Controller design for TS models using delayed nonquadratic Lyapunov functions.
Lendek, Zsofia; Guerra, Thierry-Marie; Lauber, Jimmy
2015-03-01
In the last few years, nonquadratic Lyapunov functions have been more and more frequently used in the analysis and controller design for Takagi-Sugeno fuzzy models. In this paper, we developed relaxed conditions for controller design using nonquadratic Lyapunov functions and delayed controllers and give a general framework for the use of such Lyapunov functions. The two controller design methods developed in this framework outperform and generalize current state-of-the-art methods. The proposed methods are extended to robust and H∞ control and α -sample variation.
Design of Connectivity Preserving Flocking Using Control Lyapunov Function
Directory of Open Access Journals (Sweden)
Bayu Erfianto
2016-01-01
Full Text Available This paper investigates cooperative flocking control design with connectivity preserving mechanism. During flocking, interagent distance is measured to determine communication topology of the flocks. Then, cooperative flocking motion is built based on cooperative artificial potential field with connectivity preserving mechanism to achieve the common flocking objective. The flocking control input is then obtained by deriving cooperative artificial potential field using control Lyapunov function. As a result, we prove that our flocking protocol establishes group stabilization and the communication topology of multiagent flocking is always connected.
Using Lyapunov function to design optimal controller for AQM routers
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; YE Cheng-qing; MA Xue-ying; CHEN Yan-hua; LI Xin
2007-01-01
It was shown that active queue management schemes implemented in the routers of communication networks supporting transmission control protocol (TCP) flows can be modelled as a feedback control system. In this paper based on Lyapunov function we developed an optimal controller to improve active queue management (AQM) router's stability and response time,which are often in conflict with each other in system performance. Ns-2 simulations showed that optimal controller outperforms PI controller significantly.
Control design and comprehensive stability analysis of acrobots based on Lyapunov functions
Institute of Scientific and Technical Information of China (English)
LAI Xu-zhi; WU Yun-xin; SHE Jin-hua; WU Min
2005-01-01
A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy so as to move the acrobot into the unstable inverted equilibrium position, and solve the problem of posture and energy. The concept of a non-smooth Lyapunov function is employed to analyze the stability of the whole system. The validity of this strategy is demonstrated by simulations.
Stabilization of Parametric Roll Resonance with Active U-Tanks via Lyapunov Control Design
DEFF Research Database (Denmark)
Holden, Christian; Galeazzi, Roberto; Fossen, Thor Inge;
2009-01-01
design of an active u-tank stabilizer is carried out using Lyapunov theory. A nonlinear backstepping controller is developed to provide global exponential stability of roll. An extension of commonly used u-tank models is presented to account for large roll angles, and the control design is tested via...
Lyapunov-based control designs for flexible-link manipulators
Juang, Jer-Nan; Huang, Jen-Kuang; Yang, Li-Farn
1989-01-01
A feedback controller for the stabilization of closed-loop systems is proposed which is based on the Liapunov stability criterion. A feedback control law is first generated for the linear portion of the system equation using linear control theory. A feedback control is then designed for the nonlinear portion of the system equation by making negative the time derivative of a positive definite Liapunov function.
Lyapunov-based control designs for flexible-link manipulators
Juang, Jer-Nan; Huang, Jen-Kuang; Yang, Li-Farn
1989-01-01
A feedback controller for the stabilization of closed-loop systems is proposed which is based on the Liapunov stability criterion. A feedback control law is first generated for the linear portion of the system equation using linear control theory. A feedback control is then designed for the nonlinear portion of the system equation by making negative the time derivative of a positive definite Liapunov function.
Direct Lyapunov-based control law design for spacecraft attitude maneuvers
Institute of Scientific and Technical Information of China (English)
HU Likun; ANG Qingchao
2006-01-01
A direct Lyapunov-based control law is presented to perform on-orbit stability for spacecraft attitude maneuvers. Spacecraft attitude kinematic equations and dynamic equations are coupled, nonlinear, multi-input multi-output(MIMO), which baffles controller design. Orbit angular rates are taken into account in kinematic equations and influence of gravity gradient moments and disturbance moments on the spacecraft attitude in dynamic equations is considered to approach the practical environment, which enhance the problem complexity to some extent. Based on attitude tracking errors and angular rates, a Lyapunov function is constructed, through which the stabilizing feedback control law is deduced via Lie derivation of the Lyapunov function. The proposed method can deal with the case that the spacecraft is subjected to mass property variations or centroidal inertia matrix variations due to fuel assumption or flexibility, and disturbance moments, which shows the proposed controller is robust for spacecraft attitude maneuvers. The unlimited controller and the limited controller are taken into account respectively in simulations. Simulation results are demonstrated to validate effectiveness and feasibility of the proposed method.
Passivity/Lyapunov based controller design for trajectory tracking of flexible joint manipulators
Sicard, Pierre; Wen, John T.; Lanari, Leonardo
1992-01-01
A passivity and Lyapunov based approach for the control design for the trajectory tracking problem of flexible joint robots is presented. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. Feedforward selection and solution is analyzed for a general model for flexible joints, and for more specific and practical model structures. Passivity theory is used to design a motor state-based controller in order to input-output stabilize the error system formed by the feedforward. Observability conditions for asymptotic stability are stated and verified. In order to accommodate for modeling uncertainties and to allow for the implementation of a simplified feedforward compensation, the stability of the system is analyzed in presence of approximations in the feedforward by using a Lyapunov based robustness analysis. It is shown that under certain conditions, e.g., the desired trajectory is varying slowly enough, stability is maintained for various approximations of a canonical feedforward.
Turso, James A.; Litt, Jonathan S.
2004-01-01
A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.
Design and Lyapunov Stability Analysis of a Fuzzy Logic Controller for Autonomous Road Following
Directory of Open Access Journals (Sweden)
Yi Fu
2010-01-01
Full Text Available Autonomous road following is one of the major goals in intelligent vehicle applications. The development of an autonomous road following embedded system for intelligent vehicles is the focus of this paper. A fuzzy logic controller (FLC is designed for vision-based autonomous road following. The stability analysis of this control system is addressed. Lyapunov's direct method is utilized to formulate a class of control laws that guarantee the convergence of the steering error. Certain requirements for the control laws are presented for designers to choose a suitable rule base for the fuzzy controller in order to make the system stable. Stability of the proposed fuzzy controller is guaranteed theoretically and also demonstrated by simulation studies and experiments. Simulations using the model of the four degree of freedom nonholonomic robotic vehicle are conducted to investigate the performance of the fuzzy controller. The proposed fuzzy controller can achieve the desired steering angle and make the robotic vehicle follow the road successfully. Experiments show that the developed intelligent vehicle is able to follow a mocked road autonomously.
Design of bounded feedback controls for linear dynamical systems by using common Lyapunov functions
Institute of Scientific and Technical Information of China (English)
Igor; Ananievskii; Nickolai; Anokhin; Alexander; Ovseevich
2011-01-01
For a linear dynamical system,we address the problem of devising a bounded feedback control,which brings the system to the origin in finite time.The construction is based on the notion of a common Lyapunov function.It is shown that the constructed control remains effective in the presence of small perturbations.
Zhang, Hongbin; Feng, Gang
2008-10-01
This paper is concerned with stability analysis and H(infinity) decentralized control of discrete-time fuzzy large-scale systems based on piecewise Lyapunov functions. The fuzzy large-scale systems consist of J interconnected discrete-time Takagi-Sugeno (T-S) fuzzy subsystems, and the stability analysis is based on Lyapunov functions that are piecewise quadratic. It is shown that the stability of the discrete-time fuzzy large-scale systems can be established if a piecewise quadratic Lyapunov function can be constructed, and moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. The H(infinity) controllers are also designed by solving a set of LMIs based on these powerful piecewise quadratic Lyapunov functions. It is demonstrated via numerical examples that the stability and controller synthesis results based on the piecewise quadratic Lyapunov functions are less conservative than those based on the common quadratic Lyapunov functions.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearched. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtained by using switched Lyapunov function.Then,based on the characterization,a linear matrix inequality (LMI)approach is developed to design a switched output feedback controller which guarantees the stability and H∞ performance of the closed-loop system.A numerical example is presented to demonstrate the application of the proposed method.
Control of acrobot based on Lyapunov function
Institute of Scientific and Technical Information of China (English)
赖旭芝; 吴敏; 佘锦华
2004-01-01
Fuzzy control based on Lyapunov function was employed to control the posture and the energy of an acrobot to make the transition from upswing control to balance control smoothly and stably. First, a control law based on Lyapunov function was used to control the angle and the angular velocity of the second link towards zero when the energy of the acrobot reaches the potential energy at the unstable straight-up equilibrium position in the upswing process. The controller based on Lyapunov function makes the second link straighten nature relatively to the first link. At the same time, a fuzzy controller was designed to regulate the parameters of the upper control law to keep the change of the energy of the acrobot to a minimum, so that the switching from upswing to balance can be properly carried out and the acrobot can enter the balance quickly. The results of simulation show that the switching from upswing to balance can be completed smoothly, and the control effect of the acrobot is improved greatly.
Robust lyapunov controller for uncertain systems
Laleg-Kirati, Taous-Meriem
2017-02-23
Various examples of systems and methods are provided for Lyapunov control for uncertain systems. In one example, a system includes a process plant and a robust Lyapunov controller configured to control an input of the process plant. The robust Lyapunov controller includes an inner closed loop Lyapunov controller and an outer closed loop error stabilizer. In another example, a method includes monitoring a system output of a process plant; generating an estimated system control input based upon a defined output reference; generating a system control input using the estimated system control input and a compensation term; and adjusting the process plant based upon the system control input to force the system output to track the defined output reference. An inner closed loop Lyapunov controller can generate the estimated system control input and an outer closed loop error stabilizer can generate the system control input.
Liu, Chuang; Lam, Hak-Keung; Fernando, Tyrone; Iu, Herbert Ho-Ching
2016-05-02
In this paper, we investigate the stability of Takagi-Sugeno fuzzy-model-based (FMB) functional observer-control system. When system states are not measurable for state-feedback control, a fuzzy functional observer is designed to directly estimate the control input instead of the system states. Although the fuzzy functional observer can reduce the order of the observer, it leads to a number of observer gains to be determined. Therefore, a new form of fuzzy functional observer is proposed to facilitate the stability analysis such that the observer gains can be numerically obtained and the stability can be guaranteed simultaneously. The proposed form is also in favor of applying separation principle to separately design the fuzzy controller and the fuzzy functional observer. To design the fuzzy controller with the consideration of system stability, higher order derivatives of Lyapunov function (HODLF) are employed to reduce the conservativeness of stability conditions. The HODLF generalizes the commonly used first-order derivative. By exploiting the properties of membership functions and the dynamics of the FMB control system, convex and relaxed stability conditions can be derived. Simulation examples are provided to show the relaxation of the proposed stability conditions and the feasibility of designed fuzzy functional observer-controller.
Robinett III, Rush D
2011-01-01
Nonlinear Powerflow Control Design presents an innovative control system design process motivated by renewable energy electric grid integration problems. The concepts developed result from the convergence of three research and development goals: • to create a unifying metric to compare the value of different energy sources – coal-burning power plant, wind turbines, solar photovoltaics, etc. – to be integrated into the electric power grid and to replace the typical metric of costs/profit; • to develop a new nonlinear control tool that applies power flow control, thermodynamics, and complex adaptive systems theory to the energy grid in a consistent way; and • to apply collective robotics theories to the creation of high-performance teams of people and key individuals in order to account for human factors in controlling and selling power into a distributed, decentralized electric power grid. All three of these goals have important concepts in common: exergy flow, limit cycles, and balance between compe...
Hou, Gene; Koganti, Gopichand
1993-01-01
Controls-structure integrated design is a complicated multidisciplinary design optimization problem which involves the state equations pertaining to open-loop eigenvalues and control laws. In order to alleviate the intensity of the computation, this study uses the adjoint variable method to derive sensitivity equations for the eigenvalue, Liapunov, and Riccati equations. These individual sensitivity equations are then combined together to form the multidisciplinary sensitivity equations for the control structure integrated design problems. A set of linear sensitivity equations, proportional in number to the number of performance functions involved in the optimization process, are solved. This proposed approach may provide a great saving in computer resources. The validity of the newly developed sensitivity equations is verified by numerical examples.
A survey of quantum Lyapunov control methods.
Cong, Shuang; Meng, Fangfang
2013-01-01
The condition of a quantum Lyapunov-based control which can be well used in a closed quantum system is that the method can make the system convergent but not just stable. In the convergence study of the quantum Lyapunov control, two situations are classified: nondegenerate cases and degenerate cases. For these two situations, respectively, in this paper the target state is divided into four categories: the eigenstate, the mixed state which commutes with the internal Hamiltonian, the superposition state, and the mixed state which does not commute with the internal Hamiltonian. For these four categories, the quantum Lyapunov control methods for the closed quantum systems are summarized and analyzed. Particularly, the convergence of the control system to the different target states is reviewed, and how to make the convergence conditions be satisfied is summarized and analyzed.
Hou, Zhicheng; Fantoni, Isabelle; Zavala-Río, Arturo
2013-01-01
International audience; This paper concerns the leader-follower multiple agent formation with nonlinear and coupled individual dynamics. We address the problem of multi-agent formation control by proposing a decentralized control strategy. The agents in the formation are quad-rotors UAVs. By attributing the high-order nonlinear and unmodelled dynamics as uncertainties, we propose a switching singular system model to represent the formation of the multiple UAVs system with switching topology. ...
A modular design of incremental Lyapunov functions for microgrid control with power sharing
Persis, Claudio De; Monshizadeh, Nima
2015-01-01
In this paper we contribute a theoretical framework that sheds a new light on the problem of microgrid analysis and control. The starting point is an energy function comprising the kinetic energy associated with the elements that emulate the rotating machinery and terms taking into account the react
Nonlinear Direct Robust Adaptive Control Using Lyapunov Method
Directory of Open Access Journals (Sweden)
Chunbo Xiu
2013-07-01
Full Text Available The problem of robust adaptive stabilization of a class of multi-input nonlinear systems with arbitrary unknown parameters and unknown structure of bounded variation have been considered. By employing the direct adaptive and control Lyapunov function method, a robust adaptive controller is designed to complete the globally adaptive stability of the system states. By employing our result, a kind of nonlinear system is analyzed, the concrete form of the control law is given and the meaningful quadratic control Lyapunov function for the system is constructed. Simulation of parallel manipulator is provided to illustrate the effectiveness of the proposed method.
Controllability of semilinear matrix Lyapunov systems
Directory of Open Access Journals (Sweden)
Bhaskar Dubey
2013-02-01
Full Text Available In this article, we establish some sufficient conditions for the complete controllability of semilinear matrix Lyapunov systems involving Lipschitzian and non-Lipschitzian nonlinearities. In case of non-Lipschitzian nonlinearities, we assume that nonlinearities are of monotone type.
Experimentally realizable control fields in quantum Lyapunov control
Yi, X X; Wu, Chunfeng; Feng, X L; Oh, C H
2011-01-01
As a hybrid of techniques from open-loop and feedback control, Lyapunov control has the advantage that it is free from the measurement-induced decoherence but it includes the system's instantaneous message in the control loop. Often, the Lyapunov control is confronted with time delay in the control fields and difficulty in practical implementations of the control. In this paper, we study the effect of time-delay on the Lyapunov control, and explore the possibility of replacing the control field with a pulse train or a bang-bang signal. The efficiency of the Lyapunov control is also presented through examining the convergence time of the controlled system. These results suggest that the Lyapunov control is robust gainst time delay, easy to realize and effective for high-dimensional quantum systems.
A Lyapunov theory based UPFC controller for power flow control
Energy Technology Data Exchange (ETDEWEB)
Zangeneh, Ali; Kazemi, Ahad; Hajatipour, Majid; Jadid, Shahram [Center of Excellence for Power Systems Automation and Operation, Iran University of Science and Technology, Tehran (Iran)
2009-09-15
Unified power flow controller (UPFC) is the most comprehensive multivariable device among the FACTS controllers. Capability of power flow control is the most important responsibility of UPFC. According to high importance of power flow control in transmission lines, the proper controller should be robust against uncertainty and disturbance and also have suitable settling time. For this purpose, a new controller is designed based on the Lyapunov theory and its stability is also evaluated. The Main goal of this paper is to design a controller which enables a power system to track reference signals precisely and to be robust in the presence of uncertainty of system parameters and disturbances. The performance of the proposed controller is simulated on a two bus test system and compared with a conventional PI controller. The simulation results show the power and accuracy of the proposed controller. (author)
Quantum synchronization in an optomechanical system based on Lyapunov control.
Li, Wenlin; Li, Chong; Song, Heshan
2016-06-01
We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.
Lyapunov control of quantum systems with impulsive control fields.
Yang, Wei; Sun, Jitao
2013-01-01
We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method.
Analysis of Lyapunov Method for Control of Quantum States
Wang, Xiaoting; Schirmer, Sonia
2009-01-01
The natural trajectory tracking problem is studied for generic quantum states represented by density operators. A control design based on the Hilbert-Schmidt distance as a Lyapunov function is considered. The control dynamics is redefined on an extended space where the LaSalle invariance principle can be correctly applied even for non-stationary target states. LaSalle's invariance principle is used to derive a general characterization of the invariant set, which is shown to always contain the...
Preparing entangled states by Lyapunov control
Shi, Z. C.; Wang, L. C.; Yi, X. X.
2016-09-01
By Lyapunov control, we present a protocol to prepare entangled states such as Bell states in the context of cavity QED system. The advantage of our method is of threefold. Firstly, we can only control the phase of classical fields to complete the preparation process. Secondly, the evolution time is sharply shortened when compared to adiabatic control. Thirdly, the final state is steady after removing control fields. The influence of decoherence caused by the atomic spontaneous emission and the cavity decay is discussed. The numerical results show that the control scheme is immune to decoherence, especially for the atomic spontaneous emission from |2rangle to |1rangle . This can be understood as the state staying in an invariant subspace. Finally, we generalize this method in preparation of W state.
Preparing entangled states by Lyapunov control
Shi, Z. C.; Wang, L. C.; Yi, X. X.
2016-12-01
By Lyapunov control, we present a protocol to prepare entangled states such as Bell states in the context of cavity QED system. The advantage of our method is of threefold. Firstly, we can only control the phase of classical fields to complete the preparation process. Secondly, the evolution time is sharply shortened when compared to adiabatic control. Thirdly, the final state is steady after removing control fields. The influence of decoherence caused by the atomic spontaneous emission and the cavity decay is discussed. The numerical results show that the control scheme is immune to decoherence, especially for the atomic spontaneous emission from |2rangle to |1rangle . This can be understood as the state staying in an invariant subspace. Finally, we generalize this method in preparation of W state.
Preparation of topological modes by Lyapunov control.
Shi, Z C; Zhao, X L; Yi, X X
2015-09-08
By Lyapunov control, we present a proposal to drive quasi-particles into a topological mode in quantum systems described by a quadratic Hamiltonian. The merit of this control is the individual manipulations on the boundary sites. We take the Kitaev's chain as an illustration for Fermi systems and show that an arbitrary excitation mode can be steered into the Majorana zero mode by manipulating the chemical potential of the boundary sites. For Bose systems, taking the noninteracting Su-Schrieffer-Heeger (SSH) model as an example, we illustrate how to drive the system into the edge mode. The sensitivity of the fidelity to perturbations and uncertainties in the control fields and initial modes is also examined. The experimental feasibility of the proposal and the possibility to replace the continuous control field with square wave pulses is finally discussed.
Stabilization of nonlinear systems based on robust control Lyapunov function
Institute of Scientific and Technical Information of China (English)
CAI Xiu-shan; HAN Zheng-zhi; LU Gan-yun
2007-01-01
This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunov function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.
Stabilization of discrete nonlinear systems based on control Lyapunov functions
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The stabilization of discrete nonlinear systems is studied.Based on control Lyapunov functions,asufficient and necessary condition for a quadratic function to be a control Lyapunov function is given.From this condition,a continuous state feedback law is constructed explicitly.It can globally asymptotically stabilize the equilibrium of the closed-loop system.A simulation example shows the effectiveness of the proposed method.
