DNA. CV-I cells recover their capacity to support HSV growth during the 40 to 48 h after irradiation, and the final virus yield is enhanced by factor of 10. The time course of the recovery is similar to that of the excision repair process occurring in u.v.-irradiated mammalian cells. Caffeine, hydroxyurea and cycloheximide inhibit the recovery. Fluorodeoxyuridine is without effect. A small but significant amount of labelled dThd coming from irradiated cell DNA is incorporated into virus DNA. HSV specified thymidine kinase seems to be more effective for virus DNA synthesis in irradiated than in control cells.

  13. Genetic polymorphisms in 19q13.3 genes associated with alteration of repair capacity to BPDE-DNA adducts in primary cultured lymphocytes.

    Science.gov (United States)

    Xiao, Mingyang; Xiao, Sha; Straaten, Tahar van der; Xue, Ping; Zhang, Guopei; Zheng, Xiao; Zhang, Qianye; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Zhu, Guolian; Lu, Xiaobo

    2016-12-01

    Benzo[a]pyrene(B[a]P), and its ultimate metabolite Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), are classic DNA damaging carcinogens. DNA damage in cells caused by BPDE is normally repaired by Nucleotide Excision Repair (NER) and Base Excision Repair (BER). Genetic variations in NER and BER can change individual DNA repair capacity to DNA damage induced by BPDE. In the present study we determined the number of in vitro induced BPDE-DNA adducts in lymphocytes, to reflect individual susceptibility to Polycyclic aromatic hydrocarbons (PAHs)-induced carcinogenesis. The BPDE-DNA adduct level in lymphocytes were assessed by high performance liquid chromatography (HPLC) in 281 randomly selected participants. We genotyped for 9 single nucleotide polymorphisms (SNPs) in genes involved in NER (XPB rs4150441, XPC rs2228001, rs2279017 and XPF rs4781560), BER (XRCC1 rs25487, rs25489 and rs1799782) and genes located on chromosome 19q13.2-3 (PPP1R13L rs1005165 and CAST rs967591). We found that 3 polymorphisms in chromosome 19q13.2-3 were associated with lower levels of BPDE-DNA adducts (MinorT allele in XRCC1 rs1799782, minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571). In addition, a modified comet assay was performed to further confirm the above conclusions. We found both minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571 were associated with the lower levels of BPDE-adducts. Our data suggested that the variant genotypes of genes in chromosome 19q13.2-3 are associated with the alteration of repair efficiency to DNA damage caused by Benzo[a]pyrene, and may contribute to enhance predictive value for individual's DNA repair capacity in response to environmental carcinogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    International Nuclear Information System (INIS)

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of [3H]thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone, tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity

  15. DNA-repair and mutations in immuncompetent cells from patients with rheumatic diseases and corresponding animal models

    International Nuclear Information System (INIS)

    Altmann, H.

    1977-01-01

    Unscheduled DNA synthesis was investigated in lymphocytes of patients with different inflammatory rheumatic diseases. After γ-irradiation H 3 -thymidin incorporation in DNA and DNA rejoining was reduced. After UV-irradiation the first step (90 min) of unscheduled DNA synthesis was above the controls. Some animal models for human diseases showed the same trend. An infectious ethiology was discussed for some of these diseases. (author)

  16. RBE comparison between rapid electrons of 20 MeV and 45 MeV with survival rate, DNA synthesis, DNA reparation and nucleoid sedimentation

    International Nuclear Information System (INIS)

    Alth, G.; Weniger, P.; Turtzer, K.; Klein, W.; Kocsis, F.; Krankenhaus der Stadt Wien-Lainz; Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie)

    1982-01-01

    In order to find out possible differences of the biologic efficacy of rapid electrons of different energies, the authors examined the influence of rapid electrons of 20 MeV and 45 MeV upon the survival rate of Hela cells S3, their cell growth, DNA synthesis, DNA reparation, and sedimentation of nucleoids. The results show a difference only for the nucleoid sedimentation, i.e. there are more fractured DNA cords after 45 MeV irradiation. No significant differences could be demonstrated for the parameters of the survival curve, DNA synthesis and DNA reparation. Four double tests were carried out corresponding to the indicated types of examination. (orig.) [de

  17. Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes

    International Nuclear Information System (INIS)

    Tender, T.F.; Streuli, M.; Schlossman, S.F.; Saito, H.

    1988-01-01

    The B1 (CD20) molecule is a M/sub r/ 33,000 phosphoprotein on the surface of human B lymphocytes that may serve a central role in the homoral immune response by regulating B-cell proliferation and differentiation. In this report, a cDNA clone that encodes the B1 molecule was isolated and the amino acid sequence of B1 was determined. B-cell-specific cDNA clones were selected from a human tonsillar cDNA library by differential hybridization with labeled cDNA derived from either size-fractionated B-cell mRNA or size-fractionated T-cell mRNA. Of the 261 cDNA clones isolated, 3 cross-hybridizing cDNA clones were chosen as potential candidates for encoding B1 based on their selective hybridization to RNA from B1-positive cell lines. The longest clone, pB1-21, contained a 2.8-kilobase insert with an 891-base-pair open reading frame that encodes a protein of 33 kDa. mRNA synthesized from the pB1-21 cDNA clone in vitro was translated into a protein of the same apparent molecular weight as B1. Limited proteinase digestion of the pB1-21 translation product and B1 generated peptides of the same sizes, indicating that the pB1-21 cDNA encodes the B1 molecule. Gel blot analysis indicated that pB1-21 hybridized with two mRNA species of 2.8 and 3.4 kilobases only in B1-positive cell lines. The amino acid sequence deduced from the pB1-21 nucleotide sequence apparently lacks a signal sequence and contains three extensive hydrophobic regions. The deduced B1 amino acid sequence shows no significant homology with other known patients

  18. The influence of some prostaglandins on DNA synthesis and DNA excision repair in mouse spleen cells ''in vitro''

    International Nuclear Information System (INIS)

    Klein, W.; Altmann, H.; Kocsis, F.; Egg, D.; Guenther, R.

    1978-03-01

    ''In vitro'' experiments were performed on mouse spleen cells to establish possible influences of some naturally occurring prostaglandins on DNA synthesis and DNA excision repair. The prostaglandins A 1 , B 1 , E 1 , E 2 and Fsub(2α) were tested in concentrations of 10 pg, 5 ng and 2,5μg per ml cell suspension. DNA synthesis was significantly increased by PgFsub(2α) in all the three concentrations tested, while the other tested prostaglandins were essentially ineffective. DNA excision repair was significantly inhibited by PgE 1 and PgE 2 at 5 ng/ml and at 2,5 μg/ml but increased by PgFsub(2α) in the two lower concentrations. The rejoining of DNA-strand breaks after gamma-irradiation was slightly reduced by PgE 1 , PgE 2 and PgF 2 at 2,5 μg/ml. (author)

  19. Overproduction of the poly(ADP-ribose)polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells.

    NARCIS (Netherlands)

    M. Molinete; W. Vermeulen (Wim); A. Bürkle; J. Mé nissier-de Murcia; J.H. Küpper; J.H.J. Hoeijmakers (Jan); G. de Murcia

    1993-01-01

    textabstractThe zinc-finger DNA-binding domain (DBD) of poly (ADP-ribose) polymerase (PARP, EC 2.4.2.30) specifically recognizes DNA strand breaks induced by various DNA-damaging agents in eukaryotes. This, in turn, triggers the synthesis of polymers of ADP-ribose linked to nuclear proteins during

  20. Sensitization of human cells by inhibitors of DNA synthesis following the action of DNA-damaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, M.V.; Noskin, L.A. (Leningrad Inst. of Nuclear Physics, Gatchina (USSR))

    1983-08-01

    Inhibitors of DNA synthesis 1-..beta..-arabinofuranosylcytosine (Ac) and hydroxyurea (Hu) taken together drastically sensitized human cells to the killing effect of DNA-damaging agents. For UV-irradiation this sensitization depended on the cells' ability for excision repair. By using viscoelastometric methods of measurement of double-strand breaks (DSB) in the genome, it was established that the first DSB were generated after incubation of the damaged cells in the mixture of inhibitors at about the same dose when sensitization appeared. A scheme is proposed to describe molecular events associated with the phenomenon studied. 35 refs.

  1. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid

    Energy Technology Data Exchange (ETDEWEB)

    Zuo Guifu; Wan Yizao; Meng Xianguang [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhao Qing [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China); Ren Kaijing [Department of Joint Surgery, Tianjin Hospital, Tianjin 300211 (China); Jia Shiru [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, 29, 13th Street, TEDA, Tianjin 300457 (China); Wang Jiehua, E-mail: gfzuo@tju.edu.cn [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China)

    2011-04-15

    Research highlights: {yields} A lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared as a novel gene delivering vector. {yields} Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I. {yields} The protected DNA in the HAp/DNA nanohybrid could be recovered readily under acid conditions. - Abstract: Two-dimensional layered materials exhibit desired functionalities when being used as gene delivery materials. In this study, a novel gene delivering vector, lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared. The structure of HAp/DNA nanohybrid was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FT-IR) spectroscopy analysis revealed that ion-exchange occurred during the process. Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I and the protected DNA could be recovered readily under acid conditions. Furthermore, the integrity of released DNA was confirmed by UV-vis spectra.

  2. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid

    International Nuclear Information System (INIS)

    Zuo Guifu; Wan Yizao; Meng Xianguang; Zhao Qing; Ren Kaijing; Jia Shiru; Wang Jiehua

    2011-01-01

    Research highlights: → A lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared as a novel gene delivering vector. → Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I. → The protected DNA in the HAp/DNA nanohybrid could be recovered readily under acid conditions. - Abstract: Two-dimensional layered materials exhibit desired functionalities when being used as gene delivery materials. In this study, a novel gene delivering vector, lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared. The structure of HAp/DNA nanohybrid was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FT-IR) spectroscopy analysis revealed that ion-exchange occurred during the process. Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I and the protected DNA could be recovered readily under acid conditions. Furthermore, the integrity of released DNA was confirmed by UV-vis spectra.

  3. UDS in lymphocytes of occupationally radiation exposed persons

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.

    1982-01-01

    To determine a possible effect of low dose radiation on DNA repair processes, peripheral lymphocytes of mine workers exposed to 222 Rn in the thermal gallery of Badgastein (Austria) and employees of the Austrian Research Centre Seibersdorf, exposed to varying doses of gamma radiation, were investigated. The capacity for unscheduled DNA synthesis (UDS) induced by in vitro UV irradiation was measured by autoradiography of isolated lymphocytes of exposed persons and unexposed controls. In all 222 Rn-exposed mine workers a significant increase of UDS above control values could be observed. Gamma irradiation 31 mrad had a significant effect on UDS, indicating a stimulation of DNA repair capability by chronic low dose exposure. (Author)

  4. Cytotoxicity and genotoxicity of a monazite component: lanthanum effects on the viability and induction of breaks in the DNA of human lymphocytes

    International Nuclear Information System (INIS)

    Paiva, Amanda Valle de Almeida

    2007-01-01

    The Monazite is a mineral extracted from open mines. It is constituted by lanthanum element aggregated with cerium, yttrium and thorium [(Ce, La, Y, Th)PO 4 ]. Lanthanum (La) is a rare-earth metal with applications in agriculture, industry and medicine. Since lanthanides and their compounds show a broad spectrum of applications there is an increased risk of incorporation in human. Inhalation of aerosols containing La is the main route of incorporation in workers exposed to several chemical forms of La. Herein, we examined the effect of lanthanum nitrate - La(NO 3 ) 3 in human lymphocytes. JURKAT cells and human peripheral lymphocytes (HPL) were used to evaluate the effect of La(NO 3 ) 3 on viability (apoptosis or necrosis) and DNA strand breaks induction or/and alkali-labile sites (ALS). We demonstrate that La has a cytotoxic and genotoxic effect on both cell lines. The results indicate that necrosis is the pathway by which La(NO 3 ) 3 induces cytotoxicity. The vitamin E is able to diminish DNA strand breaks induced by La(NO 3 ) 3 suggesting that reactive oxygen species (ROS) may be involved in the genotoxic process. (author)

  5. Bronchoalveolar lavage fluid from normal rats stimulates DNA synthesis in rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Mason, R.J.

    1989-01-01

    Proliferation of alveolar type II cells after lung injury is important for the restoration of the alveolar epithelium. Bronchoalveolar lavage fluid (BALF) may represent an important source of growth factors for alveolar type II cells. To test this possibility, BALF fluid was collected from normal rats, concentrated 10-fold by Amicon filtration, and tested for its ability to stimulate DNA synthesis in rat alveolar type II cells in primary culture. BALF induced a dose-dependent increase in type II cell DNA synthesis resulting in a 6-fold increase in [3H]thymidine incorporation. Similar doses also stimulated [3H]thymidine incorporation into rat lung fibroblasts by 6- to 8-fold. Removal of pulmonary surface active material by centrifugation did not significantly reduce the stimulatory activity of BALF for type II cells. The stimulation of type II cell DNA synthesis by BALF was reduced by 100% after heating at 100 degrees C for 10 min, and by approximately 80% after reduction with dithiothreitol, and after trypsin treatment. Dialysis of BALF against 1 N acetic acid resulted in a 27% reduction in stimulatory activity. The effect of BALF in promoting type II cell DNA synthesis was more pronounced when tested in the presence of serum, although serum itself has very little effect on type II cell DNA synthesis. When BALF was tested in combination with other substances that stimulate type II cell DNA synthesis (cholera toxin, insulin, epidermal growth factor, and acidic fibroblast growth factor), additive effects or greater were observed. When BALF was chromatographed over Sephadex G150, the activity eluted with an apparent molecular weight of 100 kDa

  6. Typical xeroderma pigmentosum complementation group A fibroblasts have detectable ultraviolet light-induced unscheduled DNA synthesis

    International Nuclear Information System (INIS)

    Petinga, R.A.; Andrews, A.D.; Robbins, J.H.; Tarone, R.E.

    1977-01-01

    Ultraviolet-induced nuclear uptake of tritiated thymidine [ 3 H]dThd demonstrable by autoradiography in non-synthesis phases of the cell cycle is known as unscheduled DNA synthesis and reflects repair replication of ultraviolet-damaged DNA. We have reported that the rate of any such unscheduled DNA synthesis in typical group A xeroderma pigmentosum fibroblasts, if present, is less than 2% of the normal rate. We have now performed experiments to determine whether these fibroblasts have any unscheduled DNA synthesis. Fibroblast coverslip cultures of four xeroderma pigmentosum group A strains were prepared. Irradiated (254 nm ultraviolet light) and unirradiated cultures from each strain were incubated with [ 3 H]dThd at 37degC, and autoradiograms were prepared using NTB-3 emulsion. A nuclear grain count was made of 100 consecutive nuclei of non-S-phase irradiated and unirradiated cells. A slide background grain count was simultaneously made from an acellular area adjacent to each cell analyzed. When a strain's irradiated and unirradiated autoradiograms having similar slide background grain count averages were compared, the nuclear grain count average of the irradiated cells was always higher than that of the unirradiated cells. This ultraviolet-induced increase in the mean nuclear grain count ranged from 0.4 to 1.3% of that given by normal non-xeroderma pigmentosum fibroblasts and was not reduced by 10 -2 M hydroxyurea. Planimetric studies showed that the ultraviolet-induced increase in nuclear grain count is not due to an increased nuclear area in irradiated cells. We conclude that these typical group A xeroderma pigmentosum strains perform very low, but detectable, ultraviolet-induced unscheduled DNA synthesis which probably reflects repair replication. We cannot, however, determine if there are significantly different rates of ultraviolet-induced unscheduled DNA synthesis among these ultraviolet strains

  7. Autoradiographic study of gamma-ray induced unscheduled DNA synthesis in bean root meristem cells

    International Nuclear Information System (INIS)

    Liu Zhenshen; Qiu Quanfa; Chen Dongli

    1989-01-01

    The gamma-ray induced unscheduled DNA synthesis in root meristem cells of Vica faba was studied autoradiographically by calculating the number of cells with different 3H-thymidine labelling degree. It was found that the level of unscheduled synthesis in cells with intermediate dose (500 R) irradiation was higher than that in cells with lower dose (250 R) irradiation; however, higher dose (1000 R) irradiation would inhibit the reparative replication

  8. Semiconservative and unscheduled DNA-synthesis of rat thymocytes under the influence of some radioprotecting and radiosensitizing agents

    International Nuclear Information System (INIS)

    Tempel, K.; Wulffius-Kock, M.; Winkle, J.; Schmerold, I.

    1982-01-01

    The effects of aminoethylisothiuroniumbromide (AET), cysteamine (CY-A), cysteine (CY-E), glutathione (GLU), mercaptoethanol (MA), mercaptopropionylglycine (MPG), N-ethylmaleimide (NEM), metronidazole (MNA), nitroacetophenone (NAP), nitrofurazone (NFA), arabinofuranosylcytosine (araC), fluorouracil (FU), adriamycin (AM), ethidiumbromide (E), bleomycin (BM), and diethyldithiocarbamate (DDC) on the semiconservative and unscheduled incorporation of 3 H-thymidine into the DNA were tested on rat thymocytes in vitro. DNA damage has been measured using the hydroxylapatite system. Unscheduled DNA synthesis was induced by UV-light and/or X-irradiation. The semiconservative DNA synthesis was inhibited by the above subtrances-with exception of MA and MPG. Aminothioles, NAP, NFA, and BM enhanced, araC, FU, AM, E, and DDC diminished unscheduled DNA synthesis. After alkaline unwinding, the duplex form of DNA decreased under the influence of CY-A, CY-E, GLU, MPG, NEM, NAP, NFA, araC, FU, AM, E, and BM. It is suggested that stimulation of unscheduled DNA synthesis combined with a transient decrease of semiconservative DNA synthesis will amplify the DNA repair capacity of thymocytes, whereas radiation damage may be intensified by araC, FU, AM,E, and DDC - at least partly, through inhibition of unscheduled DNA synthesis. With respect to the action of NAP, NFA, and BM, DNA repair may be concerned in a more indirect manner. (orig.) [de

  9. Semiconservative and unscheduled DNA-synthesis of rat thymocytes under the influence of some radioprotecting and radiosensitizing agents

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, K.; Wulffius-Kock, M.; Winkle, J.; Schmerold, I.

    1982-02-01

    The effects of aminoethylisothiuroniumbromide (AET), cysteamine (CY-A), cysteine (CY-E), glutathione (GLU), mercaptoethanol (MA), mercaptopropionylglycine (MPG), N-ethylmaleimide (NEM), metronidazole (MNA), nitroacetophenone (NAP), nitrofurazone (NFA), arabinofuranosylcytosine (araC), fluorouracil (FU), adriamycin (AM), ethidiumbromide (E), bleomycin (BM), and diethyldithiocarbamate (DDC) on the semiconservative and unscheduled incorporation of /sup 3/H-thymidine into the DNA were tested on rat thymocytes in vitro. DNA damage has been measured using the hydroxylapatite system. Unscheduled DNA synthesis was induced by UV-light and/or X-irradiation. The semiconservative DNA synthesis was inhibited by the above substances-with exception of MA and MPG. Aminothioles, NAP, NFA, and BM enhanced, araC, FU, AM, E, and DDC diminished unscheduled DNA synthesis. After alkaline unwinding, the duplex form of DNA decreased under the influence of CY-A, CY-E, GLU, MPG, NEM, NAP, NFA, araC, FU, AM, E, and BM. It is suggested that stimulation of unscheduled DNA synthesis combined with a transient decrease of semiconservative DNA synthesis will amplify the DNA repair capacity of thymocytes, whereas radiation damage may be intensified by araC, FU, AM,E, and DDC - at least partly, through inhibition of unscheduled DNA synthesis. With respect to the action of NAP, NFA, and BM, DNA repair may be concerned in a more indirect manner.

  10. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine.

    Science.gov (United States)

    Yoon, Jung-Hoon; Roy Choudhury, Jayati; Park, Jeseong; Prakash, Satya; Prakash, Louise

    2017-11-10

    N3-Methyladenine (3-MeA) is formed in DNA by reaction with S -adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro , we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Recovery from DNA synthesis in V 79 chinese hamster cells irradiated with UV light

    International Nuclear Information System (INIS)

    Ventura, A.M.

    1987-01-01

    Mammalian cells recover from DNA synthesis inhibition by UV light before most of the pyrimidine dimers have been removed from the genome. Most of the rodent cells show a deficient dimer excision repair compared with normal human fibroblasts. Despite this fact they recover efficiently from DNA synthesis inhibition after UV. In Chinese hamster V 79 cells was found that this recovery takes place in the absence of a significant excision repair, and it seems to be directly coupled to a recovery in the rate of movement of the replication fork. 120 refs, 31 figs. (author)

  12. DNA synthesis in periportal and perivenous hepatocytes of intact and hepatectomized young mice.

    Science.gov (United States)

    Fernández-Blanco, A; Inda, A M; Errecalde, A L

    2015-01-01

    DNA synthesis of hepatocytes in two areas of Intact and Hepatectomized young mice liver along a circadian period was studied. DNA synthesis was significantly different at all analyzed time points in Intact and Hepatectomized animals. Differences between periportal and perivenous hepatocytes were found in hepatectomized animals at 04/42 and 08/46 hr of day/hour post-hepatectomy. DNAs peak in periportal hepatocytes regenerating liver occurs 4 hr earlier than in perivenous hepatocytes, probably reflecting their shorter G1 phase. Besides, daily mean values of regenerating livers were higher than those observed in Intact animals, as a consequence of surgical removal.

  13. DNA synthesis and uv resistance in Escherichia coli K12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Slezarikova, V [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1976-01-01

    The influence was studied of preirradiation inhibition of proteosynthesis by amino acids starvation on survival and DNA synthesis in E. coli K 12 cells, which differ by their genetic features with regard to a certain type of repair. The surviving fraction was studied by appropriate dilution of cell suspension and spreading on agar plates. DNA synthesis was investigated by the incorporation of thymine-2-/sup 14/C. In our conditions a correlation was found between cell survival and the resistance of DNA replication to UV radiation in cells proficient in excision and post-replication repair. This correlation was not found in the excision deficient strain. It is concluded that enhanced resistance of DNA replication is not a sufficient condition for enhanced cell resistance.

  14. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    Science.gov (United States)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of . Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  15. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated 3 H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of 3 H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture

  16. Sites of termination of in vitro DNA synthesis on psoralen phototreated single-stranded templates

    International Nuclear Information System (INIS)

    Piette, J.; Hearst, J.

    1985-01-01

    Single-stranded DNA has been photochemically induced to react with 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and used as substrate for DNA replication with E. coli DNA polymerase I large fragment. By using the dideoxy sequencing procedure, it is possible to map the termination sites on the template photoreacted with HMT. These sites occur at the nucleotides preceding each thymine residue (and a few cytosine residues), emphasizing the fact that in a single-stranded stretch of DNA, HMT reacts with each thymine residue without any specificity regarding the flanking base sequence of the thymine residues. In addition, termination of DNA synthesis due to psoralen-adducted thymine is not influenced by the efficiency of the 3'-5' exonuclease proof-reading activity of the DNA polymerase. (author)

  17. The effect of purine phosphonomethoxyalkyl derivatives on DNA synthesis in Cho Chinese hamster cells

    Energy Technology Data Exchange (ETDEWEB)

    Stetina, R [Institute of Experimental Medicine, Laboratory of Developmental Toxicology, Academy of Sciences of Czech Republic, 51783 Olesnice v Orlickych horach (Czech Republic); Votruba, I; Holy, A; Merta, A [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic (Czech Republic)

    1994-12-31

    The inhibition of incorporation of {sup 3}H-thymidine and the changes of the rate of nascent DNA chain elongation were investigated in Cho Chinese hamster cells treated with (S)-(3-hydroxy-2-phosphonomethoxypropyl) (HPMP) and N-(2-phosphonomethoxyethyl) (PME) derivatives of adenine (A), guanine (G) and 2,6-diaminopurine (DAP). No direct correlation was observed in PME and HPMP derivatives between cytotoxicity, inhibition of {sup 3}H-thymidine incorporation and inhibition of nascent DNA chain elongation. The highest cytotoxicity and inhibition of DNA synthesis were caused by PMEG. The limited extent of inhibition of DNA elongation was encountered in the case of HPMPG and HPMPA. With PMEA, weak inhibition of elongation of DNA was observed only after a prolonged exposure (6 h). None of the investigated drugs induced DNA breaks. (author) 4 figs., 23 refs.

  18. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    International Nuclear Information System (INIS)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-01-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes

  19. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-08-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes.

  20. Use of scintillometric quantitation of unscheduled DNA synthesis in isolated rat hepatocytes for the screening of genotoxic agents

    International Nuclear Information System (INIS)

    Hsia, M.T.

    1987-01-01

    The induction of unscheduled DNA synthesis has been considered as a suitable endpoint for the screening of genotoxic agents. Experimentally, unscheduled DNA synthesis is most frequently measured by autoradiography. The purpose of this report was to examine the usefulness of the liquid scintillation counting technique in measuring unscheduled DNA synthesis response in isolated rat hepatocytes. The various liquid scintillation counting-based unscheduled DNA synthesis assay procedures were examined according to the following groupings: (1) procedures based on the acid precipitation of cellular macromolecules, (2) procedures based on isopycnic gradient centrifugation of solubilized cells, (3) procedures based on nuclei isolation in conjunction with other DNA purification methods, and (4) procedures based on the selective retention of hepatocellular DNA. Limited cases in which test chemicals gave positive unscheduled DNA synthesis response in liquid scintillation counting-based assays and negative unscheduled DNA synthesis response in autoradiography-based assays are presented. It is concluded that liquid scintillation counting-based unscheduled DNA synthesis assays represent an appropriate system for inclusion in carcinogenicity and mutagenicity testing programs

  1. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. Synthesis of CdS nanoparticles based on DNA network templates

    International Nuclear Information System (INIS)

    Yao Yong; Song Yonghai; Wang Li

    2008-01-01

    CdS nanoparticles have been successfully synthesized by using DNA networks as templates. The synthesis was carried out by first dropping a mixture of cadmium acetate and DNA on a mica surface for the formation of the DNA network template and then transferring the sample into a heated thiourea solution. The Cd 2+ reacted with thiourea at high temperature and formed CdS nanoparticles on the DNA network template. UV-vis spectroscopy, photoluminescence, x-ray diffraction and atomic force microscopy (AFM) were used to characterize the CdS nanoparticles in detail. AFM results showed that the resulted CdS nanoparticles were directly aligned on the DNA network templates and that the synthesis and assembly of CdS nanoparticles was realized in one step. CdS nanoparticles fabricated with this method were smaller than those directly synthesized in a thiourea solution and were uniformly aligned on the DNA networks. By adjusting the density of the DNA networks and the concentration of Cd 2+ , the size and density of the CdS nanoparticles could be effectively controlled and CdS nanoparticles could grow along the DNA chains into nanowires. The possible growth mechanism has also been discussed in detail

  3. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp

    NARCIS (Netherlands)

    Buma, A.G.J.; Van Hannen, E.J.; Veldhuis, M.; Gieskes, W.W.C.

    1996-01-01

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  4. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp.

