WorldWideScience

Sample records for lycaenid butterfly glaucopsyche

  1. Four new lycaenid butterfly records from the Kumaon Himalaya, India

    Directory of Open Access Journals (Sweden)

    P. Smetacek

    2011-02-01

    Full Text Available The known distribution of four species of Lycaenid butterflies, Talicada nyseus, Nacaduba kurava, Flos asoka and Arhopala abseus indicus, is extended to the Kumaon Himalaya, Uttarakhand, India.

  2. A phylogenetic revision of the Glaucopsyche section (Lepidoptera: Lycaenidae), with special focus on the Phengaris-Maculinea clade

    DEFF Research Database (Denmark)

    Ugelvig, L. V.; Vila, R.; Pierce, N. E.

    2011-01-01

    Despite much research on the socially parasitic large blue butterflies (genus Maculinea) in the past 40years, their relationship to their closest relatives, Phengaris, is controversial and the relationships among the remaining genera in the Glaucopsyche section are largely unresolved. The evoluti......Despite much research on the socially parasitic large blue butterflies (genus Maculinea) in the past 40years, their relationship to their closest relatives, Phengaris, is controversial and the relationships among the remaining genera in the Glaucopsyche section are largely unresolved...... utilising more than one plant family. Maculinea is, for the first time, recovered with strong support as a monophyletic group nested within Phengaris, with the closest relative being the rare genus Caerulea. The genus Glaucopsyche is polyphyletic, including the genera Sinia and Iolana. Interestingly, we...

  3. The Lycaenid Central Symmetry System: Color Pattern Analysis of the Pale Grass Blue Butterfly Zizeeria maha.

    Science.gov (United States)

    Iwata, Masaki; Taira, Wataru; Hiyama, Atsuki; Otaki, Joji M

    2015-06-01

    The nymphalid groundplan has been proposed to explain diverse butterfly wing color patterns. In this model, each symmetry system is composed of a core element and a pair of paracore elements. The development of this elemental configuration has been explained by the induction model for positional information. However, the diversity of color patterns in other butterfly families in relation to the nymphalid groundplan has not been thoroughly examined. Here, we examined aberrant color pattern phenotypes of a lycaenid butterfly, Zizeeria maha, from mutagenesis and plasticity studies as well as from field surveys. In several mutants, the third and fourth spot arrays were coordinately positioned much closer to the discal spot in comparison to the normal phenotype. In temperature-shock types, the third and fourth array spots were elongated inwardly or outwardly from their normal positions. In field-caught spontaneous mutants, small black spots were located adjacent to normal black spots. Analysis of these aberrant phenotypes indicated that the spots belonging to the third and fourth arrays are synchronously changeable in position and shape around the discal spot. Thus, these arrays constitute paracore elements of the central symmetry system of the lycaenid butterflies, and the discal spot comprises the core element. These aberrant phenotypes can be explained by the black-inducing signals that propagate from the prospective discal spot, as predicted by the induction model. These results suggest the existence of long-range developmental signals that cover a large area of a wing not only in nymphalid butterflies, but also in lycaenid butterflies.

  4. Microbial communities of lycaenid butterflies do not correlate with larval diet

    Directory of Open Access Journals (Sweden)

    Melissa Whitaker

    2016-11-01

    Full Text Available Herbivores possess many counteradaptations to plant defenses, and a growing body of research describes the role of symbiotic gut bacteria in mediating herbivorous diets among insects. However, persistent bacterial symbioses have not been found in Lepidoptera, despite the fact that perhaps 99% of the species in this order are herbivorous. We surveyed bacterial communities in the guts of larvae from 31 species of lycaenid butterflies whose caterpillars had diets ranging from obligate carnivory to strict herbivory. Contrary to our expectations, we found that the bacterial communities of carnivorous and herbivorous caterpillars do not differ in richness, diversity, or composition. Many of the observed bacterial genera are commonly found in soil and plant surfaces, and we detected known homopteran endosymbionts in the guts of homopterophagous species, suggesting that larvae acquire gut bacteria from their food and environment. These results indicate that lycaenid butterflies do not rely on specific bacterial symbioses to mediate their diverse diets, and provide further evidence of taxonomically depauperate bacterial communities among Lepidoptera.

  5. Structural color of a lycaenid butterfly: analysis of an aperiodic multilayer structure

    International Nuclear Information System (INIS)

    Yoshioka, S; Shimizu, Y; Kinoshita, S; Matsuhana, B

    2013-01-01

    We investigated the structural color of the green wing of the lycaenid butterfly Chrysozephyrus brillantinus. Electron microscopy revealed that the bottom plate of the cover scale on the wing consists of an alternating air–cuticle multilayer structure. However, the thicknesses of the layers were not constant but greatly differed depending on the layer, unlike the periodic multilayer designs often adopted for artificial laser-reflecting mirrors. The agreement between the experimentally determined and theoretically calculated reflectance spectra led us to conclude that the multilayer interference in the aperiodic system is the primary origin of the structural color. We analyzed optical interference in this aperiodic system using a simple analytical model and found that two spectral peaks arise from constructive interference among different parts of the multilayer structure. We discuss the advantages and disadvantages of the aperiodic system over a periodic one. (paper)

  6. Two lactones in the androconial scent of the lycaenid butterfly Celastrina argiolus ladonides

    Science.gov (United States)

    Ômura, Hisashi; Yakumaru, Kazuhisa; Honda, Keiichi; Itoh, Takao

    2013-04-01

    Male adult butterflies of many species have characteristic odors originating from the disseminating organs known as androconia. Despite the fact that androconia exist in several species, there have been few investigations on adult scents from the lycaenid species. Celastrina argiolus ladonides (Lycaenidae) is a common species in Eurasia. We have reported that male adults of this species emit a faint odor, and the major components causing this odor have been newly found in the Insecta. By using field-caught individuals, we determined the chemical nature and location of this odor in the butterfly. Gas chromatography-mass spectrometry (GC-MS) analyses revealed that two lactone compounds, lavender lactone and δ-decalactone, are present in the extracts of males but absent in those of the females. On an average, approximately 50 ng of each compound was found per male. Chiral GC analyses performed using enantiomerically pure standards revealed that the natural lavender lactone was a mixture of two enantiomers with an R/ S ratio of 32:68, whereas the natural δ-decalactone contained only the R-enantiomer. When the analyses were conducted using different parts—forewings, hindwings, and body—of three males, the lactones were more abundantly found on the forewings and hindwings than on the body. Microscopic observation of the wings demonstrated that battledore scales known as androconia are scattered on the upper surface of both the wings of C. argiolus ladonides males. These results indicate that the specialized scales on the wings of males serve as scent-disseminating organs.

  7. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha

    Directory of Open Access Journals (Sweden)

    Otaki Joji M

    2010-08-01

    Full Text Available Abstract Background Many butterfly species have been experiencing the northward range expansion and physiological adaptation, probably due to climate warming. Here, we document an extraordinary field case of a species of lycaenid butterfly, Zizeeria maha, for which plastic phenotypes of wing color-patterns were revealed at the population level in the course of range expansion. Furthermore, we examined whether this outbreak of phenotypic changes was able to be reproduced in a laboratory. Results In the recently expanded northern range margins of this species, more than 10% of the Z. maha population exhibited characteristic color-pattern modifications on the ventral wings for three years. We physiologically reproduced similar phenotypes by an artificial cold-shock treatment of a normal southern population, and furthermore, we genetically reproduced a similar phenotype after selective breeding of a normal population for ten generations, demonstrating that the cold-shock-induced phenotype was heritable and partially assimilated genetically in the breeding line. Similar genetic process might have occurred in the previous and recent range-margin populations as well. Relatively minor modifications expressed in the tenth generation of the breeding line together with other data suggest a role of founder effect in this field case. Conclusions Our results support the notion that the outbreak of the modified phenotypes in the recent range-margin population was primed by the revelation of plastic phenotypes in response to temperature stress and by the subsequent genetic process in the previous range-margin population, followed by migration and temporal establishment of genetically unstable founders in the recent range margins. This case presents not only an evolutionary role of phenotypic plasticity in the field but also a novel evolutionary aspect of range expansion at the species level.

  8. Shiny wing scales cause spec(tac)ular camouflage of the angled sunbeam butterfly, Curetis acuta

    NARCIS (Netherlands)

    Wilts, Bodo D.; Pirih, Primož; Arikawa, Kentaro; Stavenga, Doekele G.

    The angled sunbeam butterfly, Curetis acuta (Lycaenidae), is a distinctly sexually dimorphic lycaenid butterfly from Asia. The dorsal wings of female and male butterflies have a similar pattern, with a large white area in the female and an orange area in the male, framed within brownblack margins.

  9. Molecular substitution rate increases with latitude in butterflies

    DEFF Research Database (Denmark)

    Schär, Sämi; Vila, Roger; Petrović, Andjeljko

    2017-01-01

    of five lycaenid butterfly species with varied ecological adaptations, sampled across a latitudinal gradient in the Holarctic region. We found a positive correlation between latitude and substitution rate of mitochondrial DNA sequences in all species investigated. We propose that this result is the signal...

  10. System-dependent regulations of colour-pattern development: a mutagenesis study of the pale grass blue butterfly

    Science.gov (United States)

    Iwata, Masaki; Hiyama, Atsuki; Otaki, Joji M.

    2013-01-01

    Developmental studies on wing colour patterns have been performed in nymphalid butterflies, but efficient genetic manipulations, including mutagenesis, have not been well established. Here, we have performed mutagenesis experiments in a lycaenid butterfly, the pale grass blue Zizeeria maha, to produce colour-pattern mutants. We fed the P-generation larvae an artificial diet containing the mutagen ethyl methane sulfonate (EMS), and the F1- and F2-generation adults showed various aberrant colour patterns: dorsoventral transformation, anterioposterior background colouration gap, weak contrast, disarrangement of spots, reduction of the size of spots, loss of spots, fusion of spots, and ectopic spots. Among them, the disarrangement, reduction, and loss of spots were likely produced by the coordinated changes of many spots of a single wing around the discal spot in a system-dependent manner, demonstrating the existence of the central symmetry system. The present study revealed multiple genetic regulations for system-dependent and wing-wide colour-pattern determination in lycaenid butterflies. PMID:23917124

  11. Changing biodiversity scenario in the Himalayan ecosystem: Mussoorie, Uttarakhand, India, as revealed by the study of blue butterflies (Lycaenidae

    Directory of Open Access Journals (Sweden)

    A.K. Sidhu

    2011-02-01

    Full Text Available Any change in the population of butterflies is an early warning of pollution or other kinds of habitat degradation. An area rich in butterfly diversity has its own significance in the ecosystem. The current status of butterflies in Mussoorie (Uttarakhand is reviewed. The degradation of the butterfly-rich spots of Mussoorie is discussed. A comparative chart of 66 species of Lycaenid butterflies compares species collected by earlier authors from Mussoorie with current observations. Some of the rare butterflies species have disappeared, probably due the loss of habitat to developmental activities, use of pesticides in farming, urbanization and other anthropogenic activities.

  12. Comparison of genetic population structure of the large blue butterflies Maculinea nausithous and M. teleius

    DEFF Research Database (Denmark)

    Figurny-Puchalska, Edyta; Gadeberg, Rebekka M.E.; Boomsma, Jacobus Jan

    2000-01-01

    We investigated the genetic population structure of two rare myrmecophilous lycaenid butterflies, Maculinea nausithous and M. teleius, which often live sympatrically and have similar biology. In Europe, both species occur in highly fragmented populations and are vulnerable to local extinction. Th...

  13. A Lycaenid Butterfly ( Anthene amarah Guerin) selects unseasonal ...

    African Journals Online (AJOL)

    Felling experiments on the indigenous thorn tree Acacia tortilis in the northern Transvaal revealed that Anthene amarah butterflies oviposit on unseasonal new coppice shoots. Felling resembles damage caused by large browsing mammals in that it modifies the normal phenological rhythms of trees, and in this way ...

  14. Recovery of an endangered butterfly species, Shijimiaeoides divinus, population at Azumino in Nagano Prefecture, Japan

    OpenAIRE

    KODA, Keiko

    2014-01-01

    The large shijimi blue, Shijimiaeoides divinus, is a grassland lycaenid butterfly classified as an endangered species by the Ministry of Environment. In this study, I report on the life history of S. divinus barine and provide new data on the recovery of the natural population in Azumino. This butterfly is single-breeded with the adults usually appearing from late May to early June in Nagano Prefecture. Only three populations of S. divinus barine are maintained in Nagano Prefecture by several...

  15. Phengaris (Maculinea) teleius butterflies select host plants close to Myrmica ants for oviposition, but P. nausithous do not

    NARCIS (Netherlands)

    Wynhoff, Irma; Langevelde, van Frank

    2017-01-01

    Many lycaenid butterfly species have interactions with ants, with 12% obligatorily depending on two sequential sources of larval food, namely host plants and host ants. When host plants are abundant but the density of host ant nests is relatively low, most host plants have no host ant nest in their

  16. Movement patterns and population characteristics of the Karner blue butterfly (Lycaeides melissa samuelis) at Indiana Dunes National Lakeshore

    Science.gov (United States)

    Knutson, Randy L.; Kwilosz, John R.; Grundel, Ralph

    1999-01-01

    We conducted a three-year mark-release-recapture study of the endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov) at Indiana Dunes National Lakeshore to describe the butterfly's movement patterns and to assess seasonal changes in the Karner blue's population structure. Estimated mean Karner blue adult life span was less than 3.5 days. Populations exhibited protandry and about a 2:1 male:female sex ratio at population peak within a brood. Ranges, or maximum distances moved by individual butterflies, were typically less than 100 m. Maximum ranges were less than 1 km. These distances are similar to those reported for other lycaenid butterflies and from other studies of the Karner blue in the midwestern United States. At two sites, fewer than 2% of adults had ranges greater than 300 m, while at a third site 4.3% of adults had ranges greater than 300 m. Given typical subpopulation sizes these movement percentages suggest that few adults per generation will move between subpopulations separated by more than 300 m. Movement of individuals between subpopulation sites is important for maintaining genetic diversity within a metapopulation and for recolonizing areas following local extinctions. Therefore, prudent conservation planning should aim for a landscape with habitat patches suitable for Karner blue butterfly occupancy separated by less than 300 m.

  17. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly

    Science.gov (United States)

    Hiyama, Atsuki; Nohara, Chiyo; Kinjo, Seira; Taira, Wataru; Gima, Shinichi; Tanahara, Akira; Otaki, Joji M.

    2012-01-01

    The collapse of the Fukushima Dai-ichi Nuclear Power Plant caused a massive release of radioactive materials to the environment. A prompt and reliable system for evaluating the biological impacts of this accident on animals has not been available. Here we show that the accident caused physiological and genetic damage to the pale grass blue Zizeeria maha, a common lycaenid butterfly in Japan. We collected the first-voltine adults in the Fukushima area in May 2011, some of which showed relatively mild abnormalities. The F1 offspring from the first-voltine females showed more severe abnormalities, which were inherited by the F2 generation. Adult butterflies collected in September 2011 showed more severe abnormalities than those collected in May. Similar abnormalities were experimentally reproduced in individuals from a non-contaminated area by external and internal low-dose exposures. We conclude that artificial radionuclides from the Fukushima Nuclear Power Plant caused physiological and genetic damage to this species. PMID:22880161

  18. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly.

    Science.gov (United States)

    Hiyama, Atsuki; Nohara, Chiyo; Kinjo, Seira; Taira, Wataru; Gima, Shinichi; Tanahara, Akira; Otaki, Joji M

    2012-01-01

    The collapse of the Fukushima Dai-ichi Nuclear Power Plant caused a massive release of radioactive materials to the environment. A prompt and reliable system for evaluating the biological impacts of this accident on animals has not been available. Here we show that the accident caused physiological and genetic damage to the pale grass blue Zizeeria maha, a common lycaenid butterfly in Japan. We collected the first-voltine adults in the Fukushima area in May 2011, some of which showed relatively mild abnormalities. The F₁ offspring from the first-voltine females showed more severe abnormalities, which were inherited by the F₂ generation. Adult butterflies collected in September 2011 showed more severe abnormalities than those collected in May. Similar abnormalities were experimentally reproduced in individuals from a non-contaminated area by external and internal low-dose exposures. We conclude that artificial radionuclides from the Fukushima Nuclear Power Plant caused physiological and genetic damage to this species.

  19. Why Small Is Beautiful: Wing Colour Is Free from Thermoregulatory Constraint in the Small Lycaenid Butterfly, Polyommatus icarus.

    Science.gov (United States)

    De Keyser, Rien; Breuker, Casper J; Hails, Rosemary S; Dennis, Roger L H; Shreeve, Tim G

    2015-01-01

    We examined the roles of wing melanisation, weight, and basking posture in thermoregulation in Polyommatus Icarus, a phenotypically variable and protandrous member of the diverse Polyommatinae (Lycaenidae). Under controlled experimental conditions, approximating to marginal environmental conditions for activity in the field (= infrequent flight, long duration basking periods), warming rates are maximised with fully open wings and maximum body temperatures are dependent on weight. Variation in wing melanisation within and between sexes has no effect on warming rates; males and females which differ in melanisation had similar warming rates. Posture also affected cooling rates, consistent with cooling being dependent on convective heat loss. We hypothesise that for this small sized butterfly, melanisation has little or no effect on thermoregulation. This may be a factor contributing to the diversity of wing colours in the Polyommatinae. Because of the importance of size for thermoregulation in this small butterfly, requirements for attaining a suitable size to confer thermal stability in adults may also be a factor influencing larval feeding rates, development time and patterns of voltinism. Our findings indicate that commonly accepted views of the importance of melanisation, posture and size to thermoregulation, developed using medium and large sized butterflies, are not necessarily applicable to small sized butterflies.

  20. Why Small Is Beautiful: Wing Colour Is Free from Thermoregulatory Constraint in the Small Lycaenid Butterfly, Polyommatus icarus.

    Directory of Open Access Journals (Sweden)

    Rien De Keyser

    Full Text Available We examined the roles of wing melanisation, weight, and basking posture in thermoregulation in Polyommatus Icarus, a phenotypically variable and protandrous member of the diverse Polyommatinae (Lycaenidae. Under controlled experimental conditions, approximating to marginal environmental conditions for activity in the field (= infrequent flight, long duration basking periods, warming rates are maximised with fully open wings and maximum body temperatures are dependent on weight. Variation in wing melanisation within and between sexes has no effect on warming rates; males and females which differ in melanisation had similar warming rates. Posture also affected cooling rates, consistent with cooling being dependent on convective heat loss. We hypothesise that for this small sized butterfly, melanisation has little or no effect on thermoregulation. This may be a factor contributing to the diversity of wing colours in the Polyommatinae. Because of the importance of size for thermoregulation in this small butterfly, requirements for attaining a suitable size to confer thermal stability in adults may also be a factor influencing larval feeding rates, development time and patterns of voltinism. Our findings indicate that commonly accepted views of the importance of melanisation, posture and size to thermoregulation, developed using medium and large sized butterflies, are not necessarily applicable to small sized butterflies.

  1. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.

    Directory of Open Access Journals (Sweden)

    Motohiro Wakakuwa

    Full Text Available The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are expressed in the blue (λ(max = 453 nm and violet receptors (λ(max = 425 nm, respectively. To reveal accurate absorption profiles and the molecular basis of the spectral tuning of these visual pigments, we successfully modified our honeybee opsin expression system based on HEK293s cells, and expressed PrB and PrV, the first lepidopteran opsins ever expressed in cultured cells. We reconstituted the expressed visual pigments in vitro, and analysed them spectroscopically. Both reconstituted visual pigments had two photointerconvertible states, rhodopsin and metarhodopsin, with absorption peak wavelengths 450 nm and 485 nm for PrB and 420 nm and 482 nm for PrV. We furthermore introduced site-directed mutations to the opsins and found that two amino acid substitutions, at positions 116 and 177, were crucial for the spectral tuning. This tuning mechanism appears to be specific for invertebrates and is partially shared by other pierid and lycaenid butterfly species.

  2. Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1α sequences.

    Science.gov (United States)

    Kim, Man Il; Wan, Xinlong; Kim, Min Jee; Jeong, Heon Cheon; Ahn, Neung-Ho; Kim, Ki-Gyoung; Han, Yeon Soo; Kim, Iksoo

    2010-11-01

    The molecular phylogenetic relationships among true butterfly families (superfamily Papilionoidea) have been a matter of substantial controversy; this debate has led to several competing hypotheses. Two of the most compelling of those hypotheses involve the relationships of (Nymphalidae + Lycaenidae) + (Pieridae + Papilionidae) and (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae). In this study, approximately 3,500 nucleotide sequences from cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-1 alpha (EF-1α) were sequenced from 83 species belonging to four true butterfly families, along with those of three outgroup species belonging to three lepidopteran superfamilies. These sequences were subjected to phylogenetic reconstruction via Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP) algorithms. The monophyletic Pieridae and monophyletic Papilionidae evidenced good recovery in all analyses, but in some analyses, the monophylies of the Lycaenidae and Nymphalidae were hampered by the inclusion of single species of the lycaenid subfamily Miletinae and the nymphalid subfamily Danainae. Excluding those singletons, all phylogenetic analyses among the four true butterfly families clearly identified the Nymphalidae as the sister to the Lycaenidae and identified this group as a sister to the Pieridae, with the Papilionidae identified as the most basal linage to the true butterfly, thus supporting the hypothesis: (Papilionidae + (Pieridae + (Nymphalidae + Lycaenidae))).

  3. Colony Diet Influences Ant Worker Foraging and Attendance of Myrmecophilous Lycaenid Caterpillars

    Directory of Open Access Journals (Sweden)

    Sebastian Pohl

    2016-09-01

    Full Text Available Foraging animals regulate their intake of macronutrients such as carbohydrates and proteins. However, regulating the intake of these two macronutrients can be constrained by the nutrient content of available food sources. Compensatory foraging is a method to adjust nutrient intake under restricted nutrient availability by preferentially exploiting food sources that contain limiting nutrients. Here we studied the potential for compensatory foraging in the dolichoderine ant Iridomyrmex mayri, which is commonly found in associations with caterpillars of the obligatorily ant-associated lycaenid butterfly Jalmenus evagoras. The caterpillars receive protection against predators and parasites, and reward the ants with nutritional secretions from specialized exocrine glands. These secretions contain a mixture of sugars and free amino acids, particularly serine. We tested the influence of nutrient-deficient diets on foraging patterns in I. mayri by recording the intake of test solutions containing single types of macronutrients during food preference tests. We also investigated the level of ant attendance on fifth instar J. evagoras caterpillars to evaluate how changes in diet influenced ant tending of caterpillars and foraging on their secretions. Foragers on a protein diet compensated for the nutritional deficit by increasing the intake of test solutions that contained sucrose, compared to their counterparts on a non-restricted diet. Ants on a sugar diet, however, did not show a corresponding increased consumption of test solutions containing the amino acid serine. Additionally, compared with their counterparts on a mixed diet, ants on limited nutrient diets showed an increase in the number of caterpillar-tending workers, suggesting that the caterpillars’ secretions are suitable to compensate for the ants’ nutritional deficit.

  4. African Zoology - Vol 25, No 1 (1990)

    African Journals Online (AJOL)

    Hymenoptera: Formicidae) · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT ... A Lycaenid Butterfly (Anthene amarah Guerin) selects unseasonal young Acacia shoots for oviposition · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  5. Transcriptome Characterization for Non-Model Endangered Lycaenids, Protantigius superans and Spindasis takanosis, Using Illumina HiSeq 2500 Sequencing

    Directory of Open Access Journals (Sweden)

    Bharat Bhusan Patnaik

    2015-12-01

    Full Text Available The Lycaenidae butterflies, Protantigius superans and Spindasis takanosis, are endangered insects in Korea known for their symbiotic association with ants. However, necessary genomic and transcriptomics data are lacking in these species, limiting conservation efforts. In this study, the P. superans and S. takanosis transcriptomes were deciphered using Illumina HiSeq 2500 sequencing. The P. superans and S. takanosis transcriptome data included a total of 254,340,693 and 245,110,582 clean reads assembled into 159,074 and 170,449 contigs and 107,950 and 121,140 unigenes, respectively. BLASTX hits (E-value of 1.0 × 10−5 against the known protein databases annotated a total of 46,754 and 51,908 transcripts for P. superans and S. takanosis. Approximately 41.25% and 38.68% of the unigenes for P. superans and S. takanosis found homologous sequences in Protostome DB (PANM-DB. BLAST2GO analysis confirmed 18,611 unigenes representing Gene Ontology (GO terms and a total of 5259 unigenes assigned to 116 pathways for P. superans. For S. takanosis, a total of 6697 unigenes were assigned to 119 pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway database. Additionally, 382,164 and 390,516 Simple Sequence Repeats (SSRs were compiled from the unigenes of P. superans and S. takanosis, respectively. This is the first report to record new genes and their utilization for conservation of lycaenid species population and as a reference information for closely related species.

  6. Myrmica Ants and Their Butterfly Parasites with Special Focus on the Acoustic Communication

    Directory of Open Access Journals (Sweden)

    F. Barbero

    2012-01-01

    Full Text Available About 10,000 arthropod species live as ants' social parasites and have evolved a number of mechanisms allowing them to penetrate and survive inside the ant nests. Myrmica colonies, in particular, are exploited by numerous social parasites, and the presence of their overwintering brood, as well as of their polygyny, contributes to make them more vulnerable to infestation. Butterflies of the genus Maculinea are among the most investigated Myrmica inquilines. These lycaenids are known for their very complex biological cycles. Maculinea species are obligated parasites that depend on a particular food plant and on a specific Myrmica species for their survival. Maculinea larvae are adopted by Myrmica ants, which are induced to take them into their nests by chemical mimicry. Then the parasite spends the following 11–23 months inside the ants' nest. Mimicking the acoustic emission of the queen ants, Maculinea parasites not only manage to become integrated, but attain highest rank within the colony. Here we review the biology of Maculinea/Myrmica system with a special focus on some recent breakthrough concerning their acoustical patterns.

  7. Color change of Blue butterfly wing scales in an air - Vapor ambient

    Science.gov (United States)

    Kertész, Krisztián; Piszter, Gábor; Jakab, Emma; Bálint, Zsolt; Vértesy, Zofia; Biró, László Péter

    2013-09-01

    Photonic crystals are periodic dielectric nanocomposites, which have photonic band gaps that forbid the propagation of light within certain frequency ranges. The optical response of such nanoarchitectures on chemical changes in the environment is determined by the spectral change of the reflected light, and depends on the composition of the ambient atmosphere and on the nanostructure characteristics. We carried out reflectance measurements on closely related Blue lycaenid butterfly males possessing so-called "pepper-pot" type photonic nanoarchitecture in their scales covering their dorsal wing surfaces. Experiments were carried out changing the concentration and nature of test vapors while monitoring the spectral variations in time. All the tests were done with the sample temperature set at, and below the room temperature. The spectral changes were found to be linear with the increasing of concentration and the signal amplitude is higher at lower temperatures. The mechanism of reflectance spectra modification is based on capillary condensation of the vapors penetrating in the nanostructure. These structures of natural origin may serve as cheap, environmentally free and biodegradable sensor elements. The study of these nanoarchitectures of biologic origin could be the source of various new bioinspired systems.

  8. Interactions among species in a tri-trophic system: the influence of ...

    African Journals Online (AJOL)

    Metapopulation dynamics is now so widely used to describe the distribution and abundance of species living in fragmented landscapes that other ecological factors (e.g. habitat quality) can be overlooked. To determine the precise habitat requirements of an endangered and narrowly endemic lycaenid butterfly, I studied its ...

  9. Flower-Visiting Butterflies Avoid Predatory Stimuli and Larger Resident Butterflies: Testing in a Butterfly Pavilion.

    Directory of Open Access Journals (Sweden)

    Yuya Fukano

    Full Text Available The flower-visiting behaviors of pollinator species are affected not only by flower traits but also by cues of predators and resident pollinators. There is extensive research into the effects of predator cues and resident pollinators on the flower-visiting behaviors of bee pollinators. However, there is relatively little research into their effects on butterfly pollinators probably because of the difficulty in observing a large number of butterfly pollination events. We conducted a dual choice experiment using artificial flowers under semi-natural conditions in the butterfly pavilion at Tama Zoological Park to examine the effects of the presence of a dead mantis and resident butterflies have on the flower-visiting behavior of several butterfly species. From 173 hours of recorded video, we observed 3235 visitations by 16 butterfly species. Statistical analysis showed that (1 butterflies avoided visiting flowers occupied by a dead mantis, (2 butterflies avoided resident butterflies that were larger than the visitor, and (3 butterflies showed greater avoidance of a predator when the predator was present together with the resident butterfly than when the predator was located on the opposite flower of the resident. Finally, we discuss the similarities and differences in behavioral responses of butterfly pollinators and bees.

  10. Flower-Visiting Butterflies Avoid Predatory Stimuli and Larger Resident Butterflies: Testing in a Butterfly Pavilion.

    Science.gov (United States)

    Fukano, Yuya; Tanaka, Yosuke; Farkhary, Sayed Ibrahim; Kurachi, Takuma

    2016-01-01

    The flower-visiting behaviors of pollinator species are affected not only by flower traits but also by cues of predators and resident pollinators. There is extensive research into the effects of predator cues and resident pollinators on the flower-visiting behaviors of bee pollinators. However, there is relatively little research into their effects on butterfly pollinators probably because of the difficulty in observing a large number of butterfly pollination events. We conducted a dual choice experiment using artificial flowers under semi-natural conditions in the butterfly pavilion at Tama Zoological Park to examine the effects of the presence of a dead mantis and resident butterflies have on the flower-visiting behavior of several butterfly species. From 173 hours of recorded video, we observed 3235 visitations by 16 butterfly species. Statistical analysis showed that (1) butterflies avoided visiting flowers occupied by a dead mantis, (2) butterflies avoided resident butterflies that were larger than the visitor, and (3) butterflies showed greater avoidance of a predator when the predator was present together with the resident butterfly than when the predator was located on the opposite flower of the resident. Finally, we discuss the similarities and differences in behavioral responses of butterfly pollinators and bees.

  11. Color change of Blue butterfly wing scales in an air – Vapor ambient

    Energy Technology Data Exchange (ETDEWEB)

    Kertész, Krisztián, E-mail: kertesz.krisztian@ttk.mta.hu [Institute of Technical Physics and Materials Science, Centre for Natural Sciences, H-1525 Budapest, PO Box 49, Hungary(http://www.nanotechnology.hu) (Hungary); Piszter, Gábor [Institute of Technical Physics and Materials Science, Centre for Natural Sciences, H-1525 Budapest, PO Box 49, Hungary(http://www.nanotechnology.hu) (Hungary); Jakab, Emma [Institute of Materials and Environmental Chemistry, Centre for Natural Sciences, H-1525 Budapest, PO Box 17 (Hungary); Bálint, Zsolt [Hungarian Natural History Museum, Baross utca 13, H-1088 Budapest (Hungary); Vértesy, Zofia; Biró, László Péter [Institute of Technical Physics and Materials Science, Centre for Natural Sciences, H-1525 Budapest, PO Box 49, Hungary(http://www.nanotechnology.hu) (Hungary)

    2013-09-15

    Photonic crystals are periodic dielectric nanocomposites, which have photonic band gaps that forbid the propagation of light within certain frequency ranges. The optical response of such nanoarchitectures on chemical changes in the environment is determined by the spectral change of the reflected light, and depends on the composition of the ambient atmosphere and on the nanostructure characteristics. We carried out reflectance measurements on closely related Blue lycaenid butterfly males possessing so-called “pepper-pot” type photonic nanoarchitecture in their scales covering their dorsal wing surfaces. Experiments were carried out changing the concentration and nature of test vapors while monitoring the spectral variations in time. All the tests were done with the sample temperature set at, and below the room temperature. The spectral changes were found to be linear with the increasing of concentration and the signal amplitude is higher at lower temperatures. The mechanism of reflectance spectra modification is based on capillary condensation of the vapors penetrating in the nanostructure. These structures of natural origin may serve as cheap, environmentally free and biodegradable sensor elements. The study of these nanoarchitectures of biologic origin could be the source of various new bioinspired systems.

  12. Color change of Blue butterfly wing scales in an air – Vapor ambient

    International Nuclear Information System (INIS)

    Kertész, Krisztián; Piszter, Gábor; Jakab, Emma; Bálint, Zsolt; Vértesy, Zofia; Biró, László Péter

    2013-01-01

    Photonic crystals are periodic dielectric nanocomposites, which have photonic band gaps that forbid the propagation of light within certain frequency ranges. The optical response of such nanoarchitectures on chemical changes in the environment is determined by the spectral change of the reflected light, and depends on the composition of the ambient atmosphere and on the nanostructure characteristics. We carried out reflectance measurements on closely related Blue lycaenid butterfly males possessing so-called “pepper-pot” type photonic nanoarchitecture in their scales covering their dorsal wing surfaces. Experiments were carried out changing the concentration and nature of test vapors while monitoring the spectral variations in time. All the tests were done with the sample temperature set at, and below the room temperature. The spectral changes were found to be linear with the increasing of concentration and the signal amplitude is higher at lower temperatures. The mechanism of reflectance spectra modification is based on capillary condensation of the vapors penetrating in the nanostructure. These structures of natural origin may serve as cheap, environmentally free and biodegradable sensor elements. The study of these nanoarchitectures of biologic origin could be the source of various new bioinspired systems.

  13. How life history affects threat status: Requirements of two Onobrychis-feeding lycaenid butterflies, Polyommatus damon and Polyommatus thersites, in the Czech Republic

    OpenAIRE

    ŠLANCAROVÁ, Jana

    2015-01-01

    The study compares ecological requirements of two related (congeneric) butterflies, Polyommatus damon and P. thersites, both of them reaching their northern distribution margins in Central Europe, where they co-occur on xeric grasslands, utilising identical larval host plants. Despite these similarities, one of them is substantially more endangered than the other. We describe their egg-laying behaviour and egg placement patterns, and analyse their distribution in a model landscape, showing th...

  14. How life history affects threat status: Requirements of two Onobrychis-feeding lycaenid butterflies, Polyommatus damon and Polyommatus thersites, in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Šlancarová, Jana; Bednářová, B.; Beneš, Jiří; Konvička, Martin

    2012-01-01

    Roč. 67, č. 6 (2012), s. 1175-1185 ISSN 0006-3088 Grant - others:GA ČR(CZ) GAP505/10/1630; University of South Bohemia(CZ) 144/2010/100 Institutional support: RVO:60077344 Keywords : butterfly conservation * farmland landscape * grazing Subject RIV: EH - Ecology, Behaviour Impact factor: 0.506, year: 2012 http://link.springer.com/article/10.2478%2Fs11756-012-0109-7?LI=true#page-1

  15. eButterfly: Leveraging Massive Online Citizen Science for Butterfly Conservation

    Science.gov (United States)

    Prudic, Kathleen L.; McFarland, Kent P.; Oliver, Jeffrey C.; Hutchinson, Rebecca A.; Long, Elizabeth C.; Kerr, Jeremy T.; Larrivée, Maxim

    2017-01-01

    Data collection, storage, analysis, visualization, and dissemination are changing rapidly due to advances in new technologies driven by computer science and universal access to the internet. These technologies and web connections place human observers front and center in citizen science-driven research and are critical in generating new discoveries and innovation in such fields as astronomy, biodiversity, and meteorology. Research projects utilizing a citizen science approach address scientific problems at regional, continental, and even global scales otherwise impossible for a single lab or even a small collection of academic researchers. Here we describe eButterfly an integrative checklist-based butterfly monitoring and database web-platform that leverages the skills and knowledge of recreational butterfly enthusiasts to create a globally accessible unified database of butterfly observations across North America. Citizen scientists, conservationists, policy makers, and scientists are using eButterfly data to better understand the biological patterns of butterfly species diversity and how environmental conditions shape these patterns in space and time. eButterfly in collaboration with thousands of butterfly enthusiasts has created a near real-time butterfly data resource producing tens of thousands of observations per year open to all to share and explore. PMID:28524117

  16. Flutter-by Interactive Butterfly Using interactivity to excite and educate children about butterflies and the National Museum of Play at The Strong's Dancing Wings Butterfly Garden

    Science.gov (United States)

    Powers, Lydia

    The National Museum of Play at The Strong's Dancing Wings Butterfly Garden is a tropical rainforest that allows visitors to step into the world of butterflies, but lacks a more comprehensive educational element to teach visitors additional information about butterflies. Flutter-by Interactive Butterfly is a thesis project designed to enhance younger visitors' experience of the Dancing Wings Butterfly Garden with an interactive educational application that aligns with The Strong's mission of encouraging learning, creativity, and discovery. This was accomplished through a series of fun and educational games and animations, designed for use as a kiosk outside the garden and as a part of The Strong's website. Content, planning, and organization of this project has been completed through research and observation of the garden in the following areas: its visitors, butterflies, best usability practices for children, and game elements that educate and engage children. Flutter-by Interactive Butterfly teaches users about the butterfly's life cycle, anatomy, and characteristics as well as their life in the Dancing Wings Butterfly Garden. Through the use of the design programs Adobe Illustrator, Flash, and After Effects; the programming language ActionScript3.0; a child-friendly user interface and design; audio elements and user takeaways, Flutter-by Interactive Butterfly appeals to children of all ages, interests, and learning styles. The project can be viewed at lydiapowers.com/Thesis/FlutterByButterfly.html

  17. Teaching and Learning with Butterflies.

    Science.gov (United States)

    Weisberg, Saul

    1996-01-01

    Presents butterflies as an introduction to natural history. Describes observation tips and metamorphosis of butterflies in the classroom. Includes butterfly resources for naturalists and educators. (AIM)

  18. Confocal imaging of butterfly tissue.

    Science.gov (United States)

    Brunetti, Craig R

    2014-01-01

    To understand the molecular events responsible for morphological change requires the ability to examine gene expression in a wide range of organisms in addition to model systems to determine how the differences in gene expression correlate with phenotypic differences. There are approximately 12,000 species of butterflies, most, with distinct patterns on their wings. The most important tool for studying gene expression in butterflies is confocal imaging of butterfly tissue by indirect immunofluorescence using either cross-reactive antibodies from closely related species such as Drosophila or developing butterfly-specific antibodies. In this report, we describe how indirect immunofluorescence protocols can be used to visualize protein expression patterns on the butterfly wing imaginal disc and butterfly embryo.

  19. The butterflies of Canada

    National Research Council Canada - National Science Library

    Layberry, Ross A; Hall, Peter W; Lafontaine, J. Donald

    1998-01-01

    ... for the close to three hundred butterfly species recorded in Canada, including descriptions of early stages, subspecies, and key features that help distinguish similar species. Each species of butterfly has an individual distribution map, generated from a database of more than 90,000 location records. More than just a field guide to identifying Canadian butterfli...

  20. Butterfly Social Clubs

    Science.gov (United States)

    Gary N. Ross

    1998-01-01

    Many diverse species of butterflies engage in a characteristic behavior that is commonly termed "puddling" and defined as a type of social behavior in which assorted butterflies, usually males, congregate at a damp site, often a mud puddle or stream bank.

  1. Can butterflies cope with city life? Butterfly diversity in a young megacity in southern China.

    Science.gov (United States)

    Sing, Kong-Wah; Dong, Hui; Wang, Wen-Zhi; Wilson, John-James

    2016-09-01

    During 30 years of unprecedented urbanization, plant diversity in Shenzhen, a young megacity in southern China, has increased dramatically. Although strongly associated with plant diversity, butterfly diversity generally declines with urbanization, but this has not been investigated in Shenzhen. Considering the speed of urbanization in Shenzhen and the large number of city parks, we investigated butterfly diversity in Shenzhen parks. We measured butterfly species richness in four microhabitats (groves, hedges, flowerbeds, and unmanaged areas) across 10 parks and examined the relationship with three park variables: park age, park size, and distance from the central business district. Butterflies were identified based on wing morphology and DNA barcoding. We collected 1933 butterflies belonging to 74 species from six families; 20% of the species were considered rare. Butterfly species richness showed weak negative correlations with park age and distance from the central business district, but the positive correlation with park size was statistically significant (p = 0.001). Among microhabitat types, highest species richness was recorded in unmanaged areas. Our findings are consistent with others in suggesting that to promote urban butterfly diversity it is necessary to make parks as large as possible and to set aside areas for limited management. In comparison to neighbouring cities, Shenzhen parks have high butterfly diversity.

  2. Unscrambling butterfly oogenesis

    Science.gov (United States)

    2013-01-01

    Background Butterflies are popular model organisms to study physiological mechanisms underlying variability in oogenesis and egg provisioning in response to environmental conditions. Nothing is known, however, about; the developmental mechanisms governing butterfly oogenesis, how polarity in the oocyte is established, or which particular maternal effect genes regulate early embryogenesis. To gain insights into these developmental mechanisms and to identify the conserved and divergent aspects of butterfly oogenesis, we analysed a de novo ovarian transcriptome of the Speckled Wood butterfly Pararge aegeria (L.), and compared the results with known model organisms such as Drosophila melanogaster and Bombyx mori. Results A total of 17306 contigs were annotated, with 30% possibly novel or highly divergent sequences observed. Pararge aegeria females expressed 74.5% of the genes that are known to be essential for D. melanogaster oogenesis. We discuss the genes involved in all aspects of oogenesis, including vitellogenesis and choriogenesis, plus those implicated in hormonal control of oogenesis and transgenerational hormonal effects in great detail. Compared to other insects, a number of significant differences were observed in; the genes involved in stem cell maintenance and differentiation in the germarium, establishment of oocyte polarity, and in several aspects of maternal regulation of zygotic development. Conclusions This study provides valuable resources to investigate a number of divergent aspects of butterfly oogenesis requiring further research. In order to fully unscramble butterfly oogenesis, we also now also have the resources to investigate expression patterns of oogenesis genes under a range of environmental conditions, and to establish their function. PMID:23622113

  3. On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals.

    Science.gov (United States)

    Corkery, Robert W; Tyrode, Eric C

    2017-08-06

    Lycaenid butterflies from the genera Callophrys , Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue-green-yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 10 4 -10 5 crystals, for concluding the preferential alignment seen along the [Formula: see text] at the level of single scales, appears ubiquitous. By contrast, [Formula: see text] orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the [Formula: see text] direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular

  4. Ants use partner specific odors to learn to recognize a mutualistic partner.

    Directory of Open Access Journals (Sweden)

    Masaru K Hojo

    Full Text Available Regulation via interspecific communication is an important for the maintenance of many mutualisms. However, mechanisms underlying the evolution of partner communication are poorly understood for many mutualisms. Here we show, in an ant-lycaenid butterfly mutualism, that attendant ants selectively learn to recognize and interact cooperatively with a partner. Workers of the ant Pristomyrmex punctatus learn to associate cuticular hydrocarbons of mutualistic Narathura japonica caterpillars with food rewards and, as a result, are more likely to tend the caterpillars. However, the workers do not learn to associate the cuticular hydrocarbons of caterpillars of a non-ant-associated lycaenid, Lycaena phlaeas, with artificial food rewards. Chemical analysis revealed cuticular hydrocarbon profiles of the mutualistic caterpillars were complex compared with those of non-ant-associated caterpillars. Our results suggest that partner-recognition based on partner-specific chemical signals and cognitive abilities of workers are important mechanisms underlying the evolution and maintenance of mutualism with ants.

  5. Butterfly valves for seawater

    International Nuclear Information System (INIS)

    Yamanaka, Katsuto

    1991-01-01

    Recently in thermal and nuclear power stations and chemical plants which have become large capacity, large quantity of cooling water is required, and mostly seawater is utilized. In these cooling water systems, considering thermal efficiency and economy, the pipings become complex, and various control functions are demanded. For the purpose, the installation of shut-off valves and control valves for pipings is necessary. The various types of valves have been employed, and in particular, butterfly valves have many merits in their function, size, structure, operation, maintenance, usable period, price and so on. The corrosion behavior of seawater is complicated due to the pollution of seawater, therefore, the environment of the valves used for seawater became severe. The structure and the features of the butterfly valves for seawater, the change of the structure of the butterfly valves for seawater and the checkup of the butterfly valves for seawater are reported. The corrosion of metallic materials is complicatedly different due to the locating condition of plants, the state of pipings and the condition of use. The corrosion countermeasures for butterfly valves must be examined from the synthetic viewpoints. (K.I.)

  6. The Study of Butterflies

    Indian Academy of Sciences (India)

    In no species of butterfly are the wings aborted, as in the case of some ... markings are formed by concentrations of scales of the same or different colours. .... In butterflies, the lower ... carbohydrates and fats for energy, especially during flight.

  7. Enlightening Butterfly Conservation Efforts: The Importance of Natural Lighting for Butterfly Behavioral Ecology and Conservation

    Science.gov (United States)

    2018-01-01

    Light is arguably the most important abiotic factor for living organisms. Organisms evolved under specific lighting conditions and their behavior, physiology, and ecology are inexorably linked to light. Understanding light effects on biology could not be more important as present anthropogenic effects are greatly changing the light environments in which animals exist. The two biggest anthropogenic contributors changing light environments are: (1) anthropogenic lighting at night (i.e., light pollution); and (2) deforestation and the built environment. I highlight light importance for butterfly behavior, physiology, and ecology and stress the importance of including light as a conservation factor for conserving butterfly biodiversity. This review focuses on four parts: (1) Introducing the nature and extent of light. (2) Visual and non-visual light reception in butterflies. (3) Implications of unnatural lighting for butterflies across several different behavioral and ecological contexts. (4). Future directions for quantifying the threat of unnatural lighting on butterflies and simple approaches to mitigate unnatural light impacts on butterflies. I urge future research to include light as a factor and end with the hopeful thought that controlling many unnatural light conditions is simply done by flipping a switch. PMID:29439549

  8. Enlightening Butterfly Conservation Efforts: The Importance of Natural Lighting for Butterfly Behavioral Ecology and Conservation

    Directory of Open Access Journals (Sweden)

    Brett M Seymoure

    2018-02-01

    Full Text Available Light is arguably the most important abiotic factor for living organisms. Organisms evolved under specific lighting conditions and their behavior, physiology, and ecology are inexorably linked to light. Understanding light effects on biology could not be more important as present anthropogenic effects are greatly changing the light environments in which animals exist. The two biggest anthropogenic contributors changing light environments are: (1 anthropogenic lighting at night (i.e., light pollution; and (2 deforestation and the built environment. I highlight light importance for butterfly behavior, physiology, and ecology and stress the importance of including light as a conservation factor for conserving butterfly biodiversity. This review focuses on four parts: (1 Introducing the nature and extent of light. (2 Visual and non-visual light reception in butterflies. (3 Implications of unnatural lighting for butterflies across several different behavioral and ecological contexts. (4. Future directions for quantifying the threat of unnatural lighting on butterflies and simple approaches to mitigate unnatural light impacts on butterflies. I urge future research to include light as a factor and end with the hopeful thought that controlling many unnatural light conditions is simply done by flipping a switch.

  9. Effects of herbicides on Behr's metalmark butterfly, a surrogate species for the endangered butterfly, Lange's metalmark

    International Nuclear Information System (INIS)

    Stark, John D.; Chen Xuedong; Johnson, Catherine S.

    2012-01-01

    Lange's metalmark butterfly, Apodemia mormo langei Comstock, is in danger of extinction due to loss of habitat caused by invasive exotic plants which are eliminating its food, naked stem buckwheat. Herbicides are being used to remove invasive weeds from the dunes; however, little is known about the potential effects of herbicides on butterflies. To address this concern we evaluated potential toxic effects of three herbicides on Behr's metalmark, a close relative of Lange's metalmark. First instars were exposed to recommended field rates of triclopyr, sethoxydim, and imazapyr. Life history parameters were recorded after exposure. These herbicides reduced the number of adults that emerged from pupation (24–36%). Each herbicide has a different mode of action. Therefore, we speculate that effects are due to inert ingredients or indirect effects on food plant quality. If these herbicides act the same in A. mormo langei, they may contribute to the decline of this species. - Highlights: ► We evaluated the effects of three herbicides on the butterfly, Behr's metalmark. ► These herbicides are used to control invasive weeds in butterfly habitat. ► The herbicides reduced adult butterfly emergence. - Herbicides are used to remove invasive weeds from butterfly habitat. Certain herbicides may be having a negative effect on butterflies.

  10. Mutant butterflies discovered at Fukushima

    International Nuclear Information System (INIS)

    Chauveau, L.

    2012-01-01

    A Japanese study has shown that malformations are more and more common in butterflies (Zizeeria maha specie) leaving near the damaged nuclear plant of Fukushima Daiichi. A population of 144 butterflies were caught in 10 villages in a radius of 200 km around Fukushima in may 2011, the ratio of malformations was 12.4%. Obvious malformations were withered antennas and wings. In september 2011 a population of 238 butterflies were caught in the same places and the ratio of malformations was then 28.1%. The increase of the malformation ratio could be explained by a cumulative effect of the radiation exposition. In a second experiment, a population of butterflies was caught in a region non-affected by the radioactive contamination and was submitted in laboratory to radiations similar to that of the contamination around Fukushima and similar malformations appeared. The conclusion of the study is that radionuclides released during the Fukushima accident have caused genetic and physiological damages to this butterfly specie. (A.C.)

  11. The Return of the Blue Butterfly

    Science.gov (United States)

    Santos, Anabela

    2014-05-01

    The Return of the Blue Butterfly The English writer Charles Dickens once wrote: "I only ask to be free. The butterflies are free". But are they really? The work that I performed with a group of students from 8th grade, had a starting point of climate change and the implications it has on ecosystems. Joining the passion I have for butterflies, I realized that they are also in danger of extinction due to these climatic effects. Thus, it was easy to seduce my students wanting to know more. Luckily I found Dr. Paula Seixas Arnaldo, a researcher at the University of Trás-os-Montes and Alto Douro, who has worked on butterflies and precisely investigated this issue. Portugal is the southern limit of butterfly-blue (Phengaris alcon), and has been many years in the red book of endangered species. Butterfly-blue is very demanding of their habitat, and disappears very easily if ideal conditions are not satisfied. Increased fragmentation of landscapes and degradation of suitable habitats, are considered the greatest challenges of the conservation of Phengaris butterfly in Portugal. In recent decades, climate change has also changed butterfly-blue spatial distribution with a movement of the species northward to colder locations, and dispersion in latitude. Butterflies of Europe must escape to the North because of the heat. Dr. Paula Seixas Arnaldo and her research team began a project, completed in December 2013, wanted to preserve and restore priority habitats recognized by the European Union to help species in danger of disappearing with increasing temperature. The blue butterfly is extremely important because it is a key indicator of the quality of these habitats. In the field, the butterflies are monitored to collect all possible data in order to identify the key species. Butterflies start flying in early July and cease in late August. Mating takes about an hour and occurs in the first days of life. The gentian-peat (Gentiana pneumonanthe) serves as the host plant for

  12. The Study of Butterflies

    Indian Academy of Sciences (India)

    In India, butterflies were more or less overlooked in the period prior to the .... are several butterfly species that occur in Europe and Asia, including ... who came to South India in 1767 and lived there until he died. He sent his ... The East India.

  13. Mouthpart separation does not impede butterfly feeding.

    Science.gov (United States)

    Lehnert, Matthew S; Mulvane, Catherine P; Brothers, Aubrey

    2014-03-01

    The functionality of butterfly mouthparts (proboscis) plays an important role in pollination systems, which is driven by the reward of nectar. Proboscis functionality has been assumed to require action of the sucking pump in the butterfly's head coupled with the straw-like structure. Proper proboscis functionality, however, also is dependent on capillarity and wettability dynamics that facilitate acquisition of liquid films from porous substrates. Due to the importance of wettability dynamics in proboscis functionality, we hypothesized that proboscides of eastern black swallowtail (Papilio polyxenes asterius Stoll) (Papilionidae) and cabbage butterflies (Pieris rapae Linnaeus) (Pieridae) that were experimentally split (i.e., proboscides no longer resembling a sealed straw-like tube) would retain the ability to feed. Proboscides were split either in the drinking region (distal 6-10% of proboscis length) or approximately 50% of the proboscis length 24 h before feeding trials when butterflies were fed a red food-coloring solution. Approximately 67% of the butterflies with proboscides split reassembled prior to the feeding trials and all of these butterflies displayed evidence of proboscis functionality. Butterflies with proboscides that did not reassemble also demonstrated fluid uptake capabilities, thus suggesting that wild butterflies might retain fluid uptake capabilities, even when the proboscis is partially injured. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Comparative study of Butterfly valves

    International Nuclear Information System (INIS)

    Galmes Belmonte, F.B.