Robust Backstepping Control Based on a Lyapunov Redesign for Skid-Steered Wheeled Mobile Robots
Directory of Open Access Journals (Sweden)
Eun-Ju Hwang
2013-01-01
Full Text Available This paper represents a robust backstepping tracking control based on a Lyapunov redesign for Skid‐Steered Wheeled Mobile Robots (WMRs. We present kinematic and dynamic models that explicitly relate the perturbations to the skidding in order to improve the tracking performance during real running. A robust controller is synthesized in the backstepping approach and the Lyapunov redesign technique, which forces the error dynamics to stabilize to the reference trajectories. We design an additional feedback control ‐ a Lyapunov redesign ‐ such that the overall control stabilizes the actual system in the presence of uncertainty and perturbation with the knowledge of the Lyapunov function. Simulation results are provided to validate and analyse the performance and stability of the proposed controller.
Global stabilization of nonlinear systems based on vector control lyapunov functions
Karafyllis, Iasson
2012-01-01
This paper studies the use of vector Lyapunov functions for the design of globally stabilizing feedback laws for nonlinear systems. Recent results on vector Lyapunov functions are utilized. The main result of the paper shows that the existence of a vector control Lyapunov function is a necessary and sufficient condition for the existence of a smooth globally stabilizing feedback. Applications to nonlinear systems are provided: simple and easily checkable sufficient conditions are proposed to guarantee the existence of a smooth globally stabilizing feedback law. The obtained results are applied to the problem of the stabilization of an equilibrium point of a reaction network taking place in a continuous stirred tank reactor.
Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence
Directory of Open Access Journals (Sweden)
Alejandro Carrasco Elizalde
2008-01-01
Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.
Robust H∞ Control for Singular Time-Delay Systems via Parameterized Lyapunov Functional Approach
Directory of Open Access Journals (Sweden)
Li-li Liu
2014-01-01
Full Text Available A new version of delay-dependent bounded real lemma for singular systems with state delay is established by parameterized Lyapunov-Krasovskii functional approach. In order to avoid generating nonconvex problem formulations in control design, a strategy that introduces slack matrices and decouples the system matrices from the Lyapunov-Krasovskii parameter matrices is used. Examples are provided to demonstrate that the results in this paper are less conservative than the existing corresponding ones in the literature.
GA and Lyapunov theory-based hybrid adaptive fuzzy controller for non-linear systems
Roy, Ananya; Das Sharma, Kaushik
2015-02-01
In this present article, a new hybrid methodology for designing stable adaptive fuzzy logic controllers (AFLCs) for a class of non-linear system is proposed. The proposed design strategy exploits the features of genetic algorithm (GA)-based stochastic evolutionary global search technique and Lyapunov theory-based local adaptation scheme. The objective is to develop a methodology for designing AFLCs with optimised free parameters and guaranteed closed-loop stability. Simultaneously, the proposed method introduces automation in the design process. The stand-alone Lyapunov theory-based design, GA-based design and proposed hybrid GA-Lyapunov design methodologies are implemented for two benchmark non-linear plants in simulation case studies with different reference signals and one experimental case study. The results demonstrate that the hybrid design methodology outperforms the other control strategies on the whole.
On Controllability and Observability of Fuzzy Dynamical Matrix Lyapunov Systems
Directory of Open Access Journals (Sweden)
M. S. N. Murty
2008-04-01
Full Text Available We provide a way to combine matrix Lyapunov systems with fuzzy rules to form a new fuzzy system called fuzzy dynamical matrix Lyapunov system, which can be regarded as a new approach to intelligent control. First, we study the controllability property of the fuzzy dynamical matrix Lyapunov system and provide a sufficient condition for its controllability with the use of fuzzy rule base. The significance of our result is that given a deterministic system and a fuzzy state with rule base, we can determine the rule base for the control. Further, we discuss the concept of observability and give a sufficient condition for the system to be observable. The advantage of our result is that we can determine the rule base for the initial value without solving the system.
Control Lyapunov Stabilization of Nonlinear Systems with Structural Uncertainty
Institute of Scientific and Technical Information of China (English)
CAI Xiu-shan; HAN Zheng-zhi; TANG Hou-jun
2005-01-01
This paper deals with global stabilization problem for the nonlinear systems with structural uncertainty.Based on control Lyapunov function, a sufficient and necessary condition for the globally and asymptotically stabilizing the equailibrium of the closed system is given. Moreovery, an almost smooth state feedback control law is constructed. The simulation shows the effectiveness of the method.
DEFF Research Database (Denmark)
Ribard, Nicolas; Wisniewski, Rafael; Sloth, Christoffer
2016-01-01
In the paper, we strive to develop an algorithm that simultaneously computes a polynomial control and a polynomial Lyapunov function. This ensures asymptotic stability of the designed feedback system. The above problem is translated to a certificate of positivity. To this end, we use the represen......In the paper, we strive to develop an algorithm that simultaneously computes a polynomial control and a polynomial Lyapunov function. This ensures asymptotic stability of the designed feedback system. The above problem is translated to a certificate of positivity. To this end, we use...... the representation of the given control system in Bernstein basis. Subsequently, the control synthesis problem is reduced to finite number of evaluations of a polynomial on vertices of cubes in the space of parameters representing admissible controls and Lyapunov functions....
Barrier Lyapunov function-based model-free constraint position control for mechanical systems
Energy Technology Data Exchange (ETDEWEB)
Han, Seong Ik; Ha, Hyun Uk; Lee, Jang Myung [Pusan National University, Busan (Korea, Republic of)
2016-07-15
In this article, a motion constraint control scheme is presented for mechanical systems without a modeling process by introducing a barrier Lyapunov function technique and adaptive estimation laws. The transformed error and filtered error surfaces are defined to constrain the motion tracking error in the prescribed boundary layers. Unknown parameters of mechanical systems are estimated using adaptive laws derived from the Lyapunov function. Then, robust control used the conventional sliding mode control, which give rise to excessive chattering, is changed to finite time-based control to alleviate undesirable chattering in the control action and to ensure finite-time error convergence. Finally, the constraint controller from the barrier Lyapunov function is designed and applied to the constraint of the position tracking error of the mechanical system. Two experimental examples for the XY table and articulated manipulator are shown to evaluate the proposed control scheme.
Direct adaptive control for nonlinear uncertain system based on control Lyapunov function method
Institute of Scientific and Technical Information of China (English)
Chen Yimei; Han Zhengzhi; Tang Houjun
2006-01-01
The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.
Lyapunov based nonlinear control of electrical and mechanical systems
Behal, Aman
This Ph.D. dissertation describes the design and implementation of various control strategies centered around the following applications: (i) an improved indirect field oriented controller for the induction motor, (ii) partial state feedback control of an induction motor with saturation effects, (iii) tracking control of an underactuated surface vessel, and (iv) an attitude tracking controller for an underactuated spacecraft. The theory found in each of these sections is demonstrated through simulation or experimental results. An introduction to each of these four primary chapters can be found in chapter one. In the second chapter, the previously published tracking control of [16] 1 is presented in the indirect field oriented control (IFOC) notation to achieve exponential rotor velocity/rotor flux tracking. Specifically, it is illustrated how the proposed IFOC controller can be rewritten in the manner of [16] to allow for a direct Lyapunov stability proof. Experimental results (implemented with the IFOC algorithm) are provided to corroborate the efficacy of the algorithm. In the third chapter, a singularity-free, rotor position tracking controller is presented for the full order, nonlinear dynamic model of the induction motor that includes the effects of magnetic saturation. Specifically, by utilizing the pi-equivalent saturation model, an observer/controller strategy is designed that achieves semi-global exponential rotor position tracking and only requires stator current, rotor velocity, and rotor position measurements. Simulation and experimental results are included to demonstrate the efficacy of the proposed algorithm. In the fourth chapter, a continuous, time-varying tracking controller is designed that globally exponentially forces the position/orientation tracking error of an under-actuated surface vessel to a neighborhood about zero that can be made arbitrarily small (i.e., global uniformly ultimately boundedness (GUUB)). The result is facilitated by
STABILIZATION OF NONLINEAR TIME-VARYING SYSTEMS: A CONTROL LYAPUNOV FUNCTION APPROACH
Institute of Scientific and Technical Information of China (English)
Zhongping JIANG; Yuandan LIN; Yuan WANG
2009-01-01
This paper presents a control Lyapunov function approach to the global stabilization problem for general nonlinear and time-varying systems. Explicit stabilizing feedback control laws are proposed based on the method of control Lyapunov functions and Sontag's universal formula.
Lyapunov-Based Control Scheme for Single-Phase Grid-Connected PV Central Inverters
Meza, C.; Biel, D.; Jeltsema, D.; Scherpen, J. M. A.
2012-01-01
A Lyapunov-based control scheme for single-phase single-stage grid-connected photovoltaic central inverters is presented. Besides rendering the closed-loop system globally stable, the designed controller is able to deal with the system uncertainty that depends on the solar irradiance. A laboratory p
Lyapunov-Based Control Scheme for Single-Phase Grid-Connected PV Central Inverters
Meza, C.; Biel, D.; Jeltsema, D.; Scherpen, J. M. A.
2012-01-01
A Lyapunov-based control scheme for single-phase single-stage grid-connected photovoltaic central inverters is presented. Besides rendering the closed-loop system globally stable, the designed controller is able to deal with the system uncertainty that depends on the solar irradiance. A laboratory p
Lyapunov-based boundary feedback control in multi-reach canals
Institute of Scientific and Technical Information of China (English)
CEN LiHui; XI YuGeng
2009-01-01
This paper presents a Lyapunov-based approach to design the boundary feedback control for an open-channel network composed of a cascade of multi-reach canals, each described by a pair of Saint-Venant equations. The weighted sum of entropies of the multi-reaches is adopted to construct the Lyapunov function. The time derivative of the Lyapunov function is expressed by the water depth variations at the gate boundaries, based on which a class of boundary feedback controllers is presented to guarantee the local asymptotic closed-loop stability. The advantage of this approach is that only the water level depths at the gate boundaries are measured as the feedback.
Time-delay effects and simplified control fields in quantum Lyapunov control
Energy Technology Data Exchange (ETDEWEB)
Yi, X X; Wu, S L [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wu, Chunfeng; Feng, X L; Oh, C H, E-mail: yixx@dlut.edu.cn, E-mail: phyohch@nus.edu.sg [Centre for Quantum Technologies and Department of Physics, National University of Singapore, 117543 (Singapore)
2011-10-14
Lyapunov-based quantum control has the advantage that it is free from the measurement-induced decoherence and it includes the instantaneous information of the system in the control. The Lyapunov control is often confronted with time delay in the control fields and difficulty in practical implementations of the control. In this paper, we study the effect of time delay on the Lyapunov control and explore the possibility of replacing the control field with a pulse train or a bang-bang signal. The efficiency of the Lyapunov control is also presented through examining the convergence time of the system. These results suggest that the Lyapunov control is robust against time delay, easy to realize and effective for high-dimensional quantum systems.
Cao, Fangfei; Liu, Jinkun
2017-10-01
Considering full state constraints, this paper designs a boundary controller for a two-link rigid-flexible manipulator via Barrier Lyapunov Function. The dynamic model of the two-link rigid-flexible manipulator is described by coupled ordinary differential equations- partial differential equations (ODEs-PDEs). Based on the original model without neglecting the high-frequency modes, boundary controller is proposed to regulate the joint positions and eliminate the elastic vibration simultaneously. To ensure that the full state constraints which include position, speed and vibration constraints are not transgressed, a Barrier Lyapunov Function is employed in the proposed controller. The asymptotic stability of the closed-loop system is rigorously proved by the LaSalle's Invariance Principle. Simulations are given to verify the effectiveness of the proposed controller with state constraints.
On Designing Lyapunov-Krasovskii Based AQM for Routers Supporting TCP Flows
Labit, Yann; Gouaisbaut, Frédéric; 10.1109/CDC.2007.4434673
2009-01-01
For the last few years, we assist to a growing interest of designing AQM (Active Queue Management) using control theory. In this paper, we focus on the synthesis of an AQM based on the Lyapunov theory for time delay systems. With the help of a recently developed Lyapunov-Krasovskii functional and using a state space representation of a linearized fluid model of TCP, two robust AQMs stabilizing the TCP model are constructed. Notice that our results are constructive and the synthesis problem is reduced to a convex optimization scheme expressed in terms of linear matrix inequalities (LMIs). Finally, an example extracted from the literature and simulations via {\\it NS simulator} support our study.
2013-06-01
STABILITY BY COMPUTING A SINGLE QUADRATIC LYAPUNOV FUNCTION Mehrdad Pakmehr∗ PhD Candidate Decision and Control Laboratory (DCL) School of Aerospace...linearization and linear matrix inequality (LMI) techniques. Using convex optimization tools, a single quadratic Lyapunov function is computed for multiple...Scheduling Control of Gas Turbine Engines: Stability by Computing a Single Quadratic Lyapunov Function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Shah, Neerav
2011-01-01
The Magnetospheric MultiScale Mission (MMS) is scheduled to launch in late 2014. Its primary goal is to discover the fundamental plasma physics processes of reconnection in the Earth's magnetosphere. Each of the four MMS spacecraft is spin-stabilized at a nominal rate of 3 RPM. Traditional spin-stabilized spacecraft have used a number of separate modes to control nutation, spin rate, and precession. To reduce the number of modes and simplify operations, the Delta-H control mode is designed to accomplish nutation control, spin rate control, and precession control simultaneously. A nonlinear design technique, Lyapunov's method, is used to design the Delta-H control mode. A global spin rate controller selected as the baseline controller for MMS, proved to be insufficient due to an ambiguity in the attitude. Lyapunov's design method was used to solve this ambiguity, resulting in a controller that meets the design goals. Simulation results show the advantage of the pointing and rate controller for maneuvers larger than 90 deg and provide insight into the performance of this controller.
Universal construction of control Lyapunov functions for a class of nonlinear systems
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically.Based on the control Lyapunov function,a feedback control is obtained to stabilize the closed-loop system.In addition,this method is applied to stabilize the Benchmark system.A simulation shows the effectiveness of the method.
Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors
Elmetennani, Shahrazed
2016-11-09
This brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature to track a set reference despite the unpredictable varying working conditions. In this brief, a bilinear model-based robust Lyapunov control is proposed to achieve the control objectives with robustness to the environmental changes. The bilinear model is a reduced order approximate representation of the solar collector, which is derived from the hyperbolic distributed equation describing the heat transport dynamics by means of a dynamical Gaussian interpolation. Using the bilinear approximate model, a robust control strategy is designed applying Lyapunov stability theory combined with a phenomenological representation of the system in order to stabilize the tracking error. On the basis of the error analysis, simulation results show good performance of the proposed controller, in terms of tracking accuracy and convergence time, with limited measurement even under unfavorable working conditions. Furthermore, the presented work is of interest for a large category of dynamical systems knowing that the solar collector is representative of physical systems involving transport phenomena constrained by unknown external disturbances.
Blackwell, C. C.
1987-01-01
A relevant facet of the application of Lyapunov gradient-generated robust control to unstable linear autonomous plants is explored. It is demonstrated that if the plant, the output, and the nominal stabilizing control satisfy certain conditions, then the robust component alone stabilizes the nominal plant. An example characterized by two zero eigenvalues and two negative real value poles is presented. These results assure that the robust component will fulfill the role of nominal stabilization successfully so long as the possible magnitude of the robust component can overcome the contribution of the instability to positiveness of the Lyapunov rate.
Blackwell, C. C.
1987-01-01
A relevant facet of the application of Lyapunov gradient-generated robust control to unstable linear autonomous plants is explored. It is demonstrated that if the plant, the output, and the nominal stabilizing control satisfy certain conditions, then the robust component alone stabilizes the nominal plant. An example characterized by two zero eigenvalues and two negative real value poles is presented. These results assure that the robust component will fulfill the role of nominal stabilization successfully so long as the possible magnitude of the robust component can overcome the contribution of the instability to positiveness of the Lyapunov rate.
Application of local Lyapunov exponents to maneuver design and navigation in the three-body problem
Anderson, Rodney L.; Lo, Martin W.; Born, George H.
2003-01-01
Dynamical systems theory has recently been employed to design trajectories within the three-body problem for several missions. This research has applied one stability technique, the calculation of local Lyapunov exponents, to such trajectories. Local Lyapunov exponents give an indication of the effects that perturbations or maneuvers will have on trajectories over a specified time. A numerical comparison of local Lyapunov exponents was first made with the distance random perturbations traveled from a nominal trajectory, and the local Lyapunov exponents were found to correspond well with the perturbations that caused the greatest deviation from the nominal. This would allow them to be used as an indicator of the points where it would be important to reduce navigation uncertainties.
Application of local Lyapunov exponents to maneuver design and navigation in the three-body problem
Anderson, Rodney L.; Lo, Martin W.; Born, George H.
2003-01-01
Dynamical systems theory has recently been employed to design trajectories within the three-body problem for several missions. This research has applied one stability technique, the calculation of local Lyapunov exponents, to such trajectories. Local Lyapunov exponents give an indication of the effects that perturbations or maneuvers will have on trajectories over a specified time. A numerical comparison of local Lyapunov exponents was first made with the distance random perturbations traveled from a nominal trajectory, and the local Lyapunov exponents were found to correspond well with the perturbations that caused the greatest deviation from the nominal. This would allow them to be used as an indicator of the points where it would be important to reduce navigation uncertainties.
He, Wei; Yin, Zhao; Sun, Changyin
2016-05-11
In this paper, we consider the trajectory tracking of a marine surface vessel in the presence of output constraints and uncertainties. An asymmetric barrier Lyapunov function is employed to cope with the output constraints. To handle the system uncertainties, we apply adaptive neural networks to approximate the unknown model parameters of a vessel. Both full state feedback control and output feedback control are proposed in this paper. The state feedback control law is designed by using the Moore-Penrose pseudoinverse in case that all states are known, and the output feedback control is designed using a high-gain observer. Under the proposed method the controller is able to achieve the constrained output. Meanwhile, the signals of the closed loop system are semiglobally uniformly bounded. Finally, numerical simulations are carried out to verify the feasibility of the proposed controller.
Construction of Control Lyapunov Functions for a Class of Nonlinear Systems%一类非线性系统控制Lyapunov函数的构造
Institute of Scientific and Technical Information of China (English)
蔡秀珊; 韩正之; 汪晓东
2006-01-01
The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established.
Eleiwi, Fadi
2015-07-01
This paper presents a nonlinear Lyapunov-based boundary control for the temperature difference of a membrane distillation boundary layers. The heat transfer mechanisms inside the process are modeled with a 2D advection-diffusion equation. The model is semi-descretized in space, and a nonlinear state-space representation is provided. The control is designed to force the temperature difference along the membrane sides to track a desired reference asymptotically, and hence a desired flux would be generated. Certain constraints are put on the control law inputs to be within an economic range of energy supplies. The effect of the controller gain is discussed. Simulations with real process parameters for the model, and the controller are provided. © 2015 American Automatic Control Council.
One Lyapunov control for quantum systems and its application to entanglement generation
Yang, Wei; Sun, Jitao
2013-05-01
In this Letter, we investigate the control of finite dimensional ideal quantum systems in which the quantum states are represented by the density operators. A new Lyapunov function based on the Hilbert-Schmidt distance and mechanical quantity of the quantum system is given. We present a theoretical convergence result using LaSalle invariance principle. Applying the proposed Lyapunov method, the generation of the maximally entangled quantum states of two qubits is obtained.
One Lyapunov control for quantum systems and its application to entanglement generation
Energy Technology Data Exchange (ETDEWEB)
Yang, Wei, E-mail: 09yw@tongji.edu.cn [Department of Mathematics, Tongji University, Shanghai, 200092 (China); Sun, Jitao, E-mail: sunjt@sh163.net [Department of Mathematics, Tongji University, Shanghai, 200092 (China)
2013-05-03
In this Letter, we investigate the control of finite dimensional ideal quantum systems in which the quantum states are represented by the density operators. A new Lyapunov function based on the Hilbert–Schmidt distance and mechanical quantity of the quantum system is given. We present a theoretical convergence result using LaSalle invariance principle. Applying the proposed Lyapunov method, the generation of the maximally entangled quantum states of two qubits is obtained.
A Lyapunov-based three-axis attitude intelligent control approach for unmanned aerial vehicle
Institute of Scientific and Technical Information of China (English)
A.H. Mazinan
2015-01-01
A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems. There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art. The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches, as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control. And the corresponding rotation angles are dealt with in the outer closed loop control. It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator (PD based LQR) approach under optimum coefficients, while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances. In order to complete the inner closed loop control, there is a pulse-width pulse-frequency (PWPF) modulator to be able to handle on-off thrusters. Furthermore, the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system, where the control allocation scheme is realized in the proposed strategy. It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results. At the end, the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.