    NARCIS (Netherlands)

    Buma, A.G.J.; van Hannen, E.J; Veldhuis, M.J W; Gieskes, W.W C

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  5. Identification of proteins whose synthesis in Saccharomyces cerevisiae is induced by DNA damage and heat shock

    International Nuclear Information System (INIS)

    Gailit, James

    1990-01-01

    Protein synthesis in Saccharomyces cerevisiae after exposure to ultraviolet light (UV) was examined by two-dimensional gel electrophoresis of pulse-labelled proteins. The synthesis of 12 distinct proteins was induced by treatment with UV doses of 10-200 J/m 2 . The induced proteins differed in minimum dose necessary for induction, maximum dose at which induction still occurred and constitutive level present in unirradiated cells. A chemical mutagen, 4-nitroquinoline-1-oxide, induced synthesis of the same proteins. Induction after UV treatment was observed in seven different yeast strains, including three mutants deficient in DNA repair. Synthesis of five of the proteins was also induced by brief heat shock treatment. These five may be members of a family of proteins whose synthesis is regulated by two different pathways responding to different types of stress. (author)

  6. Influence of SNP Polymorphisms in DNA Repair Genes on the Level of Persistent Damage in Human Lymphocytes After Exposure to 2 Gy of Ionising Radiation

    International Nuclear Information System (INIS)

    Milic, M.; Rozgaj, R.; Kasuba, V.; Kubelka, D.; Angelini, S.; Hrelia, P.

    2011-01-01

    Variation in cell response to ionising radiation could be result of changes in gene expression and/or polymorphisms of DNA repair genes. The aim of the study was to estimate the DNA damage level in human lymphocytes after exposure to 2 Gy of ionising radiation. Medical workers occupationally exposed to low doses of ionising radiation (N = 20) and matched controls (N 20) were genotyped for polymorphic hOGG1, XRCC1, APE1, XPD10, XPD23, XRCC3, PARP1 and MGMT genes. Micronucleus (MN) test was used for the estimation of DNA damage before and after radiation. Incidence of MN in irradiated samples positively correlated with age and negatively with polymorphic variants of XPD23. Significant difference was observed between irradiated homozygotes (HO) and heterozygotes (HE). HO and HE APE1 differed in MN before exposure. HO and polymorphic variants of XPD10 differed in MN after exposure. Gender showed different MN in the exposed group after exposure. Age correlated positively with MN after exposure, working probation and received dose. Multiple regression analysis revealed connection between polymorphic variants of APE1 and XRCC3 with MN before exposure. These results confirm the value of micronucleus assay in DNA damage estimation and suggest possible use of polymorphic genes in monitoring of individuals professionaly exposed to ionising radiation. (author)

  7. Spatial positioning of all 24 chromosomes in the lymphocytes of six subjects: evidence of reproducible positioning and spatial repositioning following DNA damage with hydrogen peroxide and ultraviolet B.

    Directory of Open Access Journals (Sweden)

    Dimitrios Ioannou

    Full Text Available The higher-order organization of chromatin is well-established, with chromosomes occupying distinct positions within the interphase nucleus. Chromatin is susceptible to, and constantly assaulted by both endogenous and exogenous threats. However, the effects of DNA damage on the spatial topology of chromosomes are hitherto, poorly understood. This study investigates the organization of all 24 human chromosomes in lymphocytes from six individuals prior to- and following in-vitro exposure to genotoxic agents: hydrogen peroxide and ultraviolet B. This study is the first to report reproducible distinct hierarchical radial organization of chromosomes with little inter-individual differences between subjects. Perturbed nuclear organization was observed following genotoxic exposure for both agents; however a greater effect was observed for hydrogen peroxide including: 1 More peripheral radial organization; 2 Alterations in the global distribution of chromosomes; and 3 More events of chromosome repositioning (18 events involving 10 chromosomes vs. 11 events involving 9 chromosomes for hydrogen peroxide and ultraviolet B respectively. Evidence is provided of chromosome repositioning and altered nuclear organization following in-vitro exposure to genotoxic agents, with notable differences observed between the two investigated agents. Repositioning of chromosomes following genotoxicity involved recurrent chromosomes and is most likely part of the genomes inherent response to DNA damage. The variances in nuclear organization observed between the two agents likely reflects differences in mobility and/or decondensation of chromatin as a result of differences in the type of DNA damage induced, chromatin regions targeted, and DNA repair mechanisms.

  8. Excision of pyrimidine dimers from epidermal DNA and nonsemiconservative epidermal DNA synthesis following ultraviolet irradiation of mouse skin

    International Nuclear Information System (INIS)

    Bowden, G.T.; Trosko, J.E.; Shapas, B.G.; Boutwell, R.K.

    1975-01-01

    Pyrimidine dimer production and excision in epidermal DNA were studied at five different dose levels of ultraviolet light in the skin of intact mice. Dimer production increased with dose up to 50,400 ergs/sq mm. Approximately 30 percent of the thymine-containing dimers were excised by 24 hr after irradiation at three lower dose levels of ultraviolet light. Nonsemiconservative DNA replication in ultraviolet-irradiated mouse skin was shown to continue for at least 18 hr. The rate of nonsemiconservative replication decreased with time, but did so slowly. The initial rates of nonsemiconservative replication increased with ultraviolet light dose levels up to about 4200 ergs/sq mm, after which the initial rates were decreased. Semiconservative epidermal DNA synthesis was shown to be inhibited by hydroxyurea, but hydroxyurea had no effect on ultraviolet light-induced nonsemiconservative DNA replication. The observed pyrimidine dimer excision and nonsemiconservative DNA replication suggest that in the intact mouse the cells of the epidermis are capable of DNA excision repair after ultraviolet irradiation of mouse skin

  9. The effect of low radiation doses on DNA repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1978-08-01

    Error free DNA repair processes are an important preprequisite for the maintenance of genetic integrity of cells. They are of special importance for persons therapeutically or occupationally exposed to radiation. Therefore the effect of radiation therapy and elevated natural background radiation on unscheduled DNA synthesis was tested in peripheral lymphocytes of exposed persons. Both, autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine uptake into double stranded and single-strand containing DNA fractions revealed an increase of capacity for DNA repair. (author)

  10. Unscheduled DNA synthesis in human hair follicles after in vitro exposure to 11 chemicals: comparison with unscheduled DNA synthesis in rat hepatocytes.

    Science.gov (United States)

    van Erp, Y H; Koopmans, M J; Heirbaut, P R; van der Hoeven, J C; Weterings, P J

    1992-06-01

    A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.

  11. Correlation between base-excision repair gene polymorphisms and levels of in-vitro BPDE-induced DNA adducts in cultured peripheral blood lymphocytes.

    Directory of Open Access Journals (Sweden)

    Hongping Yu

    Full Text Available In vitro benzo[a]pyrene diol epoxide (BPDE-induced DNA adducts in cultured peripheral lymphocytes have been shown to be a phenotypic biomarker of individual's DNA repair phenotype that is associated with cancer risk. In this study, we explored associations between genotypes of base-excision repair genes (PARP1 Val762Ala, APEX1 Asp148Glu, and XRCC1 Arg399Gln and in vitro BPDE-induced DNA adducts in cultured peripheral blood lymphocytes in 706 cancer-free non-Hispanic white subjects. We found that levels of BPDE-induced DNA adducts were significantly higher in ever smokers than in never smokers and that individuals with the Glu variant genotypes (i.e., Asp/Glu and Glu/Glu exhibited lower levels of BPDE-induced DNA adducts than did individuals with the common Asp/Asp homozygous genotype (median RAL levels: 32.0 for Asp/Asp, 27.0 for Asp/Glu, and 17.0 for Glu/Glu, respectively; P(trend = 0.030. Further stratified analysis showed that compared with individuals with the common APEX1-148 homozygous Asp/Asp genotype, individuals with the APEX1-148Asp/Glu genotype or the Glu/Glu genotype had a lower risk of having higher-level adducts (adjusted OR = 0.60, 95% CI: 0.36-0.98 and adjusted OR = 0.47, 95% CI: 0.26-0.86, respectively; P(trend = 0.012 among smokers. Such an effect was not observed in non-smokers. However, there was no significant interaction between the APEX1 Asp148Glu polymorphism and smoking exposure in this study population (P = 0.512. Additional genotype-phenotype analysis found that the APEX1-148Glu allele had significantly increased expression of APEX1 mRNA in 270 Epstein-Barr virus-transformed lymphoblastoid cell lines, which is likely associated with more active repair activity. Our findings suggest that the functional APEX1-148Glu allele is associated with reduced risk of having high levels of BPDE-induced DNA adducts mediated with high levels of mRNA expression.

  12. Nitrate contamination of drinking water: relationship with HPRT variant frequency in lymphocyte DNA and urinary excretion of N-nitrosamines.

    OpenAIRE

    van Maanen, J M; Welle, I J; Hageman, G; Dallinga, J W; Mertens, P L; Kleinjans, J C

    1996-01-01

    We studied peripheral lymphocyte HPRT variant frequency and endogenous nitrosation in human populations exposed to various nitrate levels in their drinking water. Four test populations of women volunteers were compared. Low and medium tap water nitrate exposure groups (14 and 21 subjects) were using public water supplies with nitrate levels of 0.02 and 17.5 mg/l, respectively. Medium and high well water nitrate exposure groups (6 and 9 subjects) were using private water wells with mean nitrat...

  13. DNA damage and repair in peripheral blood lymphocytes from healthy individuals and cancer patients: a pilot study on the implications in the clinical response to chemotherapy.

    Science.gov (United States)

    Nadin, Silvina Beatriz; Vargas-Roig, Laura M; Drago, Gisela; Ibarra, Jorge; Ciocca, Daniel R

    2006-07-28

    Drug resistance is considered the main impediment to successful cancer chemotherapy. The quest for a method useful to predict individual responses to chemotherapy prior to treatment is highly desired. This study was designed to determine the individual influences of doxorubicin and cisplatin on the degree of DNA damage, DNA repair and hMSH2 and the hMLH1 protein expression in peripheral blood lymphocytes (PBL) and their correlations with the clinical response. PBL were obtained from 25 cancer patients (pre- and post-chemotherapy) and from 10 healthy persons, cultured and exposed to doxorubicin or cisplatin. Cells were collected at T0 (immediately after drug treatment) and 24h after damage (T24). The alkaline comet assay was employed to assess the DNA damage and repair function, and immunocytochemistry to study hMLH1 and hMSH2 expression. Clinical response was evaluated after three cycles of chemotherapy. Pre-chemotherapy PBL from cancer patients showed significantly higher levels of basal DNA damage than healthy persons, with appreciable interindividual variations between them. The in vivo administration of antineoplasic drugs was accompanied by significant DNA damage, and an increased in the number of apoptotic cells. Cancer patients with complete response showed a high number of apoptotic cells. The DNA migration increased at T0 and at T24 in cisplatin-treated patients, reflecting a decreased rate of cisplatin adducts repair than that observed in healthy individuals. The ability to repair DNA lesions in doxorubicin-damaged cells was very similar between healthy individuals and cancer patients. Cisplatin-treated patients that died by the disease showed lower DNA migration than the mean value. The expression of hMLH1 and hMSH2 was practically identical between healthy individuals and cancer patients. Nevertheless, chemotherapy induced a depletion mostly of hMLH1. In 83% of cisplatin-treated patients with CR the hMLH1 and hMSH2 expression at T24 was higher than the

  14. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes

    NARCIS (Netherlands)

    Wilms, L.C.; Hollman, P.C.H.; Boots, A.W.; Kleinjans, J.C.S.

    2005-01-01

    Flavonoids are claimed to protect against cardiovascular disease, certain forms of cancer and ageing, possibly by preventing initial DNA damage. Therefore, we investigated the protective effects of the flavonoid quercetin against the formation of oxidative DNA damage and bulky DNA adducts in human

  15. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  16. Labelling of Cells Engaged in DNA Synthesis: Autoradiography and BrdU Staining

    DEFF Research Database (Denmark)

    Madsen, Peder Søndergaard

    2010-01-01

    The cell cycle is divided in four phases: G1 phase, S phase (DNA-synthesis), G2 phase (together termed interphase) and M phase (mitosis). Cells that have ceased proliferation enter a state of quiescence called G0. M phase is itself composed of two tightly coupled processes: mitosis, in which...

  17. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim); A.P.M. Eker (André); D. Bootsma (Dirk)

    1986-01-01

    textabstractPhotoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers

  18. Inhibition and recovery of DNA synthesis in human cells after exposure to ultraviolet light

    International Nuclear Information System (INIS)

    Painter, R.B.

    1985-01-01

    The inhibition of DNA synthesis in normal human cells by UV is a complex function of fluence because it has several causes. At low fluences, inhibition of replicon initiation is most important. This is made clear by the fact that it occurs to a lesser degree in cells from patients with ataxia telangiectasia (AT). Assuming that only leading strand synthesis is blocked by UV-induced lesions, single lesions between replicons in parental strands for leading strand synthesis inhibit DNA synthesis by acting as temporary blocks until they are replicated by extension of the lagging strand of the adjacent replicon. A more severe inhibition occurs when two lesions are induced between adjacent growing replicons, because one in four possible configurations may result in a long-lived unreplicated region (LLUR). In the absence of excision repair, these may eventually be replicated by activation of an otherwise unused origin within the LLUR. The frequency of LLURs increases steeply with fluence. Activation of normally unused origins to replicate LLURs may facilitate recovery from inhibition of DNA synthesis, but repair of lesions is probably more important. In excision-repair-defective cells, an LLUR without an origin to initiate its replication may be a lethal lesion. (orig.)

  19. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing.

    Science.gov (United States)

    Rübe, Claudia E; Grudzenski, Saskia; Kühne, Martin; Dong, Xiaorong; Rief, Nicole; Löbrich, Markus; Rübe, Christian

    2008-10-15

    Radiotherapy is an effective cancer treatment, but a few patients suffer severe radiation toxicities in neighboring normal tissues. There is increasing evidence that the variable susceptibility to radiation toxicities is caused by the individual genetic predisposition, by subtle mutations, or polymorphisms in genes involved in cellular responses to ionizing radiation. Double-strand breaks (DSB) are the most deleterious form of radiation-induced DNA damage, and DSB repair deficiencies lead to pronounced radiosensitivity. Using a preclinical mouse model, the highly sensitive gammaH2AX-foci approach was tested to verify even subtle, genetically determined DSB repair deficiencies known to be associated with increased normal tissue radiosensitivity. By enumerating gammaH2AX-foci in blood lymphocytes and normal tissues (brain, lung, heart, and intestine), the induction and repair of DSBs after irradiation with therapeutic doses (0.1-2 Gy) was investigated in repair-proficient and repair-deficient mouse strains in vivo and blood samples irradiated ex vivo. gammaH2AX-foci analysis allowed to verify the different DSB repair deficiencies; even slight impairments caused by single polymorphisms were detected similarly in both blood lymphocytes and solid tissues, indicating that DSB repair measured in lymphocytes is valid for different and complex organs. Moreover, gammaH2AX-foci analysis of blood samples irradiated ex vivo was found to reflect repair kinetics measured in vivo and, thus, give reliable information about the individual DSB repair capacity. gammaH2AX analysis of blood and tissue samples allows to detect even minor genetically defined DSB repair deficiencies, affecting normal tissue radiosensitivity. Future studies will have to evaluate the clinical potential to identify patients more susceptible to radiation toxicities before radiotherapy.

  20. Synthesis of furan-based DNA binders and their interaction with DNA

    International Nuclear Information System (INIS)

    Voege, Andrea; Hoffmann, Sascha; Gabel, Detlef

    2006-01-01

    In recent years, many substances, based on naturally occurring DNA-binding molecules have been developed for the use in cancer therapy and as virostatica. Most of these substances are binding specifically to A-T rich sequences in the DNA minor groove. Neutral and positively charged DNA-binders are known. BNCT is most effective, which the boron is directly located in the cellular nucleus, so that the intercation with thermal neutrons can directly damage the DNA. To reach this aim, we have connected ammonioundecahydrododecaborate(1-) to DNA-binding structures such as 2,5-bis(4-formylphenyl)furan via a Schiff-Base reaction followed by a reduction of the imine to a secondary amine. In a following step the amine can be alkylated to insert positive charges to prevent repulsion between the compounds and the negatively charged sugar-phosphate-backbone of the DNA. (author)

  1. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    Science.gov (United States)

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  2. Effects of low doses of gamma radiation on DNA synthesis in the developing rat brain

    International Nuclear Information System (INIS)

    Cerda, H.

    1983-01-01

    Rats of one or ten days of age were irradiated with low doses of gamma radiation, and synthesis of DNA was examined by the incorporation of 3 H-thymidine in the cerebellum and the rest of the brain in vivo. DNA synthesis was depressed in both parts of the brain but the effects were larger in cerebellum. A minimum was found about 10 hours after irradiation in the older rats and later (18 h) in the younger ones. The dose response in 10 day-old rats, was biphasic and showed that cerebellum was more affected. Autoradiographs showed that fewer cells entered the cycle and those synthesizing showed a depressed rate of synthesis. These findings are discussed in relation to induction of cell death. (Auth.)

  3. H3-THYMIDINE DERIVATIVE POOLS IN RELATION TO MACRONUCLEAR DNA SYNTHESIS IN TETRAHYMENA PYRIFORMIS

    Science.gov (United States)

    Stone, G. E.; Miller, O. L.; Prescott, D. M.

    1965-01-01

    The formation of a soluble H3-thymidine derivative pool has been examined in Tetrahymena pyriformis as a function of macronuclear DNA synthesis during the cell life cycle. An autoradiographic technique which allows the detection of water-soluble materials within a cell has shown that these cells do not take up and retain exogenous H3-thymidine during G1 or G2. Uptake of H3-thymidine is restricted to the S period of the cell cycle. Additional autoradiographic experiments show, however, that a soluble pool of H3-thymidine derivatives persists from the end of one DNA synthesis period to the beginning of the next synthesis period in the subsequent cell cycle. Since this persisting pool cannot be labeled with H3-thymidine, the pool does not turn over during non-S periods. PMID:19866660

  4. Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support

    Science.gov (United States)

    Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim

    2018-04-01

    DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.

  5. The effect of heat and radiation on the initiation and elongation processes of DNA synthesis

    International Nuclear Information System (INIS)

    Davies, R.C.; Bowden, G.T.; Cress, A.E.

    1983-01-01

    The pH step alkaline elution and alkaline sucrose gradient techniques were utilized to evaluate alterations in DNA replication (initiation and elongation) induced by heat and low dose X-irradiation in synchronized Chinese hamster ovary cells. The initiation and elongation processes of DNA synthesis were radioresistant at the G 1 /S boundary (4 hours after mitosis) while in mid S phase (9 hours after mitosis) DNA initiation and elongation were sensitive to X-irradiation. The initiation and elongation processes of DNA synthesis which were radiation resistant at the G 1 /S boundary could be inhibited by a hyperthermia treatment (43 0 C for 1 hour beginning at 4 hours after mitosis). The impairment of initiation in the heated cells was maintained through late S phase while that of elongation was reversible as judged by full recovery at 15 hours after mitosis. These data suggest that the known synergistic lethality of heat and radiation may be mediated by an impairment of initiation of DNA synthesis. (author)

  6. Development and Synthesis of DNA-Encoded Benzimidazole Library.

    Science.gov (United States)

    Ding, Yun; Chai, Jing; Centrella, Paolo A; Gondo, Chenaimwoyo; DeLorey, Jennifer L; Clark, Matthew A

    2018-04-25

    Encoded library technology (ELT) is an effective approach to the discovery of novel small-molecule ligands for biological targets. A key factor for the success of the technology is the chemical diversity of the libraries. Here we report the development of DNA-conjugated benzimidazoles. Using 4-fluoro-3-nitrobenzoic acid as a key synthon, we synthesized a 320 million-member DNA-encoded benzimidazole library using Fmoc-protected amino acids, amines and aldehydes as diversity elements. Affinity selection of the library led to the discovery of a novel, potent and specific antagonist of the NK3 receptor.

  7. Quantum dots–DNA bioconjugates: synthesis to applications

    Science.gov (United States)

    2016-01-01

    Semiconductor nanoparticles particularly quantum dots (QDs) are interesting alternatives to organic fluorophores for a range of applications such as biosensing, imaging and therapeutics. Addition of a programmable scaffold such as DNA to QDs further expands the scope and applicability of these hybrid nanomaterials in biology. In this review, the most important stages of preparation of QD–DNA conjugates for specific applications in biology are discussed. Special emphasis is laid on (i) the most successful strategies to disperse QDs in aqueous media, (ii) the range of different conjugation with detailed discussion about specific merits and demerits in each case, and (iii) typical applications of these conjugates in the context of biology. PMID:27920898

  8. In vivo effects of T-2 mycotoxin on synthesis of proteins and DNA in rat tissues

    International Nuclear Information System (INIS)

    Thompson, W.L.; Wannemacher, R.W. Jr.

    1990-01-01

    Rats were given an ip injection of T-2 mycotoxin (T-2), the T-2 metabolite, T-2 tetraol (tetraol), or cycloheximide. Serum, liver, heart, kidney, spleen, muscle, and intestine were collected at 3, 6, and 9 hr postinjection after a 2-hr pulse at each time with [14C]leucine and [3H]thymidine. Protein and DNA synthesis levels in rats were determined by dual-label counting of the acid-precipitable fraction of tissue homogenates. Rats given a lethal dose of T-2, tetraol, or cycloheximide died between 14 and 20 hr. Maximum inhibition of protein synthesis at the earliest time period was observed in additional rats given the same lethal dose of the three treatments and continued for the duration of the study (9 hr). With sublethal doses of T-2 or tetraol, the same early decrease in protein synthesis was observed but, in most of the tissues, recovery was seen with time. In the T-2-treated rats. DNA synthesis in the six tissues studied was also suppressed, although to a lesser degree. With sublethal doses, complete recovery of DNA synthesis took place in four of the six tissues by 9 hr after toxin exposure. The appearance of newly translated serum proteins did not occur in the animals treated with T-2 mycotoxin or cycloheximide, as evidenced by total and PCA-soluble serum levels of labeled leucine. An increase in tissue-pool levels of free leucine and thymidine in response to T-2 mycotoxin was also noted. T-2 mycotoxin, its metabolite, T-2 tetraol, and cycloheximide cause a rapid inhibition of protein and DNA synthesis in all tissue types studied. These results are compared with the responses seen in in vitro studies

  9. DNA synthesis in toluene-treated bacteriophage-infected minicells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Amann, E.; Reeve, J.N.

    1978-01-01

    Bateriophage (phi29, SPP1, or SP01)-infected, toluene-treated minicells of Bacillus subtilis are capable of limited amounts of non-replicative DNA synthesis as measured by incorporation of [ 3 H]dTTP into a trichloroacetic acid-precipitable form. The [ 3 H]dTTP is covalently incorporated into small DNA fragments which result from the degradation of a small percentage of the infecting phage genomes (molecular weights in the range of 2.10 5 ). Short exposure of the DNA molecules containing the incorporated [ 3 H]dTMP to Escherichia coli exonuclease III results in over 90% of the [ 3 H]dTMP being converted to a trichloroacetic acid-soluble form. The synthesis is totally dependent on host-cell enzymes and is not inhibited by the addition of chloramphenicol, rifampicin, nalidixic acid and mitomycin C and only slightly (approx. 20%) inhibited by the addition of 6-(p-hydroxyphenylazo)-uracil. (Auth.)

  10. Synthesis and NMR of {sup 15}N-labeled DNA fragments

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.A. [Rutgers, The State Univ. of New Jersey, Piscataway, NJ (United States)

    1994-12-01

    DNA fragments labeled with {sup 15}N at the ring nitrogens and at the exocyclic amino groups can be used to obtain novel insight into interactions such as base pairing, hydration, drug binding, and protein binding. A number of synthetic routes to {sup 15}N-labeled pyrimidine nucleosides, purines, and purine nucleosides have been reported. Moreover, many of these labeled bases or monomers have been incorporated into nucleic acids, either by chemical synthesis or by biosynthetic procedures. The focus of this chapter will be on the preparation of {sup 15}N-labeled purine 2{prime}-deoxynucleosides, their incorporation into DNA fragments by chemical synthesis, and the results of NMR studies using these labeled DNA fragments.

  11. Action of cytochalasin D on DNA synthesis in cells in culture

    International Nuclear Information System (INIS)

    Glushankova, N.A.

    1986-01-01

    To solve the problem of the effect of changes in the actin cytoskeleton on DNA replication during the action of cytochalasins, the effect of long-term incubation of normal cells with cytochalasin D (CCD), which selectively destroys the microfilament system but does not affect transport of sugars, was investigated. Incorporation of labeled thymidine into mononuclear and binuclear cells in the presence of CCD and after its removal by rinsing also was studied separately. To investigate DNA synthesis the method of autoradiography with 3 H-thymidine was used. A culture of mouse fibroblasts of the BALB/3T3 line and a secondary culture of fibroblasts obtained by trypsinization of mouse embryos (MEF) were used. On incubation of MEF and 3T3 cells, gradual inhibition of DNA synthesis is observed. The results obtained indicate that structural changes in the active cytoskeleton can abruptly and reversibly disturb passage of the normal cell through the cycle

  12. Effect of haloperidol on the synthesis of DNA in the pituitary gland of the rat.

    Science.gov (United States)

    Machiavelli, G A; Jahn, G A; Kalbermann, L E; Szijan, I; Alonso, G E; Burdman, J A

    1982-03-01

    The administration of haloperidol increased serum prolactin and decreased the pituitary concentration of prolactin 15 min after its administration. Concomitantly there was a stimulation in the synthesis of DNA and the activity of DNA polymerase alpha in the anterior pituitary gland that was greater in oestrogenized than in non-oestrogenized male rats. Both these effects were greatly reduced by clomiphene in the oestrogenized male rats, although it did not affect the release of prolactin produced by haloperidol. In non-oestrogenized animals clomiphene abolished the stimulatory effect of haloperidol on the synthesis of DNA. These results suggest that the reduction in the intracellular levels of prolactin are a primary event in the oestrogen mediated stimulation of cell proliferation by prolactin releasing agents.

  13. Age-related decrease in an early step of DNA-repair of normal human lymphocytes exposed to ultraviolet-irradiation

    International Nuclear Information System (INIS)

    Roth, M.; Emmons, L.R.; Haener, M.M.; Mueller, H.J.B.; Boyle, J.M.

    1989-01-01

    A monoclonal antibody-based immunoassay has been used to detect age-related changes in the rate of loss of photoproduct antigenicity from the DNA of peripheral blood lymphocytes irradiated with 10 J m-2 uv-C. Lymphocytes were obtained from 75 healthy volunteers whose ages ranged from 14 months to 82 years. The samples were divided by age decades into groups of 10 individuals, except the first decade which contained only 5 individuals. The mean loss of antigenicity +/- 1 standard deviation was determined for each group at 10, 30, and 60 min after irradiation. The data were analyzed by Mann-Whitney U test and by the Kruskal-Wallis test. After a recovery period of 10 min the loss of antigenicity was most rapid in group I (0-9 years), less rapid in group II (10-19 years), and least rapid in all other groups. The differences between groups became less at 30 min and were not significant at 60 min incubation. These data obtained from normal cells concur with our previous conclusions, that reductions in the rate of loss of antigenicity in nondiseased cells isolated from patients with melanoma and dysplastic naevus syndrome reflect genetic abnormalities in these patients

  14. Applying of centrifugal chromatography on DEAE cellulose and viscosity measurement to estimate damage caused by gamma irradiation in lymphocyte DNA

    International Nuclear Information System (INIS)

    Olinski, R.