    1998-01-01

    This work tries to justify the hydrodynamic butterfly valves performance, using the EPRI tests, results carried out in laboratory and in situ. This justification will be possible if: - The valves to study are similar - Their performance is calculated using EPRI's methodology Looking for this objective, the elements of the present work are: 1. Brief EPRI butterfly valve description it wild provide the factors which are necessary to define the butterfly valves similarity. 2. EPRI tests description and range of validation against test data definition. 3. Description of the spanish butterfly analyzed valves, and comparison with the EPRI performance results, to prove that this valves are similar to the EPRI test valves. In this way, it will not be necessary to carry out particular dynamic tests on the spanish valves to describe their hydrodynamic performance. (Author)

  15. Navigational Strategies of Migrating Monarch Butterflies

    Science.gov (United States)

    2014-11-10

    AFRL-OSR-VA-TR-2014-0339 NAVIGATIONAL STRATEGIES OF MIGRATING MONARCH BUTTERFLIES Steven Reppert UNIVERSITY OF MASSACHUSETTS Final Report 11/10/2014...Final Progress Statement to (Dr. Patrick Bradshaw) Contract/Grant Title: Navigational Strategies of Migrating Monarch Butterflies Contract...Grant #: FA9550-10-1-0480 Reporting Period: 01-Sept-10 to 31-Aug-14 Overview of accomplishments: Migrating monarch butterflies (Danaus

  16. Are individual based models a suitable approach to estimate population vulnerability? - a case study

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    2011-04-01

    Full Text Available European populations of the Large Blue Butterfly Maculinea arion have experienced severe declines in the last decades, especially in the northern part of the species range. This endangered lycaenid butterfly needs two resources for development: flower buds of specific plants (Thymus spp., Origanum vulgare, on which young caterpillars briefly feed, and red ants of the genus Myrmica, whose nests support caterpillars during a prolonged final instar. I present an analytically solvable deterministic model to estimate the vulnerability of populations of M. arion. Results obtained from the sensitivity analysis of this mathematical model (MM are contrasted to the respective results that had been derived from a spatially explicit individual based model (IBM for this butterfly. I demonstrate that details in landscape configuration which are neglected by the MM but are easily taken into consideration by the IBM result in a different degree of intraspecific competition of caterpillars on flower buds and within host ant nests. The resulting differences in mortalities of caterpillars lead to erroneous estimates of the extinction risk of a butterfly population living in habitat with low food plant coverage and low abundance in host ant nests. This observation favors the use of an individual based modeling approach over the deterministic approach at least for the management of this threatened butterfly.

  17. Butterfly effect in 3D gravity

    Science.gov (United States)

    Qaemmaqami, Mohammad M.

    2017-11-01

    We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.

  18. Evolution of color and vision of butterflies

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Arikawa, Kentaro

    2006-01-01

    Butterfly eyes consist of three types of ommatidia, which are more or less randomly arranged in a spatially regular lattice. The corneal nipple array and the tapetum, Optical Structures that many but not all butterflies share with moths, Suggest that moths are ancestral to butterflies, in agreement

  19. Metamorphosis of a butterfly-associated bacterial community.

    Science.gov (United States)

    Hammer, Tobin J; McMillan, W Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  20. Metamorphosis of a butterfly-associated bacterial community.

    Directory of Open Access Journals (Sweden)

    Tobin J Hammer

    Full Text Available Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies.

  1. White butterflies as solar photovoltaic concentrators.

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  2. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  4. Butterfly responses to prairie restoration through fire and grazing

    Science.gov (United States)

    Vogel, Jennifer A.; Debinski, Diane M.; Koford, Rolf R.; Miller, J.R.

    2007-01-01

    The development of land for modern agriculture has resulted in losses of native prairie habitat. The small, isolated patches of prairie habitat that remain are threatened by fire suppression, overgrazing, and invasion by non-native species. We evaluated the effects of three restoration practices (grazing only, burning only, and burning and grazing) on the vegetation characteristics and butterfly communities of remnant prairies. Total butterfly abundance was highest on prairies that were managed with burning and grazing and lowest on those that were only burned. Butterfly species richness did not differ among any of the restoration practices. Butterfly species diversity was highest on sites that were only burned. Responses of individual butterfly species to restoration practices were highly variable. In the best predictive regression model, total butterfly abundance was negatively associated with the percent cover of bare ground and positively associated with the percent cover of forbs. Canonical correspondence analysis revealed that sites with burned only and grazed only practices could be separated based on their butterfly community composition. Butterfly communities in each of the three restoration practices are equally species rich but different practices yield compositionally different butterfly communities. Because of this variation in butterfly species responses to different restoration practices, there is no single practice that will benefit all species or even all species within habitat-specialist or habitat-generalist habitat guilds. ?? 2007 Elsevier Ltd. All rights reserved.

  5. Extended season for northern butterflies.

    Science.gov (United States)

    Karlsson, Bengt

    2014-07-01

    Butterflies are like all insects in that they are temperature sensitive and a changing climate with higher temperatures might effect their phenology. Several studies have found support for earlier flight dates among the investigated species. A comparative study with data from a citizen science project, including 66 species of butterflies in Sweden, was undertaken, and the result confirms that most butterfly species now fly earlier during the season. This is especially evident for butterflies overwintering as adults or as pupae. However, the advancement in phenology is correlated with flight date, and some late season species show no advancement or have even postponed their flight dates and are now flying later in the season. The results also showed that latitude had a strong effect on the adult flight date, and most of the investigated species showed significantly later flights towards the north. Only some late flying species showed an opposite trend, flying earlier in the north. A majority of the investigated species in this study showed a general response to temperature and advanced their flight dates with warmer temperatures (on average they advanced their flight dates by 3.8 days/°C), although not all species showed this response. In essence, a climate with earlier springs and longer growing seasons seems not to change the appearance patterns in a one-way direction. We now see butterflies on the wings both earlier and later in the season and some consequences of these patterns are discussed. So far, studies have concentrated mostly on early season butterfly-plant interactions but also late season studies are needed for a better understanding of long-term population consequences.

  6. An Evaluation of Butterfly Gardens for Restoring Habitat for the Monarch Butterfly (Lepidoptera: Danaidae).

    Science.gov (United States)

    Cutting, Brian T; Tallamy, Douglas W

    2015-10-01

    The eastern migratory monarch butterfly (Danaus plexippus L.) population in North America hit record low numbers during the 2013-2014 overwintering season, prompting pleas by scientists and conservation groups to plant the butterfly's milkweed host plants (Asclepias spp.) in residential areas. While planting butterfly gardens with host plants seems like an intuitive action, no previous study has directly compared larval survival in gardens and natural areas to demonstrate that gardens are suitable habitats for Lepidoptera. In this study, milkweed was planted in residential gardens and natural areas. In 2009 and 2010, plants were monitored for oviposition by monarch butterflies and survival of monarch eggs and caterpillars. Monarchs oviposited significantly more frequently in gardens than in natural sites, with 2.0 and 6.2 times more eggs per plant per observation in 2009 and 2010, respectively. There were no significant differences in overall subadult survival between gardens and natural areas. Significant differences in survival were measured for egg and larval cohorts when analyzed separately, but these were not consistent between years. These results suggest that planting gardens with suitable larval host plants can be an effective tool for restoring habitat for monarch butterflies. If planted over a large area, garden plantings may be useful as a partial mitigation for dramatic loss of monarch habitat in agricultural settings. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Importance of body rotation during the flight of a butterfly.

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2016-03-01

    In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.

  8. Climate change, phenology, and butterfly host plant utilization.

    Science.gov (United States)

    Navarro-Cano, Jose A; Karlsson, Bengt; Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Knowledge of how species interactions are influenced by climate warming is paramount to understand current biodiversity changes. We review phenological changes of Swedish butterflies during the latest decades and explore potential climate effects on butterfly-host plant interactions using the Orange tip butterfly Anthocharis cardamines and its host plants as a model system. This butterfly has advanced its appearance dates substantially, and its mean flight date shows a positive correlation with latitude. We show that there is a large latitudinal variation in host use and that butterfly populations select plant individuals based on their flowering phenology. We conclude that A. cardamines is a phenological specialist but a host species generalist. This implies that thermal plasticity for spring development influences host utilization of the butterfly through effects on the phenological matching with its host plants. However, the host utilization strategy of A. cardamines appears to render it resilient to relatively large variation in climate.

  9. Are neonicotinoid insecticides driving declines of widespread butterflies?

    Directory of Open Access Journals (Sweden)

    Andre S. Gilburn

    2015-11-01

    Full Text Available There has been widespread concern that neonicotinoid pesticides may be adversely impacting wild and managed bees for some years, but recently attention has shifted to examining broader effects they may be having on biodiversity. For example in the Netherlands, declines in insectivorous birds are positively associated with levels of neonicotinoid pollution in surface water. In England, the total abundance of widespread butterfly species declined by 58% on farmed land between 2000 and 2009 despite both a doubling in conservation spending in the UK, and predictions that climate change should benefit most species. Here we build models of the UK population indices from 1985 to 2012 for 17 widespread butterfly species that commonly occur at farmland sites. Of the factors we tested, three correlated significantly with butterfly populations. Summer temperature and the index for a species the previous year are both positively associated with butterfly indices. By contrast, the number of hectares of farmland where neonicotinoid pesticides are used is negatively associated with butterfly indices. Indices for 15 of the 17 species show negative associations with neonicotinoid usage. The declines in butterflies have largely occurred in England, where neonicotinoid usage is at its highest. In Scotland, where neonicotinoid usage is comparatively low, butterfly numbers are stable. Further research is needed urgently to show whether there is a causal link between neonicotinoid usage and the decline of widespread butterflies or whether it simply represents a proxy for other environmental factors associated with intensive agriculture.

  10. The real butterfly effect

    International Nuclear Information System (INIS)

    Palmer, T N; Döring, A; Seregin, G

    2014-01-01

    Historical evidence is reviewed to show that what Ed Lorenz meant by the iconic phrase ‘the butterfly effect’ is not at all captured by the notion of sensitive dependence on initial conditions in low-order chaos. Rather, as presented in his 1969 Tellus paper, Lorenz intended the phrase to describe the existence of an absolute finite-time predicability barrier in certain multi-scale fluid systems, implying a breakdown of continuous dependence on initial conditions for large enough forecast lead times. To distinguish from ‘mere’ sensitive dependence, the effect discussed in Lorenz's Tellus paper is referred to as ‘the real butterfly effect’. Theoretical evidence for such a predictability barrier in a fluid described by the three-dimensional Navier–Stokes equations is discussed. Whilst it is still an open question whether the Navier–Stokes equation has this property, evidence from both idealized atmospheric simulators and analysis of operational weather forecasts suggests that the real butterfly effect exists in an asymptotic sense, i.e. for initial-time atmospheric perturbations that are small in scale and amplitude compared with (weather) scales of interest, but still large in scale and amplitude compared with variability in the viscous subrange. Despite this, the real butterfly effect is an intermittent phenomenon in the atmosphere, and its presence can be signalled a priori, and hence mitigated, by ensemble forecast methods. (invited article)

  11. Butterfly fauna in Mount Gariwang-san, Korea

    Directory of Open Access Journals (Sweden)

    Cheol Min Lee

    2016-06-01

    Full Text Available The aim of this study is to elucidate butterfly fauna in Mt. Gariwang-san, Korea. A field survey was conducted from 2010 to 2015 using the line transect method. A literature survey was also conducted. A total of 2,037 butterflies belonging to 105 species were recorded. In the estimation of species richness of butterfly, 116 species were estimated to live in Mt. Gariwang-san. In butterfly fauna in Mt. Gariwang-san, the percentage of northern species was very high and the percentage of grassland species was relatively higher than that of forest edge species and forest interior species. Sixteen red list species were found. In particular, Mimathyma nycteis was only recorded in Mt. Gariwang-san. When comparing the percentage of northern species and southern species including those recorded in previous studies, the percentage of northern species was found to have decreased significantly whereas that of southern species increased. We suggest that the butterfly community, which is distributed at relatively high altitudes on Mt. Gariwang-san, will gradually change in response to climate change.

  12. On butterfly effect in higher derivative gravities

    Energy Technology Data Exchange (ETDEWEB)

    Alishahiha, Mohsen [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-11-07

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  13. On butterfly effect in higher derivative gravities

    International Nuclear Information System (INIS)

    Alishahiha, Mohsen; Davody, Ali; Naseh, Ali; Taghavi, Seyed Farid

    2016-01-01

    We study butterfly effect in D-dimensional gravitational theories containing terms quadratic in Ricci scalar and Ricci tensor. One observes that due to higher order derivatives in the corresponding equations of motion there are two butterfly velocities. The velocities are determined by the dimension of operators whose sources are provided by the metric. The three dimensional TMG model is also studied where we get two butterfly velocities at generic point of the moduli space of parameters. At critical point two velocities coincide.

  14. Criticality in third order lovelock gravity and butterfly effect

    International Nuclear Information System (INIS)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study third order Lovelock Gravity in D = 7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D = 7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D = 7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, v B E.H > v B E.G.B > v B 3rdLovelock . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases. (orig.)

  15. Two-headed butterfly vs. mantis: do false antennae matter?

    Directory of Open Access Journals (Sweden)

    Tania G. López-Palafox

    2017-06-01

    Full Text Available The colour patterns and morphological peculiarities of the hindwings of several butterfly species result in the appearance of a head at the rear end of the insect’s body. Although some experimental evidence supports the hypothesis that the “false head” deflects predator attacks towards the rear end of the butterfly, more research is needed to determine the role of the different components of the “false head”. We explored the role of hindwing tails (presumably mimicking antennae in predator deception in the “false head” butterfly Callophrys xami. We exposed butterflies with intact wings and with hindwing tails experimentally ablated to female mantises (Stagmomantis limbata. We found no differences in the number of butterflies being attacked and the number of butterflies escaping predation between both groups. However, our behavioural observations indicate that other aspects of the “false head” help C. xami survive some mantis attacks, supporting the notion that they are adaptations against predators.

  16. Criticality in third order lovelock gravity and butterfly effect

    Science.gov (United States)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study third order Lovelock Gravity in D=7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D=7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D=7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, vB^{E.H}>vB^{E.G.B}>vB^{3rd Lovelock} . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases.

  17. Butterfly tachyons in vacuum string field theory

    International Nuclear Information System (INIS)

    Matlock, Peter

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in vacuum string field theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation

  18. Interactions between butterfly-shaped pulses in the inhomogeneous media

    International Nuclear Information System (INIS)

    Liu, Wen-Jun; Huang, Long-Gang; Pan, Nan; Lei, Ming

    2014-01-01

    Pulse interactions affect pulse qualities during the propagation. Interactions between butterfly-shaped pulses are investigated to improve pulse qualities in the inhomogeneous media. In order to describe the interactions between butterfly-shaped pulses, analytic two-soliton solutions are derived. Based on those solutions, influences of corresponding parameters on pulse interactions are discussed. Methods to control the pulse interactions are suggested. - Highlights: • Interactions between butterfly-shaped pulses are investigated. • Methods to control the pulse interactions are suggested. • Analytic two-soliton solutions for butterfly-shaped pulses are derived

  19. Interactions between butterfly-shaped pulses in the inhomogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wen-Jun [State Key Laboratory of Information Photonics and Optical Communications, School of Science, P. O. Box 91, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Huang, Long-Gang; Pan, Nan [State Key Laboratory of Information Photonics and Optical Communications, School of Science, P. O. Box 91, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Lei, Ming, E-mail: mlei@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications, School of Science, P. O. Box 91, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-10-15

    Pulse interactions affect pulse qualities during the propagation. Interactions between butterfly-shaped pulses are investigated to improve pulse qualities in the inhomogeneous media. In order to describe the interactions between butterfly-shaped pulses, analytic two-soliton solutions are derived. Based on those solutions, influences of corresponding parameters on pulse interactions are discussed. Methods to control the pulse interactions are suggested. - Highlights: • Interactions between butterfly-shaped pulses are investigated. • Methods to control the pulse interactions are suggested. • Analytic two-soliton solutions for butterfly-shaped pulses are derived.

  20. The Butterfly Effect for Physics Laboratories

    Science.gov (United States)

    Claycomb, James R.; Valentine, John H.

    2015-01-01

    A low-cost chaos dynamics lab is developed for quantitative demonstration of the butterfly effect using a magnetic pendulum. Chaotic motion is explored by recording magnetic time series. Students analyze the data in Excel® to investigate the butterfly effect as well as the reconstruction of the strange attractor using time delay plots. The lab…

  1. Forward flight of swallowtail butterfly with simple flapping motion

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiroto [School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Cambridge, MA 02138 (United States); Shimoyama, Isao, E-mail: isao@i.u-tokyo.ac.j [Department of Mechano-Informatics, Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2010-06-15

    Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.

  2. Forward flight of swallowtail butterfly with simple flapping motion

    International Nuclear Information System (INIS)

    Tanaka, Hiroto; Shimoyama, Isao

    2010-01-01

    Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.

  3. Control of Butterfly Bush with Postemergence Herbicides

    Science.gov (United States)

    Butterfly bush (Buddleja davidii) is classified as invasive in several parts of the United States. Two experiments were conducted to evaluate the effectiveness of four herbicides and two application methods on postemergence butterfly bush control. The four herbicides included: Roundup (glyphosate)...

  4. Genetic Basis of Melanin Pigmentation in Butterfly Wings.

    Science.gov (United States)

    Zhang, Linlin; Martin, Arnaud; Perry, Michael W; van der Burg, Karin R L; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D

    2017-04-01

    Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale , Ddc , and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d , ebony , and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. Copyright © 2017 by the Genetics Society of America.

  5. Changes in butterfly abundance in response to global warming and reforestation.

    Science.gov (United States)

    Kwon, Tae-Sung; Kim, Sung-Soo; Chun, Jung Hwa; Byun, Bong-Kyu; Lim, Jong-Hwan; Shin, Joon Hwan

    2010-04-01

    In the Republic of Korea, most denuded forest lands have been restored since the 1960s. In addition, the annual mean temperature in the Republic of Korea has increased approximately 1.0 degrees C during the last century, which is higher than the global mean increase of 0.74 degrees C. Such rapid environmental changes may have resulted in changes in the local butterfly fauna. For example, the number of butterflies inhabiting forests may have increased because of reforestation, whereas the number of butterflies inhabiting grasslands may have declined. Furthermore, the number of northern butterflies may have declined, whereas the number of southern butterflies may have increased in response to global warming. Therefore, we compared current data (2002 approximately 2007) regarding the abundance of butterfly species at two sites in the central portion of the Korean Peninsula to data from the late 1950s and early 1970s for the same sites. Changes in the abundance rank of each species between the two periods were evaluated to determine whether any patterns corresponded to the predicted temporal changes. The predicted changes in butterfly abundance were confirmed in this study. In addition, the results showed a different response to habitat change between northern and southern species. In northern butterfly species, butterflies inhabiting forests increased, whereas those inhabiting grasslands declined. However, the opposite was true when southern butterfly species were evaluated. Changes in the abundance indicate that habitat change may be one of the key factors related to the survival of populations that remain around the southern boundary of butterfly species.

  6. Criticality in third order lovelock gravity and butterfly effect

    Energy Technology Data Exchange (ETDEWEB)

    Qaemmaqami, Mohammad M. [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2018-01-15

    We study third order Lovelock Gravity in D = 7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D = 7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D = 7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, v{sub B}{sup E.H} > v{sub B}{sup E.G.B} > v{sub B}{sup 3rdLovelock}. Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases. (orig.)

  7. The eyes and vision of butterflies.

    Science.gov (United States)

    Arikawa, Kentaro

    2017-08-15

    Butterflies use colour vision when searching for flowers. Unlike the trichromatic retinas of humans (blue, green and red cones; plus rods) and honeybees (ultraviolet, blue and green photoreceptors), butterfly retinas typically have six or more photoreceptor classes with distinct spectral sensitivities. The eyes of the Japanese yellow swallowtail (Papilio xuthus) contain ultraviolet, violet, blue, green, red and broad-band receptors, with each ommatidium housing nine photoreceptor cells in one of three fixed combinations. The Papilio eye is thus a random patchwork of three types of spectrally heterogeneous ommatidia. To determine whether Papilio use all of their receptors to see colours, we measured their ability to discriminate monochromatic lights of slightly different wavelengths. We found that Papilio can detect differences as small as 1-2 nm in three wavelength regions, rivalling human performance. We then used mathematical modelling to infer which photoreceptors are involved in wavelength discrimination. Our simulation indicated that the Papilio vision is tetrachromatic, employing the ultraviolet, blue, green and red receptors. The random array of three ommatidial types is a common feature in butterflies. To address the question of how the spectrally complex eyes of butterflies evolved, we studied their developmental process. We have found that the development of butterfly eyes shares its molecular logic with that of Drosophila: the three-way stochastic expression pattern of the transcription factor Spineless determines the fate of ommatidia, creating the random array in Papilio. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  8. Checklist of butterfly fauna of Kohat, Khyber Pakhtunkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Farzana Perveen

    2012-09-01

    Full Text Available The butterflies play dual role, firstly as the pollinator, carries pollen from one flower to another and secondly their larvae act as the pest, injurious to various crops. Their 21 species were identified belonging to 3 different families from Kohat, Pakistan during September-December 2008. The reported families Namphalidae covered 33%, Papilionidae 10%, and Pieridae 57% biodiversity of butterflies of Kohat. In Namphalidae included: species belonging to subfamily Nymphalinae, Indian fritillary, Argynnis hyperbius Linnaeus; common castor, Ariadne merione (Cramer; painted lady, Cynthia cardui (Linnaeus; peacock pansy, Junonia almanac Linnaeus; blue pansy, J. orithya Linnaeus; common leopard, Phalantha phalantha (Drury; species belonging to subfamily Satyrinae, white edged rock brown, Hipparchia parisatis (Kollar. In Papilionidae included: subfamily Papilioninae, lime butterfly, Papilio demoleus Linnaeus and common mormon, Pa. polytes Linnaeus. In Pieridae included: subfamily Coliaclinae, dark clouded yellow, Colias croceus (Geoffroy; subfamily Coliadinae, lemon emigrant, Catopsilia pomona Fabricius; little orange tip, C. etrida Boisduval; blue spot arab,Colotis protractus Butler; common grass yellow, Eumera hecab (Linnaeus; common brimstone, Gonepteryx rhamni (Linnaeus; yellow orange tip, Ixias pyrene Linnaeus; subfamily Pierinae, pioneer white butterfly, Belenoi aurota Bingham; Murree green-veined white, Pieris ajaka Moore; large cabbage white, P. brassicae Linnaeus; green-veined white, P. napi (Linnaeus; small cabbage white, P. rapae Linnaeus. The wingspan of collected butterflies, minimum was 25 mm of C. etrida which was the smallest butterfly, however, maximum was 100 mm of P. demoleus and P. polytes which were the largest butterflies. A detail study is required for further exploration of butterflies' fauna of Kohat.

  9. Citizen Science: The First Peninsular Malaysia Butterfly Count

    Science.gov (United States)

    Jisming-See, Shi-Wei; Brandon-Mong, Guo-Jie; Lim, Aik-Hean; Lim, Voon-Ching; Lee, Ping-Shin; Sing, Kong-Wah

    2015-01-01

    Abstract Background Over the past 50 years, Southeast Asia has suffered the greatest losses of biodiversity of any tropical region in the world. Malaysia is a biodiversity hotspot in the heart of Southeast Asia with roughly the same number of mammal species, three times the number of butterfly species, but only 4% of the land area of Australia. Consequently, in Malaysia, there is an urgent need for biodiversity monitoring and also public engagement with wildlife to raise awareness of biodiversity loss. Citizen science is “on the rise” globally and can make valuable contributions to long-term biodiversity monitoring, but perhaps more importantly, involving the general public in science projects can raise public awareness and promote engagement. Butterflies are often the focus of citizen science projects due to their charisma and familiarity and are particularly valuable “ambassadors” of biodiversity conservation for public outreach. New information Here we present the data from our citizen science project, the first “Peninsular Malaysia Butterfly Count”. Participants were asked to go outdoors on June 6, 2015, and (non-lethally) sample butterfly legs for species identification through DNA barcoding. Fifty-seven citizens responded to our adverts and registered to take part in the butterfly count with many registering on behalf of groups. Collectively the participants sampled 220 butterfly legs from 26 mostly urban and suburban sampling localities. These included our university campus, a highschool, several public parks and private residences. On the basis of 192 usable DNA barcodes, 43 species were sampled by the participants. The most sampled species was Appias olferna, followed by Junonia orithya and Zizina otis. Twenty-two species were only sampled once, five were only sampled twice, and four were only sampled three times. Three DNA barcodes could not be assigned species names. The sampled butterflies revealed that widely distributed, cosmopolitan

  10. Diversity of fruit-feeding butterflies in a mountaintop archipelago of rainforest.

    Science.gov (United States)

    Pereira, Geanne Carla Novais; Coelho, Marcel Serra; Beirão, Marina do Vale; Braga, Rodrigo Fagundes; Fernandes, Geraldo Wilson

    2017-01-01

    We provide the first description of the effects of local vegetation and landscape structure on the fruit-feeding butterfly community of a natural archipelago of montane rainforest islands in the Serra do Espinhaço, southeastern Brazil. Butterflies were collected with bait traps in eleven forest islands through both dry and rainy seasons for two consecutive years. The influence of local and landscape parameters and seasonality on butterfly species richness, abundance and composition were analyzed. We also examined the partitioning and decomposition of temporal and spatial beta diversity. Five hundred and twelve fruit-feeding butterflies belonging to thirty-four species were recorded. Butterfly species richness and abundance were higher on islands with greater canopy openness in the dry season. On the other hand, islands with greater understory coverage hosted higher species richness in the rainy season. Instead, the butterfly species richness was higher with lower understory coverage in the dry season. Butterfly abundance was not influenced by understory cover. The landscape metrics of area and isolation had no effect on species richness and abundance. The composition of butterfly communities in the forest islands was not randomly structured. The butterfly communities were dependent on local and landscape effects, and the mechanism of turnover was the main source of variation in β diversity. The preservation of this mountain rainforest island complex is vital for the maintenance of fruit-feeding butterfly community; one island does not reflect the diversity found in the whole archipelago.

  11. Simultaneous brightness contrast of foraging Papilio butterflies

    Science.gov (United States)

    Kinoshita, Michiyo; Takahashi, Yuki; Arikawa, Kentaro

    2012-01-01

    This study focuses on the sense of brightness in the foraging Japanese yellow swallowtail butterfly, Papilio xuthus. We presented two red discs of different intensity on a grey background to butterflies, and trained them to select one of the discs. They were successfully trained to select either a high intensity or a low intensity disc. The trained butterflies were tested on their ability to perceive brightness in two different protocols: (i) two orange discs of different intensity presented on the same intensity grey background and (ii) two orange discs of the same intensity separately presented on a grey background that was either higher or lower in intensity than the training background. The butterflies trained to high intensity red selected the orange disc of high intensity in protocol 1, and the disc on the background of low intensity grey in protocol 2. We obtained similar results in another set of experiments with purple discs instead of orange discs. The choices of the butterflies trained to low intensity red were opposite to those just described. Taken together, we conclude that Papilio has the ability to learn brightness and darkness of targets independent of colour, and that they have the so-called simultaneous brightness contrast. PMID:22179808

  12. Wing Scale Orientation Alters Reflection Directions in the Green Hairstreak Chrysozephyrus smaragdinus (Lycaenidae; Lepidoptera).

    Science.gov (United States)

    Imafuku, Michio; Ogihara, Naomichi

    2016-12-01

    There have been only a few reports on the directional reflection of light by butterfly wings. Here, we systematically investigated this phenomenon in a lycaenid butterfly, Chrysozephyrus smaragdinus,in which males have bright green wings based on structural coloration. We used a device that measures intensities of light in hemispherical space by vertical shifting of a sensor and horizontal rotation of the stage carrying the wing, which is illuminated from the top, to determine the direction of light reflected by the fore- and hindwings. The orientation and curvature of wing scales were also examined microscopically. The forewing of this species reflected light shone from the top largely forward, whereas the hindwing reflected it slightly forward. This difference was attributed to the tilt angles of the wing scales. Light reflection by the forewing was relatively weak, and widely scattered, whereas that by the hindwing was rather concentrated, resulting in higher reflectance. This difference was attributed to difference in the curvature of the wing scales on the two wings.

  13. Butterflies of Myanmar

    International Nuclear Information System (INIS)

    Khin-Maung-Zaw

    2001-01-01

    The document talks about species and habits of Myanmar butterflies that were mentioned by the Nature and Wildlife Conservation Division of the Forest Department under the Ministry of Forestry in Myanmar

  14. Risk assessment for adult butterflies exposed to the mosquito control pesticide naled

    Science.gov (United States)

    Bargar, Timothy A.

    2012-01-01

    A prospective risk assessment was conducted for adult butterflies potentially exposed to the mosquito control insecticide naled. Published acute mortality data, exposure data collected during field studies, and morphometric data (total surface area and fresh body weight) for adult butterflies were combined in a probabilistic estimate of the likelihood that adult butterfly exposure to naled following aerial applications would exceed levels associated with acute mortality. Adult butterfly exposure was estimated based on the product of (1) naled residues on samplers and (2) an exposure metric that normalized total surface area for adult butterflies to their fresh weight. The likelihood that the 10th percentile refined effect estimate for adult butterflies exposed to naled would be exceeded following aerial naled applications was 67 to 80%. The greatest risk would be for butterflies in the family Lycaenidae, and the lowest risk would be for those in the family Hesperidae, assuming equivalent sensitivity to naled. A range of potential guideline naled deposition levels is presented that, if not exceeded, would reduce the risk of adult butterfly mortality. The results for this risk assessment were compared with other risk estimates for butterflies, and the implications for adult butterflies in areas targeted by aerial naled applications are discussed.

  15. Risk assessment for adult butterflies exposed to the mosquito control pesticide naled.

    Science.gov (United States)

    Bargar, Timothy A

    2012-04-01

    A prospective risk assessment was conducted for adult butterflies potentially exposed to the mosquito control insecticide naled. Published acute mortality data, exposure data collected during field studies, and morphometric data (total surface area and fresh body weight) for adult butterflies were combined in a probabilistic estimate of the likelihood that adult butterfly exposure to naled following aerial applications would exceed levels associated with acute mortality. Adult butterfly exposure was estimated based on the product of (1) naled residues on samplers and (2) an exposure metric that normalized total surface area for adult butterflies to their fresh weight. The likelihood that the 10th percentile refined effect estimate for adult butterflies exposed to naled would be exceeded following aerial naled applications was 67 to 80%. The greatest risk would be for butterflies in the family Lycaenidae, and the lowest risk would be for those in the family Hesperidae, assuming equivalent sensitivity to naled. A range of potential guideline naled deposition levels is presented that, if not exceeded, would reduce the risk of adult butterfly mortality. The results for this risk assessment were compared with other risk estimates for butterflies, and the implications for adult butterflies in areas targeted by aerial naled applications are discussed. Copyright © 2012 SETAC.

  16. Seasonal dynamics of butterfly population in DAE Campus, Kalpakkam, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    K.J. Hussain

    2011-01-01

    Full Text Available Seasonal population trends of butterflies inhabiting the campus of Department of Atomic Energy (DAE at Kalpakkam were recorded by setting a permanent line transect of 300m and recording all species of butterflies observed within a 5m distance. The survey yielded 2177 individuals of 56 butterfly species, belonging to the families Nymphalidae, Pieridae, Lycaenidae, Papilionidae and Hesperiidae. Nymphalidae were found to be the dominant family during all seasons. Species richness and abundance were highest during the northeast monsoon and winter periods, indicating that in the southern plains of India butterflies prefer cool seasons for breeding and emergence. The taxonomic structure of the butterflies sampled resembles that of the Western Ghats and other regions of India in two ways: (a dominance of nymphalids and (b peak abundance during wet seasons. A detailed study of ecologically important local butterfly fauna and their host plants is in progress, to construct a butterfly garden in Kalpakkam to attract and support butterflies.

  17. Butterfly valves: greater use in power plants

    International Nuclear Information System (INIS)

    McCoy, M.

    1975-01-01

    Improvements in butterfly valves, particularly in the areas of automatic control and leak tightness are described. The use of butterfly valves in nuclear power plants is discussed. These uses include service in component cooling, containment cooling, and containment isolation. The outlook for further improvements and greater uses is examined. (U.S.)

  18. Active dendrites: colorful wings of the mysterious butterflies.

    Science.gov (United States)

    Johnston, Daniel; Narayanan, Rishikesh

    2008-06-01

    Santiago Ramón y Cajal had referred to neurons as the 'mysterious butterflies of the soul.' Wings of these butterflies--their dendrites--were traditionally considered as passive integrators of synaptic information. Owing to a growing body of experimental evidence, it is now widely accepted that these wings are colorful, endowed with a plethora of active conductances, with each family of these butterflies made of distinct hues and shades. Furthermore, rapidly evolving recent literature also provides direct and indirect demonstrations for activity-dependent plasticity of these active conductances, pointing toward chameleonic adaptability in these hues. These experimental findings firmly establish the immense computational power of a single neuron, and thus constitute a turning point toward the understanding of various aspects of neuronal information processing. In this brief historical perspective, we track important milestones in the chameleonic transmogrification of these mysterious butterflies.

  19. K+ excretion: the other purpose for puddling behavior in Japanese Papilio butterflies.

    Science.gov (United States)

    Inoue, Takashi A; Ito, Tetsuo; Hagiya, Hiroshi; Hata, Tamako; Asaoka, Kiyoshi; Yokohari, Fumio; Niihara, Kinuko

    2015-01-01

    To elucidate the purpose of butterfly puddling, we measured the amounts of Na+, K+, Ca2+, and Mg2+ that were absorbed or excreted during puddling by male Japanese Papilio butterflies through a urine test. All of the butterflies that sipped water with a Na+ concentration of 13 mM absorbed Na+ and excreted K+, although certain butterflies that sipped solutions with high concentrations of Na+ excreted Na+. According to the Na+ concentrations observed in naturally occurring water sources, water with a Na+ concentration of up to 10 mM appears to be optimal for the health of male Japanese Papilio butterflies. The molar ratio of K+ to Na+ observed in leaves was 43.94 and that observed in flower nectars was 10.93. The Na+ amount in 100 g of host plant leaves ranged from 2.11 to 16.40 mg, and the amount in 100 g of flower nectar ranged from 1.24 to 108.21 mg. Differences in host plants did not explain the differences in the frequency of puddling observed for different Japanese Papilio species. The amounts of Na+, K+, Ca2+, and Mg2+ in the meconium of both male and female butterflies were also measured, and both males and females excreted more K+ than the other three ions. Thus, the fluid that was excreted by butterflies at emergence also had a role in the excretion of the excessive K+ in their bodies. The quantities of Na+ and K+ observed in butterfly eggs were approximately 0.50 μg and 4.15 μg, respectively; thus, female butterflies required more K+ than male butterflies. Therefore, female butterflies did not puddle to excrete K+. In conclusion, the purpose of puddling for male Papilio butterflies is not only to absorb Na+ to correct deficiencies but also to excrete excessive K+.

  20. Diversity of Butterflies (Lepidoptera) in Manembo-Nembo Wildlife Reserve, North Sulawesi, Indonesia.

    Science.gov (United States)

    Koneri, Roni; Maabuat, Pience V

    The degradation of a habitat will affect the population of butterflies living in it. This study aims to analyse the diversity of butterflies in the area of Manembo-Nembo Wildlife Reserve, North Sulawesi. Employing purposive sampling, the study was conducted for five months. The collection of butterflies was done by using the sweeping technique, following the transect line applied randomly along 1000 m to three types of habitat (the primary forest, riverside in the forest and agricultural land). The species diversity was determined by using diversity index (Shannon-Wiener). The study identified 4 families, 44 species and 748 individual butterflies. Nymphalidae was a family predominantly found (71.12%), while the species mostly found was Ideopsis juventa tontoliensis (10.16%). Abundance (76.50), richness (20.25), diversity (2.66) and species evenness (0.88) were mostly found in riverside habitats in the forest, while the lowest was found in the primary forest. The similarities of butterfly communities in the different types of habitats indicate that the highest similarity index of butterfly communities is in the habitats of the primary forest and riverside in the forest wi a value of 80%. The highest diversity of butterflies in all types of habitats found in riverside. The high diversity of butterflies in the river is strongly influenced by the presence of vegetation as food and host plants of butterflies and this habitat should be conserved for the survival of the butterfly in a wildlife reserve Manembo-Nembo, North Sulawesi. It is expected that the results of this study could become important data of the diversity of butterflies and effects of changes of habitats on the diversity of butterflies in Manembo-Nembo Wildlife Reserve, North Sulawesi.

  1. Public Knowledge of Monarchs and Support for Butterfly Conservation

    Directory of Open Access Journals (Sweden)

    Jerrod Penn

    2018-03-01

    Full Text Available Pollinator populations in North America are in decline, including the iconic monarch butterfly. In order to determine if public knowledge of monarchs informs opinions on butterfly conservation, we surveyed the public to assess their knowledge of monarchs. We also asked participants about their attitudes towards general butterfly conservation and if they believe that butterfly gardens contribute to conservation. Respondents generally had some knowledge of monarchs but were unaware of monarch population declines and the necessity of milkweed to their life cycle. Respondent knowledge was correlated with more positive attitudes about butterfly conservation. Furthermore, membership in an environmental organization increased the likelihood that the participant had prior knowledge of monarchs and cared about monarch conservation. Respondent socioeconomic factors of age and sex were also significantly correlated with conservation attitudes—older and female participants had more positive attitudes towards general butterfly conservation. Interestingly, females were also less likely than males to admit having prior knowledge of monarchs, indicating that gender may also play an important role in conservation outreach efforts. Our study indicates that educational efforts need to be directed more toward individuals not already associated with an environmental organization as these individuals are predisposed to regard conservation positively.

  2. White butterflies as solar photovoltaic concentrators

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  3. Note on the butterfly effect in holographic superconductor models

    International Nuclear Information System (INIS)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2017-01-01

    In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  4. Note on the butterfly effect in holographic superconductor models

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China)

    2017-05-10

    In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  5. Direct and indirect responses of tallgrass prairie butterflies to prescribed burning

    Science.gov (United States)

    Vogel, Jennifer A.; Koford, Rolf R.; Debinski, Diane M.

    2010-01-01

    Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance. ?? 2010 Springer Science+Business Media B.V.

  6. Do neotropical migrant butterflies navigate using a solar compass?

    Science.gov (United States)

    Oliveira; Srygley; Dudley

    1998-12-01

    Many tropical butterfly species are well-known for their migratory behaviour. Although these insects can maintain a constant direction throughout the day, the physiological mechanisms of orientation are unknown. It has been argued that tropical migrant butterflies must use a time-compensated sun compass to accomplish their journey, but the crucial experimental manipulations to test this hypothesis have not been conducted. This study reports the results of clock-shift experiments performed with two species of migrating butterflies (Pieridae: Aphrissa statira and Phoebis argante) captured during flight across Lake Gatun, Panama. The observed constant flight bearing of natural controls suggests that these species are capable of performing time-compensated celestial navigation. Our clock-shift experiments suggest that a sun compass is involved. Individuals submitted to a 4 h advance shift took significantly different mean orientations on release compared with control butterflies. The direction of this difference was consistent with the use of a sun compass. The magnitude was approximately half the predicted value if the vanishing bearing of released butterflies was used as the variable to evaluate the effect of time-shifting and approximately three-quarters of that predicted if the estimated heading was the variable used. Mean vanishing bearings of control and experimental butterflies did not correspond to predicted values. This difference can be attributed largely to the combined effects of wind and handling.

  7. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    Science.gov (United States)

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  8. Fragile Butterfly

    DEFF Research Database (Denmark)

    2011-01-01

    Valg af materiale/medie/form: Med indlevelse og en unik balance af sårbarhed i stemmen synger og fortolker Heidie sine egne sange, hvis lyriske tekster grundlæggende har to temaer: En dyb kærlighed til livet og det at turde kærligheden. Toneuniverset i Fragile Butterfly tager sit afsæt i jazzen...

  9. Development of linear flow rate control system for eccentric butter-fly valve

    International Nuclear Information System (INIS)

    Kwak, K. K.; Cho, S. W.; Park, J. S.; Cho, J. H.; Song, I. T.; Kim, J. G.; Kwon, S. J.; Kim, I. J.; Park, W. K.

    1999-12-01

    Butter-fly valves are advantageous over gate, globe, plug, and ball valves in a variety of installations, particularly in the large sizes. The purpose of this project development of linear flow rate control system for eccentric butter-fly valve (intelligent butter-fly valve system). The intelligent butter-fly valve system consist of a valve body, micro controller. The micro controller consist of torque control system, pressure censor, worm and worm gear and communication line etc. The characteristics of intelligent butter-fly valve system as follows: Linear flow rate control function. Digital remote control function. guard function. Self-checking function. (author)

  10. Butterfly wing coloration studied with a novel imaging scatterometer

    Science.gov (United States)

    Stavenga, Doekele

    2010-03-01

    Animal coloration functions for display or camouflage. Notably insects provide numerous examples of a rich variety of the applied optical mechanisms. For instance, many butterflies feature a distinct dichromatism, that is, the wing coloration of the male and the female differ substantially. The male Brimstone, Gonepteryx rhamni, has yellow wings that are strongly UV iridescent, but the female has white wings with low reflectance in the UV and a high reflectance in the visible wavelength range. In the Small White cabbage butterfly, Pieris rapae crucivora, the wing reflectance of the male is low in the UV and high at visible wavelengths, whereas the wing reflectance of the female is higher in the UV and lower in the visible. Pierid butterflies apply nanosized, strongly scattering beads to achieve their bright coloration. The male Pipevine Swallowtail butterfly, Battus philenor, has dorsal wings with scales functioning as thin film gratings that exhibit polarized iridescence; the dorsal wings of the female are matte black. The polarized iridescence probably functions in intraspecific, sexual signaling, as has been demonstrated in Heliconius butterflies. An example of camouflage is the Green Hairstreak butterfly, Callophrys rubi, where photonic crystal domains exist in the ventral wing scales, resulting in a matte green color that well matches the color of plant leaves. The spectral reflection and polarization characteristics of biological tissues can be rapidly and with unprecedented detail assessed with a novel imaging scatterometer-spectrophotometer, built around an elliptical mirror [1]. Examples of butterfly and damselfly wings, bird feathers, and beetle cuticle will be presented. [4pt] [1] D.G. Stavenga, H.L. Leertouwer, P. Pirih, M.F. Wehling, Optics Express 17, 193-202 (2009)

  11. Prediction of a required dynamic torque for motor-operated butterfly valves

    International Nuclear Information System (INIS)

    Bae, J. H.; Lee, K. N.; Jeong, W. K.

    2002-01-01

    This study describes the methodology for predicting a required dynamic torque in motor-operated butterfly valves. The results of this methodology have been compared with test data for motor-operated butterfly valves in nuclear power plant. With the close review of test data and torque prediction, it is concluded that the prediction methodology is conservative to predict a required dynamic torque of motor-operated butterfly valves. In addition, the information of correct differential pressure is vital to predict a required dynamic torque of motor-operated butterfly valves

  12. Note on the butterfly effect in holographic superconductor models

    Directory of Open Access Journals (Sweden)

    Yi Ling

    2017-05-01

    Full Text Available In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  13. Egg-laying butterflies distinguish predaceous ants by sight.

    Science.gov (United States)

    Sendoya, Sebastián F; Freitas, André V L; Oliveira, Paulo S

    2009-07-01

    Information about predation risks is critical for herbivorous insects, and natural selection favors their ability to detect predators before oviposition and to select enemy-free foliage when offspring mortality risk is high. Food plants are selected by ovipositing butterflies, and offspring survival frequently varies among plants because of variation in the presence of predators. Eunica bechina butterflies oviposit on Caryocar brasiliense, an ant-defended plant. Experiments with dried Camponotus and Cephalotes ants pinned to leaves revealed that butterflies use ant size and form as visual cues to avoid ovipositing on plant parts occupied by ants more likely to kill larval offspring. Presence of sap-sucking bugs did not affect butterfly oviposition. This is the first demonstration that visual recognition of predators can mediate egg-laying decisions by an insect herbivore and that an insect will discriminate among different species of potential predators. This unusual behavioral capability permits specialization on a risky, ant-defended food plant.

  14. Organization of the olfactory system of nymphalidae butterflies.

    Science.gov (United States)

    Carlsson, Mikael A; Schäpers, Alexander; Nässel, Dick R; Janz, Niklas

    2013-05-01

    Olfaction is in many species the most important sense, essential for food search, mate finding, and predator avoidance. Butterflies have been considered a microsmatic group of insects that mainly rely on vision due to their diurnal lifestyle. However, an emerging number of studies indicate that butterflies indeed use the sense of smell for locating food and oviposition sites. To unravel the neural substrates for olfaction, we performed an anatomical study of 2 related butterfly species that differ in food and host plant preference. We found many of the anatomical structures and pathways, as well as distribution of neuroactive substances, to resemble that of their nocturnal relatives among the Lepidoptera. The 2 species differed in the number of one type of olfactory sensilla, thus indicating a difference in sensitivity to certain compounds. Otherwise no differences could be observed. Our findings suggest that the olfactory system in Lepidoptera is well conserved despite the long evolutionary time since butterflies and moths diverged from a common ancestor.

  15. The butterflies and land snails of Ndere Island National Park, Kenya ...

    African Journals Online (AJOL)

    After a survey of Ndere Island National Park between October and November 2004, we recorded 18 species of butterflies and 3 species of land snails. Eurema brigitta brigitta was the most abundant butterfly whereas Thapsia karamwegasensis was the most abundant land snail. Majority of the butterfly species are found in ...

  16. Fueling the fall migration of the monarch butterfly.

    Science.gov (United States)

    Brower, Lincoln P; Fink, Linda S; Walford, Peter

    2006-12-01

    Monarch butterflies in eastern North America accumulate lipids during their fall migration to central Mexico, and use them as their energy source during a 5 month overwintering period. When and where along their migratory journey the butterflies accumulate these lipids has implications for the importance of fall nectar sources in North America. We analyzed the lipid content of 765 summer breeding and fall migrant monarch butterflies collected at 1 nectaring site in central Virginia over 4 years (1998-2001), and compared them with 16 additional published and unpublished datasets from other sites, dating back to 1941. Virginia migrants store significantly more lipid than summer butterflies, and show significant intraseason and between-year variation. None of the Virginia samples, and none of the historical samples, with one exception, had lipid levels comparable with those found in migrants that had reached Texas and northern Mexico. This evidence suggests that upon reaching Texas, the butterflies undergo a behavioral shift and spend more time nectaring. The one exceptional sample led us to the discovery that monarchs that form roosts along their migratory routes have higher lipid contents than monarchs collected while nectaring at flowers. We propose that for much of their journey monarchs are opportunistic migrants, and the variation within and between samples reflects butterflies' individual experiences. The stored lipids appear to be of less importance as fuel for the butterflies' migration than for their survival during their overwintering period, in part because soaring on favorable winds reduces the energetic cost of flying. The conservation of nectar plants in Texas and northern Mexico is crucial to sustaining the monarch's migratory spectacle, and nectar abundance throughout eastern North America is also important. As generalists in their selection of nectar sources and nectaring habitats, monarchs are unlikely to be affected by small changes in plant

  17. Wolbachia endosymbiont infection in two Indian butterflies and ...

    Indian Academy of Sciences (India)

    The maternally inherited obligate bacteria Wolbachia is known to infect various lepidopteran insects. However, so far only a few butterfly species harbouring this bacterium have been thoroughly studied. The current study aims to identify the infection status of these bacteria in some of the commonly found butterfly species in ...

  18. The Butterfly House Industry: Conservation Risks and Education Opportunities

    Directory of Open Access Journals (Sweden)

    Michael Boppré

    2012-01-01

    Full Text Available This paper addresses the mass supply and use of butterflies for live exhibits, discusses the risks to biodiversity which this creates, and the educational opportunities it presents. Over the past 30 years a new type of insect zoo has become popular worldwide: the butterfly house. This has given rise to the global Butterfly House Industry (BHI based on the mass production of butterfly pupae as a cash crop. Production is largely carried out by privately-owned butterfly farms in tropical countries, notably Central America and Southeast Asia. Most pupae are exported to North America and Europe, although the number of butterfly houses in tropical countries is growing. The BHI is described with respect to its stakeholders, their diverse interests, and its extent. It is estimated that the global turnover of the BHI is in the order of USD 100 million. From a conservation perspective, there is a tension between risks and benefits. The risks to biodiversity are primarily unsustainable production, potential bastardisation of local faunas and floras, and genetic mixing within and even between butterfly species. This paper discusses general ways of managing these risks. Ethical concerns range from fair trade issues to animal husbandry and the use of wildlife for entertainment. For the risks to biodiversity and unresolved ethical issues to be tolerable, the BHI needs to make a significant contribution to conservation, primarily through effective education about butterfly biology as a means to raise public awareness of basic ecological processes, and conservation and environmental issues. It should also engage with local conservation initiatives. Currently the BHI′s great potential for public good in these respects is rarely realised. The paper concludes by looking at the special nature of the BHI, and its need for effective self-regulation if it is to continue to escape from public scrutiny and the introduction of restrictive regulations. The BHI needs to

  19. Steel-fabricated butterfly valves for condenser circulating water system

    International Nuclear Information System (INIS)

    Kawase, Hiroshi; Yasuoka, Masahiro; Nanao, Teruaki.

    1979-01-01

    The steel-fabricated butterfly valves, which are large in general, and gave rubber linings inside to prevent the corrosion due to sea Water, are utilized for the condenser circulating water systems of thermal and nuclear power plants. Cast iron butterfly valves, having been used hitherto, have some technical irrationalities, such as corrosion prevention, the techniques for manufacturing large castings, severe thermal transient operation. On the contrary, the steel plate-fabricated butterfly valves have the following advantages; much superior characteristics in strength, rigidity and shock resistance, the streamline shape of valve plates, the narrow width between two flanges, superior execution of works for rubber lining, the perfect sealed structure, safety to vibration, light weight and easy maintenance. The structural design and the main specifications for the steel plate butterfly valves with the nominal bore from 1350 mm to 3500 mm are presented. Concerning the design criteria, the torque of operating butterfly valves and the strength of valve bodies, valve plates and valve stems are explained. The performance tests utilizing the mock-up valve were carried out for the measurements of stress distribution, the deformation of valve body, the endurance and the operating torque. In the welding standards for steel plate butterfly valves, three kinds of welded parts are classified, and the inspection method for each part is stipulated. The vibration of the valves induced by flow vortexes and cavitation is explained. (Nakai, Y.)

  20. Liquid-intake flow around the tip of butterfly proboscis.

    Science.gov (United States)

    Lee, Sang Joon; Lee, Seung Chul; Kim, Bo Heum

    2014-05-07

    Butterflies drink liquid through a slender proboscis using a large pressure gradient induced by the systaltic operation of a muscular pump inside their head. Although the proboscis is a naturally well-designed coiled micro conduit for liquid uptake and deployment, it has been regarded as a simple straw connected to the muscular pump. There are few studies on the transport of liquid food in the proboscis of a liquid-feeding butterfly. To understand the liquid-feeding mechanism in the proboscis of butterflies, the intake flow around the tip of the proboscis was investigated in detail. In this study, the intake flow was quantitatively visualized using a micro-PIV (particle image velocimetry) velocity field measurement technique. As a result, the liquid-feeding process consists of an intake phase, an ejection phase and a rest phase. When butterflies drink pooled liquid, the liquid is not sucked into the apical tip of the proboscis, but into the dorsal linkage aligned longitudinally along the proboscis. To analyze main characteristics of the intake flow around a butterfly proboscis, a theoretical model was established by assuming that liquid is sucked into a line sink whose suction rate linearly decreases proximally. In addition, the intake flow around the tip of a female mosquito׳s proboscis which has a distinct terminal opening was also visualized and modeled for comparison. The present results would be helpful to understand the liquid-feeding mechanism of a butterfly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Photoelectron spectroscopic study on electronic structure of butterfly-templated ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Masao; Sugiyama, Harue; Takahashi, Kazutoshi; Guo, Qixin [Synchrotron Light Application Center, Saga University, Honjo 1, Saga 840-8502 (Japan); Gu, Jiajun; Zhang, Wang; Fan, Tongxiang; Zhang, Di [State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200030 (China)

    2010-06-15

    Biological systems have complicated hierarchical architecture involving nano-structures inside, and are expected as another candidate for new nano-templates. The present work reports the photoelectron spectroscopic study on electronic structure of the butterfly-templated ZnO that were successfully produced from butterfly wings. Ultraviolet Photoelectron Spectrum (UPS) of the butterfly-templated ZnO shows clearly the valence band and a Zn-3d peak, indicating that the butterfly-templated ZnO has the same electronic structure as bulk ZnO. However, the details show that the energy positions of the Zn-3d level and the valence-band structure are different between them. The present results indicate that the bonding interaction between Zn-4sp and O-2p orbitals is stronger in the butterfly-templated ZnO, probably due to the nano-structures inside. Important parameters such as band bending and electron affinity are also obtained. The larger band bending and the lower electron affinity are found in the butterfly-templated ZnO (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales.