A Lyapunov Stability Theory-Based Control Strategy for Three-Level Shunt Active Power Filter
Directory of Open Access Journals (Sweden)
Yijia Cao
2017-01-01
Full Text Available The three-phase three-wire neutral-point-clamped shunt active power filter (NPC-SAPF, which most adopts classical closed-loop feedback control methods such as proportional-integral (PI, proportional-resonant (PR and repetitive control, can only output 1st–25th harmonic currents with 10–20 kHz switching frequency. The reason for this is that the controller design must make a compromise between system stability and harmonic current compensation ability under the condition of less than 20 kHz switching frequency. To broaden the bandwidth of the compensation current, a Lyapunov stability theory-based control strategy is presented in this paper for NPC-SAPF. The proposed control law is obtained by constructing the switching function on the basis of the mathematical model and the Lyapunov candidate function, which can avoid introducing closed-loop feedback control and keep the system globally asymptotically stable. By means of the proposed method, the NPC-SAPF has compensation ability for the 1st–50th harmonic currents, the total harmonic distortion (THD and each harmonic content of grid currents satisfy the requirements of IEEE Standard 519-2014. In order to verify the superiority of the proposed control strategy, stability conditions of the proposed strategy and the representative PR controllers are compared. The simulation results in MATLAB/Simulink (MathWorks, Natick, MA, USA and the experimental results obtained on a 6.6 kVA NPC-SAPF laboratory prototype validate the proposed control strategy.
Yu, Jue; Zhuang, Jian; Yu, Dehong
2015-01-01
This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Chu, Chia-Chi; Tsai, Hung-Chi; Chang, Wei-Neng
A Lyapunov-based recurrent neural networks unified power flow controller (UPFC) is developed for improving transient stability of power systems. First, a simple UPFC dynamical model, composed of a controllable shunt susceptance on the shunt side and an ideal complex transformer on the series side, is utilized to analyze UPFC dynamical characteristics. Secondly, we study the control configuration of the UPFC with two major blocks: the primary control, and the supplementary control. The primary control is implemented by standard PI techniques when the power system is operated in a normal condition. The supplementary control will be effective only when the power system is subjected by large disturbances. We propose a new Lyapunov-based UPFC controller of the classical single-machine-infinite-bus system for damping enhancement. In order to consider more complicated detailed generator models, we also propose a Lyapunov-based adaptive recurrent neural network controller to deal with such model uncertainties. This controller can be treated as neural network approximations of Lyapunov control actions. In addition, this controller also provides online learning ability to adjust the corresponding weights with the back propagation algorithm built in the hidden layer. The proposed control scheme has been tested on two simple power systems. Simulation results demonstrate that the proposed control strategy is very effective for suppressing power swing even under severe system conditions.
Toropov, A. V.; Toropova, L.V.
2014-01-01
Тhe problem of synthesis of nonlinear speed controller asynchronized switched motor is considered. To find the optimal control law by, the method of Bellman - Lyapunov by concept of "immersion" is used. Modeling and comparative analysis of the system with the standard PI - controller, as well as the synthesized regulators are made
Wang, Li Kui; Zhang, Hua Guang; Liu, Xiao Dong
2016-09-01
This paper deals with the problem of observer design for continuous-time Takagi-Sugeno fuzzy models with unmeasurable premise variables. First, in order to improve the existing results of observer design, a new method is proposed to bound the time derivatives of the membership function. Then, by applying the nonquadratic Lyapunov function and the matrix decoupling technique, the controller gains and observer gains are designed to guarantee that the error system is asymptotically stale. Furthermore, better H ∞ performance can be obtained by solving an optimization problem. All of the results are presented as linear matrices inequalities and three examples are provided to demonstrate the merits of the proposed approach.
A New Lyapunov Based Robust Control for Uncertain Mechanical Systems
Institute of Scientific and Technical Information of China (English)
ZHEN Sheng-Chao; ZHAO Han; CHEN Ye-Hwa; HUANG Kang
2014-01-01
We design a new robust controller for uncertain mechanical systems. The inertia matrix0s singularity and upper bound property are first analyzed. It is shown that the inertia matrix may be positive semi-definite due to over-simplified model. Further-more, the inertia matrix0s being uniformly bounded above is also limited. A robust controller is proposed to suppress the effect of uncertainty in mechanical systems with the assumption of uniform positive definiteness and upper bound of the inertia matrix. We theoretically prove that the robust control renders uniform boundedness and uniform ultimate boundedness. The size of the ultimate boundedness ball can be made arbitrarily small by the designer. Simulation results are presented and discussed.
Colburn, B. K.; Boland, J. S., III
1976-01-01
A new nonlinear stability criterion is developed by use of a class of Lyapunov functionals for model-reference adaptive systems (MRAS). Results are compared with traditional results, and a comparative design technique is used to illustrate its function in improving the transient response of an MRAS controller. For a particular system structure and class of input signals, the new stability criterion is shown to include traditional sufficiency stability conditions as a special case. An example is cited to illustrate the use of the nonlinear criterion and its definite advantages in helping improve the adaptive error transient response of a system. Analysis of results is effected by use of a linearization technique on the resulting adaptive equations.
Colburn, B. K.; Boland, J. S., III
1976-01-01
A new nonlinear stability criterion is developed by use of a class of Lyapunov functionals for model-reference adaptive systems (MRAS). Results are compared with traditional results, and a comparative design technique is used to illustrate its function in improving the transient response of an MRAS controller. For a particular system structure and class of input signals, the new stability criterion is shown to include traditional sufficiency stability conditions as a special case. An example is cited to illustrate the use of the nonlinear criterion and its definite advantages in helping improve the adaptive error transient response of a system. Analysis of results is effected by use of a linearization technique on the resulting adaptive equations.
Circular orbit spacecraft control at the L4 point using Lyapunov functions
Agrawal, Rachana
2015-01-01
The objective of this work is to demonstrate the utility of Lyapunov functions in control synthesis for the purpose of maintaining and stabilizing a spacecraft in a circular orbit around the L4 point in the circular restricted three body problem (CRTBP). Incorporating the requirements of a fixed radius orbit and a desired angular momentum, a Lyapunov function is constructed and the requisite analysis is performed to obtain a controller. Asymptotic stability is proved in a defined region around the L4 point using LaSalle's principle.
Robust Stabilization for Uncertain Control Systems Using Piecewise Quadratic Lyapunov Functions
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The sufficient condition based on piecewise quadratic simultaneous Lyapunov functions for robust stabilizationof uncertain control systems via a constant linear state feedback control law is obtained. The objective is to use a robuststability criterion that is less conservative than the usual quadratic stability criterion. Numerical example is given, show-ing the advanteges of the proposed method.
Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2016-09-19
A neural network (NN) adaptive control design problem is addressed for a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in block-triangular form. The considered systems contain uncertainty dynamics and their states are enforced to subject to bounded constraints as well as the couplings among various inputs and outputs are inserted in each subsystem. To stabilize this class of systems, a novel adaptive control strategy is constructively framed by using the backstepping design technique and NNs. The novel integral barrier Lyapunov functionals (BLFs) are employed to overcome the violation of the full state constraints. The proposed strategy can not only guarantee the boundedness of the closed-loop system and the outputs are driven to follow the reference signals, but also can ensure all the states to remain in the predefined compact sets. Moreover, the transformed constraints on the errors are used in the previous BLF, and accordingly it is required to determine clearly the bounds of the virtual controllers. Thus, it can relax the conservative limitations in the traditional BLF-based controls for the full state constraints. This conservatism can be solved in this paper and it is for the first time to control this class of MIMO systems with the full state constraints. The performance of the proposed control strategy can be verified through a simulation example.
Lyapunov based control of hybrid energy storage system in electric vehicles
DEFF Research Database (Denmark)
El Fadil, H.; Giri, F.; Guerrero, Josep M.
2012-01-01
This paper deals with a Lyapunov based control principle in a hybrid energy storage system for electric vehicle. The storage system consists on fuel cell (FC) as a main power source and a supercapacitor (SC) as an auxiliary power source. The power stage of energy conversion consists on a boost...
Farivar, Faezeh; Shoorehdeli, Mahdi Aliyari
2012-01-01
In this paper, fault tolerant synchronization of chaotic gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control is investigated. Taking the general nature of faults in the slave system into account, a new synchronization scheme, namely, fault tolerant synchronization, is proposed, by which the synchronization can be achieved no matter whether the faults and disturbances occur or not. By making use of a slave observer and a Lyapunov rule-based fuzzy control, fault tolerant synchronization can be achieved. Two techniques are considered as control methods: classic Lyapunov-based control and Lyapunov rule-based fuzzy control. On the basis of Lyapunov stability theory and fuzzy rules, the nonlinear controller and some generic sufficient conditions for global asymptotic synchronization are obtained. The fuzzy rules are directly constructed subject to a common Lyapunov function such that the error dynamics of two identical chaotic motions of symmetric gyros satisfy stability in the Lyapunov sense. Two proposed methods are compared. The Lyapunov rule-based fuzzy control can compensate for the actuator faults and disturbances occurring in the slave system. Numerical simulation results demonstrate the validity and feasibility of the proposed method for fault tolerant synchronization.
Sun, Yuming; Wu, Christine Qiong
2012-12-01
Balancing control is important for biped standing. In spite of large efforts, it is very difficult to design balancing control strategies satisfying three requirements simultaneously: maintaining postural stability, improving energy efficiency and satisfying the constraints between the biped feet and the ground. In this article, a proportional-derivative (PD) controller is proposed for a standing biped, which is simplified as a two-link inverted pendulum with one additional rigid foot-link. The genetic algorithm (GA) is used to search for the control gain meeting all three requirements. The stability analysis of such a deterministic biped control system is carried out using the concept of Lyapunov exponents (LEs), based on which, the system stability, where the disturbance comes from the initial states, and the structural stability, where the disturbance comes from the PD gains, are examined quantitively in terms of stability region. This article contributes to the biped balancing control, more significantly, the method shown in the studied case of biped provides a general framework of systematic stability analysis for certain deterministic nonlinear dynamical systems.
Eleiwi, Fadi
2016-09-19
This paper presents a nonlinear observer-based Lyapunov control for a membrane distillation (MD) process. The control considers the inlet temperatures of the feed and the permeate solutions as inputs, transforming it to boundary control process, and seeks to maintain the temperature difference along the membrane boundaries around a sufficient level to promote water production. MD process is modeled with advection diffusion equation model in two dimensions, where the diffusion and convection heat transfer mechanisms are best described. Model analysis, effective order reduction and parameters physical interpretation, are provided. Moreover, a nonlinear observer has been designed to provide the control with estimates of the temperature evolution at each time instant. In addition, physical constraints are imposed on the control to have an acceptable range of feasible inputs, and consequently, better energy consumption. Numerical simulations for the complete process with real membrane parameter values are provided, in addition to detailed explanations for the role of the controller and the observer. (C) 2016 Elsevier Ltd. All rights reserved.
Mazinan, A H
2016-03-01
The research addresses a Lyapunov-based constrained control strategy to deal with the autonomous space system in the presence of large disturbances. The aforementioned autonomous space system under control is first represented through a dynamics model and subsequently the proposed control strategy is fully investigated with a focus on the three-axis detumbling and the corresponding pointing mode control approaches. The three-axis detumbling mode control approach is designed to deal with the unwanted angular rates of the system to be zero, while the saturations of the actuators are taken into consideration. Moreover, the three-axis pointing mode control approach is designed in the similar state to deal with the rotational angles of the system to be desirable. The contribution of the research is mathematically made to propose a control law in connection with a new candidate of Lyapunov function to deal with the rotational angles and the related angular rates of the present autonomous space system with respect to state-of-the-art. A series of experiments are carried out to consider the efficiency of the proposed control strategy, as long as a number of benchmarks are realized in the same condition to verify and guarantee the strategy performance in both modes of control approaches.
Edge state preparation in a one-dimensional lattice by quantum Lyapunov control
Zhao, X. L.; Shi, Z. C.; Qin, M.; Yi, X. X.
2017-01-01
Quantum Lyapunov control uses a feedback control methodology to determine control fields applied to control quantum systems in an open-loop way. In this work, we employ two Lyapunov control schemes to prepare an edge state for a fermionic chain consisting of cold atoms loaded in an optical lattice. Such a chain can be described by the Harper model. Corresponding to the two schemes, two types of quantum Lyapunov functions are considered. The results show that both the schemes are effective at preparing the edge state within a wide range of parameters. We found that the edge state can be prepared with high fidelity even if there are moderate fluctuations of on-site or hopping potentials. Both control schemes can be extended to similar chains (3m + d, d = 2) of different lengths. Since a regular amplitude control field is easier to apply in practice, an amplitude-modulated control field is used to replace the unmodulated one. Such control approaches provide tools to explore the edge states of one-dimensional topological materials.
Robust Impedance Control-based Lyapunov-Hamiltonian Approach for Constrained Robots
Directory of Open Access Journals (Sweden)
Haifa Mehdi
2015-12-01
Full Text Available A new design of a robust impedance controller for constrained robotic manipulators is presented. The main objective is to stabilize asymptotically, in the task space, the robotic manipulator's end effectors into a desired position, via a desired contact force under model uncertainties and measurement noise. In this work, the proposed approach is enough straightforward for application without force and position control separation. Robust asymptotic stability in the approach is proved using a Hamiltonian-Lyapunov approach. Besides this, a state/parameter observer and an acceleration estimator are proposed to handle the problems of force estimation, disturbance rejection and acceleration measurement. To ensure high performance, a Particle Swarm Optimization (PSO algorithm is used finally as an efficient and fast method for the offline fine-tuning of the controller’s parameters. In designing the PSO method, the Mean of Root Squared Error (MRSE is considered as a cost function in the Cartesian space. Finally, the example of the ABB-IRB 140 industrial robot with 6DOFs is used to validate the performances of the proposed approach.
Lyapunov optimal feedback control of a nonlinear inverted pendulum
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Lyapunov optimal feedback control of a nonlinear inverted pendulum
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Directory of Open Access Journals (Sweden)
Yang Chen
2017-03-01
Full Text Available This article proposes a composite path following controller that allows the small fixed-wing unmanned aerial vehicle to follow a predefined path. Assuming that the vehicle is equipped with an autopilot for altitude and airspeed maintained well, the controller design adopts the hierarchical control structure. With the inner-loop controller design based on the notion of active disturbance rejection control which will respond to the desired roll angle command, the core part of the outer-loop controller is designed based on Lyapunov stability theorem to generate the desired course rate for the straight-line paths. The bank to turn maneuver is used to transform the desired course rate to the desired roll angle command. Both the hardware-in-the-loop simulation in the X-Plane simulator and actual experimental flight tests have been successfully achieved, which verified the effectiveness of the proposed method.
Hybrid-impulsive second order sliding mode control: Lyapunov approach
Shtessel, Y.; Glumineau, A.; Plestan, F.; Weiss, M.
2013-01-01
A perturbed nonlinear system of relative degree two controlled by discontinuous-impulsive feedbacks is studied. The hybrid-impulsive terms serve to drive instantaneously the system trajectories to the origin or to its small vicinity. In particular, impulsive-twisting control exhibits an uniform exac
Lyapunov-Based Control for Switched Power Converters
1990-06-01
up-down converter of Figure 2 which has a state- V( space averaged model of the form MWny stabilizing control schemes can be obtained by in- S= Az...straigL -forward to specify a globally stabilizing control law for performing the described measurement process, it is possible the mcdel (6) of the form
Hybrid-impulsive second order sliding mode control: Lyapunov approach
Shtessel, Y.; Glumineau, A.; Plestan, F.; Weiss, M.
2013-01-01
A perturbed nonlinear system of relative degree two controlled by discontinuous-impulsive feedbacks is studied. The hybrid-impulsive terms serve to drive instantaneously the system trajectories to the origin or to its small vicinity. In particular, impulsive-twisting control exhibits an uniform
A unified perspective on robot control - The energy Lyapunov function approach
Wen, John T.
1990-01-01
A unified framework for the stability analysis of robot tracking control is presented. By using an energy-motivated Lyapunov function candidate, the closed-loop stability is shown for a large family of control laws sharing a common structure of proportional and derivative feedback and a model-based feedforward. The feedforward can be zero, partial or complete linearized dynamics, partial or complete nonlinear dynamics, or linearized or nonlinear dynamics with parameter adaptation. As result, the dichotomous approaches to the robot control problem based on the open-loop linearization and nonlinear Lyapunov analysis are both included in this treatment. Furthermore, quantitative estimates of the trade-offs between different schemes in terms of the tracking performance, steady state error, domain of convergence, realtime computation load and required a prior model information are derived.
Directory of Open Access Journals (Sweden)
Joaquim Monteiro
2017-06-01
Full Text Available This paper proposes a Direct Matrix Converter operating as a Unified Power Flow Controller (DMC-UPFC with an advanced control method for UPFC, based on the Lyapunov direct method, presenting good results in power quality assessment. This control method is used for real-time calculation of the appropriate matrix switching state, determining which switching state should be applied in the following sampling period. The control strategy takes into account active and reactive power flow references to choose the vector converter closest to the optimum. Theoretical principles for this new real-time vector modulation and control applied to the DMC-UPFC with input filter are established. The method needs DMC-UPFC dynamic equations to be solved just once in each control cycle, to find the required optimum vector, in contrast to similar control methods that need 27 vector estimations per control cycle. The designed controller’s performance was evaluated using Matlab/Simulink software. Controllers were also implemented using a digital signal processing (DSP system and matrix hardware. Simulation and experimental results show decoupled transmission line active (P and reactive (Q power control with zero theoretical error tracking and fast response. Output currents and voltages show small ripple and low harmonic content.
Ghabraei, Soheil; Moradi, Hamed; Vossoughi, Gholamreza
2016-06-01
Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive suppression of the undesirable vibrations in the finite time. To compensate the supposed parametric uncertainties with unknown bands, proper adaption laws are introduced. To avoid the vibration devastating consequences as quickly as possible, appropriate control laws are designed. The vibration suppression in the finite time with supposed adaption and control laws is mathematically proved via Lyapunov finite time stability theory. Finally, to illustrate and validate the efficiency and robustness of the proposed finite time control scheme, a parametric case study with three piezoelectric actuators is performed. It is observed that the proposed active control strategy is more efficient and robust than the passive control methods.
Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement
Energy Technology Data Exchange (ETDEWEB)
Ataei, Mohammad, E-mail: ataei@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal Code 8174673441, Isfahan (Iran, Islamic Republic of); Kiyoumarsi, Arash, E-mail: kiyoumarsi@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal Code 8174673441, Isfahan (Iran, Islamic Republic of); Ghorbani, Behzad, E-mail: behzad.ghorbani63@gmail.co [Department of Control Engineering, Najafabad Azad University, Najafabad, Isfahan (Iran, Islamic Republic of)
2010-09-13
Permanent Magnet Synchronous Motor (PMSM) experiences chaotic behavior for a certain range of its parameters. In this case, since the performance of the PMSM degrades, the chaos should be eliminated. In this Letter, the control of the undesirable chaos in PMSM using Lyapunov exponents (LEs) placement is proposed that is also improved by choosing optimal locations of the LEs in the sense of predefined cost function. Moreover, in order to provide the physical realization of the method, nonlinear parameter estimator for the system is suggested. Finally, to show the effectiveness of the proposed methodology, the simulation results for applying this control strategy are provided.