    1977-01-01

    DNA isolated from limphocytes of pig blood was irradiated by γ radiation in the range of 0.5-50 Krads. Changes caused by irradiation (single and double breaks) were determined by using viscosity measurement and centrifugal chromatography on DEAE cellulose. Study of DNA chromatograms showed possibility to apply centrifugal chromatography on DEAE cellulose to estimate changes caused by irradiation. (author)

  15. Synthesis, Characterization and DNA Cleavage of Copper(II ...

    African Journals Online (AJOL)

    Purpose: To study deoxyribonucleic acid (DNA) shearing capability of copper(II) complex of dithiothreitol (DTT) and to fevaluate its potential application in cancer therapy. Methods: A parrot green complex was synthesized by grinding copper acetate monohydrate and DTT in 1:2 molar ratio in a mortar until no fumes of acetic ...

  16. Synthesis of streptavidin-conjugated magnetic nanoparticles for DNA detection

    International Nuclear Information System (INIS)

    Gong Peijun; Peng Zheyang; Wang Yao; Qiao Ru; Mao Weixing; Qian Haisheng; Zhang Mengya; Li Congcong; Shi Shenyuan

    2013-01-01

    In this paper, we report a fabrication of streptavidin-coated magnetic nanoparticles used for DNA detection. Initially, amino-functionalized Fe 3 O 4 nanoparticles with high saturation magnetization are prepared by a photopolymerization method using allylamine as monomer. It is followed by covalent immobilization of streptavidin onto the particle surface via a two-step reaction using glutaraldehyde as coupling agent. Streptavidin-coated magnetic nanoparticles are characterized and further tested for their ability to capture DNA target after binding biotinylated oligonucleotide probes. The results show that the products (∼27.2 nm) have a maximum biotin-binding capacity of 0.71 nmol mg −1 when the immobilization reaction is conducted with a mass ratio of streptavidin to magnetic carriers above 0.2 in phosphate buffered saline (pH 7.4) for 24 h. In addition, highly negative ζ-potential and good magnetic susceptibility of the nanocomposites make them applicable for DNA collection and detection, which is verified by the results from the preliminary application of streptavidin-coated magnetic nanoparticles in DNA detection. Therefore, the magnetic nanoparticles provide a promising approach for rapid collection and detection of gene.

  17. Radioautographic DNA synthesis study on mice Mus musculus gingival epithelium

    International Nuclear Information System (INIS)

    Silveira Tarelho, Z.V. da; Hetem, S.

    1984-01-01

    The DNA-synthetizing cells frequency in the gingival epithelium basal layer of the first lower molar region in young and adult mice were studied. The 3H-thymidine and radioautography were used. The labeled cells frequency was determined by calculating their proportions. The data were statiscally analysed. (M.A.C.) [pt

  18. Thermodynamic Impact of Abasic Sites on Simulated Translesion DNA Synthesis

    Czech Academy of Sciences Publication Activity Database

    Malina, Jaroslav; Brabec, Viktor

    2014-01-01

    Roč. 20, č. 25 (2014), s. 7566-7570 ISSN 0947-6539 R&D Projects: GA ČR(CZ) GAP205/11/0856 Institutional support: RVO:68081707 Keywords : abasic sites * differential scanning calorimetry * DNA Subject RIV: BO - Biophysics Impact factor: 5.731, year: 2014

  19. Frequencies of X-ray and fast neutron induced chromosome translocations in human peripheral blood lymphocytes as detected by in situ hybridization using chromosome specific DNA libraries

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Darroudi, F.; Vermeulen, S.; Wiegant, J.

    1992-01-01

    DNA libraries of six human chromosomes were used to detect translocations in human lymphocytes induced by different doses of X-rays and fast neutrons. Results show that with X-rays, one can detect about 1.5 to 2.0 fold more translocations in comparison to dicentrics, whereas following fast neutron irradiation, the difference between these two classes of aberrations are significantly different at high doses. In addition, triple fluorescent in situ hybridization technique was used to study the frequencies of radiation-induced translocations involving a specific chromosome. Chromosome number 1 was found to be involved in translocations more frequently than chromosomes number 2, 3, 4, 8 and X. (author). 10 refs., 1 fig., 2 tabs

  20. Antigenotoxic Effect of Curcumin and Carvacrol against Parathion Induced DNA Damage in Cultured Human Peripheral Blood Lymphocytes and Its Relation to GSTM1 and GSTT1 Polymorphism

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar

    2014-01-01

    Full Text Available In recent years, the use of organophosphorus pesticides has been extensively increased and these compounds signify a major class of agricultural pesticides today. We studied antigenotoxic potential of curcumin and carvacrol against the parathion induced DNA damage in cultured peripheral blood lymphocytes using sister chromatid exchanges as a biomarker of genotoxicity. Heparinised fresh blood from healthy individuals was treated with 2.5 μg/mL concentration of parathion in presence of curcumin and carvacrol in order to observe the antigenotoxic potential of both curcumin and carvacrol. Significant reduction (P0.05 of GSTT1 and GSTM1 polymorphism on genotoxicity of parathion and antigenotoxic potential of curcumin and carvacrol.

  1. Synthesis and characterization of DNA minor groove binding alkylating agents.

    Science.gov (United States)

    Iyer, Prema; Srinivasan, Ajay; Singh, Sreelekha K; Mascara, Gerard P; Zayitova, Sevara; Sidone, Brian; Fouquerel, Elise; Svilar, David; Sobol, Robert W; Bobola, Michael S; Silber, John R; Gold, Barry

    2013-01-18

    Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.

  2. Comparison of DNA damage in human lymphocytes from healthy individuals and asthma, COPD and lung cancer patients treated in vitro / ex vivo with the bulk nano forms of aspirin and ibuprofen

    Directory of Open Access Journals (Sweden)

    Mojgan Najafzadeh

    2015-05-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs inhibit COX enzyme activity, a significant mechanism of action of NSAIDs. Inflammation is associated with increasing cancer incidence. Recent pre-clinical and clinical studies have shown that NSAID treatment could cause an anti-tumour effect in cancers. Such studies are lengthy and expensive. The present study, however, examined DNA damage in the Comet and micronucleus assays in peripheral blood lymphocytes of patients with respiratory diseases and healthy individuals using the nanoparticle (NP and bulk versions of the NSAIDs, aspirin and ibuprofen. Lymphocytes are suitable surrogate cells for cancers and other disease states. DNA damage decreased in lymphocytes from healthy individuals, asthma, COPD and lung cancer patient groups after treatment with aspirin nano-suspension (ASP N and ibuprofen nano-suspension (IBU N compared to their bulk version (micro-suspension in both assays. However, when ASP N was compared to untreated lymphocytes in all groups in the Comet assay, DNA damage significantly decreased in all groups, except the asthma group. When IBU N was compared to untreated lymphocytes, in healthy individuals and the lung cancer group, DNA damage decreased, but increased in asthma and COPD groups. Similarly, micronuclei (MNi increased after ASP N and IBU N in the healthy individual and lung cancer groups, and decreased in asthma and COPD groups. Also shows that whilst there are basic similarities with different genetic endpoints in terms of nano and bulk forms, but highlights some differences between the disease states examined. Furthermore, lymphocyte responses after IBU N and ibuprofen bulk were investigated by patch-clamp experiments demonstrating that IBU N inhibited ion channel activity by 20%. This molecular epidemiology approach mirrors pre-clinical and clinical findings, and provides new information using nanoparticles.

  3. Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA

    International Nuclear Information System (INIS)

    Setlow, B.; Hand, A.R.; Setlow, P.

    1991-01-01

    Small, acid-soluble proteins (SASP) of the alpha/beta-type are associated with DNA in spores of Bacillus subtilis. Induction of synthesis of alpha/beta-type SASP in Escherichia coli resulted in rapid cessation of DNA synthesis, followed by a halt in RNA and then protein accumulation, although significant mRNA and protein synthesis continued. There was a significant loss in viability associated with SASP synthesis in E. coli: recA+ cells became extremely long filaments, whereas recA mutant cells became less filamentous. The nucleoids of cells with alpha/beta-type SASP were extremely condensed, as viewed in both light and electron microscopes, and immunoelectron microscopy showed that the alpha/beta-type SASP were associated with the cell DNA. Induction of alpha/beta-type SASP synthesis in E. coli increased the negative superhelical density of plasmid DNA by approximately 20%; UV irradiation of E. coli with alpha/beta-type SASP gave reduced yields of thymine dimers but significant amounts of the spore photoproduct. These changes in E. coli DNA topology and photochemistry due to alpha/beta-type SASP are similar to the effects of alpha/beta-type SASP on the DNA in Bacillus spores, further suggesting that alpha/beta-type SASP are a major factor determining DNA properties in bacterial spores

  4. Diphtheria toxin resistance in human lymphocytes and lymphoblasts in the in vivo somatic cell mutation test

    International Nuclear Information System (INIS)

    Tomkins, D.J.; Wei, L.; Laurie, K.E.

    1985-01-01

    It has been shown that circulating peripheral blood lymphocytes can be used for the enumeration of 6-thioguanine-resistant cells that presumably arise by mutation in vivo. This somatic cell mutation test has been studied in lymphocytes from human populations exposed to known mutagens and/or carcinogens. The sensitivity of the test could be further enhanced by including other gene markers, since there is evidence for locus-specific differences in response to mutagens. Resistance to diphtheria toxin (Dip/sup r/) seemed like a potential marker to incorporate into the test because the mutation acts codominantly, can readily be selected in human diploid fibroblasts and Chinese hamster cells with no evidence for cell density or cross-feeding effects, and can be assayed for in nondividing cells by measuring protein synthesis inhibition. Blood samples were collected from seven individuals, and fresh, cryopreserved, or Epstein-Barr virus (EBV)-transformed lymphocytes were tested for continued DNA synthesis ( 3 H-thymidine, autoradiography) or protein synthesis ( 35 S-methionine, scintillation counting). Both fresh and cryopreserved lymphocytes, stimulated to divide with phytohemagglutinin (PHA), continued to synthesize DNA in the presence of high doses of diphtheria toxin (DT). Similarly, both dividing (PHA-stimulated) and nondividing fresh lymphocytes carried on significant levels of protein synthesis even 68 hr after exposure to 100 flocculating units (LF)/ml DT. The results suggest that human T and B lymphocytes may not be as sensitive to DT protein synthesis inhibition as human fibroblast and Chinese hamster cells. For this reason, Dip/sup r/ may not be a suitable marker for the somatic cell mutation test

  5. [Expression and purification of a novel thermophilic bacterial single-stranded DNA-binding protein and enhancement the synthesis of DNA and cDNA].

    Science.gov (United States)

    Jia, Xiao-Wei; Zhang, Guo-Hui; Shi, Hai-Yan

    2012-12-01

    Express a novel species of single-stranded DNA-binding protein (SSB) derived from Thermococcus kodakarensis KOD1, abbreviated kod-ssb. And evaluate the effect of kod-ssb on PCR-based DNA amplification and reverse transcription. We express kod-ssb with the Transrtta (DE3), and kod-ssb was purified by affinity chromatography on a Ni2+ Sepharose column, detected by SDS-PAGE. To evaluate the effect of kod-ssb on PCR-based DNA amplification, the human beta globin gene was used as template to amplify a 5-kb, 9-kb and 13-kb. And to detect the effect of kod-ssb on reverse transcription, we used RNA from flu cell culture supernatant extraction as templates to implement qRT-PCR reaction. The plasmid pET11a-kod was transformed into Transetta (DE3) and the recombinant strain Transetta (pET11 a-kod) was obtained. The kod-ssb was highly expressed when the recombinant strain Transetta(pET11a-kod) was induced by IPTG. The specific protein was detected by SDS-PAGE. To confirm that kod-ssb can enhance target DNA synthesis and reduce PCR by-products, 5-, 9-, and 13-kb human beta globin gene fragments were used as templates for PCR. When PCR reactions did not include SSB proteins, the specific PCR product was contaminated with non-specific products. When kod -ssb was added, kod-ssb significantly enhanced amplification of the 5-, 9-and 13-kb target product and minimised the non-specific PCR products. To confirm that kod-ssb can enhance target cDNA synthesis, RNA from flu cell culture supernatant extraction was used as templates for qRT-PCR reaction. The results was that when kod-ssb was added, kod-ssb significantly enhanced the synthesis of cDNA, average Ct value is 19.42, and the average Ct value without kod-ssb is 22.15. kod-ssb may in future be used to enhance DNA and cDNA amplification.

  6. On the recovery of the DNA-synthesis after X-irradiation in the spleen of mice and its modification by the NAD-metabolism

    International Nuclear Information System (INIS)

    Streffer, C.

    1974-01-01

    The incorporation of tritium-labelled thymidine into the DNA of mice spleen cells after whole body irradiation with X-rays was measured in order to study the decrease of DNA synthesis is decreased for several hours after irradiation with low doses. Recovery effects become operative after six hours. The radiation effect on the NAD metabolism, known to be related to DNA synthesis, was also investigated. The rate of NAD synthesis is influenced via the extremely radiosensitive metabolic process in the nucleus. Conversely, inhibition of DNA synthesis by injection of NAD enhances the recovery of DNA synthesis after irradiaton. (G.G.)

  7. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology.

    Science.gov (United States)

    Hocek, Michal

    2014-11-07

    The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.

  8. [Effect of metalaxyl on the synthesis of RNA, DNA and protein in Phytophthora nicotianae].

    Science.gov (United States)

    Wollgiehn, R; Bräutigam, E; Schumann, B; Erge, D

    1984-01-01

    Metalaxyl is used to control diseases caused by fungi of the order of the Perenosporales. We investigated the action of this fungicid eon nucleic acid and protein synthesis in liquid cultures of Phytophthora nicotianae. The uptake of 32P, 3H-uridine, 3H-thymidine and 14C-leucine as precursors of nuclei acid and protein synthesis by the mycelium was not inhibited by metalaxyl. RNA synthesis as indicated by 3H-uridine incorporation was strongly inhibited (about 80%) by 0.5 micrograms/ml of metalaxyl. The inhibition was visible already few minutes after addition of the toxicant. Since the inhibition of incorporation of 3H-thymidine into DNA and of 14C-leucine into protein became significant 2-3 hours later, we conclude that metalaxyl primarily interfers with RNA synthesis. Synthesis of ribosomal RNA is more affected (more than 90%) than that of tRNA (about 55%) and poly(A)-containing RNA. Since in the presence of actinomycin, in contrast to metalaxyl, protein synthesis is inhibited immediately as a consequence of complete inhibition of RNA synthesis and of the short life-time of mRNA, it is also evident that mRNA synthesis is less strongly inhibited, at least during the early period of metalaxyl action. The molecular mechanism of metalaxyl inhibition of the transcription process remains open. The fungicide did not inhibit the activity of a partially purified RNA polymerase isolated from the fungus. On the other hand, the RNA synthesis (14C-UTP-incorporation) by a cell homogenate and by isolated nuclear fractions was inhibited significantly. Possibilities of the molecular action of metalaxyl are discussed. The RNA synthesis of some plant systems (cell cultures of Lycopersicon peruvianum, isolated nuclei from the same cell cultures, purified RNA polymerase from Spinacia oleracea chloroplasts) was not inhibited by metalaxyl, not even at high concentrations.

  9. Instability of (CTGn•(CAGn trinucleotide repeats and DNA synthesis

    Directory of Open Access Journals (Sweden)

    Liu Guoqi

    2012-02-01

    Full Text Available Abstract Expansion of (CTGn•(CAGn trinucleotide repeat (TNR microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTGn and (CAGn repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTGn•(CAGn instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTGn•(CAGn TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTGn•(CAGn instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTGn•(CAGn TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.

  10. Synthesis of hydrogel via click chemistry for DNA electrophoresis.

    Science.gov (United States)

    Finetti, Chiara; Sola, Laura; Elliott, Jim; Chiari, Marcella

    2017-09-01

    This work introduces a novel sieving gel for DNA electrophoresis using a classical click chemistry reaction, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), to cross-link functional polymer chains. The efficiency of this reaction provides, under mild conditions, hydrogels with near-ideal network connectivity and improved physical properties. Hydrogel formation via click chemistry condensation of functional polymers does not involve the use of toxic monomers and UV initiation. The performance of the new hydrogel in the separation of double stranded DNA fragments was evaluated in the 2200 TapeStation system, an analytical platform, recently introduced by Agilent that combines the advantages of CE in terms of miniaturization and automation with the simplicity of use of slab gel electrophoresis. The click gel enables addition of florescent dyes prior to electrophoresis with considerable improvement of resolution and separation efficiency over conventional cross-linked polyacrylamide gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Selective inhibition of influenza virus protein synthesis by inhibitors of DNA function

    International Nuclear Information System (INIS)

    Minor, P.D.; Dimmock, N.J.

    1977-01-01

    Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and α-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at high concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent

  12. Simple Laboratory methods to measure cell proliferation using DNA synthesis property

    Directory of Open Access Journals (Sweden)

    Madhavan H N

    2007-01-01

    Full Text Available This is a mini-review on the techniques to measure proliferation of cells by estimation of DNA synthesis. This is not an exhaustive review of literature, but a bird’s eye view of a few selected articles which may provide the technical details to the readers.The nucleus of a cell occupies about 10-30% of the cells space, depends on the type of genetic material (DNA -DeoxyriboNucleic Acid. DNA is a long, double-stranded, helical molecule which carries the genetic information. Duplication of the DNA takes place by the phenomena of replication. One copy of double-stranded DNA molecule forms two double-stranded DNA molecules. DNA replication is the fundamental process used in all living organisms as it is the basis for biological inheritance. This process is known also as Mitosis in somatic cells. In Mitosis, the duplication process results in two genetically identical "daughter" cells from a single "parent" cell. The resulting double-stranded DNA molecules are identical; proof reading and error-checking mechanisms exist to ensure near perfect pair. Mitosis is divided into six phases: prophase, prometaphase, metaphase, anaphase, telophase, and cytokinesis.

  13. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis

    Science.gov (United States)

    Taggart, David J.; Camerlengo, Terry L.; Harrison, Jason K.; Sherrer, Shanen M.; Kshetry, Ajay K.; Taylor, John-Stephen; Huang, Kun; Suo, Zucai

    2013-01-01

    Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis–syn thymidine–thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases. PMID:23470999

  14. Recovery of subchromosomal DNA synthesis in synchronous V-79 Chinese hamster cells after ultraviolet light exposure

    International Nuclear Information System (INIS)

    Meechan, P.J.; Carpenter, J.G.

    1986-01-01

    Previous work obtained from Chinese hamster V-79 cells indicated that, immediately following exposure, UV-induced lesions acted as blocks to elongation of nascent strands, but gradually lost that ability over a 10 h period after exposure to 10 J/m 2 . The work reported herein attempted to examine possible cell cycle mediated alterations in the recovery of DNA synthesis. Kinetic incorporation of radiolabeled thymidine studies indicated that there may have been a more rapid recover of DNA synthesis in cells irradiated in G 1 or G 2 vs cells irradiated in S phase. DNA fiber autoradiograms prepared from synchronous cells indicated that after irradiation in any phase of the cell cycle, the length of newly synthesized DNA was equal to control lengths 1 h after exposure to 5.0Jm 2 (or 1 h after entering S phase for cells irradiated in G 1 or G 2 ). This observed recovery was not solely due to an excision process. No cell cycle mediated difference in the number of dimers induced or removed as a function of cell cycle position was observed. These results appear to be consistent with a continuum of effects, with initiation effects dominating the response at low fluences, gapped synthesis at intermediate fluences and elongation inhibition at high fluences. The fluences at which each event dominates may be cell-line specific. (author)

  15. The effect of caffeine and adenine on radiation induced suppression of DNA synthesis, and cell survival

    International Nuclear Information System (INIS)

    Wilcoxson, L.T.; Griffiths, T.D.

    1984-01-01

    Exposure of cultured mammalian cells to ionizing radiation or UV light results in a transient decrease in the rate of DNA synthesis. This depression in synthetic rate may be attenuated or deferred via a post-irradiation treatment with caffeine or adenine. It has been suggested that this attenuation may increase the fixation of damage and, therefore, increase radiation sensitivity. However, it has been previously reported that, for V79 cells treated with caffeine or adenine, no correlation exists between the extent of depression and cell survival. The present investigation expands upon these findings by examining the effect of caffeine or adenine post-irradiation treatment on two cell lines with normal UV sensitivity, mouse 3T3 and CHO AA8 cells, and one UV sensitive cell line, CHO UV5 cells. Both caffeine and adenine have been found to reduce, or delay, the suppression in DNA synthesis in all three cell lines. Surprisingly, caffeine appeared to induced even the UV5 cells to recover DNA synthetic ability. The amount of reduction in suppression of DNA synthesis, however, varies between the different cell lines and no consistent relationship with cell survival has emerged

  16. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    Science.gov (United States)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  17. Quantification of DNA repair capacity (DRC) in peripheral blood lymphocytes of individuals from natural high background radiation areas of Kerala, India

    International Nuclear Information System (INIS)

    Vivek Kumar, P.R.; Seshadri, M.

    2011-01-01

    Human populations residing in the coastal areas of Kerala from Neendakara in south to Purakkad in north receive high level natural background radiation primarily due to the presence of thorium ( 232 Th) in the monazite containing beach sand. This provides a unique opportunity to investigate the health effects of natural high level radiation on humans. Earlier studies from our laboratory in newborns for incidence of congenital malformations, structural and numerical chromosome aberrations failed to show any significant health or biological effects due to high level natural radiation exposure. The current study used alkaline single cell gel electrophoresis (comet) assay due to its sensitivity, speed, flexibility and low cost. Biological effects of low level natural radiation was studied by assessing individual's DNA Repair Capacity (DRC), which is essential for maintaining the genome integrity. DNA damage was estimated in terms of DNA strand breaks per million base pairs (SB/106 bp). In our earlier study using comet assay, DNA SBs increased with age in subjects from normal background radiation area (NBRA). However, significant inverse correlation was observed in subjects from high background radiation area (HBRA). Further, spontaneous DNA SBs in elderly subjects (? 41 years) from HBRA was significantly lower compared to the subjects from NBRA. The present study was carried out in 90 healthy adult male subjects of which, 63 subjects belonged to HBRA and 27 subjects from NBRA. The annual effective dose in HBRA subjects was 5.87 ± 4.17 mSv year-1 (Mean ± S.D., range 1.07-17.41) and in NBRA subjects was ? 1mSv year-1. Peripheral blood lymphocytes from these individuals were irradiated with 4Gy of 60 Co gamma rays (1.4Gy/minute, Low dose irradiator 2000, BRIT, India) and DNA repair was assessed at 30 minutes. As the results were not normally distributed, the data were log transformed to normalize variance. Regression analysis was carried out to determine the relative

  18. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  19. Synthesis of Acridine-based DNA Bis-intercalating Agents

    Directory of Open Access Journals (Sweden)

    P. Mack

    2001-02-01

    Full Text Available Methods for the synthesis of N1, N8-bis(9-acridinyl-N4-(4-hydroxybenzyl-spermidine and N1, N7-(hydroxybenzyl-bis-(3-aminopropylamine were investigated. Thus monocyanoethylation of 4-methoxybenzylamine followed by treatment with 4-chlorobutyronitrile gave the dinitrile N-(2-cyanoethyl-N-(3-cyanopropyl-4-methoxybenzylamine. Subsequent in situ reduction with lithium aluminium hydride gave the corresponding diamine. Biscyanoethylation of 4-methoxybenzylamine with 2 mole of acrylonitrile followed by reduction yielded the diamine N, N-bis-(3-aminopropyl-4-methoxybenzylamine. Both diamines reacted smoothly with 9-methoxyacridine to give the bis-(9-acridinyl compounds 11 and 15 but with 4,5-dimethyl-9-methoxyacridine, the bis compound 16 was produced in only low yields. Demethylation of the dinitriles by a variety of approaches all failed to give the corresponding hydroxybenzyl derivatives. These studies yielded useful methylated tyrosine derivatives which could also be iodinated. This study has been useful for elucidating chemical methods needed for the synthesis of the desired tyrosine-based bis acridine compound and for alerting us to the need to synthesise a more labile protected tyrosine intermediate which will be easily deprotected to afford the desired tyrosine-based bis acridine compound.

  20. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tetsuya, E-mail: suzukite@hiroshima-u.ac.jp [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Grúz, Petr; Honma, Masamitsu [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Adachi, Noritaka [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Nohmi, Takehiko [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan)

    2016-09-15

    Highlights: • Human cells knockout (KO) and expressing catalytically dead (CD) variant of DNA polymerase ζ (Pol ζ) have been established by gene targeting techniques with Nalm-6 cells. • Both Pol ζ KO and CD cells displayed prolonged cell cycle and higher incidence of micronucleus formation than the wild-type cells in the absence of exogenous genotoxic treatments. • Pol ζ protects human cells from genotoxic stresses that induce bulky DNA lesions and cross-links. • Pol ζ plays quite limited roles in protection against strand-breaks in DNA. - Abstract: Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD > KO > WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N′-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were

  1. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells

    International Nuclear Information System (INIS)

    Suzuki, Tetsuya; Grúz, Petr; Honma, Masamitsu; Adachi, Noritaka; Nohmi, Takehiko

    2016-01-01

    Highlights: • Human cells knockout (KO) and expressing catalytically dead (CD) variant of DNA polymerase ζ (Pol ζ) have been established by gene targeting techniques with Nalm-6 cells. • Both Pol ζ KO and CD cells displayed prolonged cell cycle and higher incidence of micronucleus formation than the wild-type cells in the absence of exogenous genotoxic treatments. • Pol ζ protects human cells from genotoxic stresses that induce bulky DNA lesions and cross-links. • Pol ζ plays quite limited roles in protection against strand-breaks in DNA. - Abstract: Translesion DNA synthesis (TLS) is a cellular defense mechanism against genotoxins. Defects or mutations in specialized DNA polymerases (Pols) involved in TLS are believed to result in hypersensitivity to various genotoxic stresses. Here, DNA polymerase ζ (Pol ζ)-deficient (KO: knockout) and Pol ζ catalytically dead (CD) human cells were established and their sensitivity towards cytotoxic activities of various genotoxins was examined. The CD cells were engineered by altering the DNA sequence encoding two amino acids essential for the catalytic activity of Pol ζ, i.e., D2781 and D2783, to alanines. Both Pol ζ KO and CD cells displayed a prolonged cell cycle and higher incidence of micronuclei formation than the wild-type (WT) cells in the absence of exogenous genotoxic treatments, and the order of abnormality was CD > KO > WT cells. Both KO and CD cells exhibited higher sensitivity towards the killing effects of benzo[a]pyrene diol epoxide, mitomycin C, potassium bromate, N-methyl-N′-nitro-N-nitrosoguanidine, and ultraviolet C irradiation than WT cells, and there were no differences between the sensitivities of KO and CD cells. Interestingly, neither KO nor CD cells were sensitive to the cytotoxic effects of hydrogen peroxide. Since KO and CD cells displayed similar sensitivities to the genotoxins, we employed only KO cells to further examine their sensitivity to other genotoxic agents. KO cells were

  2. Histoautoradiographic and liquid scintillometric studies on DNA synthesis in the liver, kidneys, spleen and tongue after bilateral adrenalectomy in rats

    International Nuclear Information System (INIS)

    Schneider, A.