    Science.gov (United States)

    Wilts, Bodo D; Matsushita, Atsuko; Arikawa, Kentaro; Stavenga, Doekele G

    2015-10-06

    The colourful wing patterns of butterflies play an important role for enhancing fitness; for instance, by providing camouflage, for interspecific mate recognition, or for aposematic display. Closely related butterfly species can have dramatically different wing patterns. The phenomenon is assumed to be caused by ecological processes with changing conditions, e.g. in the environment, and also by sexual selection. Here, we investigate the birdwing butterflies, Ornithoptera, the largest butterflies of the world, together forming a small genus in the butterfly family Papilionidae. The wings of these butterflies are marked by strongly coloured patches. The colours are caused by specially structured wing scales, which act as a chirped multilayer reflector, but the scales also contain papiliochrome pigments, which act as a spectral filter. The combined structural and pigmentary effects tune the coloration of the wing scales. The tuned colours are presumably important for mate recognition and signalling. By applying electron microscopy, (micro-)spectrophotometry and scatterometry we found that the various mechanisms of scale coloration of the different birdwing species strongly correlate with the taxonomical distribution of Ornithoptera species. © 2015 The Author(s).

  3. A Parallel Butterfly Algorithm

    KAUST Repository

    Poulson, Jack; Demanet, Laurent; Maxwell, Nicholas; Ying, Lexing

    2014-01-01

    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.

  4. A Parallel Butterfly Algorithm

    KAUST Repository

    Poulson, Jack

    2014-02-04

    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.

  5. Butterfly response and successional change following ecosystem restoration

    Science.gov (United States)

    Amy E. M. Waltz; W. Wallace Covington

    2001-01-01

    The Lepidoptera (butterflies and moths) can be useful indicators of ecosystem change as a result of a disturbance event. We monitored changes in butterfly abundance in two restoration treatment units paired with adjacent untreated forest at the Mt. Trumbull Resource Conservation Area in northern Arizona. Restoration treatments included thinning trees to density levels...

  6. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    Science.gov (United States)

    Ferrer-Paris, José R; Sánchez-Mercado, Ada; Viloria, Ángel L; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  7. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    Directory of Open Access Journals (Sweden)

    José R Ferrer-Paris

    Full Text Available We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1 is there a general correlation between host diversity and butterfly species richness?, (2 has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3 what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea and 1,193 genera (66.3%. The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp. from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae, and Satyrinae (42.6% of all Nymphalidae. We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids, but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  8. Propagating native milkweeds for restoring monarch butterfly habitat

    Science.gov (United States)

    Thomas D. Landis; R. Kasten. Dumroese

    2015-01-01

    The number of monarch butterflies, charismatic nomads of North America, is rapidly declining. Milkweeds (Asclepias spp.), which are the sole food source for monarch caterpillars, have also experienced a decline throughout the breeding range of this butterfly. Milkweeds can be grown from seeds or vegetatively from root cuttings or rhizomes. Seed germination is often...

  9. [History and present status of butterfly monitoring in Europe and related development strategies for China].

    Science.gov (United States)

    Fang, Li-Jun; Xu, Hai-Gen; Guan, Jian-Ling

    2013-09-01

    Butterfly is an important bio-indicator for biodiversity monitoring and ecological environment assessment. In Europe, the species composition, population dynamics, and distribution pattern of butterfly have been monitored for decades, and many long-term monitoring schemes with international effects have been implemented. These schemes are aimed to assess the regional and national variation trends of butterfly species abundance, and to analyze the relationships of this species abundance with habitat, climate change, and other environmental factors, providing basic data for researching, protecting, and utilizing butterfly resources and predicting environmental changes, and playing important roles in the division of butterfly' s threatened level, the formulation of related protection measures, and the protection and management of ecological environment. This paper reviewed the history and present status of butterfly monitoring in Europe, with the focus on the well-known long-term monitoring programs, e. g. , the UK Butterfly Monitoring Scheme and the Germany and European Union Butterfly Monitoring Scheme. Some specific proposals for conducting butterflies monitoring in China were suggested.

  10. Charge diffusion and the butterfly effect in striped holographic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-26

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  11. Charge diffusion and the butterfly effect in striped holographic matter

    International Nuclear Information System (INIS)

    Lucas, Andrew; Steinberg, Julia

    2016-01-01

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  12. Holographic butterfly velocities in brane geometry and Einstein-Gauss-Bonnet gravity with matters

    Science.gov (United States)

    Huang, Wung-Hong

    2018-03-01

    In the first part of the paper we generalize the butterfly velocity formula to anisotropic spacetime. We apply the formula to evaluate the butterfly velocities in M-branes, D-branes, and strings backgrounds. We show that the butterfly velocities in M2-branes, M5-branes and the intersection M 2 ⊥ M 5 equal to those in fundamental strings, D4-branes and the intersection F 1 ⊥ D 4 backgrounds, respectively. These observations lead us to conjecture that the butterfly velocity is generally invariant under a double-dimensional reduction. In the second part of the paper, we study the butterfly velocity for Einstein-Gauss-Bonnet gravity with arbitrary matter fields. A general formula is obtained. We use this formula to compute the butterfly velocities in different backgrounds and discuss the associated properties.

  13. Butterfly inclusions in Van Schrieck masterpieces. Techniques and optical properties

    Science.gov (United States)

    Berthier, S.; Boulenguez, J.; Menu, M.; Mottin, B.

    2008-07-01

    Dutch painter Otto Marseus Van Schrieck (1619 1678) is famous for his invention of “sottobosco”. These specific still-life paintings are characterized by the presence of various living organisms (mainly insects and plants) directly on the canvas. We will focus our attention on the painting kept in the museum of Grenoble, France, where a real butterfly is pasted on the canvas. The actual butterfly is a common Nymphalidae, Inachis io, presented in a static position on the dorsal side, without any perspective, compared to the neighboring butterflies. The colors of this butterfly are mainly due to pigments, melanin (black to brown) and ommochromes (yellow, orange, red) often in granules configuration that introduce scattering of light superimposed to the classical selective absorption, except in the ocelli of the hind wings where the blue coloration is due to interferential effects. The nearly perfect refraction index equality between the varnish and the chitin, the main constituent of the butterfly wings, deeply affects its colors. This leads the artist to a final intervention in some parts of the wings, revealed by microscope observation.

  14. Improved injection needles facilitate germline transformation of the buckeye butterfly Junonia coenia.

    Science.gov (United States)

    Beaudette, Kahlia; Hughes, Tia M; Marcus, Jeffrey M

    2014-01-01

    Germline transformation with transposon vectors is an important tool for insect genetics, but progress in developing transformation protocols for butterflies has been limited by high post-injection ova mortality. Here we present an improved glass injection needle design for injecting butterfly ova that increases survival in three Nymphalid butterfly species. Using the needles to genetically transform the common buckeye butterfly Junonia coenia, the hatch rate for injected Junonia ova was 21.7%, the transformation rate was 3%, and the overall experimental efficiency was 0.327%, a substantial improvement over previous results in other butterfly species. Improved needle design and a higher efficiency of transformation should permit the deployment of transposon-based genetic tools in a broad range of less fecund lepidopteran species.

  15. Butterfly Eyespots: Their Potential Influence on Aesthetic Preferences and Conservation Attitudes.

    Science.gov (United States)

    Manesi, Zoi; Van Lange, Paul A M; Pollet, Thomas V

    2015-01-01

    Research has shown that the mere presence of stimuli that resemble eyes is sufficient to attract attention, elicit aesthetic responses, and can even enhance prosocial behavior. However, it is less clear whether eye-like stimuli could also be used as a tool for nature conservation. Several animal species, including butterflies, develop eye-like markings that are known as eyespots. In the present research, we explored whether the mere display of eyespots on butterfly wings can enhance: (a) liking for a butterfly species, and (b) attitudes and behaviors towards conservation of a butterfly species. Four online experimental studies, involving 613 participants, demonstrated that eyespots significantly increased liking for a butterfly species. Furthermore, eyespots significantly increased positive attitudes towards conservation of a butterfly species (Studies 1, 2 and 4), whereas liking mediated the eyespot effect on conservation attitudes (Study 2). However, we also found some mixed evidence for an association between eyespots and actual conservation behavior (Studies 3 and 4). Overall, these findings suggest that eyespots may increase liking for an animal and sensitize humans to conservation. We discuss possible implications for biodiversity conservation and future research directions.

  16. Butterfly Eyespots: Their Potential Influence on Aesthetic Preferences and Conservation Attitudes.

    Directory of Open Access Journals (Sweden)

    Zoi Manesi

    Full Text Available Research has shown that the mere presence of stimuli that resemble eyes is sufficient to attract attention, elicit aesthetic responses, and can even enhance prosocial behavior. However, it is less clear whether eye-like stimuli could also be used as a tool for nature conservation. Several animal species, including butterflies, develop eye-like markings that are known as eyespots. In the present research, we explored whether the mere display of eyespots on butterfly wings can enhance: (a liking for a butterfly species, and (b attitudes and behaviors towards conservation of a butterfly species. Four online experimental studies, involving 613 participants, demonstrated that eyespots significantly increased liking for a butterfly species. Furthermore, eyespots significantly increased positive attitudes towards conservation of a butterfly species (Studies 1, 2 and 4, whereas liking mediated the eyespot effect on conservation attitudes (Study 2. However, we also found some mixed evidence for an association between eyespots and actual conservation behavior (Studies 3 and 4. Overall, these findings suggest that eyespots may increase liking for an animal and sensitize humans to conservation. We discuss possible implications for biodiversity conservation and future research directions.

  17. Butterfly Eyespots: Their Potential Influence on Aesthetic Preferences and Conservation Attitudes

    Science.gov (United States)

    Manesi, Zoi; Van Lange, Paul A. M.; Pollet, Thomas V.

    2015-01-01

    Research has shown that the mere presence of stimuli that resemble eyes is sufficient to attract attention, elicit aesthetic responses, and can even enhance prosocial behavior. However, it is less clear whether eye-like stimuli could also be used as a tool for nature conservation. Several animal species, including butterflies, develop eye-like markings that are known as eyespots. In the present research, we explored whether the mere display of eyespots on butterfly wings can enhance: (a) liking for a butterfly species, and (b) attitudes and behaviors towards conservation of a butterfly species. Four online experimental studies, involving 613 participants, demonstrated that eyespots significantly increased liking for a butterfly species. Furthermore, eyespots significantly increased positive attitudes towards conservation of a butterfly species (Studies 1, 2 and 4), whereas liking mediated the eyespot effect on conservation attitudes (Study 2). However, we also found some mixed evidence for an association between eyespots and actual conservation behavior (Studies 3 and 4). Overall, these findings suggest that eyespots may increase liking for an animal and sensitize humans to conservation. We discuss possible implications for biodiversity conservation and future research directions. PMID:26544692

  18. Butterfly wing color: A photonic crystal demonstration

    Science.gov (United States)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  19. Phylogenomics provides strong evidence for relationships of butterflies and moths.

    Science.gov (United States)

    Kawahara, Akito Y; Breinholt, Jesse W

    2014-08-07

    Butterflies and moths constitute some of the most popular and charismatic insects. Lepidoptera include approximately 160 000 described species, many of which are important model organisms. Previous studies on the evolution of Lepidoptera did not confidently place butterflies, and many relationships among superfamilies in the megadiverse clade Ditrysia remain largely uncertain. We generated a molecular dataset with 46 taxa, combining 33 new transcriptomes with 13 available genomes, transcriptomes and expressed sequence tags (ESTs). Using HaMStR with a Lepidoptera-specific core-orthologue set of single copy loci, we identified 2696 genes for inclusion into the phylogenomic analysis. Nucleotides and amino acids of the all-gene, all-taxon dataset yielded nearly identical, well-supported trees. Monophyly of butterflies (Papilionoidea) was strongly supported, and the group included skippers (Hesperiidae) and the enigmatic butterfly-moths (Hedylidae). Butterflies were placed sister to the remaining obtectomeran Lepidoptera, and the latter was grouped with greater than or equal to 87% bootstrap support. Establishing confident relationships among the four most diverse macroheteroceran superfamilies was previously challenging, but we recovered 100% bootstrap support for the following relationships: ((Geometroidea, Noctuoidea), (Bombycoidea, Lasiocampoidea)). We present the first robust, transcriptome-based tree of Lepidoptera that strongly contradicts historical placement of butterflies, and provide an evolutionary framework for genomic, developmental and ecological studies on this diverse insect order. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    International Nuclear Information System (INIS)

    Biro, L.P.

    2010-01-01

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  1. Butterfly valve torque prediction methodology

    International Nuclear Information System (INIS)

    Eldiwany, B.H.; Sharma, V.; Kalsi, M.S.; Wolfe, K.

    1994-01-01

    As part of the Motor-Operated Valve (MOV) Performance Prediction Program, the Electric Power Research Institute has sponsored the development of methodologies for predicting thrust and torque requirements of gate, globe, and butterfly MOVs. This paper presents the methodology that will be used by utilities to calculate the dynamic torque requirements for butterfly valves. The total dynamic torque at any disc position is the sum of the hydrodynamic torque, bearing torque (which is induced by the hydrodynamic force), as well as other small torque components (such as packing torque). The hydrodynamic torque on the valve disc, caused by the fluid flow through the valve, depends on the disc angle, flow velocity, upstream flow disturbances, disc shape, and the disc aspect ratio. The butterfly valve model provides sets of nondimensional flow and torque coefficients that can be used to predict flow rate and hydrodynamic torque throughout the disc stroke and to calculate the required actuation torque and the maximum transmitted torque throughout the opening and closing stroke. The scope of the model includes symmetric and nonsymmetric discs of different shapes and aspects ratios in compressible and incompressible fluid applications under both choked and nonchoked flow conditions. The model features were validated against test data from a comprehensive flowloop and in situ test program. These tests were designed to systematically address the effect of the following parameters on the required torque: valve size, disc shapes and disc aspect ratios, upstream elbow orientation and its proximity, and flow conditions. The applicability of the nondimensional coefficients to valves of different sizes was validated by performing tests on 42-in. valve and a precisely scaled 6-in. model. The butterfly valve model torque predictions were found to bound test data from the flow-loop and in situ testing, as shown in the examples provided in this paper

  2. Some Possible Cases of Escape Mimicry in Neotropical Butterflies.

    Science.gov (United States)

    Pinheiro, C E G; Freitas, A V L

    2014-10-01

    The possibility that escape or evasive mimicry evolved in butterflies and other prey insects in a similar fashion to classical Batesian and Müllerian mimicry has long been advanced in the literature. However, there is a general disagreement among lepidopterists and evolutionary biologists on whether or not escape mimicry exists, as well as in which mimicry rings this form of mimicry has evolved. Here, we review some purported cases of escape mimicry in Neotropical butterflies and suggest new mimicry rings involving several species of Archaeoprepona, Prepona, and Doxocopa (the "bright blue bands" ring) and species of Colobura and Hypna (the "creamy bands" ring) where the palatability of butterflies, their ability to escape predator attacks, geographic distribution, relative abundance, and co-occurrence in the same habitats strongly suggest that escape mimicry is involved. In addition, we also indicate other butterfly taxa whose similarities of coloration patterns could be due to escape mimicry and would constitute important case studies for future investigation.

  3. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.

    Science.gov (United States)

    Slegers, Nathan; Heilman, Michael; Cranford, Jacob; Lang, Amy; Yoder, John; Habegger, Maria Laura

    2017-01-30

    It is hypothesized that butterfly wing scale geometry and surface patterning may function to improve aerodynamic efficiency. In order to investigate this hypothesis, a method to measure butterfly flapping kinematics optically over long uninhibited flapping sequences was developed. Statistical results for the climbing flight flapping kinematics of 11 butterflies, based on a total of 236 individual flights, both with and without their wing scales, are presented. Results show, that for each of the 11 butterflies, the mean climbing efficiency decreased after scales were removed. Data was reduced to a single set of differences of climbing efficiency using are paired t-test. Results show a mean decrease in climbing efficiency of 32.2% occurred with a 95% confidence interval of 45.6%-18.8%. Similar analysis showed that the flapping amplitude decreased by 7% while the flapping frequency did not show a significant difference. Results provide strong evidence that butterfly wing scale geometry and surface patterning improve butterfly climbing efficiency. The authors hypothesize that the wing scale's effect in measured climbing efficiency may be due to an improved aerodynamic efficiency of the butterfly and could similarly be used on flapping wing micro air vehicles to potentially achieve similar gains in efficiency.

  4. Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories.

    Science.gov (United States)

    Roberts, Daniel A; Swingle, Brian

    2016-08-26

    As experiments are increasingly able to probe the quantum dynamics of systems with many degrees of freedom, it is interesting to probe fundamental bounds on the dynamics of quantum information. We elaborate on the relationship between one such bound-the Lieb-Robinson bound-and the butterfly effect in strongly coupled quantum systems. The butterfly effect implies the ballistic growth of local operators in time, which can be quantified with the "butterfly" velocity v_{B}. Similarly, the Lieb-Robinson velocity places a state-independent ballistic upper bound on the size of time evolved operators in nonrelativistic lattice models. Here, we argue that v_{B} is a state-dependent effective Lieb-Robinson velocity. We study the butterfly velocity in a wide variety of quantum field theories using holography and compare with free-particle computations to understand the role of strong coupling. We find that v_{B} remains constant or decreases with decreasing temperature. We also comment on experimental prospects and on the relationship between the butterfly velocity and signaling.

  5. Focusing on butterfly eyespot focus: uncoupling of white spots from eyespot bodies in nymphalid butterflies.

    Science.gov (United States)

    Iwata, Masaki; Otaki, Joji M

    2016-01-01

    Developmental studies on butterfly wing color patterns often focus on eyespots. A typical eyespot (such as that of Bicyclus anynana) has a few concentric rings of dark and light colors and a white spot (called a focus) at the center. The prospective eyespot center during the early pupal stage is known to act as an organizing center. It has often been assumed, according to gradient models for positional information, that a white spot in adult wings corresponds to an organizing center and that the size of the white spot indicates how active that organizing center was. However, there is no supporting evidence for these assumptions. To evaluate the feasibility of these assumptions in nymphalid butterflies, we studied the unique color patterns of Calisto tasajera (Nymphalidae, Satyrinae), which have not been analyzed before in the literature. In the anterior forewing, one white spot was located at the center of an eyespot, but another white spot associated with either no or only a small eyespot was present in the adjacent compartment. The anterior hindwing contained two adjacent white spots not associated with eyespots, one of which showed a sparse pattern. The posterior hindwing contained two adjacent pear-shaped eyespots, and the white spots were located at the proximal side or even outside the eyespot bodies. The successive white spots within a single compartment along the midline in the posterior hindwing showed a possible trajectory of a positional determination process for the white spots. Several cases of focus-less eyespots in other nymphalid butterflies were also presented. These results argue for the uncoupling of white spots from eyespot bodies, suggesting that an eyespot organizing center does not necessarily differentiate into a white spot and that a prospective white spot does not necessarily signify organizing activity for an eyespot. Incorporation of these results in future models for butterfly wing color pattern formation is encouraged.

  6. Replication of polypyrrole with photonic structures from butterfly wings as biosensor

    International Nuclear Information System (INIS)

    Tang Jie; Zhu Shenmin; Chen Zhixin; Feng Chuanliang; Shen Yanjun; Yao Fan; Zhang Di; Moon, Won-Jin; Song, Deok-Min

    2012-01-01

    Highlights: ► Polypyrrole (PPy) with photonic structures from butterfly wings was synthesized based on a two-step templating and in situ polymerization process. ► The hierarchical structures down to nanometer level were kept in the resultant PPy replicas. ► The PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. ► The PPy replicas showed a much higher biological activity compared with common PPy powders as a biosensor. - Abstract: Polypyrrole (PPy) with photonic crystal structures were synthesized from Morpho butterfly wings using a two-step templating process. In the first step photonic crystal SiO 2 butterfly wings were synthesized from Morpho butterfly wings and in the second step the SiO 2 butterfly wings were used as templates for the replication of PPy butterfly wings using an in situ polymerization method. The SiO 2 templates were then removed from the PPy butterfly wings using a HF solution. The hierarchical structures down to the nanometer level, especially the photonic crystal structures, were retained in the final PPy replicas, as evidenced directly by field-emission scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM). The optical properties of the resultant PPy replicas were investigated using reflectance spectroscopy and the PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. The preliminary biosensing application was investigated and it was found that the PPy replicas showed a much higher biological activity compared with PPy powders through their response to dopamine (DA), probably due to the hierarchical structures as well as controlled porosity inherited from Morpho butterfly wings. It is expected that our strategy will open up new avenues for the synthesis of functional polymers with photonic crystal structures, which may form applications as biosensors.

  7. Replication of polypyrrole with photonic structures from butterfly wings as biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Tang Jie [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhu Shenmin, E-mail: smzhu@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Chen Zhixin [Faculty of Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Feng Chuanliang; Shen Yanjun; Yao Fan [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhang Di, E-mail: zhangdi@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Moon, Won-Jin; Song, Deok-Min [Gwangju Center, Korea Basic Science Institute, Yongbong-dong, Buk-Gu, Gwang ju 500-757 (Korea, Republic of)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Polypyrrole (PPy) with photonic structures from butterfly wings was synthesized based on a two-step templating and in situ polymerization process. Black-Right-Pointing-Pointer The hierarchical structures down to nanometer level were kept in the resultant PPy replicas. Black-Right-Pointing-Pointer The PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. Black-Right-Pointing-Pointer The PPy replicas showed a much higher biological activity compared with common PPy powders as a biosensor. - Abstract: Polypyrrole (PPy) with photonic crystal structures were synthesized from Morpho butterfly wings using a two-step templating process. In the first step photonic crystal SiO{sub 2} butterfly wings were synthesized from Morpho butterfly wings and in the second step the SiO{sub 2} butterfly wings were used as templates for the replication of PPy butterfly wings using an in situ polymerization method. The SiO{sub 2} templates were then removed from the PPy butterfly wings using a HF solution. The hierarchical structures down to the nanometer level, especially the photonic crystal structures, were retained in the final PPy replicas, as evidenced directly by field-emission scanning electron microscope (FE-SEM) and transmission electron microscopy (TEM). The optical properties of the resultant PPy replicas were investigated using reflectance spectroscopy and the PPy replicas exhibit brilliant color due to Bragg diffraction through its ordered periodic structures. The preliminary biosensing application was investigated and it was found that the PPy replicas showed a much higher biological activity compared with PPy powders through their response to dopamine (DA), probably due to the hierarchical structures as well as controlled porosity inherited from Morpho butterfly wings. It is expected that our strategy will open up new avenues for the synthesis of functional polymers with photonic

  8. A role of abdomen in butterfly's flapping flight

    Science.gov (United States)

    Jayakumar, Jeeva; Senda, Kei; Yokoyama, Naoto

    2017-11-01

    Butterfly's forward flight with periodic flapping motion is longitudinally unstable, and control of the thoracic pitching angle is essential to stabilize the flight. This study aims to comprehend roles which the abdominal motion play in the pitching stability of butterfly's flapping flight by using a two-dimensional model. The control of the thoracic pitching angle by the abdominal motion is an underactuated problem because of the limit on the abdominal angle. The control input of the thorax-abdomen joint torque is obtained by the hierarchical sliding mode control in this study. Numerical simulations reveal that the control by the abdominal motion provides short-term pitching stabilization in the butterfly's flight. Moreover, the control input due to a large thorax-abdomen joint torque can counteract a quite large perturbation, and can return the pitching attitude to the periodic trajectory with a short recovery time. These observations are consistent with biologists' view that living butterflies use their abdomens as rudders. On the other hand, the abdominal control mostly fails in long-term pitching stabilization, because it cannot directly alter the aerodynamic forces. The control for the long-term pitching stabilization will also be discussed.

  9. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    Energy Technology Data Exchange (ETDEWEB)

    Biro, L.P., E-mail: biro@mfa.kfki.h [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, POB 49 (Hungary)

    2010-05-25

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  10. Species richness and trait composition of butterfly assemblages change along an altitudinal gradient.

    Science.gov (United States)

    Leingärtner, Annette; Krauss, Jochen; Steffan-Dewenter, Ingolf

    2014-06-01

    Species richness patterns along altitudinal gradients are well-documented ecological phenomena, yet very little data are available on how environmental filtering processes influence the composition and traits of butterfly assemblages at high altitudes. We have studied the diversity patterns of butterfly species at 34 sites along an altitudinal gradient ranging from 600 to 2,000 m a.s.l. in the National Park Berchtesgaden (Germany) and analysed traits of butterfly assemblages associated with dispersal capacity, reproductive strategies and developmental time from lowlands to highlands, including phylogenetic analyses. We found a linear decline in butterfly species richness along the altitudinal gradient, but the phylogenetic relatedness of the butterfly assemblages did not increase with altitude. Compared to butterfly assemblages at lower altitudes, those at higher altitudes were composed of species with larger wings (on average 9%) which laid an average of 68% more eggs. In contrast, egg maturation time in butterfly assemblages decreased by about 22% along the altitudinal gradient. Further, butterfly assemblages at higher altitudes were increasingly dominated by less widespread species. Based on our abundance data, but not on data in the literature, population density increased with altitude, suggesting a reversed density-distribution relationship, with higher population densities of habitat specialists in harsh environments. In conclusion, our data provide evidence for significant shifts in the composition of butterfly assemblages and for the dominance of different traits along the altitudinal gradient. In our study, these changes were mainly driven by environmental factors, whereas phylogenetic filtering played a minor role along the studied altitudinal range.

  11. Refractive index dependence of Papilio Ulysses butterfly wings reflectance spectra

    Science.gov (United States)

    Isnaeni, Muslimin, Ahmad Novi; Birowosuto, Muhammad Danang

    2016-02-01

    We have observed and utilized butterfly wings of Papilio Ulysses for refractive index sensor. We noticed this butterfly wings have photonic crystal structure, which causes blue color appearance on the wings. The photonic crystal structure, which consists of cuticle and air void, is approximated as one dimensional photonic crystal structure. This photonic crystal structure opens potential to several optical devices application, such as refractive index sensor. We have utilized small piece of Papilio Ulysses butterfly wings to characterize refractive index of several liquid base on reflectance spectrum of butterfly wings in the presence of sample liquid. For comparison, we simulated reflectance spectrum of one dimensional photonic crystal structure having material parameter based on real structure of butterfly wings. We found that reflectance spectrum peaks shifted as refractive index of sample changes. Although there is a slight difference in reflectance spectrum peaks between measured spectrum and calculated spectrum, the trend of reflectance spectrum peaks as function of sample's refractive index is the similar. We assume that during the measurement, the air void that filled by sample liquid is expanded due to liquid pressure. This change of void shape causes non-similarity between measured spectrum and calculated spectrum.

  12. The Study of Butterflies

    Indian Academy of Sciences (India)

    The Study of Butterflies. 3. Intra-specific ... study of chitinous parts of the genitalia, especially of males proved a .... not known to affect mating habits in any way. We now .... such random interactions as well as modifications caused by external ...

  13. Shift from bird to butterfly pollination in Clivia (Amaryllidaceae).

    Science.gov (United States)

    Kiepiel, Ian; Johnson, Steven D

    2014-01-01

    Pollinator shifts have been implicated as a driver of divergence in angiosperms. We tested the hypothesis that there was a transition from bird- to butterfly pollination in the African genus Clivia (Amaryllidaceae) and investigated how floral traits may have been either modified or retained during this transition. We identified pollinators using field observations, correlations between lepidopteran wing scales and pollen on stigmas, and single-visit and selective exclusion experiments. We also quantified floral rewards and advertising traits. The upright trumpet-shaped flowers of C. miniata were found to be pollinated effectively by swallowtail butterflies during both nectar-feeding and brush visits. These butterflies transfer pollen on their wings, as evidenced by positive correlations between wing scales and pollen loads on stigmas. All other Clivia species have narrow pendulous flowers that are visited by sunbirds. Selective exclusion of birds and large butterflies from flowers of two Clivia species resulted in a significant decline in seed production. From the distribution of pollination systems on available phylogenies, it is apparent that a shift took place from bird- to butterfly pollination in Clivia. This shift was accompanied by the evolution of trumpet-shaped flowers, smaller nectar volume, and emission of scent, while flower color and nectar chemistry do not appear to have been substantially modified. These results are consistent with the idea that pollinator shifts can explain major floral modifications during plant diversification.

  14. The Study of Butterflies

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 7. The Study of Butterflies - Congregations, Courtship and Migration. Peter Smetacek. Series Article Volume 7 Issue 7 July 2002 pp 6-14. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. A case study of butterfly road kills from Anaikatty Hills, Western Ghats, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    R. K. Sony

    2015-11-01

    Full Text Available  Anaikatty Hills of the Western Ghats in Tamil Nadu witness the annual spectacle of mass movement of lakhs of butterflies.  The present paper examines the impact of vehicular traffic on this ‘butterfly migration’ through a survey of butterfly mortality along a road stretch in Anaikatty Hills.  A high rate of mortality due to road traffic was observed during the mass movement of butterflies.  One-hundred-and-thirty-five butterfly road kills belonging to three families, nine genera and 12 species were recorded during the study.  The proportion of nymphalid butterflies among the road kills (70% was very high compared to their respective share in the background population (39%, indicating a higher road mortality risk for nymphalids.  The conservation significance of the road traffic impact on butterfly assemblage and management options are discussed. 

  16. Japanese Papilio butterflies puddle using Na+ detected by contact chemosensilla in the proboscis.

    Science.gov (United States)

    Inoue, Takashi A; Hata, Tamako; Asaoka, Kiyoshi; Ito, Tetsuo; Niihara, Kinuko; Hagiya, Hiroshi; Yokohari, Fumio

    2012-12-01

    Many butterflies acquire nutrients from non-nectar sources such as puddles. To better understand how male Papilio butterflies identify suitable sites for puddling, we used behavioral and electrophysiological methods to examine the responses of Japanese Papilio butterflies to Na(+), K(+), Ca(2+), and Mg(2+). Based on behavioral analyses, these butterflies preferred a 10-mM Na(+) solution to K(+), Ca(2+), and Mg(2+) solutions of the same concentration and among a tested range of 1 mM to 1 M NaCl. We also measured the ion concentrations of solutions sampled from puddling sites in the field. Na(+) concentrations of the samples were up to 6 mM, slightly lower than that preferred by butterflies in the behavioral experiments. Butterflies that sipped the 10 mM Na(+) solution from the experimental trays did not continue to puddle on the ground. Additionally, butterflies puddled at sites where the concentrations of K(+), Ca(2+), and/or Mg(2+) were higher than that of Na(+). This suggests that K(+), Ca(2+), and Mg(2+) do not interfere with the detection of Na(+) by the Papilio butterfly. Using an electrophysiological method, tip recordings, receptor neurons in contact chemosensilla inside the proboscis evoked regularly firing impulses to 1, 10, and 100 mM NaCl solutions but not to CaCl(2) or MgCl(2). The dose-response patterns to the NaCl solutions were different among the neurons, which were classified into three types. These results showed that Japanese Papilio butterflies puddle using Na(+) detected by the contact chemosensilla in the proboscis, which measure its concentration.

  17. Unique wing scale photonics of male Rajah Brooke's birdwing butterflies

    NARCIS (Netherlands)

    Wilts, Bodo D.; Giraldo, Marco A.; Stavenga, Doekele G.

    2016-01-01

    Background: Ultrastructures in butterfly wing scales can take many shapes, resulting in the often striking coloration of many butterflies due to interference of light. The plethora of coloration mechanisms is dazzling, but often only single mechanisms are described for specific animals. Results: We

  18. Egg-Laying Butterflies Distinguish Predaceous Ants by Sight

    OpenAIRE

    Sendoya, SF; Freitas, AVL; Oliveira, PS

    2009-01-01

    Information about predation risks is critical for herbivorous insects, and natural selection favors their ability to detect predators before oviposition and to select enemy-free foliage when offspring mortality risk is high. Food plants are selected by ovipositing butterflies, and offspring survival frequently varies among plants because of variation in the presence of predators. Eunica bechina butterflies oviposit on Caryocar brasiliense, an ant-defended plant. Experiments with dried Campono...

  19. Data integration aids understanding of butterfly-host plant networks.

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-03-06

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant-herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant-herbivore and plant-compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect-compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.

  20. Phase shifts of the paired wings of butterfly diagrams

    International Nuclear Information System (INIS)

    Li Kejun; Liang Hongfei; Feng Wen

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths, as well as a relative phase shift between the paired wings of a butterfly diagram, which should bring about almost the same relative phase shift of hemispheric solar activity strength. (research papers)

  1. Impact of urbanization and gardening practices on common butterfly communities in France.

    Science.gov (United States)

    Fontaine, Benoît; Bergerot, Benjamin; Le Viol, Isabelle; Julliard, Romain

    2016-11-01

    We investigated the interacting impacts of urban landscape and gardening practices on the species richness and total abundance of communities of common butterfly communities across France, using data from a nationwide monitoring scheme. We show that urbanization has a strong negative impact on butterfly richness and abundance but that at a local scale, such impact could be mitigated by gardening practices favoring nectar offer. We found few interactions among these landscape and local scale effects, indicating that butterfly-friendly gardening practices are efficient whatever the level of surrounding urbanization. We further highlight that species being the most negatively affected by urbanization are the most sensitive to gardening practices: Garden management can thus partly counterbalance the deleterious effect of urbanization for butterfly communities. This holds a strong message for park managers and private gardeners, as gardens may act as potential refuge for butterflies when the overall landscape is largely unsuitable.

  2. Mueller matrix microscopy on a Morpho butterfly

    International Nuclear Information System (INIS)

    Arteaga, Oriol; Kuntman, Ertan; Antó, Joan; Pascual, Esther; Canillas, Adolf; Bertran, Enric

    2015-01-01

    The brilliant iridescent colouring in male Morpho butterflies is due to the microstrutures and nanostructures present in the wing scales, rather than pigments. In this work Mueller matrix microscopy is used to investigate the polarization properties of butterfly wing scales in reflection and transmission. It is found that the top layer of more transparent scales (cover scales) have very different polarimetric properties from the ground iridescent scales. Images with high spatial resolution showing the retarding and diattenuating optical properties for both types of scales are provided. (paper)

  3. Development of a butterfly check valve model under natural circulation conditions

    International Nuclear Information System (INIS)

    Rao, Yuxian; Yu, Lei; Fu, Shengwei; Zhang, Fan

    2015-01-01

    Highlights: • Bases on Lim’s swing check valve model, a butterfly check valve model was developed. • The method to quantify the friction torque T F in Li’s model was corrected. • The developed model was implemented into the RELAP5 code and verified. - Abstract: A butterfly check valve is widely used to prevent a reverse flow in the pipe lines of a marine nuclear power plant. Under some conditions, the natural circulation conditions in particular, the fluid velocity through the butterfly check valve might become too low to hold the valve disk fully open, thereby the flow resistance of the butterfly check valve varies with the location of the valve disk and as a result the fluid flow is significantly affected by the dynamic motion of the valve disk. Simulation of a pipe line that includes some butterfly check valves, especially under natural circulation conditions, is thus complicated. This paper focuses on the development of a butterfly check valve model to enhance the capability of the thermal–hydraulic system code and the developed model is implemented into the RELAP5 code. Both steady-state calculations and transient calculations were carried out for the primary loop system of a marine nuclear power plant and the calculation results are compared with the experimental data for verification purpose. The simulation results show an agreement with the experimental data

  4. Lowland forest butterflies of the Sankosh River catchment, Bhutan

    Directory of Open Access Journals (Sweden)

    A.P. Singh

    2012-10-01

    Full Text Available This paper provides information on butterflies of the lowland forests of Bhutan for the first time. As a part of the biodiversity impact assessment for the proposed Sankosh hydroelectric power project, a survey was carried out along the Sankosh River catchment to study the butterfly diversity. The aim of the study was to identify species of conservation priority, their seasonality and to know the butterfly diversity potential of the area. Surveys were carried out during five different seasons (winter, spring, pre-monsoon, monsoon, post-monsoon lasting 18 days from January 2009 to March 2010. Pollard walk method was used to assess the diversity on four-line transects within 10-12 km radius of the proposed dam site. Two hundred and thirteen species, including 22 papilionids, were thus sampled. Eleven species amongst these are listed in Schedules I and II of the Indian Wildlife (Protection Act, 1972, of which 10 taxa (Pareronia avatar avatar, Nacaduba pactolus continentalis, Porostas aluta coelestis, Elymnias vasudeva vasudeva, Mycalesis mestra retus, Melanitis zitenius zitenius, Charaxes marmax, Athyma ranga ranga, Neptis manasa manasa and Neptis soma soma are of conservation priority as they are ‘rare’ in occurrence across their distribution range in the region. The maximum number of species (128 were recorded during the spring season (March and lowest (66 during July (monsoon. The seasonal pattern of variation in diversity was very typical of the pattern found in other areas of the lower foothills and adjoining plains of the Himalaya. Relative abundances of butterflies during spring varied significantly (p<0.05 as compared to winter, pre-monsoon and post-monsoon seasons. However, species composition changed with every season as Sorensen’s similarity index varied between 0.3076 to 0.5656. All these findings suggest that the lowland forests of Bhutan hold a rich and unique diversity of butterflies during every season of the year thus having

  5. Does tropical forest fragmentation increase long-term variability of butterfly communities?

    Directory of Open Access Journals (Sweden)

    Allison K Leidner

    2010-03-01

    Full Text Available Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism, and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics.

  6. Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?

    Science.gov (United States)

    Leidner, Allison K.; Haddad, Nick M.; Lovejoy, Thomas E.

    2010-01-01

    Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics. PMID:20224772

  7. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  8. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  9. Pollen Processing Behavior of Heliconius Butterflies: A Derived Grooming Behavior

    Science.gov (United States)

    Hikl, Anna-Laetitia; Krenn, Harald W.

    2011-01-01

    Pollen feeding behaviors Heliconius and Laparus (Lepidoptera: Nymphalidae) represent a key innovation that has shaped other life history traits of these neotropical butterflies. Although all flower visiting Lepidoptera regularly come in contact with pollen, only Heliconius and Laparus butterflies actively collect pollen with the proboscis and subsequently take up nutrients from the pollen grains. This study focused on the behavior of pollen processing and compared the movement patterns with proboscis grooming behavior in various nymphalid butterflies using video analysis. The proboscis movements of pollen processing behavior consisted of a lengthy series of repeated coiling and uncoiling movements in a loosely coiled proboscis position combined with up and down movements and the release of saliva. The proboscis-grooming behavior was triggered by contamination of the proboscis in both pollen feeding and non-pollen feeding nymphalid butterflies. Proboscis grooming movements included interrupted series of coiling and uncoiling movements, characteristic sideways movements, proboscis lifting, and occasionally full extension of the proboscis. Discharge of saliva was more pronounced in pollen feeding species than in non-pollen feeding butterfly species. We conclude that the pollen processing behavior of Heliconius and Laparus is a modified proboscis grooming behavior that originally served to clean the proboscis after contamination with particles. PMID:22208893

  10. Butterfly Learning and the Diversification of Plant Leaf Shape

    Directory of Open Access Journals (Sweden)

    Denise Dalbosco Dell'aglio

    2016-07-01

    Full Text Available Visual cues are important for insects to find flowers and host plants. It has been proposed that the diversity of leaf shape in Passiflora vines could be a result of negative frequency dependent selection driven by visual searching behavior among their butterfly herbivores. Here we tested the hypothesis that Heliconius butterflies use leaf shape as a cue to initiate approach towards a host plant. We first tested for the ability to recognize shapes using a food reward conditioning experiment. Butterflies showed an innate preference for flowers with three and five petals. However, they could be trained to increase the frequency of visits to a non-preferred flower with two petals, indicating an ability to learn to associate shape with a reward. Next we investigated shape learning specifically in the context of oviposition by conditioning females to lay eggs on two shoots associated with different artificial leaf shapes: their own host plant, Passiflora biflora, and a lanceolate non-biflora leaf shape. The conditioning treatment had a significant effect on the approach of butterflies to the two leaf shapes, consistent with a role for shape learning in oviposition behavior. This study is the first to show that Heliconius butterflies use shape as a cue for feeding and oviposition, and can learn shape preference for both flowers and leaves. This demonstrates the potential for Heliconius to drive negative frequency dependent selection on the leaf shape of their Passiflora host plants.

  11. Controlling the cavitation phenomenon of evolution on a butterfly valve

    International Nuclear Information System (INIS)

    Baran, G; Safta, C A; Catana, I; Magheti, I; Savu, M

    2010-01-01

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  12. Controlling the cavitation phenomenon of evolution on a butterfly valve

    Energy Technology Data Exchange (ETDEWEB)

    Baran, G; Safta, C A [Department of Hydraulic and Hydraulic Machineries, University Politehnica of Bucharest, 313 Splaiul Independentei, Bucharest, 060042 (Romania); Catana, I [Department of Control and Computer Science, University Politehnica of Bucharest (Romania); Magheti, I; Savu, M, E-mail: baran_gheorghe@yahoo.co.u [Department of Mechanical Engineering, University Politehnica of Bucharest (Romania)

    2010-08-15

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  13. Both Palatable and Unpalatable Butterflies Use Bright Colors to Signal Difficulty of Capture to Predators.

    Science.gov (United States)

    Pinheiro, C E G; Freitas, A V L; Campos, V C; DeVries, P J; Penz, C M

    2016-04-01

    Birds are able to recognize and learn to avoid attacking unpalatable, chemically defended butterflies after unpleasant experiences with them. It has also been suggested that birds learn to avoid prey that are efficient at escaping. This, however, remains poorly documented. Here, we argue that butterflies may utilize a variety of escape tactics against insectivorous birds and review evidence that birds avoid attacking butterflies that are hard to catch. We suggest that signaling difficulty of capture to predators is a widespread phenomenon in butterflies, and this ability may not be limited to palatable butterflies. The possibility that both palatable and unpalatable species signal difficulty of capture has not been fully explored, but helps explain the existence of aposematic coloration and escape mimicry in butterflies lacking defensive chemicals. This possibility may also change the role that putative Müllerian and Batesian mimics play in a variety of classical mimicry rings, thus opening new perspectives in the evolution of mimicry in butterflies.

  14. A preliminary checklist of butterflies (Lepidoptera: Rhophalocera of Mendrelgang, Tsirang District, Bhutan

    Directory of Open Access Journals (Sweden)

    I.J. Singh

    2014-05-01

    Full Text Available The survey was conducted to prepare a preliminary checklist of butterflies of Mendrelgang, Bhutan. Butterflies were sampled from February 2012 to February 2013 to assess the species richness in a degraded forest patch of a sub-tropical broadleaf forest. This short-term study recorded 125 species of butterflies in 78 genera from five families. Of these, Sordid Emperor Apatura sordida Moore, Black-veined Sergeant Athyma ranga ranga Moore, Sullied Sailor Neptis soma soma Linnaeus, Blue Duke Euthalia durga durga Moore, Pea Blue Lampides boeticus Linnaeus and Chocolate Albatross Appias lyncida Cramer are listed in Schedule II of the Indian Wildlife (Protection Act (IWPA 1972. This study provides the baseline data of butterfly species richness of Mendrelgang.

  15. Evidence for mate guarding behavior in the Taylor's checkerspot butterfly

    Science.gov (United States)

    Victoria J. Bennett; Winston P. Smith; Matthew G. Betts

    2011-01-01

    Discerning the intricacies of mating systems in butterflies can be difficult, particularly when multiple mating strategies are employed and are cryptic and not exclusive. We observed the behavior and habitat use of 113 male Taylor's checkerspot butterflies (Euphydryas editha taylori). We confirmed that two distinct mating strategies were...

  16. Butterflies Diversity in Brawijaya University, Veteran, Jakarta and Velodrom Green Open Space

    Directory of Open Access Journals (Sweden)

    Ayu Raisa Khairun Nisa'

    2013-05-01

    Full Text Available Butterflies have some roles in environmental as pollinator and bioindicator. Habitat is one of important factor to support butterflies growth. The aim of this research was to describe butterflies diversity in some green open spaces in Malang. Direct observations of butterflies diversity, vegetation structures and abiotic factors in Brawijaya University, Veteran, Jakarta and Velodrom Green Open Space were conducted on June 2012. Sampling was took place in each sites using cruising method in three times observation at 07.00, 11.00 a.m. and 3.30 p.m . Data were analyzed by statistical descriptive using Microsoft Excel 2007 and PAST. The result showed that butterflies composition in all sites dominated by Delias sp., Leptosia nina and Eurema venusta. The diversity index of all sites showed moderate rank that indicate communities equilibrium in environment was still good. In this case, Velodrom Green Open Space has the highest one of diversity index, it was about 2,199. Brawijaya University and Jakarta Green Open Space have a high similarity index based on Morisita Index. The highest abundance of butterflies was observed at 11.00-12.30 a.m. Delias sp. and Leptosia nina has temporal spread all day long, while Eurema venusta just in day light.

  17. Odour maps in the brain of butterflies with divergent host-plant preferences.

    Directory of Open Access Journals (Sweden)

    Mikael A Carlsson

    Full Text Available Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca(2+ activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants.

  18. Butterflies of Garhwal, Uttarakhand, western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Arun P. Singh

    2016-04-01

    Full Text Available Thirty percent of butterfly species that occur in India are found in the Garhwal region of the western Himalaya, which comprise six districts of Uttarakhand State with five major vegetation types lying between the catchments of the Ganga and Yamuna rivers.  The annotated checklist compiled here for this region comprises 407 species and takes into account all the species recorded since 1899, when the first list of 323 species was prepared by Mackinnon & de Nicéville on the ‘butterflies of Mussoorie and its adjacent areas’.  Over a 20 year period (1986–1990; 2000–June 2015 the present authors maintained detailed notes and were able personally to record 349 species.  This information is presented in a checklist, together with details of the month, year and site of each record, relative abundance, Indian Wildlife (Protection Act, 1972 (IWPA status, as well as references of earlier records made by other authors in Garhwal for those species that the authors were not able to record themselves.  Forty-nine species recorded in the region have been placed under various schedules of IWPA; only one species, the Golden Emperor Dilipa morgiana Westwood, is listed in Schedule I Part IV, the others being mainly included under Schedule II Part II.  The paper also discusses new range extensions and significant records (past and present, identifies major biotic factors that threaten butterfly diversity in Garhwal, and suggests the scope for butterfly ecotourism in the state as an option for long term conservation.  

  19. Bonjour Papillon (Hello Butterfly).

    Science.gov (United States)

    Dugas, Donald G.; Ogrydziak, Dan

    This story in French about a butterfly who talks to children is presented in comic-book style and is intended for use in a bilingual education setting. Words and expressions peculiar to the Franco-American idiom are marked and translated into standard French. The drawings are in black and white. (AMH)

  20. Developing "Butterfly Warriors": A Case Study of Science for Citizenship

    Science.gov (United States)

    Chen, Junjun; Cowie, Bronwen

    2013-01-01

    Given worldwide concern about a decline in student engagement in school science and an increasing call for science for citizenship in New Zealand Curriculum, this study focused on a butterfly unit that investigated how students in a year-4 primary classroom learnt about New Zealand butterflies through thinking, talking, and acting as citizen…

  1. Advantages of butterfly valves for power plants

    International Nuclear Information System (INIS)

    Lapadat, J.T.

    1977-01-01

    Butterfly valves are increasingly used in nuclear power plants. They are used in CANDU reactors for class 2 and 3 service, to provide emergency and tight shutoff valves for all inlets and outlets of heat exchangers and all calandria penetrations. Guidelines for meeting nuclear power plant valve specifications are set out in ASME Section 3, Nuclear Power Plant Components. Some details of materials of construction, type of actuator, etc., for various classes of nuclear service are tabulated in the present article. The 'fishtail' butterfly valve is an improved design with reduced drag, as is illustrated and explained. (N.D.H.)

  2. Effects of structural flexibility of wings in flapping flight of butterfly.

    Science.gov (United States)

    Senda, Kei; Obara, Takuya; Kitamura, Masahiko; Yokoyama, Naoto; Hirai, Norio; Iima, Makoto

    2012-06-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability.

  3. Effects of structural flexibility of wings in flapping flight of butterfly

    International Nuclear Information System (INIS)

    Senda, Kei; Yokoyama, Naoto; Obara, Takuya; Kitamura, Masahiko; Hirai, Norio; Iima, Makoto

    2012-01-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange’s method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability. (paper)

  4. Dance Like a Butterfly

    Science.gov (United States)

    Stapp, Alicia; Chessin, Debby; Deason, Rebecca

    2018-01-01

    The authors represent the life cycle of the butterfly through writing, drawing, dance, and math. The Next Generation Science Standards (NGSS) (NGSS Lead States 2013) emphasize college and career readiness as well as critical thinking and problem-solving skills. Students must develop a deep understanding of science concepts and engage in scientific…

  5. Fire creates host plant patches for monarch butterflies

    Science.gov (United States)

    Baum, Kristen A.; Sharber, Wyatt V.

    2012-01-01

    Monarch butterflies (Danaus plexippus) depend on the presence of host plants (Asclepias spp.) within their breeding range for reproduction. In the southern Great Plains, Asclepias viridis is a perennial that flowers in May and June, and starts to senesce by August. It is locally abundant and readily used by monarchs as a host plant. We evaluated the effects of summer prescribed fire on A. viridis and the use of A. viridis by monarch butterflies. Summer prescribed fire generated a newly emergent population of A. viridis that was absent in other areas. Pre-migrant monarch butterflies laid eggs on A. viridis in summer burned plots in late August and September, allowing adequate time for a new generation of adult monarchs to emerge and migrate south to their overwintering grounds. Thus, summer prescribed fire may provide host plant patches and/or corridors for pre-migrant monarchs during a time when host plant availability may be limited in other areas. PMID:22859559

  6. Effect of widespread agricultural chemical use on butterfly diversity across Turkish provinces.

    Science.gov (United States)

    Pekin, Burak K

    2013-12-01

    Although agricultural intensification is thought to pose a significant threat to species, little is known about its role in driving biodiversity loss at regional scales. I assessed the effects of a major component of agricultural intensification, agricultural chemical use, and land-cover and climatic variables on butterfly diversity across 81 provinces in Turkey, where agriculture is practiced extensively but with varying degrees of intensity. I determined butterfly species presence in each province from data on known butterfly distributions and calculated agricultural chemical use as the proportion of agricultural households that use chemical fertilizers and pesticides. I used constrained correspondence analyses and regression-based multimodel inference to determine the effect of environmental variables on species composition and richness, respectively. The variation in butterfly species composition across the provinces was largely explained (78%) by the combination of agricultural chemical use, particularly pesticides, and climatic and land-cover variables. Although overall butterfly richness was primarily explained by climatic and land-cover variables, such as the area of natural vegetation cover, threatened butterfly richness and the relative number of threatened butterfly species decreased substantially as the proportion of agricultural households using pesticides increased. These findings suggest that widespread use of agricultural chemicals, or other components of agricultural intensification that may be collinear with pesticide use, pose an imminent threat to the biodiversity of Turkey. Accordingly, policies that mitigate agricultural intensification and promote low-input farming practices are crucial for protecting threatened species from extinction in rapidly industrializing nations such as Turkey. Efectos del Uso Extensivo de Agroquímicos sobre la Diversidad de Mariposas en Provincias Turcas. © 2013 Society for Conservation Biology.

  7. Butterfly extracts show antibacterial activity

    Science.gov (United States)

    Extracts of several British butterfly species were tested and shown to possess powerful bactericidal activity against the gram-positive bacteria Staphylococcus aureus (S. aureus). The active compounds were identified as hydroxylated pyrrolizidine alkaloids (PAs) related to loline with nitrogen at C-...