Application of the direct Lyapunov method to improve damping of power swings by control of UPFC
Energy Technology Data Exchange (ETDEWEB)
Januszewski, M.; Machowski, J. [Warsaw Univ. of Technology (Poland). Inst. of Elektroenergetyki; Bialek, J.W. [Edinburgh Univ. (United Kingdom). School of Engineering and Electronics
2004-03-01
Large interconnected power systems often suffer from weakly damped swings between synchronous generators and subsystems. This paper presents an approach, based on the use of the nonlinear system model and application of the direct Lyapunov method, to improve damping of power swings using the unified power flow controller (UPFC). A state-variable control strategy has been derived as well as its implementation using locally available signals of real and reactive power. The results of simulation tests, undertaken using a small multi-machine system model, have been presented. (author)
Receding horizon control of nonlinear systems: A control Lyapunov function approach
Jadbabaie, Ali
With the advent of faster and cheaper computers, optimization based control methodologies have become a viable candidate for control of nonlinear systems. Over the past twenty years, a group of such control schemes have, been successfully used in the process control industry where the processes are either intrinsically stable or have very large time constants. The purpose of this thesis is to provide a theoretical framework for synthesis of a class of optimization based control schemes, known as receding horizon control techniques for nonlinear systems such as unmanned aerial vehicles. It is well known that unconstrained infinite horizon optimal control may be used to construct a stabilizing controller for a nonlinear system. In this thesis, we show that similar stabilization results may be achieved using unconstrained finite horizon optimal control. The key idea is to approximate the tail of the infinite horizon cost-to-go using, as terminal cost, an appropriate control Lyapunov function (CLF). A CLF can be thought of as generalization of the concept of a Lyapunov function to systems with inputs. Roughly speaking, the terminal CLF should provide an (incremental) upper bound on the cost. In this fashion, important stability characteristics may be retained without the use of terminal constraints such as those employed by a number of other researchers. The absence of constraints allows a significant speedup in computation. Furthermore, it is shown that in order to guarantee stability, it suffices to satisfy an improvement property, thereby, relaxing the requirement, that truly optimal trajectories be found. We provide a complete analysis of the stability and region of attraction/operation properties of receding horizon control strategies that utilize finite horizon approximations in the proposed class. It is shown that the guaranteed region of operation contains that of the CLF controller and may be made as large as desired by increasing the optimization horizon
Energy Technology Data Exchange (ETDEWEB)
Bidadfar, A.; Abedi, M.; Chu, C.C. [Tafresh Univ., Tafresh (Iran, Islamic Republic of). Dept. of Electrical Engineering; AmirKabir Univ., Tehran (Iran, Islamic Republic of). Dept. of Electrical Engineering
2010-07-01
An improved method of damping power swings in power systems was presented. In addition to integrating the unified power flow controller (UPFC) and superconducting magnetic energy storage (SMES), the approach also applied the direct Lyapunov method concept to determine the control scheme based on nonlinear power system model. In transient state, SMES cooperates with the UPFC converters in active power exchange. The UPFC current injection model enables the control of UPFC converters using the Lyapunov direct method. Power oscillations among power system generators decrease as a result of the energy exchanging capability of the SMES. The steady state control method is obtained to fulfill the normal task of the UPFC in the presence of SMES. The decentralizing method is used to locally control the UPFC-SMES independent of state variables of synchronous generators which require wide area measurements. PSCAD/EMTDC simulation of a typical multi-area system revealed that in addition to an improvement in power swing damping, there was a pronounced decrease of the first swing.
Institute of Scientific and Technical Information of China (English)
岑丽辉; 席裕庚
2009-01-01
A Lyapunov function is constructed based on the weighted sum of entropies for the case of two open channels in cascade, which is described by the Saint-Venant equations. A class of boundary feedback controllers is presented to guaran-tee the local closed-loop asymptotic stability in a neighborhood of the equilibrium point by means of the Lyapunov design ap-proach.
A unifying Lyapunov-based framework for the event-triggered control of nonlinear systems
Postoyan, Romain; Nesic, Dragan; Tabuada, Paulo
2011-01-01
We present a prescriptive framework for the event-triggered control of nonlinear systems. Rather than closing the loop periodically, as traditionally done in digital control, in event-triggered implementations the loop is closed according to a state-dependent criterion. Event-triggered control is especially well suited for embedded systems and networked control systems since it reduces the amount of resources needed for control such as communication bandwidth. By modeling the event-triggered implementations as hybrid systems, we provide Lyapunov-based conditions to guarantee the stability of the resulting closed-loop system and explain how they can be utilized to synthesize event-triggering rules. We illustrate the generality of the approach by showing how it encompasses several existing event-triggering policies and by developing new strategies which further reduce the resources needed for control.
Coordinate-invariant incremental Lyapunov functions
Zamani, Majid
2011-01-01
The notion of incremental stability was proposed by several researchers as a strong property of dynamical and control systems. In this type of stability, the focus is on the convergence of trajectories with respect to themselves, rather than with respect to an equilibrium point or a particular trajectory. Similarly to stability, Lyapunov functions play an important role in the study of incremental stability. In this paper, we propose coordinate-invariant notions of incremental Lyapunov function and provide the description of incremental stability in terms of existence of the proposed Lyapunov functions. Moreover, we develop a backstepping design approach providing a recursive way of constructing controllers as well as incremental Lyapunov functions. The effectiveness of our method is illustrated by synthesizing a controller rendering a single-machine infinite-bus electrical power system incrementally stable.
Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis
Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K
2011-01-01
Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator–effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway. PMID:22108795
Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis.
Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K
2011-11-22
Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator-effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway.
Institute of Scientific and Technical Information of China (English)
Ligang WU; Changhong WANG; Huijun GAO; Qingshuang ZENG
2006-01-01
The robust stability and robust sliding mode control problems are studied for a class of linear distributed time-delay systems with polytopic-type uncertainties by applying the parameter-dependent Lyapunov functional approach combining with a new method of introducing some relaxation matrices and tuning parameters, which can be chosen properly to lead to a less conservative result. First, a sufficient condition is proposed for robust stability of the autonomic system;next, the sufficient conditions of the robust stabilization controller and the existence condition of sliding mode are developed. The results are given in terms of linear matrix inequalities (LMIs), which can be solved via efficient interior-point algorithms. A numerical example is presented to illustrate the feasibility and advantages of the proposed design scheme.
Fuzzy Lyapunov Reinforcement Learning for Non Linear Systems.
Kumar, Abhishek; Sharma, Rajneesh
2017-03-01
We propose a fuzzy reinforcement learning (RL) based controller that generates a stable control action by lyapunov constraining fuzzy linguistic rules. In particular, we attempt at lyapunov constraining the consequent part of fuzzy rules in a fuzzy RL setup. Ours is a first attempt at designing a linguistic RL controller with lyapunov constrained fuzzy consequents to progressively learn a stable optimal policy. The proposed controller does not need system model or desired response and can effectively handle disturbances in continuous state-action space problems. Proposed controller has been employed on the benchmark Inverted Pendulum (IP) and Rotational/Translational Proof-Mass Actuator (RTAC) control problems (with and without disturbances). Simulation results and comparison against a) baseline fuzzy Q learning, b) Lyapunov theory based Actor-Critic, and c) Lyapunov theory based Markov game controller, elucidate stability and viability of the proposed control scheme.
ESTABLISHMENT OF SATELLITE FORMATION WITH INITIAL UNCERTAINTY BY CONTROL LYAPUNOV FUNCTION APPROACH
Directory of Open Access Journals (Sweden)
M. Navabi
2012-03-01
Full Text Available In recent years, dynamics and control of satellite formation flying have been active areas of research. From the mission planning perspective, three main areas namely formation establishment, maintenance and reconfiguration have been discussed. In this paper, a study of formation establishment under initial uncertainty is presented. In this regard, dynamics of low Earth orbit satellite formation is discussed. Control Lyapunov function approach is adopted to bring a deputy satellite, with perturbed initial conditions into formation with a chief satellite. In order to take account of the initial orbit insertion error, uncertainty in initial conditions of the deputy satellite is considered. For a case study, a relatively small formation is adopted, with air-launched Pegasus as the launch vehicle. For several initial conditions, control function and required time to achieve a given mission accuracy are determined, and results are provided as illustration.
Lyapunov Exponents and Covariant Vectors for Turbulent Flow Simulations
Blonigan, Patrick; Murman, Scott; Fernandez, Pablo; Wang, Qiqi
2016-11-01
As computational power increases, engineers are beginning to use scale-resolving turbulent flow simulations for applications in which jets, wakes, and separation dominate. However, the chaotic dynamics exhibited by scale-resolving simulations poses problems for the conventional sensitivity analysis and stability analysis approaches that are vital for design and control. Lyapunov analysis is used to study the chaotic behavior of dynamical systems, including flow simulations. Lyapunov exponents are the growth or a decay rate of specific flow field perturbations called the Lyapunov covariant vectors. Recently, the authors have used Lyapunov analysis to study the breakdown in conventional sensitivity analysis and the cost of new shadowing-based sensitivity analysis. The current work reviews Lyapunov analysis and presents new results for a DNS of turbulent channel flow, wall-modeled channel flow, and a DNS of a low pressure turbine blade. Additionally, the implications of these Lyapunov analyses for computing sensitivities of these flow simulations will be discussed.
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
Crauel, Hans; Eckmann, Jean-Pierre
1991-01-01
Since the predecessor to this volume (LNM 1186, Eds. L. Arnold, V. Wihstutz)appeared in 1986, significant progress has been made in the theory and applications of Lyapunov exponents - one of the key concepts of dynamical systems - and in particular, pronounced shifts towards nonlinear and infinite-dimensional systems and engineering applications are observable. This volume opens with an introductory survey article (Arnold/Crauel) followed by 26 original (fully refereed) research papers, some of which have in part survey character. From the Contents: L. Arnold, H. Crauel: Random Dynamical Systems.- I.Ya. Goldscheid: Lyapunov exponents and asymptotic behaviour of the product of random matrices.- Y. Peres: Analytic dependence of Lyapunov exponents on transition probabilities.- O. Knill: The upper Lyapunov exponent of Sl (2, R) cocycles:Discontinuity and the problem of positivity.- Yu.D. Latushkin, A.M. Stepin: Linear skew-product flows and semigroups of weighted composition operators.- P. Baxendale: Invariant me...
On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach.
Wang, Zi-Peng; Wu, Huai-Ning
2015-04-01
In this paper, a novel approach to fuzzy sampled-data control of chaotic systems is presented by using a time-dependent Lyapunov functional. The advantage of the new method is that the Lyapunov functional is continuous at sampling times but not necessarily positive definite inside the sampling intervals. Compared with the existing works, the constructed Lyapunov functional makes full use of the information on the piecewise constant input and the actual sampling pattern. In terms of a new parameterized linear matrix inequality (LMI) technique, a less conservative stabilization condition is derived to guarantee the exponential stability for the closed-loop fuzzy sampled-data system. By solving a set of LMIs, the fuzzy sampled-data controller can be easily obtained. Finally, the chaotic Lorenz system and Rössler's system are employed to illustrate the feasibility and effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Prechanon Kumkratug
2011-01-01
Full Text Available Problem statement: The disturbance in power system is unavoidable situation. It causes in power system oscillation. Approach: This study applied the Static Var Compensator (SVC to damp power system oscillation. The stability criterion of the Lyapunov is applied to derive the control strategy of SVC. The simulation results are tested on a Single Machine Infinite bus. The proposed method is equipped in sample system with disturbance. The generator rotor angle curve of the system without and with a SVC is plotted and compared for various cases. Results: It was found that the system without a SVC has high variation whereas that of the system with a SVC has much smaller variation. Conclusion: From the simulation results, the SVC can damp power system oscillaton.
Directory of Open Access Journals (Sweden)
Vaidyanathan Sundarapandian
2014-12-01
Full Text Available In this research work, a twelve-term novel 5-D hyperchaotic Lorenz system with three quadratic nonlinearities has been derived by adding a feedback control to a ten-term 4-D hyperchaotic Lorenz system (Jia, 2007 with three quadratic nonlinearities. The 4-D hyperchaotic Lorenz system (Jia, 2007 has the Lyapunov exponents L1 = 0.3684,L2 = 0.2174,L3 = 0 and L4 =−12.9513, and the Kaplan-Yorke dimension of this 4-D system is found as DKY =3.0452. The 5-D novel hyperchaotic Lorenz system proposed in this work has the Lyapunov exponents L1 = 0.4195,L2 = 0.2430,L3 = 0.0145,L4 = 0 and L5 = −13.0405, and the Kaplan-Yorke dimension of this 5-D system is found as DKY =4.0159. Thus, the novel 5-D hyperchaotic Lorenz system has a maximal Lyapunov exponent (MLE, which is greater than the maximal Lyapunov exponent (MLE of the 4-D hyperchaotic Lorenz system. The 5-D novel hyperchaotic Lorenz system has a unique equilibrium point at the origin, which is a saddle-point and hence unstable. Next, an adaptive controller is designed to stabilize the novel 5-D hyperchaotic Lorenz system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 5-D hyperchaotic Lorenz systems with unknown system parameters. Finally, an electronic circuit realization of the novel 5-D hyperchaotic Lorenz system using SPICE is described in detail to confirm the feasibility of the theoretical model.
DEFF Research Database (Denmark)
Eriksson, Robert
2014-01-01
as possible, and is based on Lyapunov theory considering the nonlinear behavior. The time optimal controller is of a bang-bang type and uses wide-area measurements as feedback signals. Nonlinear simulations are run in the Nordic32 test system implemented in PowerFactory/DIgSILENT with an interface to Matlab...
Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P
2017-03-01
In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Institute of Scientific and Technical Information of China (English)
杨治平; 陈姗姗; 聂振华
2014-01-01
对于多电机操控的高复杂度机电系统，构建对多电机控制的通用性强的控制算法十分重要。给出了基于多Lyapunov函数方法设计的感应电机速度控制模糊滑模控制算法。在控制方案中，首先应用Lyapunov 函数方法设计感应电机的速度估计器；其次应用Lyapunov 函数方法设计滑模控制器；最后应用Lyapunov 稳定条件，设计模糊滑模控制器。整合的模糊滑模控制技术，为多电机控制提供了有效的参考。%As to the high complexity mechanical-electronic operation system under the motors,it is very important that gives the general control algorithm to control the motors.The study pres-ents fuzzy sliding mode control algorithm based on multi-Lyapunov function method to control the motors speed.The control scheme,first,Lyapunov function method is applied to design speed estimator of the motors;second,Lyapunov function method is applied to structure the sliding mode control er;final y,applying Lyapunov stability condition,the fuzzy sliding mode control er is presented.Integration of fuzzy sliding mode control technology provides effective reference for the motors control ed.
Construction of a Smooth Lyapunov Function for the Robust and Exact Second-Order Differentiator
2016-01-01
Differentiators play an important role in (continuous) feedback control systems. In particular, the robust and exact second-order differentiator has shown some very interesting properties and it has been used successfully in sliding mode control, in spite of the lack of a Lyapunov based procedure to design its gains. As contribution of this paper, we provide a constructive method to determine a differentiable Lyapunov function for such a differentiator. Moreover, the Lyapunov function is used...
A Spectral Lyapunov Function for Exponentially Stable LTV Systems
Zhu, J. Jim; Liu, Yong; Hang, Rui
2010-01-01
This paper presents the formulation of a Lyapunov function for an exponentially stable linear timevarying (LTV) system using a well-defined PD-spectrum and the associated PD-eigenvectors. It provides a bridge between the first and second methods of Lyapunov for stability assessment, and will find significant applications in the analysis and control law design for LTV systems and linearizable nonlinear time-varying systems.
Cui, Ying; Wang, Rui; Huang, Huang; Zhang, Shunqing
2011-01-01
In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the upl...
Duc, Luu Hoang; Chávez, Joseph Páez; Son, Doan Thai; Siegmund, Stefan
2016-01-01
In biochemical networks transient dynamics plays a fundamental role, since the activation of signalling pathways is determined by thresholds encountered during the transition from an initial state (e.g. an initial concentration of a certain protein) to a steady-state. These thresholds can be defined in terms of the inflection points of the stimulus-response curves associated to the activation processes in the biochemical network. In the present work, we present a rigorous discussion as to the suitability of finite-time Lyapunov exponents and metabolic control coefficients for the detection of inflection points of stimulus-response curves with sigmoidal shape.
Designing Hyperchaotic Cat Maps With Any Desired Number of Positive Lyapunov Exponents.
Hua, Zhongyun; Yi, Shuang; Zhou, Yicong; Li, Chengqing; Wu, Yue
2017-01-04
Generating chaotic maps with expected dynamics of users is a challenging topic. Utilizing the inherent relation between the Lyapunov exponents (LEs) of the Cat map and its associated Cat matrix, this paper proposes a simple but efficient method to construct an n-dimensional (n-D) hyperchaotic Cat map (HCM) with any desired number of positive LEs. The method first generates two basic n-D Cat matrices iteratively and then constructs the final n-D Cat matrix by performing similarity transformation on one basic n-D Cat matrix by the other. Given any number of positive LEs, it can generate an n-D HCM with desired hyperchaotic complexity. Two illustrative examples of n-D HCMs were constructed to show the effectiveness of the proposed method, and to verify the inherent relation between the LEs and Cat matrix. Theoretical analysis proves that the parameter space of the generated HCM is very large. Performance evaluations show that, compared with existing methods, the proposed method can construct n-D HCMs with lower computation complexity and their outputs demonstrate strong randomness and complex ergodicity.
Construction of a Smooth Lyapunov Function for the Robust and Exact Second-Order Differentiator
Directory of Open Access Journals (Sweden)
Tonametl Sanchez
2016-01-01
Full Text Available Differentiators play an important role in (continuous feedback control systems. In particular, the robust and exact second-order differentiator has shown some very interesting properties and it has been used successfully in sliding mode control, in spite of the lack of a Lyapunov based procedure to design its gains. As contribution of this paper, we provide a constructive method to determine a differentiable Lyapunov function for such a differentiator. Moreover, the Lyapunov function is used to provide a procedure to design the differentiator’s parameters. Also, some sets of such parameters are provided. The determination of the positive definiteness of the Lyapunov function and negative definiteness of its derivative is converted to the problem of solving a system of inequalities linear in the parameters of the Lyapunov function candidate and also linear in the gains of the differentiator, but bilinear in both.
Nonlinear control for systems containing input uncertainty via a Lyapunov-based approach
Mackunis, William
Controllers are often designed based on the assumption that a control actuation can be directly applied to the system. This assumption may not be valid, however, for systems containing parametric input uncertainty or unmodeled actuator dynamics. In this dissertation, a tracking control methodology is proposed for aircaft and aerospace systems for which the corresponding dynamic models contain uncertainty in the control actuation. The dissertation will focus on five problems of interest: (1) adaptive CMG-actuated satellite attitude control in the presence of inertia uncertainty and uncertain CMG gimbal friction; (2) adaptive neural network (NN)-based satellite attitude control for CMG-actuated small-sats in the presence of uncertain satellite inertia, nonlinear disturbance torques, uncertain CMG gimbal friction, and nonlinear electromechanical CMG actuator disturbances; (3) dynamic inversion (DI) control for aircraft systems containing parametric input uncertainty and additive, nonlinearly parameterizable (non-LP) disturbances; (4) adaptive dynamic inversion (ADI) control for aircraft systems as described in (3); and (5) adaptive output feedback control for aircraft systems as described in (3) and (4).
Nguyen, Charles C.; Zhou, Zhen-Lei; Mosier, Gary E.
1993-01-01
This paper presents the design of a joint-space adaptive control scheme for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with seven degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Liupunov direct method, we derive an adaptation algorithm that adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly varying. The implementation of the derived control scheme does not require the computation of manipulator dynamics which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payload while tracking various test trajectories such as ramp or sinusoids with negligible position errors.
Nguyen, Charles C.; Zhou, Zhen-Lei; Mosier, Gary E.
1993-01-01
This paper presents the design of a joint-space adaptive control scheme for controlling the slave arm motion of a dual-arm telerobot system developed at Goddard Space Flight Center (GSFC) to study telerobotic operations in space. Each slave arm of the dual-arm system is a kinematically redundant manipulator with seven degrees of freedom (DOF). Using the concept of model reference adaptive control (MRAC) and Liupunov direct method, we derive an adaptation algorithm that adjusts the PD controller gains of the control scheme. The development of the adaptive control scheme assumes that the slave arm motion is non-compliant and slowly varying. The implementation of the derived control scheme does not require the computation of manipulator dynamics which makes the control scheme sufficiently fast for real-time applications. Computer simulation study performed for the 7-DOF slave arm shows that the developed control scheme can efficiently adapt to sudden change in payload while tracking various test trajectories such as ramp or sinusoids with negligible position errors.
Cheng, Jun; Zhu, Hong; Zhong, Shouming; Zeng, Yong; Dong, Xiucheng
2013-11-01
This paper is concerned with the problem of finite-time H∞ control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals. In order to reduce conservatism, a new Lyapunov-Krasovskii functional is constructed. Based on the derived condition, the reliable H∞ control problem is solved, and the system trajectory stays within a prescribed bound during a specified time interval. Finally, numerical examples are given to demonstrate the proposed approach is more effective than some existing ones.