    1981-01-01

    Historadiographies and liquid scintillometries were carried out in 163 male Wistar rats in order to determine the effects of bilateral adrenalectomy on DNA synthesis in the liver, kidneys, spleen, and tongue. Both DNA synthesis and mitotic index are significantly increased from the 1st day p.o. onwards, with broad synthesis peaks between the 2nd and the 4th day. The intensity of DNA synthesis shows a gradual decrease with increasing duration of the experiment. In contrast to the adrenalectonized animals, the synthesis rate and mitotic index in the organs of sham-operated animals were significantly lower, although enhanced proliferation was observed after surgery. The enhanced DNA synthesis after bilateral adrenalectomy is interpreted in terms of a disinhibition; corticosteroids are assumed to play a key role. The effects of bilateral adrenalectromy on untreated organs are not organ-specific. The highest synthesis rate was observed in the tubular epithelia of the convoluted main parts, while the DNA synthesis in the tongue. The findings of autoradiography and liquid scintillometry are well correlated. (orig./MG) [de

  3. Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.

    Science.gov (United States)

    Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan

    2013-02-26

    Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology.

  4. Semi-conservative synthesis of DNA in UV-sensitive mutant cells of Chinese hamster after UV-irradiation

    International Nuclear Information System (INIS)

    Vikhanskaya, F.L.; Khrebtukova, I.A.; Manuilova, E.S.

    1985-01-01

    A study was made of the rate of semi-conservative DNA synthesis in asynchronous UV-resistant (clone V79) and UV-sensitive clones (VII and XII) of Chinese hamster cells after UV-irradiation. In all 3 clones studied, UV-irradiation (5-30 J/m 2 ) induced a decrease in the rate of DNA synthesis during the subsequent 1-2 h. In the resistant clone (V79) recovery of DNA synthesis rate started after the first 2 h post-irradiation (5 J/m 2 ) and by the 3rd hour reached its maximum value, which constituted 70% of that observed in control, non-irradiated cells. The UV-sensitive mutant clones VII and XII showed no recovery in the rate of DNA synthesis during 6-7 h post-irradiation. The results obtained show that the survival of cells is correlated with the ability of DNA synthesis to recover after UV-irradiation in 3 clones studied. The observed recovery of UV-inhibited DNA synthesis in mutant clones may be due to certain defects in DNA repair. (orig.)

  5. Increasing a Robust Antigen-Specific Cytotoxic T Lymphocyte Response by FMDV DNA Vaccination with IL-9 Expressing Construct

    Directory of Open Access Journals (Sweden)

    Qiang Zou

    2010-01-01

    Full Text Available Various chemokines and cytokines as adjuvants can be used to improve efficacy of DNA vaccination. In this study, we sought to investigate if a DNA construct expressing IL-9 (designed as proV-IL9 as a molecular adjuvant enhance antigen specific immune responses elicited by the pcD-VP1 DNA vaccination. Mice immunized with pcD-VP1 combined with proV-IL9 developed a strong humoral response. In addition, the coinoculation induced significant higher level of antigen-specific cell proliferation and cytotoxic response. This agreed well with higher expression level of IFN-γ and perforin in CD8+ T cells, but not with IL-17 in these T cells. The results indicate that IL-9 induces the development of IFN-γ-producing CD8+ T cells (Tc1, but not the IL-17-producing CD8+ T cells (Tc17. Up-regulated expressions of BCL-2 and BCL-XL were exhibited in these Tc1 cells, suggesting that IL-9 may trigger antiapoptosis mechanism in these cells. Together, these results demonstrated that IL-9 used as molecular adjuvant could enhance the immunogenicity of DNA vaccination, in augmenting humoral and cellular responses and particularly promoting Tc1 activations. Thus, the IL-9 may be utilized as a potent Tc1 adjuvant for DNA vaccines.

  6. Termination of DNA synthesis in vitro at apurinic sites but not at ethyl adducts of the template

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, M.L.; Deutsch, J.F.; Yamaura, I.; Cavalieri, L.F.; Rosenberg, B.H.

    1982-01-01

    The effects of DNA lesions produced by the carcinogenic alkylating agents ethylnitrosourea and diethylsulfate on the extent of DNA synthesis have been studied in a system utilizing circular single-stranded phi X174 DNA as template and a 392-base restriction fragment as primer with E. coli polymerase I (Klenow fragment). Apurinic sites produced by loss of unstable ethylated bases from the template terminate DNA synthesis at the first such site encountered, but ethyl adducts at most, if not all, locations permit readthrough. 22 references, 3 figures, 1 table.

  7. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    Science.gov (United States)

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Pyrimethamine-induced alterations in human lymphocytes in vitro. Mechanisms and reversal of the effect

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian

    1985-01-01

    It has previously been shown that the antiprotozoal drug pyrimethamine (PYR) in concentrations corresponding to those obtained in clinical practice temporarily suppressed the proliferation of phytohaemagglutinin (PHA-) stimulated human lymphocytes in vitro; 10-fold higher concentrations permanently...... suppressed PHA-stimulated cells, as indicated by decreased numbers of cells and DNA synthesis. In the present study, it was found that the 3H-deoxyuridine incorporation in PHA-stimulated lymphocytes was suppressed by PYR, and that PYR caused defective deoxyuridine suppression of 14C-thymidine incorporation......, reduced thymidylate synthesis cannot be the sole consequence of PYR exposure. It is suggested that an additional folate-dependent factor plays an important role in the antimitotic activity of PYR on lymphocytes....

  9. Unscheduled DNA synthesis after β-irradiation of mouse skin in situ

    International Nuclear Information System (INIS)

    Ootsuyama, Akira; Tanooka, Hiroshi

    1986-01-01

    The skin of ICR mouse was irradiated with β-rays from 90 Sr- 90 Y with surface doses up to 30 krad. Unscheduled DNA synthesis (UDS) was measured by autoradiography after labeling the skin with radioactive thymidine using the forceps-clamping method. The level of UDS in epithelial cells of the skin was detected as an increasing function of radiation dose. Fibroblastic cells, compared with epithelial cells and hair follicle cells at the same depth of the skin, showed a lower level of UDS, indicating a lower DNA repair activity in fibroblasts. Cancer risk of the skin was discussed. (Auth.)

  10. Some new methyl-8-methoxypsoralens: synthesis, photobinding to DNA, photobiological properties and molecular modelling.

    Science.gov (United States)

    Gia, O; Anselmo, A; Pozzan, A; Antonello, C; Magno, S M; Uriarte, E

    1997-01-01

    The tricyclic structure of known natural photochemotherapeutic drugs such as 8-methoxypsoralen and 5-methoxypsoralen is often taken as a model in the search of new photosensitizer agents with less phototoxic and mutagenic effects. This paper describes the synthesis, characterization, photobinding to DNA, photobiological properties and computational chemistry of some 8-methoxypsoralen derivatives bearing two or three methyl groups at the key positions of the two photoactive double bonds. Results showed that photoreactivity and photobiological behaviour depend on the pattern of methyl substitutions. Antiproliferative activity in cell lines shows good correlation with DNA interaction data.

  11. Effect of irradiation on unscheduled DNA synthesis induced by 4-nitroquinoline in tracheal epithelium of rats

    International Nuclear Information System (INIS)

    Hahn, F.F.; Kennedy, R.; Brooks, A.L.

    1986-01-01

    Unscheduled DNA synthesis (UDS) was determined in rat epithelium by autoradiographic techniques to determine the influence of prior irradiation on the ability of the cells to repair mutagenic damage induced by 4-nitroquionoline (4NQO). UDS was stimulated by in vitro exposure to 4NPO. However, prior whole-body irradiation of rats with either 50 or 300 rad did not alter the UDS induced by 4NQO. The results of this study do not support the hypothesis that irradiation can induce DNA repair enzymes in respiratory tract epithelium. 5 references, 3 figures

  12. Unscheduled DNA synthesis in spleen cells of mice exposed to low doses of total body irradiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Hruby, E.

    1983-07-01

    Unscheduled DNA synthesis was induced by UV irradiation of spleen cells obtained from C 57 Bl mice after repeated total body irradiation of 0.05 Gy 60 Co (0.00125 Gy/mice) and determined autoradiographically. An enhancement in the ability for repair of UV induced DNA lesions was observed in cells of gamma irradiated animals. While the amount of 3 H-thymidine incorporated per cell was increased, the percentage of labeled cells remained unchanged. The present results are compared with previous data on low dose radiation exposure in men. (Author) [de

  13. Synthesis, Characterization and DNA Binding Activity of a Potential DNA Intercalator

    International Nuclear Information System (INIS)

    Siti Norain Harun; Yaakob Razak; Haslina Ahmad

    2016-01-01

    A novel complex, (Ru(dppz) 2 (p-MOPIP)) 2+ (dppz = dipyrido-(3,2-a:20,30-c]phenazine, p-MOPIP = 2-(4-methoxyphenyl) imidazo(4,5-f)(1,10]phenanthroline) has been synthesized and characterized by elemental analysis, 1 H Nuclear Magnetic Resonance spectroscopy, mass spectrometry, Fourier Transform Infrared analysis, Ultra Violet visible and fluorescence spectroscopy. Herein, the complex was designed by adding p-MOPIP as an intercalating ligand and dppz as the ancillary ligand. The DNA binding properties of the complex with Calf Thymus DNA (CT-DNA) were investigated using spectroscopic methods. The UV-visible absorption band observed at 460 nm corresponded to the metal-to-ligand charge transfer (MLCT) while bands at 358 and 281 nm corresponded to intra-ligand (IL) π-π * transitions of the ligand scaffold in p-MOPIP and dppz. The intrinsic binding constant, K b for this complex was 1.67x10 6 M -1 and this suggested that this complex, (Ru(dppz) 2 (p-MOPIP)) 2+ bound to DNA via the intercalative mode. Interestingly, the interaction of this complex with CT-DNA also had a molecular light switch effect. (author)

  14. Gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in targeted and bystander human artificial skin models and peripheral blood lymphocytes

    Science.gov (United States)

    Redon, Christophe; Dickey, Jennifer; Bonner, William; Sedelnikova, Olga

    Ionizing radiation (IR) exposure is inevitable. In addition to exposure from cosmic rays, the sun and radioactive substances, modern society has created new sources of radiation exposure such as space and high altitude journeys, X-ray diagnostics, radiological treatments and the increasing threat of radiobiological terrorism. For these reasons, a reliable, reproducible and sensitive assessment of dose and time exposure to IR is essential. We developed a minimally invasive diagnostic test for IR exposure based on detection of a phosphorylated variant of histone H2AX (gamma-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The phosphorylation of thousands of H2AX molecules forms a gamma-H2AX focus in the chromatin flanking the DSB site that can be detected in situ. We analyzed gamma- H2AX focus formation in both directly irradiated cells as well as in un-irradiated "bystanders" in close contact with irradiated cells. In order to insure minimal invasiveness, we examined commercially available artificial skin models as a surrogate for human skin biopsies as well as peripheral blood lymphocytes. In human skin models, cells in a thin plane were microbeamirradiated and gamma-H2AX formation was measured both in irradiated and in distal bystander cells over time. In irradiated cells DSB formation reached a maximum at 15-30 minutes post- IR and then declined within several hours; all cells were affected. In marked contrast, the incidence of DSBs in bystander cells reached a maximum by 12-48 hours post-irradiation, gradually decreasing over the 7 day time course. At the maxima, 40-60% of bystander cells were affected. Similarly, we analyzed blood samples exposed to IR ex vivo at doses ranging from 0.02 to 3 Gy. The amount of DNA damage was linear in respect to radiation dose and independent of the age or sex of the blood donor. The method is highly reproducible and highly sensitive. In directly irradiated cells, the number of gamma-H2AX foci peaked

  15. The principal phenolic and alcoholic components of wine protect human lymphocytes against hydrogen peroxide- and ionising radiation-induced DNA damage in vitro

    International Nuclear Information System (INIS)

    Fenech, M.; Greenrod, W.

    2003-01-01

    We have tested the hypothesis that the alcoholic and phenolic components of wine are protective against the DNA damaging and cytotoxic effects of hydrogen peroxide and gamma radiation in vitro. The components of wine tested were ethanol, glycerol, a mixture of the phenolic compounds catechin and caffeic acid, and tartaric acid, all at concentrations that were 2.5% or 10.0% of the concentration in a typical Australian white wine Riesling. These components were tested individually or combined as a mixture and compared to a white wine stripped of polyphenols as well as a Hanks balanced salt solution control which was the diluent for the wine components. The effect of the components was tested in lymphocytes, using the cytokinesis-block micronucleus assay, after 30 minutes incubation in plasma or whole blood for the hydrogen peroxide or gamma-radiation challenge respectively. The results obtained showed that ethanol, glycerol, the catechin-caffeic acid mixture, the mixture of all components, and the stripped white wine significantly reduced the DNA damaging effects of hydrogen peroxide and gamma radiation (ANOVA P = 0.043 - 0.001). The strongest protective effect against DNA damage by gamma irradiation was observed for the catechin-caffeic acid mixture and mixture of all components (30% and 32% reduction respectively). These two treatments as well as ethanol produced the strongest protective effects against DNA damage by hydrogen peroxide (24%, 25% and 18% respectively) . The protection provided by the mixture did not account for the expected additive protective effects of the individual components suggesting that the components may be exerting their effects through similar mechanisms which are saturated at the concentrations tested. Ethanol was the only component that significantly increased base-line DNA damage rate, however, this effect was negated in the mixture. In conclusion our results suggest that the main phenolic and alcoholic components of wine can reduce

  16. Influence of thymogene on the repair of lymphocyte DNA in the spleen of minks under the influence of chronic irradiation.; Vpliv timogehu na reparatsyiyu DNK lyimfotsityiv selezyinki norok za umov khronyichnogo opromyinennya.

    Energy Technology Data Exchange (ETDEWEB)

    Tkhorzhevs` kij, B M; Demidov, S V; Ryasenko, V Yi; Khrapunov, S M [Kievskij Gosudarstvennyj Univ., Kiev (Ukraine); [Nauchno-Proizvodstvennoe Ob` ` edinenie Pripyat` , Chernobyl (Ukraine)

    1994-12-31

    Results of own investigations of the authors as to the thymogene influence on correction of the repair system under the effect of chronic irradiation are discussed in the article. The influence of thymogene on the repair of DNA in lymphocytes of the spleen of minks has been investigated. Changes in the correlation between single- and double stranded DNA forms in a cell were determinated. It has been found that the quantity of DNA with single stranded breaks has considerably increased in animals under conditions of chronic irradiation. The use of thymogene promotes activation of repair processes in a cell.

  17. DNA synthesis and cell division in the adult primate brain

    International Nuclear Information System (INIS)

    Rakic, P.

    1985-01-01

    It is generally accepted that the adult human brain is incapable of producing new neuron. Even cursory examination of neurologic, neuropathologic, or neurobiological textbooks published during the past 50 years will testify that this belief is deeply entrenched. In his classification of cell populations on the basis of their proliferative behavior, Leblond regarded neurons of the central nervous system as belonging to a category of static, nonrenewing epithelial tissue incapable of expanding or replenishing itself. This belief, however needs to re reexamined for two major reasons: First, as reviewed below, a number of reports have provided evidence of neurogenesis in adult brain of several vertebrate species. Second, the capacity for neurogenesis in the adult primate central nervous system has never been examined by modern methods. In this article the author described recent results from an extensive autoradiographic analysis performed on twelve rhesus monkeys injected with the specific DNA precursor [ 3 H] thymidine at ages ranging from 6 postnatal months to 17 years

  18. Analysis of DNA Double-Strand Breaks and Cytotoxicity after 7 Tesla Magnetic Resonance Imaging of Isolated Human Lymphocytes

    Science.gov (United States)

    Guttek, Karina; Hartig, Roland; Godenschweger, Frank; Roggenbuck, Dirk; Ricke, Jens; Reinhold, Dirk; Speck, Oliver

    2015-01-01

    The global use of magnetic resonance imaging (MRI) is constantly growing and the field strengths increasing. Yet, only little data about harmful biological effects caused by MRI exposure are available and published research analyzing the impact of MRI on DNA integrity reported controversial results. This in vitro study aimed to investigate the genotoxic and cytotoxic potential of 7 T ultra-high-field MRI on isolated human peripheral blood mononuclear cells. Hence, unstimulated mononuclear blood cells were exposed to 7 T static magnetic field alone or in combination with maximum permissible imaging gradients and radiofrequency pulses as well as to ionizing radiation during computed tomography and γ-ray exposure. DNA double-strand breaks were quantified by flow cytometry and automated microscopy analysis of immunofluorescence stained γH2AX. Cytotoxicity was studied by CellTiter-Blue viability assay and [3H]-thymidine proliferation assay. Exposure of unstimulated mononuclear blood cells to 7 T static magnetic field alone or combined with varying gradient magnetic fields and pulsed radiofrequency fields did not induce DNA double-strand breaks, whereas irradiation with X- and γ-rays led to a dose-dependent induction of γH2AX foci. The viability assay revealed a time- and dose-dependent decrease in metabolic activity only among samples exposed to γ-radiation. Further, there was no evidence for altered proliferation response after cells were exposed to 7 T MRI or low doses of ionizing radiation (≤ 0.2 Gy). These findings confirm the acceptance of MRI as a safe non-invasive diagnostic imaging tool, but whether MRI can induce other types of DNA lesions or DNA double-strand breaks during altered conditions still needs to be investigated. PMID:26176601

  19. Inhibition of hydrogenase synthesis by DNA gyrase inhibitors in Bradyrhizobium japonicum

    International Nuclear Information System (INIS)

    Novak, P.D.; Maier, R.J.

    1987-01-01

    Derepression of an uptake hydrogenase in Bradyrhizobium japonicum is dependent on a microaerophilic environment. Addition of DNA gyrase inhibitors during derepression of hydrogenase specifically prevented expression of the hydrogenase enzyme. Antibodies to individual hydrogenase subunits failed to detect the protein after derepression in the presence of inhibitors, although there was no general inhibition of protein synthesis. The general pattern of proteins synthesized from 14 C-labeled amino acids during derepression was no significantly different whether proteins were labeled in the presence or in the absence of gyrase inhibitors. In contrast, if transcription or translation was inhibited by addition of inhibitors of those functions, virtually no proteins were labeled during derepression. This indicated that most of the 14 C-labeled proteins were synthesized de novo during derepression, synthesis of most proteins was unaffected by gyrase inhibitors, and the dependence of hydrogenase synthesis on gyrase activity was a specific one

  20. Mechanisms by which herpes simplex virus DNA polymerase limits translesion synthesis through abasic sites.

    Science.gov (United States)

    Zhu, Yali; Song, Liping; Stroud, Jason; Parris, Deborah S

    2008-01-01

    Results suggest a high probability that abasic (AP) sites occur at least once per herpes simplex virus type 1 (HSV-1) genome. The parameters that control the ability of HSV-1 DNA polymerase (pol) to engage in AP translesion synthesis (TLS) were examined because AP lesions could influence the completion and fidelity of viral DNA synthesis. Pre-steady-state kinetic experiments demonstrated that wildtype (WT) and exonuclease-deficient (exo-) pol could incorporate opposite an AP lesion, but full TLS required absence of exo function. Virtually all of the WT pol was bound at the exo site to AP-containing primer-templates (P/Ts) at equilibrium, and the pre-steady-state rate of excision by WT pol was higher on AP-containing than on matched DNA. However, several factors influencing polymerization work synergistically with exo activity to prevent HSV-1 pol from engaging in TLS. Although the pre-steady-state catalytic rate constant for insertion of dATP opposite a T or AP site was similar, ground-state-binding affinity of dATP for insertion opposite an AP site was reduced 3-9-fold. Single-turnover running-start experiments demonstrated a reduced proportion of P/Ts extended to the AP site compared to the preceding site during processive synthesis by WT or exo- pol. Only the exo- pol engaged in TLS, though inefficiently and without burst kinetics, suggesting a much slower rate-limiting step for extension beyond the AP site.

  1. Novel pattern of post-γ ray de novo DNA synthesis in a radioresistant human strain

    International Nuclear Information System (INIS)

    Mirzayans, R.; Gentner, N.E.; Paterson, M.C.

    1985-01-01

    Enhanced resistance to radiation cytotoxicity in a fibroblast strain from an afflicted member of a Li-Fraumeni syndrome family may be largely ascribable to a change in the pattern of DNA replicative synthesis following γ ray exposure. That is, the extent of the initial radiogenic inhibition of replicative synthesis and the time interval before its subsequent recovery were both found to be greater in radioresistant (RR) compared to normal cells. In addition, the post-recovery replication rates in the RR cells were both higher and longer lasting than those in the control cells. A similar differential pattern was also seen following treatment with 4NQO, another DNA-damaging agent to which this RR strain displays enhanced resistance. Moreover, several conventional DNA repair assays indicated that the RR cells repair radiogenic damage at normal rates. The authors therefore suggest that the increased inhibition and prolonged lag in resumption of replicative synthesis seen in the RR strain upon exposure to certain genotoxic agents may enhance cellular recovery by ''buying additional time'' for processing of potentially lethal lesions

  2. Inhibition of DNA synthesis and radiosensitization effects of thalidomide on esophageal carcinoma TE1 cells

    International Nuclear Information System (INIS)

    Yu Jingping; Sun Suping; Sun Zhiqiang; Sun Meiling; Liu Fenju

    2010-01-01

    Objective: To explore the radiosensitization effect of thalidomide combined with X-ray on esophageal carcinoma TE1 cells. Methods: Cell scratch assay was used to detect the inhibition ability of different concentration of Thalidomide on cell invasion and metastasis. H 3 -TdR incorporation assay was used to investigate the inhibition of DNA synthesis in TE1 cells by treated with Thalidomide singly or combination with X-rays. The colony formation assay was used to analyze the radiosensitization of Thalidomide effect on TE1 cells. Results: Thalidomide had obvious inhibition effect on TE1 cell metastasis, DNA synthesis and colony formation, which were correlated with drug concentration. The values D 0 , D q and SF 2 in TE1 cells were gradually decreased with thalidomide concentration increased. When the concentration of thalidomide was 100μg/ml, the SER D 0 and SER D 0 and SER D q were (1.4±0.2) and (1.5±0.1), respectively, While the concentration of thalidomide was 150 μg/ml, the SER D 0 and SER D q were (1.5±0.2) and (1.8±0.2), respectively. Conclusions: Thalidomide could inhibit TE1 cell invasion, metastasis, DNA synthesis, and significantly enhance the radiosensitizing effect on esophageal carcinoma TE1 cells. (authors)

  3. Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis

    International Nuclear Information System (INIS)

    Burkovics, Peter; Sebesta, Marek; Kolesar, Peter; Sisakova, Alexandra; Marini, Victoria; Plault, Nicolas; Szukacsov, Valeria; Pinter, Lajos; Haracska, Lajos; Robert, Thomas; Kolesar, Peter; Gangloff, Serge; Krejci, Lumir

    2013-01-01

    Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. (authors)

  4. Decreased UV-induced DNA repair synthesis in peripheral leukocytes from patients with the nevoid basal cell carcinoma syndrome

    International Nuclear Information System (INIS)

    Ringborg, U.; Lambert, B.; Landergen, J.; Lewensohn, R.

    1981-01-01

    The uv-induced DNA repair synthesis in peripheral leukocytes from 7 patients with the nevoid basal cell carcinoma syndrome was compared to that in peripheral leukocytes from 5 patients with basal cell carcinomas and 39 healthy subjects. A dose response curve was established for each individual, and maximum DNA repair synthesis was used as a measure of the capacity for DNA repair. The patients with the nevoid basal cell carcinoma syndrome had about 25% lower level of maximum DNA repair synthesis as compared to the patients with basal cell carcinomas and control individuals. The possibility that DNA repair mechanisms may be involved in the etiology to the nevoid basal cell carcinoma syndrome is discussed

  5. Lethality and the depression on DNA synthesis in UV-irradiated normal human and xeroderma pigmentosum cells

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K. (Kobe Univ. (Japan). School of Medicine)

    1983-12-01

    Ultraviolet radiation suppresses the semiconservative DNA replication in mammalian cells. The rate of DNA synthesis is initially depressed and later recovers after low doses of UV radiation in human cells. Such a response is more sensitive to UV radiation in cells derived from patients with xeroderma pigmentosum (XP) than that in normal human cells. The relative rate of DNA synthesis is not always correlated with cell survival because, unlike cell survival, the dose-response curve of the relative rate of DNA synthesis shows the biphasic nature of the sensitivity. In the experiments reported herein, the total amount (not the rate) of DNA synthesized during a long interval of incubation which covers the period of inhibition and recovery (but not longer than one generation time) after irradiation with various doses of UV radiation was examined in normal human and XP cells, and was found to be well correlated with cell survival in all the cells tested.

  6. The rate of DNA synthesis in normal human and ataxia telangiectasia cells after exposure to X-irradiation

    International Nuclear Information System (INIS)

    Wit, J. de; Bootsma, D.; Jaspers, N.G.J.; Rijksverdedigingsorganisatie TNO, Rijswijk

    1981-01-01

    The rate of DNA synthesis was studied in normal cell strains and in strains from patients suffering from the inherited disorder ataxia telangiectasia (AT). After exposure to relatively low doses of oxic X-rays (0- 4 krad) DNA synthesis was depressed in AT cell strains to a significantly lesser extent than in normal cells. This response was observed in both an excision-deficient and an excision-proficient strain. In contrast, there was no difference in DNA-synthesis inhibition between AT and normal cells after UV exposure. After X-irradiation of cells from patients with xeroderma pigmentosum, both complementation group A and XP variants, the observed rate of DNA synthesis was equal to that in normal cells. An exception was the strain XP3BR which has been shown to be X-ray-sensitive. This strain exhibited diminished DNA synthesis inhibition after X-ray doses below 1 krad. These data suggest a relationship between hypersensitivity to X-rays and diminished depression of DNA synthesis. (orig.)

  7. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Yawei; Spitz, Margaret R.; Guo Zhaozheng; Hadeyati, Mohammad; Grossman, Lawrence; Kraemer, Kenneth H.; Wei Qingyi

    2002-11-30

    As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.

  8. Effect of radiation therapy on the mitogenic response of in vitro irradiated human lymphocytes to phytohaemagglutinin

    International Nuclear Information System (INIS)

    Baral, E.; Blomgren, H.; Einhorn, N.; Lax, I.; Juhlin, I.

    1977-01-01

    Irradiation of human peripheral lymphocytes in vitro reduces their capacity to be triggered to DNA-synthesis by PHA in a two-dose shaped fashion suggesting the presence of one relatively radiationsensitive and one relatively resistant cell population. Intracavitary and external radiation therapy for carcinoma of the uterus and vagina, which reduced the lymphocyte counts by approximately 66 per cent, did not significantly change the ratio of these subpopulations, indicating that PHA-reactive cells cannot be grouped into radiation sensitive and resistant subpopulations

  9. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents.

    Science.gov (United States)

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-07-09

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.

  10. Inhibitor of DNA synthesis is present in normal chicken serum

    International Nuclear Information System (INIS)

    Franklin, R.A.; Davila, D.R.; Westly, H.J.; Kelley, K.W.