  8. Hofstadter's butterfly in a two-dimensional lattice consisting of two sublattices

    International Nuclear Information System (INIS)

    Vugalter, G A; Pastukhov, A S

    2004-01-01

    Harper's equations for simple and complex two-dimensional lattices subject to a magnetic field have been derived in the tight-binding approximation. In our derivation we do not neglect the influence of the magnetic field on the electron eigenfunctions and eigenvalues in isolated atoms. Using a variational procedure for finding eigenfunctions and eigenvalues, we have self-consistently obtained Hofstadter's butterflies. Even for a simple square lattice Hofstadter's butterfly differs from the butterfly obtained in the case in which the influence of the magnetic field on the electron eigenvalues and eigenfunctions in isolated atoms is not taken into account

  9. Analysis of the rectangular resonator with butterfly MMI coupler using SOI

    Science.gov (United States)

    Kim, Sun-Ho; Park, Jun-Hee; Kim, Eudum; Jeon, Su-Jin; Kim, Ji-Hoon; Choi, Young-Wan

    2018-02-01

    We propose a rectangular resonator sensor structure with butterfly MMI coupler using SOI. It consists of the rectangular resonator, total internal reflection (TIR) mirror, and the butterfly MMI coupler. The rectangular resonator is expected to be used as bio and chemical sensors because of the advantages of using MMI coupler and the absence of bending loss unlike ring resonators. The butterfly MMI coupler can miniaturize the device compared to conventional MMI by using a linear butterfly shape instead of a square in the MMI part. The width, height, and slab height of the rib type waveguide are designed to be 1.5 μm, 1.5 μm, and 0.9 μm, respectively. This structure is designed as a single mode. When designing a TIR mirror, we considered the Goos-Hänchen shift and critical angle. We designed 3:1 MMI coupler because rectangular resonator has no bending loss. The width of MMI is designed to be 4.5 μm and we optimize the length of the butterfly MMI coupler using finite-difference time-domain (FDTD) method for higher Q-factor. It has the equal performance with conventional MMI even though the length is reduced by 1/3. As a result of the simulation, Qfactor of rectangular resonator can be obtained as 7381.

  10. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    Science.gov (United States)

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  11. El poder de las representaciones sociales: M. Butterfly, la mujer perfecta The power of social representations: M. Butterfly, the perfect woman

    Directory of Open Access Journals (Sweden)

    Maria Angela Silveira Paulilo

    2011-07-01

    Full Text Available En este trabajo se presenta un análisis del film M. Butterfly , dirigido por David Cronenberg, en 1993 y se trata de una versión basada en la ópera “Madame Butterfly” de Puccini.  El objetivo es demostrar el poder y la fuerza de las representaciones sociales como mecanismos de producción de sentido que permitem que los sujetos sociales construyan, desconstruyan y reconstruyan el mundo en que viven y para el cual buscan sentido.This paper presents an analysis of the film M. Butterfly, directed by David Cronenberg, in 1993. This film is a version based on the opera Madame Butterfly, by Puccini. It aims to demonstrate the power and the strength of social representations as mechanisms for the production of meaning which allow social actors to construct, deconstruct and reconstruct the world in which they live and for which they loook for its meaning.

  12. The Butterflies of Barro Colorado Island, Panama: Local Extinction since the 1930s.

    Directory of Open Access Journals (Sweden)

    Yves Basset

    Full Text Available Few data are available about the regional or local extinction of tropical butterfly species. When confirmed, local extinction was often due to the loss of host-plant species. We used published lists and recent monitoring programs to evaluate changes in butterfly composition on Barro Colorado Island (BCI, Panama between an old (1923-1943 and a recent (1993-2013 period. Although 601 butterfly species have been recorded from BCI during the 1923-2013 period, we estimate that 390 species are currently breeding on the island, including 34 cryptic species, currently only known by their DNA Barcode Index Number. Twenty-three butterfly species that were considered abundant during the old period could not be collected during the recent period, despite a much higher sampling effort in recent times. We consider these species locally extinct from BCI and they conservatively represent 6% of the estimated local pool of resident species. Extinct species represent distant phylogenetic branches and several families. The butterfly traits most likely to influence the probability of extinction were host growth form, wing size and host specificity, independently of the phylogenetic relationships among butterfly species. On BCI, most likely candidates for extinction were small hesperiids feeding on herbs (35% of extinct species. However, contrary to our working hypothesis, extinction of these species on BCI cannot be attributed to loss of host plants. In most cases these host plants remain extant, but they probably subsist at lower or more fragmented densities. Coupled with low dispersal power, this reduced availability of host plants has probably caused the local extinction of some butterfly species. Many more bird than butterfly species have been lost from BCI recently, confirming that small preserves may be far more effective at conserving invertebrates than vertebrates and, therefore, should not necessarily be neglected from a conservation viewpoint.

  13. The Butterflies of Barro Colorado Island, Panama: Local Extinction since the 1930s.

    Science.gov (United States)

    Basset, Yves; Barrios, Héctor; Segar, Simon; Srygley, Robert B; Aiello, Annette; Warren, Andrew D; Delgado, Francisco; Coronado, James; Lezcano, Jorge; Arizala, Stephany; Rivera, Marleny; Perez, Filonila; Bobadilla, Ricardo; Lopez, Yacksecari; Ramirez, José Alejandro

    2015-01-01

    Few data are available about the regional or local extinction of tropical butterfly species. When confirmed, local extinction was often due to the loss of host-plant species. We used published lists and recent monitoring programs to evaluate changes in butterfly composition on Barro Colorado Island (BCI, Panama) between an old (1923-1943) and a recent (1993-2013) period. Although 601 butterfly species have been recorded from BCI during the 1923-2013 period, we estimate that 390 species are currently breeding on the island, including 34 cryptic species, currently only known by their DNA Barcode Index Number. Twenty-three butterfly species that were considered abundant during the old period could not be collected during the recent period, despite a much higher sampling effort in recent times. We consider these species locally extinct from BCI and they conservatively represent 6% of the estimated local pool of resident species. Extinct species represent distant phylogenetic branches and several families. The butterfly traits most likely to influence the probability of extinction were host growth form, wing size and host specificity, independently of the phylogenetic relationships among butterfly species. On BCI, most likely candidates for extinction were small hesperiids feeding on herbs (35% of extinct species). However, contrary to our working hypothesis, extinction of these species on BCI cannot be attributed to loss of host plants. In most cases these host plants remain extant, but they probably subsist at lower or more fragmented densities. Coupled with low dispersal power, this reduced availability of host plants has probably caused the local extinction of some butterfly species. Many more bird than butterfly species have been lost from BCI recently, confirming that small preserves may be far more effective at conserving invertebrates than vertebrates and, therefore, should not necessarily be neglected from a conservation viewpoint.

  14. The Study of Butterflies

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. The Study of Butterflies - Intra-specific Variation. Peter Smetacek. Series Article Volume 6 Issue 5 May 2001 pp 8-15. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/05/0008-0015 ...

  15. The Study of Butterflies

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 8. The Study of Butterflies - Flight, Fuels and Senses. Peter Smetacek. Series Article Volume 5 Issue 8 August 2000 pp 4-12. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/08/0004-0012 ...

  16. Developmental lead exposure has mixed effects on butterfly cognitive processes.

    Science.gov (United States)

    Philips, Kinsey H; Kobiela, Megan E; Snell-Rood, Emilie C

    2017-01-01

    While the effects of lead pollution have been well studied in vertebrates, it is unclear to what extent lead may negatively affect insect cognition. Lead pollution in soils can elevate lead in plant tissues, suggesting it could negatively affect neural development of insect herbivores. We used the cabbage white butterfly (Pieris rapae) as a model system to study the effect of lead pollution on insect cognitive processes, which play an important role in how insects locate and handle resources. Cabbage white butterfly larvae were reared on a 4-ppm lead diet, a concentration representative of vegetation in polluted sites; we measured eye size and performance on a foraging assay in adults. Relative to controls, lead-reared butterflies did not differ in time or ability to search for a food reward associated with a less preferred color. Indeed, lead-treated butterflies were more likely to participate in the behavioral assay itself. Lead exposure did not negatively affect survival or body size, and it actually sped up development time. The effects of lead on relative eye size varied with sex: lead tended to reduce eye size in males, but increase eye size in females. These results suggest that low levels of lead pollution may have mixed effects on butterfly vision, but only minimal impacts on performance in foraging tasks, although follow-up work is needed to test whether this result is specific to cabbage whites, which are often associated with disturbed areas.

  17. Landscape structure shapes habitat finding ability in a butterfly.

    Directory of Open Access Journals (Sweden)

    Erik Öckinger

    Full Text Available Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L. from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape.

  18. Landscape Structure Shapes Habitat Finding Ability in a Butterfly

    Science.gov (United States)

    Öckinger, Erik; Van Dyck, Hans

    2012-01-01

    Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape. PMID:22870227

  19. Not only the butterflies: managing ants on road verges to benefit Phengaris (Maculinea) butterflies

    NARCIS (Netherlands)

    Wynhoff, I.; Gestel, van R.; Swaay, van C.; Langevelde, van F.

    2011-01-01

    Obligate myrmecophilic butterfly species, such as Phengaris (Maculinea) teleius and P. nausithous, have narrow habitat requirements. Living as a caterpillar in the nests of the ant species Myrmica scabrinodis and M. rubra, respectively, they can only survive on sites with both host ants and the host

  20. Experimental study for flow characteristics and performance evaluation of butterfly valves

    International Nuclear Information System (INIS)

    Kim, C K; Shin, M S; Yoon, J Y

    2010-01-01

    The industrial butterfly valves have been applied to transport a large of fluid with various fields of industry. Also, these are mainly used a control of fluid flux to the water and waste-water pipeline. Present, butterfly valves are manufacturing for multiplicity shape of bodies and discs with many producers. However, appropriate performance evaluation was not yet accomplished to compare about these valves through experiments. This study is performed the experiment of flow characteristics and performance of manufactured 400A butterfly valves for the water and waste pipeline, and compared experimental results. We performed experiments that were controlled fixed a differential pressure condition (1 psi) and the range of the flow rate conditions (500 m 3 /hr ∼ 2500 m 3 /hr), and also opened the disc of valves to a range of angle from 9 degree to 90 degree. We investigated and compared the valve flow coefficient and the valve loss coefficient of results through experiments with each butterfly valve.

  1. Application of Butterfly Clos-Network in Network-on-Chip

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2014-01-01

    Full Text Available This paper studied the topology of NoC (Network-on-Chip. By combining the characteristics of the Clos network and butterfly network, a new topology named BFC (Butterfly Clos-network network was proposed. This topology integrates several modules, which belongs to the same layer but different dimensions, into a new module. In the BFC network, a bidirectional link is used to complete information exchange, instead of information exchange between different layers in the original network. During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission. Therefore, this topology has the characteristic of multistage. Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

  2. Modeling and emergence of flapping flight of butterfly based on experimental measurements

    OpenAIRE

    Senda, Kei; Obara, Takuya; Kitamura, Masahiko; Nishikata, Tomomi; Hirai, Norio; Iima, Makoto; Yokoyama, Naoto

    2012-01-01

    The objective of this paper is to clarify the principle of stabilization in flapping-of-wing flight of a butterfly, which is a rhythmic and cyclic motion. For this purpose, a dynamics model of a butterfly is derived by Lagrange’s method, where the butterfly is considered as a rigid multi-body system. For the aerodynamic forces, a panel method is applied. Validity of the mathematical models is shown by an agreement of the numerical result with the measured data. Then, periodic orbits of flappi...

  3. Plant response to butterfly eggs

    NARCIS (Netherlands)

    Griese, Eddie; Dicke, Marcel; Hilker, Monika; Fatouros, Nina E.

    2017-01-01

    Plants employ various defences killing the insect attacker in an early stage. Oviposition by cabbage white butterflies (Pieris spp.) on brassicaceous plants, including Brassica nigra, induces a hypersensitive response (HR) - like leaf necrosis promoting desiccation of eggs. To gain a deeper insight

  4. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    NARCIS (Netherlands)

    Saksens, N.T.; Krebs, M.P.; Schoenmaker, F.E.; Hicks, W.; Yu, M.; Shi, L.; Rowe, L.; Collin, G.B.; Charette, J.R.; Letteboer, S.J.; Neveling, K.; Moorsel, T.W. van; Abu-Ltaif, S.; Baere, E. De; Walraedt, S.; Banfi, S.; Simonelli, F.; Cremers, F.P.; Boon, C.J.; Roepman, R.; Leroy, B.P.; Peachey, N.S.; Hoyng, C.B.; Nishina, P.M.; Hollander, A.I. den

    2016-01-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here we report the identification of heterozygous missense mutations in the CTNNA1 gene (encoding alpha-catenin 1) in three families with butterfly-shaped pigment

  5. Temporal occurrence of two morpho butterflies (Lepidoptera: Nymphalidae): influence of weather and food resources.

    Science.gov (United States)

    Freire, Geraldo; Nascimento, André Rangel; Malinov, Ivan Konstantinov; Diniz, Ivone R

    2014-04-01

    The seasonality of fruit-feeding butterflies is very well known. However, few studies have analyzed the influence of climatic variables and resource availability on the temporal distributions of butterflies. Morpho helenor achillides (C. Felder and R. Felder 1867) and Morpho menelaus coeruleus (Perry 1810) (Nymphalidae) were used as models to investigate the influences of climatic factors and food resources on the temporal distribution of these Morphinae butterflies. These butterflies were collected weekly from January 2005 to December 2006 in the Parque Nacional de Brasília (PNB). In total, 408 individuals were collected, including 274 of M. helenor and 134 of M. menelaus. The relative abundance of the two species was similar in 2005 (n = 220) and 2006 (n = 188). Of the variables considered, only the relative humidity and resource availability measured in terms of phenology of zoochorous fruits of herbaceous plants explained a large proportion of the variation in the abundance of these butterflies. Both of the explanatory variables were positively associated with the total abundance of individuals and with the abundances of M. helenor and M. menelaus considered separately. The phenology of anemochorous fruits was negatively associated with butterfly abundance. The temporal distribution of the butterflies was better predicted by the phenology of the zoochorous fruits of herbaceous plants than by the climatic predictors.

  6. Ant-Related Oviposition and Larval Performance in a Myrmecophilous Lycaenid

    Directory of Open Access Journals (Sweden)

    Matthew D. Trager

    2013-01-01

    Full Text Available We experimentally assessed ant-related oviposition and larval performance in the Miami blue butterfly (Cyclargus thomasi bethunebakeri. Ant tending had sex-dependent effects on most measures of larval growth: female larvae generally benefitted from increased tending frequency whereas male larvae were usually unaffected. The larger size of female larvae tended by ants resulted in a substantial predicted increase in lifetime egg production. Oviposition by adult females that were tended by C. floridanus ants as larvae was similar between host plants with or without ants. However, they laid relatively more eggs on plants with ants than did females raised without ants, which laid less than a third of their eggs on plants with ants present. In summary, we found conditional benefits for larvae tended by ants that were not accompanied by oviposition preference for plants with ants present, which is a reasonable result for a system in which ant presence at the time of oviposition is not a reliable indicator of future ant presence. More broadly, our results emphasize the importance of considering the consequences of variation in interspecific interactions, life history traits, and multiple measures of performance when evaluating the costs and benefits of mutualistic relationships.

  7. An assessment of riparian environmental quality by using butterflies and disturbance susceptibility scores

    Science.gov (United States)

    Nelson, S. Mark; Andersen, Douglas C.

    1994-01-01

    The butterfly community at a revegetated riparian site on the lower Colorado River near Parker, Arizona, was compared to that found in a reference riparian site. Data indicated that the herbaceous plant community, which was lacking at the revegetated site, was important to several butterfly taxa. An index using butterfly sensitivity to habitat change (species classified into risk groups) and number of taxa was developed to monitor revegetation projects and to determine restoration effectiveness.

  8. Checklist of butterfly (Insecta: Lepidoptera fauna of Tehsil Tangi, Khyber Pakhtunkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Farzana Khan Perveen

    2015-12-01

    Full Text Available The butterflies (Insecta: Lepidopteraare well known insects, play an important role in the ecosystem as bioindicators and pollinators. They have bright colours, remarkable shapes and supple flight. The present study was conducted to prepare the checklist of butterfly fauna of Tehsil Tangi during August, 2014 to May, 2015. A total of 506 specimens were collected belong to 3 families with 18 genera and 23 species. The collected species are the common or lemon emigrant, Catopsila ponoma Fabricius; mottled emigrant, Catopsilia pyranthe Linnaeus; clouded yellow, Colias fieldii Fabricius; common grass yellow, Eurema hecabe Linnaeus; eastern pale clouded yellow butterfly, Colias erate Esper; Indian cabbage white, Pieris canidia Sparrman; Indian little orange tip, Colotis etrida Boisduval; pioneer white or African caper white, Belonias aurota Fabricius; plain tiger, Danaua chrysippus Linnaeus; blue tiger, Tirumala liminniace Cramer; peacock pansy, Junonia almanac Linnaeus; Indian fritillary, Argyreus hyperbius Linnaeus; Indian red admiral, Venesa indica Herbst; yellow pansy, Junonia hierta Fabricius; blue pansy, Junonia orytha Linnaeus; white edged rock brown, Hipparchia parisatis Kollar; banded tree brwon, Lethe confuse Aurivillius; common castor, Ariadne merione Cramer; painted lady, Caynthia cardui Linnaeus; Himalayan sailer, Neptis mahendra Moore; common boran, Euthalia garuda Hewitson; lime butterfly, Papilio demoleus Linnaeus and great black mormon butterfly, Papilio polytes Linnaeus. It was concluded that the family Nymphalidae has the highest numbers of individuals in the present checklist. It is recommended that butterfly fauna of the study area should be conserved and their habitat should be protected.

  9. A mosaic of chemical coevolution in a large blue butterfly

    DEFF Research Database (Denmark)

    Nash, David R; Als, Thomas D; Maile, Roland

    2008-01-01

    Mechanisms of recognition are essential to the evolution of mutualistic and parasitic interactions between species. One such example is the larval mimicry that Maculinea butterfly caterpillars use to parasitize Myrmica ant colonies. We found that the greater the match between the surface chemistry...... of Maculinea alcon and two of its host Myrmica species, the more easily ant colonies were exploited. The geographic patterns of surface chemistry indicate an ongoing coevolutionary arms race between the butterflies and Myrmica rubra, which has significant genetic differentiation between populations......, but not between the butterflies and a second, sympatric host, Myrmica ruginodis, which has panmictic populations. Alternative hosts may therefore provide an evolutionary refuge for a parasite during periods of counteradaptation by their preferred hosts. Udgivelsesdato: 2008-Jan-4...

  10. A checklist of butterflies of Dakshina Kannada District, Karnataka, India

    Directory of Open Access Journals (Sweden)

    Deepak Naik

    2016-10-01

    Full Text Available In a preliminary study on the butterflies of Dakshina Kannada District, located in the southwestern part of the Karnataka along the Western Ghats in Karnataka State in India, a total of 172 species of butterflies belonging to 117 genera, from six families was prepared by visiting various landscapes during the period September 2012 to December 2015.  Of the various species recorded, Papilio clytia (Linnaeus, Papilio lio medon (Moore, Pachlio ptahector (Linnaeus, Castalius rosimon (Fabricius, Acytolepis puspa (Horsefield, Lethe europa (Fabricius, Neptis jumbah (Moore, Dophlae velina (Stoll, Hypolimnas misippus (Linnaeus and Doleschallia bisaltide (Cramer comes under the Schedule I of the Indian Wildlife Protection Act 1972.  The present study provides the baseline data of butterfly species of Dakshina Kannada. 

  11. Tropical Rainforest and Human-Modified Landscapes Support Unique Butterfly Communities That Differ in Abundance and Diversity.

    Science.gov (United States)

    Sambhu, Hemchandranauth; Northfield, Tobin; Nankishore, Alliea; Ansari, Abdullah; Turton, Stephen

    2017-12-08

    Tropical forests account for at least 50% of documented diversity, but anthropogenic activities are converting forests to agriculture and urban areas at an alarming rate, with potentially strong effects on insect abundance and diversity. However, the questions remain whether insect populations are uniformly affected by land conversion and if insect conservation can occur in agricultural margins and urban gardens. We compare butterfly populations in tropical secondary forests to those found in sugarcane and urban areas in coastal Guyana and evaluate the potential for particular butterfly communities to inhabit human-modified landscapes. Butterflies were sampled for 1 yr using fruit-baited traps in three separated geographical locations on the coast. We used nonmetric multidimensional scaling to assess differences in species assemblages and a generalized linear mixed model to evaluate abundance, species richness, evenness, and diversity. The secondary forests in all three locations supported higher butterfly abundance and diversity than other human-modified areas, although the magnitude of this effect varied by season and location. However, each land use supported its own type of butterfly community, as species composition was different across the three land uses. Sugarcane field margins and urban gardens supported populations of butterflies rarely found in our tropical secondary forest sites. Land management practices that encourage forest conservation along with butterfly-friendly activities in human settlements and agricultural areas could improve butterfly conservation. To this end, butterfly conservation in Guyana and other tropical landscapes would benefit from a shift from inadvertently to actively making the landscape attractive for butterflies. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Cretaceous origin and repeated tertiary diversification of the redefined butterflies.

    Science.gov (United States)

    Heikkilä, Maria; Kaila, Lauri; Mutanen, Marko; Peña, Carlos; Wahlberg, Niklas

    2012-03-22

    Although the taxonomy of the ca 18 000 species of butterflies and skippers is well known, the family-level relationships are still debated. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the superfamilies Papilionoidea, Hesperioidea and Hedyloidea to date based on morphological and molecular data. We reconstructed their phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification along lineages in order to reconstruct their evolutionary history. Our results suggest that the butterflies, as traditionally understood, are paraphyletic, with Papilionidae being the sister-group to Hesperioidea, Hedyloidea and all other butterflies. Hence, the families in the current three superfamilies should be placed in a single superfamily Papilionoidea. In addition, we find that Hedylidae is sister to Hesperiidae, and this novel relationship is supported by two morphological characters. The families diverged in the Early Cretaceous but diversified after the Cretaceous-Palaeogene event. The diversification of butterflies is characterized by a slow speciation rate in the lineage leading to Baronia brevicornis, a period of stasis by the skippers after divergence and a burst of diversification in the lineages leading to Nymphalidae, Riodinidae and Lycaenidae.

  13. Contribution to the knowledge of the butterfly fauna of Albania

    Directory of Open Access Journals (Sweden)

    Martina Šašić

    2015-03-01

    Full Text Available Albanian insect fauna is one of the least studied in Europe. In 2012 and 2013 surveys were undertaken with the aim of improving the knowledge of the distribution of butterflies, particularly in the southern part of the country. This research has resulted in the publication of three new species records for Albania. Here we add two new species to the list of native butterflies of Albania, Melitaea ornata Christoph, 1893 and Cupido alcetas (Hoffmannsegg, 1804. We recorded a total of 143 species including several confirmations of historical published records. The total number of species has consequently increased to 198, which is comparable with butterfly diversity in neighbouring countries. Unlike its neighbours, Albania has preserved many of its traditional agricultural practices and consequently its rich fauna has been well protected during the last decades. However, with the opening up of the country to outside influences this will undoubtedly change as the process of intensification has already started in more populated coastal areas. It is therefore imperative to identify important butterfly areas in need of conservation and to take decisive measures to preserve traditional agricultural practices.

  14. The application of CAD, CAE & CAM in development of butterfly valve’s disc

    Science.gov (United States)

    Asiff Razif Shah Ranjit, Muhammad; Hanie Abdullah, Nazlin

    2017-06-01

    The improved design of a butterfly valve disc is based on the concept of sandwich theory. Butterfly valves are mostly used in various industries such as oil and gas plant. The primary failure modes for valves are indented disc, keyways and shaft failure and the cavitation damage. Emphasis on the application of CAD, a new model of the butterfly valve’s disc structure was designed. The structure analysis was analysed using the finite element analysis. Butterfly valve performance factors can be obtained is by using Computational Fluid Dynamics (CFD) software to simulate the physics of fluid flow in a piping system around a butterfly valve. A comparison analysis was done using the finite element to justify the performance of the structure. The second application of CAE is the computational fluid flow analysis. The upstream pressure and the downstream pressure was analysed to calculate the cavitation index and determine the performance throughout each opening position of the valve. The CAM process was done using 3D printer to produce a prototype and analysed the structure in form of prototype. The structure was downscale fabricated based on the model designed initially through the application of CAD. This study is utilized the application of CAD, CAE and CAM for a better improvement of the butterfly valve’s disc components.

  15. A contribution key for identification of butterflies (Lepidoptera of Tehsil Tangi, Khyber Pakhtunkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Farzana Khan Perveen

    2016-09-01

    Full Text Available The butterflies are the useful bio-indicators of an ecosystem, sensitive to any change in environment, such as temperature, microclimate and solar radiation etc, however, they utilize host plants for their oviposition and larval development. Therefore, the present study was conducted to prepare the contribution key for identification of butterflies of Tehsil Tangi during August, 2014-May, 2015. The specimens (ni = 506 were collected belong to 3 families with 18 genera and 23 species. However, the collected butterflies were comprised of families Nymphalidae 50%> Pieridae 43%> Papilionidae 7%. The family Nymphalidae were primarily, blue, pale brown or orange and antennae-tips with large conspicuous knobs, while, family Pieridae were mostly creamy, white, yellow or light orange, although, the family Papilionidae were multi-colours, i.e., yellow, blackish-brown, white or orange and antennae-tips with or without knobs. The largest butterfly was great black mormon, Papilio polytes Linnaeus (Family: Papilionidae with body length 26.0±0.0 (nP. polytes = 1; M±SD mm, while the smallest butterflies Indian little orange tip, Colotis etrida Boisduval (Family: Pieridae with body length 11.5±0.6 (nC. etrida = 4; M±SD mm. The key of butterflies (Lepidoptera of Tehsil Tangi, Khyber Pakhtunkhwa, Pakistan has been established in this paper. It is recommended to evaluate the butterfly fauna of District Charsadda to educate and create awareness in the local community for conservation and protestation of their habitats.

  16. The Butterfly Diagram Internal Structure

    International Nuclear Information System (INIS)

    Ternullo, Maurizio

    2013-01-01

    A time-latitude diagram, where the spotgroup area is taken into account, is presented for cycles 12 through 23. The results show that the spotted area is concentrated in few, small portions ( k nots ) of the Butterfly Diagram (BD). The BD may be described as a cluster of knots. Knots are distributed in the butterfly wings in a seemingly randomly way. A knot may appear at either lower or higher latitudes than previous ones, in spite of the prevalent tendency to appear at lower and lower latitudes. Accordingly, the spotted area centroid, far from continuously drifting equatorward, drifts poleward or remains stationary in any hemisphere for significant fractions (≈ 1/3) of the cycle total duration. In a relevant number of semicycles, knots seem to form two roughly parallel, oblique c hains , separated by an underspotted band. This picture suggests that two (or more) ''activity streams'' approach the equator at a rate higher than the spot zone as a whole.

  17. The Study of Butterflies

    Indian Academy of Sciences (India)

    For example, it was known for over a c.entury that males of certain crow and tiger ... be filled with butterflies to the extent that they will bump into one another ... way we do, since they do not have such sophisticated eyes. What they do have are .... wings or attempt to glide, but merely drops like an inanimate object. Else, she ...

  18. Reversible thermochromic response based on photonic crystal structure in butterfly wing

    Science.gov (United States)

    Wang, Wanlin; Wang, Guo Ping; Zhang, Wang; Zhang, Di

    2018-01-01

    Subtle responsive properties can be achieved by the photonic crystal (PC) nanostructures of butterfly based on thermal expansion effect. The studies focused on making the sample visually distinct. However, the response is restricted by limited thermal expansion coefficients. We herein report a new class of reversible thermochromic response achieved by controlling the ambient refractive index in butterfly PC structure. The photonic ethanol-filled nanoarchitecture sample is simply assembled by sealing liquid ethanol filling Papilio ulysses butterfly wing. Volatile ethanol is used to modulate the ambient refractive index. The sample is sealed with glasses to ensure reversibility. Liquid ethanol filling butterfly wing demonstrated significant allochroic response to ambient refractive index, which can be controlled by the liquefaction and vaporization of ethanol. This design is capable of converting thermal energy into visual color signals. The mechanism of this distinct response is simulated and proven by band theory. The response properties are performed with different filled chemicals and different structure parameters. Thus, the reversible thermochromic response design might have potential use in the fields such as detection, photonic switch, displays, and so forth.

  19. A study on modelling of a butterfly-type control valve by a pneumatic actuator

    International Nuclear Information System (INIS)

    Hwang, I Cheol; Park, Cheol Jae

    2009-01-01

    This paper studies on the modelling of a butterfly-type control valve actuating by an on-off pneumatic solenoid valve. The mathematical model is composed of nonlinear differential equations three parts: (i) a solenoid valve, (ii) a pneumatic cylinder, (iii) a rotary-type butterfly valve. The flow characteristics of the butterfly control valve is analysed by a computer simulator, then its simple transfer function is identified from the step responses.

  20. Sexual communication in day-flying Lepidoptera with special reference to castniids or 'butterfly-moths'

    OpenAIRE

    Sarto, Víctor; Quero, Carmen; Santa-Cruz, M.C.; Rosell Pellisé, Glòria; Guerrero Pérez, Ángel

    2016-01-01

    Butterflies and moths are subject to different evolutionary pressures that affect several aspects of their behaviour and physiology, particularly sexual communication. Butterflies are day-flying insects (excluding hedylids) whose partner-finding strategy is mainly based on visual cues and female butterflies having apparently lost the typical sex pheromone glands. Moths, in contrast, are mostly night-flyers and use female-released long-range pheromones for partner-finding. However, some moth f...

  1. AFM study of structure influence on butterfly wings coloration

    OpenAIRE

    Dallaeva, Dinara; Tománek, Pavel

    2012-01-01

    This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM) can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body,...

  2. Infrared detection based on localized modification of Morpho butterfly wings.

    Science.gov (United States)

    Zhang, Fangyu; Shen, Qingchen; Shi, Xindong; Li, Shipu; Wang, Wanlin; Luo, Zhen; He, Gufeng; Zhang, Peng; Tao, Peng; Song, Chengyi; Zhang, Wang; Zhang, Di; Deng, Tao; Shang, Wen

    2015-02-01

    Inspired by butterflies an advanced detection and sensing system is developed. The hierarchical nanoarchitecture of Morpho butterfly wings is shown to facilitate the selective modification of such a structure, which results in a sensitive infrared response. These findings offer a new path both for detecting infrared photons and for generating nanostructured bimaterial systems for high-performance sensing platforms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Butterfly Species Richness in Selected West Albertine Rift Forests

    Directory of Open Access Journals (Sweden)

    Patrice Kasangaki

    2012-01-01

    Full Text Available The butterfly species richness of 17 forests located in the western arm of the Albertine Rift in Uganda was compared using cluster analysis and principal components analysis (PCA to assess similarities among the forests. The objective was to compare the butterfly species richness of the forests. A total of 630 butterfly species were collected in 5 main families. The different species fell into 7 ecological groupings with the closed forest group having the most species and the swamp/wetland group with the fewest number of species. Three clusters were obtained. The first cluster had forests characterized by relatively high altitude and low species richness despite the big area in the case of Rwenzori and being close to the supposed Pleistocene refugium. The second cluster had forests far away from the supposed refugium except Kisangi and moderate species richness with small areas, whereas the third cluster had those forests that were more disturbed, high species richness, and low altitudinal levels with big areas.

  4. A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

    International Nuclear Information System (INIS)

    Yang, Chang; Su, Z.; Xiao, F.; Zheng, H.

    2017-01-01

    Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistlermode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI = 1 but reaches ~ 35–95 pT in the case of distinct butterfly distributions with BI > 1:3. For magnetosonic waves with amplitudes > 50 pT, the occurrence rate of butterfly distribution is above 80%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.

  5. Inferring the provenance of an alien species with DNA barcodes: the neotropical butterfly Dryas iulia in Thailand.

    Science.gov (United States)

    Burg, Noah A; Pradhan, Ashman; Gonzalez, Rebecca M; Morban, Emely Z; Zhen, Erica W; Sakchoowong, Watana; Lohman, David J

    2014-01-01

    The Neotropical butterfly Dryas iulia has been collected from several locations in Thailand and Malaysia since 2007, and has been observed breeding in the wild, using introduced Passiflora foetida as a larval host plant. The butterfly is bred by a butterfly house in Phuket, Thailand, for release at weddings and Buddhist ceremonies, and we hypothesized that this butterfly house was the source of wild, Thai individuals. We compared wing patterns and COI barcodes from two, wild Thai populations with individuals obtained from this butterfly house. All Thai individuals resemble the subspecies D. iulia modesta, and barcodes from wild and captive Thai specimens were identical. This unique, Thai barcode was not found in any of the 30 specimens sampled from the wild in the species' native range, but is most similar to specimens from Costa Rica, where many exporting butterfly farms are located. These data implicate the butterfly house as the source of Thailand's wild D. iulia populations, which are currently so widespread that eradication efforts are unlikely to be successful.

  6. Inferring the provenance of an alien species with DNA barcodes: the neotropical butterfly Dryas iulia in Thailand.

    Directory of Open Access Journals (Sweden)

    Noah A Burg

    Full Text Available The Neotropical butterfly Dryas iulia has been collected from several locations in Thailand and Malaysia since 2007, and has been observed breeding in the wild, using introduced Passiflora foetida as a larval host plant. The butterfly is bred by a butterfly house in Phuket, Thailand, for release at weddings and Buddhist ceremonies, and we hypothesized that this butterfly house was the source of wild, Thai individuals. We compared wing patterns and COI barcodes from two, wild Thai populations with individuals obtained from this butterfly house. All Thai individuals resemble the subspecies D. iulia modesta, and barcodes from wild and captive Thai specimens were identical. This unique, Thai barcode was not found in any of the 30 specimens sampled from the wild in the species' native range, but is most similar to specimens from Costa Rica, where many exporting butterfly farms are located. These data implicate the butterfly house as the source of Thailand's wild D. iulia populations, which are currently so widespread that eradication efforts are unlikely to be successful.

  7. Flight-induced changes in gene expression in the Glanville fritillary butterfly.

    Science.gov (United States)

    Kvist, Jouni; Mattila, Anniina L K; Somervuo, Panu; Ahola, Virpi; Koskinen, Patrik; Paulin, Lars; Salmela, Leena; Fountain, Toby; Rastas, Pasi; Ruokolainen, Annukka; Taipale, Minna; Holm, Liisa; Auvinen, Petri; Lehtonen, Rainer; Frilander, Mikko J; Hanski, Ilkka

    2015-10-01

    Insect flight is one of the most energetically demanding activities in the animal kingdom, yet for many insects flight is necessary for reproduction and foraging. Moreover, dispersal by flight is essential for the viability of species living in fragmented landscapes. Here, working on the Glanville fritillary butterfly (Melitaea cinxia), we use transcriptome sequencing to investigate gene expression changes caused by 15 min of flight in two contrasting populations and the two sexes. Male butterflies and individuals from a large metapopulation had significantly higher peak flight metabolic rate (FMR) than female butterflies and those from a small inbred population. In the pooled data, FMR was significantly positively correlated with genome-wide heterozygosity, a surrogate of individual inbreeding. The flight experiment changed the expression level of 1513 genes, including genes related to major energy metabolism pathways, ribosome biogenesis and RNA processing, and stress and immune responses. Males and butterflies from the population with high FMR had higher basal expression of genes related to energy metabolism, whereas females and butterflies from the small population with low FMR had higher expression of genes related to ribosome/RNA processing and immune response. Following the flight treatment, genes related to energy metabolism were generally down-regulated, while genes related to ribosome/RNA processing and immune response were up-regulated. These results suggest that common molecular mechanisms respond to flight and can influence differences in flight metabolic capacity between populations and sexes. © 2015 John Wiley & Sons Ltd.

  8. Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system

    Science.gov (United States)

    Lai, Qiang; Zhao, Xiao-Wen; Rajagopal, Karthikeyan; Xu, Guanghui; Akgul, Akif; Guleryuz, Emre

    2018-01-01

    This paper considers the generation of multi-butterfly chaotic attractors from a generalised Sprott C system with multiple non-hyperbolic equilibria. The system is constructed by introducing an additional variable whose derivative has a switching function to the Sprott C system. It is numerically found that the system creates two-, three-, four-, five-butterfly attractors and any other multi-butterfly attractors. First, the dynamic analyses of multi-butterfly chaotic attractors are presented. Secondly, the field programmable gate array implementation, electronic circuit realisation and random number generator are done with the multi-butterfly chaotic attractors.

  9. Project Lifescape 5. Butterfly Accounts

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 3. Project Lifescape: Butterfly Accounts. Krushnamegh J Kunte. Classroom Volume 5 Issue 3 March 2000 pp 86-97. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/03/0086-0097 ...

  10. Paradox of the drinking-straw model of the butterfly proboscis.

    Science.gov (United States)

    Tsai, Chen-Chih; Monaenkova, Daria; Beard, Charles E; Adler, Peter H; Kornev, Konstantin G

    2014-06-15

    Fluid-feeding Lepidoptera use an elongated proboscis, conventionally modeled as a drinking straw, to feed from pools and films of liquid. Using the monarch butterfly, Danaus plexippus (Linnaeus), we show that the inherent structural features of the lepidopteran proboscis contradict the basic assumptions of the drinking-straw model. By experimentally characterizing permeability and flow in the proboscis, we show that tapering of the food canal in the drinking region increases resistance, significantly hindering the flow of fluid. The calculated pressure differential required for a suction pump to support flow along the entire proboscis is greater than 1 atm (~101 kPa) when the butterfly feeds from a pool of liquid. We suggest that behavioral strategies employed by butterflies and moths can resolve this paradoxical pressure anomaly. Butterflies can alter the taper, the interlegular spacing and the terminal opening of the food canal, thereby controlling fluid entry and flow, by splaying the galeal tips apart, sliding the galeae along one another, pulsing hemolymph into each galeal lumen, and pressing the proboscis against a substrate. Thus, although physical construction of the proboscis limits its mechanical capabilities, its functionality can be modified and enhanced by behavioral strategies. © 2014. Published by The Company of Biologists Ltd.

  11. Butterfly community assemblages in relation to human disturbance in a tropical upland forest in Ghana, and implications for conservation

    Directory of Open Access Journals (Sweden)

    Patrick Addo-Fordjour

    2015-04-01

    Full Text Available The present study determined butterfly diversity, species composition and abundance in different forests of varying human disturbance intensities in the Atewa Range Forest Reserve, Ghana (i.e. non-disturbed, moderately disturbed and heavily disturbed forests. Vegetation characteristics and butterflies were sampled within ten 50 m × 50 m plots in each forest type. The study revealed that butterfly Shannon diversity index was similar in the non-disturbed and moderately disturbed forests although it was significantly lower in the heavily disturbed forest. Butterfly abundance differed significantly among all the forest types. Significant relationships were detected between some vegetation characteristics, and butterfly diversity and abundance (P<0.001. Using Non-metric Multidimensional Scaling (NMDS and cluster analysis, three main butterfly assemblages were identified on the basis of species composition, with each one in a particular forest type. Furthermore, butterfly species composition differed significantly among the forest types (ANOSIM; P<0.0001. The intermediate form of human disturbance in the moderately disturbed forest maintained butterfly diversity, suggesting that management efforts aimed at butterfly conservation should be geared towards protecting forests from excessive human disturbance; selective logging is recommended.

  12. Combining Taxonomic and Functional Approaches to Unravel the Spatial Distribution of an Amazonian Butterfly Community.

    Science.gov (United States)

    Graça, Márlon B; Morais, José W; Franklin, Elizabeth; Pequeno, Pedro A C L; Souza, Jorge L P; Bueno, Anderson Saldanha

    2016-04-01

    This study investigated the spatial distribution of an Amazonian fruit-feeding butterfly assemblage by linking species taxonomic and functional approaches. We hypothesized that: 1) vegetation richness (i.e., resources) and abundance of insectivorous birds (i.e., predators) should drive changes in butterfly taxonomic composition, 2) larval diet breadth should decrease with increase of plant species richness, 3) small-sized adults should be favored by higher abundance of birds, and 4) communities with eyespot markings should be able to exploit areas with higher predation pressure. Fruit-feeding butterflies were sampled with bait traps and insect nets across 25 km(2) of an Amazonian ombrophilous forest in Brazil. We measured larval diet breadth, adult body size, and wing marking of all butterflies. Our results showed that plant species richness explained most of the variation in butterfly taxonomic turnover. Also, community average diet breadth decreased with increase of plant species richness, which supports our expectations. In contrast, community average body size increased with the abundance of birds, refuting our hypothesis. We detected no influence of environmental gradients on the occurrence of species with eyespot markings. The association between butterfly taxonomic and functional composition points to a mediator role of the functional traits in the environmental filtering of butterflies. The incorporation of the functional approach into the analyses allowed for the detection of relationships that were not observed using a strictly taxonomic perspective and provided an extra insight into comprehending the potential adaptive strategies of butterflies. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The taxonomy, biogeography and conservation of the myrmecophilous Chrysoritis butterflies (Lepidoptera: Lycaenidae in South Africa

    Directory of Open Access Journals (Sweden)

    R.F. Terblanche

    2003-12-01

    Full Text Available The relevance and integration of scientific knowledge to conservation management of the locally popular and highly endemic butterfly genus Chrysoritis are investigated within the research fields of taxonomy and biogeography. The butterfly genus Chrysoritis contains at least 41 species endemic to South Africa. The taxonomy of Chrysoritis has reached a state where revisions could easily result in a plethora of names between “lumping and splitting”. In practice, the state of the taxonomy of these butterflies on species level may alter their conservation priority. The two most species rich species groups in Chrysoritis have different centres of endemism, however, a butterfly atlas becomes a necessity to reveal more about their biogeography. There is an absence of butterfly species lists in many of our National Parks and Nature Reserves. Legislation should facilitate rather than limit the valuable role of the amateur lepidopterist to add distribution records. In turn, the amateur lepidopterists should adapt and make an effort to explore unknown localities, apart from monitoring butterflies at their well-known localities. The red listing of localised butterflies in South Africa, including a number of Chrysoritis species, is in need of an urgent review in the light of the most recent IUCN categories. A species such as Chrysoritis dicksoni should be protected by law - but at its known localities. The scenario that real conservation action is only needed if the last known locality of a butterfly is threatened, should be abolished. A paradigm shift to conserve the metapopulations of the highly endemic Chrysoritis genus and not merely a few of its species as items that appear on lists, seems necessary.

  14. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    Science.gov (United States)

    Wang, Jiao; Gong, Jiangbin

    2010-02-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter’s butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  15. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    International Nuclear Information System (INIS)

    Wang Jiao; Gong Jiangbin

    2010-01-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter's butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  16. Butterfly Classification by HSI and RGB Color Models Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Jorge E. Grajales-Múnera

    2013-11-01

    Full Text Available This study aims the classification of Butterfly species through the implementation of Neural Networks and Image Processing. A total of 9 species of Morpho genre which has blue as a characteristic color are processed. For Butterfly segmentation we used image processing tools such as: Binarization, edge processing and mathematical morphology. For data processing RGB values are obtained for every image which are converted to HSI color model to identify blue pixels and obtain the data to the proposed Neural Networks: Back-Propagation and Perceptron. For analysis and verification of results confusion matrix are built and analyzed with the results of neural networks with the lowest error levels. We obtain error levels close to 1% in classification of some Butterfly species.

  17. Butterfly vertebra. A case report and a short review of the literature.

    Science.gov (United States)

    Kapetanakis, S; Giovannopoulou, E; Nastoulis, E; Demetriou, T

    2016-01-01

    A butterfly vertebra is a rare congenital anomaly, encountered as isolated finding or as part of syndromic diseases. We report a case of a 40-year- old female presenting with low back pain and sciatica due to 'butterfly' dysplasia of the first sacral vertebra. This novel case includes posterolateral displacement of the completely separated hemivertebrae, causing left lateral recess stenosis and compression of S1 nerve root. Additionally, we conducted a short review of the literature. Few cases are reported in literature. Only one refers to a sacral vertebra. There is no previous case of a butterfly vertebra that accounts for narrowing of the lateral recess and associated radiculopathy.

  18. Successful conservation of a threatened Maculinea butterfly.

    Science.gov (United States)

    Thomas, J A; Simcox, D J; Clarke, R T

    2009-07-03

    Globally threatened butterflies have prompted research-based approaches to insect conservation. Here, we describe the reversal of the decline of Maculinea arion (Large Blue), a charismatic specialist whose larvae parasitize Myrmica ant societies. M. arion larvae were more specialized than had previously been recognized, being adapted to a single host-ant species that inhabits a narrow niche in grassland. Inconspicuous changes in grazing and vegetation structure caused host ants to be replaced by similar but unsuitable congeners, explaining the extinction of European Maculinea populations. Once this problem was identified, UK ecosystems were perturbed appropriately, validating models predicting the recovery and subsequent dynamics of the butterfly and ants at 78 sites. The successful identification and reversal of the problem provides a paradigm for other insect conservation projects.

  19. Deimatic display in the European swallowtail butterfly as a secondary defence against attacks from great tits.

    Science.gov (United States)

    Olofsson, Martin; Eriksson, Stephan; Jakobsson, Sven; Wiklund, Christer

    2012-01-01

    Many animals reduce the risk of being attacked by a predator through crypsis, masquerade or, alternatively, by advertising unprofitability by means of aposematic signalling. Behavioural attributes in prey employed after discovery, however, signify the importance of also having an effective secondary defence if a predator uncovers, or is immune to, the prey's primary defence. In butterflies, as in most animals, secondary defence generally consists of escape flights. However, some butterfly species have evolved other means of secondary defence such as deimatic displays/startle displays. The European swallowtail, Papilio machaon, employs what appears to be a startle display by exposing its brightly coloured dorsal wing surface upon disturbance and, if the disturbance continues, by intermittently protracting and relaxing its wing muscles generating a jerky motion of the wings. This display appears directed towards predators but whether it is effective in intimidating predators so that they refrain from attacks has never been tested experimentally. In this study we staged encounters between a passerine predator, the great tit, Parus major, and live and dead swallowtail butterflies in a two-choice experiment. Results showed that the dead butterfly was virtually always attacked before the live butterfly, and that it took four times longer before a bird attacked the live butterfly. When the live butterfly was approached by a bird this generally elicited the butterfly's startle display, which usually caused the approaching bird to flee. We also performed a palatability test of the butterflies and results show that the great tits seemed to find them palatable. We conclude that the swallowtail's startle display of conspicuous coloration and jerky movements is an efficient secondary defence against small passerines. We also discuss under what conditions predator-prey systems are likely to aid the evolution of deimatic behaviours in harmless and palatable prey.

  20. Deimatic display in the European swallowtail butterfly as a secondary defence against attacks from great tits.

    Directory of Open Access Journals (Sweden)

    Martin Olofsson

    Full Text Available Many animals reduce the risk of being attacked by a predator through crypsis, masquerade or, alternatively, by advertising unprofitability by means of aposematic signalling. Behavioural attributes in prey employed after discovery, however, signify the importance of also having an effective secondary defence if a predator uncovers, or is immune to, the prey's primary defence. In butterflies, as in most animals, secondary defence generally consists of escape flights. However, some butterfly species have evolved other means of secondary defence such as deimatic displays/startle displays. The European swallowtail, Papilio machaon, employs what appears to be a startle display by exposing its brightly coloured dorsal wing surface upon disturbance and, if the disturbance continues, by intermittently protracting and relaxing its wing muscles generating a jerky motion of the wings. This display appears directed towards predators but whether it is effective in intimidating predators so that they refrain from attacks has never been tested experimentally.In this study we staged encounters between a passerine predator, the great tit, Parus major, and live and dead swallowtail butterflies in a two-choice experiment. Results showed that the dead butterfly was virtually always attacked before the live butterfly, and that it took four times longer before a bird attacked the live butterfly. When the live butterfly was approached by a bird this generally elicited the butterfly's startle display, which usually caused the approaching bird to flee. We also performed a palatability test of the butterflies and results show that the great tits seemed to find them palatable.We conclude that the swallowtail's startle display of conspicuous coloration and jerky movements is an efficient secondary defence against small passerines. We also discuss under what conditions predator-prey systems are likely to aid the evolution of deimatic behaviours in harmless and palatable prey.

  1. Looking for the ants: selection of oviposition sites by two myrmecophilous butterfly species

    NARCIS (Netherlands)

    Wynhoff, I.; Grutters, M.; Langevelde, van F.

    2008-01-01

    Obligate myrmecophilous butterfly species, such as Maculinea teleius and M. nausithous that hibernate as caterpillar in nests of the ant species Myrmica scabrinodis and M. rubra respectively, have narrowly defined habitat requirements. One would expect that these butterflies are able to select for

  2. Rhabdom evolution in butterflies: insights from the uniquely tiered and heterogeneous ommatidia of the Glacial Apollo butterfly, Parnassius glacialis.

    Science.gov (United States)

    Matsushita, Atsuko; Awata, Hiroko; Wakakuwa, Motohiro; Takemura, Shin-ya; Arikawa, Kentaro

    2012-09-07

    The eye of the Glacial Apollo butterfly, Parnassius glacialis, a 'living fossil' species of the family Papilionidae, contains three types of spectrally heterogeneous ommatidia. Electron microscopy reveals that the Apollo rhabdom is tiered. The distal tier is composed exclusively of photoreceptors expressing opsins of ultraviolet or blue-absorbing visual pigments, and the proximal tier consists of photoreceptors expressing opsins of green or red-absorbing visual pigments. This organization is unique because the distal tier of other known butterflies contains two green-sensitive photoreceptors, which probably function in improving spatial and/or motion vision. Interspecific comparison suggests that the Apollo rhabdom retains an ancestral tiered pattern with some modification to enhance its colour vision towards the long-wavelength region of the spectrum.

  3. South African Red data book - Butterflies

    CSIR Research Space (South Africa)

    Henning, SF

    1989-01-01

    Full Text Available Currently 632 species of butterfly are known to occur within the borders of South Africa. Using the well established IUCN definitions, 102 of these are considered to be exposed to some level of threat, two species as endangered, seven species...

  4. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation.

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2015-09-01

    A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J=0.89) at the beginning of the downstroke, and a decrease to a minimum (J=0.17) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.

  5. Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2015-09-01

    A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J =0.89 ) at the beginning of the downstroke, and a decrease to a minimum (J =0.17 ) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.

  6. Garden varieties: how attractive are recommended garden plants to butterflies?

    OpenAIRE

    Shackleton, Kyle; Ratnieks, Francis L W

    2016-01-01

    One way the public can engage in insect conservation is through wildlife gardening, including the growing of insect-friendly flowers as sources of nectar. However, plant varieties differ in the types of insects they attract. To determine which garden plants attracted which butterflies, we counted butterflies nectaring on 11 varieties of summer-flowering garden plants in a rural garden in East Sussex, UK. These plants were all from a list of 100 varieties considered attractive to British butte...

  7. An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-08-01

    Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.

  8. A Monarch Butterfly Optimization for the Dynamic Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Shifeng Chen

    2017-09-01

    Full Text Available The dynamic vehicle routing problem (DVRP is a variant of the Vehicle Routing Problem (VRP in which customers appear dynamically. The objective is to determine a set of routes that minimizes the total travel distance. In this paper, we propose a monarch butterfly optimization (MBO algorithm to solve DVRPs, utilizing a greedy strategy. Both migration operation and the butterfly adjusting operator only accept the offspring of butterfly individuals that have better fitness than their parents. To improve performance, a later perturbation procedure is implemented, to maintain a balance between global diversification and local intensification. The computational results indicate that the proposed technique outperforms the existing approaches in the literature for average performance by at least 9.38%. In addition, 12 new best solutions were found. This shows that this proposed technique consistently produces high-quality solutions and outperforms other published heuristics for the DVRP.

  9. A Simulation Study of Mutations in the Genetic Regulatory Hierarchy for Butterfly Eyespot Focus Determination

    OpenAIRE

    Marcus, Jeffrey M.; Evans, Travis M.

    2008-01-01

    The color patterns on the wings of butterflies have been an important model system in evolutionary developmental biology. A recent computational model tested genetic regulatory hierarchies hypothesized to underlie the formation of butterfly eyespot foci (Evans and Marcus, 2006). The computational model demonstrated that one proposed hierarchy was incapable of reproducing the known patterns of gene expression associated with eyespot focus determination in wild-type butterflies, but that two sl...

  10. The first mitochondrial genome for the butterfly family Riodinidae (Abisara fylloides) and its systematic implications.

