Sample records for lymphoblastomas

  1. The synthesis of potential chemotherapeutic agents based on leads from nature

    International Nuclear Information System (INIS)

    Brimble, M.A.


    Our research group has developed an efficient synthesis of several simpler members of pyranonaphthoquinone antibiotics using a novel annulation of a 2-acetylnaphthoquinone using 2- trimethylsilyloxyfuran to afford a furonaphthofuran ring system that then underwent oxidative rearrangement to the desired pyranonaphthoquinone ring system. This methodology was then successfully applied to the synthesis of the spiroacetal-containing pyranonaphthoquinone, griseusin A, and the C-glycosidic pyranonaphthoquinone, medermycin, which is effective against neoplastic cells in vitro, antibiotic resistant cell lines of L5178Y lymphoblastoma, and inhibits human leukaemia K 562 cells as well as platelet aggregation. The first efficient synthesis of a dimeric pyranonaphthoquinone as present in the antiviral agent, crisamycin A and γ-actinorhodin, has also been successfully effected using an efficient double furofuran-oxidative rearrangement strategy starting from a bis(2-acetyl-1,4-naphthoquinone)

  2. Cd1b-Mediated T Cell Recognition of a Glycolipid Antigen Generated from Mycobacterial Lipid and Host Carbohydrate during Infection (United States)

    Moody, D. Branch; Guy, Mark R.; Grant, Ethan; Cheng, Tan-Yun; Brenner, Michael B.; Besra, Gurdyal S.; Porcelli, Steven A.


    T cells recognize microbial glycolipids presented by CD1 proteins, but there is no information regarding the generation of natural glycolipid antigens within infected tissues. Therefore, we determined the molecular basis of CD1b-restricted T cell recognition of mycobacterial glycosylated mycolates, including those produced during tissue infection in vivo. Transfection of the T cell receptor (TCR) α and β chains from a glucose monomycolate (GMM)-specific T cell line reconstituted GMM recognition in TCR-deficient T lymphoblastoma cells. This TCR-mediated response was highly specific for natural mycobacterial glucose-6-O-(2R, 3R) monomycolate, including the precise structure of the glucose moiety, the stereochemistry of the mycolate lipid, and the linkage between the carbohydrate and the lipid. Mycobacterial production of antigenic GMM absolutely required a nonmycobacterial source of glucose that could be supplied by adding glucose to media at concentrations found in mammalian tissues or by infecting tissue in vivo. These results indicate that mycobacteria synthesized antigenic GMM by coupling mycobacterial mycolates to host-derived glucose. Specific T cell recognition of an epitope formed by interaction of host and pathogen biosynthetic pathways provides a mechanism for immune response to those pathogenic mycobacteria that have productively infected tissues, as distinguished from ubiquitous, but innocuous, environmental mycobacteria. PMID:11015438