    1986-01-01

    The authors have found that heat-inactivated serum (57 0 C for 1 hour) from normal chickens reduces the proliferation of mitogen-stimulated chicken and murine splenocytes as well as some transformed mammalian lymphoblastoid cell lines. Greater than a 50% reduction in 3 H-thymidine incorporation was observed when concanavalin A (Con A)-activated chicken splenocytes that were cultured in the presence of 10% autologous or heterologous serum were compared to mitogen-stimulated cells cultured in the absence of serum. Normal chicken serum (10%) also caused greater than 95% suppression of 3 H-thymidine incorporation by bovine (EBL-1 and BL-3) and gibbon ape (MLA 144) transformed lymphoblastoid cell lines. The only cell line tested that was not inhibited by chicken serum was an IL-2-dependent, murine cell line. Chicken serum also inhibited both 3 H-thymidine incorporation and IL-2 synthesis by Con A-activated murine splenocytes. Suppression was caused by actions other than cytotoxicity because viability of chicken splenocytes was unaffected by increasing levels of chicken serum. Furthermore, dialyzed serum retained its activity, which suggested that thymidine in the serum was not inhibiting uptake of radiolabeled thymidine. Suppressive activity was not due to adrenal glucocorticoids circulating in plasma because neither physiologic nor pharmacologic doses of corticosterone had inhibitory effects on mitogen-stimulated chicken splenocytes. These data demonstrate that an endogenous factor that is found in normal chicken serum inhibits proliferation of T-cells from chickens and mice as well as some transformed mammalian lymphoblastoid cell lines

  11. Design, Synthesis, and Evaluation of Novel Tyrosine-Based DNA Gyrase B Inhibitors.

    Science.gov (United States)

    Cotman, Andrej E; Trampuž, Marko; Brvar, Matjaž; Kikelj, Danijel; Ilaš, Janez; Peterlin-Mašič, Lucija; Montalvão, Sofia; Tammela, Päivi; Frlan, Rok

    2017-08-01

    The discovery and synthesis of new tyrosine-based inhibitors of DNA gyrase B (GyrB), which target its ATPase subunit, is reported. Twenty-four compounds were synthesized and evaluated for activity against DNA gyrase and DNA topoisomerase IV. The antibacterial properties of selected GyrB inhibitors were demonstrated by their activity against Staphylococcus aureus and Enterococcus faecalis in the low micromolar range. The most promising compounds, 8a and 13e, inhibited Escherichia coli and S. aureus GyrB with IC 50 values of 40 and 30 µM. The same compound also inhibited the growth of S. aureus and E. faecalis with minimal inhibitory concentrations (MIC 90 ) of 14 and 28 µg/mL, respectively. © 2017 Deutsche Pharmazeutische Gesellschaft.

  12. Induction and repair of DNA double-strand breaks in blood lymphocytes of patients undergoing {sup 18}F-FDG PET/CT examinations

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S. [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Brand, Michael; Wuest, Wolfgang; Anders, Katharina; Uder, Michael; Kuefner, Michael A. [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Kuwert, Torsten; Prante, Olaf; Schmidt, Daniela; Maschauer, Simone [University Hospital Erlangen, Department of Nuclear Medicine, Erlangen (Germany); Semelka, Richard C. [University of North Carolina, Department of Radiology, Chapel Hill, NC (United States)

    2012-11-15

    The purpose of this study was to evaluate DNA double-strand breaks (DSBs) in blood lymphocytes of patients undergoing positron emission tomography (PET)/CT using {gamma}-H2AX immunofluorescence microscopy and to differentiate between {sup 18}F-fluorodeoxyglucose (FDG) and CT-induced DNA lesions. This study was approved by the local Ethics Committee and complies with Health Insurance Portability and Accountability Act (HIPAA) requirements. After written informed consent was obtained, 33 patients underwent whole-body {sup 18}F-FDG PET/CT (3 MBq/kg body weight, 170/100 reference mAs at 120 kV). The FDG PET and CT portions were performed as an initial CT immediately followed by the PET. Blood samples were obtained before, at various time points following {sup 18}F-FDG application and up to 24 h after the CT scan. Distinct foci representing DSBs were quantified in isolated lymphocytes using fluorescence microscopy after staining against the phosphorylated histone variant {gamma}-H2AX. The DSB values at the various time points were significantly different (p < 0.001). The median baseline level was 0.08/cell (range 0.06-0.12/cell). Peaks of radiation-induced DSBs were found 30 min after {sup 18}F-FDG administration (median excess foci 0.11/cell, range 0.06-0.27/cell) and 5 min after CT (median excess foci 0.17/cell, range 0.05-0.54/cell). A significant correlation between CT-induced DSBs and dose length product was obtained ({rho} = 0.898, p < 0.001). After 24 h DSB values were still slightly but significantly elevated (median foci 0.11/cell, range 0.10-0.14/cell, p = 0.003) compared to pre-exposure levels. PET/CT-induced DSBs can be monitored using {gamma}-H2AX immunofluorescence microscopy. Peak values may be obtained 30 min after {sup 18}F-FDG injection and 5 min after CT. The radionuclide contributes considerably to the total DSB induction in this setting. (orig.)

  13. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.

    Science.gov (United States)

    O'Reilly, Rachel K; Turberfield, Andrew J; Wilks, Thomas R

    2017-10-17

    Precise control over reactivity and molecular structure is a fundamental goal of the chemical sciences. Billions of years of evolution by natural selection have resulted in chemical systems capable of information storage, self-replication, catalysis, capture and production of light, and even cognition. In all these cases, control over molecular structure is required to achieve a particular function: without structural control, function may be impaired, unpredictable, or impossible. The search for molecules with a desired function is often achieved by synthesizing a combinatorial library, which contains many or all possible combinations of a set of chemical building blocks (BBs), and then screening this library to identify "successful" structures. The largest libraries made by conventional synthesis are currently of the order of 10 8 distinct molecules. To put this in context, there are 10 13 ways of arranging the 21 proteinogenic amino acids in chains up to 10 units long. Given that we know that a number of these compounds have potent biological activity, it would be highly desirable to be able to search them all to identify leads for new drug molecules. Large libraries of oligonucleotides can be synthesized combinatorially and translated into peptides using systems based on biological replication such as mRNA display, with selected molecules identified by DNA sequencing; but these methods are limited to BBs that are compatible with cellular machinery. In order to search the vast tracts of chemical space beyond nucleic acids and natural peptides, an alternative approach is required. DNA-templated synthesis (DTS) could enable us to meet this challenge. DTS controls chemical product formation by using the specificity of DNA hybridization to bring selected reactants into close proximity, and is capable of the programmed synthesis of many distinct products in the same reaction vessel. By making use of dynamic, programmable DNA processes, it is possible to engineer a

  14. Yield of DNA strand breaks and their relationship to DNA polymerase I-dependent repair synthesis and ligation following x-ray exposure of toluene-treated Escherichia coli

    International Nuclear Information System (INIS)

    Billen, D.

    1981-01-01

    In Escherichia coli made permeable to nucleotides by toluene treatment, a DNA polymerase I-directed repair synthesis is observed. This is an exaggerated repair synthesis which can be abruptly terminated by the addition of the DNA ligase cofactor, nicotinamide adenine dinucleotide. This communication describes experiments which bear on the relationship between measurable strand breaks, DNA polymerase I-directed, exaggerated repair synthesis, and strand-break repair

  15. In vitro X-ray irradiation of human peripheral blood T lymphocytes enhances suppressor function

    International Nuclear Information System (INIS)

    Ogawa, H.; Tsunematsu, T.

    1983-01-01

    The effect of in vitro X-ray irradiation on human peripheral blood T lymphocytes was studied with regard to their suppressor activity related to the concanavalin A (Con A)-induced suppressor system. To generate suppressor T lymphocytes, purified human T lymphocytes were incubated for 3 days in the first culture, with or without Con A. These lymphocytes were irradiated with various doses of X-ray before, mid or after the culture. After doing a second culture for 6 days, the suppressive influence of these cells on T lymphocyte proliferation rates stimulated with allogeneic mononuclear cells, and B lymphocyte proliferation rates stimulated with pokeweed mitogen was measured. Irradiation of cultures to which Con A had not been added induced much the same level of suppressor activity as seen in the cultures with Con A. The suppressor activity gradually increased with time from the irradiation to the suppressor cell assay. Suppressor T lymphocytes were resistant to X-ray irradiation and independent of DNA synthesis. However, irradiation-induced enhancement was minimal in cultures incubated with con A, regardless of the irradiation time. (author)

  16. Iron may induce both DNA synthesis and repair in rat hepatocytes stimulated by EGF/pyruvate

    Energy Technology Data Exchange (ETDEWEB)

    Chenoufi, N.; Loreal, O.; Cariou, S.; Hubert, N.; Lescoat, G. [Univ. Hospital Pontchaillou, Unite de Recherches Hepatologiques, INSERM U 49, Rennes (France); Drenou, B. [Univ. Hospital Pontchaillou, Lab. d`Hematologie et d`Immunologie, Rennes (France); Leroyer, P.; Brissot, P. [Univ. Hospital Pontchaillou, Clinique des Maladies du Foie, Rennes (France)

    1997-03-01

    Background/Aims: Hepatocellular carcinoma develops frequently in the course of genetic hemochromatosis, and a role of iron overload in hepatic carcinogenesis is strongly suggested. Methods: The aim of our study was to investigate the effect of iron exposure on DNA synthesis of adult rat hepatocytes maintained in primary culture stimulated or not by EGF/pyruvate and exposed to iron-citrate complex. Results: In EGF/pyruvate-stimulated cultures, the level of [{sup 3}H] methyl thymidine incorporation was strongly increased as compared to unstimulated cultures. The addition of iron to stimulated cultures increased [{sup 3}H] methyl thymidine incorporation. The mitotic index was also significantly higher at 72 h. However,the number of cells found in the cell layer was not significantly different from iron-citrate free culture. By flow cytometry, no difference in cell ploidy was found between iron-treated and untreated EGF/pyruvate-stimulated cultures. A significant increase in LDH leakage reflecting a toxic effect of iron was found in the cell medium 48 h after cell seeding. In addition, [{sup 3}H] methyl thymidine incorporation in the presence of hydroxyurea was increased in iron-treated compared to untreated cultures. Conclusions: Our results show that DNA synthesis is increased in the presence of iron in rat hepatocyte cultures stimulated by EGF/pyruvate, and they suggest that DNA synthesis is likely to be related both to cell proliferation and to DNA repair. These observations may allow better understanding of the role of iron overload in the development of hepatocellular carcinoma. (au) 61 refs.

  17. Age-dependent decline in rejoining of X-ray-induced DNA double-strand breaks in normal human lymphocytes

    International Nuclear Information System (INIS)

    Mayer, P.J.; Lange, C.S.; Bradley, M.O.; Nichols, W.W.

    1989-01-01

    Unstimulated human peripheral bloodlymphocytes (HPBL), separated by density centrifugation from anticoagulated whole blood, were X-irradiated on ice and incubated in medium at 37 0 C for repair times of 15, 30 and 120 min. Blood donors were 18 normotensive, non-smoking Caucasians aged 23-78, free from overt pathology and not taking any medications. Neutral filter elution was used to assay DNA double-strand break (DSB) induction and completeness of DSB rejoining. After 30 or 120 min repair incubation, the percentage of DSBs rejoined by cells from oder donors was less than half the percentage of DSBs rejoined by cells from younger donors. When data from the 3 age groups were pooled, the age-related decline in percent DSBs rejoined was significant for repair times 30 min and 120 min but not for 15 min. These age-related declines were observed even though DNA from older donors sustained fewer strand breaks as demonstrated by the negative correlation between donor age and DSB induction. These results suggest that the efficacy of X-ray-induced DSB repair diminishes with in vivo age in unstimulated HPBL. (author). 38 refs.; 2 figs.; 1 tab

  18. Effect of Vaccinia virus infection on poly(ADP-ribose)synthesis and DNA metabolism in different cells

    Energy Technology Data Exchange (ETDEWEB)

    Topaloglou, A.; Ott, E.; Altmann, H. (Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie); Zashukhina, G.D.; Sinelschikova, T.A. (AN SSSR, Moscow. Inst. Obshchej Genetiki)

    1983-07-14

    In Chang liver cells and rat spleen cells infected with Vaccinia virus, DNA synthesis, repair replication after UV irradiation and poly(ADP-ribose)(PAR) synthesis were determined. In the time post infection semiconservative DNA synthesis showed only a slight reduction. DNA repair replication was not very different from controls 4 hours p.i. but was enhanced 24 hours after infection compared to noninfected cells. PAR synthesis was also not changed very much 4 hours p.i. but was decreased significantly after 24 hours. The determination of radioactivity resulting from /sup 3/H-NAD, showed a marked reduction of PAR in the spacer region of chromatin 24 hours p.i., but in addition, PAR located in the core region, was reduced, too.

  19. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin

    Science.gov (United States)

    Redon, Christophe E.; Dickey, Jennifer S.; Bonner, William M.; Sedelnikova, Olga A.

    2009-04-01

    Ionizing radiation (IR) exposure is inevitable in our modern society and can lead to a variety of deleterious effects including cancer and birth defects. A reliable, reproducible and sensitive assessment of exposure to IR and the individual response to that exposure would provide much needed information for the optimal treatment of each donor examined. We have developed a diagnostic test for IR exposure based on detection of the phosphorylated form of variant histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The cell responds to a nascent DSB through the phosphorylation of thousands of H2AX molecules flanking the damaged site. This highly amplified response can be visualized as a γ-H2AX focus in the chromatin that can be detected in situ with the appropriate antibody. Here we assess the usability of γ-H2AX focus formation as a possible biodosimeter for human exposure to IR using peripheral blood lymphocytes irradiated ex vivo and three-dimensional artificial models of human skin biopsies. In both systems, the tissues were exposed to 0.2-5 Gy, doses of IR that might be realistically encountered in various scenarios such as cancer radiotherapies or accidental exposure to radiation. Since the γ-H2AX response is maximal 30 min after exposure and declines over a period of hours as the cells repair the damage, we examined the time limitations of the useful detectability of γ-H2AX foci. We report that a linear response proportional to the initial radiation dose was obtained 48 and 24 h after exposure in blood samples and skin cells respectively. Thus, detection of γ-H2AX formation to monitor DNA damage in minimally invasive blood and skin tests could be useful tools to determine radiation dose exposure and analyze its effects on humans.

  20. Does the recommended lymphocyte cytokinesis-block micronucleus assay for human biomonitoring actually detect DNA damage induced by occupational and environmental exposure to genotoxic chemicals?

    Science.gov (United States)

    Speit, Günter

    2013-07-01

    This commentary challenges the paradigm that the cytokinesis-block micronucleus assay (CBMN assay) with cultured human lymphocytes, as it is performed currently, is a sensitive and useful tool for detecting genotoxic effects in populations exposed occupationally or environmentally to genotoxic chemicals. Based on the principle of the assay and the available data, increased micronucleus (MN) frequencies in binucleated cells (BNC) are mainly due to MN produced in vitro during the cultivation period (i.e. MN produced in vivo do not substantially contribute to the MN frequency measured in BNC). The sensitivity of the assay for the detection of induced MN in BNC after an in vivo exposure to a genotoxic chemical is limited because cytochalasin B (Cyt-B) is added relatively late during the culture period and, therefore, the BNC that are scored do not always represent cells that have completed one cell cycle only. Furthermore, this delay means that damaged cells can be eliminated by apoptosis and/or that DNA damage induced in vivo can be repaired prior to the production of a MN in the presence of Cyt-B. A comparison with the in vitro CBMN assay used for genotoxicity testing leads to the conclusion that it is highly unlikely that DNA damage induced in vivo is the cause for increased MN frequencies in BNC after occupational or environmental exposure to genotoxic chemicals. This commentary casts doubt on the usefulness of the CBMN assay as an indicator of genotoxicity in human biomonitoring and questions the relevance of many published data for hazard identification and risk assessment. Thus, it seems worthwhile to reconsider the use of the CBMN assay as presently conducted for the detection of genotoxic exposure in human biomonitoring.

  1. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia.

    Science.gov (United States)

    Trbusek, Martin; Smardova, Jana; Malcikova, Jitka; Sebejova, Ludmila; Dobes, Petr; Svitakova, Miluse; Vranova, Vladimira; Mraz, Marek; Francova, Hana Skuhrova; Doubek, Michael; Brychtova, Yvona; Kuglik, Petr; Pospisilova, Sarka; Mayer, Jiri

    2011-07-01

    There is a distinct connection between TP53 defects and poor prognosis in chronic lymphocytic leukemia (CLL). It remains unclear whether patients harboring TP53 mutations represent a homogenous prognostic group. We evaluated the survival of patients with CLL and p53 defects identified at our institution by p53 yeast functional assay and complementary interphase fluorescence in situ hybridization analysis detecting del(17p) from 2003 to 2010. A defect of the TP53 gene was identified in 100 of 550 patients. p53 mutations were strongly associated with the deletion of 17p and the unmutated IgVH locus (both P DBMs), structurally well-defined parts of the DNA-binding domain, manifested a clearly shorter median survival (12 months) compared with patients having missense mutations outside DBMs (41 months; P = .002) or nonmissense alterations (36 months; P = .005). The difference in survival was similar in the analysis limited to patients harboring mutation accompanied by del(17p) and was also confirmed in a subgroup harboring TP53 defect at diagnosis. The patients with p53 DBMs mutation (at diagnosis) also manifested a short median time to first therapy (TTFT; 1 month). The substantially worse survival and the short TTFT suggest a strong mutated p53 gain-of-function phenotype in patients with CLL with DBMs mutations. The impact of p53 DBMs mutations on prognosis and response to therapy should be analyzed in investigative clinical trials.

  2. Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations.

    Science.gov (United States)

    Zothansiama; Zosangzuali, Mary; Lalramdinpuii, Miriam; Jagetia, Ganesh Chandra

    2017-01-01

    Radiofrequency radiations (RFRs) emitted by mobile phone base stations have raised concerns on its adverse impact on humans residing in the vicinity of mobile phone base stations. Therefore, the present study was envisaged to evaluate the effect of RFR on the DNA damage and antioxidant status in cultured human peripheral blood lymphocytes (HPBLs) of individuals residing in the vicinity of mobile phone base stations and comparing it with healthy controls. The study groups matched for various demographic data including age, gender, dietary pattern, smoking habit, alcohol consumption, duration of mobile phone use and average daily mobile phone use. The RF power density of the exposed individuals was significantly higher (p base stations, showed significantly (p base station/s. The analysis of various antioxidants in the plasma of exposed individuals revealed a significant attrition in glutathione (GSH) concentration (p < 0.01), activities of catalase (CAT) (p < 0.001) and superoxide dismutase (SOD) (p < 0.001) and rise in lipid peroxidation (LOO) when compared to controls. Multiple linear regression analyses revealed a significant association among reduced GSH concentration (p < 0.05), CAT (p < 0.001) and SOD (p < 0.001) activities and elevated MN frequency (p < 0.001) and LOO (p < 0.001) with increasing RF power density.

  3. Correlation between survival, ability to rejoin DNA and stability of DNA after preirradiation inhibition of protein synthesis in a rec- mutant of Escherichia coli K12

    International Nuclear Information System (INIS)

    Pirsel, M.; Slezarikova, V.

    1977-01-01

    A 90 min inhibition of protein synthesis induced by starvation for amino acids (AA - ) or by chloramphenicol (CAP) treatment prior to UV irradiation (2.5 J m -2 ) increased more than tenfold the resistance of the strain Escherichia coli K12 SR19 to UV radiation. Under these conditions, cultures in which protein synthesis was inhibited before the UV irradiation rejoin short regions of DNA synthesized after the irradiation to a normal-size molecule, whereas an exponentially growing culture does not rejoin DNA synthesized after UV irradiation to a molecule of a normal size. In the exponentially growing culture both the parental and the newly synthesized DNA are unstable after the irradiation. In cultures with inhibited protein synthesis only the parental DNA is somewhat unstable. In Escherichia coli K12 SR19 where protein synthesis was inhibited before the irradiation, a correlation between the survival of cells, the ability to rejoin short regions of DNA synthesized after UV irradiation, and a higher stability of both parental and newly synthesized DNAs could be demonstrated. (author)

  4. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein

    International Nuclear Information System (INIS)

    Carty, M.P.; Zernik-Kobak, M.; McGrath, S.; Dixon, K.

    1994-01-01

    We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus. (Author)

  5. Recovery of DNA synthesis from inhibition by ultraviolet light in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, A M; Ortega, J M; Schumacher, R I; Meneghini, R

    1987-01-01

    In general mammalian cells recover from DNA synthesis inhibition by ultraviolet light (u.v.) before most of the pyrimidine dimers have been removed from the genome. Using metabolic inhibitors, it has been shown that (1) even the low repair rate exhibited by V79 cells is important for recovery; although most of the dimers remain in the V79 genome after recovery of DNA synthesis, either the removal of lesions from some important region of chromatin or the activity of the repair process itself is important for the recovery; (2) the recovery mechanism is induced and depends on RNA synthesis and the production of specific factors. Finally, we have observed that cells previously treated with fluorodeoxyuridine become more resistant to inhibition by u.v. Since it has been shown that this drug activates unused origins of replication in Chinese hamster cells, reducing the average replicon size, we assume that the acquired resistance has to do with the operation of a larger number of small replicons.

  6. Increased levels of unscheduled DNA synthesis in UV-irradiated human fibroblasts pretreated with sodium butyrate

    International Nuclear Information System (INIS)

    Williams, J.I.; Friedberg, E.C.

    1982-01-01

    Pretreatment of growing normal and xeroderma pigmentosum (XP) human fibroblasts with sodium butyrate at concentrations of 5-20 mM results in increased levels of DNA repair synthesis measured by autoradiography after exposure of the cells to 254 nm UV radiation in the fluence range 0-25 J/m 2 . The phenomenon manifests as an increased extent and an increased initial rate of unscheduled DNA synthesis (UDS). This experimental result is not due to an artifact of autoradiography related to cell size. Xeroderma pigmentosum cells from complementation groups A, C, D and E and XP variant cells all exhibit increases in the levels of UV-induced UDS in response to sodium butyrate proportional to those observed with normal cells. These UDS increases associated with butyrate pretreatment correlate with demonstrable changes in intracellular thymidine pool size and suggest that sodium butyrate enhances uptake of exogenous radiolabeled thymidine during UV-induced repair synthesis by reducing endogenous levels of thymidine. (author)

  7. Non-transcriptional Function of FOXO1/DAF-16 Contributes to Translesion DNA Synthesis.

    Science.gov (United States)

    Daitoku, Hiroaki; Kaneko, Yuta; Yoshimochi, Kenji; Matsumoto, Kaori; Araoi, Sho; Sakamaki, Jun-Ichi; Takahashi, Yuta; Fukamizu, Akiyoshi

    2016-08-22

    Forkhead box O (FOXO; DAF-16 in nematode) transcription factors activate a program of genes that control stress resistance, metabolism, and lifespan. Given the adverse impact of the stochastic DNA damage on organismal development and ageing, we examined the role of FOXO/DAF-16 in UV-induced DNA-damage response. Knockdown of FOXO1, but not FOXO3a, increases sensitivity to UV irradiation when exposed during S phase, suggesting a contribution of FOXO1 to translesion DNA synthesis (TLS), a replicative bypass of UV-induced DNA lesions. Actually, FOXO1 depletion results in a sustained activation of the ATR-Chk1 signaling and a reduction of PCNA monoubiquitination following UV irradiation. FOXO1 does not alter the expression of TLS-related genes but binds to the protein replication protein A (RPA1) that coats single-stranded DNA and acts as a scaffold for TLS. In Caenorhabditis elegans, daf-16 null mutants show UV-induced retardation in larval development and are rescued by overexpressing DAF-16 mutant lacking transactivation domain, but not substitution mutant unable to interact with RPA-1. Thus, our findings demonstrate that FOXO1/DAF-16 is a functional component in TLS independently of its transactivation activity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Synthesis and DNA cleavage activity of Bis-3-chloropiperidines as alkylating agents.

    Science.gov (United States)

    Zuravka, Ivonne; Roesmann, Rolf; Sosic, Alice; Wende, Wolfgang; Pingoud, Alfred; Gatto, Barbara; Göttlich, Richard

    2014-09-01

    Nitrogen mustards are an important class of bifunctional alkylating agents routinely used in chemotherapy. They react with DNA as electrophiles through the formation of highly reactive aziridinium ion intermediates. The antibiotic 593A, with potential antitumor activity, can be considered a naturally occurring piperidine mustard containing a unique 3-chloropiperidine ring. However, the total synthesis of this antibiotic proved to be rather challenging. With the aim of designing simplified analogues of this natural product, we developed an efficient bidirectional synthetic route to bis-3-chloropiperidines joined by flexible, conformationally restricted, or rigid diamine linkers. The key step involves an iodide-catalyzed double cyclization of unsaturated bis-N-chloroamines to simultaneously generate both piperidine rings. Herein we describe the synthesis and subsequent evaluation of a series of novel nitrogen-bridged bis-3-chloropiperidines, enabling the study of the impact of the linker structure on DNA alkylation properties. Our studies reveal that the synthesized compounds possess DNA alkylating abilities and induce strand cleavage, with a strong preference for guanine residues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Host DNA synthesis-suppressing factor in culture fluid of tissue cultures infected with measles virus

    International Nuclear Information System (INIS)

    Minagawa, T.; Nakaya, C.; Iida, H.

    1974-01-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)

  10. Inhibition by 2-deoxy-D-ribose of DNA synthesis and growth in Raji cells

    International Nuclear Information System (INIS)

    Ulrich, F.

    1988-01-01

    When Raji cells were cultured for 3 days in serum-free medium, addition of 2-deoxy-D-ribose at the start of culture inhibited incorporation of [ 3 H]thymidine and cell division. At deoxyribose concentrations between 1 and 5 mM, viability was 80% or greater after 3 days of culture even though 5 mM deoxyribose inhibited thymidine incorporation 95-99%. Inhibition by deoxyribose could be completely reversed if the culture medium was replaced with fresh medium up to 8 hr after the start of culture. The inhibition was specific for deoxyribose since other monosaccharides had no effect. Inhibition of DNA synthesis did not appear to be due to depletion of essential nutrients in the medium since the percentage inhibition of thymidine incorporation by cells cultured either in suboptimal serum-free media or in media supplemented with 0.025-5% human AB serum was similar. When DNA repair synthesis was measured as hydroxyurea-resistant thymidine incorporation, addition of deoxyribose to Raji cultures caused increased thymidine incorporation. These results, together with data from others,suggest that deoxyribose damages DNA

  11. Extracellular calcium alters the effects of retinoic acid on DNA synthesis in cultured murine keratinocytes

    International Nuclear Information System (INIS)

    Tong, P.; Mayes, D.; Wheeler, L.

    1986-01-01

    The rate of proliferation of epidermal keratinocytes was manipulated by growing the cells in medium containing high or low concentrations of calcium. Keratinocytes cultured in high extracellular Ca ++ (1.4 mM and 2.8 mM) proliferated twice as fast as those grown in low Ca ++ medium (0.09 mM) as measured by incorporation of [ 3 H] thymidine into DNA. Exposure of high calcium keratinocytes to all-trans retinoic acid for 4 days caused a dose-related inhibition of DNA synthesis with an IC 50 of about 10 μM. In contrast, incubating low calcium keratinocytes with all-trans retinoic acid caused a dose-related stimulation of DNA synthesis with maximum increase of 278% over control at 10 μM. This increase was accompanied by increases in culture confluency with maximum increase of 109% in cell number of control at 10 μM. These results are of importance since they suggest Ca ++ may influence the effect of retinoids on keratinocytes

  12. Timing of initiation of macronuclear DNA synthesis is set during the preceding cell cycle in Paramecium tetraurelia: analysis of the effects of abrupt changes in nutrient level

    International Nuclear Information System (INIS)

    Ching, A.S.L.; Berger, J.D.