    Science.gov (United States)

    Zhao, Fang; Huang, Dun-Yuan; Sun, Xiao-Yan; Shi, Qing-Hui; Hao, Jia-Sheng; Zhang, Lan-Lan; Yang, Qun

    2013-10-01

    The Riodinidae is one of the lepidopteran butterfly families. This study describes the complete mitochondrial genome of the butterfly species Abisara fylloides, the first mitochondrial genome of the Riodinidae family. The results show that the entire mitochondrial genome of A. fylloides is 15 301 bp in length, and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a 423 bp A+T-rich region. The gene content, orientation and order are identical to the majority of other lepidopteran insects. Phylogenetic reconstruction was conducted using the concatenated 13 protein-coding gene (PCG) sequences of 19 available butterfly species covering all the five butterfly families (Papilionidae, Nymphalidae, Peridae, Lycaenidae and Riodinidae). Both maximum likelihood and Bayesian inference analyses highly supported the monophyly of Lycaenidae+Riodinidae, which was standing as the sister of Nymphalidae. In addition, we propose that the riodinids be categorized into the family Lycaenidae as a subfamilial taxon. The Riodinidae is one of the lepidopteran butterfly families. This study describes the complete mitochondrial genome of the butterfly species Abisara fylloides , the first mitochondrial genome of the Riodinidae family. The results show that the entire mitochondrial genome of A. fylloides is 15 301 bp in length, and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a 423 bp A+T-rich region. The gene content, orientation and order are identical to the majority of other lepidopteran insects. Phylogenetic reconstruction was conducted using the concatenated 13 protein-coding gene (PCG) sequences of 19 available butterfly species covering all the five butterfly families (Papilionidae, Nymphalidae, Peridae, Lycaenidae and Riodinidae). Both maximum likelihood and Bayesian inference analyses highly supported the monophyly of Lycaenidae+Riodinidae, which was standing as the sister of Nymphalidae. In addition, we propose

  11. Using citizen science butterfly counts to predict species population trends.

    Science.gov (United States)

    Dennis, Emily B; Morgan, Byron J T; Brereton, Tom M; Roy, David B; Fox, Richard

    2017-12-01

    Citizen scientists are increasingly engaged in gathering biodiversity information, but trade-offs are often required between public engagement goals and reliable data collection. We compared population estimates for 18 widespread butterfly species derived from the first 4 years (2011-2014) of a short-duration citizen science project (Big Butterfly Count [BBC]) with those from long-running, standardized monitoring data collected by experienced observers (U.K. Butterfly Monitoring Scheme [UKBMS]). BBC data are gathered during an annual 3-week period, whereas UKBMS sampling takes place over 6 months each year. An initial comparison with UKBMS data restricted to the 3-week BBC period revealed that species population changes were significantly correlated between the 2 sources. The short-duration sampling season rendered BBC counts susceptible to bias caused by interannual phenological variation in the timing of species' flight periods. The BBC counts were positively related to butterfly phenology and sampling effort. Annual estimates of species abundance and population trends predicted from models including BBC data and weather covariates as a proxy for phenology correlated significantly with those derived from UKBMS data. Overall, citizen science data obtained using a simple sampling protocol produced comparable estimates of butterfly species abundance to data collected through standardized monitoring methods. Although caution is urged in extrapolating from this U.K. study of a small number of common, conspicuous insects, we found that mass-participation citizen science can simultaneously contribute to public engagement and biodiversity monitoring. Mass-participation citizen science is not an adequate replacement for standardized biodiversity monitoring but may extend and complement it (e.g., through sampling different land-use types), as well as serving to reconnect an increasingly urban human population with nature. © 2017 The Authors. Conservation Biology published

  12. Butterfly valve of all rubber lining type

    International Nuclear Information System (INIS)

    Shimada, Shosaku; Nakatsuma, Sumiya; Sasaki, Iwao; Aoki, Naoshi.

    1982-01-01

    The valves used for the circulating water pipes for condensers in nuclear and thermal power stations have become large with the increase of power output, and their specifications have become strict. The materials for the valves change from cast iron to steel plate construction. To cope with sea water corrosion, rubber lining has been applied to the internal surfaces of valve boxes, and the build-up welding of stainless steel has been made on the edges of valves. However, recently it is desired to develop butterfly valves, of which the whole valve disks are lined with hard rubber. For the purpose of confirming the performance of large bore valves, a 2600 mm bore butterfly valve of all rubber lining type was used, and the opening and closing test of 1100 times was carried out by applying thermal cycle and pressure difference and using artifical sea water. Also the bending test of hard rubber lining was performed with test pieces. Thus, it was confirmed that the butterfly valves of all rubber lining type have the performance exceeding that of the valves with build-up welding. The course of development of the valves of all rubber lining type, the construction and the items of confirmation by tests of these valves, and the tests of the valve and the hard rubber lining described above are reported. (Kako, I.)

  13. Biology: Birds and butterflies in climatic debt

    NARCIS (Netherlands)

    Visser, M.E.

    2012-01-01

    A European-wide analysis of changing species distributions shows that butterflies outrun birds in the race to move northwards in response to climate change, but that neither group keeps up with increasing temperatures.

  14. Single-shot secure quantum network coding on butterfly network with free public communication

    Science.gov (United States)

    Owari, Masaki; Kato, Go; Hayashi, Masahito

    2018-01-01

    Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.

  15. The relationship between total cholinesterase activity and mortality in four butterfly species

    Science.gov (United States)

    Bargar, Timothy A.

    2012-01-01

    The relationship between total cholinesterase activity (TChE) and mortality in four butterfly species (great southern white [Ascia monuste], common buckeye [Junonia coenia], painted lady [Vanessa cardui], and julia butterflies [Dryas julia]) was investigated. Acute contact toxicity studies were conducted to evaluate the response (median lethal dose [LD50] and TChE) of the four species following exposure to the organophosphate insecticide naled. The LD50 for these butterflies ranged from 2.3 to 7.6 μg/g. The average level of TChE inhibition associated with significant mortality ranged from 26 to 67%, depending on the species. The lower bounds of normal TChE activity (2 standard deviations less than the average TChE for reference butterflies) ranged from 8.4 to 12.3 μM/min/g. As a percentage of the average reference TChE activity for the respective species, the lower bounds were similar to the inhibition levels associated with significant mortality, indicating there was little difference between the dose resulting in significant TChE inhibition and that resulting in mortality.

  16. Flow characteristics and performance evaluation of butterfly valves using numerical analysis

    International Nuclear Information System (INIS)

    Jeon, S Y; Shin, M S; Yoon, J Y

    2010-01-01

    The industrial butterfly valves have been applied to various fields that transport fluid in volume, especially water supply and drainage pipeline for flow control. The butterfly valves in various shapes are manufactured, but a fitting performance comparison is not made up. For this reason, we carried out numerical analysis of some kind of butterfly valves for water supply and drainage pipeline using commercial CFD code FLUENT, and made a comparative study of these results. Also, the flow coefficient, the loss coefficient, and pressure distribution of valves according to valve opening rate were compared each other and the influence of these design variables on valve performance were checked over. Through flow around the valve disk, such as pressure distribution, flow pattern, velocity vectors, and form of vortex, we grasped flow characteristics.

  17. Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove singularities

    International Nuclear Information System (INIS)

    Naumis, Gerardo G.

    2016-01-01

    The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set of critical points that separates orderly patterns of both positive and negative Cherns that appear as a fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that the critical points are identified with the Van Hove singularities that exist at every band center in the butterfly landscape. - Highlights: • Use a higher dimensional approach to build a topological map of the Hofstadter butterfly. • There is a fine structure of Chern numbers around each rational flux. • Van Hove singularities are limiting points for topological sequences of the fine flux.

  18. Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove singularities

    Energy Technology Data Exchange (ETDEWEB)

    Naumis, Gerardo G., E-mail: naumis@fisica.unam.mx [Departamento de Física–Química, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 20-364, 01000 México, Distrito Federal (Mexico); Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States); Escuela Superior de Física y Matemáticas, ESIA-Zacatenco, Instituto Politécnico Nacional, México D.F. (Mexico)

    2016-04-29

    The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set of critical points that separates orderly patterns of both positive and negative Cherns that appear as a fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that the critical points are identified with the Van Hove singularities that exist at every band center in the butterfly landscape. - Highlights: • Use a higher dimensional approach to build a topological map of the Hofstadter butterfly. • There is a fine structure of Chern numbers around each rational flux. • Van Hove singularities are limiting points for topological sequences of the fine flux.

  19. Distal-less induces elemental color patterns in Junonia butterfly wings.

    Science.gov (United States)

    Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Iwasaki, Mayo; Taira, Wataru; Adhikari, Kiran; Gurung, Raj; Otaki, Joji M

    2016-01-01

    The border ocellus, or eyespot, is a conspicuous color pattern element in butterfly wings. For two decades, it has been hypothesized that transcription factors such as Distal-less (Dll) are responsible for eyespot pattern development in butterfly wings, based on their expression in the prospective eyespots. In particular, it has been suggested that Dll is a determinant for eyespot size. However, functional evidence for this hypothesis has remained incomplete, due to technical difficulties. Here, we show that ectopically expressed Dll induces ectopic elemental color patterns in the adult wings of the blue pansy butterfly, Junonia orithya (Lepidoptera, Nymphalidae). Using baculovirus-mediated gene transfer, we misexpressed Dll protein fused with green fluorescent protein (GFP) in pupal wings, resulting in ectopic color patterns, but not the formation of intact eyespots. Induced changes included clusters of black and orange scales (a basic feature of eyespot patterns), black and gray scales, and inhibition of cover scale development. In contrast, ectopic expression of GFP alone did not induce any color pattern changes using the same baculovirus-mediated gene transfer system. These results suggest that Dll plays an instructive role in the development of color pattern elements in butterfly wings, although Dll alone may not be sufficient to induce a complete eyespot. This study thus experimentally supports the hypothesis of Dll function in eyespot development.

  20. Application of new designed butterfly type intermediate valve for nuclear steam turbine

    International Nuclear Information System (INIS)

    Matsumura, Kazuhiro; Kawamata, Susumu; Fujita, Isao; Taketomo, Seiki.

    1991-01-01

    To cope with a large capacity nuclear steam turbine, a butterfly type intermediate valve has been developed. Compared to the conventional valve, or globe valve, the butterfly valve has the following design features: a) Higher thermal efficiency due to lower pressure loss, b) Easier maintenance due to simplified construction, and c) Lower station cost due to the smaller size of the valve assembly. An experiment with a scaled-down test valve was carried out using compressed air. Subsequently a full-scale valve was tested using steam under actual steam conditions. As a result, these tests gave us no problems. The first nuclear turbine (1100MW) equipped with a butterfly valve is operating satisfactorily with good performance as expected. (author)

  1. The Invasive Buddleja Daviddi (Butterfly Bush)

    Science.gov (United States)

    Buddleja davidii Franchet (Synonym. Buddleia davidii; common name butterfly bush) is a perennial, semi-deciduous, multi-stemmed shrub that is resident in gardens and disturbed areas. Since its introduction to the United Kingdom from China in the late 1800s, B. davidii has become...

  2. Raising Butterflies from Your Own Garden.

    Science.gov (United States)

    Howley-Pfeifer, Patricia

    2002-01-01

    Describes how raising monarch, black swallowtail, and mourning cloak butterflies in a kindergarten class garden can provide opportunities for observation experiences. Includes detailed steps for instruction and describes stages of growth. Excerpts children's journal dictations to illustrate ways to support the discovery process. Describes related…

  3. Experimental and numerical assessment of the improvement of the load-carrying capacities of butterfly-shaped coupling components in composite structures

    International Nuclear Information System (INIS)

    Altan, Gurkan; Topcu, Muzaffer

    2010-01-01

    This study was designed to analyze the load-carrying capacities of composite structures connected face-to-face by a butterfly coupling component experimentally and numerically without adhesive. The results of the experimental studies were supported with numerical analysis. In addition, the butterfly coupling component was developed geometrically with a view to the results of the numerical and experimental studies. The change in the load-carrying capacity of the improved butterfly coupling components was analyzed numerically and experimentally to obtain new results. Half-specimens and butterfly-shaped lock components were cut with a water jet machine. Experiments and analyses were conducted to analyze the effects of coupling geometry parameters, such as the ratio of the butterfly end width to the specimen width (w/b), the ratio of the butterfly middle width to the butterfly end width (x/w), and the ratio of the butterfly half height to the specimen width (y/b). It was intended to determine the damage in the butterfly before any damage to the composite structure and to increase the service-life span of the composite structure with the repair of the butterfly lock. As a result of this study, it was determined that the geometrical fixed ratios (w/b) and (x/w) were 0.4 and 0.2 at 0.4 of (y/b) according to the experimental and numerical studies with basic and modified models

  4. Evolution and Mechanism of Spectral Tuning of Blue-Absorbing Visual Pigments in Butterflies

    NARCIS (Netherlands)

    Wakakuwa, Motohiro; Terakita, Akihisa; Koyanagi, Mitsumasa; Stavenga, Doekele G.; Shichida, Yoshinori; Arikawa, Kentaro; Warrant, Eric James

    2010-01-01

    The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae, has duplicated blue opsins, PrB and PrV, which are

  5. The butterflies of Barro Colorado Island: Local extinction rates since the 1930's

    Science.gov (United States)

    Few data are available about the regional or local extinction of tropical butterfly species. When confirmed, local extinction was often due to the loss of host-plant species. We used published lists and recent monitoring programs to evaluate changes in butterfly composition on Barro Colorado Island ...

  6. A simulation study of mutations in the genetic regulatory hierarchy for butterfly eyespot focus determination.

    Science.gov (United States)

    Marcus, Jeffrey M; Evans, Travis M

    2008-09-01

    The color patterns on the wings of butterflies have been an important model system in evolutionary developmental biology. A recent computational model tested genetic regulatory hierarchies hypothesized to underlie the formation of butterfly eyespot foci [Evans, T.M., Marcus, J.M., 2006. A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination. Evol. Dev. 8, 273-283]. The computational model demonstrated that one proposed hierarchy was incapable of reproducing the known patterns of gene expression associated with eyespot focus determination in wild-type butterflies, but that two slightly modified alternative hierarchies were capable of reproducing all of the known gene expressions patterns. Here we extend the computational models previously implemented in Delphi 2.0 to two mutants derived from the squinting bush brown butterfly (Bicyclus anynana). These two mutants, comet and Cyclops, have aberrantly shaped eyespot foci that are produced by different mechanisms. The comet mutation appears to produce a modified interaction between the wing margin and the eyespot focus that results in a series of comet-shaped eyespot foci. The Cyclops mutation causes the failure of wing vein formation between two adjacent wing-cells and the fusion of two adjacent eyespot foci to form a single large elongated focus in their place. The computational approach to modeling pattern formation in these mutants allows us to make predictions about patterns of gene expression, which are largely unstudied in butterfly mutants. It also suggests a critical experiment that will allow us to distinguish between two hypothesized genetic regulatory hierarchies that may underlie all butterfly eyespot foci.

  7. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  8. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana

    Science.gov (United States)

    Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer

    2014-01-01

    Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548

  9. Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies.

    Science.gov (United States)

    Özsu, Nesibe; Chan, Qian Yi; Chen, Bin; Gupta, Mainak Das; Monteiro, Antónia

    2017-09-01

    Eyespot patterns of nymphalid butterflies are an example of a novel trait yet, the developmental origin of eyespots is still not well understood. Several genes have been associated with eyespot development but few have been tested for function. One of these genes is the signaling ligand, wingless, which is expressed in the eyespot centers during early pupation and may function in eyespot signaling and color ring differentiation. Here we tested the function of wingless in wing and eyespot development by down-regulating it in transgenic Bicyclus anynana butterflies via RNAi driven by an inducible heat-shock promoter. Heat-shocks applied during larval and early pupal development led to significant decreases in wingless mRNA levels and to decreases in eyespot size and wing size in adult butterflies. We conclude that wingless is a positive regulator of eyespot and wing development in B. anynana butterflies. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Spontaneous long-range calcium waves in developing butterfly wings.

    Science.gov (United States)

    Ohno, Yoshikazu; Otaki, Joji M

    2015-03-25

    Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca(2+) waves in wing development. Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca(2+) waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca(2+) waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca(2+)-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca(2+) levels and halted the spontaneous Ca(2+) waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. We identified a novel form of Ca(2+) waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca(2+) waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies.

  11. Comparing the response of birds and butterflies to vegetation-based mountain ecotones using boundary detection approaches.

    Science.gov (United States)

    Kent, Rafi; Levanoni, Oded; Banker, Eran; Pe'er, Guy; Kark, Salit

    2013-01-01

    Mountains provide an opportunity to examine changes in biodiversity across environmental gradients and areas of transition (ecotones). Mountain ecotones separate vegetation belts. Here, we aimed to examine whether transition areas for birds and butterflies spatially correspond with ecotones between three previously described altitudinal vegetation belts on Mt. Hermon, northern Israel. These include the Mediterranean Maquis, xero-montane open forest and Tragacanthic mountain steppe vegetation belts. We sampled the abundance of bird and butterfly species in 34 sampling locations along an elevational gradient between 500 and 2200 m. We applied wombling, a boundary-detection technique, which detects rapid changes in a continuous variable, in order to locate the transition areas for bird and butterfly communities and compare the location of these areas with the location of vegetation belts as described in earlier studies of Mt. Hermon. We found some correspondence between the areas of transition of both bird and butterfly communities and the ecotones between vegetation belts. For birds and butterflies, important transitions occurred at the lower vegetation ecotone between Mediterranean maquis and the xero-montane open forest vegetation belts, and between the xero-montane open forest and the mountain steppe Tragacanthic belts. While patterns of species turnover with elevation were similar for birds and butterflies, the change in species richness and diversity with elevation differed substantially between the two taxa. Birds and butterflies responded quite similarly to the elevational gradient and to the shift between vegetation belts in terms of species turnover rates. While the mechanisms generating these patterns may differ, the resulting areas of peak turnover in species show correspondence among three different taxa (plants, birds and butterflies).

  12. The male sex pheromone of the butterfly Bicyclus anynana: towards an evolutionary analysis.

    Directory of Open Access Journals (Sweden)

    Caroline M Nieberding

    Full Text Available BACKGROUND: Female sex pheromones attracting mating partners over long distances are a major determinant of reproductive isolation and speciation in Lepidoptera. Males can also produce sex pheromones but their study, particularly in butterflies, has received little attention. A detailed comparison of sex pheromones in male butterflies with those of female moths would reveal patterns of conservation versus novelty in the associated behaviours, biosynthetic pathways, compounds, scent-releasing structures and receiving systems. Here we assess whether the African butterfly Bicyclus anynana, for which genetic, genomic, phylogenetic, ecological and ethological tools are available, represents a relevant model to contribute to such comparative studies. METHODOLOGY/PRINCIPAL FINDINGS: Using a multidisciplinary approach, we determined the chemical composition of the male sex pheromone (MSP in the African butterfly B. anynana, and demonstrated its behavioural activity. First, we identified three compounds forming the presumptive MSP, namely (Z-9-tetradecenol (Z9-14:OH, hexadecanal (16:Ald and 6,10,14-trimethylpentadecan-2-ol (6,10,14-trime-15-2-ol, and produced by the male secondary sexual structures, the androconia. Second, we described the male courtship sequence and found that males with artificially reduced amounts of MSP have a reduced mating success in semi-field conditions. Finally, we could restore the mating success of these males by perfuming them with the synthetic MSP. CONCLUSIONS/SIGNIFICANCE: This study provides one of the first integrative analyses of a MSP in butterflies. The toolkit it has developed will enable the investigation of the type of information about male quality that is conveyed by the MSP in intraspecific communication. Interestingly, the chemical structure of B. anynana MSP is similar to some sex pheromones of female moths making a direct comparison of pheromone biosynthesis between male butterflies and female moths relevant

  13. Contribution of urban expansion and a changing climate to decline of a butterfly fauna.

    Science.gov (United States)

    Casner, Kayce L; Forister, Matthew L; O'Brien, Joshua M; Thorne, James; Waetjen, David; Shapiro, Arthur M

    2014-06-01

    Butterfly populations are naturally patchy and undergo extinctions and recolonizations. Analyses based on more than 2 decades of data on California's Central Valley butterfly fauna show a net loss in species richness through time. We analyzed 22 years of phenological and faunistic data for butterflies to investigate patterns of species richness over time. We then used 18-22 years of data on changes in regional land use and 37 years of seasonal climate data to develop an explanatory model. The model related the effects of changes in land-use patterns, from working landscapes (farm and ranchland) to urban and suburban landscapes, and of a changing climate on butterfly species richness. Additionally, we investigated local trends in land use and climate. A decline in the area of farmland and ranchland, an increase in minimum temperatures during the summer and maximum temperatures in the fall negatively affected net species richness, whereas increased minimum temperatures in the spring and greater precipitation in the previous summer positively affected species richness. According to the model, there was a threshold between 30% and 40% working-landscape area below which further loss of working-landscape area had a proportionally greater effect on butterfly richness. Some of the isolated effects of a warming climate acted in opposition to affect butterfly richness. Three of the 4 climate variables that most affected richness showed systematic trends (spring and summer mean minimum and fall mean maximum temperatures). Higher spring minimum temperatures were associated with greater species richness, whereas higher summer temperatures in the previous year and lower rainfall were linked to lower richness. Patterns of land use contributed to declines in species richness (although the pattern was not linear), but the net effect of a changing climate on butterfly richness was more difficult to discern. © 2014 Society for Conservation Biology.

  14. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts.

    Science.gov (United States)

    Tao, Leiling; Hoang, Kevin M; Hunter, Mark D; de Roode, Jacobus C

    2016-09-01

    The emerging field of ecological immunology demonstrates that allocation by hosts to immune defence against parasites is constrained by the costs of those defences. However, the costs of non-immunological defences, which are important alternatives to canonical immune systems, are less well characterized. Estimating such costs is essential for our understanding of the ecology and evolution of alternative host defence strategies. Many animals have evolved medication behaviours, whereby they use antiparasitic compounds from their environment to protect themselves or their kin from parasitism. Documenting the costs of medication behaviours is complicated by natural variation in the medicinal components of diets and their covariance with other dietary components, such as macronutrients. In the current study, we explore the costs of the usage of antiparasitic compounds in monarch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar concentrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show that these antiparasitic cardenolides can also impose significant costs on both uninfected and infected butterflies. Among eight milkweed species that vary substantially in their foliar cardenolide concentration and composition, we observed the opposing effects of cardenolides on monarch fitness traits. While high foliar cardenolide concentrations increased the tolerance of monarch butterflies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally, although non-polar cardenolide compounds decreased the spore load of infected butterflies, they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve between cardenolide non-polarity and the life span of infected butterflies

  15. Diversity and distribution of butterflies (Insecta: Lepidoptera of district Dir lower, Khyber Pukhtoonkhwa, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Inayatullah Khan

    2016-03-01

    Full Text Available Butterflies are the fine-looking creatures and act as ecological indicators and pollinators. The present study is the first record of Butterfly fauna of Dir lower. Collection was carried out during March - August 2013. The specimens were collected and identified with the help of taxonomic keys and preserved specimens in National Insect Museum Islamabad. The collection of 375 specimens were preserved. Identification revealed 24 species belonging to 20 genera and 7 families. The species are Papilio polyctor Boisduval, Papilio demoleus Linnaeus, Junonia almanac Linnaeus, Pararge schakra Kollar, Junonia hierta Fabricius, Junonia orythea Linnaeus, Argyrius hyperbius Linnaeus, Hypolimnus bolina Linnaeus, Vanessa cashmiriensis Kollar, Phalantha phalantha Drury, Melitea didyma Esper, Lycaena phalaeas Linnaeus, Lybithea lipita Moore, Danius chrysippus Linnaeus, Hipparchia parasitas Kollar, Lethe rohria Fabricius, Maniola davendra Moore, Pontia daplidice Linnaeus, Belenois aurota Fabricius, Pieris brassicae Linnaeus, Colias erate Esper, Eurema hecabe Linnaeus, Colias fieldi Linnaeus and Cynthia cardui Linnaeus. The highest population was shown by Pieris brassicae followed by Danius chrysippus and Cynthia cardui. Twelve species belong to family Nymphalidae (50%, which shows the highest abundance rate. Butterfly density was the highest at Timergara. Butterfly fauna was the highest in May followed by August and lowest in March. It is concluded that pollution free environment of Dir Lower is more suitable for the survival of butterfly fauna. Large scale study is required to fully explore the butterfly fauna of the area.

  16. How Many Butterflies Are There in a City of Circa Half a Million People?

    Directory of Open Access Journals (Sweden)

    Lorena Ramírez-Restrepo

    2015-07-01

    Full Text Available Urbanization poses severe threats to biodiversity; thus, there is an urge to understand urban areas and their biological, physical, and social components if we aim to integrate sustainable practices as part of their processes. Among urban wildlife groups, butterflies have been used as biological indicators due to their high sensitivity to environmental changes. In this study, we estimated the number of butterflies that live within a neotropical medium-sized city (Xalapa, Veracruz, Mexico using a robust interpolation procedure (ordinary kriging. Our calculations added an average of 1,077,537 (± SE 172 butterfly individuals that dwelt in Xalapa in the surveyed space and time. The interpolation procedures showed to be robust and reliable, and up to some extent conservative. Thus, our results suggest that there are at least 1.8 butterfly individuals per capita in Xalapa. Notably, higher butterfly abundances tended to be recorded near highly vegetated areas and along city borders. Besides providing the basis for further ecological studies, our results will contribute to the crucial need of scientific data that is lacking, but critically important, for adequate urban management and planning, as well as environmental education.

  17. Use of butterflies as nontarget insect test species and the acute toxicity and hazard of mosquito control insecticides.

    Science.gov (United States)

    Hoang, Tham C; Pryor, Rachel L; Rand, Gary M; Frakes, Robert A

    2011-04-01

    Honeybees are the standard insect test species used for toxicity testing of pesticides on nontarget insects for the U.S. Environmental Protection Agency (U.S. EPA) under the Federal Insecticide Fungicide and Rodenticide Act (FIFRA). Butterflies are another important insect order and a valued ecological resource in pollination. The current study conducted acute toxicity tests with naled, permethrin, and dichlorvos on fifth larval instar (caterpillars) and adults of different native Florida, USA, butterfly species to determine median lethal doses (24-h LD50), because limited acute toxicity data are available with this major insect group. Thorax- and wing-only applications of each insecticide were conducted. Based on LD50s, thorax and wing application exposures were acutely toxic to both caterpillars and adults. Permethrin was the most acutely toxic insecticide after thorax exposure to fifth instars and adult butterflies. However, no generalization on acute toxicity (sensitivity) of the insecticides could be concluded based on exposures to fifth instars versus adult butterflies or on thorax versus wing exposures of adult butterflies. A comparison of LD50s of the butterflies from this study (caterpillars and adults) with honeybee LD50s for the adult mosquito insecticides on a µg/organism or µg/g basis indicates that several butterfly species are more sensitive to these insecticides than are honeybees. A comparison of species sensitivity distributions for all three insecticides shows that permethrin had the lowest 10th percentile. Using a hazard quotient approach indicates that both permethrin and naled applications in the field may present potential acute hazards to butterflies, whereas no acute hazard of dichlorvos is apparent in butterflies. Butterflies should be considered as potential test organisms when nontarget insect testing of pesticides is suggested under FIFRA. Copyright © 2011 SETAC.

  18. Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations

    International Nuclear Information System (INIS)

    Manela, Ofer; Segev, Mordechai; Christodoulides, Demetrios N; Kip, Detlef

    2010-01-01

    The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.

  19. Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations

    Energy Technology Data Exchange (ETDEWEB)

    Manela, Ofer; Segev, Mordechai [Department of Physics and Solid State Institute, Technion, Haifa 32000 (Israel); Christodoulides, Demetrios N [College of Optics/CREOL, University of Central Florida, FL 32816-2700 (United States); Kip, Detlef, E-mail: msegev@tx.technion.ac.i [Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg (Germany)

    2010-05-15

    The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.

  20. Fractional statistics and the butterfly effect

    International Nuclear Information System (INIS)

    Gu, Yingfei; Qi, Xiao-Liang

    2016-01-01

    Fractional statistics and quantum chaos are both phenomena associated with the non-local storage of quantum information. In this article, we point out a connection between the butterfly effect in (1+1)-dimensional rational conformal field theories and fractional statistics in (2+1)-dimensional topologically ordered states. This connection comes from the characterization of the butterfly effect by the out-of-time-order-correlator proposed recently. We show that the late-time behavior of such correlators is determined by universal properties of the rational conformal field theory such as the modular S-matrix and conformal spins. Using the bulk-boundary correspondence between rational conformal field theories and (2+1)-dimensional topologically ordered states, we show that the late time behavior of out-of-time-order-correlators is intrinsically connected with fractional statistics in the topological order. We also propose a quantitative measure of chaos in a rational conformal field theory, which turns out to be determined by the topological entanglement entropy of the corresponding topological order.

  1. Fractional statistics and the butterfly effect

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yingfei; Qi, Xiao-Liang [Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-08-23

    Fractional statistics and quantum chaos are both phenomena associated with the non-local storage of quantum information. In this article, we point out a connection between the butterfly effect in (1+1)-dimensional rational conformal field theories and fractional statistics in (2+1)-dimensional topologically ordered states. This connection comes from the characterization of the butterfly effect by the out-of-time-order-correlator proposed recently. We show that the late-time behavior of such correlators is determined by universal properties of the rational conformal field theory such as the modular S-matrix and conformal spins. Using the bulk-boundary correspondence between rational conformal field theories and (2+1)-dimensional topologically ordered states, we show that the late time behavior of out-of-time-order-correlators is intrinsically connected with fractional statistics in the topological order. We also propose a quantitative measure of chaos in a rational conformal field theory, which turns out to be determined by the topological entanglement entropy of the corresponding topological order.

  2. The study on flow characteristics of butterfly valve using flow visualization

    International Nuclear Information System (INIS)

    Yang, S. M.; Hong, S. D.; Song, D. S.; Park, J. K.; Park, J. I.; Shin, S. K.; Kim, H. J.

    2005-01-01

    Flow visualization of butterfly valve is tested for four types(15 deg., 30 .deg., 45 .deg., and 90 .deg.) of valve opening angle. The inner flow characteristics of valve are studied. The flow variation was measured using a high speed camera which takes 500 frames per second with 1024 x 1024 pixels. These captured images were used for calculation to analyze two dimensional flow velocity of the valve. The smaller opening angle, the more increasing the differential pressure of a butterfly valve. Therefore, we know that the complex flow is occurred by increasing the differential pressure. And it is found that the flowing backward is more increased according to the increase of the opening angle of a butterfly valve. However, its flow pattern is similar to a simple pipe flow when the opening angle is 90 .deg.

  3. Hofstadter's butterfly in a two-dimensional lattice consisting of two sublattices

    Energy Technology Data Exchange (ETDEWEB)

    Vugalter, G A; Pastukhov, A S [Department of Physics, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950 (Russian Federation)

    2004-06-04

    Harper's equations for simple and complex two-dimensional lattices subject to a magnetic field have been derived in the tight-binding approximation. In our derivation we do not neglect the influence of the magnetic field on the electron eigenfunctions and eigenvalues in isolated atoms. Using a variational procedure for finding eigenfunctions and eigenvalues, we have self-consistently obtained Hofstadter's butterflies. Even for a simple square lattice Hofstadter's butterfly differs from the butterfly obtained in the case in which the influence of the magnetic field on the electron eigenvalues and eigenfunctions in isolated atoms is not taken into account.

  4. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings.

    Science.gov (United States)

    Chung, Kyungjae; Yu, Sunkyu; Heo, Chul-Joon; Shim, Jae Won; Yang, Seung-Man; Han, Moon Gyu; Lee, Hong-Seok; Jin, Yongwan; Lee, Sang Yoon; Park, Namkyoo; Shin, Jung H

    2012-05-08

    Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Using a Neural Network Approach to Find Unusual Butterfly Pitch Angle Distribution Shapes

    Science.gov (United States)

    Medeiros, C.; Sibeck, D. G.; Souza, V. M. C. E. S.; Vieira, L.; Alves, L. R.; Da Silva, L. A.; Kanekal, S. G.; Baker, D. N.

    2017-12-01

    A special kind of neural network referred to as a Self-Organizing Map (SOM) was previously adopted to identify, in pitch angle-resolved relativistic electron flux data provided by the REPT instrument onboard the Van Allen Probes, three major types of electron pitch angle distributions (PADs), namely 90o-peaked, butterfly and flattop (Souza et al., 2016), following the classification scheme employed by Gannon et al. (2007). Previous studies show that butterfly distribution can be found in more than one shape. They usually exhibit an intense decrease near 90° pitch angles compared to the peaks usually around 30° and 150°. Sometimes unusual butterfly PAD shapes with peaks near 45° and 135° pitch angles can be observed. These could be correlated with different physical processes that govern the production and loss of energetic particles in the Van Allen radiation belt. A neural network approach allows the distinction of different kinds of butterfly PADs which were not analyzed in detail by Souza et al. (2016). This study uses SOM methodology to find these unusual butterfly PAD shape during the interval between January 1, 2014 and October 1, 2015, during which Van Allen Probes orbit covered all MLT. The spatial and temporal occurrence of these events were investigated as well as their solar wind and magnetospheric drivers.

  6. Deimatic Display in the European Swallowtail Butterfly as a Secondary Defence against Attacks from Great Tits

    Science.gov (United States)

    Olofsson, Martin; Eriksson, Stephan; Jakobsson, Sven; Wiklund, Christer

    2012-01-01

    Background Many animals reduce the risk of being attacked by a predator through crypsis, masquerade or, alternatively, by advertising unprofitability by means of aposematic signalling. Behavioural attributes in prey employed after discovery, however, signify the importance of also having an effective secondary defence if a predator uncovers, or is immune to, the prey’s primary defence. In butterflies, as in most animals, secondary defence generally consists of escape flights. However, some butterfly species have evolved other means of secondary defence such as deimatic displays/startle displays. The European swallowtail, Papilio machaon, employs what appears to be a startle display by exposing its brightly coloured dorsal wing surface upon disturbance and, if the disturbance continues, by intermittently protracting and relaxing its wing muscles generating a jerky motion of the wings. This display appears directed towards predators but whether it is effective in intimidating predators so that they refrain from attacks has never been tested experimentally. Methodology/Principal Findings In this study we staged encounters between a passerine predator, the great tit, Parus major, and live and dead swallowtail butterflies in a two-choice experiment. Results showed that the dead butterfly was virtually always attacked before the live butterfly, and that it took four times longer before a bird attacked the live butterfly. When the live butterfly was approached by a bird this generally elicited the butterfly’s startle display, which usually caused the approaching bird to flee. We also performed a palatability test of the butterflies and results show that the great tits seemed to find them palatable. Conclusions/Significance We conclude that the swallowtail’s startle display of conspicuous coloration and jerky movements is an efficient secondary defence against small passerines. We also discuss under what conditions predator-prey systems are likely to aid the

  7. Characterization of Structural and Pigmentary Colors in Common Emigrant (Catopsilia Pomona) Butterfly

    International Nuclear Information System (INIS)

    Ghate, Ekata; Kulkarni, G. R.; Bhoraskar, S. V.; Adhi, K. P.

    2011-01-01

    Study of structural colors in case of insects and butterflies is important for their biomimic and biophotonics applications. Structural color is the color which is produced by physical structures and their interaction with light while pigmentary color is produced by absorption of light by pigments. Common Emigrant butterfly is widely distributed in India. It is of moderate size with wing span of about 60-80 mm. The wings are broadly white with yellow or sulphur yellow coloration at places as well as few dark black patches. It belongs to family Pieridae. A study of structural color in case of Common Emigrant butterfly has been carried out in the present work. The characterization of wing color was performed using absorption spectroscopy. Scanning electron microscopic study of the wings of Common Emigrant butterfly showed that three different types of scales are present on the wing surface dorsally. Diffracting structures are present in certain parts of the surfaces of the various scales. Bead like structures are embedded in the intricate structures of the scales. Absorption spectra revealed that a strong absorption peak is seen in the UV-range. Crystalline structure of beads was confirmed by the X-ray diffraction analysis.

  8. Butterfly Larval Host Plant use in a Tropical Urban Context: Life History Associations, Herbivory, and Landscape Factors

    Science.gov (United States)

    Tiple, Ashish D.; Khurad, Arun M.; Dennis, Roger L. H.

    2011-01-01

    This study examines butterfly larval host plants, herbivory and related life history attributes within Nagpur City, India. The larval host plants of 120 butterfly species are identified and their host specificity, life form, biotope, abundance and perennation recorded; of the 126 larval host plants, most are trees (49), with fewer herbs (43), shrubs (22), climbers (7) and stem parasites (2). They include 89 wild, 23 cultivated, 11 wild/cultivated and 3 exotic plant species; 78 are perennials, 43 annuals and 5 biannuals. Plants belonging to Poaceae and Fabaceae are most widely used by butterfly larvae. In addition to distinctions in host plant family affiliation, a number of significant differences between butterfly families have been identified in host use patterns: for life forms, biotopes, landforms, perennation, host specificity, egg batch size and ant associations. These differences arising from the development of a butterfly resource database have important implications for conserving butterfly species within the city area. Differences in overall butterfly population sizes within the city relate mainly to the number of host plants used, but other influences, including egg batch size and host specificity are identified. Much of the variation in population size is unaccounted for and points to the need to investigate larval host plant life history and strategies as population size is not simply dependent on host plant abundance. PMID:21864159

  9. Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies.

    Science.gov (United States)

    Taira, Wataru; Otaki, Joji M

    2016-01-01

    Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.

  10. Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies.

    Directory of Open Access Journals (Sweden)

    Wataru Taira

    Full Text Available Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.

  11. Analyzing the reflections from single ommatidia in the butterfly compound eye with Voronoi diagrams

    NARCIS (Netherlands)

    Vanhoutte, KJA; Michielsen, KFL; Stavenga, DG

    2003-01-01

    This paper presents a robust method for the automated segmentation and quantitative measurement of reflections from single ommatidia in the butterfly compound eye. Digital pictures of the butterfly eye shine recorded with a digital camera are processed to yield binary images from which single facet

  12. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    Science.gov (United States)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  13. Solving Witten's string field theory using the butterfly state

    International Nuclear Information System (INIS)

    Okawa, Yuji

    2004-01-01

    We solve the equation of motion of Witten's cubic open string field theory in a series expansion using the regulated butterfly state. The expansion parameter is given by the regularization parameter of the butterfly state, which can be taken to be arbitrarily small. Unlike the case of level truncation, the equation of motion can be solved for an arbitrary component of the Fock space up to a positive power of the expansion parameter. The energy density of the solution is well defined and remains finite even in the singular butterfly limit, and it gives approximately 68% of the D25-brane tension for the solution at the leading order. Moreover, it simultaneously solves the equation of motion of vacuum string field theory, providing support for the conjecture at this order. We further improve our ansatz by taking into account next-to-leading terms, and find two numerical solutions which give approximately 88% and 109%, respectively, of the D25-brane tension for the energy density. These values are interestingly close to those by level truncation at level 2 without gauge fixing studied by Rastelli and Zwiebach and by Ellwood and Taylor

  14. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies.

    Science.gov (United States)

    Willmott, Keith R; Robinson Willmott, Julia C; Elias, Marianne; Jiggins, Chris D

    2017-05-31

    Mimicry is one of the best-studied examples of adaptation, and recent studies have provided new insights into the role of mimicry in speciation and diversification. Classical Müllerian mimicry theory predicts convergence in warning signal among protected species, yet tropical butterflies are exuberantly diverse in warning colour patterns, even within communities. We tested the hypothesis that microhabitat partitioning in aposematic butterflies and insectivorous birds can lead to selection for different colour patterns in different microhabitats and thus help maintain mimicry diversity. We measured distribution across flight height and topography for 64 species of clearwing butterflies (Ithomiini) and their co-mimics, and 127 species of insectivorous birds, in an Amazon rainforest community. For the majority of bird species, estimated encounter rates were non-random for the two most abundant mimicry rings. Furthermore, most butterfly species in these two mimicry rings displayed the warning colour pattern predicted to be optimal for anti-predator defence in their preferred microhabitats. These conclusions were supported by a field trial using butterfly specimens, which showed significantly different predation rates on colour patterns in two microhabitats. We therefore provide the first direct evidence to support the hypothesis that different mimicry patterns can represent stable, community-level adaptations to differing biotic environments. © 2017 The Author(s).

  15. Spectral reflectance properties of iridescent pierid butterfly wings.

    Science.gov (United States)

    Wilts, Bodo D; Pirih, Primož; Stavenga, Doekele G

    2011-06-01

    The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in iridescence. The amplitude of the reflectance is proportional to the number of lamellae in the ridge stacks. The angle-dependent peak wavelength of the observed iridescence is in agreement with classical multilayer theory. The iridescence is virtually always in the ultraviolet wavelength range, but some species have a blue-peaking iridescence. The spectral properties of the pigmentary and structural colourations are presumably tuned to the spectral sensitivities of the butterflies' photoreceptors.

  16. The Innovation Butterfly Managing Emergent Opportunities and Risks During Distributed Innovation

    CERN Document Server

    Anderson Jr , Edward G

    2012-01-01

    Product and service innovations are the result of mutually interacting creative and coordination tasks within a system that has to balance technical decisions, marketplace taste, personnel management, and stakeholder commitment. The constituent elements of such systems are often scattered across multiple firms and across the globe and constitute a complex system consisting of many interacting parts. In the spirit of the "butterfly effect", metaphorically describing the sensitivity to initials conditions of chaotic systems, this book builds an argument that "innovation butterflies" can, in the short term, take up significant amounts of effort and sap efficiencies within individual innovation projects. Such "innovation butterflies" can be prompted by external forces such as government legislation or unexpected spikes in the price of basic goods (such as oil), unexpected shifts in market tastes, or from a company manager’s decisions or those of its competitors. Even the smallest change, the smallest disruption...

  17. Defining behavioral and molecular differences between summer and migratory monarch butterflies

    Science.gov (United States)

    Zhu, Haisun; Gegear, Robert J; Casselman, Amy; Kanginakudru, Sriramana; Reppert, Steven M

    2009-01-01

    Background In the fall, Eastern North American monarch butterflies (Danaus plexippus) undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state. Results Here we show that increasing juvenile hormone activity to induce summer-like reproductive development in fall migrants does not alter directional flight behavior or its time-compensated orientation, as monitored in a flight simulator. Reproductive summer butterflies, in contrast, uniformly fail to exhibit directional, oriented flight. To define molecular correlates of behavioral state, we used microarray analysis of 9417 unique cDNA sequences. Gene expression profiles reveal a suite of 40 genes whose differential expression in brain correlates with oriented flight behavior in individual migrants, independent of juvenile hormone activity, thereby molecularly separating fall migrants from summer butterflies. Intriguing genes that are differentially regulated include the clock gene vrille and the locomotion-relevant tyramine beta hydroxylase gene. In addition, several differentially regulated genes (37.5% of total) are not annotated. We also identified 23 juvenile hormone-dependent genes in brain, which separate reproductive from non-reproductive monarchs; genes involved in longevity, fatty acid metabolism, and innate immunity are upregulated in non-reproductive (juvenile-hormone deficient) migrants. Conclusion The results link key behavioral traits with gene expression profiles in brain that differentiate migratory

  18. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  19. Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings.

    Science.gov (United States)

    He, Jiaqing; Shen, Qingchen; Yang, Shuai; He, Gufeng; Tao, Peng; Song, Chengyi; Wu, Jianbo; Deng, Tao; Shang, Wen

    2018-01-03

    This paper presents the study of the coupling effects of three dimensional (3D) plasmonic nanostructures templated by Morpho butterfly wings. Different from the random deposition of metallic nanoparticles (NPs) or conformal coating of metallic layers on butterfly wings reported previously, the 3D plasmonic nanostructures studied in this work consist of gold (Au) nanostrips quasi-periodically arranged in 3D, which allows us to investigate the plasmonic coupling effects. Through refractive index (RI) matching, the plasmonic coupling can be differentiated from the optical contribution of butterfly wings. By tuning the deposition thickness of Au from 30 to 90 nm, the plasmonic coupling effects between the 3D Au nanostrips are gradually enhanced. In particular, the near-field coupling results in two resonant modes and enhances the surface-enhanced Raman scattering (SERS) signals.

  20. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  1. X-ray Tomography and Chemical Imaging within Butterfly Wing Scales

    International Nuclear Information System (INIS)

    Chen Jianhua; Lee Yaochang; Tang, M.-T.; Song Yenfang

    2007-01-01

    The rainbow like color of butterfly wings is associated with the internal and surface structures of the wing scales. While the photonic structure of the scales is believed to diffract specific lights at different angle, there is no adequate probe directly answering the 3-D structures with sufficient spatial resolution. The NSRRC nano-transmission x-ray microscope (nTXM) with tens nanometers spatial resolution is able to image biological specimens without artifacts usually introduced in sophisticated sample staining processes. With the intrinsic deep penetration of x-rays, the nTXM is capable of nondestructively investigating the internal structures of fragile and soft samples. In this study, we imaged the structure of butterfly wing scales in 3-D view with 60 nm spatial resolution. In addition, synchrotron-radiation-based Fourier transform Infrared (FT-IR) microspectroscopy was employed to analyze the chemical components with spatial information of the butterfly wing scales. Based on the infrared spectral images, we suggest that the major components of scale structure were rich in protein and polysaccharide

  2. Tetrapterous butterfly attractors in modified Lorenz systems

    International Nuclear Information System (INIS)

    Yu Simin; Tang, Wallace K.S.

    2009-01-01

    In this paper, the Lorenz-type tetrapterous butterfly attractors are firstly reported. With the introduction of multiple segment piecewise linear functions, these interesting and complex attractors are obtained from two different modified Lorenz models. This approach are verified in both simulations and experiments.

  3. Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies

    NARCIS (Netherlands)

    Stavenga, DG; Giraldo, MA; Hoenders, BJ

    2006-01-01

    The colors of butterfly wings are determined by the structural as well as pigmentary properties of the wing scales. Reflectance spectra of the wings of a number of pierid butterfly species, specifically the small white, Pieris rapae, show that the long-wavelength reflectance of the scales in situ,

  4. Monarch Butterflies: Spirits of Loved Ones

    Science.gov (United States)

    Crumpecker, Cheryl

    2011-01-01

    The study of the beautiful monarch butterfly lends itself to a vast array of subject matter, and offers the opportunity to meet a large and varied number of standards and objectives for many grade levels. Art projects featuring monarchs may include many cross-curricular units such as math (symmetry and number graphing), science (adaptation and…

  5. Winter chilling speeds spring development of temperate butterflies.

    Science.gov (United States)

    Stålhandske, Sandra; Gotthard, Karl; Leimar, Olof

    2017-07-01

    Understanding and predicting phenology has become more important with ongoing climate change and has brought about great research efforts in the recent decades. The majority of studies examining spring phenology of insects have focussed on the effects of spring temperatures alone. Here we use citizen-collected observation data to show that winter cold duration, in addition to spring temperature, can affect the spring emergence of butterflies. Using spatial mixed models, we disentangle the effects of climate variables and reveal impacts of both spring and winter conditions for five butterfly species that overwinter as pupae across the UK, with data from 1976 to 2013 and one butterfly species in Sweden, with data from 2001 to 2013. Warmer springs lead to earlier emergence in all species and milder winters lead to statistically significant delays in three of the five investigated species. We also find that the delaying effect of winter warmth has become more pronounced in the last decade, during which time winter durations have become shorter. For one of the studied species, Anthocharis cardamines (orange tip butterfly), we also make use of parameters determined from previous experiments on pupal development to model the spring phenology. Using daily temperatures in the UK and Sweden, we show that recent variation in spring temperature corresponds to 10-15 day changes in emergence time over UK and Sweden, whereas variation in winter duration corresponds to 20 days variation in the south of the UK versus only 3 days in the south of Sweden. In summary, we show that short winters delay phenology. The effect is most prominent in areas with particularly mild winters, emphasising the importance of winter for the response of ectothermic animals to climate change. With climate change, these effects may become even stronger and apply also at higher latitudes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  6. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies

    Science.gov (United States)

    Li, Xueyan; Fan, Dingding; Zhang, Wei; Liu, Guichun; Zhang, Lu; Zhao, Li; Fang, Xiaodong; Chen, Lei; Dong, Yang; Chen, Yuan; Ding, Yun; Zhao, Ruoping; Feng, Mingji; Zhu, Yabing; Feng, Yue; Jiang, Xuanting; Zhu, Deying; Xiang, Hui; Feng, Xikan; Li, Shuaicheng; Wang, Jun; Zhang, Guojie; Kronforst, Marcus R.; Wang, Wen

    2015-01-01

    Butterflies are exceptionally diverse but their potential as an experimental system has been limited by the difficulty of deciphering heterozygous genomes and a lack of genetic manipulation technology. Here we use a hybrid assembly approach to construct high-quality reference genomes for Papilio xuthus (contig and scaffold N50: 492 kb, 3.4 Mb) and Papilio machaon (contig and scaffold N50: 81 kb, 1.15 Mb), highly heterozygous species that differ in host plant affiliations, and adult and larval colour patterns. Integrating comparative genomics and analyses of gene expression yields multiple insights into butterfly evolution, including potential roles of specific genes in recent diversification. To functionally test gene function, we develop an efficient (up to 92.5%) CRISPR/Cas9 gene editing method that yields obvious phenotypes with three genes, Abdominal-B, ebony and frizzled. Our results provide valuable genomic and technological resources for butterflies and unlock their potential as a genetic model system. PMID:26354079

  7. The gene cortex controls mimicry and crypsis in butterflies and moths.

    Science.gov (United States)

    Nadeau, Nicola J; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan A; Saenko, Suzanne V; Wallbank, Richard W R; Wu, Grace C; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J; Hines, Heather; Salazar, Camilo; Merrill, Richard M; Dowling, Andrea J; ffrench-Constant, Richard H; Llaurens, Violaine; Joron, Mathieu; McMillan, W Owen; Jiggins, Chris D

    2016-06-02

    The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and whether this control shows any commonality across the 160,000 moth and 17,000 butterfly species. Here, we use fine-scale mapping with population genomics and gene expression analyses to identify a gene, cortex, that regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast-evolving subfamily of the otherwise highly conserved fizzy family of cell-cycle regulators, suggesting that it probably regulates pigmentation patterning by regulating scale cell development. In parallel with findings in the peppered moth (Biston betularia), our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects.

  8. Use of fruit bait traps for monitoring of butterflies (Lepidoptera: Nymphalidae

    Directory of Open Access Journals (Sweden)

    Jennifer B. Hughes

    1998-09-01

    Full Text Available There exists great interest in using fruit-feeding adult nymphalid butterflies to monitor changes in tropical forest ecosystems. We intensively sampled the butterfly fauna of mid-elevation tropical moist forest in southern Costa Rica with fruit bait traps to address a series of practical issues concerning the development of a robust, efficient sampling program. Variation in the number of captures and escapes of butterflies at the traps was better explained by the time of day than by the age of bait. Species’ escape rates varied widely, suggesting that short term, less intensive surveys aimed at determining presence or absence of species may be biased. Individuals did not appear to become "trap-happy" or to recognize the traps as food sources. Considering the tradeoff between numbers of traps and frequency of trap servicing, the most efficient sampling regime appears to be baiting and sampling the traps once every other day.

  9. Monarch butterfly population decline in North America: identifying the threatening processes

    Science.gov (United States)

    Thogmartin, Wayne E.; Wiederholt, Ruscena; Oberhauser, Karen; Drum, Ryan G.; Diffendorfer, Jay E.; Altizer, Sonia; Taylor, Orley R.; Pleasants, John M.; Semmens, Darius J.; Semmens, Brice X.; Erickson, Richard A.; Libby, Kaitlin; Lopez-Hoffman, Laura

    2017-01-01

    The monarch butterfly (Danaus plexippus) population in North America has sharply declined over the last two decades. Despite rising concern over the monarch butterfly's status, no comprehensive study of the factors driving this decline has been conducted. Using partial least-squares regressions and time-series analysis, we investigated climatic and habitat-related factors influencing monarch population size from 1993 to 2014. Potential threats included climatic factors, habitat loss (milkweed and overwinter forest), disease and agricultural insecticide use (neonicotinoids). While climatic factors, principally breeding season temperature, were important determinants of annual variation in abundance, our results indicated strong negative relationships between population size and habitat loss variables, principally glyphosate use, but also weaker negative effects from the loss of overwinter forest and breeding season use of neonicotinoids. Further declines in population size because of glyphosate application are not expected. Thus, if remaining threats to habitat are mitigated we expect climate-induced stochastic variation of the eastern migratory population of monarch butterfly around a relatively stationary population size.