Hierarchical robust nonlinear switching control design for propulsion systems
Leonessa, Alexander
1999-09-01
The desire for developing an integrated control system- design methodology for advanced propulsion systems has led to significant activity in modeling and control of flow compression systems in recent years. In this dissertation we develop a novel hierarchical switching control framework for addressing the compressor aerodynamic instabilities of rotating stall and surge. The proposed control framework accounts for the coupling between higher-order modes while explicitly addressing actuator rate saturation constraints and system modeling uncertainty. To develop a hierarchical nonlinear switching control framework, first we develop generalized Lyapunov and invariant set theorems for nonlinear dynamical systems wherein all regularity assumptions on the Lyapunov function and the system dynamics are removed. In particular, local and global stability theorems are given using lower semicontinuous Lyapunov functions. Furthermore, generalized invariant set theorems are derived wherein system trajectories converge to a union of largest invariant sets contained in intersections over finite intervals of the closure of generalized Lyapunov level surfaces. The proposed results provide transparent generalizations to standard Lyapunov and invariant set theorems. Using the generalized Lyapunov and invariant set theorems, a nonlinear control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving system equilibria is developed. Specifically, using equilibria- dependent Lyapunov functions, a hierarchical nonlinear control strategy is developed that stabilizes a given nonlinear system by stabilizing a collection of nonlinear controlled subsystems. The switching nonlinear controller architecture is designed based on a generalized lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized system equilibria. The proposed framework provides a
Pakmehr, Mehrdad; Fitzgerald, Nathan; Feron, Eric; Shamma, Jeff; Behbahani, Alireza
2012-01-01
This manuscript aims to develop and describe gain scheduling control concept for a gas turbine engine which drives a variable pitch propeller. An architecture for gain-scheduling control is developed that controls the turboshaft engine for large thrust commands in stable fashion with good performance. Fuel ow and propeller pitch angle are the two control inputs of the system. New stability proof has been developed for gain scheduling control of gas turbine engines using global linearization a...
Lyapunov-Based Control for Suppression of Wind-Induced Galloping in Suspension Bridges
Directory of Open Access Journals (Sweden)
Naif B. Almutairi
2011-01-01
Full Text Available This paper investigates the suppression of galloping in a suspension bridge due to wind loads. The galloping phenomenon can be destructive due to the high-amplitude oscillations of the structure. Two controllers are proposed to generate the control force needed to suppress the vertical galloping in the suspended cables and in the bridge deck. SIMULINK software is used to simulate the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a tuned mass damper.
Output feedback hybrid-impulsive second order sliding mode control: Lyapunov approach
Shtessel, Y.; Glumineau, A.; Plestan, F.; Weiss, M.
2014-01-01
A perturbed nonlinear system of relative degree two controlled by output feedbacks discontinuous-hybrid-impulsive control is studied. The output hybrid-impulsive terms serve to drive instantaneously the system's trajectory to the origin or to its small vicinity. The output feedback impulsive action
Robustness bound for receding horizon finite memory control: Lyapunov-Krasovskii approach
Ahn, Choon Ki
2012-07-01
This article presents a robustness bound (RB) of receding horizon finite memory control (RHFMC) (Kwon, W.H., and Han, S. (2004), 'Receding Horizon Finite Memory Controls of Output Feedback Controls for State Space Systems', IEEE Transactions on Automatic Control, 49, 1905-1915) for continuous-time state-space systems with norm-bounded uncertainties. The proposed RB is easily obtained by solving a convex problem in terms of a linear matrix inequality. We show through a numerical example that the RHFMC can guarantee the robust stabilisation for a larger class of uncertain systems than linear quadratic Gaussian controls when some poles of closed-loop systems are close to an imaginary axis in the complex plane.
Attitude control of an object commonly held by multiple robot arms - A Lyapunov approach
Kreutz, Kenneth; Wen, John T.
1988-01-01
Multiple robot arms moving a commonly held object can be viewed as complex actuators whose purpose is to provide net forces and moments to the object. These forces and moments can be used to control the orientation, or attitude, of the object via the Euler equation describing attitude evolution in response to applied moments at the mass center. In contrast to the common approach that feedback-linearizes the attitude dynamics to a double integrator form with respect to some three-parameter local representation of orientation, the authors control the object using a globally nonsingular representation. Using an energy-motivated Liapunov function, globally stable control of attitude is shown.
Attitude control of an object commonly held by multiple robot arms - A Lyapunov approach
Kreutz, Kenneth; Wen, John T.
1988-01-01
Multiple robot arms moving a commonly held object can be viewed as complex actuators whose purpose is to provide net forces and moments to the object. These forces and moments can be used to control the orientation, or attitude, of the object via the Euler equation describing attitude evolution in response to applied moments at the mass center. In contrast to the common approach that feedback-linearizes the attitude dynamics to a double integrator form with respect to some three-parameter local representation of orientation, the authors control the object using a globally nonsingular representation. Using an energy-motivated Liapunov function, globally stable control of attitude is shown.
Simon, J. S.; Valavani, L.
1991-01-01
The use of a closed-loop control to allow surge-free operation of a compression system beyond its uncontrolled surge line is addressed. In contrast to previous analyses which used a linearized model, the approach described directly addresses the nonlinear nature of the compressor characteristic using a Liapunov-based control law design formulation. The proposed approach is fairly generic and should be of interest for gas turbine engines as well as other applications.
Simon, J. S.; Valavani, L.
1991-01-01
The use of a closed-loop control to allow surge-free operation of a compression system beyond its uncontrolled surge line is addressed. In contrast to previous analyses which used a linearized model, the approach described directly addresses the nonlinear nature of the compressor characteristic using a Liapunov-based control law design formulation. The proposed approach is fairly generic and should be of interest for gas turbine engines as well as other applications.
Design of saturated controllers for linear singular systems
Institute of Scientific and Technical Information of China (English)
Wang Ruliang; Liu Yongqing
2005-01-01
A designing method is presented to find stabilizing saturated linear controllers for linear continuous time and discrete time singular systems with control constraints. The idea is as follows: The system is first stabilized by a low-gain linear state feedback control. A general Lyapunov function is found, on the basis of which another linear state feedback control is computed.The second step is very similar to a relay control design. The two controls are added and saturated.
Asymmetric Barrier Lyapunov Function-Based Wheel Slip Control for Antilock Braking System
Directory of Open Access Journals (Sweden)
Xiaolei Chen
2015-01-01
Full Text Available As an important device of the aircraft landing system, the antilock braking system (ABS has a function to avoid aircraft wheels self-locking. To deal with the strong nonlinear characteristics, complex nonlinear control schemes are applied in ABS. However, none of existing control schemes focus on the braking operating status, which directly reflects wheels self-locking degree. In this paper, the braking operating status region is divided into three regions: the healthy region, the light slip region, and the deep slip region. An ABLF-based wheel slip controller is proposed for ABS to constrain the braking system operating status in the healthy region and the light slip region. Therefore the ABS will be prevented from operating in the deep slip region. Under the proposed control scheme, self-locking is avoided completely and zero steady state error tracking of the wheel optimal slip ratio is implemented. The Hardware-In-Loop (HIL experiments have validated the effectiveness of the proposed controller.
Kolyada, Sergiy; Rybak, Oleksandr
2013-01-01
We introduce and study the Lyapunov numbers -- quantitative measures of the sensitivity of a dynamical system $(X,f)$ given by a compact metric space $X$ and a continuous map $f:X \\to X$. In particular, we prove that for a minimal topologically weakly mixing system all Lyapunov numbers are the same.
Relative Lyapunov Center Bifurcations
DEFF Research Database (Denmark)
Wulff, Claudia; Schilder, Frank
2014-01-01
Relative equilibria (REs) and relative periodic orbits (RPOs) are ubiquitous in symmetric Hamiltonian systems and occur, for example, in celestial mechanics, molecular dynamics, and rigid body motion. REs are equilibria, and RPOs are periodic orbits of the symmetry reduced system. Relative Lyapunov...... center bifurcations are bifurcations of RPOs from REs corresponding to Lyapunov center bifurcations of the symmetry reduced dynamics. In this paper we first prove a relative Lyapunov center theorem by combining recent results on the persistence of RPOs in Hamiltonian systems with a symmetric Lyapunov...... center theorem of Montaldi, Roberts, and Stewart. We then develop numerical methods for the detection of relative Lyapunov center bifurcations along branches of RPOs and for their computation. We apply our methods to Lagrangian REs of the N-body problem....
Robust Structured Control Design via LMI Optimization
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Stoustrup, Jakob
2011-01-01
This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, ﬁxed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...
Improved forwarding control design method and its application
Institute of Scientific and Technical Information of China (English)
Chen Yimei; Han Zhengzhi; Cai Xiushan
2006-01-01
Integrator forwarding is a recursive nonlinear design technique for the stabilization of feed-forward systems.However, this method still has some limitation. An improved design method is proposed to extend the field of application of this technique. This method is used to design a stabilizer for the inertia wheel pendulum system. Moreover, it is shown that the control Lyapunov function which is obtained from this method can also be used to design a globally asymptotically stabilizing controller with optimality.
Stochastic boundary control design for Timoshenko beams with large motions
Do, K. D.
2017-08-01
This paper considers modeling and boundary control of Timoshenko beams with large motions under both deterministic and stochastic external loads. The original nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The control design is based on the Lyapunov direct method. The proposed controllers guarantee globally practically K∞-exponentially p-stability of the beam motions at the reference state. Well-posedness and stability are analyzed based on a Lyapunov-type theorem developed to study well-posedness and stability for a class of stochastic evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.
Sliding Mode Control Design: a Sum of Squares Approach
Sanjari, Sina; Ozgoli, Sadjaad
2016-01-01
This paper presents an approach to systematically design sliding mode control and manifold to stabilize nonlinear uncertain systems. The objective is also accomplished to enlarge the inner bound of region of attraction for closed-loop dynamics. The method is proposed to design a control that guarantees both asymptotic and finite time stability given helped by (bilinear) sum of squares programming. The approach introduces an iterative algorithm to search over sliding mode manifold and Lyapunov...
Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng
2017-09-01
This paper investigates the problem of robust fault estimation (FE) observer design for discrete-time Takagi-Sugeno fuzzy systems via homogenous polynomially parameter-dependent Lyapunov functions. First, a novel framework of the fuzzy FE observer is established with the help of a maximum-minimum-priority-based switching mechanism. Then, for every activated switching case, a targeted result is achieved by the aid of exploring an important property of improved homogenous polynomials. Since the helpful information of the underlying system can be duly updated and effectively utilized at every sampled point, the conservatism of previous results is availably reduced. Furthermore, the proposed result is further improved by eliminating those redundant terms of the introduced matrix-valued variables. Simulation results based on a discrete-time nonlinear truck-trailer model are provided to show the advantages of the theoretic result that is developed in this paper.
Chaos control of chaotic dynamical systems using backstepping design
Energy Technology Data Exchange (ETDEWEB)
Yassen, M.T. [Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)] e-mail: mtyassen@yahoo.com
2006-01-01
This work presents chaos control of chaotic dynamical systems by using backstepping design method. This technique is applied to achieve chaos control for each of the dynamical systems Lorenz, Chen and Lue systems. Based on Lyapunov stability theory, control laws are derived. We used the same technique to enable stabilization of chaotic motion to a steady state as well as tracking of any desired trajectory to be achieved in a systematic way. Numerical simulations are shown to verify the results.
Robust chaotic control of Lorenz system by backstepping design
Energy Technology Data Exchange (ETDEWEB)
Peng, C.-C. [Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan (China); Chen, C.-L. [Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan (China)], E-mail: chiehli@mail.ncku.edu.tw
2008-07-15
This work presents a robust chaotic control strategy for the Lorenz chaos via backstepping design. Backstepping technique is a systematic tool of control law design to provide Lyapunov stability. The concept of extended system is used such that a continuous sliding mode control (SMC) effort is generated using backstepping scheme. In the proposed control algorithm, an adaptation law is applied to estimate the system parameter and the SMC offers the robustness to model uncertainties and external disturbances so that the asymptotical convergence of tracking error can be achieved. Regarding the SMC, an equivalent control algorithm is chosen based on the selection of Lyapunov stability criterion during backstepping approach. The converging rate of error state is relative to the corresponding dynamics of sliding surface. Numerical simulations demonstrate its advantages to a regulation problem and an orbit tracking problem of the Lorenz chaos.
Stability of quantized time-delay nonlinear systems : A Lyapunov-Krasowskii-functional approach
Persis, Claudio De; Mazenc, Frédéric
2009-01-01
Lyapunov-Krasowskii functionals are used to design quantized control laws for nonlinear continuous-time systems in the presence of time-invariant constant delays in the input. The quantized control law is implemented via hysteresis to avoid chattering. Under appropriate conditions, our analysis appl
Stability of time-delay systems via Lyapunov functions
Directory of Open Access Journals (Sweden)
Carlos F. Alastruey
2002-01-01
Full Text Available In this paper, a Lyapunov function candidate is introduced for multivariable systems with inner delays, without assuming a priori stability for the nondelayed subsystem. By using this Lyapunov function, a controller is deduced. Such a controller utilizes an input–output description of the original system, a circumstance that facilitates practical applications of the proposed approach.
Stabilisation of a class of 2-DOF underactuated mechanical systems via direct Lyapunov approach
Turker, Turker; Gorgun, Haluk; Cansever, Galip
2013-06-01
This paper represents an alternative stabilisation procedure for a class of two degree-of-freedom underactuated mechanical systems based on a set of transformations and a Lyapunov function. After simplifying dynamic equations of the system via partial feedback linearisation and coordinate changes, the stability of the system is provided with Lyapunov's direct method. Proposed control scheme is used on two different examples and asymptotic convergence for each system is proven by means of La Salle's invariance principle. The designed controller is successfully illustrated through numerical simulations for each example.
Directory of Open Access Journals (Sweden)
Seung Kwan Song
2016-10-01
Full Text Available We present two control strategies for an oscillating water column-wave energy converter (OWC-WEC in the time domain. We consider a fixed OWC-WEC on the open sea with an impulse turbine module. This system mainly consists of a chamber, turbine and electric generator. For the time domain analysis, all of the conversion stages considering mutualities among them should be analyzed based on the Newtonian mechanics. According to the analysis of Newtonian mechanics, the hydrodynamics of wave energy absorption in the chamber and the turbine aerodynamic performance are directly coupled and share the internal air pressure term via the incompressible air assumption. The turbine aerodynamics and the dynamics of the electric generator are connected by torque load through the rotor shaft, which depends on an electric terminal load that acts as a control input. The proposed control strategies are an instant maximum turbine efficiency tracking control and a constant angular velocity of the turbine rotor control methods. Both are derived by Lyapunov stability analysis. Numerical simulations are carried out under irregular waves with various heights and periods in the time domain, and the results with the controllers are analyzed. We then compare these results with simulations carried out in the absence of the control strategy in order to prove the performance of the controllers.
Calculating Lyapunov Exponents: Applying Products and Evaluating Integrals
McCartney, Mark
2010-01-01
Two common examples of one-dimensional maps (the tent map and the logistic map) are generalized to cases where they have more than one control parameter. In the case of the tent map, this still allows the global Lyapunov exponent to be found analytically, and permits various properties of the resulting global Lyapunov exponents to be investigated…
Calculating Lyapunov Exponents: Applying Products and Evaluating Integrals
McCartney, Mark
2010-01-01
Two common examples of one-dimensional maps (the tent map and the logistic map) are generalized to cases where they have more than one control parameter. In the case of the tent map, this still allows the global Lyapunov exponent to be found analytically, and permits various properties of the resulting global Lyapunov exponents to be investigated…
The Design of Robust Controller for Networked Control System with Time Delay
Directory of Open Access Journals (Sweden)
Zhongda Lu
2015-01-01
Full Text Available This paper considers the stability and H∞ control problem of networked control systems with time delay. Taking into account the influence of network with delay, unknown input disturbance, and uncertainties of the system modeling, meanwhile we establish a precise, closed-loop model for networked control systems with time delay. By selecting a proper Lyapunov-Krasovskii function and using Lyapunov theorem, a sufficient condition for stability of the system in the form of LMI is demonstrated, corresponding controller parameters are acquired, and the convergence of the control algorithm is proved. The simulation example shows that the construction of the network robust control system with time delay indeed improves the stability performance of the system, which indicates the effectiveness of the design.
DEFF Research Database (Denmark)
Jantzen, Jan
1998-01-01
Design of a fuzzy controller requires more design decisions than usual, for example regarding rule base, inference engine, defuzzification, and data pre- and post processing. This tutorial paper identifies and describes the design choices related to single-loop fuzzy control, based...... on an international standard which is underway. The paper contains also a design approach, which uses a PID controller as a starting point. A design engineer can view the paper as an introduction to fuzzy controller design....
Lyapunov exponent diagrams of a 4-dimensional Chua system.
Stegemann, Cristiane; Albuquerque, Holokx A; Rubinger, Rero M; Rech, Paulo C
2011-09-01
We report numerical results on the existence of periodic structures embedded in chaotic and hyperchaotic regions on the Lyapunov exponent diagrams of a 4-dimensional Chua system. The model was obtained from the 3-dimensional Chua system by the introduction of a feedback controller. Both the largest and the second largest Lyapunov exponents were considered in our colorful Lyapunov exponent diagrams, and allowed us to characterize periodic structures and regions of chaos and hyperchaos. The shrimp-shaped periodic structures appear to be malformed on some of Lyapunov exponent diagrams, and they present two different bifurcation scenarios to chaos when passing the boundaries of itself, namely via period-doubling and crisis. Hyperchaos-chaos transition can also be observed on the Lyapunov exponent diagrams for the second largest exponent.
Lyapunov matrices approach to the parametric optimization of time-delay systems
Directory of Open Access Journals (Sweden)
Duda Józef
2015-09-01
Full Text Available In the paper a Lyapunov matrices approach to the parametric optimization problem of time-delay systems with a P-controller is presented. The value of integral quadratic performance index of quality is equal to the value of Lyapunov functional for the initial function of the time-delay system. The Lyapunov functional is determined by means of the Lyapunov matrix
Lyapunov Matrices Approach to the Parametric Optimization of a System with Two Delays
Directory of Open Access Journals (Sweden)
Duda Jozef
2016-09-01
Full Text Available In the paper a Lyapunov matrices approach to the parametric optimization problem of time-delay systems with two commensurate delays and a P-controller is presented. The value of integral quadratic performance index of quality is equal to the value of the Lyapunov functional for the initial function of time-delay system. The Lyapunov functional is determined by means of the Lyapunov matrix.
Jumping property of Lyapunov values
Institute of Scientific and Technical Information of China (English)
毛锐; 王铎
1996-01-01
A sufficient condition for fcth Lyapunov value to be zero for planar polynomial vector fields is given, which extends the result of "jumping property’ of Lyapunov values obtained by Wang Duo to more general cases. A concrete example that the origin cannot be weak focus of order 1, 2, 4, 5, 8 is presented.
Analysis and design of hybrid control systems
Energy Technology Data Exchange (ETDEWEB)
Malmborg, J.
1998-05-01
Different aspects of hybrid control systems are treated: analysis, simulation, design and implementation. A systematic methodology using extended Lyapunov theory for design of hybrid systems is developed. The methodology is based on conventional control designs in separate regions together with a switching strategy. Dynamics are not well defined if the control design methods lead to fast mode switching. The dynamics depend on the salient features of the implementation of the mode switches. A theorem for the stability of second order switching together with the resulting dynamics is derived. The dynamics on an intersection of two sliding sets are defined for two relays working on different time scales. The current simulation packages have problems modeling and simulating hybrid systems. It is shown how fast mode switches can be found before or during simulation. The necessary analysis work is a very small overhead for a modern simulation tool. To get some experience from practical problems with hybrid control the switching strategy is implemented in two different software environments. In one of them a time-optimal controller is added to an existing PID controller on a commercial control system. Successful experiments with this hybrid controller shows the practical use of the method 78 refs, 51 figs, 2 tabs
Tahoun, A H
2017-01-01
In this paper, the stabilization problem of actuators saturation in uncertain chaotic systems is investigated via an adaptive PID control method. The PID control parameters are auto-tuned adaptively via adaptive control laws. A multi-level augmented error is designed to account for the extra terms appearing due to the use of PID and saturation. The proposed control technique uses both the state-feedback and the output-feedback methodologies. Based on Lyapunov׳s stability theory, new anti-windup adaptive controllers are proposed. Demonstrative examples with MATLAB simulations are studied. The simulation results show the efficiency of the proposed adaptive PID controllers.