    1986-01-01

    In many eukaryotic organisms, initiation of DNA synthesis is associated with a major control point within the cell cycle and reflects the commitment of the cell to the DNA replication-division portion of the cell cycle. In paramecium, the timing of DNA synthesis initiation is established prior to fission during the preceding cell cycle. DNA synthesis normally starts at 0.25 in the cell cycle. When dividing cells are subjected to abrupt nutrient shift-up by transfer from a chemostat culture to medium with excess food, or shift-down from a well-fed culture to exhausted medium, DNA synthesis initiation in the post-shift cell cycle occurs at 0.25 of the parental cell cycle and not at either 0.25 in the post-shift cell cycle or at 0.25 in the equilibrium cell cycle produced under the post-shift conditions. The long delay prior to initiation of DNA synthesis following nutritional shift-up is not a consequence of continued slow growth because the rate of protein synthesis increases rapidly to the normal level after shift-up. Analysis of the relation between increase in cell mass and initiation of DNA synthesis following nutritional shifts indicates that increase in cell mass, per se, is neither a necessary nor a sufficient condition for initiation of DNA synthesis, in spite of the strong association between accumulation of cell mass and initiation of DNA synthesis in cells growing under steady-state conditions

  13. DNA double-strand breaks in blood lymphocytes induced by two-day 99mTc-MIBI myocardial perfusion scintigraphy.

    Science.gov (United States)

    Rief, Matthias; Hartmann, Lisa; Geisel, Dominik; Richter, Felicitas; Brenner, Winfried; Dewey, Marc

    2018-07-01

    To investigate DNA double-strand breaks (DSBs) in blood lymphocytes induced by two-day 99m Tc-MIBI myocardial perfusion scintigraphy (MPS) using y-H2AX immunofluorescence microscopy and to correlate the results with 99m Tc activity in blood samples. Eleven patients who underwent two-day MPS were included. DSB blood sampling was performed before and 5min, 1h and 24h after the first and second radiotracer injections. 99m Tc activity was measured in each blood sample. For immunofluorescence microscopy, distinct foci representing DSBs were quantified in lymphocytes after staining for the phosphorylated histone variant y-H2AX. The 99m Tc-MIBI activity measured on days one and two was similar (254±25 and 258±27 MBq; p=0.594). Compared with baseline DSB foci (0.09±0.05/cell), a significant increase was found at 5min (0.19±0.04/cell) and 1h (0.18±0.04/cell) after the first injection and at 5min and 1h after the second injection (0.21±0.03 and 0.19±0.04/cell, respectively; p=0.003 for both). At 24h after the first and second injections, the number of DSB foci had returned to baseline (0.06±0.02 and 0.12±0.05/cell, respectively). 99m Tc activity levels in peripheral blood samples correlated well with DSB counts (r=0.451). DSB counts reflect 99m Tc-MIBI activity after injection for two-day MPS, and might allow individual monitoring of biological effects of cardiac nuclear imaging. • Myocardial perfusion scintigraphy using 99m Tc induces time-dependent double-strand breaks (DSBs) • γ-H2AX immunofluorescence microscopy shows DSB as an early response to radiotracer injection • Activity measurements of 99m Tc correlate well with detected DSB • DSB foci induced by 99m Tc return to baseline 24h after radiotracer injection.

  14. Synthesis of water soluble CdS nanoparticles and study of their DNA damage activity

    Directory of Open Access Journals (Sweden)

    Kumar Suranjit Prasad

    2017-05-01

    Full Text Available This study reports a novel method for preparation of water soluble CdS nanoparticles using leaf extract of a plant, Asparagus racemosus. The extract of the leaf tissue which worked as a stabilizing and capping agent, assisted the formation of nanoparticles. Nanoparticles were characterized using a UV–vis spectrophotometer, Photoluminescence, TEM, EDAX, XRD and FT-IR. Transmission electron microscopy followed by selected area electron diffraction pattern analysis indicated the formation of spherical, polydispersed, crystalline, CdS of diameter ranging from 2 to 8 nm. X-ray diffraction studies showed the formation of 111, 220 and 311 planes of face-centered cubic (fcc CdS. EDAX analysis confirmed the presence of Cd and S in nanosphere. The cytotoxicity test using MTT assay as well as DNA damage analysis using comet assay revealed that synthesized nano CdS quantum dots (QDs caused less DNA damage and cell death of lymphocytes than pure CdS nanoparticles.

  15. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    International Nuclear Information System (INIS)

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J.

    1991-01-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of [ 3 H]proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of [ 3 H]hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of [ 3 H]thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone

  16. Enhanced unscheduled DNA synthesis in UV-irradiated human skin explants treated with T4N5 liposomes

    International Nuclear Information System (INIS)

    Yarosh, D.B.; Kibitel, J.T.; Green, L.A.; Spinowitz, A.

    1991-01-01

    Epidermal keratinocytes cultured from explants of skin cancer patients, including biopsies from xeroderma pigmentosum patients, were ultraviolet light-irradiated and DNA repair synthesis was measured. Repair capacity was much lower in xeroderma pigmentosum patients than in normal patients. The extent of DNA repair replication did not decline with the age of the normal patient. Treatment with T4N5 liposomes containing a DNA repair enzyme enhanced repair synthesis in both normal and xeroderma pigmentosum keratinocytes in an irradiation- and liposome-dose dependent manner. These results provide no evidence that aging people or skin cancer patients are predisposed to cutaneous malignancy by a DNA repair deficiency, but do demonstrate that T4N5 liposomes enhance DNA repair in the keratinocytes of the susceptible xeroderma pigmentosum and skin cancer population

  17. Therapeutic touch affects DNA synthesis and mineralization of human osteoblasts in culture.

    Science.gov (United States)

    Jhaveri, Ankur; Walsh, Stephen J; Wang, Yatzen; McCarthy, MaryBeth; Gronowicz, Gloria

    2008-11-01

    Complementary and alternative medicine (CAM) techniques are commonly used in hospitals and private medical facilities; however, the effectiveness of many of these practices has not been thoroughly studied in a scientific manner. Developed by Dr. Dolores Krieger and Dora Kunz, Therapeutic Touch is one of these CAM practices and is a highly disciplined five-step process by which a practitioner can generate energy through their hands to promote healing. There are numerous clinical studies on the effects of TT but few in vitro studies. Our purpose was to determine if Therapeutic Touch had any effect on osteoblast proliferation, differentiation, and mineralization in vitro. TT was performed twice a week for 10 min each on human osteoblasts (HOBs) and on an osteosarcoma-derived cell line, SaOs-2. No significant differences were found in DNA synthesis, assayed by [(3)H]-thymidine incorporation at 1 or 2 weeks for SaOs-2 or 1 week for HOBs. However, after four TT treatments in 2 weeks, TT significantly (p = 0.03) increased HOB DNA synthesis compared to controls. Immunocytochemistry for Proliferating Cell Nuclear Antigen (PCNA) confirmed these data. At 2 weeks in differentiation medium, TT significantly increased mineralization in HOBs (p = 0.016) and decreased mineralization in SaOs-2 (p = 0.0007), compared to controls. Additionally, Northern blot analysis indicated a TT-induced increase in mRNA expression for Type I collagen, bone sialoprotein, and alkaline phosphatase in HOBs and a decrease of these bone markers in SaOs-2 cells. In conclusion, Therapeutic Touch appears to increase human osteoblast DNA synthesis, differentiation and mineralization, and decrease differentiation and mineralization in a human osteosarcoma-derived cell line. (c) 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de; Nicol, Philipp, E-mail: Philipp.Nicol@gmx.de; Eschenhagen, Thomas, E-mail: t.eschenhagen@uke.de

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  19. Assessment of DNA synthesis in Islet-1+ cells in the adult murine heart

    International Nuclear Information System (INIS)

    Weinberger, Florian; Mehrkens, Dennis; Starbatty, Jutta; Nicol, Philipp; Eschenhagen, Thomas

    2015-01-01

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1 + ) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1 + cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ( 3 H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of 3 H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1 + cells. Whereas Islet − non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1 + cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes

  20. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    Science.gov (United States)

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  1. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    Science.gov (United States)

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  2. Determination of radioinduced delay in DNA synthesis in two-garlic-clones cells (Allium Sativum L.)

    International Nuclear Information System (INIS)

    Perez Lezcano, A.; Perez Talavera, S.

    1989-01-01

    To contribute to tech improvement of the use of ionizing radiations as an auxiliary tool in the fitoimprovement, dose-effect curves for the 'Martinez' and 'Sancti Spiritus-3' clones were stablished by using as effect the delay induced by radiations in DNA synthesis determined by the 'Martinez' clone which induces a delay of 50% in reference to the control is approximately 11 Gy, while the dose value for the 'Sancti Spiritus-3' clone is 18 Gy, thus the 'Martinez' clones has a higher sensitivity to radiations than the other clone, therefore it coincides with what we found for these clones other indexes are used as radiosensitivity criteria

  3. Synthesis and Molecular Modeling of Thermally Stable DNA G-Quadruplexes with Anthraquinone Insertions

    DEFF Research Database (Denmark)

    Gouda, Alaa S.; Amine, Mahasen S.; Pedersen, Erik Bjerregaard

    2017-01-01

    Two new phosphoramidite building blocks for DNA synthesis were synthesized from 1,5- and 2,6-dihydroxyanthraquinones through alkylation with 3-bromo-1-propanol followed by DMT-protection. The novel synthesized 1,5- and 2,6-disubstituted anthraquinone monomers H15 and H26 are incorporated into a G...... anthraquinone-modified quadruplexes revealed no change of the antiparallel structure when compared with the wild type under potassium buffer conditions. The significantly increased thermostabilities were interpreted by molecular modeling of anthraquinone-modified G-quadruplexes....

  4. Possible roles of HIV-1 nucleocapsid protein in the specificity of proviral DNA synthesis and in its variability.

    Science.gov (United States)

    Lapadat-Tapolsky, M; Gabus, C; Rau, M; Darlix, J L

    1997-05-02

    Retroviral nucleocapsid (NC) protein is an integral part of the virion nucleocapsid where it coats the dimeric RNA genome. Due to its nucleic acid binding and annealing activities, NC protein directs the annealing of the tRNA primer to the primer binding site and greatly facilitates minus strand DNA elongation and transfer while protecting the nucleic acids against nuclease degradation. To understand the role of NCp7 in viral DNA synthesis, we examined the influence of NCp7 on self-primed versus primer-specific reverse transcription. The results show that HIV-1 NCp7 can extensively inhibit self-primed reverse transcription of viral and cellular RNAs while promoting primer-specific synthesis of proviral DNA. The role of NCp7 vis-a-vis the presence of mutations in the viral DNA during minus strand elongation was examined. NCp7 maximized the annealing between a cDNA(-) primer containing one to five consecutive errors and an RNA representing the 3' end of the genome. The ability of reverse transcriptase (RT) in the presence of NCp7 to subsequently extend the mutated primers depended upon the position of the mismatch within the primer:template complex. When the mutations were at the polymerisation site, primer extension by RT in the presence of NCp7 was very high, about 40% for one mismatch and 3% for five consecutive mismatches. Mutations within the DNA primer or at its 5' end had little effect on the extension of viral DNA by RT. Taken together these results indicate that NCp7 plays major roles in proviral DNA synthesis within the virion core due to its ability to promote prime-specific proviral DNA synthesis while concurrently inhibiting non-specific reverse transcription of viral and cellular RNAs. Moreover, the observation that NCp7 enhances the incorporation of mutations during minus strand DNA elongation favours the notion that NCp7 is a factor contributing to the high mutation rate of HIV-1.

  5. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis

    DEFF Research Database (Denmark)

    Levring, Trine B; Kongsbak-Wismann, Martin; Rode, Anna Kathrine Obelitz

    2015-01-01

    . The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys......Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined...... for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production...

  6. Individual repair of radiation-induced DNA double-strand breaks in lymphocytes. Implications for radiation-induced dermatitis in breast cancer

    International Nuclear Information System (INIS)

    Melchior, Patrick Wilhelm

    2011-01-01

    Purpose: Adjuvant 'whole breast radiotherapy' (WBRT) is the standard of care after breast conserving surgery in women with breast cancer. Throughout different cancer stages the addition of WBRT leads to significantly improved rates of freedom from local failure and overall survival. WBRT is generally well tolerated. A 5-10%-rate of severe acute or long-term side effects is commonly observed. For both radiation-mediated tumor-cell-elimination and induction of side effects, DNA-double-strand-breaks (DSB) presumably play the decisive role. The intensity of normal tissue reactions in radiotherapy can, in part, be attributed to the intrinsic DSB repair-capacity. In this study in vivo and in vitro experiments are carried through in order to assess DSB repair-kinetics in blood lymphocytes of women with breast cancer. These findings are to be correlated with the degree of radiation-induced normal tissue toxicity. Patients and Methods: Eighteen patients with breast cancer, in whom WBRT was indicated, were examined. A total WBRT dose of 50 Gy (single dose 2 Gy) with an additional boost-radiotherapy to the initial tumor-region to a total dose of 60-66 Gy was administered. DSB repair was determined by means of counting γ-H2AX foci in blood lymphocytes at predefined points in time, i.e. before and 0.5 h; 2.5 h; 5 h and 24 h after in vivo irradiation (1st fraction of WBRT) and before and 0.5 h; 2.5 h and 5 h after in vitro irradiation with increasing radiation doses in the range of 10 - 500 mGy. Acute normal tissue toxicity was scored on the basis of a modified RTOG-classification (main aspects were erythema and dry or moist skin desquamation). Results: DSB repair-halflife-times did not differ between patients with a higher or lower than average incidence of acute side effects. In patients with 'above average' side effects larger irradiation volumes were treated (volume surrounded by the 50%-isodose). Adjusted for these, no single patients showed elevated residual γ-H2AX foci

  7. Rapid DNA Synthesis During Early Drosophila Embryogenesis Is Sensitive to Maternal Humpty Dumpty Protein Function.

    Science.gov (United States)

    Lesly, Shera; Bandura, Jennifer L; Calvi, Brian R

    2017-11-01

    Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty ( hd ), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd 272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd 272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd 272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms. Copyright © 2017 by the Genetics Society of America.

  8. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives.

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-15

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  10. Assessment of DNA damage and Chromosome aberration in human lymphocyte exposed to low dose radiation detected by FISH(Fluorescence In Situ Hybridization) and SCGE(Single Cell Gel Electrophoresis)

    International Nuclear Information System (INIS)

    Chung, Hai Won; Kim, Su Young; Kim, Byung Mo; Kim, Sun Jin; Ha, Sung Whan; Kim, Tae Hwan; Cho, Chul Koo

    2000-01-01

    Comparative study was performed for the assessment of DNA damage and Chromosomal aberration in human lymphocyte exposed to low dose radiation using Fluorescence In Situ Hybridization(FISH) and Single Cell Gel Electrophoresis(SCGE). Chromosomal aberrations in human lymphocyte exposed to radiation at doses of 5, 10, 30 and 50cGy were analysed with whole chromosome-specific probes by human chromosome 1, 2 and 4 according to PAINT system. FISH with chromosome-specific probe has been used to be a valid and rapid method for detection of chromosome rearrangements induced by low dose radiation. The frequencies of stable translocation per cell equivalents were 0.0116, 0.0375, 0.0407, 0.0727 and 0.0814 for 0, 5, 10, 30 and 50cGy, respectively, and those of dicentric were 0.00, 0.0125, 0.174, 0.0291 and 0.0407 respectively. Radiation induced DNA damage in human lymphocyte in a dose-dependent manner at low doses from 5cGy to 50cGy, which were analysed by single Cell Gel Electrophoresis(SCGE). From above results, FISH seemed to be useful for radiation biodosimetry by which the frequencies of stable aberrations in human lymphocyte can be observed more easily than by conventional method and SCGE also seemed to be sensitive method for detecting DNA damage by low dose radiation exposure, so that those methods will improve our technique to perform meaningful biodosimetry for radiation at low doses

  11. Murine scid cells complement ataxia-telangiectasia cells and show a normal port-irradiation response of DNA synthesis

    International Nuclear Information System (INIS)

    Komatsu, K.; Yoshida, M.; Okumura, Y.

    1993-01-01

    The murine severe combined immunodeficient mutation (scid) is characterized by a lack of both B and T cells, due to a deficit in lymphoid variable-(diversity)-joining (V(D)J) rearrangement. Scid cells are highly sensitive to both radiation-induced killing and chromosomal aberrations. Significantly reduced D 0 and n values were demonstrated in scid cells and were similar to ataxia-telangiectasia (AT) cells (a unique human disease conferring whole body radiosensitivity). However, the kinetics of DNA synthesis after irradiation were different between the two cell types. In contrast with the radioresistant DNA synthesis of AT cells, DNA synthesis of scid cells was markedly inhibited after irradiation. The existence of different mutations was also supported by evidence of complementation in somatic cell hybrids between scid cells and AT cells. Results indicate that the radiobiological character of scid is similar to AT but is presumably caused by different mechanisms. (author)

  12. Inhibition and recovery of the rate of DNA synthesis in V79 Chinese hamster cells following ultraviolet light irradiation

    International Nuclear Information System (INIS)

    Ventura, A.M.; Meneghini, R.

    1984-01-01

    Chinese hamster fibroblasts (V79 cell line) exhibit the phenomenon of recovery of DNA synthesis from the initial inhibition observed after ultraviolet light irradiation, in the absence of significant excision of pyrimidine dimers. In an attempt to determine whether the initial inhibition and subsequent recovery can be accounted for by parallel variations in the rate of movement of the replication fork, the cells were pulse-labeled with radioactive bromodeoxyuridine at different times following irradiation and their DNA centrifuged in neutral CsCl density gradients. When DNA synthesis inhibition was at a maximum, an accumulation of DNA, of density intermediate between hybrid and nonsubstituted DNA, was noticed in the density-distribution profiles. The density distribution of DNA along the gradient can provide an estimate of the rate of movement of the replication fork, and the results indicate that most of the variation in the overall rate of DNA synthesis can be accounted for by a parallel variation in the rate of fork movement. (Auth.)

  13. In vitro gap-directed translesion DNA synthesis of an abasic site involving human DNA polymerases epsilon, lambda, and beta

    Czech Academy of Sciences Publication Activity Database

    Villani, G.; Hübscher, U.; Gironis, N.; Parkkinen, S.; Pospiech, H.; Shevelev, Igor; di Cicco, G.; Markennen, E.; Syvaaja, J.E.; Le Gac, N.T.

    2011-01-01

    Roč. 286, č. 37 (2011), s. 32094-32104 ISSN 0021-9258 Grant - others:Academy of Finland(FI) 106986; Academy of Finland(FI) 123082 Institutional research plan: CEZ:AV0Z50520514 Keywords : DNA damage * DNA polymerase * DNA repair * DNA replication * DNA -protein interaction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.773, year: 2011

  14. Distribution of ultraviolet-induced DNA repair synthesis in nuclease sensitive and resistant regions of human chromatin

    International Nuclear Information System (INIS)

    Smerdon, M.J.; Tlsty, T.D.; Lieberman, M.W.

    1978-01-01

    The distribution of ultraviolet radiation (uv) induced DNA repair synthesis within chromatin was examined in cultured human diploid fibroblasts (IMR-90). Measurement of the time course of repair synthesis yielded two distinct phases: An initial rapid phase (fast repair) which occurs during the first 2 to 3 h after damage and a slower phase (slow repair) associated with a tenfold decrease in the rate of nucleotide incorporation, which persists for at least 35 h after damage. Staphylococcal nuclease digests of nuclei from cells damaged with uv and labeled during the fast-repair phase revealed a marked preference of fast-repair synthesis for the nuclease-sensitive regions. A new method was developed to analyze the digestion data and showed that approximately 50% of the nucleotides incorporated during the fast-repair phase are located in staphylococcal nuclease-sensitive regions, which comprise about 30% of the genome. Calculations from these data indicate that in the staphylococcal nuclease-sensitive regions the number of newly inserted nucleotides per unit DNA is about twice that of resistant regions. These results were supported by electrophoresis studies which demonstrated a decreased representation of fast-repair synthesis in core particle DNA. In contrast, the distribution within chromatin of nucleotides incorporated during the slow-repair phase was found to be much more homogeneous with about 30% of the repair sites located in 25% of the genome. Digestion studieswith DNase I indicated a slight preference of repair synthesis for regions sensitive to this enzyme; however, no marked difference between the distributions of fast- and slow-repair synthesis was observed. This study provides evidence that the structural constraints placed upon DNA in chromatin also place constraints upon uv-induced DNA repair synthesis in human cells

  15. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells

    Science.gov (United States)

    Lombardi, Maria; Castoria, Gabriella; Migliaccio, Antimo; Barone, Maria Vittoria; Di Stasio, Rosina; Ciociola, Alessandra; Bottero, Daniela; Yamaguchi, Hiroshi; Appella, Ettore; Auricchio, Ferdinando

    2008-01-01

    In breast cancer cells, cytoplasmic localization of the estradiol receptor α (ERα) regulates estradiol-dependent S phase entry. We identified a nuclear export sequence (NES) in ERα and show that its export is dependent on both estradiol-mediated phosphatidylinositol-3-kinase (PI3K)/AKT activation and chromosome region maintenance 1 (CRM1). A Tat peptide containing the ERα NES disrupts ERα–CRM1 interaction and prevents nuclear export of ERα- and estradiol-induced DNA synthesis. NES-ERα mutants do not exit the nucleus and inhibit estradiol-induced S phase entry; ERα-dependent transcription is normal. ERα is associated with Forkhead proteins in the nucleus, and estradiol stimulates nuclear exit of both proteins. ERα knockdown or ERα NES mutations prevent ERα and Forkhead nuclear export. A mutant of forkhead in rhabdomyosarcoma (FKHR), which cannot be phosphorylated by estradiol-activated AKT, does not associate with ERα and is trapped in the nucleus, blocking S phase entry. In conclusion, estradiol-induced AKT-dependent phosphorylation of FKHR drives its association with ERα, thereby triggering complex export from the nucleus necessary for initiation of DNA synthesis and S phase entry. PMID:18644889

  16. In-vitro responses of T lymphocytes to poly(butylene succinate) based biomaterials.

    Science.gov (United States)

    Toso, Montree; Patntirapong, Somying; Janvikul, Wanida; Singhatanadgit, Weerachai

    2017-04-01

    Polybutylene succinate (PBSu) and PBSu/β-tricalcium phosphate (TCP) composites are biocompatible and good candidates as bone graft materials. However, little is known about the responses of T lymphocytes to these biomaterials, which play an important role in the success of bone grafting. Activated T lymphocytes were cultured onto 32 mm diameter films (PBSu/TCP films), that had previously been placed in 6-well culture plates, for 8, 24 and 72 hours. A plastic-well culture plate was used as a control surface. The effects of PBSu-based biomaterials on T lymphocytes were examined by the using flow cytometry and reverse-transcription polymerase chain reaction. These biomaterials were non-toxic to T lymphocytes, allowing their normal DNA synthesis and activation. All materials induced only transient activation of T lymphocytes, which existed no longer than 72 hours. Proportions of four main CD4/CD8 T lymphocyte subpopulations were not affected by these biomaterials. Moreover, PBSu and PBSu/TCP significantly suppressed the expression of IL-1β and IL-6 genes by 15-35% and 21-26%, respectively. In contrast, a PBSu/TCP composite (at PBSu:TCP=60:40) significantly stimulated the expression of IL-10 and IL-13 genes by 17% and 19%, respectively. PBSu and PBSu/TCP composites were non-toxic to T lymphocytes and did not induce unfavorable responses of T lymphocytes. The tested biomaterials down-regulated key proinflammatory cytokine genes and up-regulated anti-inflammatory cytokine genes in T lymphocytes. These suggest that the biomaterials studied are good candidates as bone graft materials.

  17. Effect of different BNCT protocols on DNA synthesis in precancerous and normal tissues in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Aromando, Romina; Trivillin, Veronica A.; Itoiz, Maria E.; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.

    2006-01-01

    We previously reported the therapeutic success of different BNCT protocols in the treatment of oral cancer, employing the hamster cheek pouch model. The aim of the present study was to evaluate the effect of these BNCT protocols on DNA synthesis in precancerous and normal tissue in this model and assess the potential lag in the development of second primary tumors in precancerous tissue. The data are relevant to potential control of field cancerized tissue and tolerance of normal tissue. We evaluated DNA synthesis in precancerous and normal pouch tissue 1-30 days post-BNCT mediated by BPA, GB-10 or BPA + GB-10 employing incorporation of bromo-deoxyuridine as an end-point. The BNCT-induced potential lag in the development of second primary tumors in precancerous tissue was monitored. A drastic, statistically significant reduction in DNA synthesis occurred in pacancerous tissue as early as 1 day post-BNCT and was sustained at virtually all time points until 30 days post-BNCT for all protocols. The histological categories evaluated individually within precancerous tissue (dysplasia, hyperplasia and NUMF [no unusual microscopic features]) responded similarly. DNA synthesis in normal tissue treated with BNCT oscillated around the very low pre-treatment values. A BNCT-induced lag in the development of second primary tumors was observed. BNCT induced a drastic fall in DNA synthesis in precancerous tissue that would be associated to the observed lag in the development of second primary tumors. The minimum variations in DNA synthesis in BNCT-treated normal tissue would correlate with the absence of normal tissue radiotoxicity. The present data would contribute to optimize therapeutic efficacy in the treatment of field-cancerized areas. (author)

  18. Cytological and cytochemical effects of sodium benzoate and gamma irradiation on human peripheral lymphocytes

    International Nuclear Information System (INIS)

    Mohamed, N.A.F.

    1981-01-01

    In vitro studies of human peripheral lymphocytes were conducted to elucidate and compare the effects of a suspected chemical clastogen, sodium benzoate, widely used in the food industry as an antimicrobial food additive, to that of a well-known physical mutagen, gamma rays. Blood from ten normal donors, five males and five females, was collected and treated with various doses of the two agents independently and in combination during G 0 or G 1 phase. Induction of structural chromosomal aberrations, sister chromatid exchanges (SCEs) and unscheduled DNA synthesis were used as parameters to monitor the effects of the two agents. Sodium benzoate at the same concentrations used in the food industry (0.05% and 0.10%) caused inhibition of mitosis and induced chromatid-type aberrations (gaps and breaks). The frequency of aberrations increased as the concentration of sodium benzoate increased. No increase in SCEs over the control level was observed as either concentration tested. The relative amount of DNA damage inflicted in the treated lymphocytes estimated as 3 H-tritiated thymidine incorporation (unscheduled DNA synthesis) was highly significant. In contrast, blood irradiated with 300, 600, or 900 rad 60 Co gamma rays produced chromatid and chromosome aberrations in cultured lymphocytes, dicentrics being the most frequent exchange event. The aberration yield was found to be dose-dependent and to fit the quadratic model. Unscheduled DNA synthesis as measured by lymphocyte 3 H-TdR incorporation following gamma irradiation was highly significantly increased with the largest uptake occurring during the first hour of incubation. The combined treatment of gamma irradiation plus 0.05% sodium benzoate did not increase the aberration frequencies over the independent irradiation treatments and had no effect on SCEs frequencies

  19. Effects of the Nd:YAG laser on DNA synthesis and collagen production in human skin fibroblast cultures

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.J.; Abergel, R.P.; Meeker, C.; Dwyer, R.M.; Lesavoy, M.A.; Uitto, J.