  10. A report on butterfly diversity of Rawanwadi Reservoir, Bhandara (Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Kishor G. Patil

    2017-03-01

    Full Text Available Investigations have been done to record diversity of butterflies around the area of Rawanwadi reservoir during April 2015 to March 2016. It is surrounded by hilly terrain and forest provides abundance of host and larval food plants, and vegetation which are the most dominant features for diversity of butterflies. It has abundant species of butterflies due to suitable surrounding environment. A total of 84 species belonging to 5 families and 54 genera were recorded. Amongst which 52.38% were common, 28.57% were occasional and 19.04% species were rare. Family Nymphalidae consist maximum number of species i.e. 32 from 19 genera. This number is followed by Lycaenidae with 19 genera and 26 species. Pieridae consist of 13 species of 7 genera and Hesperiidae consist 7 species of 6 genera. Minimum number of species were recorded in Papilionidae i.e. 6 species of 3 genera. Most species from Lycaenidae were found near water body.

  11. The Peculiar Solar Minimum 23/24 Revealed by the Microwave Butterfly Diagram

    Science.gov (United States)

    Gopalswamy, Natchimuthuk; Yashiro, Seiji; Makela, Pertti; Shibasaki, Kiyoto; Hathaway, David

    2010-01-01

    The diminished polar magnetic field strength during the minimum between cycles 23 and 24 is also reflected in the thermal radio emission originating from the polar chromosphere. During solar minima, the polar corona has extended coronal holes containing intense unipolar flux. In microwave images, the coronal holes appear bright, with a brightness enhancement of 500 to 2000 K with respect to the quiet Sun. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is approx.10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes..

  12. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  13. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Directory of Open Access Journals (Sweden)

    Lingxiao Zheng

    Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  14. Experimental analysis of the liquid-feeding mechanism of the butterfly Pieris rapae.

    Science.gov (United States)

    Lee, Seung Chul; Kim, Bo Heum; Lee, Sang Joon

    2014-06-01

    The butterfly Pieirs rapae drinks liquid using a long proboscis. A high pressure gradient is induced in the proboscis when cibarial pump muscles contract. However, liquid feeding through the long proboscis poses a disadvantage of high flow resistance. Hence, butterflies may possess special features to compensate for this disadvantage and succeed in foraging. The main objective of this study is to analyze the liquid-feeding mechanism of butterflies. The systaltic motion of the cibarial pump organ was visualized using the synchrotron X-ray imaging technique. In addition, an ellipsoidal pump model was established based on synchrotron X-ray micro-computed tomography. To determine the relationship between the cyclic variation of the pump volume and the liquid-feeding flow, velocity fields of the intake flow at the tip of the proboscis were measured using micro-particle image velocimetry. Reynolds and Womersley numbers of liquid-feeding flow in the proboscis were ~1.40 and 0.129, respectively. The liquid-feeding flow could be characterized as a quasi-steady state laminar flow. Considering these results, we analyzed the dimensions of the feeding apparatus on the basis of minimum energy consumption during the liquid-feeding process. The relationship between the proboscis and the cibarial pump was determined when minimum energy consumption occurs. As a result, the volume of the cibarial pump is proportional to the cube of the radius of the proboscis. It seems that the liquid-feeding system of butterflies and other long-proboscid insects follow the cube relationship. The present results provide insights into the feeding strategies of liquid-feeding butterflies. © 2014. Published by The Company of Biologists Ltd.

  15. Density estimates of monarch butterflies overwintering in central Mexico

    Directory of Open Access Journals (Sweden)

    Wayne E. Thogmartin

    2017-04-01

    Full Text Available Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L. under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1; the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1. Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp. lost (0.86 billion stems in the northern US plus the amount of milkweed remaining (1.34 billion stems, we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.

  16. Density estimates of monarch butterflies overwintering in central Mexico

    Science.gov (United States)

    Thogmartin, Wayne E.; Diffendorfer, James E.; Lopez-Hoffman, Laura; Oberhauser, Karen; Pleasants, John M.; Semmens, Brice X.; Semmens, Darius J.; Taylor, Orley R.; Wiederholt, Ruscena

    2017-01-01

    Given the rapid population decline and recent petition for listing of the monarch butterfly (Danaus plexippus L.) under the Endangered Species Act, an accurate estimate of the Eastern, migratory population size is needed. Because of difficulty in counting individual monarchs, the number of hectares occupied by monarchs in the overwintering area is commonly used as a proxy for population size, which is then multiplied by the density of individuals per hectare to estimate population size. There is, however, considerable variation in published estimates of overwintering density, ranging from 6.9–60.9 million ha−1. We develop a probability distribution for overwinter density of monarch butterflies from six published density estimates. The mean density among the mixture of the six published estimates was ∼27.9 million butterflies ha−1 (95% CI [2.4–80.7] million ha−1); the mixture distribution is approximately log-normal, and as such is better represented by the median (21.1 million butterflies ha−1). Based upon assumptions regarding the number of milkweed needed to support monarchs, the amount of milkweed (Asclepias spp.) lost (0.86 billion stems) in the northern US plus the amount of milkweed remaining (1.34 billion stems), we estimate >1.8 billion stems is needed to return monarchs to an average population size of 6 ha. Considerable uncertainty exists in this required amount of milkweed because of the considerable uncertainty occurring in overwinter density estimates. Nevertheless, the estimate is on the same order as other published estimates. The studies included in our synthesis differ substantially by year, location, method, and measures of precision. A better understanding of the factors influencing overwintering density across space and time would be valuable for increasing the precision of conservation recommendations.

  17. [Vertical distribution and community diversity of butterflies in Yaoluoping National Nature Reserve, Anhui, China].

    Science.gov (United States)

    Wang, Song; Bao, Fang-yin; Mei, Bai-mao; Ding, Shi-chao

    2009-09-01

    By the methods of fixed point, line intercept, and random investigation, the vertical distribution and community diversity of butterflies in Yaoluoping National Nature Reserve were investigated from 2005 to 2008. A total of 3681 specimen were collected, belonging to 111 species, 69 genera, and 10 families, among which, Nymphalidae had the higher species number, individual's number, and diversity index than the other families. The butterflies in the study area were a mixture of Oriental and Palaearetic species, with the Oriental species diminished gradually and the Palaearetic components increased gradually with increasing altitude. Among the three vertical zones ( 1200 m in elevation), that of 800-1200 m had the most abundant species of butterflies; and among the six habitat types (deciduous broad-leaved forest, evergreen conifer forest, conifer-broad leaf mixed forest, bush and secondary forest, farmland, and residential area), bush and secondary forest had the higher species number, individual's number, and diversity index of butterflies, while farmland had the lowest diversity index. The similarity coefficient of butterfly species between the habitats was mainly dependent on vegetation type, i.e., the more the difference of vegetation type, the lesser the species similarity coefficient between the habitats, which was the highest (0.61) between conifer-broad leaf mixed forest and bush and secondary forest, and the lowest (0. 20) between evergreen conifer forest and bush and secondary forest.

  18. Modal-Based Design Improvement of a Butterfly Valve Disc

    Directory of Open Access Journals (Sweden)

    Marius Draghiciu

    2017-11-01

    Full Text Available The dynamic behaviour control of a butterfly valve is important because, when one of the valve disc natural frequency is close to the frequency of vortex shedding, which appears when the valve is fully open or partially closed, resonance may appear and vibration with significant amplitudes is generated. This paper presents an example by how the design of a butterfly valve disc can be improved by using a modal analysis performed by means of the finite element method. For this purpose, the research reveals the way in which the natural frequencies of the disc can be modified by applying stiffening ribs or changing the dimensions, respective the position of these ribs.

  19. Pollen feeding proteomics: salivary proteins of the passion flower butterfly, Heliconius melpomene

    OpenAIRE

    Ott, Swidbert; Jiggins, Chris; Walters, James; Harpel, Desiree; Cullen, Darron

    2014-01-01

    While most adult Lepidoptera use flower nectar as their primary food source, butterflies in the genus Heliconius have evolved the novel ability to acquire amino acids from consuming pollen. Heliconius butterflies collect pollen on their proboscis, moisten the pollen with saliva, and use a combination of mechanical disruption and chemical degradation to release free amino acids that are subsequently re-ingested in the saliva. Little is known about the molecular mechanisms of this complex polle...

  20. A fast butterfly algorithm for generalized Radon transforms

    KAUST Repository

    Hu, Jingwei; Fomel, Sergey; Demanet, Laurent; Ying, Lexing

    2013-01-01

    Generalized Radon transforms, such as the hyperbolic Radon transform, cannot be implemented as efficiently in the frequency domain as convolutions, thus limiting their use in seismic data processing. We have devised a fast butterfly algorithm

  1. The effect of atomic power plant accident on organisms as studied by using butterflies

    International Nuclear Information System (INIS)

    Otaki, Joji

    2013-01-01

    The biological radiation effect of the Fukushima powerplant accident on a butterfly, Yamotoshijimi has been examined. Consequently it was resulted that the radioactive materials released from the accident had a bad influence upon Yamatoshijimi, that is, the lowering of life rate, the shape diminishing and the malformation of this butterfly. (M.H.)

  2. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?

    Science.gov (United States)

    McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M; Botham, Marc S; Franco, Aldina M A

    2017-01-01

    There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37-year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life-history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life-history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  3. PRK and butterfly LASEK: prospective, randomized, contralateral eye comparison of epithelial healing and ocular discomfort.

    Science.gov (United States)

    Ghanem, Vinícius C; Souza, Giselle C; Souza, Denise C; Viese, Juliana M Z; Weber, Sarah L P; Kara-José, Newton

    2008-06-01

    To compare corneal reepithelialization, pain scores, ocular discomfort, and tear production after photorefractive keratectomy (PRK) and butterfly laser epithelial keratomileusis (LASEK). This prospective, randomized, double-masked study comprised 102 eyes of 51 patients who underwent laser refractive surgery. Each patient was randomized to have one eye operated on with PRK and the other with butterfly LASEK. Patients were followed for 1 year. The mean reepithelialization time in the PRK group was 4.35+/-0.48 days (range: 4 to 5 days) and 4.75+/-0.72 days (range: 4 to 6 days) in the butterfly LASEK group (PPRK was noted (3.31+/-4.09 vs 4.43+/-4.27; P=.18). Schirmer test values were significantly reduced from preoperative levels through 12 months with both PRK (23.6+/-8.1 vs 19.4+/-10.1; P<.002) and butterfly LASEK (22.4+/-8.7 vs 18.9+/-9.7; P=.01); however, no difference between groups was noted at any time. Photorefractive keratectomy showed a modest but statistically significant shorter reepithelialization time and a tendency towards lower pain scores than butterfly LASEK. The reepithelialization time was strongly associated with the duration of surgery in both techniques. A similar reduction of Schirmer test values was observed up to 1 year postoperatively in both groups.

  4. A wing expressed sequence tag resource for Bicyclus anynana butterflies, an evo-devo model

    Directory of Open Access Journals (Sweden)

    Gruber Jonathan D

    2006-05-01

    Full Text Available Abstract Background Butterfly wing color patterns are a key model for integrating evolutionary developmental biology and the study of adaptive morphological evolution. Yet, despite the biological, economical and educational value of butterflies they are still relatively under-represented in terms of available genomic resources. Here, we describe an Expression Sequence Tag (EST project for Bicyclus anynana that has identified the largest available collection to date of expressed genes for any butterfly. Results By targeting cDNAs from developing wings at the stages when pattern is specified, we biased gene discovery towards genes potentially involved in pattern formation. Assembly of 9,903 ESTs from a subtracted library allowed us to identify 4,251 genes of which 2,461 were annotated based on BLAST analyses against relevant gene collections. Gene prediction software identified 2,202 peptides, of which 215 longer than 100 amino acids had no homology to any known proteins and, thus, potentially represent novel or highly diverged butterfly genes. We combined gene and Single Nucleotide Polymorphism (SNP identification by constructing cDNA libraries from pools of outbred individuals, and by sequencing clones from the 3' end to maximize alignment depth. Alignments of multi-member contigs allowed us to identify over 14,000 putative SNPs, with 316 genes having at least one high confidence double-hit SNP. We furthermore identified 320 microsatellites in transcribed genes that can potentially be used as genetic markers. Conclusion Our project was designed to combine gene and sequence polymorphism discovery and has generated the largest gene collection available for any butterfly and many potential markers in expressed genes. These resources will be invaluable for exploring the potential of B. anynana in particular, and butterflies in general, as models in ecological, evolutionary, and developmental genetics.

  5. A List of Butterfly Fauna in Jahangirnagar University Campus in Bangladesh

    International Nuclear Information System (INIS)

    Razzak, M. A.; Islam, A. T. M. F.; Saifullah, A. S. M.; Shahjan, R. M.; Hossain, Md. Monwar.; Yamanaka, Akhira; Endo, K.

    2007-01-01

    During January to Decmber, 2003 in an extensive survey of butterfly in Jahangirnagar University campus, a total of 80 species of butterfly were identified. Among them 44 species were common and 36 were completely new. These species belonged to 10 families, 11 species belong to the family Nymphalidae, 14 to Pieridae, 23 to Lycaenidae, 3 to Satyridae, 7 to Papilionidae, 4 to Danaidae, 15 to Hesperiidae and 1 species to each family of Acraeidae, Riodinidae and Amathusiidae. The three families viz., Acraeidae, Riodinidae and Amathusiidae were completely new report in Bangladesh.(author)

  6. Using a phenological network to assess weather influences on first appearance of butterflies in the Netherlands

    NARCIS (Netherlands)

    Kolk, Van Der Henk Jan; Wallis de Vries, Michiel; Vliet, Van Arnold J.H.

    2016-01-01

    Phenological responses of butterflies to temperature have been demonstrated in several European countries by using data from standardized butterfly monitoring schemes. Recently, phenological networks have enabled volunteers to record phenological observations at project websites. In this study,

  7. Checklist of butterfly (Insecta: Lepidoptera) fauna of Tehsil Tangi, Khyber Pakhtunkhwa, Pakistan

    OpenAIRE

    Farzana Khan Perveen; Haroon

    2015-01-01

    The butterflies (Insecta: Lepidoptera)are well known insects, play an important role in the ecosystem as bioindicators and pollinators. They have bright colours, remarkable shapes and supple flight. The present study was conducted to prepare the checklist of butterfly fauna of Tehsil Tangi during August, 2014 to May, 2015. A total of 506 specimens were collected belong to 3 families with 18 genera and 23 species. The collected species are the common or lemon emigrant, Catopsila ponoma Fabrici...

  8. Comparing organic farming and land sparing: optimizing yield and butterfly populations at a landscape scale.

    Science.gov (United States)

    Hodgson, Jenny A; Kunin, William E; Thomas, Chris D; Benton, Tim G; Gabriel, Doreen

    2010-11-01

    Organic farming aims to be wildlife-friendly, but it may not benefit wildlife overall if much greater areas are needed to produce a given quantity of food. We measured the density and species richness of butterflies on organic farms, conventional farms and grassland nature reserves in 16 landscapes. Organic farms supported a higher density of butterflies than conventional farms, but a lower density than reserves. Using our data, we predict the optimal land-use strategy to maintain yield whilst maximizing butterfly abundance under different scenarios. Farming conventionally and sparing land as nature reserves is better for butterflies when the organic yield per hectare falls below 87% of conventional yield. However, if the spared land is simply extra field margins, organic farming is optimal whenever organic yields are over 35% of conventional yields. The optimal balance of land sparing and wildlife-friendly farming to maintain production and biodiversity will differ between landscapes. © 2010 Blackwell Publishing Ltd/CNRS.

  9. Signals of Climate Change in Butterfly Communities in a Mediterranean Protected Area

    Science.gov (United States)

    Zografou, Konstantina; Kati, Vassiliki; Grill, Andrea; Wilson, Robert J.; Tzirkalli, Elli; Pamperis, Lazaros N.; Halley, John M.

    2014-01-01

    The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998–2011/2012) and short-term (2011–2012) changes in the butterfly fauna of Dadia National Park (Greece) by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990–2012) in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a) species’ elevational distributions in Greece and (b) Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year). Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011–2012) variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species’ resilience may have to be

  10. Signals of climate change in butterfly communities in a Mediterranean protected area.

    Science.gov (United States)

    Zografou, Konstantina; Kati, Vassiliki; Grill, Andrea; Wilson, Robert J; Tzirkalli, Elli; Pamperis, Lazaros N; Halley, John M

    2014-01-01

    The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998-2011/2012) and short-term (2011-2012) changes in the butterfly fauna of Dadia National Park (Greece) by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990-2012) in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a) species' elevational distributions in Greece and (b) Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year). Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011-2012) variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species' resilience may have to be devised.

  11. Signals of climate change in butterfly communities in a Mediterranean protected area.

    Directory of Open Access Journals (Sweden)

    Konstantina Zografou

    Full Text Available The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998-2011/2012 and short-term (2011-2012 changes in the butterfly fauna of Dadia National Park (Greece by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990-2012 in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a species' elevational distributions in Greece and (b Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year. Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011-2012 variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species' resilience may have to be

  12. Learning in two butterfly species when using flowers of the tropical milkweed Asclepias curassavica: No benefits for pollination.

    Science.gov (United States)

    Ramos, Bruna de Cássia Menezes; Rodríguez-Gironés, Miguel Angel; Rodrigues, Daniela

    2017-08-08

    The ability of insect visitors to learn to manipulate complex flowers has important consequences for foraging efficiency and plant fitness. We investigated learning by two butterfly species, Danaus erippus and Heliconius erato , as they foraged on the complex flowers of Asclepias curassavica , as well as the consequences for pollination. To examine learning with respect to flower manipulation, butterflies were individually tested during four consecutive days under insectary conditions. At the end of each test, we recorded the number of pollinaria attached to the body of each butterfly and scored visited flowers for numbers of removed and inserted pollinia. We also conducted a field study to survey D. erippus and H. erato visiting flowers of A. curassavica , as well as to record numbers of pollinaria attached to the butterflies' bodies, and surveyed A. curassavica plants in the field to inspect flowers for pollinium removal and insertion. Learning improves the ability of both butterfly species to avoid the nonrewarding flower parts and to locate nectar more efficiently. There were no experience effects, for either species, on the numbers of removed and inserted pollinia. Heliconius erato removed and inserted more pollinia than D. erippus . For both butterfly species, pollinium removal was higher than pollinium insertion. This study is the first to show that Danaus and Heliconius butterflies can learn to manipulate complex flowers, but this learning ability does not confer benefits to pollination in A. curassavica . © 2017 Botanical Society of America.

  13. HSP70 expression in the copper butterfly Lycaena tityrus across altitudes and temperatures

    DEFF Research Database (Denmark)

    Karl, I.; Sørensen, Jesper Givskov; Loeschcke, Volker

    2009-01-01

    temperatures show differences in HSP70 expression. HSP70 expression increased substantially at the higher rearing temperature in low-altitude butterflies, which might represent an adaptation to occasionally occurring heat spells. On the other hand, high-altitude butterflies showed much less plasticity...... in response to rearing temperatures, and overall seem to rely more on genetically fixed thermal stress resistance. Whether the latter indicates a higher vulnerability of high-altitude populations to global warming needs further investigation. HSP70 expression increased with both colder and warmer induction......The ability to express heat-shock proteins (HSP) under thermal stress is an essential mechanism for ectotherms to cope with unfavourable conditions. In this study, we investigate if Copper butterflies originating from different altitudes and/or being exposed to different rearing and induction...

  14. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea).

    Science.gov (United States)

    Jong, Rienk DE

    2017-05-25

    Fossil butterflies are extremely rare. Yet, they are the only direct evidence of the first appearance of particular characters and as such, they are crucial for calibrating a molecular clock, from which divergence ages are estimated. In turn, these estimates, in combination with paleogeographic information, are most important in paleobiogeographic considerations. The key issue here is the correct allocation of fossils on the phylogenetic tree from which the molecular clock is calibrated.The allocation of a fossil on a tree should be based on an apomorphic character found in a tree based on extant species, similar to the allocation of a new extant species. In practice, the latter is not done, at least not explicitly, on the basis of apomorphy, but rather on overall similarity or on a phylogenetic analysis, which is not possible for most butterfly fossils since they usually are very fragmentary. Characters most often preserved are in the venation of the wings. Therefore, special attention is given to possible apomorphies in venational characters in extant butterflies. For estimation of divergence times, not only the correct allocation of the fossil on the tree is important, but also the tree itself influences the outcome as well as the correct determination of the age of the fossil. These three aspects are discussed.        All known butterfly fossils, consisting of 49 taxa, are critically reviewed and their relationship to extant taxa is discussed as an aid for correctly calibrating a molecular clock for papilionoid Lepidoptera. In this context some aspects of age estimation and biogeographic conclusions are briefly mentioned in review. Specific information has been summarized in four appendices.

  15. Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development.

    Science.gov (United States)

    Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B

    2016-03-31

    Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all

  16. A fast butterfly algorithm for generalized Radon transforms

    KAUST Repository

    Hu, Jingwei

    2013-06-21

    Generalized Radon transforms, such as the hyperbolic Radon transform, cannot be implemented as efficiently in the frequency domain as convolutions, thus limiting their use in seismic data processing. We have devised a fast butterfly algorithm for the hyperbolic Radon transform. The basic idea is to reformulate the transform as an oscillatory integral operator and to construct a blockwise lowrank approximation of the kernel function. The overall structure follows the Fourier integral operator butterfly algorithm. For 2D data, the algorithm runs in complexity O(N2 log N), where N depends on the maximum frequency and offset in the data set and the range of parameters (intercept time and slowness) in the model space. From a series of studies, we found that this algorithm can be significantly more efficient than the conventional time-domain integration. © 2013 Society of Exploration Geophysicists.

  17. Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy

    NARCIS (Netherlands)

    Leertouwer, Hein L.; Wilts, Bodo D.; Stavenga, Doekele G.

    2011-01-01

    Using Jamin-Lebedeff interference microscopy, we measured the wavelength dependence of the refractive index of butterfly wing scales and bird feathers. The refractive index values of the glass scales of the butterfly Graphium sarpedon are, at wavelengths 400, 500 and 600 nm, 1.572, 1.552 and 1.541,

  18. Importance of vegetation analysis in the conservation management of the endangered butterfly Aloeides dentatis dentatis (Swierstra (Lepidoptera, Lycaenidae

    Directory of Open Access Journals (Sweden)

    M.S. Deutschlander

    1999-07-01

    Full Text Available The study of the vegetation of the Ruimsig Entomological Reserve, Gauteng, South Africa revealed four plant communities one of which could be subdivided into two subcommunities and variants. The extensive climax stage of the vegetation represented by the Themeda triandra - Trachypogon spicatus grassland was found to be too dense and tall to support the butterfly Aloeides dentatis dentatis and the host ant Lepisiota capensis (Mayr. A degraded phase caused by succession in an area where pipes have been laid was found to be ideal habitat for both ant and butterfly. This vegetation also contained adequate numbers of the food plant Hermannia depressa. A serai community with tall- growing Hyparrhenia hirta was also found to be an unsuitable habitat for the butterfly. The identification of the preferred ideal habitat for the host ant and butterfly resulted in the compilation of a conservation management strategy that ensured the survival of the rare and endangered butterfly.

  19. In situ protocol for butterfly pupal wings using riboprobes.

    Science.gov (United States)

    Ramos, Diane; Monteiro, Antonia

    2007-01-01

    Here we present, in video format, a protocol for in situ hybridizations in pupal wings of the butterfly Bicyclus anynana using riboprobes. In situ hybridizations, a mainstay of developmental biology, are useful to study the spatial and temporal patterns of gene expression in developing tissues at the level of transcription. If antibodies that target the protein products of gene transcription have not yet been developed, and/or there are multiple gene copies of a particular protein in the genome that cannot be differentiated using available antibodies, in situs can be used instead. While an in situ technique for larval wing discs has been available to the butterfly community for several years, the current protocol has been optimized for the larger and more fragile pupal wings.

  20. Some notes on the butterflies (Lepidoptera: Papilionoidea of Tantirimale Archaeological Site, Anuradhapura District, Sri Lanka

    Directory of Open Access Journals (Sweden)

    M.D.C. Asela

    2009-07-01

    Full Text Available There are 243 species of butterflies which including 5 families in Sri Lanka and 20 of them are endemic. However out of the 243 species 37 butterfly species belonging to 4 families was discovered from Tanthirimale Archaeological Forest area. This forest is classified as a Tropical dry mixed evergreen forests and its situated dry zone in Anuradapura district of Sri Lanka. We select three habitat types such as: forests, Rock outcrops and scrublands for studding composition and structure of butterflies in Archaeological Forest area. However, this important forest is threatened by harmful human activities such as man made fire, illegal logging, chena cultivation and road kills.

  1. An Exploratory Study of the Butterfly Effect Using Agent-Based Modeling

    Science.gov (United States)

    Khasawneh, Mahmoud T.; Zhang, Jun; Shearer, Nevan E. N.; Rodriquez-Velasquez, Elkin; Bowling, Shannon R.

    2010-01-01

    This paper provides insights about the behavior of chaotic complex systems, and the sensitive dependence of the system on the initial starting conditions. How much does a small change in the initial conditions of a complex system affect it in the long term? Do complex systems exhibit what is called the "Butterfly Effect"? This paper uses an agent-based modeling approach to address these questions. An existing model from NetLogo library was extended in order to compare chaotic complex systems with near-identical initial conditions. Results show that small changes in initial starting conditions can have a huge impact on the behavior of chaotic complex systems. The term the "butterfly effect" is attributed to the work of Edward Lorenz [1]. It is used to describe the sensitive dependence of the behavior of chaotic complex systems on the initial conditions of these systems. The metaphor refers to the notion that a butterfly flapping its wings somewhere may cause extreme changes in the ecological system's behavior in the future, such as a hurricane.

  2. A major gene controls mimicry and crypsis in butterflies and moths

    Science.gov (United States)

    Nadeau, Nicola J.; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan; Saenko, Suzanne V.; Wallbank, Richard W. R.; Wu, Grace C.; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J.; Hines, Heather; Salazar, Camilo; Merrill, Richard; Dowling, Andrea; ffrench-Constant, Richard; Llaurens, Violaine; Joron, Mathieu; McMillan, W. Owen; Jiggins, Chris D.

    2016-01-01

    The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection1,2. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and if there is any commonality across the 160,000 moth and 17,000 butterfly species. Here, we identify a gene, cortex, through fine-scale mapping using population genomics and gene expression analyses, which regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast evolving subfamily of the otherwise highly conserved fizzy family of cell cycle regulators3, suggesting that it most likely regulates pigmentation patterning through regulation of scale cell development. In parallel with findings in the peppered moth (Biston betularia)4, our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects. PMID:27251285

  3. Seasonality of Fruit-Feeding Butterflies (Lepidoptera, Nymphalidae) in a Brazilian Semiarid Area

    OpenAIRE

    Nobre, Carlos Eduardo Beserra; Iannuzzi, Luciana; Schlindwein, Clemens

    2012-01-01

    A survey of 6,000 trap/hours using fruit-bait traps was conducted, in order to characterize the community of fruit-feeding butterflies and their seasonal variation in a semiarid area of NE Brazil, which exhibits a highly seasonal rainfall regime. The community was composed of 15 species, the four most abundant comprising more than 80% of the total individuals. In the first sampling month, 80% of the species had already been recorded. A strong positive correlation was found between butterfly a...

  4. Honeybees, Butterflies, and Ladybugs: Partners to Plants

    Science.gov (United States)

    Campbell, Ashley

    2009-01-01

    Honeybees, butterflies, and ladybugs all have fascinating mutually beneficial relationships with plants and play important ecosystem roles. Children also love these creatures. But how do we teach children about these symbiotic interactions and help them appreciate their vital roles in our environment? One must is to give children direct experience…

  5. Synthesis of naturally cross-linked polycrystalline ZrO2 hollow nanowires using butterfly as templates

    International Nuclear Information System (INIS)

    Chen Yu; Gu Jiajun; Zhu Shenmin; Su Huilan; Zhang Di; Feng Chuanliang; Zhuang Leyan

    2012-01-01

    Highlights: ► Naturally cross-linked ZrO 2 nanotubes with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. ► The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. ► The achieved hollow ZrO 2 nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than ∼50 nm, which greatly hinders their applications in designing much smaller functional parts down to real “nano scale”. This work indicates, however, that hollow ZrO 2 nanowires with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO 2 nanotubes suggests a new optional approach in fabricating assembled nano systems.

  6. Investigation of manifestation of optical properties of butterfly wings with nanoscale zinc oxide incorporation

    Science.gov (United States)

    Aideo, Swati N.; Mohanta, Dambarudhar

    2016-10-01

    In this work, microstructural and optical characteristics nanoparticles of wings of Tailed Jay (Graphium Agamemnon) butterfly were studied before and after treating it in a precursor solution of zinc acetate and ethanol. We speculate that the butterfly scales are infiltrated with ZnO nanoparticles owing to reduction of Zinc hydroxide under ambient condition. The ZnO butterfly scales so produced were characterised using optical microscopy, UV-Vis reflectance spectroscopy, and electron microscopy etc. From the reflectance spectra, we could see that after treating it in the solution, optical properties vary. We anticipate that this change may be due to the formation of ZnO nanoparticles as well as the loss in periodicity due to the chemical treatments, which could be assessed from the SEM micrographs.

  7. Investigation of manifestation of optical properties of butterfly wings with nanoscale zinc oxide incorporation

    International Nuclear Information System (INIS)

    Aideo, Swati N.; Mohanta, Dambarudhar

    2016-01-01

    In this work, microstructural and optical characteristics nanoparticles of wings of Tailed Jay (Graphium Agamemnon) butterfly were studied before and after treating it in a precursor solution of zinc acetate and ethanol. We speculate that the butterfly scales are infiltrated with ZnO nanoparticles owing to reduction of Zinc hydroxide under ambient condition. The ZnO butterfly scales so produced were characterised using optical microscopy, UV-Vis reflectance spectroscopy, and electron microscopy etc. From the reflectance spectra, we could see that after treating it in the solution, optical properties vary. We anticipate that this change may be due to the formation of ZnO nanoparticles as well as the loss in periodicity due to the chemical treatments, which could be assessed from the SEM micrographs. (paper)

  8. Artificial selection for structural color on butterfly wings and comparison with natural evolution.

    Science.gov (United States)

    Wasik, Bethany R; Liew, Seng Fatt; Lilien, David A; Dinwiddie, April J; Noh, Heeso; Cao, Hui; Monteiro, Antónia

    2014-08-19

    Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales' structural color via slight modifications to the scales' physical dimensions.

  9. Characteristics of transonic moist air flows around butterfly valves with spontaneous condensation

    Directory of Open Access Journals (Sweden)

    A.B.M. Toufique Hasan

    2015-06-01

    Full Text Available Effects of spontaneous condensation of moist air on the shock wave dynamics around butterfly valves in transonic flows are investigated by experimental and numerical simulations. Two symmetric valve disk shapes namely- a flat rectangular plate and a mid-plane cross-section of a prototype butterfly valve have been studied in the present research. Results showed that in case with spontaneous condensation, the root mean square of pressure oscillation (induced by shock dynamics is reduced significantly with those without condensation for both shapes of the valves. Moreover, local aerodynamic moments were reduced in case with condensation which is considered to be beneficial in torque requirement in case of on/off applications of valves as flow control devices. However, total pressure loss was increased with spontaneous condensation in both the valves. Furthermore, the disk shape of a prototype butterfly valve showed better aerodynamic performances compared to flat rectangular plate profile in respect of total pressure loss and vortex shedding frequency in the wake region.

  10. Butterflies (Lepidoptera of the Kameng Protected Area Complex, western Arunachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Sanjay Sondhi

    2016-08-01

    Full Text Available The butterflies of the Kameng Protected Area Complex in western Arunachal Pradesh, India, covering the protected areas of Eaglenest Wildlife Sanctuary, Pakke Tiger Reserve and Sessa Orchid Wildlife Sanctuary were surveyed over a 5-year period (2009–2014.  A total of 421 butterfly species were recorded during the survey, including two species new to India (Gonepteryx amintha thibetana and Bhutanitis ludlowi and several species rediscoveries and range extensions in the Eastern Himalaya, most notably Arhopala belphoebe, Sovia separata magna, Aulocera saraswati vishnu, Calinaga aborica, Callerebia annada annada, and Callerebria scanda opima.  Here we provide an annotated checklist of butterflies of the Kameng Protected Area Complex, including historical records, distributions, abundance, habitats and other notes on these 421 species. An additional 42 species recorded in older literature or by other authors in recent times are also listed, taking the total number of species recorded in the landscape to 463.  

  11. Evolution of planetary nebulae. III. Position-velocity images of butterfly-type nebulae

    International Nuclear Information System (INIS)

    Icke, V.; Preston, H.L.; Balick, B.

    1989-01-01

    Observations of the motions of the shells of the planetary nebulae NGC 2346, NGC 2371-2, NGC 2440, NGC 6058, NGC 6210, IC 1747, IC 5217, J-320, and M2-9 are presented. These are all 'butterfly' type PNs, and show evidence for bipolar shocks. The observations are interpreted in terms of a fast spherical wind, driven by the central star into a quasi-toroidal envelope deposited earlier by the star, during its slow-wind phase on the asymptotic giant branch. It is shown that this model, which is a straightforward extension of a mechanism previously invoked to account for elliptical PNs, reproduces the essential kinematic features of butterfly PNs. It is inferred that the envelopes of butterflies must have a considerable equator-to-pole density gradient, and it is suggested that the origin of this asphericity must be sought in an as yet unknown mechanism during the AGB, Mira, or OH/IR phases of late stellar evolution. 28 references

  12. Does Flapping of a Butterfly in Amazon Forests Can Cause a Storm in USA? Chaos Theory and a Discussion in Accordance with Butterfly Effect

    Directory of Open Access Journals (Sweden)

    Nuray Mercan

    2012-01-01

    Full Text Available Some words, which are basic cues of determining actors of current time-likeglobalization and information age-, change, speed, competition, and diversitybecame nearly catchwords. All the world, have been grazing from the limitedperception of history about place and time and have been facing the fact that thefuture is changing totally in different axis. This orbit has differentcoordinates,tools and methods and it is unavoidable. Likewise, basic dynamics ofinformation age are not being able to explain with the paradigms of industrialage. In whole world, new coordinates of information age which guide a new era-so ist paradigm-is becoming chaos theory, its captains are becoming differentleaders of different geographies. “Butterfly Effect”, another concept , which isrelated to “Chos Theory”of Edward N. Lorenz, can define as small changes ininitial datas in a system can cause big and unknown results. Globalization andinformation age make butterfly effect common. In this study, from the point of “ A butterfly’s flapping in Amazon Forest can cause a storm in USA” view, possibleeffects of chaos theory and butterfly effect to social life and to organizations willbe evaluated.,In the first part of this researchwill explainedchaos theory,inthethesecond part will mentionedfrom dominant metaphors in the past andfuture organizations ,inthethird part will analyzedmodel of chaos managementorganization.

  13. Use of the butterflies like bio-indicators of the habitat type and their biodiversity in Colombia

    International Nuclear Information System (INIS)

    Andrade C, M Gonzalo

    1998-01-01

    This work is the result of the study of Colombian butterflies, across an altitudinal range between 250 and 3000 m, whose primary objective was to describe the local distributions of a community of butterflies in three different leinds of ecosystems: primary forest (BP), secondary forest (BS), and disturbed zones (ZP). These descriptions took under consideration environmental parameters and gradients, such as: altitude, climate and how the vegetation had been changed. At the same time, based on observations and captures of butterflies, the seasonality of several species, their daily activity cycles, and micro habitat fidelity were described

  14. Butterfly valve in a virtual environment

    Science.gov (United States)

    Talekar, Aniruddha; Patil, Saurabh; Thakre, Prashant; Rajkumar, E.

    2017-11-01

    Assembly of components is one of the processes involved in product design and development. The present paper deals with the assembly of a simple butterfly valve components in a virtual environment. The assembly has been carried out using virtual reality software by trial and error methods. The parts are modelled using parametric software (SolidWorks), meshed accordingly, and then called into virtual environment for assembly.

  15. Male sex pheromone components in Heliconius butterflies released by the androconia affect female choice

    Directory of Open Access Journals (Sweden)

    Kathy Darragh

    2017-11-01

    Full Text Available Sex-specific pheromones are known to play an important role in butterfly courtship, and may influence both individual reproductive success and reproductive isolation between species. Extensive ecological, behavioural and genetic studies of Heliconius butterflies have made a substantial contribution to our understanding of speciation. Male pheromones, although long suspected to play an important role, have received relatively little attention in this genus. Here, we combine morphological, chemical and behavioural analyses of male pheromones in the Neotropical butterfly Heliconius melpomene. First, we identify putative androconia that are specialized brush-like scales that lie within the shiny grey region of the male hindwing. We then describe putative male sex pheromone compounds, which are largely confined to the androconial region of the hindwing of mature males, but are absent in immature males and females. Finally, behavioural choice experiments reveal that females of H. melpomene, H. erato and H. timareta strongly discriminate against conspecific males which have their androconial region experimentally blocked. As well as demonstrating the importance of chemical signalling for female mate choice in Heliconius butterflies, the results describe structures involved in release of the pheromone and a list of potential male sex pheromone compounds.

  16. Plant defences against ants provide a pathway to social parasitism in butterflies

    DEFF Research Database (Denmark)

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea

    2015-01-01

    , which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host....... the exploitation of sequential hosts by the phytophagous-predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted...

  17. Butterflies of Sundarban Biosphere Reserve, West Bengal, eastern India: a preliminary survey of their taxonomic diversity, ecology and their conservation

    Directory of Open Access Journals (Sweden)

    S. Chowdhury

    2014-07-01

    Full Text Available The Indian Sundarbans, part of the globally famous deltaic eco-region, is little-studied for butterfly diversity and ecology. The present study reports 76 butterfly species belonging to five families, which is a culmination of 73 species obtained from surveys conducted over a period of three years (2009-2011 in reclaimed and mangrove forested areas and three species obtained from an earlier report. Six of these species are legally protected under the Indian Wildlife (Protection Act, 1972. Random surveys were employed for both the study areas, supplemented by systematic sampling in reclaimed areas. The reclaimed and forested areas differed largely in butterfly richness (Whittaker’s measure of ß diversity = 0.55. For sample-based rarefaction curves, butterfly genera showed a tendency to reach an asymptote sooner than the species. Numerous monospecific genera (77.19% of the taxa resulted in a very gentle but non-linear positive slope for the species-genus ratio curve. A species-genus ratio of 1.33 indicated strong intra-generic competition for the butterflies of the Indian Sundarbans. Mangrove areas were species poor, with rare species like Euploea crameri, Colotis amata and Idea agamarshchana being recorded in the mangrove area; while Danaus genutia was found to be the most frequent butterfly. Butterfly abundance was very poor, with no endemic species and the majority (53.9% of the taxa; n=41 were found locally rare. The changing composition of butterflies in the once species-poor mangrove zone of the fragile Sundarbans may interfere with their normal ecosystem functioning.

  18. Barcoding the butterflies of southern South America: Species delimitation efficacy, cryptic diversity and geographic patterns of divergence.

    Directory of Open Access Journals (Sweden)

    Pablo D Lavinia

    Full Text Available Because the tropical regions of America harbor the highest concentration of butterfly species, its fauna has attracted considerable attention. Much less is known about the butterflies of southern South America, particularly Argentina, where over 1,200 species occur. To advance understanding of this fauna, we assembled a DNA barcode reference library for 417 butterfly species of Argentina, focusing on the Atlantic Forest, a biodiversity hotspot. We tested the efficacy of this library for specimen identification, used it to assess the frequency of cryptic species, and examined geographic patterns of genetic variation, making this study the first large-scale genetic assessment of the butterflies of southern South America. The average sequence divergence to the nearest neighbor (i.e. minimum interspecific distance was 6.91%, ten times larger than the mean distance to the furthest conspecific (0.69%, with a clear barcode gap present in all but four of the species represented by two or more specimens. As a consequence, the DNA barcode library was extremely effective in the discrimination of these species, allowing a correct identification in more than 95% of the cases. Singletons (i.e. species represented by a single sequence were also distinguishable in the gene trees since they all had unique DNA barcodes, divergent from those of the closest non-conspecific. The clustering algorithms implemented recognized from 416 to 444 barcode clusters, suggesting that the actual diversity of butterflies in Argentina is 3%-9% higher than currently recognized. Furthermore, our survey added three new records of butterflies for the country (Eurema agave, Mithras hannelore, Melanis hillapana. In summary, this study not only supported the utility of DNA barcoding for the identification of the butterfly species of Argentina, but also highlighted several cases of both deep intraspecific and shallow interspecific divergence that should be studied in more detail.

  19. Barcoding the butterflies of southern South America: Species delimitation efficacy, cryptic diversity and geographic patterns of divergence.

    Science.gov (United States)

    Lavinia, Pablo D; Núñez Bustos, Ezequiel O; Kopuchian, Cecilia; Lijtmaer, Darío A; García, Natalia C; Hebert, Paul D N; Tubaro, Pablo L

    2017-01-01

    Because the tropical regions of America harbor the highest concentration of butterfly species, its fauna has attracted considerable attention. Much less is known about the butterflies of southern South America, particularly Argentina, where over 1,200 species occur. To advance understanding of this fauna, we assembled a DNA barcode reference library for 417 butterfly species of Argentina, focusing on the Atlantic Forest, a biodiversity hotspot. We tested the efficacy of this library for specimen identification, used it to assess the frequency of cryptic species, and examined geographic patterns of genetic variation, making this study the first large-scale genetic assessment of the butterflies of southern South America. The average sequence divergence to the nearest neighbor (i.e. minimum interspecific distance) was 6.91%, ten times larger than the mean distance to the furthest conspecific (0.69%), with a clear barcode gap present in all but four of the species represented by two or more specimens. As a consequence, the DNA barcode library was extremely effective in the discrimination of these species, allowing a correct identification in more than 95% of the cases. Singletons (i.e. species represented by a single sequence) were also distinguishable in the gene trees since they all had unique DNA barcodes, divergent from those of the closest non-conspecific. The clustering algorithms implemented recognized from 416 to 444 barcode clusters, suggesting that the actual diversity of butterflies in Argentina is 3%-9% higher than currently recognized. Furthermore, our survey added three new records of butterflies for the country (Eurema agave, Mithras hannelore, Melanis hillapana). In summary, this study not only supported the utility of DNA barcoding for the identification of the butterfly species of Argentina, but also highlighted several cases of both deep intraspecific and shallow interspecific divergence that should be studied in more detail.

  20. Detailed electromagnetic simulation for the structural color of butterfly wings.

    Science.gov (United States)

    Lee, R Todd; Smith, Glenn S

    2009-07-20

    Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.

  1. Callerebia dibangensis (Lepidoptera: Nymphalidae: Satyrinae, a new butterfly species from the eastern Himalaya, India

    Directory of Open Access Journals (Sweden)

    P. Roy

    2013-09-01

    Full Text Available A new species of butterfly in the genus Callerebia (Butler, 1867 is described from the Upper Dibang Valley District, Arunachal Pradesh, India. A combination of very distinctive characters: large size; highly rounded wings; striking under hindwing white scales; distinctive under hindwing tornal ocelli; large round forewing orange apical spot and a dark brown under ground colour distinguishes this butterfly from any other Callerebia species.

  2. Hofstadter's butterfly energy spectrum of ultracold fermions on the two-dimensional triangular optical lattice

    International Nuclear Information System (INIS)

    Hou Jingmin; Lu Qingqing

    2009-01-01

    We study the energy spectrum of ultracold fermionic atoms on the two-dimensional triangular optical lattice subjected to a perpendicular effective magnetic field, which can be realized with laser beams. We derive the generalized Harper's equations and numerically solve them, then we obtain the Hofstadter's butterfly-like energy spectrum, which has a novel fractal structure. The observability of the Hofstadter's butterfly spectrum is also discussed

  3. Blame it on the butterfly

    Science.gov (United States)

    Oliver, Kate

    2009-08-01

    Last year at a science networking event in a Central London pub, I was cornered by the manager of an "alternative healing centre", who regaled me with stories about her patients' miraculous recoveries from ailments that modern medicine had been unable to address. "After all," she said, leaning forward with the air of someone confiding an esoteric, but unassailable, argument, "if a butterfly flapping its wings in a forest can cause a hurricane, imagine what a positive attitude can do!"

  4. Colors and pterin pigmentation of pierid butterfly wings

    NARCIS (Netherlands)

    Wijnen, B.; Leertouwer, H. L.; Stavenga, D. G.

    2007-01-01

    The reflectance of pierid butterfly wings is principally determined by the incoherent scattering of incident light and the absorption by pterin pigments in the scale structures. Coherent scattering causing iridescence is frequently encountered in the dorsal wings or wing tips of male pierids. We

  5. Low-Intensity Agricultural Landscapes in Transylvania Support High Butterfly Diversity: Implications for Conservation

    Science.gov (United States)

    Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern

    2014-01-01

    European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide

  6. A CFD study of the flow field and aerodynamic torque on a triple-offset butterfly valve used in nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Qinzhao; Wang Hong

    2011-01-01

    Triple-offset butterfly valve is one advanced kind of butterfly valve. It is potential in nuclear power plants because of its advantages in high temperature and high pressure occasions. There are few papers on performance of triple-offset butterfly valve. This paper is intended to predict the performance of a triple-offset butterfly valve used in a nuclear power plant using computational fluid dynamics. The flow field and aerodynamic torque on the triple-offset butterfly valve were studied at six different disk positions from 90deg to 20deg (where 90deg is in the full open position). The selected six different disk positions indicated a stroke. The flow fields were predicted using the k-epsilon renormalization group theory (RNG) turbulence model. The computational results were obtained using CFX 12. The flow field is illustrated using velocity contours and disk pressure profiles, illustrating the effects of the disk position. Some results of flow field are compared to those of symmetric disk butterfly valve which have been validated by test results. Based on the flow field, valve resistance coefficient and aerodynamic torque coefficient with the disk positions are obtained, providing a better understanding of the performance of the triple-offset butterfly valve throughout a stroke. (author)

  7. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication.

    Science.gov (United States)

    Bybee, Seth M; Yuan, Furong; Ramstetter, Monica D; Llorente-Bousquets, Jorge; Reed, Robert D; Osorio, Daniel; Briscoe, Adriana D

    2012-01-01

    Mimetic wing coloration evolves in butterflies in the context of predator confusion. Unless butterfly eyes have adaptations for discriminating mimetic color variation, mimicry also carries a risk of confusion for the butterflies themselves. Heliconius butterfly eyes, which express recently duplicated ultraviolet (UV) opsins, have such an adaptation. To examine bird and butterfly color vision as sources of selection on butterfly coloration, we studied yellow wing pigmentation in the tribe Heliconiini. We confirmed, using reflectance and mass spectrometry, that only Heliconius use 3-hydroxy-DL-kynurenine (3-OHK), which looks yellow to humans but reflects both UV- and long-wavelength light, whereas butterflies in related genera have chemically unknown yellow pigments mostly lacking UV reflectance. Modeling of these color signals reveals that the two UV photoreceptors of Heliconius are better suited to separating 3-OHK from non-3-OHK spectra compared with the photoreceptors of related genera or birds. The co-occurrence of potentially enhanced UV vision and a UV-reflecting yellow wing pigment could allow unpalatable Heliconius private intraspecific communication in the presence of mimics. Our results are the best available evidence for the correlated evolution of a color signal and color vision. They also suggest that predator visual systems are error prone in the context of mimicry. © 2011 by The University of Chicago.

  8. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    Directory of Open Access Journals (Sweden)

    Martin Olofsson

    2010-05-01

    Full Text Available Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function.Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head.In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  9. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    Science.gov (United States)

    Olofsson, Martin; Vallin, Adrian; Jakobsson, Sven; Wiklund, Christer

    2010-05-24

    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  10. Butterfly Phonics: Evaluation Report and Executive Summary

    Science.gov (United States)

    Merrell, Christine; Kasim, Adetayo

    2015-01-01

    Butterfly Phonics aims to improve the reading of struggling pupils through phonics instruction and a formal teaching style where pupils sit at desks in rows facing the teacher. It is based on a course book created by Irina Tyk, and was delivered in this evaluation by Real Action, a charity based in London. Real Action staff recruited and trained…

  11. Butterfly Sprint Swimming Technique, Analysis of Somatic and Spatial-Temporal Coordination Variables

    Directory of Open Access Journals (Sweden)

    Strzała Marek

    2017-12-01

    Full Text Available The aim of this study was to investigate somatic properties and force production of leg extensor muscles measured in the countermovement jump test (CMJ, as well as to analyse kinematic variables of sprint surface butterfly swimming. Thirty-four male competitive swimmers were recruited with an average age of 19.3 ± 1.83 years. Their average body height (BH was 183.7 ± 5.93 cm, body fat content 10.8 ± 2.64% and body mass (BM 78.3 ± 5.0 kg. Length measurements of particular body segments were taken and a counter movement jump (CMJ as well as an all-out 50 m butterfly speed test were completed. The underwater movements of the swimmers’ bodies were recorded with a digital camera providing side-shots. We registered a significant relationship between body mass (r = 0.46, lean body mass (r = 0.48 and sprint surface butterfly swimming (VSBF. The anaerobic power measured in the CMJ test, total body length (TBL as well as upper and lower extremity length indices did not influence swimming speed significantly. The temporal entry-kick index (the time ratio between the first kick and arm entry significantly influenced VSBF (r = -0.45. Similarly, medium power of the coefficient was indicated between a stroke rate kinematics (SR, b duration of the first leg kick (LP1, c air phase duration of arm recovery (Fly-arm, and VSBF (r = 0.40; r = 0.40 and r = 0.41, respectively. The entry-kick temporal index showed that, in the butterfly cycle, an appropriately early executed initial kick when compared to arm entry was associated with a longer arm propulsion phase, which in turn was associated with minimizing resistive gliding phases and enabled relatively longer and less resistive air arm recovery (higher value of the fly-arm index. The higher value of SR kinematic was another important element of the best butterfly results in this study.

  12. Differential involvement of Hedgehog signaling in butterfly wing and eyespot development.

    Science.gov (United States)

    Tong, Xiaoling; Lindemann, Anna; Monteiro, Antónia

    2012-01-01

    Butterfly eyespots may have evolved from the recruitment of pre-existent gene circuits or regulatory networks into novel locations on the wing. Gene expression data suggests one such circuit, the Hedgehog (Hh) signaling pathway and its target gene engrailed (en), was recruited from a role in patterning the anterior-posterior insect wing axis to a role patterning butterfly eyespots. However, while Junonia coenia expresses hh and en both in the posterior compartment of the wing and in eyespot centers, Bicyclus anynana lacks hh eyespot-specific expression. This suggests that Hh signaling may not be functioning in eyespot development in either species or that it functions in J. coenia but not in B. anynana. In order to test these hypotheses, we performed functional tests of Hh signaling in these species. We investigated the effects of Hh protein sequestration during the larval stage on en expression levels, and on wing size and eyespot size in adults. Hh sequestration led to significantly reduced en expression and to significantly smaller wings and eyespots in both species. But while eyespot size in B. anynana was reduced proportionately to wing size, in J. coenia, eyespots were reduced disproportionately, indicating an independent role of Hh signaling in eyespot development in J. coenia. We conclude that while Hh signaling retains a conserved role in promoting wing growth across nymphalid butterflies, it plays an additional role in eyespot development in some, but not all, lineages of nymphalid butterflies. We discuss our findings in the context of alternative evolutionary scenarios that led to the differential expression of hh and other Hh pathway signaling members across nymphalid species.

  13. Differential involvement of Hedgehog signaling in butterfly wing and eyespot development.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tong

    Full Text Available Butterfly eyespots may have evolved from the recruitment of pre-existent gene circuits or regulatory networks into novel locations on the wing. Gene expression data suggests one such circuit, the Hedgehog (Hh signaling pathway and its target gene engrailed (en, was recruited from a role in patterning the anterior-posterior insect wing axis to a role patterning butterfly eyespots. However, while Junonia coenia expresses hh and en both in the posterior compartment of the wing and in eyespot centers, Bicyclus anynana lacks hh eyespot-specific expression. This suggests that Hh signaling may not be functioning in eyespot development in either species or that it functions in J. coenia but not in B. anynana. In order to test these hypotheses, we performed functional tests of Hh signaling in these species. We investigated the effects of Hh protein sequestration during the larval stage on en expression levels, and on wing size and eyespot size in adults. Hh sequestration led to significantly reduced en expression and to significantly smaller wings and eyespots in both species. But while eyespot size in B. anynana was reduced proportionately to wing size, in J. coenia, eyespots were reduced disproportionately, indicating an independent role of Hh signaling in eyespot development in J. coenia. We conclude that while Hh signaling retains a conserved role in promoting wing growth across nymphalid butterflies, it plays an additional role in eyespot development in some, but not all, lineages of nymphalid butterflies. We discuss our findings in the context of alternative evolutionary scenarios that led to the differential expression of hh and other Hh pathway signaling members across nymphalid species.