Analysis and control design of two cascaded boost converter
Directory of Open Access Journals (Sweden)
Moutabir A.
2014-01-01
Full Text Available This work aims to study a cascade of two BOOST converters. First, a non- linear model of the whole controlled system is developed. Then, a robust non-linear controller of currents is synthesized using a backstepping design technique. A formal analysis based on Lyapunov stability and average theory is developed to describe the control currents loops performances. A classical PI controller is used for the voltages loops. The study of the stability of the system will also be discussed. Simulated results are displayed to validate the feasibility and the effectiveness of the proposed strategy.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper develops a unified methodology for a real-time speed control of brushless direct-current motor drive systems in the presence of measurement noise and load torque disturbance. First, the mathematical model and hardware structure of system is established. Next, an optimal state feed back controller using the Kalman filter state estimation technique is derived.This is followed by an adaptive control algorithm to compensate for the effects of noise and disturbance. Those two algorithms working together can provide a very-high-speed regulation and dynamic response over a wide range of operating conditions.Simulated responses are presented to highlight the effectiveness of the proposed control strategy.
Output feedback controller design for uncertain piecewise linear systems
Institute of Scientific and Technical Information of China (English)
Jianxiong ZHANG; Wansheng TANG
2007-01-01
This paper proposes output feedback controller design methods for uncertain piecewise linear systems based on piecewise quadratic Lyapunov function. The α-stability of closed-loop systems is also considered. It is shown that the output feedback controller design procedure of uncertain piecewise linear systems with α-stability constraint can be cast as solving a set of bilinear matrix inequalities (BMIs). The BMIs problem in this paper can be solved iteratively as a set of two convex optimization problems involving linear matrix inequalities (LMIs) which can be solved numerically efficiently. A numerical example shows the effectiveness of the proposed methods.
Automatically Discovering Relaxed Lyapunov Functions for Polynomial Dynamical Systems
Liu, Jiang; Zhao, Hengjun
2011-01-01
The notion of Lyapunov function plays a key role in design and verification of dynamical systems, as well as hybrid and cyber-physical systems. In this paper, to analyze the asymptotic stability of a dynamical system, we generalize standard Lyapunov functions to relaxed Lyapunov functions (RLFs), by considering higher order Lie derivatives of certain functions along the system's vector field. Furthermore, we present a complete method to automatically discovering polynomial RLFs for polynomial dynamical systems (PDSs). Our method is complete in the sense that it is able to discover all polynomial RLFs by enumerating all polynomial templates for any PDS.
Design Intelligent Robust Back stepping Controller
Directory of Open Access Journals (Sweden)
Zahra Esmaieli
2014-01-01
Full Text Available The increasing demand for multi-degree-of-freedom (DOF continuum robot in presence of highly nonlinear dynamic parameters in a number of industries has motivated a flurry of research in the development of soft computing nonlinear methodology. The robust backstopping controller proposed in this research is used to further demonstrate the appealing features exhibited by the continuum robot. Robust feedback controller is used to position control of continuum robot in presence of uncertainties. Using Lyapunov type stability arguments, a robust backstopping controller is designed to achieve this objective. The controller developed in this research is designed into two steps. Firstly, a robust stabilizing torque is designed for the nominal continuum robot dynamics derived using the constrained Lagrangian formulation based on modified PD backstopping controller. Next, the fuzzy logic methodology applied to it to solution uncertainty problem. The fuzzy model free problem is formulated to estimate the nonlinear formulation of continuum robot. The eventual stability of the controller depends on the torque generating capabilities of the continuum robots.
Energy Technology Data Exchange (ETDEWEB)
Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann
2003-05-01
The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.
Boundary control design for extensible marine risers in three dimensional space
Do, K. D.
2017-02-01
A design of boundary controllers is proposed for (practical) exponential stabilization of extensible marine risers in three-dimensional (3D) space under sea loads. The design removes flaws in existing works. Two Lyapunov-type theorems are developed for study of existence and uniqueness, and stability of nonlinear evolution systems in Hilbert space. These theorems have their potential use in control design and stability analysis for flexible systems including marine risers.
Lyapunov modes in extended systems.
Yang, Hong-Liu; Radons, Günter
2009-08-28
Hydrodynamic Lyapunov modes, which have recently been observed in many extended systems with translational symmetry, such as hard sphere systems, dynamic XY models or Lennard-Jones fluids, are nowadays regarded as fundamental objects connecting nonlinear dynamics and statistical physics. We review here our recent results on Lyapunov modes in extended system. The solution to one of the puzzles, the appearance of good and 'vague' modes, is presented for the model system of coupled map lattices. The structural properties of these modes are related to the phase space geometry, especially the angles between Oseledec subspaces, and to fluctuations of local Lyapunov exponents. In this context, we report also on the possible appearance of branches splitting in the Lyapunov spectra of diatomic systems, similar to acoustic and optical branches for phonons. The final part is devoted to the hyperbolicity of partial differential equations and the effective degrees of freedom of such infinite-dimensional systems.
Lyapunov decay in quantum irreversibility.
García-Mata, Ignacio; Roncaglia, Augusto J; Wisniacki, Diego A
2016-06-13
The Loschmidt echo--also known as fidelity--is a very useful tool to study irreversibility in quantum mechanics due to perturbations or imperfections. Many different regimes, as a function of time and strength of the perturbation, have been identified. For chaotic systems, there is a range of perturbation strengths where the decay of the Loschmidt echo is perturbation independent, and given by the classical Lyapunov exponent. But observation of the Lyapunov decay depends strongly on the type of initial state upon which an average is carried out. This dependence can be removed by averaging the fidelity over the Haar measure, and the Lyapunov regime is recovered, as has been shown for quantum maps. In this work, we introduce an analogous quantity for systems with infinite dimensional Hilbert space, in particular the quantum stadium billiard, and we show clearly the universality of the Lyapunov regime.
Controller Design for a Teleoperation System with Time Delay
Institute of Scientific and Technical Information of China (English)
SHE Jun; JIAO Shou-jiang; LUO Xiao-yuan; GUAN Xin-ping
2005-01-01
A robust controller design method is presented to guarantee the stability and zero tracking error for teleoperation system with time delay. Through choosing appropriate master and slave parameters, extended state equation about master and master-slave error is achieved, which can be analyzed by using time delay knowledge. Thus delay-independent and delay-dependent criteria are derived in terms of the Lyapunov stability theorem, control parameters are obtained by the feasible of linear matrix inequalities. Experimental results show the validity of these approaches and the performance of master and slave manipulators with delay variations is analyzed.
Enhanced approach to PD control design for linear time-invariant descriptor systems
Filasová, Anna; Krokavec, Dušan
2017-01-01
Enhanced approaches to PD controller design, adjusted for linear time-invariant descriptor systems, are proposed in the paper. Presented in the sense of the second Lyapunov method, an associated structure of linear matrix inequalities is outlined to possess the regular closed-loop system dynamic properties. A simulation example, subject to the state and output PD control, demonstrates the effiectiveness of the proposed form of the design technique.
Novel l2-l∞ controller design for LPV discrete time-delay systems
Institute of Scientific and Technical Information of China (English)
Wang Junling; Wang Changhong; Li Yanhui; Gao Huijun
2005-01-01
One of the first attempts to derive energy-to-peak performance criteria and state-feedback controller design problem for linear parameter-varying discrete time systems with time delay is provided. Firstly, we present a parameterdependent l2-l∞ performance criterion using a parameter-dependent Lyapunov function. Upon the conditions addressed,an improved parameter-dependent l2-l∞ performance criterion is established by the introduction of a slack variable,which exhibits a kind of decoupling between Lyapunov functions and system matrices. This kind of decoupling enables us to obtain more easily tractable conditions for analysis and synthesis problems. Then, the corresponding parameter-dependent state-feedback controller design is investigated upon these performance criteria, with sufficient conditions obtained for the existence of admissible controllers in terms of parameterized linear matrix inequalities. Finally, a numerical example is provided to illustrate the feasibility and advantage of the proposed controller design procedure.
Robust control of uncertain time delay system: a novel sliding mode control design via LMI
Institute of Scientific and Technical Information of China (English)
Qu Shaocheng; Wang Yongji
2006-01-01
The sliding mode control problem (SMC) is studied for a class of uncertain delay system in the presence of both parameter uncertainties and external disturbances. A novel virtual feedback control method is presented. Based on Lyapunov theory, sufficient conditions for design of the robust sliding mode plane are derived. Sliding mode controller based on reaching law concept is developed, which is to ensure system trajectories from any initial conditions asymptotically convergent to sliding mode plane. The global asymptotically stability of the closed-loop system is guaranteed. A numerical example with simulation results is given to illustrate the effectiveness of the methodology.
Applied Control Systems Design
Mahmoud, Magdi S
2012-01-01
Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...
Entanglement production and Lyapunov exponents
Hackl, Lucas; Bianchi, Eugenio; Yokomizo, Nelson
2017-01-01
Squeezed vacua play a prominent role in quantum field theory in curved spacetime. Instabilities and resonances that arise from the coupling in the field to the background geometry, result in a large squeezing of the vacuum. In this talk, I discuss the relation between squeezing and Lyapunov exponents of the system. In particular, I derive a new formula for the rate of growth of the entanglement entropy expressed as the sum of the Lyapunov exponents. Examples of such a linear production regime can be found during inflation and in the preheating phase directly after inflation.
Induction motor control design
Marino, Riccardo; Verrelli, Cristiano M
2010-01-01
""Nonlinear and Adaptive Control Design for Induction Motors"" is a unified exposition of the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible to readers who are not experts in electric motors at the same time as giving a more theoretical control viewpoint to those who are. In order to increase readability, the book concentrates on the induction motor, eschewing the much more complex and less-well-understood control of asynchronous motors. The
Fuzzy Networked Control Systems Design Considering Scheduling Restrictions
Directory of Open Access Journals (Sweden)
H. Benítez-Pérez
2012-01-01
known a priory but from a dynamic real-time behavior. To do so, the use of priority dynamic Priority exchange scheduling is performed. The objective of this paper is to show a way to tackle multiple time delays that are bounded and the dynamic response from real-time scheduling approximation. The related control law is designed considering fuzzy logic approximation for nonlinear time delays coupling, where the main advantage is the integration of this behavior through extended state space representation keeping certain linear and bounded behavior and leading to a stable situation during events presentation by guaranteeing stability through Lyapunov.
Institute of Scientific and Technical Information of China (English)
Xiaowu MU; Haijun LIU
2007-01-01
In this paper,a state feedback adaptive stabilization for a class of large-scale stochastic nonlinear systems is designed with Lyapunov and Backstepping method.In the systems there are uncertain terms,whose bounds are governed by a set of unknown parameters.The designed controllers would make the close-loop systems asymptotically stable and adaptive for the unknown parameters.As an application,a second order example is delivered to illustrate the approach.
Multi-objective optimization framework for networked predictive controller design.
Das, Sourav; Das, Saptarshi; Pan, Indranil
2013-01-01
Networked Control Systems (NCSs) often suffer from random packet dropouts which deteriorate overall system's stability and performance. To handle the ill effects of random packet losses in feedback control systems, closed over communication network, a state feedback controller with predictive gains has been designed. To achieve improved performance, an optimization based controller design framework has been proposed in this paper with Linear Matrix Inequality (LMI) constraints, to ensure guaranteed stability. Different conflicting objective functions have been optimized with Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The methodology proposed in this paper not only gives guaranteed closed loop stability in the sense of Lyapunov, even in the presence of random packet losses, but also gives an optimization trade-off between two conflicting time domain control objectives.
Wilson, David G [Tijeras, NM; Robinett, III, Rush D.
2012-02-21
A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.
Nutrient Control Design Manual
The purpose of this EPA design manual is to provide updated, state‐of‐the‐technology design guidance on nitrogen and phosphorus control at municipal Wastewater Treatment Plants (WWTPs). Similar to previous EPA manuals, this manual contains extensive information on the principles ...
Impulsive Controller Design for Complex Nonlinear Singular Networked Systems with Packet Dropouts
Directory of Open Access Journals (Sweden)
Xian-Lin Zhao
2013-01-01
Full Text Available Globally exponential stability of Complex (with coupling Nonlinear Singular Impulsive Networked Control Systems (CNSINCS with packet dropouts and time-delay is investigated. Firstly, the mathematic model of CNSINCS is established. Then, by employing the method of Lyapunov functional, exponential stability criteria are obtained and the impulsive controller design method is given. Finally, some simulation results are provided to demonstrate the effectiveness of the proposed method.
Institute of Scientific and Technical Information of China (English)
王静; 蒋刚
2013-01-01
针对轮式移动机器人在实际运行中受环境因数影响的情况,采用扩展卡尔曼滤波(EKF)算法融合里程计与超声波的观测数据,对机器人的参考轨迹信息进行校正.在机器人动力学模型的基础上,运用Lyapunov直接法,构造具有全局渐近稳定的跟踪控制器,对机器人进行轨迹跟踪.根据Lyapunov稳定性定理证明了系统的全局稳定性.仿真结果表明,数据滤波与Lyapunov方法结合的跟踪控制器效果良好.%According to the fact that the wheeled mobile robots are influenced by the environmental factor in practice,the information of reference trajectory of the robot was corrected by using the extended Kalman filter (EKF) algorithm fusion odometry and ultrasonic observation data.Based on the robot dynamic model,a global asymptotical stable tracking controller was constructed by using the Lyapunov direct method,and the global stability of the system was proved by using Lyapunov stability theorem.The simulation results of this paper showed that the tracking controller,which combined both the data filtering and Lyapunov method,has better efficiency.
Design of Distributed Engine Control Systems with Uncertain Delay.
Liu, Xiaofeng; Li, Yanxi; Sun, Xu
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.
Modern linear control design a time-domain approach
Caravani, Paolo
2013-01-01
This book offers a compact introduction to modern linear control design. The simplified overview presented of linear time-domain methodology paves the road for the study of more advanced non-linear techniques. Only rudimentary knowledge of linear systems theory is assumed - no use of Laplace transforms or frequency design tools is required. Emphasis is placed on assumptions and logical implications, rather than abstract completeness; on interpretation and physical meaning, rather than theoretical formalism; on results and solutions, rather than derivation or solvability. The topics covered include transient performance and stabilization via state or output feedback; disturbance attenuation and robust control; regional eigenvalue assignment and constraints on input or output variables; asymptotic regulation and disturbance rejection. Lyapunov theory and Linear Matrix Inequalities (LMI) are discussed as key design methods. All methods are demonstrated with MATLAB to promote practical use and comprehension. ...
Baire classes of Lyapunov invariants
Bykov, V. V.
2017-05-01
It is shown that no relations exist (apart from inherent ones) between Baire classes of Lyapunov transformation invariants in the compact- open and uniform topologies on the space of linear differential systems. It is established that if a functional on the space of linear differential systems with the compact-open topology is the repeated limit of a multisequence of continuous functionals, then these can be chosen to be determined by the values of system coefficients on a finite interval of the half-line (one for each functional). It is proved that the Lyapunov exponents cannot be represented as the limit of a sequence of (not necessarily continuous) functionals such that each of these depends only on the restriction of the system to a finite interval of the half-line. Bibliography: 28 titles.
Local Lyapunov exponents sublimiting growth rates of linear random differential equations
Siegert, Wolfgang
2009-01-01
Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-intensity-dependent time is trapped near one of its so-called metastable states. The local Lyapunov exponent is then introduced as the exponential growth rate of the linear system on this time scale. Unlike classical Lyapunov exponents, which involve a limit as time increases to infinity in a fixed system, here the system itself changes as the noise intensity converges, too.
Lyapunov exponents for multi-parameter tent and logistic maps.
McCartney, Mark
2011-12-01
The behaviour of logistic and tent maps is studied in cases where the control parameter is dependent on iteration number. Analytic results for global Lyapunov exponent are presented in the case of the tent map and numerical results are presented in the case of the logistic map. In the case of a tent map with N control parameters, the fraction of parameter space for which the global Lyapunov exponent is positive is calculated. The case of bi-parameter maps of period N are investigated.
Collins, Emmanuel G., Jr.; Richter, Stephen
1990-01-01
One well known deficiency of LQG compensators is that they do not guarantee any measure of robustness. This deficiency is especially highlighted when considering control design for complex systems such as flexible structures. There has thus been a need to generalize LQG theory to incorporate robustness constraints. Here we describe the maximum entropy approach to robust control design for flexible structures, a generalization of LQG theory, pioneered by Hyland, which has proved useful in practice. The design equations consist of a set of coupled Riccati and Lyapunov equations. A homotopy algorithm that is used to solve these design equations is presented.
Pattern Recognition Control Design
Gambone, Elisabeth A.
2018-01-01
Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.
Flexible Lyapunov Functions and Applications to Fast Mechatronic Systems
Directory of Open Access Journals (Sweden)
Mircea Lazar
2010-03-01
Full Text Available The property that every control system should posses is stability, which translates into safety in real-life applications. A central tool in systems theory for synthesizing control laws that achieve stability are control Lyapunov functions (CLFs. Classically, a CLF enforces that the resulting closed-loop state trajectory is contained within a cone with a fixed, predefined shape, and which is centered at and converges to a desired converging point. However, such a requirement often proves to be overconservative, which is why most of the real-time controllers do not have a stability guarantee. Recently, a novel idea that improves the design of CLFs in terms of flexibility was proposed. The focus of this new approach is on the design of optimization problems that allow certain parameters that define a cone associated with a standard CLF to be decision variables. In this way non-monotonicity of the CLF is explicitly linked with a decision variable that can be optimized on-line. Conservativeness is significantly reduced compared to classical CLFs, which makes flexible CLFs more suitable for stabilization of constrained discrete-time nonlinear systems and real-time control. The purpose of this overview is to highlight the potential of flexible CLFs for real-time control of fast mechatronic systems, with sampling periods below one millisecond, which are widely employed in aerospace and automotive applications.
Liu, Yan-Jun; Li, Jing; Tong, Shaocheng; Chen, C L Philip
2016-07-01
In order to stabilize a class of uncertain nonlinear strict-feedback systems with full-state constraints, an adaptive neural network control method is investigated in this paper. The state constraints are frequently emerged in the real-life plants and how to avoid the violation of state constraints is an important task. By introducing a barrier Lyapunov function (BLF) to every step in a backstepping procedure, a novel adaptive backstepping design is well developed to ensure that the full-state constraints are not violated. At the same time, one remarkable feature is that the minimal learning parameters are employed in BLF backstepping design. By making use of Lyapunov analysis, we can prove that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded and the output is well driven to follow the desired output. Finally, a simulation is given to verify the effectiveness of the method.
Numerical solution of large Lyapunov equations
Saad, Youcef
1989-01-01
A few methods are proposed for solving large Lyapunov equations that arise in control problems. The common case where the right hand side is a small rank matrix is considered. For the single input case, i.e., when the equation considered is of the form AX + XA(sup T) + bb(sup T) = 0, where b is a column vector, the existence of approximate solutions of the form X = VGV(sup T) where V is N x m and G is m x m, with m small is established. The first class of methods proposed is based on the use of numerical quadrature formulas, such as Gauss-Laguerre formulas, applied to the controllability Grammian. The second is based on a projection process of Galerkin type. Numerical experiments are presented to test the effectiveness of these methods for large problems.
Flexible Lyapunov Functions and Applications to Fast Mechatronic Systems
Lazar, M
2010-01-01
The property that every control system should posses is stability, which translates into safety in real-life applications. A central tool in systems theory for synthesizing control laws that achieve stability are control Lyapunov functions (CLFs). Classically, a CLF enforces that the resulting closed-loop state trajectory is contained within a cone with a fixed, predefined shape, and which is centered at and converges to a desired converging point. However, such a requirement often proves to be overconservative, which is why most of the real-time controllers do not have a stability guarantee. Recently, a novel idea that improves the design of CLFs in terms of flexibility was proposed. The focus of this new approach is on the design of optimization problems that allow certain parameters that define a cone associated with a standard CLF to be decision variables. In this way non-monotonicity of the CLF is explicitly linked with a decision variable that can be optimized on-line. Conservativeness is significantly ...
Lyapunov Function Synthesis - Algorithm and Software
DEFF Research Database (Denmark)
Leth, Tobias; Wisniewski, Rafal; Sloth, Christoffer
2016-01-01
In this paper we introduce an algorithm for the synthesis of polynomial Lyapunov functions for polynomial vector fields. The Lyapunov function is a continuous piecewisepolynomial defined on simplices, which compose a collection of simplices. The algorithm is elaborated and crucial features...