    1983-09-01

    Human skin fibroblasts were subjected to treatment with a Neodymium:YAG laser at 1060 nm with varying levels of energy determined by a reproducible method of dosimetry. DNA synthesis in the cells was measured by the incorporation of (3H)thymidine, and collagen production was monitored by the synthesis of nondialyzable (3H)hydroxyproline after incubation of cells with (3H)proline. Using energy levels equal to 1.7 X 10(3) J/cm2, a significant reduction in DNA synthesis was noted, while the cells remained viable as tested by the trypan blue exclusion test. With energy levels higher or equal to 2.3 X 10(3) J/cm2, the suppression of DNA synthesis was accompanied by cell nonviability. The collagen production, when measured immediately following the treatment with 1.7 X 10(3) J/cm2, was markedly reduced, and similar effects were observed with higher energy levels. However, when the cells were tested for collagen production at 20 hours following laser treatment, there was a significant decrease in collagen production at energy levels as low as 1.1 X 10(3) J/cm2, a dose that did not affect DNA synthesis or cell viability. Thus, the results indicate that the Nd:YAG laser can selectively suppress collagen production without affecting cell proliferation. These observations suggest that laser treatment could potentially be used to reduce collagen deposition in conditions such as keloids and hypertrophic scars.

  20. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    Directory of Open Access Journals (Sweden)

    Felty Quentin

    2006-04-01

    Full Text Available Abstract Background Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature. How estrogen may support or promote vascular lesions is not clear. We have examined in this study whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species (ROS, and estrogen-induced ROS is involved in the growth of endothelial cells. Methods The effect of estrogen on the production of intracellular oxidants and the role of estrogen-induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was measured by a colorimetric immunoassay based on BrdU incorporation into DNA. Results Physiological concentrations of estrogen (367 fmol and 3.67 pmol triggered a rapid 2-fold increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal levels by cotreatment with the mitochondrial inhibitor rotenone (2 μM and xanthine oxidase inhibitor allopurinol (50 μM. Inhibitors of NAD(PH oxidase, apocynin and DPI, did not block E2-induced ROS formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS. These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 μM and NAC (1 mM inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown

  1. Protein, RNA, and DNA synthesis in cultures of skin fibroblasts from healthy subjects and patients with rheumatic diseases

    International Nuclear Information System (INIS)

    Abakumova, O.Y.; Kutsenko, N.G.; Panasyuk, A.F.

    1985-01-01

    To study the mechanism of the lasting disturbance of fibroblast function, protein, RNA and DNA synthesis was investigated in skin fibroblasts from patients with rheumatoid arthritis (RA) and systemic scleroderma (SS). The labeled precursors used to analyze synthesis of protein, RNA, and DNA were 14 C-protein hydrolysate, ( 14 C)uridine, and ( 14 C) thymidine. Stimulation was determined by measuring incorporation of ( 14 C)proline into fibroblast proteins. During analysis of stability of fast-labeled RNA tests were carried out to discover whether all measurable radioactivity belonged to RNA molecules

  2. Differential effect of gamma-irradiated and heat-treated lymphocytes on T cell activation, and interleukin-2 and interleukin-3 release in the human mixed lymphocyte reaction

    International Nuclear Information System (INIS)

    Loertscher, R.; Abbud-Filho, M.; Leichtman, A.B.; Ythier, A.A.; Williams, J.M.; Carpenter, C.B.; Strom, T.B.

    1987-01-01

    Heat-inactivated (45 degrees C/1 hr) lymphocytes selectively activate suppressor T cells in the mixed lymphocyte reaction (MLR), while no significant proliferation and cytotoxic T lymphocyte activation can be detected. It is not well understood why hyperthermic treatment abolishes the stimulatory capacity of lymphocytes since HLA-DR molecules remain detectable immediately following heat exposure. In order to further characterize the requirements for Ts activation we studied the effects of hyperthermic treatment on cellular protein and DNA synthesis and cell surface protein expression in proliferating T and B cells; interleukin (IL)-1, IL-2, and IL-3 release following allogeneic stimulation with heat treated cells (HMLR); and IL-2 receptor expression as an indicator of T cell activation in the HMLR. Hyperthermic treatment reduced cellular protein synthesis as estimated by 14 C-leucine uptake to about 15%, and DNA synthesis ( 3 H-thymidine incorporation) to about 5% of untreated control cells. In contrast to y-irradiated cells, viability of heated cells rapidly declined within the first 24 hr. Hyperthermic treatment doubled binding of mouse immunoglobulin paralleled by an increased expression of IL-2 and transferrin receptors, while expression of HLA-DR and 4F2 proteins appeared unchanged. Stimulation with heated cells triggered the release of IL-1- and an IL-3-like bioactivity but did not induce IL-2 synthesis and/or release, thus explaining the lack of proliferation in the HMLR. Addition of exogenous IL-2 but not IL-1 restored HMLR proliferation. A comparison of allostimulation with y-irradiated and heat-treated cells revealed that significantly fewer T cells were induced to express IL-2 receptors at day 3 (14% vs. 8%, P less than 0.001) and at day 6 (42% vs. 21%, P less than 0.05) with heat-inactivated stimulators

  3. Immunomodulatory effects of Bacteroides products on in vitro human lymphocyte functions.

    Science.gov (United States)

    Shenker, B J; Slots, J

    1989-03-01

    Bacteroides spp. have been implicated in the pathogenesis of several diseases, including periodontal diseases. In this study sonic extracts of 6 Bacteroides spp. were examined for their abilities to alter human lymphocyte function. We found that soluble extracts from Bacteroides intermedius, Bacteroides endodontalis, Bacteroides asaccharolyticus, Bacteroides melaninogenicus, and to a lesser degree Bacteroides loescheii, caused dose-dependent inhibition of human lymphocyte responsiveness to both mitogens and antigens. Suppression involved altered DNA, RNA and protein synthesis as well as immunoglobulin production. In contrast, Bacteroides gingivalis did not suppress these responses; instead, it stimulated lymphocyte proliferation and enhanced immunoglobulin production. It has been proposed that impaired host defense may play a pivotal role in the pathogenesis of many infections. The data presented in this paper suggest that microbial mediated immunosuppression may conceivably alter the nature and consequences of host-parasite interactions in periodontal disease.

  4. Doxazosin blocks the angiotensin II-induced smooth muscle cell DNA synthesis in the media, but not in the neointima of the rat carotid artery after balloon injury

    NARCIS (Netherlands)

    van Kleef, E. M.; Smits, J. F.; Schwartz, S. M.; Daemen, M. J.

    1996-01-01

    Infusion of angiotensin II (AngII) during the third and fourth week after balloon injury of the left common carotid artery of the rat induces smooth muscle cell (SMC) DNA synthesis. In this study we wanted to investigate whether alpha 1-adrenoreceptors are involved in AngII-induced SMC DNA synthesis

  5. A non-isotopic assay uses bromouridine and RNA synthesis to detect DNA damage responses.

    Science.gov (United States)

    Hasegawa, Mayu; Iwai, Shigenori; Kuraoka, Isao

    2010-06-17

    Individuals with inherited xeroderma pigmentosum (XP) disorder and Cockayne syndrome (CS) are deficient in nucleotide excision repair and experience hypersensitivity to sunlight. Although there are several diagnostic assays for these disorders, the recovery of RNA synthesis (RRS) assay that can discriminate between XP cells and CS cells is very laborious. Here, we report on a novel non-radioisotope RRS assay that uses bromouridine (a uridine analog) as an alternative to (3)H-uridine. This assay can easily detect RNA polymerase I transcription in nucleoli and RNA polymerase II transcription in nuclei. The non-RI RSS assay also can rapidly detect normal RRS activity in HeLa cells. Thus, this assay is useful as a novel and easy technique for CS diagnosis. Because RRS is thought to be related to transcription-coupled DNA repair, which is triggered by the blockage of transcriptional machinery by DNA lesions, this assay may be of use for analysis of DNA repair, transcription, and/or genetic toxicity. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA

    International Nuclear Information System (INIS)

    Kastan, M.B.; Gowans, B.J.; Lieberman, M.W.

    1982-01-01

    Methylation of deoxycytidine incorporated by DNA excision-repair was studied in human diploid fibroblasts following damage with ultraviolet radiation, N-methyl-N-nitrosourea, or N-acetoxy-2-acetylaminofluorene. In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication in logarithmic-phase cultures a steady state level of 3.4% 5-methylcytosine is reached in less than 2 hr after cells are labeled with 6- 3H-deoxycytidine, following ultraviolet-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of approximately 2.0% 5-methylcytosine in the repair patch. In cells from cultures in logarithmic-phase growth, 5-methylcytosine formation in ultraviolet-induced repair patches occurs faster and to a greater extent, reaching a level of approximately 2.7% in 10-20 hr. Preexisting hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites

  7. Sensitivity of cultured lymphocytes from patients with nevoid basal cell carcinoma syndrome to ultraviolet light and phytohemagglutinin stimulation

    International Nuclear Information System (INIS)

    Ferraro, P.; Celotti, L.; Furlan, D.; Pattarello, I.; Peserico, A.

    1990-01-01

    DNA repair and replication after in vitro UV irradiation were determined in cultured peripheral blood lymphocytes from 6 patients with nevoid basal cell carcinoma syndrome (NBCCS) and from a group of control donors. DNA repair synthesis (UDS) was measured in unstimulated lymphocytes by incubation with 3H-TdR in the presence of hydroxyurea for 3 and 6 h after UV irradiation (6-48 J/m2). DNA replication was measured in PHA-stimulated lymphocytes, UV-irradiated or mock-irradiated, by incubation with 3H-TdR for 24 h. The effect of the mitogen was followed during 5 days after stimulation by determining the incorporation of 3H-TdR, the increase of cell number, and the mitotic index. NBCCS and control lymphocytes showed equal sensitivity to UV light in terms of UDS and reduced response to PHA. On the contrary, the mitotic index and the number of cells in stimulated cultures were significantly lower in the affected subjects. These data suggest an altered progression along the cell cycle, which could be characteristic of stimulated NBCCS lymphocytes

  8. Absence of specificity in inhibition of DNA repair replication by DNA-binding agents, cocarcinogens, and steroids in human cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Painter, R.B.

    1975-01-01

    Although many chemicals, including cocarcinogens, DNA-binding agents, and steroids, inhibit repair replication of ultraviolet-induced damage to DNA in human lymphocytes and proliferating cells in culture, none of these chemicals is specific. Our results show that all the chemicals we tested inhibit normal DNA synthesis as much as or more than they inhibit repair replication. There is thus no evidence in our results to support the hypothesis that cocarcinogens are specific inhibitors of DNA repair or that any of the chemicals studied might be useful adjuncts to tumor therapy merely because of specific inhibition of radiation repair mechanisms

  9. Action of caffeine on x-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis

    International Nuclear Information System (INIS)

    Tolmach, L.J.; Jones, R.W.; Busse, P.M.

    1977-01-01

    Treatment of HeLa S3 cells with 1 mM caffeine delays progression through G1 by 1.5 hours but causes no other detectable inhibition of cell progression; it sometimes results in a large stimulation of thymidine incorporation. When this concentration is applied to cells that have been irradiated with 1-krad doses of 220-kV x rays, there is a marked suppression of both the inhibition of DNA synthesis and G2 arrest induced by the radiation. Larger doses require higher concentrations of caffeine to suppress the inhibition of DNA synthesis. Delaying addition until the rate of synthesis is at its minimum (1.5 hours after irradiation with 1 krad) results in a slightly accelerated recovery of the rate. Treatment before or during irradiation is without effect on the inhibition. Removal of the caffeine as late as 6 hours after its addition at the time of irradiation results in a prompt inhibition in DNA synthesis that mimics that observed immediately after irradiation in the absence of caffeine. These findings raise the possibility that the depression in rate of DNA systhesis might not result from radiation damage introduced into the replicon initiation system, but rather may be an indirect consequence of damage residing elsewhere in the irradiated cell

  10. The relationship between DNA synthesis and incorporation of (14C) lysine into different histone fractions in Ehrlich ascites tumour cells

    International Nuclear Information System (INIS)

    Malec, J.; Kornacka, L.; Wojnarowska, M.; Moscicka, M.

    1974-01-01

    The effect of inhibition of DNA synthesis by hydroxyurea on ( 14 C) lysine incorporation into the main four histone fractions in Ehrlich ascites tumor cells, was examined in vitro. The radioactivity of lysine-rich histones, especially of histone f1, was preferentially decreased. The smallest decrease was observed for histone f3. The incorporation into other cellular proteins was but slightly affected. (author)

  11. Defective recovery of semi-conservative DNA synthesis in xeroderma pigmentosum cells following split-dose ultraviolet irradiation

    International Nuclear Information System (INIS)

    Moustacchi, E.; Ehmann, U.K.; Friedberg, E.C.

    1979-01-01

    In normal human fibroblasts the authors observe an enhancement of the recovery of the rate of semi-conservative DNA synthesis after split-dose UV-irradation relative to a single total UV dose. The enhanced recovery is totally absent in both a xeroderma pigmentosum variant line and two xeroderma pigmentosum lines belonging to complementation groups A and C. (Auth.)

  12. DNA synthesis in HeLa cells and isolated nuclei after treatment with an inhibitor of spermidine synthesis, methyl glyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Krokan, H; Eriksen, A

    1977-02-01

    Addition of methyl glyoxal bis(guanylhydrazone) to HeLa S3 suspension cultures resulted in increased putrescine levels and decreased spermidine and spermine levels preceding a drop in incorporation of [3H]thymidine, [3H]uridine and [14C]leucine into macromolecules. When putrescine, spermidine, spermine or cadaverine was added simultaneously with methyl glyoxal bis(guanylhydrazone), the drug had no detectable effect on the synthesis of macromolecules. In nuclei isolated from cells treated with methyl glyoxal bis(guanylhydrazone) the reduction in the rate of DNA synthesis was equal to the reduction of [3H]thymidine incorporation in the corresponding whole cells. The capability of the nuclei to synthesize DNA could not be restored by adding spermidine or spermine to the system in vitro. The rate of DNA chain elongation was only reduced slightly by methyl glyoxal bis(guanylhydrazone) indicating that decreased levels of spermidine and spermine lead to a decrease in the number of replication units active in DNA synthesis within each cell.

  13. C-terminal phenylalanine of bacteriophage T7 single-stranded DNA-binding protein is essential for strand displacement synthesis by T7 DNA polymerase at a nick in DNA.

    Science.gov (United States)

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C

    2009-10-30

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5'-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.

  14. C-terminal Phenylalanine of Bacteriophage T7 Single-stranded DNA-binding Protein Is Essential for Strand Displacement Synthesis by T7 DNA Polymerase at a Nick in DNA*

    Science.gov (United States)

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C.

    2009-01-01

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5′-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations. PMID:19726688

  15. Estimation of pre-meiotic DNA synthesis period in the dog spermatozoa

    International Nuclear Information System (INIS)

    Ghosal, S.K.; Bandyopadhyay, T.; De, S.; Beauregard, L.J.

    1976-01-01

    About 10 μCi of 3 H-thymidine was injected into each of 4 arbitarary sites in each testis of 6 dogs. Biopsies were taken at 4-hour intervals coverning a period from 20.0 to 22.2 days post-injection. Kinetics of labelled spermatocytes was followed employing Kodak NTB-3 emulsion to conventionally prepared air-dried slides. The technique for calculating pre-meiosis DNA synthesis duration is same as that for estimating S period in mitotic cells. Current investigation suggests that the mean duration of pre-meiotic S period of Canine spermatocytes is 20.4 hrs as compared to 29 and 40 hrs in spermatocytes of mouse and golden hamster respectively. (author)

  16. Depression of DNA synthesis rate following hyperthermia, gamma irradiation, cyclotron neutrons and mixed modalities

    International Nuclear Information System (INIS)

    Weber, H.J.; Muehlensiepen, H.; Porschen, W.; Feinendegen, L.E.; Dietzel, F.

    1978-01-01

    The incorporation of the thymidine analogue I-UdR is proportional to the activity of DNA synthesis. The maximum depression of 125-I-UdR incorporation occurs approximately 4 hours after all kinds of treatment. The increase which follow reflects cell processes like reoxygeneration, recovery, recycling and recruitment (although a direct relation is not yet demonstrable). The degree of depression 4 hours after treatment and the time required needs to reach control level is dependent on dose and radiation quaility but no such dependence could be clearly seen for the times of hyperthermia treatment we used. Neutron irradiation and the combination gamma irradiation + hyperthermia show a higher depression and a slower return to normal than gamma irradiation at the same dose. (orig.) [de

  17. Quantification of histoautoradiographic evidence of DNA repair synthesis in the liver

    International Nuclear Information System (INIS)

    Hochmann, J.; Stambergova, H.

    1988-01-01

    Histoautoradiography was used to detect dimethylnitrosamine-induced 3 H-thymidine incorporation in vivo into G phase hepatocytes. The description of the standard procedure for counting the grains and the mode of mathematical evaluation are presented. The results exhibited higher sensitivity than those in the investigation of the DNA repair synthesis by means of a scintillation counter using the method of detecting hydroxyurea-resistant incorporation of 3 H-thymidine. Thus, it was possible to simplify the investigation by lowering the number of evaluated cells. A suitable compromise between precision and laboriousness will probably be achieved by counting 20 hepatocytes per animal. In case of striking differences between the experimental and the control groups a qualitative conclusion may be drawn even without counting the grains. (author). 5 tabs., 10 refs

  18. High resolution autoradiographic studies of RNA, protein and DNA synthesis during human eosinophil granulocytopoiesis

    International Nuclear Information System (INIS)

    Wickramasinghe, S.N.; Hughes, M.

    1978-01-01

    Human bone marrow cells which had been incubated with [ 3 H] uridine or [ 3 H]leucine for 1 h were studied using the technique of electron microscope-autoradiography. The autoradiographs revealed the presence of newly-synthesized RNA and protein molecules within or on a proportion of (1) the primary and secondary granules in all classes of eosinophil precursors and (2) the secondary granules in eosinophil granulocytes. It is suggested that the granule-associated RNA molecules may be concerned with the synthesis of at least some of the new protein molecules which were incorporated into the limiting membrane or substance of eosinophil granules long after the immature primary granule stage. Studies of eosinophil precursors which had been incubated with [ 3 H]thymidine for 1 h showed that the eosinophil granules did not label with this DNA precursor. (author)

  19. The acute effects of ionizing radiation on DNA synthesis and the development of antibody-producing cells

    International Nuclear Information System (INIS)

    Harris, G.; Olsen, I.; Cramp, W.A.

    1981-01-01

    Ionizing radiation inhibited the development of specific haemolysin-producing cells (PFC) and depressed the incorporation of ( 3 H) thymidine by rabbit spleen explants responding to SRC in the culture medium. In contrast to these effects, the rates of incorporation of precursors for protein and RNA synthesis were much less affected. The depression of ( 3 H) thymidine incorporation was found to result from a quantitative reduction of new DNA synthesis, without any change in the proportion of labelled cells, at any time after irradiation. The DNA synthesis occurring in these cells preparing to develop antibody-producing capacity was thus radio-sensitive, but the exact nature of the defect resulting from exposure to radiation requires further study. (orig.)

  20. Effects of an extract from the sea squirt Ecteinascidia turbinata on DNA synthesis and excision repair in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, W.C.; Carrier, W.L.; Regan, J.D.

    1982-01-01

    An aqueous ethanol extract from the marine tunicate species Ecteinascidia turbinata was studied to determine its effect on semiconservative DNA synthesis in human skin fibroblast cultures as measured by (/sup 3/H) thymidine uptake in acid-insoluble cell fractions. In addition, the effect of this extract on DNA excision repair in ultraviolet light (254 nm) irradiated fibroblasts was measured by the bromodeoxyuridine photolysis assay, thymine dimer chromatography, and DNA single-strand break analysis on alkaline sucrose gradients. Repair inhibition was accompanied by an accumulation of single-strand DNA breaks which was enhanced by the addtion of 2 mM hydroxyurea. These results are discussed with respect to a mechanism of action of the marine tunicate extract at the level of DNA polymerases and are contrasted with previously studied inhibitory mechanisms of arabinofuranosyl nucleosides.

  1. Recovery of DNA synthesis after ultraviolet irradiation of xeroderma pigmentosum cells depends on excision repair and is blocked by caffeine

    International Nuclear Information System (INIS)

    Park, S.D.; Cleaver, J.E.

    1979-01-01

    Normal human and xeroderma pigmentosum (XP, excision-defective group A) cells (both SV40-transformed) pulse-labeled with [ 3 H] thymidine at various times after irradiation with ultraviolet light showed a decline and recovery of both the molecular weights of newly synthesized DNA and the rated of synthesis per cell. At the same ultraviolet dose, both molecular weights and rates of synthesis were inhibited more in XP than in normal cells. This indicates that excision repair plays a role in minimizing the inhibition of chain growth, possibly by excision of dimers ahead of the growing point. The ability to synthesize normal-sized DNA recovered more rapidly than rates of synthesis in normal cells, but both parameters recovered in phase in XP cells. During recovery in normal cells there are therefore fewer actively replicating clusters of replicons because the single-strand breaks involved in the excision of dimers inhibit replicon initiation. XP cells have few excision repair events and therefore fewer breaks to interfere with initiation, but chain growth is blocked by unexcised dimers. In both cell types recovery of the ability to synthesize normal-sized DNA was prevented by growing cells in caffeine after irradiation, possibly because of competition between the DNA binding properties of caffeine and replication proteins. These observations imply that excision repair and semiconservative replication interact strongly in irradiated cells to produce a complex spectrum of changes in DNA replication which may be confused with parts of alternative systems such as post-replication repair. (author)

  2. Effect of inhibition of DNA synthesis on recovery of X-irradiated L5178Y-S cells. I

    International Nuclear Information System (INIS)

    Kapiszewska, M.; Lange, C.S.

    1989-01-01

    Irradiated L5178Y-S cells (LY-S) were characterized by an exponential survival curve and the potentiation effect of split -dose irradiation. Previously it was found that in LY-S cells the reduction of DNA replicative synthesis rate affected the balance between the fixation and repair of sublethal damage (SLD) and of potentially lethal damage (PLD) in favor of repair. It was found now that a block of DNA synthesis by aphidicolin (APC), an inhibitor of DNA polymerase alpha, was sufficient to protect LY-S cells from fixation of PLD and SLD induced by X-rays. Treatment with APC 0.5 μg/ml for 2 h, efficiently inhibited DNA replication (95%) with minimal effect on survival. Inhibition of DNA synthesis by combined irradiation and APC was not significantly different from APC treatment alone. The level of protection by APC was dependent on the length of time between irradiation and APC application. An opposite effect was observed when the drug treatment had preceded irradiation: The killing effect of X-ray increased. The effect of aphidicolin treatment remained even after removal of APC and was dependent on the drug concentration and time between drug removal and irradiaton. These results are interpreted as indicating that X-ray damage was fixed in LY-S cells, because of their lack of ability to maintain the nucleotide pool balance, and that fixation took place during progression through the cell cycle. (author). 6 figs., 22 refs

  3. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  4. UDS and SCE in lymphocytes of persons occupationally exposed to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Tuschl, H.; Kovac, R.; Altmann, H.

    1983-03-01

    Unscheduled DNA synthesis induced by 'in vitro' UV-irradiation was investigated in lymphocytes of persons occupationally exposed to low doses of ionizing radiation (maximum registered radiation dose: 98 mrad/month). For radiation exposures >14 mrad/month, above background level, increased rates of UDS after in vitro UV-irradiation of lymphocytes were found. The bromodeoxyuridine differential chromatid labeling technique was applied to the examination of spontaneous and mytomycin C induced sister chromatid exchanges in the same population. No statistically significant difference could be determined in spontaneously occurring SCEs, while MMC induced SCEs were significantly reduced in persons exposed to radiation doses >14 mrad/month, thus indicating increased repair capability for DNA lesions inflicted by a second insult after protracted low dose irradiation. (Author) [de

  5. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high

  6. Gamma-ray induced inhibition of DNA synthesis in ataxia telangiectasia fibroblasts is a function of excision repair capacity

    International Nuclear Information System (INIS)

    Smith, P.J.; Paterson, M.C.

    1980-01-01

    The extent of the deficiency in γ-ray induced DNA repair synthesis in an ataxia telangiectasia (AT) human fibroblast strain was found to show no oxygen enhancement, consistent with a defect in the repair of base damage. Repair deficiency, but not repair proficiency, in AT cells was accompanied by a lack of inhibition of DNA synthesis by either γ-rays or the radiomimetic drug bleomycin. Experiments with 4-nitroquinoline 1-oxide indicated that lack of inhibition was specific for radiogenic-type damage. Thus excision repair, perhaps by DNA strand incision or chromatin modification, appears to halt replicon initiation in irradiated repair proficient cells whereas in repair defective AT strains this putatively important biological function is inoperative

  7. Extent of excision repair before DNA synthesis determines the mutagenic but not the lethal effect of UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Konze-Thomas, B.; Hazard, R.M.; Maher, V.M.; McCormick, J.J. (Michigan State Univ., East Lansing (USA). Carcinogenesis Lab.)

    1982-01-01

    Excision repair-proficient diploid fibroblasts from normal persons (NF) and repair-deficient cells from a xeroderma pigmentosum patient (XP12BE, group A) were grown to confluence and allowed to enter the G/sub 0/ state. Autoradiography studies of cells released from G/sub 0/ after 72 h and replated at lower densities (3-9 x 10/sup 3/ cells/cm/sup 2/) in fresh medium showed that semiconservative DNA synthesis (S phase) began approx. equal to 24 h after the replating. The task was to determine whether the time available for DNA excision repair between ultraviolet irradiation (254 nm) and the onset of DNA synthesis was critical in determining the cytotoxic and/or mutagenic effect of UV in human fibroblasts.

  8. Effect of UV on DNA synthesis in UV-resistant insect cells

    International Nuclear Information System (INIS)

    Styer, S.C.; Meechan, P.J.; Griffiths, T.D.

    1987-01-01

    Insect cells are most resistant to killing by 254 nm ultraviolet light (UV) than mammalian cells. Because they have an active photolyase, it may be possible to generate a higher number of [6-4] PyC lesions per genome, allowing the possibility to distinguish between the effects of [5-6] pyrimidine lesions and the nonphotoreactable [6-4] lesions on DNA replication. IAL-PID2 cells, derived from imaginal wing discs of the Indian meal moth were exposed to UV followed by photoreactivating light (PR) or sham treatment and then analyzed by measuring the incorporation of [/sup 3/H]-thymidine into acid precipitable form. As expected, there was a fluence-dependent decrease in the amount of thymidine incorporated after exposure to UV. The response was similar to that observed in wild type CHO cells (AAS) except that the rate of decline was more rapid. When PR followed UV, there was less of a decline in thymidine incorporation and a more rapid recovery. However, thymidine incorporation did not return to control levels as rapidly as expected if [5-6] lesions were the only lesions involved in the disruption of DNA synthesis after exposure to UV

  9. Induction of DNA synthesis and apoptosis are separable functions of E2F-1

    DEFF Research Database (Denmark)

    Phillips, A C; Bates, S; Ryan, K M

    1997-01-01

    The family of E2F transcription factors have an essential role in mediating cell cycle progression, and recently, one of the E2F protein family, E2F-1, has been shown to participate in the induction of apoptosis. Cooperation between E2F and the p53 tumor suppressor protein in this apoptotic...... response had led to the suggestion that cell cycle progression induced by E2F-1 expression provides an apoptotic signal when placed in conflict with an arrest to cell cycle progression, such as provided by p53. We show here that although apoptosis is clearly enhanced by p53, E2F-1 can induce significant...... apoptosis in the absence of p53. Furthermore, this apoptotic function of E2F-1 is separable from the ability to accelerate entry into DNA synthesis. Analysis of E2F-1 mutants indicates that although DNA-binding is required, transcriptional transactivation is not necessary for the induction of apoptosis by E...