  14. Standardised methods for the GMO monitoring of butterflies and moths: the whys and hows

    OpenAIRE

    Lang, Andreas; Theißen, Bernhard; Dolek, Matthias

    2013-01-01

    Butterflies and moths (Lepidoptera) are correlated with many biotic and abiotic characteristics of the environment, and are widely accepted as relevant protection goals. Adverse effects on butterflies and moths through genetically modified (GM) crops have been demonstrated, by both insect-resistant and herbicide-tolerant events. Thus, Lepidoptera are considered suitable bio-indicators for monitoring the potential adverse effects due to the cultivation of GM crops, and guidelines were develope...

  15. Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico

    Science.gov (United States)

    Cuauhtemoc Saenz-Romero; Gerald E. Rehfeldt; Pierre Duval; Roberto A. Lindig-Cisneros

    2012-01-01

    Abies religiosa (HBK) Schl. & Cham. (oyamel fir) is distributed in conifer-dominated mountain forests at high altitudes along the Trans-Mexican Volcanic Belt. This fir is the preferred host for overwintering monarch butterfly (Danaus plexippus) migratory populations which habitually congregate within a few stands now located inside a Monarch Butterfly Biosphere...

  16. Synthesis of naturally cross-linked polycrystalline ZrO{sub 2} hollow nanowires using butterfly as templates

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yu, E-mail: chenyu_8323@csu.edu.cn [School of Physics Science and Electronics Central South University, Changsha, Hunan 410083 (China); Gu Jiajun, E-mail: gujiajun@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhu Shenmin; Su Huilan [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Di, E-mail: zhangdi@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Feng Chuanliang [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhuang Leyan [Measurement Center of Anti-Counterfeiting Technical Products, Shanghai (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Naturally cross-linked ZrO{sub 2} nanotubes with {approx}2.4 {mu}m in length, {approx}35 nm in diameter and {approx}12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Black-Right-Pointing-Pointer The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. Black-Right-Pointing-Pointer The achieved hollow ZrO{sub 2} nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than {approx}50 nm, which greatly hinders their applications in designing much smaller functional parts down to real 'nano scale'. This work indicates, however, that hollow ZrO{sub 2} nanowires with {approx}2.4 {mu}m in length, {approx}35 nm in diameter and {approx}12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO{sub 2} nanotubes suggests a new optional approach in fabricating assembled nano systems.

  17. WE-G-18A-08: Axial Cone Beam DBPF Reconstruction with Three-Dimensional Weighting and Butterfly Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Tang, S; Wang, W [School of Automation, Xi' an University of Post and Telecommunication, Xi' an, Shaanxi (China); Tang, X [Emory University School of Medicine, Atlanta, GA (United States)

    2014-06-15

    Purpose: With the major benefit in dealing with data truncation for ROI reconstruction, the algorithm of differentiated backprojection followed by Hilbert filtering (DBPF) is originally derived for image reconstruction from parallel- or fan-beam data. To extend its application for axial CB scan, we proposed the integration of the DBPF algorithm with 3-D weighting. In this work, we further propose the incorporation of Butterfly filtering into the 3-D weighted axial CB-DBPF algorithm and conduct an evaluation to verify its performance. Methods: Given an axial scan, tomographic images are reconstructed by the DBPF algorithm with 3-D weighting, in which streak artifacts exist along the direction of Hilbert filtering. Recognizing this orientation-specific behavior, a pair of orthogonal Butterfly filtering is applied on the reconstructed images with the horizontal and vertical Hilbert filtering correspondingly. In addition, the Butterfly filtering can also be utilized for streak artifact suppression in the scenarios wherein only partial scan data with an angular range as small as 270° are available. Results: Preliminary data show that, with the correspondingly applied Butterfly filtering, the streak artifacts existing in the images reconstructed by the 3-D weighted DBPF algorithm can be suppressed to an unnoticeable level. Moreover, the Butterfly filtering also works at the scenarios of partial scan, though the 3-D weighting scheme may have to be dropped because of no sufficient projection data are available. Conclusion: As an algorithmic step, the incorporation of Butterfly filtering enables the DBPF algorithm for CB image reconstruction from data acquired along either a full or partial axial scan.

  18. WE-G-18A-08: Axial Cone Beam DBPF Reconstruction with Three-Dimensional Weighting and Butterfly Filtering

    International Nuclear Information System (INIS)

    Tang, S; Wang, W; Tang, X

    2014-01-01

    Purpose: With the major benefit in dealing with data truncation for ROI reconstruction, the algorithm of differentiated backprojection followed by Hilbert filtering (DBPF) is originally derived for image reconstruction from parallel- or fan-beam data. To extend its application for axial CB scan, we proposed the integration of the DBPF algorithm with 3-D weighting. In this work, we further propose the incorporation of Butterfly filtering into the 3-D weighted axial CB-DBPF algorithm and conduct an evaluation to verify its performance. Methods: Given an axial scan, tomographic images are reconstructed by the DBPF algorithm with 3-D weighting, in which streak artifacts exist along the direction of Hilbert filtering. Recognizing this orientation-specific behavior, a pair of orthogonal Butterfly filtering is applied on the reconstructed images with the horizontal and vertical Hilbert filtering correspondingly. In addition, the Butterfly filtering can also be utilized for streak artifact suppression in the scenarios wherein only partial scan data with an angular range as small as 270° are available. Results: Preliminary data show that, with the correspondingly applied Butterfly filtering, the streak artifacts existing in the images reconstructed by the 3-D weighted DBPF algorithm can be suppressed to an unnoticeable level. Moreover, the Butterfly filtering also works at the scenarios of partial scan, though the 3-D weighting scheme may have to be dropped because of no sufficient projection data are available. Conclusion: As an algorithmic step, the incorporation of Butterfly filtering enables the DBPF algorithm for CB image reconstruction from data acquired along either a full or partial axial scan

  19. Morphological outcomes of gynandromorphism in Lycaeides butterflies (Lepidoptera: Lycaenidae).

    Science.gov (United States)

    Jahner, Joshua P; Lucas, Lauren K; Wilson, Joseph S; Forister, Matthew L

    2015-01-01

    The genitalia of male insects have been widely used in taxonomic identification and systematics and are potentially involved in maintaining reproductive isolation between species. Although sexual selection has been invoked to explain patterns of morphological variation in genitalia among populations and species, developmental plasticity in genitalia likely contributes to observed variation but has been rarely examined, particularly in wild populations. Bilateral gynandromorphs are individuals that are genetically male on one side of the midline and genetically female on the other, while mosaic gynandromorphs have only a portion of their body developing as the opposite sex. Gynandromorphs might offer unique insights into developmental plasticity because individuals experience abnormal cellular interactions at the genitalic midline. In this study, we compare the genitalia and wing patterns of gynandromorphic Anna and Melissa blue butterflies, Lycaeides anna (Edwards) (formerly L. idas anna) and L. melissa (Edwards) (Lepidoptera: Lycaenidae), to the morphology of normal individuals from the same populations. Gynandromorph wing markings all fell within the range of variation of normal butterflies; however, a number of genitalic measurements were outliers when compared with normal individuals. From these results, we conclude that the gynandromorphs' genitalia, but not wing patterns, can be abnormal when compared with normal individuals and that the gynandromorphic genitalia do not deviate developmentally in a consistent pattern across individuals. Finally, genetic mechanisms are considered for the development of gynandromorphism in Lycaeides butterflies. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  20. Structural evolution and diversity of the caterpillar trunk

    DEFF Research Database (Denmark)

    Dupont, Steen Thorleif

    cuticle thickness, the degree of myrmecopily and the underlying mechanism of lycaenid-ant associations (MS4). In two major manuscripts (MS1-2), comparative descriptions are provided of the larval trunk in, respectively the Micropterigidae and the lowest-grade leaf-mining caterpillars. Available knowledge...

  1. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    Science.gov (United States)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  2. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    International Nuclear Information System (INIS)

    Yang, Chang; Changsha University of Science and Technology, Changsha; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan

    2016-01-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. In this paper, we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. Finally, these results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  3. Butterfly fauna of Ženeva pond near Niška Banja spa center (Lepidoptera: Papilionideae & Hesperioideae with some notes on endangered species

    Directory of Open Access Journals (Sweden)

    Nikolić, J.

    2012-12-01

    Full Text Available The article presents the results of research of butterfly species at Ženeva pond near the river Nišava (SE Serbia. In all, the total of 45 species was recorded, representing 23% of Serbian butterfly fauna. Among species recorded, 4 are listed in Red data book of Serbian butterflies and are declared strictly protected in the country, while two are listed in European red list of butterfly and listed in Annex IV of the EU Habitats Directive, namely Lycaena dispar and Zerynthia polyxena.

  4. Estimating the age of Heliconius butterflies from calibrated photographs

    Directory of Open Access Journals (Sweden)

    Denise Dalbosco Dell’Aglio

    2017-09-01

    Full Text Available Mating behaviour and predation avoidance in Heliconius involve visual colour signals; however, there is considerable inter-individual phenotypic variation in the appearance of colours. In particular, the red pigment varies from bright crimson to faded red. It has been thought that this variation is primarily due to pigment fading with age, although this has not been explicitly tested. Previous studies have shown the importance of red patterns in mate choice and that birds and butterflies might perceive these small colour differences. Using digital photography and calibrated colour images, we investigated whether the hue variation in the forewing dorsal red band of Heliconius melpomene rosina corresponds with age. We found that the red hue and age were highly associated, suggesting that red colour can indeed be used as a proxy for age in the study of wild-caught butterflies.

  5. Annotated checklist of Albanian butterflies (Lepidoptera, Papilionoidea and Hesperioidea

    Directory of Open Access Journals (Sweden)

    Rudi Verovnik

    2013-08-01

    Full Text Available The Republic of Albania has a rich diversity of flora and fauna. However, due to its political isolation, it has never been studied in great depth, and consequently, the existing list of butterfly species is outdated and in need of radical amendment. In addition to our personal data, we have studied the available literature, and can report a total of 196 butterfly species recorded from the country. For some of the species in the list we have given explanations for their inclusion and made other annotations. Doubtful records have been removed from the list, and changes in taxonomy have been updated and discussed separately. The purpose of our paper is to remove confusion and conflict regarding published records. However, the revised checklist should not be considered complete: it represents a starting point for further research.

  6. A Butterfly-Shaped Wideband Microstrip Patch Antenna for Wireless Communication

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available A novel butterfly-shaped patch antenna for wireless communication is introduced in this paper. The antenna is designed for wideband wireless communications and radio-frequency identification (RFID systems. Two symmetrical quasi-circular arms and two symmetrical round holes are incorporated into the patch of a microstrip antenna to expand its bandwidth. The diameter and position of the circular slots are optimized to achieve a wide bandwidth. The validity of the design concept is demonstrated by means of a prototype having a bandwidth of about 40.1%. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously most of the modern wireless communication standards.

  7. Land-use changes, farm management and the decline of butterflies associated with semi-natural grasslands in southern Sweden

    Directory of Open Access Journals (Sweden)

    Sven G. Nilsson

    2013-11-01

    Full Text Available Currently, we are experiencing biodiversity loss on different spatial scales. One of the best studied taxonomic groups in decline is the butterflies. Here, we review evidence for such declines using five systematic studies from southern Sweden that compare old butterfly surveys with the current situation. Additionally, we provide data on butterfly and burnet moth extinctions in the region’s counties. In some local areas, half of the butterfly fauna has been lost during the last 60-100 years. In terms of extinctions, counties have lost 2-10 butterfly and burnet moth species. Land use has changed markedly with key butterfly habitats such as hay meadows disappearing at alarming rates. Grazed, mixed open woodlands have been transformed into dense coniferous forests and clear-cuts and domestic grazers have been relocated from woodlands to arable fields and semi-natural grasslands. Ley has increased rapidly and is used for bale silage repeatedly during the season. Overall, the changed and intensified land use has markedly reduced the availability of nectar resources in the landscape. Species that decline in Sweden are strongly decreasing or already extinct in other parts of Europe. Many typical grassland species that were numerous in former times have declined severely; among those Hesperia comma, Lycaena virgaureae, Lycaena hippothoe, Argynnis adippe, and Polyommatus semiargus. Also, species associated with open woodlands and wetlands such as, Colias palaeno, Boloria euphrosyne and the glade-inhabiting Leptidea sinapis have all decreased markedly. Current management practise and EU Common Agricultural Policy rules favour intensive grazing on the remaining semi-natural grasslands, with strong negative effects on butterfly diversity. Abandoned grasslands are very common in less productive areas of southern Sweden and these habitats may soon become forests. There is an urgent need for immediate action to preserve unfertilized, mown and lightly grazed

  8. Testing species distribution models across space and time: high latitude butterflies and recent warming

    DEFF Research Database (Denmark)

    Eskildsen, Anne; LeRoux, Peter C.; Heikkinen, Risto K.

    2013-01-01

    changes at expanding range margins can be predicted accurately. Location. Finland. Methods. Using 10-km resolution butterfly atlas data from two periods, 1992–1999 (t1) and 2002–2009 (t2), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly...... butterfly distributions under climate change. Model performance was lower with independent compared to non-independent validation and improved when land cover and soil type variables were included, compared to climate-only models. SDMs performed less well for highly mobile species and for species with long......Aim. To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional...

  9. Reproducing butterflies do not increase intake of antioxidants when they could benefit from them.

    Science.gov (United States)

    Beaulieu, Michaël; Bischofberger, Ines; Lorenz, Isabel; Scheelen, Lucie; Fischer, Klaus

    2016-02-01

    The significance of dietary antioxidants may be limited by the ability of animals to exploit them. However, past studies have focused on the effects of dietary antioxidants after 'antioxidant forced-feeding', and have overlooked spontaneous antioxidant intake. Here, we found that reproducing female Bicyclus anynana butterflies had higher antioxidant defences and enhanced fecundity when forced to consume antioxidants (polyphenols). Interestingly, these positive effects were not constant across the oviposition period. When given the choice between food resources with and without antioxidants, reproducing butterflies did not target antioxidants when they could have benefited the most from them. Moreover, they did not consume more antioxidants than non-reproducing butterflies. These results emphasize that, despite potential positive effects of dietary antioxidants, the ability of animals to exploit them is likely to restrict their ecological significance. © 2016 The Author(s).

  10. Spectral reflectance properties of iridescent pierid butterfly wings

    NARCIS (Netherlands)

    Wilts, Bodo D.; Pirih, Primoz; Stavenga, Doekele G.; Pirih, Primož

    The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in

  11. Moths behaving like butterflies. Evolutionary loss of long range attractant pheromones in castniid moths: a Paysandisia archon model.

    Science.gov (United States)

    Sarto i Monteys, Víctor; Acín, Patricia; Rosell, Glòria; Quero, Carmen; Jiménez, Miquel A; Guerrero, Angel

    2012-01-01

    In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the 'female calling plus male seduction' system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae ("butterfly-moths"), which includes some important crop pests, no pheromones have been found so far. Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.

  12. Maunder's Butterfly Diagram in the 21st Century

    Science.gov (United States)

    Hathaway, David H.

    2005-01-01

    E. Walter Maunder created his first "Butterfly Diagram" showing the equatorward drift of the sunspot latitudes over the course of each of two solar cycles in 1903. This diagram was constructed from data obtained through the Royal Greenwich Observatory (RGO) starting in 1874. The RGO continued to acquire data up until 1976. Fortunately, the US Air Force (USAF) and the US National Oceanic and Atmospheric Administration (NOAA) have continued to acquire similar data since that time. This combined RGO/USAF/NOAA dataset on sunspot group positions and areas now extends virtually unbroken from the 19th century to the 21st century. The data represented in the Butterfly Diagram contain a wealth of information about solar activity and the solar cycle. Solar activity (as represented by the sunspots) appears at mid-latitudes at the start of each cycle. The bands of activity spread in each hemisphere and then drift toward the equator as the cycle progresses. Although the equator itself tends to be avoided, the spread of activity reaches the equator at about the time of cycle maximum. The cycles overlap at minimum with old cycle spots appearing near the equator while new cycle spots emerge in the mid-latitudes. Large amplitude cycles tend to have activity starting at higher latitudes with the activity spreading to higher latitudes as well. Large amplitude cycles also tend to be preceded by earlier cycles with faster drift rates. These drift rates may be tied to the Sun s meridional circulation - a component in many dynamo theories for the origin of the sunspot cycle. The Butterfly Diagram must be reproduced in any successful dynamo model for the Sun.

  13. A contribution key for identification of butterflies (Lepidoptera) of Tehsil Tangi, Khyber Pakhtunkhwa, Pakistan

    OpenAIRE

    Farzana Khan Perveen; Haroon

    2016-01-01

    The butterflies are the useful bio-indicators of an ecosystem, sensitive to any change in environment, such as temperature, microclimate and solar radiation etc, however, they utilize host plants for their oviposition and larval development. Therefore, the present study was conducted to prepare the contribution key for identification of butterflies of Tehsil Tangi during August, 2014-May, 2015. The specimens (ni = 506) were collected belong to 3 families with 18 genera and 23 species. However...

  14. Foraging behavior of the Blue Morpho and other tropical butterflies: The chemical and electrophysiological basis of olfactory preferences and the role of color

    Science.gov (United States)

    Inside a live butterfly exhibit housing a variety of tropical butterfly species under north-central Florida ambient conditions, we conducted bioassays to determine whether the presence of color would facilitate the location of attractants by the butterflies. In two separate bioassays, the baits (hon...

  15. Conserving a geographically isolated Charaxes butterfly in response to habitat fragmentation and invasive alien plants

    Directory of Open Access Journals (Sweden)

    Casparus J. Crous

    2015-08-01

    Full Text Available In South Africa, much of the forest biome is vulnerable to human-induced disturbance. The forest-dwelling butterfly Charaxes xiphares occidentalis is naturally confined to a small forest region in the south-western Cape, South Africa. Most of the remaining habitat of this species is within a fragmented agricultural matrix. Furthermore, this geographical area is also heavily invaded by alien plants, especially Acacia mearnsii. We investigated how C. x. occidentalis behaviourally responds to different habitat conditions in the landscape. We were particularly interested in touring, patrolling and settling behaviour as a conservation proxy for preference of a certain habitat configuration in this agricultural matrix. Remnant forest patches in the agricultural matrix showed fewer behavioural incidents than in a reference protected area. Moreover, dense stands of A. mearnsii negatively influenced the incidence and settling pattern of this butterfly across the landscape, with fewer tree settlings associated with more heavily invaded forest patches. This settling pattern was predominantly seen in female butterflies. We also identified specific trees that were settled upon for longer periods by C. x. occidentalis. Distance to a neighbouring patch and patch size influenced behavioural incidences, suggesting that further patch degradation and isolation could be detrimental to this butterfly. Conservation implications: We highlight the importance of clearing invasive tree species from vulnerable forest ecosystems and identify key tree species to consider in habitat conservation and rehabilitation programmes for this butterfly. We also suggest retaining as much intact natural forest as possible. This information should be integrated in local biodiversity management plans.

  16. seasonal dynamics of the Sinai Baton Blue butterfly

    African Journals Online (AJOL)

    BioMAP

    of habitat in fragmented landscapes. ... the persistence of species occupying fragmented landscapes (Hanski & Gilpin 1997). Migration into ...... al Ecology 72: 533-. Sch rvation Biology 12: 284-292. James, M. (2006f) The natural history of the Sinai Baton Blue: the smallest butterfly in the world. Egyptian. Journal of Biology 8: ...

  17. Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings

    Directory of Open Access Journals (Sweden)

    Otaki Joji M

    2012-03-01

    Full Text Available Abstract Background To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs based on colour-pattern analysis of the nymphalid butterfly Junonia almana. Results In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. Conclusions In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to

  18. Structural analysis of eyespots: dynamics of morphogenic signals that govern elemental positions in butterfly wings.

    Science.gov (United States)

    Otaki, Joji M

    2012-03-13

    To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the

  19. BUDDLEJA DAVIDII (BUTTERFLY BUSH): A GROWING THREAT TO RIPARIA?

    Science.gov (United States)

    Buddleja davidii, an Asian shrub or small tree (family Buddlejaceae; commonly referred to as Butterfly bush) is found in the United States, New Zealand, Australia, and Europe as a popular ornamental and an aggressive invasive that has become widespread in floodplains, riverbeds, ...

  20. Chemical characteristics and fatty acid profile of butterfly tree seed oil (Bauhinia purpurea L)

    Science.gov (United States)

    Soetjipto, H.; Riyanto, C. A.; Victoria, T.

    2018-04-01

    Butterfly tree (Kachnar) in Indonesia is only used as ornamental plants in garden, park, and roadsides. The seed of Butterfly tree was extracted with n-hexane and physicochemical properties were determined based on Standard Nasional Indonesia (SNI) 01-3555-1998 while the oil chemical composition was determined using GC-MS. The result showed that yield of the oil as 57.33±1.14 % (w/w) and the chemical characteristic of seed oil include acid value (13.7.8±0.23 mg KOH/g) saponification value (153.32±1.85 mg KOH/g), peroxide value (43.51±0.57. mg KOH/g). The butterfly tree seed oil showed that linoleic acid (28.11 %), palmitic acid (29.2%), oleic acid (19.82%) and stearic acid (10.7.4 %) were the main fatty acids in the crude seed oils. Minor amounts of neophytadiena and arachidic acid were also identified.

  1. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing.

    Science.gov (United States)

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-09-07

    Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  2. Becoming Butterflies: Making Metamorphosis Meaningful for Young Children

    Science.gov (United States)

    Giles, Rebecca M.; Baggett, Paige V.; Shaw, Edward L., Jr.

    2010-01-01

    Although butterflies are a common topic of study in many early childhood classrooms, integrating art production broadens the scope of the study and allows children to deepen their knowledge and understanding through creative self-expression. This article presents a set of integrated activities that focus on helping children fully grasp the process…

  3. Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Mu Seong; Choi, Jong Sik; Choi, Byung Oh; Kim, Do Sik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-12-15

    A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and B10 life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles.

  4. Reliability Evaluation of Concentric Butterfly Valve Using Statistical Hypothesis Test

    International Nuclear Information System (INIS)

    Chang, Mu Seong; Choi, Jong Sik; Choi, Byung Oh; Kim, Do Sik

    2015-01-01

    A butterfly valve is a type of flow-control device typically used to regulate a fluid flow. This paper presents an estimation of the shape parameter of the Weibull distribution, characteristic life, and B10 life for a concentric butterfly valve based on a statistical analysis of the reliability test data taken before and after the valve improvement. The difference in the shape and scale parameters between the existing and improved valves is reviewed using a statistical hypothesis test. The test results indicate that the shape parameter of the improved valve is similar to that of the existing valve, and that the scale parameter of the improved valve is found to have increased. These analysis results are particularly useful for a reliability qualification test and the determination of the service life cycles

  5. Observations on lycaenid butterflies from Panbari Reserve Forest and adjoining areas, Kaziranga, Assam, northeastern India

    Directory of Open Access Journals (Sweden)

    Monsoon Jyoti Gogoi

    2015-12-01

    Full Text Available A checklist of 116 taxa of Lycaenidae (Blues along with notes on important species in low elevation forest of Panbari Reserve, Kaziranga - West Karbi Hills, upper Assam is reported in this paper based on surveys conducted during 2007–2012 and some recent sightings till date.  Important sightings include Blue Gem Poritia erycinoides elsiei, Square-band Brownie Miletis nymphys porus, Plain Plushblue Flos apidanus ahamus, Blue Royal Ancema carmentalis, Elwes Silverline Spindasis elwesi, Artipe skinneri, etc. 

  6. Feeding on ripening and over-ripening fruit: interactions between sugar, ethanol and polyphenol contents in a tropical butterfly.

    Science.gov (United States)

    Beaulieu, Michaël; Franke, Kristin; Fischer, Klaus

    2017-09-01

    In ripe fruit, energy mostly derives from sugar, while in over-ripe fruit, it also comes from ethanol. Such ripeness differences may alter the fitness benefits associated with frugivory if animals are unable to degrade ethanol when consuming over-ripe fruit. In the tropical butterfly Bicyclus anynana , we found that females consuming isocaloric solutions mimicking ripe (20% sucrose) and over-ripe fruit (10% sucrose, 7% ethanol) of the palm Astrocaryum standleyanum exhibited higher fecundity than females consuming a solution mimicking unripe fruit (10% sucrose). Moreover, relative to butterflies consuming a solution mimicking unripe fruit, survival was enhanced when butterflies consumed a solution mimicking either ripe fruit supplemented with polyphenols (fruit antioxidant compounds) or over-ripe fruit devoid of polyphenols. This suggests that (1) butterflies have evolved tolerance mechanisms to derive the same reproductive benefits from ethanol and sugar, and (2) polyphenols may regulate the allocation of sugar and ethanol to maintenance mechanisms. However, variation in fitness owing to the composition of feeding solutions was not paralleled by corresponding physiological changes (alcohol dehydrogenase activity, oxidative status) in butterflies. The fitness proxies and physiological parameters that we measured therefore appear to reflect distinct biological pathways. Overall, our results highlight that the energy content of fruit primarily affects the fecundity of B. anynana butterflies, while the effects of fruit consumption on survival are more complex and vary depending on ripening stage and polyphenol presence. The actual underlying physiological mechanisms linking fruit ripeness and fitness components remain to be clarified. © 2017. Published by The Company of Biologists Ltd.

  7. Butterflies: Photonic Crystals on the Wing

    Science.gov (United States)

    2007-03-22

    green hairstreak , Callophrys rubi, suggested that the scales have a 3D cubic network organization (Fig. 9). An extensive analysis of the scales of a...Fig. 9. a Ventral side of the wings of the green hairstreak , Callophrys rubi. b Transmission electron micrograph of a small area of a single...Report 3. DATES COVERED (From – To) 15 March 2006 - 08-Jun-07 4. TITLE AND SUBTITLE Butterflies : Photonic Crystals on the Wing 5a. CONTRACT

  8. Which native milkweeds are acceptable host plants for larval monarch butterflies (Danaus plexippus) within the Midwestern U.S.

    Science.gov (United States)

    Over the past two decades, the population of monarch butterflies east of the Rocky Mountains has experienced a significant decline. Habitat restoration within the summer breeding range is crucial to boost population numbers. Monarch butterfly larvae use milkweeds as their only host plant. However, l...

  9. Mosquito control insecticides: a probabilistic ecological risk assessment on drift exposures of naled, dichlorvos (naled metabolite) and permethrin to adult butterflies.

    Science.gov (United States)

    Hoang, T C; Rand, G M

    2015-01-01

    A comprehensive probabilistic terrestrial ecological risk assessment (ERA) was conducted to characterize the potential risk of mosquito control insecticide (i.e., naled, it's metabolite dichlorvos, and permethrin) usage to adult butterflies in south Florida by comparing the probability distributions of environmental exposure concentrations following actual mosquito control applications at labeled rates from ten field monitoring studies with the probability distributions of butterfly species response (effects) data from our laboratory acute toxicity studies. The overlap of these distributions was used as a measure of risk to butterflies. The long-term viability (survival) of adult butterflies, following topical (thorax/wings) exposures was the environmental value we wanted to protect. Laboratory acute toxicity studies (24-h LD50) included topical exposures (thorax and wings) to five adult butterfly species and preparation of species sensitivity distributions (SSDs). The ERA indicated that the assessment endpoint of protection, of at least 90% of the species, 90% of the time (or the 10th percentile from the acute SSDs) from acute naled and permethrin exposures, is most likely not occurring when considering topical exposures to adults. Although the surface areas for adulticide exposures are greater for the wings, exposures to the thorax provide the highest potential for risk (i.e., SSD 10th percentile is lowest) for adult butterflies. Dichlorvos appeared to present no risk. The results of this ERA can be applied to other areas of the world, where these insecticides are used and where butterflies may be exposed. Since there are other sources (e.g., agriculture) of pesticides in the environment, where butterfly exposures will occur, the ERA may under-estimate the potential risks under real-world conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Study of structural colour of Hebomoia glaucippe butterfly wing scales

    Science.gov (United States)

    Shur, V. Ya; Kuznetsov, D. K.; Pryakhina, V. I.; Kosobokov, M. S.; Zubarev, I. V.; Boymuradova, S. K.; Volchetskaya, K. V.

    2017-10-01

    Structural colours of Hebomoia glaucippe butterfly wing scales have been studied experimentally using high resolution scanning electron microscopy. Visualization of scales structures and computer simulation allowed distinguishing correlation between nanostructures on the scales and their colour.

  11. Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes

    Science.gov (United States)

    Kitamura, Tasuku; Imafuku, Michio

    2015-01-01

    Batesian mimics that show similar coloration to unpalatable models gain a fitness advantage of reduced predation. Beyond physical similarity, mimics often exhibit behaviour similar to their models, further enhancing their protection against predation by mimicking not only the model's physical appearance but also activity. In butterflies, there is a strong correlation between palatability and flight velocity, but there is only weak correlation between palatability and flight path. Little is known about how Batesian mimics fly. Here, we explored the flight behaviour of four butterfly species/morphs: unpalatable model Pachliopta aristolochiae, mimetic and non-mimetic females of female-limited mimic Papilio polytes, and palatable control Papilio xuthus. We demonstrated that the directional change (DC) generated by wingbeats and the standard deviation of directional change (SDDC) of mimetic females and their models were smaller than those of non-mimetic females and palatable controls. Furthermore, we found no significant difference in flight velocity among all species/morphs. By showing that DC and SDDC of mimetic females resemble those of models, we provide the first evidence for the existence of behavioural mimicry in flight path by a Batesian mimic butterfly. PMID:26041360

  12. BIF butterfly valve life extension at WNP-2

    International Nuclear Information System (INIS)

    Armstrong, D.

    1991-01-01

    Primary containment purging, venting, inerting, and reactor building ventilation at the WNP-2 plant are accomplished with a series of large butterfly valves. A total of 31 valves which are similar in design, but of different sizes, employ an elastomer to achieve sealing integrity when closed. These valves, which were originally manufactured by BIF, a unit of General Signal, range in size from 18 to 84 inches in diameter. Service life in the plant was much less than desired for safety-related equipment, and several seal failures had been experienced shortly after valve overhaul. This program covers a design change made to enhance performance of the elastomer seal to achieve a very meaningful life extension. While numerous configurations of BIF valves exist, this work relates only to the model 657 unit assembled with an elastomer seal mounted onto the valve disc by a stainless steel clamping ring held with studs and nuts. The problems encountered, and the steps taken to resolve the deficiencies may, however, be applicable to other butterfly valve configurations

  13. Chasing migration genes: a brain expressed sequence tag resource for summer and migratory monarch butterflies (Danaus plexippus.

    Directory of Open Access Journals (Sweden)

    Haisun Zhu

    2008-01-01

    Full Text Available North American monarch butterflies (Danaus plexippus undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents approximately 52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our "snap-shot" analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive

  14. Chasing Migration Genes: A Brain Expressed Sequence Tag Resource for Summer and Migratory Monarch Butterflies (Danaus plexippus)

    Science.gov (United States)

    Zhu, Haisun; Casselman, Amy; Reppert, Steven M.

    2008-01-01

    North American monarch butterflies (Danaus plexippus) undergo a spectacular fall migration. In contrast to summer butterflies, migrants are juvenile hormone (JH) deficient, which leads to reproductive diapause and increased longevity. Migrants also utilize time-compensated sun compass orientation to help them navigate to their overwintering grounds. Here, we describe a brain expressed sequence tag (EST) resource to identify genes involved in migratory behaviors. A brain EST library was constructed from summer and migrating butterflies. Of 9,484 unique sequences, 6068 had positive hits with the non-redundant protein database; the EST database likely represents ∼52% of the gene-encoding potential of the monarch genome. The brain transcriptome was cataloged using Gene Ontology and compared to Drosophila. Monarch genes were well represented, including those implicated in behavior. Three genes involved in increased JH activity (allatotropin, juvenile hormone acid methyltransfersase, and takeout) were upregulated in summer butterflies, compared to migrants. The locomotion-relevant turtle gene was marginally upregulated in migrants, while the foraging and single-minded genes were not differentially regulated. Many of the genes important for the monarch circadian clock mechanism (involved in sun compass orientation) were in the EST resource, including the newly identified cryptochrome 2. The EST database also revealed a novel Na+/K+ ATPase allele predicted to be more resistant to the toxic effects of milkweed than that reported previously. Potential genetic markers were identified from 3,486 EST contigs and included 1599 double-hit single nucleotide polymorphisms (SNPs) and 98 microsatellite polymorphisms. These data provide a template of the brain transcriptome for the monarch butterfly. Our “snap-shot” analysis of the differential regulation of candidate genes between summer and migratory butterflies suggests that unbiased, comprehensive transcriptional profiling

  15. Far field scattering pattern of differently structured butterfly scales

    NARCIS (Netherlands)

    Giraldo, M. A.; Yoshioka, S.; Stavenga, D. G.

    The angular and spectral reflectance of single scales of five different butterfly species was measured and related to the scale anatomy. The scales of the pierids Pieris rapae and Delias nigrina scatter white light randomly, in close agreement with Lambert's cosine law, which can be well understood

  16. The "butterfly diagram": A gait marker for neurological and cerebellar impairment in people with multiple sclerosis.

    Science.gov (United States)

    Kalron, Alon; Frid, Lior

    2015-11-15

    People with multiple sclerosis (PwMS) frequently experience walking and balance impairments. In our previous report, we demonstrated that spatio-temporal gait parameters, collected by the Zebris FDM-T instrumented treadmill (Zebris Medical GmbH, Germany), serve as valid markers of neurological impairment in the MS population. In the current study, we focused on a unique outcome statistic of the instrumented treadmill, the "butterfly" diagram which reflects the variability of the center of pressure trajectory during walking. Therefore, the aim of the study was to examine the relationship between parameters related to the gait butterfly diagram and the level of neurological impairment in PwMS. Specifically we examined whether the gait butterfly parameters can differentiate between MS patients with normal cerebellar function and those suffering from ataxia. Demographic, neurological and gait parameters were collected from 341 PwMS, 213 women, aged 42.3 (S.D.=13.8). MS participants with ataxia demonstrated higher scores relating to the butterfly gait variability parameters compared to PwMS with normal or slightly abnormal cerebellar function. According to the results of the binary regression analysis, gait variability in the ant-post direction was found to explain 18.1% of the variance related to cerebellar function; R(2)=0.181, χ(2)(1)=67.852, P<0.001. Measurements derived from the butterfly diagram are proper estimators for important neurological functions in PwMS and should be considered in order to improve diagnosis and assessment of the MS population. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Butterfly hematoma after traumatic intercourse | Hajji | Pan African ...

    African Journals Online (AJOL)

    Butterfly hematoma after traumatic intercourse. F Hajji, A Ameur. Abstract. No Abstract. http://dx.doi.org/10.11604/pamj.2015.20.317.6660 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact ...

  18. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    Directory of Open Access Journals (Sweden)

    Gábor Piszter

    2016-09-01

    Full Text Available Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  19. Wendlandia tinctoria (Roxb. DC. (Rubiaceae, a key nectar source for butterflies during the summer season in the southern Eastern Ghats, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    A.J.S. Raju

    2011-03-01

    Full Text Available Wendlandia tinctoria is a semi-evergreen tree species. It shows massive flowering for about a month during March-April. The floral characteristics such as the white colour of the flower, lack of odour, short-tubed corolla with deep seated nectar having 15-18% sugar concentration are well tailored for visitation by butterflies. The nectar is hexose-rich and contains the essential amino acids such as arginine and histidine and the non-essential amino acids such as alanine, aspartic acid, cysteine, glysine, hydroxyproline, tyrosine, glutamic acid and serine. The inflorescences with clusters of flowers provide an excellent platform for foraging by butterflies. The flowers are long-lived and attractive to butterflies. A variety of butterflies visit the flowers for nectar and in doing so, they pollinate them. Nymphalids are very diverse and utilize the flowers until exhausted. The flowers being small in size with a small amount of nectar compel the butterflies to do a more laborious search for nectar from a greater number of flowers. But, the clustered state of the flowers is energetically profitable for butterflies to reduce search time and also flight time to collect a good amount of nectar; such a probing behaviour is advantageous for the plant to achieve self- and cross-pollination. Therefore, the study shows that the association between W. tinctoria and butterflies is mutual and such an association is referred to as psychophilous. This plant serves as a key nectar source for butterflies at the study site where floral nectar sources are scarce during the summer season.

  20. Trail marking by caterpillars of the silverspot butterfly Dione juno huascuma.

    Science.gov (United States)

    Pescador-Rubio, Alfonso; Stanford-Camargo, Sergio G; Páez-Gerardo, Luis E; Ramírez-Reyes, Alberto J; Ibarra-Jiménez, René A; Fitzgerald, Terrence D

    2011-01-01

    A pheromone is implicated in the trail marking behavior of caterpillars of the nymphalid silverspot butterfly, Dione juno huascuma (Reakirt) (Lepidoptera: Heliconiinae) that feed gregariously on Passiflora (Malpighiales: Passifloraceae) vines in Mexico. Although they mark pathways leading from one feeding site to another with silk, this study shows that the silk was neither adequate nor necessary to elicit trail following behavior. Caterpillars marked trails with a long-lived pheromone that was deposited when they brushed the ventral surfaces of the tips of their abdomens along branch pathways. The caterpillars distinguished between pathways deposited by different numbers of siblings and between trails of different ages. Caterpillars also preferentially followed the trails of conspecifics over those of another nymphalid, Nymphalis antiopa L., the mourning cloak butterfly.

  1. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements.

    Science.gov (United States)

    Zhang, Ke; Tang, Yiwen; Meng, Jinsong; Wang, Ge; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-11-03

    Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.

  2. What prolongs a butterfly's life?: Trade-offs between dormancy, fecundity and body size.

    Directory of Open Access Journals (Sweden)

    Elena Haeler

    Full Text Available In butterflies, life span often increases only at the expense of fecundity. Prolonged life span, on the other hand, provides more opportunities for oviposition. Here, we studied the association between life span and summer dormancy in two closely related species of Palearctic Meadow Brown butterflies, the endemic Maniola nurag and the widespread M. jurtina, from two climatic provenances, a Mediterranean and a Central European site, and tested the relationships between longevity, body size and fecundity. We experimentally induced summer dormancy and hence prolonged the butterflies' life in order to study the effects of such a prolonged life. We were able to modulate longevity only in Mediterranean females by rearing them under summer photoperiodic conditions (light 16 h : dark 8 h, thereby more than doubling their natural life span, to up to 246 days. Central European individuals kept their natural average live span under all treatments, as did Mediterranean individuals under autumn treatment (light 11: dark 13. Body size only had a significant effect in the smaller species, M. nurag, where it affected the duration of dormancy and lifetime fecundity. In the larger species, M. jurtina, a prolonged adult life span did, surprisingly, not convey any fecundity loss. In M. nurag, which generally deposited fewer eggs, extended life had a fecundity cost. We conclude that Mediterranen M. jurtina butterflies have an extraordinary plasticity in aging which allows them to extend life span in response to adverse environmental conditions and relieve the time limitation on egg-laying while maintaining egg production at equal levels.

  3. Host ant independent oviposition in the parasitic butterfly Maculinea alcon

    DEFF Research Database (Denmark)

    Fürst, Matthias A; Nash, David Richard

    2010-01-01

    to host-ant nests and non-host-ant nests, and the number and position of eggs attached were assessed. Our results show no evidence for host-ant-based oviposition in M. alcon, but support an oviposition strategy based on plant characteristics. This suggests that careful management of host-ant distribution......Parasitic Maculinea alcon butterflies can only develop in nests of a subset of available Myrmica ant species, so female butterflies have been hypothesized to preferentially lay eggs on plants close to colonies of the correct host ants. Previous correlational investigations of host......-ant-dependent oviposition in this and other Maculinea species have, however, shown equivocal results, leading to a long-term controversy over support for this hypothesis. We therefore conducted a controlled field experiment to study the egg-laying behaviour of M. alcon. Matched potted Gentiana plants were set out close...

  4. The influence of wild boar (Sus scrofa) on microhabitat quality for the endangered butterfly Pyrgus malvae in the Netherlands

    NARCIS (Netherlands)

    Schaetzen, de Frédéric; Langevelde, van Frank; WallisDeVries, Michiel F.

    2018-01-01

    The decline of open habitats in Europe, such as semi-natural grasslands and heathlands, has caused a general decline in biodiversity, which has been well documented for butterflies. Current conservation practices often involve grazing by domestic livestock to maintain suitable butterfly habitats.

  5. Colour formation on the wings of the butterfly Hypolimnas salmacis by scale stacking

    Science.gov (United States)

    Siddique, Radwanul Hasan; Vignolini, Silvia; Bartels, Carolin; Wacker, Irene; Hölscher, Hendrik

    2016-11-01

    The butterfly genus Hypolimnas features iridescent blue colouration in some areas of its dorsal wings. Here, we analyse the mechanisms responsible for such colouration on the dorsal wings of Hypolimnas salmacis and experimentally demonstrate that the lower thin lamina in the white cover scales causes the blue iridescence. This outcome contradicts other studies reporting that the radiant blue in Hypolimnas butterflies is caused by complex ridge-lamellar architectures in the upper lamina of the cover scales. Our comprehensive optical study supported by numerical calculation however shows that scale stacking primarily induces the observed colour appearance of Hypolimnas salmacis.

  6. Colour formation on the wings of the butterfly Hypolimnas salmacis by scale stacking.

    Science.gov (United States)

    Siddique, Radwanul Hasan; Vignolini, Silvia; Bartels, Carolin; Wacker, Irene; Hölscher, Hendrik

    2016-11-02

    The butterfly genus Hypolimnas features iridescent blue colouration in some areas of its dorsal wings. Here, we analyse the mechanisms responsible for such colouration on the dorsal wings of Hypolimnas salmacis and experimentally demonstrate that the lower thin lamina in the white cover scales causes the blue iridescence. This outcome contradicts other studies reporting that the radiant blue in Hypolimnas butterflies is caused by complex ridge-lamellar architectures in the upper lamina of the cover scales. Our comprehensive optical study supported by numerical calculation however shows that scale stacking primarily induces the observed colour appearance of Hypolimnas salmacis.

  7. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups.

    Science.gov (United States)

    Thomas, J A

    2005-02-28

    Conservative estimates suggest that 50-90% of the existing insect species on Earth have still to be discovered, yet the named insects alone comprise more than half of all known species of organism. With such poor baseline knowledge, monitoring change in insect diversity poses a formidable challenge to scientists and most attempts to generalize involve large extrapolations from a few well-studied taxa. Butterflies are often the only group for which accurate measures of change can be obtained. Four schemes, used successfully to assess change in British butterflies, that are increasingly being applied across the world are described: Red Data Books (RDB) list the best judgements of experts of the conservation status of species in their field of expertise; mapping schemes plot the changing distributions of species at scales of 1-100 km2; transect monitoring schemes generate time series of changes in abundance in sample populations of species on fixed sites across the UK; and occasional surveys measure the number, boundaries and size of all populations of a (usually RDB) species at intervals of 10-30 years. All schemes describe consistent patterns of change, but if they are to be more generally useful, it is important to understand how well butterflies are representative of other taxa. Comparisons with similarly measured changes in native bird and plant species suggest that butterflies have declined more rapidly that these other groups in Britain; it should soon be possible to test whether this pattern exists elsewhere. It is also demonstrated that extinction rates in British butterflies are similar to those in a range of other insect groups over 100 years once recording bias is accounted for, although probably lower than in aquatic or parasitic taxa. It is concluded that butterflies represent adequate indicators of change for many terrestrial insect groups, but recommended that similar schemes be extended to other popular groups, especially dragonflies, bumblebees

  8. Butterfly effects in reading? The relationship between decoding and ...

    African Journals Online (AJOL)

    Using the metaphor of butterfly effects, this paper considers how literacy inequalities in comprehension performance amongst Grade 6 learners in high poverty schools can be linked to skills that should have been developed in earlier stages of reading development. The reading comprehension skills of Grade 6 learners in ...

  9. Lounge Butterfly märgiti ära rahvusvaheliselt kõrgelt hinnatud erialaajakirjas

    Index Scriptorium Estoniae

    2011-01-01

    Ülevaade erialaajakirjas "Drinks International" ilmunud artiklist, mis hindab Lounge Butterfly'd paremuselt Baltimaade teiseks joogikohaks ning joogikoha rahvusvahelistel võistlustel auhindu noppinud barmenidest-omanikest

  10. Geographic variation in ultraviolet reflectance of the wings of the female cabbage butterfly, Pieris rapae.

    Science.gov (United States)

    Obara, Yoshiaki; Ozawa, Gaku; Fukano, Yuya

    2008-11-01

    The British and Japanese subspecies of the cabbage butterfly, Pieris rapae , differ in terms of the UV reflectance of their wings ( Obara and Majerus, 2000 ). We studied the biogeographical distribution of the female cabbage butterfly having wings with UV reflectance around the Eurasian continent, and between Britain and Japan. For the study, we collected specimens from various locations. A gradient in the UV reflectance of the wings appears to exist along the west-east axis; reflectance was higher toward the east and reached a peak in butterflies in Japan. The UV-reflecting Japanese subspecies Pieris rapae crucivora was found exclusively along the east coast of the Eurasian continent. This suggests that the Japanese subspecies has evolved from a continental ancestor, with females having UV-absorbing wings. We discuss the results of our study with regard to the evolution and adaptive significance of UV coloration in the Japanese subspecies.

  11. Occurrence and host specificity of a neogregarine protozoan in four milkweed butterfly hosts (Danaus spp.).

    Science.gov (United States)

    Barriga, Paola A; Sternberg, Eleanore D; Lefèvre, Thierry; de Roode, Jacobus C; Altizer, Sonia

    2016-10-01

    Throughout their global range, wild monarch butterflies (Danaus plexippus) are infected with the protozoan Ophryocystis elektroscirrha (OE). In monarchs, OE infection reduces pupal eclosion, adult lifespan, adult body size and flight ability. Infection of other butterfly hosts with OE is rare or unknown, and the only previously published records of OE infection were on monarch and queen butterflies (D. gilippus). Here we explored the occurrence and specificity of OE and OE-like parasites in four Danaus butterfly species. We surveyed wild D. eresimus (soldier), D. gilippus (queen), D. petilia (lesser wanderer), and D. plexippus (monarch) from five countries to determine the presence of infection. We conducted five cross-infection experiments, on monarchs and queen butterflies and their OE and OE-like parasites, to determine infection probability and the impact of infection on their hosts. Our field survey showed that OE-like parasites were present in D. gilippus, D. petilia, and D. plexippus, but were absent in D. eresimus. Infection probability varied geographically such that D. gilippus and D. plexippus populations in Puerto Rico and Trinidad were not infected or had low prevalence of infection, whereas D. plexippus from S. Florida and Australia had high prevalence. Cross-infection experiments showed evidence for host specificity, in that OE strains from monarchs were more effective at infecting monarchs than queens, and monarchs were less likely to be infected by OE-like strains from queens and lesser wanderers relative to their own natal strains. Our study showed that queens are less susceptible to OE and OE-like infection than monarchs, and that the reduction in adult lifespan following infection is more severe in monarchs than in queens. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Hot summers, long life: egg laying strategies of Maniola butterflies are affected by geographic provenance rather than adult diet

    NARCIS (Netherlands)

    Grill, A.; Cerny, A.; Fiedler, K.

    2013-01-01

    Maniola butterflies undergo summer dormancy in dry and hot habitats and deposit their eggs only in early autumn when conditions become more favourable for their offspring. Female individuals of this genus are therefore relatively long-lived. For long-lived butterflies adult diet is of particular

  13. Comparison of butterfly diversity in forested area and oil palm plantation

    Directory of Open Access Journals (Sweden)

    YANTO SANTOSA

    2017-03-01

    Full Text Available Abstrak. Santosa Y, Purnamasari I, Wahyuni I. 2017. Comparison of butterfly diversity in forested area and oil palm plantation. Pros Sem Nas Masy Biodiv Indon 7: 104-109. Land use change from the forested area into oil palm monoculture plantations was suspected to have reduced the number of biodiversities, including butterfly. In addressing such issues, this research was conducted from March to April 2016 in PT. Mitra Unggul Pusaka oil palm plantation of Riau Province and the forest area around the plantation. Data were collected from secondary forest and High Conservation Value representing forest areas, and oil palm plantations representing non-forest areas (young-growth oil palm and old-growth oil palm simultaneously using 3 repetitions with time search method for 3 hours (8-10 pm. The results showed that there were 30 species (117 individuals found belonging to five families, i.e.: Papilionidae (3 species, Nymphalidae (17 species, Pieridae (5 species, Lycaenidae (4 species, and Hesperidae (1 species. Species richness was greater in a forested area (Dmg=7.35 than in non-forested areas (Dmg=3.16. Based on the Similarity Index, 50% of the species in forested area were also found in non-forested areas. Therefore, it could be concluded that butterfly diversity in forested areas was higher than non-forested areas (oil palms.

  14. Endangered Butterflies as a Model System for Managing Source Sink Dynamics on Department of Defense Lands

    Science.gov (United States)

    used three species of endangered butterflies as a model system to rigorously investigate the source-sink dynamics of species being managed on military...lands. Butterflies have numerous advantages as models for source-sink dynamics , including rapid generation times and relatively limited dispersal, but...they are subject to the same processes that determine source-sink dynamics of longer-lived, more vagile taxa.1.2 Technical Approach: For two of our

  15. The seasonality of butterflies in a semi-evergreen forest: Gibbon Wildlife Sanctuary, Assam, northeastern India

    Directory of Open Access Journals (Sweden)

    Arun P. Singh

    2015-01-01

    Full Text Available A study spanning 3.7 years on the butterflies of Gibbon Wildlife Sanctuary GWS (21km2, a semi-evergreen forest, in Jorhat District of Assam, northeastern India revealed 211 species of butterflies belonging to 115 genera including 19 papilionids and seven ‘rare’ and ‘very rare’ species as per Evans list of the Indian sub-continent (Great Blue Mime Papilio paradoxa telearchus; Brown Forest BobScobura woolletti; Snowy Angle Darpa pteria dealbatahas; Constable Dichorragia nesimachus; Grey Baron Euthalia anosia anosia; Sylhet Oakblue Arhopala silhetensis; Branded Yamfly Yasoda tripunctata. The butterflies showed a strong seasonality pattern in this forest with only one significant peak during the post monsoon (September-October when 118 species were in flight inside the forest which slowly declined to 92 species in November-December. Another peak (102 species was visible after winter from March to April. Species composition showed least similarity between pre-monsoon (March-May and post-monsoon (October-November seasons. The number of papilionid species were greater from July to December as compared from January to June. The findings of this study suggest that the pattern of seasonality in a semi-evergreen forest in northeastern India is distinct from that of the sub-tropical lowland forest in the Himalaya. Favourable logistics and rich diversity in GWS points to its rich potential in promoting ‘butterfly inclusive ecotourism’ in this remnant forest.

  16. Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America

    Science.gov (United States)

    Flockhart, D. T. Tyler; Wassenaar, Leonard I.; Martin, Tara G.; Hobson, Keith A.; Wunder, Michael B.; Norris, D. Ryan

    2013-01-01

    Insect migration may involve movements over multiple breeding generations at continental scales, resulting in formidable challenges to their conservation and management. Using distribution models generated from citizen scientist occurrence data and stable-carbon and -hydrogen isotope measurements, we tracked multi-generational colonization of the breeding grounds of monarch butterflies (Danaus plexippus) in eastern North America. We found that monarch breeding occurrence was best modelled with geographical and climatic variables resulting in an annual breeding distribution of greater than 12 million km2 that encompassed 99% occurrence probability. Combining occurrence models with stable isotope measurements to estimate natal origin, we show that butterflies which overwintered in Mexico came from a wide breeding distribution, including southern portions of the range. There was a clear northward progression of monarchs over successive generations from May until August when reproductive butterflies began to change direction and moved south. Fifth-generation individuals breeding in Texas in the late summer/autumn tended to originate from northern breeding areas rather than regions further south. Although the Midwest was the most productive area during the breeding season, monarchs that re-colonized the Midwest were produced largely in Texas, suggesting that conserving breeding habitat in the Midwest alone is insufficient to ensure long-term persistence of the monarch butterfly population in eastern North America. PMID:23926146

  17. Butterflies (Lepidoptera: Papilionoidea and Hesperoidea) and other protected fauna of Jones Estate, a dying watershed in the Kumaon Himalaya, Uttarakhand, India

    OpenAIRE

    P. Smetacek

    2012-01-01

    Two hundred and forty three species of butterflies recorded from Jones Estate, Uttarakhand between 1951 and 2010 are reported. The ongoing rapid urbanization of Jones Estate micro-watershed will destroy the habitat of 49 species of wildlife protected under Indian law, as well as several species of narrow endemic moths and butterflies. The only known Indian habitat for the butterfly Lister’s Hairstreak Pamela dudgeoni will be destroyed. The effect on the water flow of both the Bhimtal and Sa...