Rank-one LMIs and Lyapunov's inequality
Henrion, D.; Meinsma, Gjerrit
2001-01-01
We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix in some region of the complex plane. The proof makes use of standard facts from quadratic and semi-definite programming. Links are established between the Lyapunov matrix,
Rank-one LMIs and Lyapunov's inequality
Henrion, D.; Meinsma, G.
2001-01-01
We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix in some region of the complex plane. The proof makes use of standard facts from quadratic and semi-definite programming. Links are established between the Lyapunov matrix, rank-on
Lyapunov Function Synthesis - Algorithm and Software
DEFF Research Database (Denmark)
Leth, Tobias; Sloth, Christoffer; Wisniewski, Rafal
2016-01-01
In this paper we introduce an algorithm for the synthesis of polynomial Lyapunov functions for polynomial vector fields. The Lyapunov function is a continuous piecewisepolynomial defined on simplices, which compose a collection of simplices. The algorithm is elaborated and crucial features...
Stability analysis and design of fuzzy control system with bounded uncertain delays
Institute of Scientific and Technical Information of China (English)
Jianguo GUO; Juntao LI; Fengqi ZHOU; Jun ZHOU
2005-01-01
Fuzzy control problems for systems with bounded uncertain delays were studied.Based on Lyapunov stability theory and matrix theory,a nonlinear state feedback fuzzy controller was designed by linear matrix inequalities (LMI) approach,and the global exponential stability of the closed-loop system was strictly proved.For a fuzzy control system with bounded uncertain delays,under the global exponential stability condition which is reduced to p linear matrix inequalities,the controller guarantees stability performances of state variables.Finally,the simulation shows the validity of the method in this paper.
Adaptive Neuro-fuzzy Controller Design for Non-affine Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
JIA Li; GE Shu-zhi; QIU Ming-sen
2008-01-01
An adaptive neuro-fuzzy control is investigated for a class of noa-affine nonlinear systems.To do so,rigorous description and quantification of the approximation error of the neuro-fuzzy controller are firstly discussed.Applying this result and Lyapunov stability theory,a novel updating algorithm to adapt the weights,centers,and widths of the neuro-fuzzy controller is presented.Consequently,the proposed design method is able to guaranteg the stability of the closed-loop system and the convergence of the tracking error.Simulation results illustrate the effectiveness of the proposed adaptive neuro-fuzzy control scheme.
Yang, Hong-liu; Radons, Günter; Kantz, Holger
2012-12-14
The estimation of Lyapunov exponents from time series suffers from the appearance of spurious Lyapunov exponents due to the necessary embedding procedure. Separating true from spurious exponents poses a fundamental problem which is not yet solved satisfactorily. We show, in this Letter, analytically and numerically that covariant Lyapunov vectors associated with true exponents lie in the tangent space of the reconstructed attractor. Therefore, we use the angle between the covariant Lyapunov vectors and the tangent space of the reconstructed attractor to identify the true Lyapunov exponents. The usefulness of our method, also for noisy situations, is demonstrated by applications to data from model systems and a NMR laser experiment.
Adaptive fuzzy control design for the molten steel level in a strip casting process
Directory of Open Access Journals (Sweden)
Y. J. Zhang
2017-01-01
Full Text Available This paper studies the adaptive fuzzy control problem of the molten steel level for a class of twin roll strip casting systems. Based on fuzzy logic systems (FLSs and the mean value theorem, a novel adaptive tracking controller with parameter updated laws is effectively designed. It is proved that all the closed-loop signals are uniformly bounded and the system tracking errors can asymptotically converge to zero by using the Lyapunov stability analysis. Simulation results of semi-experimental system dynamic model and parameters are provided to demonstrate the validity of the proposed adaptive fuzzy design approach.
Energy Technology Data Exchange (ETDEWEB)
Ishimaru, Masachika; Yokoyama, Ryuichi [Tokyo Metropolitan Univ., Hachioji, Tokyo (Japan); Shirai, Goro [Hosei Univ., Koganei, Tokyo (Japan); Niimura, Takahide [British Columbia Univ., Vancouver, BC (Canada)
2002-10-01
Power system stabilizing control has an important role in maintaining synchronism in power systems during major disturbances resulting from sudden changes of load and configuration. The thyristor- controlled series capacitor (TCSC) is one of the representative devices in flexible AC transmission systems. In this paper, robust TCSC controllers are applied to suppress disturbances in realistic power systems. H{sub {infinity}} control is adopted as the methodology of the robust controller design along with a linear matrix inequality (LMI), which solves the Lyapunov inequality without the weighting coefficients used in other control theories. In the proposed design, load changes are treated as a system uncertainty in the LMI approach. The proposed LMI -based approach is shown to be effective in the design of TCSC controllers to enhance robustness and response by simulations on a test system. (Author)
Observer-Based Control Design for Nonlinear Networked Control Systems with Limited Information
Directory of Open Access Journals (Sweden)
Yilin Wang
2013-01-01
Full Text Available This paper is concerned with the problem of designing a robust observer-based controller for discrete-time networked systems with limited information. An improved networked control system model is proposed and the effects of random packet dropout, time-varying delay, and quantization are considered simultaneously. Based on the obtained model, a stability criterion is developed by constructing an appropriate Lyapunov-Krasovskii functional and sufficient conditions for the existence of a dynamic quantized output feedback controller which are given in terms of linear matrix inequalities (LMIs such that the augmented error system is stochastically stable with an performance level. An example is presented to illustrate the effectiveness of the proposed method.
Motion Control Design for an Omnidirectional Mobile Robot Subject to Velocity Constraints
Directory of Open Access Journals (Sweden)
Ollin Peñaloza-Mejía
2015-01-01
Full Text Available A solution to achieve global asymptotic tracking with bounded velocities in an omnidirectional mobile robot is proposed in this paper. It is motivated by the need of having a useful in-practice motion control scheme, which takes into account the physical limits of the velocities. To this end, a passive nonlinear controller is designed and combined with a tracking controller in a negative feedback connection structure. By using Lyapunov theory and passivity tools, global asymptotic tracking with desired bounded velocities is proved. Simulations and experimental results are provided to show the effectiveness of the proposal.
Lyapunov instabilities of Lennard-Jones fluids.
Yang, Hong-liu; Radons, Günter
2005-03-01
Recent work on many-particle systems reveals the existence of regular collective perturbations corresponding to the smallest positive Lyapunov exponents (LEs), called hydrodynamic Lyapunov modes. Until now, however, these modes have been found only for hard-core systems. Here we report results on Lyapunov spectra and Lyapunov vectors (LVs) for Lennard-Jones fluids. By considering the Fourier transform of the coordinate fluctuation density u((alpha)) (x,t) , it is found that the LVs with lambda approximately equal to 0 are highly dominated by a few components with low wave numbers. These numerical results provide strong evidence that hydrodynamic Lyapunov modes do exist in soft-potential systems, although the collective Lyapunov modes are more vague than in hard-core systems. In studying the density and temperature dependence of these modes, it is found that, when the value of the Lyapunov exponent lambda((alpha)) is plotted as function of the dominant wave number k(max) of the corresponding LV, all data from simulations with different densities and temperatures collapse onto a single curve. This shows that the dispersion relation lambda((alpha)) vs k(max) for hydrodynamical Lyapunov modes appears to be universal for the low-density cases studied here. Despite the wavelike character of the LVs, no steplike structure exists in the Lyapunov spectrum of the systems studied here, in contrast to the hard-core case. Further numerical simulations show that the finite-time LEs fluctuate strongly. We have also investigated localization features of LVs and propose a length scale to characterize the Hamiltonian spatiotemporal chaotic states.
Bohmian quantum mechanical and classical Lyapunov exponents for kicked rotor
Energy Technology Data Exchange (ETDEWEB)
Zheng Yindong [Department of Physics, University of North Texas, Denton, TX 76203-1427 (United States); Kobe, Donald H. [Department of Physics, University of North Texas, Denton, TX 76203-1427 (United States)], E-mail: kobe@unt.edu
2008-04-15
Using de Broglie-Bohm approach to quantum theory, we show that the kicked rotor at quantum resonance exhibits quantum chaos for the control parameter K above a threshold. Lyapunov exponents are calculated from the method of Benettin et al. for bounded systems for both the quantum and classical kicked rotor. In the chaotic regime we find stability regions for control parameters equal to even and odd multiples of {pi}, but the quantum regions are only remnants of the classical ones.
Random Matrices and Lyapunov Coefficients Regularity
Gallavotti, Giovanni
2017-02-01
Analyticity and other properties of the largest or smallest Lyapunov exponent of a product of real matrices with a "cone property" are studied as functions of the matrices entries, as long as they vary without destroying the cone property. The result is applied to stability directions, Lyapunov coefficients and Lyapunov exponents of a class of products of random matrices and to dynamical systems. The results are not new and the method is the main point of this work: it is is based on the classical theory of the Mayer series in Statistical Mechanics of rarefied gases.
Directory of Open Access Journals (Sweden)
Juing-Shian Chiou
2013-01-01
Full Text Available This paper has implemented nonlinear control strategy for the single tilt tri-rotor aerial robot. Based on Newton-Euler’s laws, the linear and nonlinear mathematical models of tri-rotor UAVs are obtained. A numerical analysis using Newton-Raphson method is chosen for finding hovering equilibrium point. Back-stepping nonlinear controller design is based on constructing Lyapunov candidate function for closed-loop system. By imitating the linguistic logic of human thought, fuzzy logic controllers (FLCs are designed based on control rules and membership functions, which are much less rigid than the calculations computers generally perform. Effectiveness of the controllers design scheme is shown through nonlinear simulation model on each channel.
L∞-gain adaptive fuzzy fault accommodation control design for nonlinear time-delay systems.
Wu, Huai-Ning; Qiang, Xiao-Hong; Guo, Lei
2011-06-01
In this paper, an adaptive fuzzy fault accommodation (FA) control design with a guaranteed L(∞)-gain performance is developed for a class of nonlinear time-delay systems with persistent bounded disturbances. Using the Lyapunov technique and the Razumikhin-type lemma, the existence condition of the L(∞) -gain adaptive fuzzy FA controllers is provided in terms of linear matrix inequalities (LMIs). In the proposed FA scheme, a fuzzy logic system is employed to approximate the unknown term in the derivative of the Lyapunov function due to the unknown fault function; a continuous-state feedback control strategy is adopted for the control design to avoid the undesirable chattering phenomenon. The resulting FA controllers can ensure that every response of the closed-loop system is uniformly ultimately bounded with a guaranteed L(∞)-gain performance in the presence of a fault. Moreover, by the existing LMI optimization technique, a suboptimal controller is obtained in the sense of minimizing an upper bound of the L(∞)-gain. Finally, the achieved simulation results on the FA control of a continuous stirred tank reactor (CSTR) show the effectiveness of the proposed design procedure.
Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations
Kuznetsov, N. V.; Alexeeva, T. A.; Leonov, G. A.
2014-01-01
Nowadays the Lyapunov exponents and Lyapunov dimension have become so widespread and common that they are often used without references to the rigorous definitions or pioneering works. It may lead to a confusion since there are at least two well-known definitions, which are used in computations: the upper bounds of the exponential growth rate of the norms of linearized system solutions (Lyapunov characteristic exponents, LCEs) and the upper bounds of the exponential growth rate of the singula...
Covariant Lyapunov vectors for rigid disk systems.
Bosetti, Hadrien; Posch, Harald A
2010-10-05
We carry out extensive computer simulations to study the Lyapunov instability of a two-dimensional hard-disk system in a rectangular box with periodic boundary conditions. The system is large enough to allow the formation of Lyapunov modes parallel to the x-axis of the box. The Oseledec splitting into covariant subspaces of the tangent space is considered by computing the full set of covariant perturbation vectors co-moving with the flow in tangent space. These vectors are shown to be transversal, but generally not orthogonal to each other. Only the angle between covariant vectors associated with immediate adjacent Lyapunov exponents in the Lyapunov spectrum may become small, but the probability of this angle to vanish approaches zero. The stable and unstable manifolds are transverse to each other and the system is hyperbolic.
Infinitesimal Lyapunov functions and singular-hyperbolicity
Araujo, Vitor
2012-01-01
We present an extension of the notion of infinitesimal Lyapunov function to singular flows on three-dimensional manifolds, and show how this technique provides a characterization of partially hyperbolic structures for invariant sets for such flows, and also of singular-hyperbolicity. In the absence of singularities, we can also rephrase uniform hyperbolicity with the language of infinitesimal Lyapunov functions. These conditions are expressed using the vector field X and its space derivative DX together with an infinitesimal Lyapunov function only and are reduced to checking that a certain symmetric operator is positive definite on the trapping region: we show how to express partial hyperbolicity using only the interplay between the infinitesimal generator X of the flow X_t, its derivative DX and the infinitesimal Lyapunov function.
Lyapunov exponent for aging process in induction motor
Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat
2012-09-01
focused on the controlling the mechanical parameters of the electrical machines. Brushless DC motor (BLDCM) and the other general purpose permanent magnet (PM) motors are the most widely examined motors [1, 8, 9]. But the researches, about Lyapunov Exponent, subjected to the induction motors are mostly focused on the control theory of the motors. Flux estimation of rotor, external load disturbances and speed tracking and vector control position system are the main research areas for induction motors [10, 11, 12-14]. For all the data sets which can be collected from an induction motor, vibration data have the key role for understanding the mechanical behaviours like aging, bearing damage and stator insulation damage [15-18]. In this paper aging of an induction motor is investigated by using the vibration signals. The signals consist of new and aged motor data. These data are examined by their 2 dimensional phase portraits and the geometric interpretation is applied for detecting the Lyapunov Exponents. These values are compared in order to define the character and state estimation of the aging processes.
Wei Guan; Qiao Zhu; Xu-Dong Wang; Xu-Hui Liu
2014-01-01
This paper is concerned with the variable initial states problem in iterative learning control (ILC) for linear continuous systems. Firstly, the properties of the trajectory of 2-D continuous-discrete Roesser model are analyzed by using Lyapunov's method. Then, for any variable initial states which absolutely converge to the desired initial state, some ILC design criteria in the form of linear matrix inequalities (LMI) are given to ensure the convergence of the PD-type ILC rules. The converge...
Stabilization of the Ball on the Beam System by Means of the Inverse Lyapunov Approach
Directory of Open Access Journals (Sweden)
Carlos Aguilar-Ibañez
2012-01-01
Full Text Available A novel inverse Lyapunov approach in conjunction with the energy shaping technique is applied to derive a stabilizing controller for the ball on the beam system. The proposed strategy consists of shaping a candidate Lyapunov function as if it were an inverse stability problem. To this purpose, we fix a suitable dissipation function of the unknown energy function, with the property that the selected dissipation divides the corresponding time derivative of the candidate Lyapunov function. Afterwards, the stabilizing controller is directly obtained from the already shaped Lyapunov function. The stability analysis of the closed-loop system is carried out by using the invariance theorem of LaSalle. Simulation results to test the effectiveness of the obtained controller are presented.
MIMO Lyapunov Theory-Based RBF Neural Classifier for Traffic Sign Recognition
Directory of Open Access Journals (Sweden)
King Hann Lim
2012-01-01
Full Text Available Lyapunov theory-based radial basis function neural network (RBFNN is developed for traffic sign recognition in this paper to perform multiple inputs multiple outputs (MIMO classification. Multidimensional input is inserted into RBF nodes and these nodes are linked with multiple weights. An iterative weight adaptation scheme is hence designed with regards to the Lyapunov stability theory to obtain a set of optimum weights. In the design, the Lyapunov function has to be well selected to construct an energy space with a single global minimum. Weight gain is formed later to obey the Lyapunov stability theory. Detail analysis and discussion on the proposed classifier’s properties are included in the paper. The performance comparisons between the proposed classifier and some existing conventional techniques are evaluated using traffic sign patterns. Simulation results reveal that our proposed system achieved better performance with lower number of training iterations.
Upper quantum Lyapunov exponent and parametric oscillators
Jauslin, H. R.; Sapin, O.; Guérin, S.; Wreszinski, W. F.
2004-11-01
We introduce a definition of upper Lyapunov exponent for quantum systems in the Heisenberg representation, and apply it to parametric quantum oscillators. We provide a simple proof that the upper quantum Lyapunov exponent ranges from zero to a positive value, as the parameters range from the classical system's region of stability to the instability region. It is also proved that in the instability region the parametric quantum oscillator satisfies the discrete quantum Anosov relations defined by Emch, Narnhofer, Sewell, and Thirring.
Short-time Lyapunov exponent analysis
Vastano, J. A.
1990-01-01
A new technique for analyzing complicated fluid flows in numerical simulations has been successfully tested. The analysis uses short time Lyapunov exponent contributions and the associated Lyapunov perturbation fields. A direct simulation of the Taylor-Couette flow just past the onset of chaos demonstrated that this new technique marks important times during the system evolution and identifies the important flow features at those times. This new technique will now be applied to a 'minimal' turbulent channel.
Short-time Lyapunov exponent analysis
Vastano, J. A.
1990-01-01
A new technique for analyzing complicated fluid flows in numerical simulations has been successfully tested. The analysis uses short time Lyapunov exponent contributions and the associated Lyapunov perturbation fields. A direct simulation of the Taylor-Couette flow just past the onset of chaos demonstrated that this new technique marks important times during the system evolution and identifies the important flow features at those times. This new technique will now be applied to a 'minimal' turbulent channel.
Cancellation-Based Nonquadratic Controller Design for Nonlinear Systems via Takagi-Sugeno Models.
Gonzalez, Temoatzin; Bernal, Miguel; Sala, Antonio; Aguiar, Braulio
2016-08-12
This paper is concerned with nonquadratic conditions for stabilization of continuous-time nonlinear systems via exact Takagi-Sugeno models and generalized fuzzy Lyapunov functions. The approach hereby proposed feedback to the time derivatives of the membership functions through a multi-index control law that cancels out the terms responsible of former a priori local conditions. Thus, a nonquadratic controller design in the form of linear matrix inequalities is achieved; it does not require bounds on the time derivatives nor any extra parameters. The examples included are shown to outperform former approaches.
Hierarchical Distributed Control Design for Multi-agent Systems Using Approximate Simulation
Institute of Scientific and Technical Information of China (English)
TANG Yu-Tao; HONG Yi-Guang
2013-01-01
In this paper,we consider a hierarchical control design for multi-agent systems based on approximate simulation.To reduce complexity,we first construct a simple abstract system to guide the agents,then we discuss the simulation relations between the abstract system and multiple agents.With the help of this abstract system,distributed hierarchical control is proposed to complete a coordination task.By virtue of a common Lyapunov function,we analyze the collective behaviors with switching multi-agent topology in light of simulation functions.
Comparison between covariant and orthogonal Lyapunov vectors.
Yang, Hong-liu; Radons, Günter
2010-10-01
Two sets of vectors, covariant Lyapunov vectors (CLVs) and orthogonal Lyapunov vectors (OLVs), are currently used to characterize the linear stability of chaotic systems. A comparison is made to show their similarity and difference, especially with respect to the influence on hydrodynamic Lyapunov modes (HLMs). Our numerical simulations show that in both Hamiltonian and dissipative systems HLMs formerly detected via OLVs survive if CLVs are used instead. Moreover, the previous classification of two universality classes works for CLVs as well, i.e., the dispersion relation is linear for Hamiltonian systems and quadratic for dissipative systems, respectively. The significance of HLMs changes in different ways for Hamiltonian and dissipative systems with the replacement of OLVs with CLVs. For general dissipative systems with nonhyperbolic dynamics the long-wavelength structure in Lyapunov vectors corresponding to near-zero Lyapunov exponents is strongly reduced if CLVs are used instead, whereas for highly hyperbolic dissipative systems the significance of HLMs is nearly identical for CLVs and OLVs. In contrast the HLM significance of Hamiltonian systems is always comparable for CLVs and OLVs irrespective of hyperbolicity. We also find that in Hamiltonian systems different symmetry relations between conjugate pairs are observed for CLVs and OLVs. Especially, CLVs in a conjugate pair are statistically indistinguishable in consequence of the microreversibility of Hamiltonian systems. Transformation properties of Lyapunov exponents, CLVs, and hyperbolicity under changes of coordinate are discussed in appendices.