  10. Involvement of sulfoquinovosyl diacylglycerol in DNA synthesis in Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Aoki Motohide

    2012-02-01

    Full Text Available Abstract Background Sulfoquinovosyl diacylglycerol (SQDG is present in the membranes of cyanobacteria and their postulated progeny, plastids, in plants. A cyanobacterium, Synechocystis sp. PCC 6803, requires SQDG for growth: its mutant (SD1 with the sqdB gene for SQDG synthesis disrupted can grow with external supplementation of SQDG. However, upon removal of SQDG from the medium, its growth is retarded, with a decrease in the cellular content of SQDG throughout cell division, and finally ceases. Concomitantly with the decrease in SQDG, the maximal activity of photosynthesis at high-light intensity is repressed by 40%. Findings We investigated effects of SQDG-defect on physiological aspects in Synechocystis with the use of SD1. SD1 cells defective in SQDG exhibited normal photosynthesis at low-light intensity as on culturing. Meanwhile, SD1 cells defective in SQDG were impaired in light-activated heterotrophic growth as well as in photoautotrophic growth. Flow cytometric analysis of the photoautotrophically growing cells gave similar cell size histograms for the wild type and SD1 supplemented with SQDG. However, the profile of SD1 defective in SQDG changed such that large part of the cell population was increased in size. Of particular interest was the microscopic observation that the mitotic index, i.e., population of dumbbell-like cells with a septum, increased from 14 to 29% in the SD1 culture without SQDG. Flow cytometric analysis also showed that the enlarged cells of SD1 defective in SQDG contained high levels of Chl, however, the DNA content was low. Conclusions Our experiments strongly support the idea that photosynthesis is not the limiting factor for the growth of SD1 defective in SQDG, and that SQDG is responsible for some physiologically fundamental process common to both photoautotrophic and light-activated heterotrophic growth. Our findings suggest that the SQDG-defect allows construction of the photosynthetic machinery at an

  11. Porphyrin metabolism in lymphocytes of miners exposed to diesel exhaust at oil shale mine

    Energy Technology Data Exchange (ETDEWEB)

    Muzyka, V.; Bogovski, S.; Lang, I.; Schmidt, N.; Ryazanov, V.; Veidebaum, T. [Laboratory of Environmental Carcinogens, Institute of Experimental and Clinical Medicine, Hiiu 42, Tallinn 11619 (Estonia); Scheepers, P.T.J. [Department of Epidemiology and Biostatistics, University Medical Centre St Radboud, P.O. Box 9101, Nijmegen NL 6500 HB (Netherlands)

    2004-04-25

    The present study was carried out on the evaluation and application of new biomarkers for populations exposed to occupational diesel exhaust at oil shale mines. Since not only genotoxic effects may play an important role in the generation of tumors, the level of porphyrin metabolism was proposed as a biomarker of diesel exhaust exposure effects. The data on determination of 5-aminolevulinic acid (ALA) synthesis and heme formation in lymphocytes from groups of 50 miners exposed to diesel exhaust and 50 unexposed surface workers of oil shale mine are presented. All workers were examined and interviewed using structured questionnaires. The levels of benzene, carbon monoxide and nitric oxides in air as well as concentrations of 1-nitropyrene and elemental carbon in particulate matter were used for evaluation of exposure to diesel exhaust in mine. The levels of ALA and protoporphyrin (PP), activities of ALA synthetase (ALA-S) and ferrochelatase (FC), as well as levels of PP associated with DNA (PP/DNA) were investigated in lymphocytes spectrophotometrically. Significant differences in activity of ALA synthesis and heme formation between exposed miners and surface workers were found (207{+-}23 vs. 166{+-}14 pmol/10{sup 6} lymp./30' for ALA-S and 46.1{+-}3.8 vs. 54.8{+-}4.1 pmol/10{sup 6} lymp./60' for FC activities, respectively, P<0.001). ALA-S activity was higher and ALA accumulated in lymphocytes of exposed miners. Inhibition of FC activity caused PP cellular accumulation and an increase in the PP/DNA level (P<0.05). Tobacco smoking led to the increase of ALA biosynthesis in lymphocytes of both surface and underground smokers. The comparison of data obtained for non-smokers and smokers of both groups of workers has shown a significant difference (P<0.05). The work duration of underground or surface workers did not significantly influence the investigated biochemical parameters. The determination of ALA synthesis in lymphocytes could be a useful biomonitoring

  12. DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients.

    Science.gov (United States)

    Ziv, Omer; Geacintov, Nicholas; Nakajima, Satoshi; Yasui, Akira; Livneh, Zvi

    2009-07-14

    Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase eta, the POLH gene product. A deficiency in DNA polymerase eta due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase zeta cooperates with DNA polymerases kappa and iota to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases zeta and kappa, but not iota, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load.

  13. DNA polymerase ζ cooperates with polymerases κ and ι in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients

    Science.gov (United States)

    Ziv, Omer; Geacintov, Nicholas; Nakajima, Satoshi; Yasui, Akira; Livneh, Zvi

    2009-01-01

    Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase η, the POLH gene product. A deficiency in DNA polymerase η due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase ζ cooperates with DNA polymerases κ and ι to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases ζ and κ, but not ι, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load. PMID:19564618

  14. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis

    Directory of Open Access Journals (Sweden)

    Stougaard Magnus

    2007-11-01

    Full Text Available Abstract Background In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature. Methods Synchronized cultured cells were fixed with methanol/acetic acid to prepare chromosome spreads in teflon-coated diagnostic well-slides. Apart from the slide format and the chromosome spreading everything was done essentially according to standard protocols. Hybridization targets were detected in situ with padlock probes, which were ligated and amplified using target primed rolling circle DNA synthesis, and detected by fluorescence labeling. Results An optimized protocol for the spreading of condensed metaphase chromosomes in teflon-coated diagnostic well-slides was developed. Applying this protocol we generated specimens for target primed rolling circle DNA synthesis of padlock probes recognizing a 40 nucleotide sequence in the male specific repetitive satellite I sequence (DYZ1 on the Y-chromosome and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a gene positioned on the long arm of chromosome 6. These targets were detected with good efficiency, but the efficiency on other target sites was unsatisfactory. Conclusion Our aim was to test the applicability of the method used on mitochondrial DNA to the analysis of nuclear genomes, in particular as

  15. The impact of cofactors and inhibitors on DNA repair synthesis after γ-irradiation in semi-permeable Escherichia coli cells

    International Nuclear Information System (INIS)

    Gaertner, C.

    1981-01-01

    The DNA-repair synthesis in tuluol-permeable E. coli cells after γ-irradiation has been investigated in dependence on the co-facotrs. ATB and NAD by means of enzyme kinetics. A partly repair-deficient mutants were taken into consideration which are well characterized in view of molecular biology; they showed which enzyme functions participate in the γ-induced DNA repair synthesis. The inhibition of the DNA-repair synthesis by the intercalary substances Adriamycin and Proflavin has been described and compared with the survival rates after irradiation and after combined treatment by irradiation and intercalary agents. (orig./AJ) [de

  16. Cell growth state determines susceptibility of repair DNA synthesis to inhibition by hydroxyurea and 1-beta-D-arabinofuranosylcytosine

    International Nuclear Information System (INIS)

    Mullinger, A.M.; Collins, A.R.; Johnson, R.T.

    1983-01-01

    The effects of inhibitors of replicative DNA synthesis on repair DNA synthesis have been examined by autoradiography in several different cell types and in cells in different growth states. Hydroxyurea (HU) and 1-beta-D-arabinofuranosylcytosine (ara C), administered together, influence unscheduled DNA synthesis (UDS) in a manner which is independent of the status of the cell culture (normal or transformed) and of the species, but which is strongly affected by whether the cells are proliferating or quiescent. In proliferating human, Chinese hamster and Microtus cell cultures, UDS is not inhibited by HU and ara C, and may even appear to be stimulated. In quiescent cultures of these cells UDS is reduced by HU and ara C. In cells reseeded from a confluent culture and followed during proliferation and back to quiescence the effect of inhibitors parallels the growth pattern. The results are interpreted in terms of changes in the sizes of endogenous DNA precursor pools; they underline the potential problems associated with quantitating UDS in the presence of inhibitors

  17. Systematic review of the use of the lymphocyte cytokinesis-block micronucleus assay to measure DNA damage induced by exposure to polycyclic aromatic hydrocarbons

    Czech Academy of Sciences Publication Activity Database

    Šrám, Radim; Švecová, Vlasta; Rössnerová, Andrea

    2016-01-01

    Roč. 770, oct - dec (2016), s. 162-169 ISSN 1383-5742 R&D Projects: GA ČR(CZ) GA13-13458S Institutional support: RVO:68378041 Keywords : cytokinesis blocked micronuclei * peripheral blood lymphocytes * polycyclic aromatic hydrocarbons Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 5.500, year: 2016

  18. The determination of lymphocyte transformation in patients of various diseases

    International Nuclear Information System (INIS)

    Su Liaoyuan; Liu Ke Liang; Lin Xingcheng; Sun Guoqi; Xue Zhimou

    1987-01-01

    The synthesis of DNA, RNA and protein during the transformation of human lymphocytes induced by mitogen PHA and LPS was investigated by quantitation of 3 H-TdR, 14 C-UR and 14 C-valine incorporation method. 1666 tests were carried out in patients with various diseases and 424 tests in normal subjects. It was found that immunocompetence was closely related with the progress and prognosis in patients with leukemia. Impairment of the cell-mediated immunity in patients with squamous cell carcinoma and with encephlitis was observed. There was no difference in immunity between patients with adenocarcinoma and the normal subjects. The ionizing irradiation mainly exerts its effect on cell-mediated immunity. The cell-mediated immunity was found to be impaired while the humoral immune regulation was enhanced in tuberculosis and leprosy, indicating that these diseases were caused by impairment of cell-mediated immunity. Both humoral and cell-mediated immunity return to normal levels at convalescence. The uptake of 14 C-UR by lymphocytes in patients with hepatitis increased significantly. Lymphocytes reactivity was elevated in patients with vernal conjunctivities and normal in patients with uveitis. Low reactivity was observed in patients with keratitis. The immunity in various diseases was discussed

  19. Influence of some radioprotective and radiosensitizing compounds on the replicative and repair induced DNA synthesis of rats spleen cells in vitro

    International Nuclear Information System (INIS)

    Goette, A.

    1982-01-01

    The effect of cysteine, dithiothreitol, N-ethylmaleimide, cytosinearabinoside, ethidiumbromide, bleomycine and diethyldithiocarbamate on the replicative and repair induced DNA synthesis in vitro was tested by using rats spleen cells. Besides the incorporation of a labeled DNA precursor (TdR- 3 H) the sedimentation of DNA in sucrose gradients was inquired. With respect to the DNA synthesis an uniform mechanism of action for the radioprotective substances can't be seen. Thymocytes and spleen cells seem to possess different systems of repair; this may be an explanation for their different sensibility against ionizing radiation. (orig./MG) [de

  20. N-(2-chloroethyl)-N-nitrosoureas covalently bound to nonionic and monocationic lexitropsin dipeptides. Synthesis, DNA affinity binding characteristics, and reactions with 32P-end-labeled DNA

    International Nuclear Information System (INIS)

    Church, K.M.; Wurdeman, R.L.; Zhang, Yi; Chen, Faxian; Gold, B.

    1990-01-01

    The synthesis and characterization of a series of compounds that contain an N-alkyl-N-nitrosourea functionality linked to DNA minor groove binding bi- and tripeptides (lexitropsins or information-reading peptides) based on methylpyrrole-2-carboxamide subunits are described. The lexitropsins (lex) synthesized have either a 3-(dimethylamino)propyl or propyl substituent on the carboxyl terminus. The preferred DNA affinity binding sequences of these compounds were footprinted in 32 P-end-labeled restriction fragments with methidiumpropyl-EDTA·Fe(II), and in common with other structural analogues, e.g., distamycin and netropsin, these nitrosoureas recognize A-T-rich runs. The affinity binding of the compound with the dimethylamino terminus, which is ionized at near-neutral pH, appeared stronger than that observed for the neutral dipeptide. The sequence specificity for DNA alkylation by (2-chloroethyl)nitrosourea-lex dipeptides (Cl-ENU-lex), with neutral and charged carboxyl termini, using 32 P-end-labeled restriction fragments, was determined by the conversion of the adducted sites into single-strand breaks by sequential heating at neutral pH and exposure to base. The DNA cleavage sites were visualized by polyacrylamide gel electrophoresis and autoradiography. Linking the Cl-ENU moiety to minor groove binders is a viable strategy to qualitatively and quantitatively control the delivery and release of the ultimate DNA alkylating agent in a sequence-dependent fashion

  1. Modification of radiation induced genetic damage and impaired DNA synthesis by thiourea treatment in Solanum incanum L

    International Nuclear Information System (INIS)

    Kumar, Girish

    1991-01-01

    Modification of induced genetic damage after exposure to LD 50 and LD 90 doses of 60 Co gamma-irradiation on dormant seeds of Solanum incanum L. by pre- and post-treatments of thiourea was investigated. Thiourea pre-treatment reduced cellular lesions, growth injury and the death of seedlings, while post-treatment increased lethality. Incorporation of 3 H-tymidine into DNA fraction gradually increased with 10 -4 to 10 -2 M thiourea treatment when applied before irradiation. Post-treatment of the thiourea, on the other hand, not only showed poor labelling of DNA but also delayed its synthesis. (author)

  2. Synthesis of high specific activity tritium-labelled chloroethylcyclohexylnitrosourea and its application to the study of DNA modification

    Energy Technology Data Exchange (ETDEWEB)

    Siew, E.L. (State Univ. of New York, Albany, NY (USA). Dept. of Chemistry); Habraken, Yvette; Ludlum, D.B. (Massachusetts Univ., Worcester, MA (USA). Medical School)

    1991-02-01

    A small-scale synthesis of high specific activity, N-(2-chloro-2-{sup 3}H-ethyl)-N'-cyclohexyl-N-nitrosourea ({sup 3}H-CCNU) has been accomplished from tritium-labelled ethanolamine. The product is pure by TLC and HPLC analysis and has been used successfully to modify DNA. The overall yield on radioactivity including losses in HPLC purification is approximately 4 percent. The availability of this tritium-labelled compound makes studies of DNA repair and of cellular resistance to N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea possible. (author).

  3. Synthesis of high specific activity tritium-labelled chloroethylcyclohexylnitrosourea and its application to the study of DNA modification

    International Nuclear Information System (INIS)

    Siew, E.L.; Habraken, Yvette; Ludlum, D.B.

    1991-01-01

    A small-scale synthesis of high specific activity, N-(2-chloro-2-[ 3 H-ethyl)-N'-cyclohexyl-N-nitrosourea ([ 3 H]-CCNU) has been accomplished from tritium-labelled ethanolamine. The product is pure by TLC and HPLC analysis and has been used successfully to modify DNA. The overall yield on radioactivity including losses in HPLC purification is approximately 4 percent. The availability of this tritium-labelled compound makes studies of DNA repair and of cellular resistance to N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea possible. (author)

  4. Scheduled and unscheduled DNA synthesis in chick embryo liver following X-irradiation and treatment with DNA repair inhibitors in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Stammberger, I.; Tempel, K. (Muenchen Univ. (Germany, F.R.). Inst. fuer Pharmakologie und Toxikologie); Schmahl, W. (Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg (Germany, F.R.). Inst. fuer Pathologie)

    1989-09-01

    Three hours following X-irradiation of chick embryos with doses of 4 and 8 Gy the in vitro incorporation of tritiated thymidine (({sup 3}H)dT) into DNA (scheduled DNA synthesis, ss) of hepatocytes was reduced to about one-third. Within 24 h after the exposure, ss returned to control values. The return of ss to a normal rate could be strongly inhibited by 2', 3'-dideoxythymidine (ddT), and to a lesser extent by 1-beta-D-arabinofuranosylcytosine (araC). In strong contrast to ss, the hydroxyurea (hu)-resistant ({sup 3)H}dT incorporation (unscheduled DNA synthesis, us) showed a highly significant increase 24 h after treatment of the embryos with araC and/or X-irradiation. Autoradiographic studies revealed no change of total ({sup 3}H)dT labelling frequency in the whole chick embryo liver 24 h after treatment with araC and/or X-irradiation, but a persistent depression of ss and a simultaneous increase of us. (author).

  5. Delayed effects of low level acute irradiation and chronic environmental radioactive contamination on DNA lymphocytes of people living in Dolon, a settlement located in the vicinity of the Semipalatinsk nuclear test site (Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Chenal, C.; Legue, F.; Nourgalieva, K. [UMR CNRS 6553 ' Ecobio' , Equipe Radiations Environnement Adaptation. Universite de RENNES 1, Campus de Beaulieu, Bat 14, RENNES Cedex F 35042 (France)

    2006-10-01

    During 42 years several hundred nuclear tests were performed by the former USSR at the Semipalatinsk Test Site (STS, Kazakhstan), of which more than 100 were done in the atmosphere. We report here the late genetic damage of external exposure to radiation and environmental radioactive contamination in people living in Dolon, a small settlement situated in the vicinity of the STS. The comet assay was applied on DNA lymphocytes of 20 exposed women and 32 non-exposed women living at 500 km from the STS. We observed a statistically significant difference between the exposed and control groups for mean tail moment (MTM) and DNA% in the tail. The mean values of all comet assay parameters (MTM, DNA% in the tail and score) were higher in the group of women born before 1949 as compared to those born after 1950, which could reflect an effect of external irradiation in 1949 due to the most contaminating explosion. These results suggest that people exposed 50 years ago to relatively small doses of external irradiation and/or still living in an environment contaminated by small amounts of long life radionuclides, still present DNA damage which is in agreement with other cytogenetical studies performed at the same site, on the same population. (author)

  6. Delayed effects of low level acute irradiation and chronic environmental radioactive contamination on DNA lymphocytes of people living in Dolon, a settlement located in the vicinity of the Semipalatinsk nuclear test site (Kazakhstan)

    International Nuclear Information System (INIS)

    Chenal, C.; Legue, F.; Nourgalieva, K.

    2006-01-01

    During 42 years several hundred nuclear tests were performed by the former USSR at the Semipalatinsk Test Site (STS, Kazakhstan), of which more than 100 were done in the atmosphere. We report here the late genetic damage of external exposure to radiation and environmental radioactive contamination in people living in Dolon, a small settlement situated in the vicinity of the STS. The comet assay was applied on DNA lymphocytes of 20 exposed women and 32 non-exposed women living at 500 km from the STS. We observed a statistically significant difference between the exposed and control groups for mean tail moment (MTM) and DNA% in the tail. The mean values of all comet assay parameters (MTM, DNA% in the tail and score) were higher in the group of women born before 1949 as compared to those born after 1950, which could reflect an effect of external irradiation in 1949 due to the most contaminating explosion. These results suggest that people exposed 50 years ago to relatively small doses of external irradiation and/or still living in an environment contaminated by small amounts of long life radionuclides, still present DNA damage which is in agreement with other cytogenetical studies performed at the same site, on the same population

  7. Rectangular coordination polymer nanoplates: large-scale, rapid synthesis and their application as a fluorescent sensing platform for DNA detection.

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    Full Text Available In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs assembled from Cu(II and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1 RCPN binds dye-labeled single-stranded DNA (ssDNA probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2 Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.

  8. Flexible double-headed cytosine-linked 2'-deoxycytidine nucleotides. Synthesis, polymerase incorporation to DNA and interaction with DNA methyltransferases

    Czech Academy of Sciences Publication Activity Database

    Kielkowski, Pavel; Cahová, Hana; Pohl, Radek; Hocek, Michal

    2016-01-01

    Roč. 24, č. 6 (2016), s. 1268-1276 ISSN 0968-0896 R&D Projects: GA ČR GBP206/12/G151 Institutional support: RVO:61388963 Keywords : nucleosides * nucleotides * pyrimidines * DNA methyltransferases * DNA polymerases Subject RIV: CC - Organic Chemistry Impact factor: 2.930, year: 2016

  9. DNA endoreduplication, RNA and protein synthesis during growth and development of the antheridial basal cell in Chara vulgaris L

    International Nuclear Information System (INIS)

    Malinowski, S.; Maszewski, J.

    1994-01-01

    Cytophotometric measurements of nuclear DNA contents and morphometric analyses indicate that the level of endo polyploidy plays an important role in determining the maximum size, transcriptional and translational activity that the antheridial basal cell attains during successive stages of spermatogenesis in Chara vulgaris. During the proliferative period of antheridial development, the metabolic activity of basal cell, expressed as the total incorporation of radioactive uridine and leucine was found to increase gradually with the increasing DNA C-values, yet both the synthesis of RNA and then the synthesis of proteins become reduced at the stage preceding spermiogenesis. In accordance with some earlier data, the obtained results seem to support the hypothesis that regulatory mechanisms of symplasmic connections between the antheridium and a thallus participate in the regulation of morphogenesis of the male sex organs in Chara. (author). 15 refs, 13 figs

  10. DNA synthesis time in germinating rice and pattern of diethylsulphate induced mutations in pre-soaked seeds

    International Nuclear Information System (INIS)

    Narahari, P.

    1978-01-01

    DNA synthesis pattern in germinating rice seeds, pre-soaked in water for varying periods upto 48 hr, was determined by following the pulse incorporation of 3 H-thymidine into the TCA-insoluble nucleoprotein. Synthesis of DNA commenced at 24 hr, progressively increased to a first peak at about 38 hr, thereafter showed a 1/3rd drop and subsequently increased to a 2nd and still higher peak at 46 to 48 hr of pre-soaking. Treatments of diethylsulphate (dES) at a low concentration (0.2%-2hr) administered at various progressing stages of DNA synthesis resulted in decrease in seedling height and survival, and increase in mutation frequency at 45 hr. pre-soaking, maximum mutation frequencies of 20, 10 and 2% on M 1 plants, M 1 spikes and M 2 seedling bases, respectively were observed. Higher dES concentration (0.3%-2hr) given at later periods of pre-soaking showed near lethal effects and consequently decreased mutation frequencies. Treatments of sodium fluoride given singly or in combination with dES did not show any substantially different results as compared to those of the respective controls. Mutation spectra observed after dES treatments to germinating seeds, at different pre-soaking periods, were quite dissimilar. Specific mutations of economic importance like semi-dwarf mutants were isolated from the treatment of germinating seeds pre-soaked for 37.5 hr or more when shoot apex cells were undergoing DNA synthesis. (author)

  11. Changes in the synthesis of DNA, RNA and protein during somatic embryogenesis in wheat (triticum aestivum L.)

    International Nuclear Information System (INIS)

    Cui Kairong; Wang Xiaozhe; Chen Xiong; Wang Yafu

    1997-01-01

    Embryogenic and non-embryogenic callus formed from immature embryo of wheat (Triticum aestivum L.) in N 6 B 5 MS medium I supplemented with 2,4-D 2 mg/L, KT 0.5 mg/L, LH300 mg/L, sucrose 3% were sub-cultured and transferred respectively to N 6 B 5 MS medium II (2,4-D was decreased to 0.5 mg/L and 4 mol/L proline was added). Somatic embryos obtained from embryogenic callus, and plantlet formed from non-embryogenic callus through organogenesis respectively. By incorporation of 3 H-thymidine, 3 H-uridine and 3 H-leucine into DNA, RNA and protein respectively, the rate of synthesis of DNA, RNA and protein during somatic embryogenesis were measured. A large amount of RNA and protein synthesized during the early somatic embryogenesis. The activities of RNA and protein synthesis reached the peak on the 4th and the 8th day respectively, then decreased a little, but kept a high level. The synthesis of DNA increased apparently during the early stage. No apparent change occurred when the embryogenic cell masses formed. The synthesis rate of RNA and protein in non-embryogenic callus were much less than that in embryogenic callus. Actinomycin and cycloheximide inhibited not only the synthesis of nucleic acid and protein, but also the growth of embryogenic callus and somatic embryogenesis. The earlier the inhibitors were added, the greater the influence was caused. The results indicate that the active expression of corresponding genes of wheat is the molecular base of somatic embryogenesis

  12. RRR-alpha-tocopheryl succinate inhibits EL4 thymic lymphoma cell growth by inducing apoptosis and DNA synthesis arrest.

    Science.gov (United States)

    Yu, W; Sanders, B G; Kline, K

    1997-01-01

    RRR-alpha-tocopheryl succinate (vitamin E succinate, VES) treatment of murine EL4 T lymphoma cells induced the cells to undergo apoptosis. After 48 hours of VES treatment at 20 micrograms/ml, 95% of cells were apoptotic. Evidence for the induction of apoptosis by VES treatments is based on staining of DNA for detection of chromatin condensation/fragmentation, two-color flow-cytometric analyses of DNA content, and end-labeled DNA and electrophoretic analyses for detection of DNA ladder formation. VES-treated EL4 cells were blocked in the G1 cell cycle phase; however, apoptotic cells came from all cell cycle phases. Analyses of mRNA expression of genes involved in apoptosis revealed decreased c-myc and increased bcl-2, c-fos, and c-jun mRNAs within three to six hours after treatment. Western analyses showed increased c-Jun, c-Fos, and Bcl-2 protein levels. Electrophoretic mobility shift assays showed increased AP-1 binding at 6, 12, and 24 hours after treatment and decreased c-Myc binding after 12 and 24 hours of VES treatment. Treatments of EL4 cells with VES+RRR-alpha-to-copherol reduced apoptosis without effecting DNA synthesis arrest. Treatments of EL4 cells with VES+rac-6-hydroxyl-2, 5,7,8-tetramethyl-chroman-2-carboxylic acid, butylated hydroxytoluene, or butylated hydroxyanisole had no effect on apoptosis or DNA synthesis arrest caused by VES treatments. Analyses of bcl-2, c-myc, c-jun, and c-fos mRNA levels in cells receiving VES + RRR-alpha-tocopherol treatments showed no change from cells receiving VES treatments alone, implying that these changes are correlated with VES treatments but are not causal for apoptosis. However, treatments with VES + RRR-alpha-tocopherol decreased AP-1 binding to consensus DNA oligomer, suggesting AP-1 involvement in apoptosis induced by VES treatments.

  13. DNA synthesis and degradation in UV-irradiated toluene treated cells of E. coli K12: the role of polynucleotide ligase

    International Nuclear Information System (INIS)

    Strike, P.

    1977-01-01

    Toluene treated cells have been used to study the processes of DNA synthesis and DNA degradation in ultra-violet irradiated Escherichia coli K12. Synthesis and degradation are both shown to occur extensively if polynucleotide ligase is inhibited, and to occur to a much lesser extent if ligase activity is optimal. Extensive UV-induced DNA synthesis in toluene-treated cells requires ATP for the initial incision step, and DNA polymerase I. Extensive degradation also depends on the early ATP-dependent incision step, and the subsequent degradation shows a partial requirement for ATP. Curtailment of degradation by ligase requires DNA polymerase activity, but is not dependent upon DNA polymerase I. Apparently this process can be carried out with equal facility by either DNA polymerase II or polymerase III. These observations suggest that extensive DNA polymerase I-dependent repair synthesis and ext