  18. Wing coloration and pigment gradients in scales of pierid butterflies

    NARCIS (Netherlands)

    Giraldo, Marco A.; Stavenga, Doekele G.

    Depending on the species, the individual scales of butterfly wings have a longitudinal gradient in structure and reflectance properties, as shown by scanning electron microscopy and microspectrophotometry. White scales of the male Small White, Pieris rapae crucivora, show a strong gradient in both

  19. Butterfly Optics Exceed the Theoretical Limits of Conventional Apposition Eyes

    NARCIS (Netherlands)

    Hateren, J.H. van; Nilsson, D.-E.

    1987-01-01

    Optical experiments on butterfly compound eyes show that they have angular sensitivities narrower than expected from conventional apposition eyes. This superior performance is explained by a theoretical model where the cone stalk is considered as a modecoupling device. In this model the Airy

  20. Butterfly adrenal gland with maldevelopment of the mesonephric duct: A rare association in an adult patient

    Directory of Open Access Journals (Sweden)

    Nur Hursoy, MD

    2018-04-01

    Full Text Available Adrenal gland disorders can be asymptomatic and detected incidentally via imaging techniques such as ultrasound, computed tomography (CT, positron emission tomography, and magnetic resonance imaging. Fusion anomaly is a condition that can be attributed to errors in the developmental process and may be detected via these imaging modalities. We present a case of butterfly adrenal gland in a 61-year-old man with CT and magnetic resonance images. In our patient, this anomaly is also accompanied by unilateral renal agenesis and a diaphragmatic defect. Positron emission tomography-CT, contrast-enhanced CT, and magnetic resonance images are presented. To the best of our knowledge, this is the second case in which coexistence of unilateral renal agenesis and butterfly adrenal gland anomaly in an adult patient has been documented. Keywords: Butterfly adrenal gland, Unilateral renal agenesis

  1. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers

    Science.gov (United States)

    Zhang, Sichao; Chen, Yifang

    2015-11-01

    The bright and iridescent blue color from Morpho butterfly wings has attracted worldwide attentions to explore its mysterious nature for long time. Although the physics of structural color by the nanophotonic structures built on the wing scales has been well established, replications of the wing structure by standard top-down lithography still remains a challenge. This paper reports a technical breakthrough to mimic the blue color of Morpho butterfly wings, by developing a novel nanofabrication process, based on electron beam lithography combined with alternate PMMA/LOR development/dissolution, for photonic structures with aligned lamellae multilayers in colorless polymers. The relationship between the coloration and geometric dimensions as well as shapes is systematically analyzed by solving Maxwell’s Equations with a finite domain time difference simulator. Careful characterization of the mimicked blue by spectral measurements under both normal and oblique angles are carried out. Structural color in blue reflected by the fabricated wing scales, is demonstrated and further extended to green as an application exercise of the new technique. The effects of the regularity in the replicas on coloration are analyzed. In principle, this approach establishes a starting point for mimicking structural colors beyond the blue in Morpho butterfly wings.

  2. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers.

    Science.gov (United States)

    Zhang, Sichao; Chen, Yifang

    2015-11-18

    The bright and iridescent blue color from Morpho butterfly wings has attracted worldwide attentions to explore its mysterious nature for long time. Although the physics of structural color by the nanophotonic structures built on the wing scales has been well established, replications of the wing structure by standard top-down lithography still remains a challenge. This paper reports a technical breakthrough to mimic the blue color of Morpho butterfly wings, by developing a novel nanofabrication process, based on electron beam lithography combined with alternate PMMA/LOR development/dissolution, for photonic structures with aligned lamellae multilayers in colorless polymers. The relationship between the coloration and geometric dimensions as well as shapes is systematically analyzed by solving Maxwell's Equations with a finite domain time difference simulator. Careful characterization of the mimicked blue by spectral measurements under both normal and oblique angles are carried out. Structural color in blue reflected by the fabricated wing scales, is demonstrated and further extended to green as an application exercise of the new technique. The effects of the regularity in the replicas on coloration are analyzed. In principle, this approach establishes a starting point for mimicking structural colors beyond the blue in Morpho butterfly wings.

  3. Reverse altitudinal cline in cold hardiness among Erebia butterflies

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Konvička, Martin; Nedvěd, Oldřich

    2012-01-01

    Roč. 33, č. 4 (2012), s. 251-258 ISSN 0143-2044 Grant - others:GA ČR(CZ) GAP505/10/1630; University of South Bohemia(CZ) 144/2010/100 Institutional support: RVO:60077344 Keywords : Alpine habitats * butterfly ecology * climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 0.837, year: 2012

  4. Immigration and emigration in the Sinai Baton Blue butterfly ...

    African Journals Online (AJOL)

    Thus, many estimates of rates of movement are indirect and incomplete, and there is little empirical knowledge of the factors affecting immigration and emigration. I studied intensively a local population of Sinai Baton Blue butterflies in a discrete habitat patch. The study lasted the entire adult flight period, and involved almost ...

  5. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies.

    Science.gov (United States)

    Siddique, Radwanul Hasan; Diewald, Silvia; Leuthold, Juerg; Hölscher, Hendrik

    2013-06-17

    Morpho butterflies are well-known for their iridescence originating from nanostructures in the scales of their wings. These optical active structures integrate three design principles leading to the wide angle reflection: alternating lamellae layers, "Christmas tree" like shape, and offsets between neighboring ridges. We study their individual effects rigorously by 2D FEM simulations of the nanostructures of the Morpho sulkowskyi butterfly and show how the reflection spectrum can be controlled by the design of the nanostructures. The width of the spectrum is broad (≈ 90 nm) for alternating lamellae layers (or "brunches") of the structure while the "Christmas tree" pattern together with a height offset between neighboring ridges reduces the directionality of the reflectance. Furthermore, we fabricated the simulated structures by e-beam lithography. The resulting samples mimicked all important optical features of the original Morpho butterfly scales and feature the intense blue iridescence with a wide angular range of reflection.

  6. Two component butterfly hysteresis in RuSr2EuCeCu2O1 ruthenocuprate

    International Nuclear Information System (INIS)

    Zivkovic, I.; Drobac, D.; Prester, M.

    2006-01-01

    We report detailed studies of the ac susceptibility butterfly hysteresis on the RuSr 2 EuCeCu 2 O 1 (Ru1222) ruthenocuprate compound. Two separate contributions to these hysteresis have been identified and studied. One contribution is ferromagnetic-like and is characterized by the coercive field maximum. Another contribution, represented by the so called inverted maximum, is related to the unusual inverted loops, unique feature of Ru1222 butterfly hysteresis. The different nature of the two identified magnetic contributions is proved by the different temperature dependences involved. By lowering the temperature the inverted peak gradually disappears while the coercive field slowly raises. If the maximum dc field for the hysteresis is increased, the size of the inverted part of the butterfly hysteresis monotonously grows while the position of the peak saturates. In reaching saturation exponential field dependence has been demonstrated to take place. At T = 78 K the saturation field is 42 Oe

  7. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces

    Science.gov (United States)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-08-01

    Researchers are continually inspired by living nature to solve complex challenges. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we present an overview of rice leaf and butterfly wing fluid drag and self-cleaning studies. In addition, we examine two other promising aquatic surfaces in nature known for such properties, including fish scales and shark skin. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of wettability, viscosity, and velocity. Liquid repellent coatings are utilized to recreate or combine various effects. Discussion is provided along with conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for applications in the medical, marine, and industrial fields.

  8. Differences in the Aerobic Capacity of Flight Muscles between Butterfly Populations and Species with Dissimilar Flight Abilities

    Science.gov (United States)

    Rauhamäki, Virve; Wolfram, Joy; Jokitalo, Eija; Hanski, Ilkka; Dahlhoff, Elizabeth P.

    2014-01-01

    Habitat loss and climate change are rapidly converting natural habitats and thereby increasing the significance of dispersal capacity for vulnerable species. Flight is necessary for dispersal in many insects, and differences in dispersal capacity may reflect dissimilarities in flight muscle aerobic capacity. In a large metapopulation of the Glanville fritillary butterfly in the Åland Islands in Finland, adults disperse frequently between small local populations. Individuals found in newly established populations have higher flight metabolic rates and field-measured dispersal distances than butterflies in old populations. To assess possible differences in flight muscle aerobic capacity among Glanville fritillary populations, enzyme activities and tissue concentrations of the mitochondrial protein Cytochrome-c Oxidase (CytOx) were measured and compared with four other species of Nymphalid butterflies. Flight muscle structure and mitochondrial density were also examined in the Glanville fritillary and a long-distance migrant, the red admiral. Glanville fritillaries from new populations had significantly higher aerobic capacities than individuals from old populations. Comparing the different species, strong-flying butterfly species had higher flight muscle CytOx content and enzymatic activity than short-distance fliers, and mitochondria were larger and more numerous in the flight muscle of the red admiral than the Glanville fritillary. These results suggest that superior dispersal capacity of butterflies in new populations of the Glanville fritillary is due in part to greater aerobic capacity, though this species has a low aerobic capacity in general when compared with known strong fliers. Low aerobic capacity may limit dispersal ability of the Glanville fritillary. PMID:24416122

  9. Hofstadter's Butterfly and Phase Transition of Checkerboard Superconducting Network in a Magnetic Field

    International Nuclear Information System (INIS)

    Hou Jingmin; Tian, Li-Jim

    2010-01-01

    We study the magnetic effect of the checkerboard superconducting wire network. Based on the de Gennes-Alexader theory, we obtain difference equations for superconducting order parameter in the wire network. Through solving these difference equations, we obtain the eigenvalues, linked to the coherence length, as a function of magnetic field. The diagram of eigenvalues shows a fractal structure, being so-called Hofstadter's butterfly. We also calculate and discuss the dependence of the transition temperature of the checkerboard superconducting wire network on the applied magnetic field, which is related to up-edge of the Hofstadter's butterfly spectrum. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. The Butterfly Effect on Peace Education

    Directory of Open Access Journals (Sweden)

    Evelyn Cerdas-Agüero

    2012-08-01

    Full Text Available The objective of this paper on peace education is to generate a reflection, through the metaphor of the butterfly effect, on the importance of educating for peace during the change process of human beings and society.  It proposes education for peace as a human right, an experience and learning process that is put into practice by human beings.  It aims at changing attitudes and actions to create harmonious relationships based on the respect and recognition of human rights, and the freedom and dignity of every person.

  11. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  12. Large butterfly valve design copes with out-of-round pipe

    International Nuclear Information System (INIS)

    Saar, R.P.

    1975-01-01

    Two 96 inch circulating water lines at the Trojan reactor were joined to butterfly valves which had to be distorted to conform to the badly out-of-round pipes. Bubble tight seating was achieved by positioning a flexible seat ring after the valve was installed

  13. sexual dimorphism and the problem of protandry in the butterfly ...

    Indian Academy of Sciences (India)

    The earlier mean adult emergence between males and females, protandry, has been well studied mathematically and in comparative studies. However, quantitative and evolutionary genetic research on protandry is scarce. The butterfly, Bicyclus anynana exhibits protandry and here we selected for each of the different ...

  14. Butterfly, Recurrence, and Predictability in Lorenz Models

    Science.gov (United States)

    Shen, B. W.

    2017-12-01

    Over the span of 50 years, the original three-dimensional Lorenz model (3DLM; Lorenz,1963) and its high-dimensional versions (e.g., Shen 2014a and references therein) have been used for improving our understanding of the predictability of weather and climate with a focus on chaotic responses. Although the Lorenz studies focus on nonlinear processes and chaotic dynamics, people often apply a "linear" conceptual model to understand the nonlinear processes in the 3DLM. In this talk, we present examples to illustrate the common misunderstandings regarding butterfly effect and discuss the importance of solutions' recurrence and boundedness in the 3DLM and high-dimensional LMs. The first example is discussed with the following folklore that has been widely used as an analogy of the butterfly effect: "For want of a nail, the shoe was lost.For want of a shoe, the horse was lost.For want of a horse, the rider was lost.For want of a rider, the battle was lost.For want of a battle, the kingdom was lost.And all for the want of a horseshoe nail."However, in 2008, Prof. Lorenz stated that he did not feel that this verse described true chaos but that it better illustrated the simpler phenomenon of instability; and that the verse implicitly suggests that subsequent small events will not reverse the outcome (Lorenz, 2008). Lorenz's comments suggest that the verse neither describes negative (nonlinear) feedback nor indicates recurrence, the latter of which is required for the appearance of a butterfly pattern. The second example is to illustrate that the divergence of two nearby trajectories should be bounded and recurrent, as shown in Figure 1. Furthermore, we will discuss how high-dimensional LMs were derived to illustrate (1) negative nonlinear feedback that stabilizes the system within the five- and seven-dimensional LMs (5D and 7D LMs; Shen 2014a; 2015a; 2016); (2) positive nonlinear feedback that destabilizes the system within the 6D and 8D LMs (Shen 2015b; 2017); and (3

  15. Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly.

    Science.gov (United States)

    Yoshioka, Shinya; Kinoshita, Shuichi

    2006-01-22

    A few species of Morpho butterflies have a distinctive white stripe pattern on their structurally coloured blue wings. Since the colour pattern of a butterfly wing is formed as a mosaic of differently coloured scales, several questions naturally arise: are the microstructures the same between the blue and white scales? How is the distinctive whiteness produced, structurally or by means of pigmentation? To answer these questions, we have performed structural and optical investigations of the stripe pattern of a butterfly, Morpho cypris. It is found that besides the dorsal and ventral scale layers, the wing substrate also has the corresponding stripe pattern. Quantitative optical measurements and analysis using a simple model for the wing structure reveal the origin of the higher reflectance which makes the white stripe brighter.

  16. Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method

    International Nuclear Information System (INIS)

    Xi Li-Ying; Chen Huan-Ming; Zheng Fu; Gao Hua; Tong Yang; Ma Zhi

    2015-01-01

    Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg–Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. (paper)

  17. A guide to the use of distance sampling to estimate abundance of Karner blue butterflies

    Science.gov (United States)

    Grundel, Ralph

    2015-01-01

    This guide is intended to describe the use of distance sampling as a method for evaluating the abundance of Karner blue butterflies at a location. Other methods for evaluating abundance exist, including mark-release-recapture and index counts derived from Pollard-Yates surveys, for example. Although this guide is not intended to be a detailed comparison of the pros and cons of each type of method, there are important preliminary considerations to think about before selecting any method for evaluating the abundance of Karner blue butterflies.

  18. Determination of Wolbachia Diversity in Butterflies from Western Ghats, India, by a Multigene Approach

    Science.gov (United States)

    Salunke, Bipinchandra K.; Salunkhe, Rahul C.; Dhotre, Dhiraj P.; Walujkar, Sandeep A.; Khandagale, Avinash B.; Chaudhari, Rahul; Chandode, Rakesh K.; Ghate, Hemant V.; Patole, Milind S.; Werren, John H.

    2012-01-01

    Members of the genus Wolbachia are intracellular bacteria that are widespread in arthropods and establish diverse symbiotic associations with their hosts, ranging from mutualism to parasitism. Here we present the first detailed analyses of Wolbachia in butterflies from India with screening of 56 species. Twenty-nine species (52%) representing five families were positive for Wolbachia. This is the first report of Wolbachia infection in 27 of the 29 species; the other two were reported previously. This study also provides the first evidence of infection in the family Papilionidae. A striking diversity was observed among Wolbachia strains in butterfly hosts based on five multilocus sequence typing (MLST) genes, with 15 different sequence types (STs). Thirteen STs are new to the MLST database, whereas ST41 and ST125 were reported earlier. Some of the same host species from this study carried distinctly different Wolbachia strains, whereas the same or different butterfly hosts also harbored closely related Wolbachia strains. Butterfly-associated STs in the Indian sample originated by recombination and point mutation, further supporting the role of both processes in generating Wolbachia diversity. Recombination was detected only among the STs in this study and not in those from the MLST database. Most of the strains were remarkably similar in their wsp genotype, despite divergence in MLST. Only two wsp alleles were found among 25 individuals with complete hypervariable region (HVR) peptide profiles. Although both wsp and MLST show variability, MLST gives better separation between the strains. Completely different STs were characterized for the individuals sharing the same wsp alleles. PMID:22504801

  19. Structural colours of nickel bioreplicas of butterfly wings

    Science.gov (United States)

    Tolenis, Tomas; Swiontek, Stephen E.; Lakhtakia, Akhlesh

    2017-04-01

    The two-angle conformally evaporated-film-by-rotation technique (TA-CEFR) was devised to coat the wings of the monarch butterfly with nickel in order to form a 500-nm thick bioreplica thereof. The bioreplica exhibits structural colours that are completely obscured in actual wings by pigmental colours. Thus, the TA-CEFR technique provides a way to replicate, study and exploit hidden morphologies of biological surfaces.

  20. Zero-leakage shut-off butterflies for high-temperature applications; Dichtschliessende Absperrklappen fuer die Hochtemperaturtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Meier, N. [Krombach Armaturen, Kreuztal (Germany)

    2000-03-01

    Over many years, zero-leakage butterfly valves have eminently proven their capabilities in a large range of elevated-temperature and elevated-pressure processes. This article examines the basic design differences between various butterfly valves. These differences are, among other factors, important indicators of the suitability of the various valve types for their use in industry. (orig.) [German] Dichtschliessende Absperrklappen haben sich ueber Jahre in vielen Prozessen, die unter hoeherem Druck und hoeherer Temperatur ablaufen, bestens bewaehrt. Der Beitrag zeigt die grundsaetzlichen konstruktiven Unterschiede dichtschliessender Absperrklappen. Diese Unterschiede sind unter anderem Indikatoren fuer die Prozesstauglichkeit von Absperrklappen in der Industrie. (orig.)

  1. Anthropogenic changes in sodium affect neural and muscle development in butterflies

    Science.gov (United States)

    Snell-Rood, Emilie C.; Espeset, Anne; Boser, Christopher J.; White, William A.; Smykalski, Rhea

    2014-01-01

    The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5–30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates. PMID:24927579

  2. Fukushima's biological impacts: the case of the pale grass blue butterfly.

    Science.gov (United States)

    Taira, Wataru; Nohara, Chiyo; Hiyama, Atsuki; Otaki, Joji M

    2014-01-01

    To evaluate the effects of the Fukushima nuclear accident on the surrounding area, we studied the pale grass blue butterfly Zizeeria maha, the most common butterfly in Japan. We here review our important findings and their implications. We found forewing size reduction, growth retardation, high mortality rates, and high abnormality rates in the field and reared samples. The abnormality rates observed in September 2011 were higher than those observed in May 2011 in almost all localities, implying transgenerational accumulation of genetic damage. Some of the abnormal traits in the F1 generation were inherited by the F2 generation. In a particular cross, the F2 abnormality rate scored 57%. The forewing size reduction and high mortality and abnormality rates were reproduced in external and internal exposure experiments conducted in our laboratory using Okinawa larvae. We observed the possible real-time evolution of radiation resistance in the Fukushima butterflies, which, in retrospect, indicates that field sampling attempts at the very early stages of such accidents are required to understand the ecodynamics of polluted regions. We propose, as the postulates of pollutant-induced biological impacts, that the collection of phenotypic data from the field and their relevant reproduction in the laboratory should be the basis of experimental design to demonstrate the biological effects of environmental pollutants and to investigate the molecular mechanisms responsible for these effects. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Anthropogenic changes in sodium affect neural and muscle development in butterflies.

    Science.gov (United States)

    Snell-Rood, Emilie C; Espeset, Anne; Boser, Christopher J; White, William A; Smykalski, Rhea

    2014-07-15

    The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5-30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates.

  4. Butterfly diversity in Obafemi Awolowo University, Ile Ife, South-west ...

    African Journals Online (AJOL)

    Butterfly diversity on Obafemi Awolowo University, Ile Ife, was investigated by the use of sweep nets along transects in different sites. The sites include; Parks and Gardens, Zoological Garden, Oxidation Pond, Botanical Garden, Teaching and Research Farm, New Bukkateria and open fields. Data was analyzed with ...

  5. Butterfly Chronicles: Imagination and Desire in Natural & Literary Histories

    Science.gov (United States)

    MacRae, Ian J.

    2008-01-01

    Fragile, ethereal, beautiful, the butterfly is at the same time decidedly strange in appearance. They are without mandibles, unlike most insects, but sport instead a proboscis, sometimes one and a half times their body length, which they use to drink liquids as if through a straw. They have large, compound eyes, tiny nails or claws, and strange…

  6. Quantum Hall effect of massless Dirac fermions and free fermions in Hofstadter's butterfly

    International Nuclear Information System (INIS)

    Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao

    2016-01-01

    We propose a new physical interpretation of the Diophantine equation of σ xy for the Hofstadter problem. First, we divide the energy spectrum, or Hofstadter's butterfly, into smaller self-similar areas called 'subcells', which were first introduced by Hofstadter to describe the recursive structure. We find that in the energy gaps between subcells, there are two ways to account for the quantization rule of σ xy , that are consistent with the Diophantine equation: Landau quantization of (1) massless Dirac fermions or (2) free fermions in Hofstadter's butterfly. (author)

  7. SPECIES DIVERSITY AND COMMUNITY STRUCTURE OF FRUIT-FEEDING BUTTERFLIES (LEPIDOPTERA: NYMPHALIDAE IN AN EASTERN AMAZONIAN FOREST

    Directory of Open Access Journals (Sweden)

    LUCAS PEREIRA MARTINS

    Full Text Available ABSTRACT Deforestation has negative impacts on diversity and community patterns of several taxa. In the eastern Amazon, where much deforestation is predicted for the coming years, forests patches may be essential to maintain the local biodiversity. Despite increasing concerns about the conservation of threatened areas, few studies have been performed to analyze the communities of diversified groups, such as insects, in the eastern Amazon. Here, we investigated species diversity and community structure of fruit-feeding butterflies, a well-known bioindicator group, in a threatened remnant of an eastern Amazonian forest located on Maranhão Island, northeastern Brazil. Fruit-feeding butterflies were sampled monthly for one year. Diversity and evenness indices, richness estimators, rarefaction curve, and rank-abundance plot were used to describe community structure in the study area. We captured 529 fruit-feeding butterflies in four subfamilies, 23 genera and 34 species. The three most abundant species, Hamadryas februa, Hamadryas feronia, and Hermeuptychia cf. atalanta are indicators of disturbed habitats and represented more than half of the collected individuals. Richness estimators revealed that between 87 and 94% of the fruit-feeding butterfly species were sampled, suggesting few additional records would be made for the area. Our results indicate that human-caused disturbances have altered local community patterns and provide baseline data for future research in threatened regions of the eastern Amazon.

  8. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies.

    Science.gov (United States)

    Finkbeiner, Susan D; Briscoe, Adriana D; Mullen, Sean P

    2017-04-01

    Adaptive radiation is characterized by rapid diversification that is strongly associated with ecological specialization. However, understanding the evolutionary mechanisms fueling adaptive diversification requires a detailed knowledge of how natural selection acts at multiple life-history stages. Butterflies within the genus Adelpha represent one of the largest and most diverse butterfly lineages in the Neotropics. Although Adelpha species feed on an extraordinary diversity of larval hosts, convergent evolution is widespread in this group, suggesting that selection for mimicry may contribute to adaptive divergence among species. To investigate this hypothesis, we conducted predation studies in Costa Rica using artificial butterfly facsimiles. Specifically, we predicted that nontoxic, palatable Adelpha species that do not feed on host plants in the family Rubiaceae would benefit from sharing a locally convergent wing pattern with the presumably toxic Rubiaceae-feeding species via reduced predation. Contrary to expectations, we found that the presumed mimic was attacked significantly more than its locally convergent model at a frequency paralleling attack rates on both novel and palatable prey. Although these data reveal the first evidence for protection from avian predators by the supposed toxic, Rubiaceae-feeding Adelpha species, we conclude that imprecise mimetic patterns have high costs for Batesian mimics in the tropics. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  9. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes

    Directory of Open Access Journals (Sweden)

    Kentaro Arikawa

    2017-11-01

    Full Text Available Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd, specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved.

  10. Contrasting supercooling ability in lowland and mountain European Colias butterflies

    Czech Academy of Sciences Publication Activity Database

    Vrba, P.; Nedvěd, Oldřich; Konvička, Martin

    2014-01-01

    Roč. 49, č. 1 (2014), s. 63-69 ISSN 0749-8004 Grant - others:GA ČR(CZ) GAP505/10/1630; GA JU(CZ) 144/2010/100 Institutional support: RVO:60077344 Keywords : butterfly ecology * diapause * frost survival Subject RIV: EH - Ecology, Behaviour Impact factor: 0.512, year: 2014

  11. Color-pattern evolution in response to environmental stress in butterflies

    Directory of Open Access Journals (Sweden)

    Atsuki eHiyama

    2012-02-01

    Full Text Available It is generally accepted that butterfly wing color patterns have ecological and behavioral functions that evolved through natural selection. However, particular wing color patterns may physiologically be produced in response to environmental stress without significant function. These patterns would represent an extreme expression of phenotypic plasticity and can eventually be fixed genetically in a population. Here, three such cases in butterflies are concisely reviewed and their possible mechanisms of genetic assimilation are discussed. First, certain modified color pattern of Vanessa indica induced by temperature treatments resembles the natural color patterns of its closely related species of the genus Vanessa (sensu stricto. Second, a different type of color-pattern modification can be induced in Vanessa cardui as a result of a general stress response, which is very similar to the natural color pattern of its sister species Vanessa kershawi. Third, a field observation was reported, together with experimental support, to show that the color-pattern diversity of a regional population of Zizeeria maha increased at the northern range margin of this species in response to temperature stress. In these three cases, modified color patterns are unlikely to have significant functions, and these cases suggest that phenotypic plasticity plays an important role in butterfly wing color-pattern evolution. A neutral or non-functional trait can be assimilated genetically if it is linked, like a parasitic trait, with another functional trait. In addition, it is possible that environmental stress causes epigenetic modifications of genes related to color patterns and that their transgenerational inheritance facilitates the process of genetic assimilation of a neutral or non-functional trait.

  12. High specialisation in the pollination system of Mandevilla tenuifolia (J.C. Mikan) Woodson (Apocynaceae) drives the effectiveness of butterflies as pollinators.

    Science.gov (United States)

    de Araújo, L D A; Quirino, Z G M; Machado, I C

    2014-09-01

    Butterfly pollination in the tropics is considered somewhat effective or solely effective in a few plant species. In the present study, we tested the hypothesis that Mandevilla tenuifolia (Apocynaceae), which has floral attributes associated with psychophily, has strategies adapted to pollination by butterflies, restricting other floral visitors and making these insects act as efficient pollinators. We analysed the floral and reproductive biology of M. tenuifolia, as well as the frequency and efficiency of its flower visitors. M. tenuifolia is an herb whose flowers have strong herkogamy and secondary pollen presentation on the style head, which corresponds to 60.4% of pollen on the anthers. Flower longevity and the long period of receptivity of the stigmatic region associated with the large amount of pollen removed in the first visits suggest that flowers remain functionally female during part of anthesis. Butterflies, mainly of the families Nymphalidae and Pieridae, are the only pollinators of M. tenuifolia. Despite being self-compatible, M. tenuifolia depends on biotic vectors for fruit production. A non-significant difference in fruit set between controlled treatments and natural conditions suggests that the pollinators are efficient. The inclination resulting from the landing of butterflies on flowers, together with flower morphology, guiding the insect proboscis inside the floral tube, as well as the frequency and efficiency of butterfly visits, are evidence of the close relationship between butterflies and M. tenuifolia, and also of the efficiency of these insects as pollinators. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Assessing Impact Direction in 3-point Bending of Human Femora: Incomplete Butterfly Fractures and Fracture Surfaces,.

    Science.gov (United States)

    Isa, Mariyam I; Fenton, Todd W; Deland, Trevor; Haut, Roger C

    2018-01-01

    Current literature associates bending failure with butterfly fracture, in which fracture initiates transversely at the tensile surface of a bent bone and branches as it propagates toward the impact surface. The orientation of the resulting wedge fragment is often considered diagnostic of impact direction. However, experimental studies indicate bending does not always produce complete butterfly fractures or produces wedge fragments variably in tension or compression, precluding their use in interpreting directionality. This study reports results of experimental 3-point bending tests on thirteen unembalmed human femora. Complete fracture patterns varied following bending failure, but incomplete fractures and fracture surface characteristics were observed in all impacted specimens. A flat, billowy fracture surface was observed in tension, while jagged, angular peaks were observed in compression. Impact direction was accurately reconstructed using incomplete tension wedge butterfly fractures and tension and compression fracture surface criteria in all thirteen specimens. © 2017 American Academy of Forensic Sciences.

  14. Varying and unchanging whiteness on the wings of dusk-active and shade-inhabiting Carystoides escalantei butterflies.

    Science.gov (United States)

    Ge, Dengteng; Wu, Gaoxiang; Yang, Lili; Kim, Hye-Na; Hallwachs, Winnie; Burns, John M; Janzen, Daniel H; Yang, Shu

    2017-07-11

    Whiteness, although frequently apparent on the wings, legs, antennae, or bodies of many species of moths and butterflies, along with other colors and shades, has often escaped our attention. Here, we investigate the nanostructure and microstructure of white spots on the wings of Carystoides escalantei , a dusk-active and shade-inhabiting Costa Rican rain forest butterfly (Hesperiidae). On both males and females, two types of whiteness occur: angle dependent (dull or bright) and angle independent, which differ in the microstructure, orientation, and associated properties of their scales. Some spots on the male wings are absent from the female wings. Whether the angle-dependent whiteness is bright or dull depends on the observation directions. The angle-dependent scales also show enhanced retro-reflection. We speculate that the biological functions and evolution of Carystoides spot patterns, scale structures, and their varying whiteness are adaptations to butterfly's low light habitat and to airflow experienced on the wing base vs. wing tip.

  15. Milkweed Matters: Monarch Butterfly (Lepidoptera: Nymphalidae) Survival and Development on Nine Midwestern Milkweed Species.

    Science.gov (United States)

    Pocius, V M; Debinski, D M; Pleasants, J M; Bidne, K G; Hellmich, R L; Brower, L P

    2017-10-01

    The population of monarch butterflies east of the Rocky Mountains has experienced a significant decline over the past 20 yr. In order to increase monarch numbers in the breeding range, habitat restoration that includes planting milkweed plants is essential. Milkweeds in the genus Asclepias and Cynanchum are the only host plants for larval monarch butterflies in North America, but larval performance and survival across nine milkweeds native to the Midwest is not well documented. We examined development and survival of monarchs from first-instar larval stages to adulthood on nine milkweed species native to Iowa. The milkweeds included Asclepias exaltata (poke milkweed) (Gentianales: Apocynaceae), Asclepias hirtella (tall green milkweed) (Gentianales: Apocynaceae), Asclepias incarnata (swamp milkweed) (Gentianales: Apocynaceae), Asclepias speciosa (showy milkweed) (Gentianales: Apocynaceae), Asclepias sullivantii (prairie milkweed) (Gentianales: Apocynaceae), Asclepias syriaca (common milkweed) (Gentianales: Apocynaceae), Asclepias tuberosa (butterfly milkweed) (Gentianales: Apocynaceae), Asclepias verticillata (whorled milkweed) (Gentianales: Apocynaceae), and Cynanchum laeve (honey vine milkweed) (Gentianales: Apocynaceae). In greenhouse experiments, fewer larvae that fed on Asclepias hirtella and Asclepias sullivantii reached adulthood compared with larvae that fed on the other milkweed species. Monarch pupal width and adult dry mass differed among milkweeds, but larval duration (days), pupal duration (days), pupal mass, pupal length, and adult wet mass were not significantly different. Both the absolute and relative adult lipids were different among milkweed treatments; these differences are not fully explained by differences in adult dry mass. Monarch butterflies can survive on all nine milkweed species, but the expected survival probability varied from 30 to 75% among the nine milkweed species. © The Author 2017. Published by Oxford University Press on behalf

  16. Butterflies (Lepidoptera: Papilionoidea and Hesperioidea visiting flowers in the Botanical Garden of the Federal University of Santa Maria, Santa Maria, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Beatriz Barros de Morais

    2008-12-01

    Full Text Available Urban environments, such as parks and gardens, may offer many alimentary resources, besides shelter and favorable conditions, for butterfly survival. This study aimed to make an inventory of butterflies visiting flowers in the Botanical Garden of the Federal University of Santa Maria (UFSM. From March 2006 to March 2007, the floral visitors were observed weekly for 2h. After 108 hours’ observations, 1114 visits by 39 butterfly species, associated with 43 plant species (21 families, were confirmed. Among the butterflies, Nymphalidae had the highest richness of species (S= 18, followed by Hesperiidae (S= 8, Pieridae (S= 7, Papilionidae (S= 4 and Lycaenidae (S= 2. The pierid Phoebis philea philea was the most frequent species (188 visits, followed by hesperiids Urbanus proteus proteus (100, U. teleus (73 and the nymphalid Heliconius erato phyllis (71. Lantana camara (Verbenaceae, Eupatorium laevigatum (Asteraceae, Russelia equisetiformis (Scrophulariaceae and Stachytarpheta cayennensis (Verbenaceae were the most visited plants. The Botanical Garden of UFSM is an example of an urban park that seems to provide floral resources for the feeding of many butterfly species, being also a potential refuge for species from forest areas nearby.

  17. Magnetron sputtering in the creation of photonic nanostructures derived from Sasakia Charonda Formosana-butterfly wings for applied in dye-sensitized solar cells

    Science.gov (United States)

    Niu, Haihong; Zhou, Ru; Cheng, Cong; Zhang, Gonghai; Hu, Yu; Huang, Bin; Zhang, Shouwei; Shang, Xin; Xia, Mei; Xu, Jinzhang

    2016-09-01

    Creating new functional materials derived from the structures seen on butterfly wings has achieved interest in a variety of research topics. However, there need a concision approach could result in a high-quality, precise, and convenient process for the fabrication of complex nanostructures replication with unique functionalities based on the butterfly wings. Here we developed a pithy approach based on a magnetron sputtering metal Ti process for biotemplating used to refine hierarchically porous titanium dioxide photonic crystal nanostructures (TiO2sbnd PCN), themselves derived from nanostructures present on the wings of Sasakia Charonda Formosana (S. Charonda) butterflies. For the first time, the TiO2sbnd PCN were deposited on the top of the P25 active layer and were used to fabricate DSSCs as the light-scattering layers of photoanodes with power conversion efficiencies of up to 8.7%. Remarkably, a much enhanced photocurrent density and a prominent photoelectrochemical conversion capability have been achieved, which are exceeding most of the previously reported photoanodes as well as a similar butterflies replication-based device structure. Our study suggests many exciting opportunities of developing artificially engineered butterfly wing-based solar-to-fuel conversion.

  18. Water Stress Affects Development Time but Not Takeoff Performance in the Butterfly Pararge aegeria.

    Science.gov (United States)

    Lailvaux, Simon P; Breuker, Casper J; Van Damme, Raoul

    Most organisms are limited in the amount and type of resources they are able to extract from the environment. The juvenile environment is particularly important in this regard, as conditions over ontogeny can influence the adult phenotype. Whole-organism performance traits, such as locomotion, are susceptible to such environmental effects, yet the specific biotic and abiotic factors driving performance plasticity have received little attention. We tested whether speckled wood Pararge aegeria L. butterflies reared under conditions of water stress exhibited poorer flight morphology and performance than control individuals. Despite large differences in mortality between treatments, we found no effects of water stress treatment on takeoff performance and only minor treatment effects on flight morphology. However, butterflies reared on water-stressed diets exhibited both significantly greater mortality and longer development times than did control individuals. Pararge aegeria larvae may compensate for this stress by prolonging development, resulting in similar realized performance capacities at least in takeoff performance in surviving adult butterflies; other measures of flight performance remain to be considered. Alternatively, the adult phenotype may be insulated from environmental effects at the larval stage in these insects.

  19. Behavioural thermoregulation and the relative roles of convection and radiation in a basking butterfly.

    Science.gov (United States)

    Barton, Madeleine; Porter, Warren; Kearney, Michael

    2014-04-01

    Poikilothermic animals are often reliant on behavioural thermoregulation to elevate core-body temperature above the temperature of their surroundings. Butterflies are able to do this by altering body posture and location while basking, however the specific mechanisms that achieve such regulation vary among species. The role of the wings has been particularly difficult to describe, with uncertainty surrounding whether they are positioned to reduce convective heat loss or to maximise heat gained through radiation. Characterisation of the extent to which these processes affect core-body temperature will provide insights into the way in which a species׳ thermal sensitivity and morphological traits have evolved. We conducted field and laboratory measurements to assess how basking posture affects the core-body temperature of an Australian butterfly, the common brown (Heteronympha merope). We show that, with wings held open, heat lost through convection is reduced while heat gained through radiation is simultaneously maximised. These responses have been incorporated into a biophysical model that accurately predicts the core-body temperature of basking specimens in the field, providing a powerful tool to explore how climate constrains the distribution and abundance of basking butterflies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings.

    Science.gov (United States)

    Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei

    2014-02-25

    Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings.

  1. The significance of moment-of-inertia variation in flight manoeuvres of butterflies

    International Nuclear Information System (INIS)

    Lin, T; Zheng, L; Mittal, R; Hedrick, T

    2012-01-01

    The objective of this study is to understand the role that changes in body moment of inertia might play during flight manoeuvres of insects. High-speed, high-resolution videogrammetry is used to quantify the trajectory and body conformation of Painted Lady butterflies during flight manoeuvres; the 3D kinematics of the centre of masses of the various body parts of the insect is determined experimentally. Measurements of the mass properties of the insect are used to parameterize a simple flight dynamics model of the butterfly. Even though the mass of the flapping wings is small compared to the total mass of the insect, these experiments and subsequent analysis indicate that changes in moment of inertia during flight are large enough to influence the manoeuvres of these insects. (communication)

  2. The enigmatic fast leaflet rotation in Desmodium motorium: butterfly mimicry for defense?

    Science.gov (United States)

    Lev-Yadun, Simcha

    2013-06-01

    I propose that the enigmatic leaflet movements in elliptical circles every few minutes of the Indian telegraph (semaphore) plant Desmodium motorium ( = D. gyrans = Hedysarum gyrans = Codariocalyx motorius), which has intrigued scientists for centuries, is a new type of butterfly or general winged arthropod mimicry by this plant. Such leaflet movement may deceive a passing butterfly searching for an un-occupied site suitable to deposit its eggs, that the plant is already occupied. It may also attract insectivorous birds, reptiles or arthropods to the plant because it looks as if it is harboring a potential prey and while they patrol there, they can find insects or other invertebrates that indeed attack the plant. The possibility that diurnal mammalian herbivores may also be deterred by these movements should not be dismissed.

  3. An updated comprehensive annotated list of the butterflies (Lepidoptera: Rhopalocera) occuring at Sullys Hill National Game Preserve Benson County, North Dakota 1995-1996

    Science.gov (United States)

    Royer, Ron

    1996-01-01

    A project to produce a comprehensive, site-specific butterfly list that could serve as a basis for future monitoring of butterfly populations and as an aid in making management decisions for the area.

  4. Insect Pupil Mechanisms. II. Pigment Migration in Retinula Cells of Butterflies

    NARCIS (Netherlands)

    Stavenga, D.G.; Numan, J.A.J.; Tinbergen, J.; Kuiper, J.W.

    1977-01-01

    The hypothesis that the glow observable in dark adapted butterfly eyes is extinguished upon light adaptation by the action of migrating retinula cell pigment granules has been investigated. Experimental procedures applying optical methods to intact, living animals were similar to those used

  5. Dos and Don’ts for butterflies of the Habitats Directive of the European Union

    Directory of Open Access Journals (Sweden)

    Chris van Swaay

    2012-03-01

    Full Text Available Twenty-nine butterfly species are listed on the Annexes of the Habitats Directive. To assist everyone who wants or needs to take action for one of these species, we compiled an overview of the habitat requirements and ecology of each species, as well as information on their conservation status in Europe. This was taken from the recent Red List and their main biogeographical regions (taken from the first reporting on Article 17 of the Directive. Most important are the Dos and Don`ts, which summarize in a few bullet points what to do and what to avoid in order to protect and conserve these butterflies and their habitats.

  6. Nutrient acquisition across a dietary shift: fruit feeding butterflies crave amino acids, nectivores seek salt.

    Science.gov (United States)

    Ravenscraft, Alison; Boggs, Carol L

    2016-05-01

    Evolutionary dietary shifts have major ecological consequences. One likely consequence is a change in nutrient limitation-some nutrients become more abundant in the diet, others become more scarce. Individuals' behavior should change accordingly to match this new limitation regime: they should seek out nutrients that are deficient in the new diet. We investigated the relationship between diet and responses to nutrients using adult Costa Rican butterflies with contrasting feeding habits, testing the hypothesis that animals will respond more positively to nutrients that are scarcer in their diets. Via literature searches and our own data, we showed that nitrogen and sodium are both at lower concentration in nectar than in fruit. We therefore assessed butterflies' acceptance of sodium and four nitrogenous compounds that ranged in complexity from inorganic nitrogen (ammonium chloride) to protein (albumin). We captured wild butterflies, offered them aqueous solutions of each substance, and recorded whether they accepted (drank) or rejected each substance. Support for our hypothesis was mixed. Across the sexes, frugivores were four times more likely to accept amino acids (hydrolyzed casein) than nectivores, in opposition to expectation. In males, nectivores accepted sodium almost three times more frequently than frugivores, supporting expectations. Together, these results suggest that in butterflies, becoming frugivorous is associated with an increased receptivity to amino acids and decreased receptivity to sodium. Nectivory and frugivory are widespread feeding strategies in organisms as diverse as insects, birds, and bats; our results suggest that these feeding strategies may put different pressures on how animals fulfill their nutritional requirements.

  7. Autecology of the tailed jay butterfly Graphium agamemnon (Lepidoptera : Rhopalocera : Papilionidae).

    Science.gov (United States)

    Ramana, S P Venkata; Atluri, J B; Reddi, C Subba

    2003-07-01

    The Tailed Jay Graphium agamemnon is one of the attractive papilionid butterflies that enliven the environment of Visakhapatnam. It occurs throughout the year. It lays eggs singly on young leaves of the mast tree Polyalthia longifolia var. pendula (Annonaceae). The eggs take 3-4 days to hatch. The larvae go through 5 instars over a period of 15-16 days. The pupal period is 13-14 days. The total period from egg to adult emergence spans over 33-36 days. Based on this short life cycle, and larval and pupal development success studied every month, this butterfly can be multivoltine with a minimum of 7-8 broods in a year. Both CI and GR decreased with the age of larva, their average figures being 3.78 and 0.43 respectively. AD values are high (average 92%) and decreased through successive instars. Both ECD and ECI followed a similar pattern with an increase from instar I up to II, then a decrease up to IV and again an increase in instar V and the highest value is with fifth instar. Adults frequently visited flowers (12-35 flowers in a min) spending 1.0 to 3.2 seconds on a flower. The nectar concentration ranged between 16 and 58%. Peak foraging activity mostly fell between 0900-1000 h. The proboscis received pollen in most of the floral species visited, thus satisfying one of the characteristics of butterfly pollination. Being a fast and strong flier it is treated as "high energy" pollinator promoting cross-pollination.

  8. Chemical Safety Alert: Shaft Blow-Out Hazard of Check and Butterfly Valves

    Science.gov (United States)

    Certain types of check and butterfly valves can undergo shaft-disk separation and fail catastrophically, even when operated within their design limits of pressure and temperature, causing toxic/flammable gas releases, fires, and vapor cloud explosions.

  9. Some comments on the ‘Moist temperate forest butterflies of western Bhutan’

    Czech Academy of Sciences Publication Activity Database

    Irungbam, Jatishwor

    2016-01-01

    Roč. 8, č. 5 (2016), s. 8846-8848 ISSN 0974-7893 Institutional support: RVO:60077344 Keywords : forest butterflies * western Bhutan * comments Subject RIV: EG - Zoology http://threatenedtaxa.org/index.php/JoTT/article/view/2709

  10. A quantitative study of butterfly assemblages from different biotopes at the Langebaan Peninsula / Phillip Daniël Brummer.

    OpenAIRE

    Brummer, Phillip Daniël

    2009-01-01

    Lepidoptera (butterflies and moths) comprises a fairly well-studied invertebrate taxon. The body of knowledge that has been acquired, especially on butterflies, allows for more convincing assessments of the significance of species distributions, for example assessments of rarity and endemism. In spite of their taxonomically well-known status, little is known about the different ranges and limiting factors controlling habitat specificity amongst species at a local scale. Aiming at ensuring ...

  11. Butterflies of Uganda: Memories of a child soldier | Dahms | Scientia ...

    African Journals Online (AJOL)

    Scientia Militaria: South African Journal of Military Studies. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 40, No 2 (2012) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Butterflies of Uganda: Memories ...

  12. Tungstate-induced color-pattern modifications of butterfly wings are independent of stress response and ecdysteroid effect.

    Science.gov (United States)

    Otaki, Joji M; Ogasawara, Tsuyoshi; Yamamoto, Haruhiko

    2005-06-01

    Systemic injections of sodium tungstate, a protein-tyrosine phosphatase (PTPase) inhibitor, to pupae immediately after pupation have been shown to efficiently produce characteristic color-pattern modifications on the wings of many species of butterflies. Here we demonstrated that the tungstate-induced modification pattern was entirely different from other chemically-induced ones in a species of nymphalid butterfly Junonia (Precis) orithya. In this species, the systemic injections of tungstate produced characteristic expansion of black area and shrinkage of white area together with the move of parafocal elements toward the wing base. Overall, pattern boundaries became obscure. In contrast, an entirely different modification pattern, overall darkening of wings, was observed by the injections of stress-inducing chemicals, thapsigargin, ionomycin, or geldanamycin, to pupae under the rearing conditions for the adult summer form. On the ventral wings, this darkening was due to an increase of the proportion of peppered dark scales, which was reminiscent of the natural fall form of this species. Under the same rearing conditions, the injections of ecdysteroid, which is a well-known hormone being responsible for the seasonal polyphenism of nymphalid butterflies, yielded overall expansion of orange area especially around eyespots. Taken together, we conclude that the tungstate-induced modifications are clearly distinguishable from those of stress response and ecdysteroid effect. This conclusion then suggests that the putative PTPase signaling pathway that is sensitive to tungstate uniquely contributes to the wing-wide color-pattern development in butterflies.

  13. Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus

    Directory of Open Access Journals (Sweden)

    Andrew J. Mongue

    2017-10-01

    Full Text Available We report the discovery of a neo-sex chromosome in the monarch butterfly, Danaus plexippus, and several of its close relatives. Z-linked scaffolds in the D. plexippus genome assembly were identified via sex-specific differences in Illumina sequencing coverage. Additionally, a majority of the D. plexippus genome assembly was assigned to chromosomes based on counts of one-to-one orthologs relative to the butterfly Melitaea cinxia (with replication using two other lepidopteran species, in which genome scaffolds have been mapped to linkage groups. Sequencing coverage-based assessments of Z linkage combined with homology-based chromosomal assignments provided strong evidence for a Z-autosome fusion in the Danaus lineage, involving the autosome homologous to chromosome 21 in M. cinxia. Coverage analysis also identified three notable assembly errors resulting in chimeric Z-autosome scaffolds. Cytogenetic analysis further revealed a large W chromosome that is partially euchromatic, consistent with being a neo-W chromosome. The discovery of a neo-Z and the provisional assignment of chromosome linkage for >90% of D. plexippus genes lays the foundation for novel insights concerning sex chromosome evolution in this female-heterogametic model species for functional and evolutionary genomics.

  14. Host Diet Affects the Morphology of Monarch Butterfly Parasites.

    Science.gov (United States)

    Hoang, Kevin; Tao, Leiling; Hunter, Mark D; de Roode, Jacobus C

    2017-06-01

    Understanding host-parasite interactions is essential for ecological research, wildlife conservation, and health management. While most studies focus on numerical traits of parasite groups, such as changes in parasite load, less focus is placed on the traits of individual parasites such as parasite size and shape (parasite morphology). Parasite morphology has significant effects on parasite fitness such as initial colonization of hosts, avoidance of host immune defenses, and the availability of resources for parasite replication. As such, understanding factors that affect parasite morphology is important in predicting the consequences of host-parasite interactions. Here, we studied how host diet affected the spore morphology of a protozoan parasite ( Ophryocystis elektroscirrha ), a specialist parasite of the monarch butterfly ( Danaus plexippus ). We found that different host plant species (milkweeds; Asclepias spp.) significantly affected parasite spore size. Previous studies have found that cardenolides, secondary chemicals in host plants of monarchs, can reduce parasite loads and increase the lifespan of infected butterflies. Adding to this benefit of high cardenolide milkweeds, we found that infected monarchs reared on milkweeds of higher cardenolide concentrations yielded smaller parasites, a potentially hidden characteristic of cardenolides that may have important implications for monarch-parasite interactions.

  15. Detrimental effects of low atmospheric humidity and forest fire on a community of western Himalayan butterflies

    Directory of Open Access Journals (Sweden)

    P. Smetacek

    2011-04-01

    Full Text Available Compared to previous years, the period from October 2008 to March 2009 showed marked reductions in species number and population size in the butterfly community of the Maheshkhan Reserve Forest, Nainital District, Uttarakhand. Desiccation of pupae due to abnormally low atmospheric humidity after the failure of seasonal rains appears to have been a major cause of this reduction. The drop in humidity also appears to be linked to the unusual spread of fires affecting broadleaf forests, one of which in May 2009 wiped out the remaining Maheshkhan butterfly community.

  16. An updated comprehensive annotated list of the butterflies (Lepidoptera: Rhopalocera) occurring at Chase Lake National Wildlife Refuge Complex Stutsman County, North Dakota 1995-1996

    Science.gov (United States)

    Royer, Ron

    1996-01-01

    A project to produce a comprehensive, site-specific butterfly list that could serve as a basis for future monitoring of butterfly populations and as an aid in making management decisions for the area.

  17. Imaging optical scattering of butterfly wing scales with a microscope.

    Science.gov (United States)

    Fu, Jinxin; Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan

    2017-08-06

    A new optical method is proposed to investigate the reflectance of structurally coloured objects, such as Morpho butterfly wing scales and cholesteric liquid crystals. Using a reflected-light microscope and a digital single-lens reflex (DSLR) camera, we have successfully measured the two-dimensional reflection pattern of individual wing scales of Morpho butterflies. We demonstrate that this method enables us to measure the bidirectional reflectance distribution function (BRDF). The scattering image observed in the back focal plane of the objective is projected onto the camera sensor by inserting a Bertrand lens in the optical path of the microscope. With monochromatic light illumination, we quantify the angle-dependent reflectance spectra from the wing scales of Morpho rhetenor by retrieving the raw signal from the digital camera sensor. We also demonstrate that the polarization-dependent reflection of individual wing scales is readily observed using this method, using the individual wing scales of Morpho cypris . In an effort to show the generality of the method, we used a chiral nematic fluid to illustrate the angle-dependent reflectance as seen by this method.

  18. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies.

    Directory of Open Access Journals (Sweden)

    Gábor Piszter

    Full Text Available Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue and Plebejus argus (Silver-studded Blue use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence

  19. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies.

    Science.gov (United States)

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue) and Plebejus argus (Silver-studded Blue) use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species) was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence measurements and

  20. Changes in nectar supply: A possible cause of widespread butterfly decline

    NARCIS (Netherlands)

    Wallis de Vries, M.F.; Swaay, van C.A.M.; Plate, C.L.

    2012-01-01

    Recent studies have documented declining trends of various groups of flower-visiting insects, even common butterfly species. Causes of these declines are still unclear but the loss of habitat quality across the wider countryside is thought to be a major factor. Nectar supply constitutes one of the