Kinematics, dynamics and control design of 4WIS4WID mobile robots
Directory of Open Access Journals (Sweden)
Ming-Han Lee
2015-01-01
Full Text Available Kinematic and dynamic modelling and corresponding control design of a four-wheel-independent steering and four-wheel-independent driving (4WIS4WID mobile robot are presented in this study. Different from the differential or car-like mobile robot, the 4WIS4WID mobile robot is controlled by four steering and four driving motors, so the control scheme should possess the ability to integrate and manipulate the four independent wheels. A trajectory tracking control scheme is developed for the 4WIS4WID mobile robot, where both non-linear kinematic control and dynamic sliding-mode control are designed. All of the stabilities of the kinematic and dynamic control laws are proved by Lyapunov stability analysis. Finally, the feasibility and validity of the proposed trajectory tracking control scheme are confirmed through computer simulations.
A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances
Xian, Bin; Zhang, Yao
2016-06-01
In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.
DEFF Research Database (Denmark)
Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin
2017-01-01
This paper presents a distributed control strategy based on Fuzzy-Sliding Mode Control (FSMC) for power control of an infrastructure integrated with a DC-Microgrid, which includes photovoltaic, fuel cell and energy storage systems with Plug-in Electric Vehicles (PEVs). In order to implement the p...
DEFF Research Database (Denmark)
Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin
2017-01-01
This paper presents a distributed control strategy based on Fuzzy-Sliding Mode Control (FSMC) for power control of an infrastructure integrated with a DC-Microgrid, which includes photovoltaic, fuel cell and energy storage systems with Plug-in Electric Vehicles (PEVs). In order to implement...... the proposed control strategy, first a general nonlinear modeling of a DC-Microgrid based on related DC-DC converters to each DC power sources is introduced. Secondly, a power management strategy based on fuzzy control for regulating the power flow between the hybrid DC sources, PEVs is proposed. Third...
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The asymptotic Lyapunov stability of one quasi-integrable Hamiltonian system with time-delayed feedback control is studied by using Lyapunov functions and stochastic averaging method.First,a quasi-integrable Hamiltonian system with time-delayed feedback control subjected to Gaussian white noise excitation is approximated by a quasi-integrable Hamiltonian system without time delay.Then,stochastic averaging method for quasi-integrable Hamiltonian system is used to reduce the dimension of the original system,and after that the Lyapunov function of the averaged It? equation is taken as the optimal linear combination of the corresponding independent first integrals in involution.Finally,the stability of the system is determined by using the largest eigenvalue of the linearized system.Two examples are used to illustrate the proposed procedure and the effects of delayed time on the Lyapunov stability are discussed as well.
Stability of dynamical systems on the role of monotonic and non-monotonic Lyapunov functions
Michel, Anthony N; Liu, Derong
2015-01-01
The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems. For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonicLyapunov functions.Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks. The authors cover the following four general topics: - Representation and modeling of dynamical systems of the types described above - Presentation of Lyapunov and Lagrange stability theory for dynamical sy...
Design of Controllers for Liquid Level Control
Directory of Open Access Journals (Sweden)
Augustin Simon,
2015-08-01
Full Text Available The liquid level control system is commonly used in many process control applications. The aim of the process is to keep the liquid level in the tank at the desired value. The conventional proportional-integral-derivative (PID controller is simple, reliable and eliminates the error rate but it cannot handle complex problems. Fuzzy logic controllers are rule based systems which simulates human behavior of the process. The fuzzy controller is combined with the PID controller and then applied to the tank level control system. This paper proposes Inverse fuzzy with fuzzy logic controller for controlling liquid level system for a plant. This paper also compares the transient response as well as error indices of PID, Fuzzy logic controller, inverse fuzzy controllers. The responses of the controllers are verified through simulation. From the simulation results, it is observed that inverse fuzzy-PID controller gives the superior performance than the other controllers. The inverse fuzzy-PID controller gives better performance than the PID and fuzzy controller in terms of overshoot and settling time. Performance analysis is carried out with Liquid Flow Control System Design with Fuzzy logic controller. Results are evaluated by comparing the response time of conventional PID, fuzzy logic and Inverse fuzzy controller. Comparative analysis of the performance of different controllers is done in MATLAB and Simulink.
Earthquake design for controlled structures
Directory of Open Access Journals (Sweden)
Nikos G. Pnevmatikos
2017-04-01
Full Text Available An alternative design philosophy, for structures equipped with control devices, capable to resist an expected earthquake while remaining in the elastic range, is described. The idea is that a portion of the earthquake loading is under¬taken by the control system and the remaining by the structure which is designed to resist elastically. The earthquake forces assuming elastic behavior (elastic forces and elastoplastic behavior (design forces are first calculated ac¬cording to the codes. The required control forces are calculated as the difference from elastic to design forces. The maximum value of capacity of control devices is then compared to the required control force. If the capacity of the control devices is larger than the required control force then the control devices are accepted and installed in the structure and the structure is designed according to the design forces. If the capacity is smaller than the required control force then a scale factor, α, reducing the elastic forces to new design forces is calculated. The structure is redesigned and devices are installed. The proposed procedure ensures that the structure behaves elastically (without damage for the expected earthquake at no additional cost, excluding that of buying and installing the control devices.
Teaching medical device design using design control.
May-Newman, Karen; Cornwall, G Bryan
2012-01-01
The design of medical devices requires an understanding of a large number of factors, many of which are difficult to teach in the traditional educational format. This subject benefits from using a challenge-based learning approach, which provides focused design challenges requiring students to understand important factors in the context of a specific device. A course was designed at San Diego State University (CA, USA) that applied challenge-based learning through in-depth design challenges in cardiovascular and orthopedic medicine, and provided an immersive field, needs-finding experience to increase student engagement in the process of knowledge acquisition. The principles of US FDA 'design control' were used to structure the students' problem-solving approach, and provide a format for the design documentation, which was the basis of grading. Students utilized a combination of lecture materials, industry guest expertise, texts and readings, and internet-based searches to develop their understanding of the problem and design their solutions. The course was successful in providing a greatly increased knowledge base and competence of medical device design than students possessed upon entering the course.
Tsukaya, Hirokazu
2012-01-01
The safety of genetically modified crops remains a contested issue, given the potential risk for human health and the environment. To further reduce any risks and alleviate public concerns, terminator technology could be used both to tag and control genetically modified plants.
Design of Optimal PID Controller with ɛ-Routh Stability for Different Processes
Directory of Open Access Journals (Sweden)
XianHong Li
2013-01-01
Full Text Available This paper presents a design method of the optimal proportional-integral-derivative (PID controller with ɛ-Routh stability for different processes through Lyapunov approach. The optimal PID controller could be acquired by minimizing an augmented integral squared error (AISE performance index which contains control error and at least first-order error derivative, or even may contain nth-order error derivative. The optimal control problem could be transformed into a nonlinear constraint optimization (NLCO problem via Lyapunov theorems. Therefore, optimal PID controller could be obtained by solving NLCO problem through interior method or other optimization methods. The proposed method can be applied for different processes, and optimal PID controllers under various control weight matrices and ɛ-Routh stability are presented for different processes. Control weight matrix and ɛ-Routh stability’s effects on system performances are studied, and different tuning methods’ system performances are also discussed. ɛ-Routh stability’s effects on disturbance rejection ability are investigated, and different tuning methods’ disturbances rejection ability is studied. To further illustrate the proposed method, experimental results of coupled water tank system (CWTS under different set points are presented. Both simulation results and experiment results show the effectiveness and usefulness of the proposed method.
H∞ Networked Cascade Control System Design for Turboshaft Engines with Random Packet Dropouts
Directory of Open Access Journals (Sweden)
Xiaofeng Liu
2017-01-01
Full Text Available The distributed control architecture becomes more and more important in future gas turbine engine control systems, in which the sensors and actuators will be connected to the controllers via a network. Therefore, the control problem of network-enabled high-performance distributed engine control (DEC has come to play an important role in modern gas turbine control systems, while, due to the properties of the network, the packet dropouts must be considered. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS. Typical turboshaft engine distributed controllers are designed based on the NCCS framework with H∞ state feedback under random packet dropouts. The sufficient robust stable conditions are derived via the Lyapunov stability theory and linear matrix inequality approach. Simulations illustrate the effectiveness of the presented method.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
Modular design of adaptive robust controller for strict-feedback stochastic nonlinear systems
Institute of Scientific and Technical Information of China (English)
WANG Jun; XI Hong-sheng; JI Hai-bo; KANG Yu
2006-01-01
A modular approach of the estimation-based design in adaptive linear control systems has been extended to the adaptive robust control of strict-feedback stochastic nonlinear systems with additive standard Wiener noises and constant unknown parameters.By using It(o)'s differentiation rule, nonlinear damping and adaptive Backstepping procedure,the input-to-state stable controller of global stabilization in probability is developed,which guarantees that system states are bounded and the system has a robust stabilization.According to Swapping technique,we develop two filters and convert dynamic parametric models into static ones to which the gradient update law is designed.Transient performance of the system is estimated by the norm of error.Results of simulation show the effectiveness of the control algorithms.The modular design,which has a concise hierarchy,is more flexible and versatile than a Lyapunov-based algorithm.
Receiver-exciter controller design
Jansma, P. A.
1982-01-01
A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.
Formation design and nonlinear control of spacecraft formation flying
Wong, Hong
reference control. Using a Lyapunov-based approach, a full state feedback control law, a parameter update algorithm, and a model reference control estimate are designed that facilitate the tracking of given periodic reference trajectories in the presence of unknown leader and follower spacecraft masses. Furthermore, using a discrete Lyapunov-type stability analysis, model reference control error is shown to converge to zero. Illustrative simulations are included to demonstrate the efficacy of the proposed controllers. The third part of this research explores the feasibility of using the effects of J2 perturbations as a mechanism to deploy pico-satellites (e.g., cubesats) to create a spacecraft constellation. Specifically, using two deployer spacecraft, both moving on polar Earth orbits, we insert one hundred cubesats into sparsely populated 60 degree inclination orbits around the Earth using a change in orbital inclination only. We also outline a proof-of-concept single stage propulsion system that provides necessary propulsive input for the velocity change needed for the orbital inclination change of cubesats. A series of illustrative simulations are given to demonstrate that sufficient and effective coverage of the Earth is achieved using the designed cubesat constellation. (Abstract shortened by UMI.)
Controller design and experiment for autothermal reforming of methanol in miniature reactor.
Lu, Jiangang; Zhuang, Hong; Yang, Qinmin; Wang, Xuefei; Zheng, Jianfeng; Chen, Jinshui; Sun, Youxian
2014-09-01
In this paper, a miniature methanol fuel processor and its controller design is introduced for onboard hydrogen production. The hydrogen is generated via autothermal reforming of methanol. The control scheme consists of a hydrogen flow rate controller and a reforming temperature controller. To deal with uncertain system dynamics and external disturbance, an adaptive sliding mode control algorithm is adopted as the hydrogen flow rate controller for regulating hydrogen flow rate by manipulating methanol flow rate. Additionally, a high-gain observer is implemented to estimate the unmeasurable system state. The stability of closed-loop system is guaranteed by standard Lyapunov analysis. Furthermore, a variable ratio control law is employed as the reforming temperature controller to achieve steady reforming temperature by adjusting the reforming air flow rate. Finally, the effectiveness of the entire system is testified by experimental means.
Lyapunov exponents computation for hybrid neurons.
Bizzarri, Federico; Brambilla, Angelo; Gajani, Giancarlo Storti
2013-10-01
Lyapunov exponents are a basic and powerful tool to characterise the long-term behaviour of dynamical systems. The computation of Lyapunov exponents for continuous time dynamical systems is straightforward whenever they are ruled by vector fields that are sufficiently smooth to admit a variational model. Hybrid neurons do not belong to this wide class of systems since they are intrinsically non-smooth owing to the impact and sometimes switching model used to describe the integrate-and-fire (I&F) mechanism. In this paper we show how a variational model can be defined also for this class of neurons by resorting to saltation matrices. This extension allows the computation of Lyapunov exponent spectrum of hybrid neurons and of networks made up of them through a standard numerical approach even in the case of neurons firing synchronously.
Controlling radiated emissions by design
Mardiguian, Michel
2014-01-01
The 3rd edition of Controlling Radiated Emissions by Design has been updated to reflect the latest changes in the field. New to this edition is material related to technical advances, specifically super-fast data rates on wire pairs, with no increase in RF interference. Throughout the book, details are given to control RF emissions using EMC design techniques. This book retains the step-by-step approach for incorporating EMC into every new design from the ground up. It describes the selection of quieter IC technologies, their implementation into a noise-free printed circuit layout, and the gathering of these into a low emissions package. Also included is how to design an I/O filter, along with connectors and cable considerations. All guidelines are supported throughout with comprehensive calculated examples. Design engineers, EMC specialists, and technicians will benefit from learning about the development of more efficient and economical control of emissions.
Institute of Scientific and Technical Information of China (English)
史旺旺; 刘超
2013-01-01
针对直驱式风力发电机无速度传感器中滑模辩识的感应电势产生高频脉动的缺点,采用近似滑模控制对电机的正弦波感应电势进行辨识,并采用直接功率控制模型进行功率控制.由于直接功率控制模型中只存在角频率,降低了相位跟踪过程中控制器的设计难度,提高了系统转速的响应速度.采用Lyapunov函数对角速度进行辨识,保证了系统稳定,取消了数字锁相环,实现更加简单.仿真结果表明,所提控制模型及方法能准确控制电机功率,提高了电机响应速度.%As the induced electromotive force of SMO(Sliding Mode Observer) in sensorless PMSG(Perma-nent Magnet Synchronous Generator) control of direct-driven wind power system produces high frequency pulses.it is proposed to apply approximate SMO in the sine wave identification of induced electromotive force and to adopt the direct power control model in power control. Since there is only angular frequency, the controller design used in phase tracking is simplified and the response of system speed is enhanced. The angular speed is recognized with Lyapunov function to ensure the system stability and no PLL is used to simplify the implementation. Simulative results show that the proposed control model controls the power of PMSG accurately and improves the response speed of PMSG.
On an optimal control design for Roessler system
Energy Technology Data Exchange (ETDEWEB)
Rafikov, Marat [Universidade Regional do Noroeste do Estado do Rio Grande do Sul, 98700-000 Ijui, RS (Brazil)]. E-mail: rafikov@admijui.unijui.tche.br; Balthazar, Jose Manoel [Universidade Estadual Paulista, C.P. 178, 13500-230 Rio Claro, SP (Brazil)
2004-12-06
In this Letter, an optimal control strategy that directs the chaotic motion of the Roessler system to any desired fixed point is proposed. The chaos control problem is then formulated as being an infinite horizon optimal control nonlinear problem that was reduced to a solution of the associated Hamilton-Jacobi-Bellman equation. We obtained its solution among the correspondent Lyapunov functions of the considered dynamical system.
Directory of Open Access Journals (Sweden)
Samaneh Zahmatkesh
2013-10-01
Full Text Available This paper examines single input single output (SISO chattering free variable structure control (VSC which controller coefficient is on-line tuned by fuzzy backstepping algorithm to control of continuum robot manipulator. Variable structure methodology is selected as a framework to construct the control law and address the stability and robustness of the close loop system based on Lyapunove formulation. The main goal is to guarantee acceptable error result and adjust the trajectory following. The proposed approach effectively combines the design technique from variable structure controller is based on Lyapunov and modified Proportional plus Derivative (P+D fuzzy estimator to estimate the nonlinearity of undefined system dynamic in backstepping controller. The input represents the function between variable structure function, error and the modified rate of error. The outputs represent joint torque, respectively. The fuzzy backstepping methodology is on-line tune the variable structure function based on adaptive methodology. The performance of the SISO VSC based on-line tuned by fuzzy backstepping algorithm (FBSAVSC is validated through comparison with VSC. Simulation results signify good performance of trajectory in presence of uncertainty joint torque load.
Spacecraft Design Thermal Control Subsystem
Miyake, Robert N.
2003-01-01
This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.
Design of Combined Sliding Mode Controller Back Stepping Using Genetic Algorithm
Directory of Open Access Journals (Sweden)
Atefeh Marvi Moghadam
2013-01-01
Full Text Available This research has tried to achieve a new robust controller with back stepping control and sliding mode control method. Also as we know, in all analytical controllers there are constant coefficients like the back stepping and sliding mode controllers, redesigning the Lyapunov and the feedback linearization, - and so forth. There are two major problems in their set: firstly, the adjustment is cumbersome and time-consuming. Secondly, assuming that these parameters can be adjusted to workability, a designer can never tell exactly what are the parameters chosen to be optimal. To resolve this problem, the numerical algorithm which is a genetic algorithm is used here and we have the optimal parameters of the proposed controller. That genetic algorithm (GA has been used to solve difficult engineering problems that are complex and difficult to solve by conventional optimization methods, and at the end of this section, we apply a new robust controller on ball and beam system. Simulation results are expressed.
Simulation and design of fuzzy sliding-mode controller for ship heading-tracking
Yuan, Lei; Wu, Hansong
2011-03-01
In considering the characteristic of a rudder, the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties. In order to solve the uncertainties in the ship heading control, specifically the controller singular and paramount re-estimation problem, a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology, the approximation property of fuzzy logic systems, and a multiple sliding-mode control algorithm. Based on the Lyapunov function, it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded, with tracking errors converging to zero. Simulation results show that the demonstrated controller design can track a desired course fast and accurately. It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.
Directory of Open Access Journals (Sweden)
Jin Zhu
2009-01-01
Full Text Available Switching controller design for a class of Markovian jump nonlinear systems with unmodeled dynamics is considered in this paper. Based on the differential equation and infinitesimal generator of jump systems, the concept of Jump Input-to-State practical Stability (JISpS in probability and stochastic Lyapunov stability criterion are put forward. By using backsetpping technology and stochastic small-gain theorem, a switching controller is proposed which ensures JISpS in probability for the jump nonlinear system. A simulation example illustrates the validity of this design.
The Lyapunov dimension and its estimation via the Leonov method
Energy Technology Data Exchange (ETDEWEB)
Kuznetsov, N.V., E-mail: nkuznetsov239@gmail.com
2016-06-03
Highlights: • Survey on effective analytical approach for Lyapunov dimension estimation, proposed by Leonov, is presented. • Invariance of Lyapunov dimension under diffeomorphisms and its connection with Leonov method are demonstrated. • For discrete-time dynamical systems an analog of Leonov method is suggested. - Abstract: Along with widely used numerical methods for estimating and computing the Lyapunov dimension there is an effective analytical approach, proposed by G.A. Leonov in 1991. The Leonov method is based on the direct Lyapunov method with special Lyapunov-like functions. The advantage of the method is that it allows one to estimate the Lyapunov dimension of invariant sets without localization of the set in the phase space and, in many cases, to get effectively an exact Lyapunov dimension formula. In this work the invariance of the Lyapunov dimension with respect to diffeomorphisms and its connection with the Leonov method are discussed. For discrete-time dynamical systems an analog of Leonov method is suggested. In a simple but rigorous way, here it is presented the connection between the Leonov method and the key related works: Kaplan and Yorke (the concept of the Lyapunov dimension, 1979), Douady and Oesterlé (upper bounds of the Hausdorff dimension via the Lyapunov dimension of maps, 1980), Constantin, Eden, Foiaş, and Temam (upper bounds of the Hausdorff dimension via the Lyapunov exponents and Lyapunov dimension of dynamical systems, 1985–90), and the numerical calculation of the Lyapunov exponents and dimension.
Suppressing chaos via Lyapunov-Krasovskii's method
Energy Technology Data Exchange (ETDEWEB)
Kuang, J.L. [Faculty of Science and Engineering, City University of Hong Kong, Hong Kong (China)] e-mail: kuangjinlu@hotmail.com; Meehan, P.A. [Department of Mechanical Engineering, University of Queensland, Brisbane, Qld 4072 (Australia)] e-mail: meehan@uq.edu.au; Leung, A.Y.T. [Faculty of Science and Engineering, City University of Hong Kong, Hong Kong (China)] e-mail: bcaleung@cityu.edu.hk
2006-03-01
An algorithm for suppressing the chaotic oscillations in non-linear dynamical systems with singular Jacobian matrices is developed using a linear feedback control law based upon the Lyapunov-Krasovskii (LK) method. It appears that the LK method can serve effectively as a generalised method for the suppression of chaotic oscillations for a wide range of systems. Based on this method, the resulting conditions for undisturbed motions to be locally or globally stable are sufficient and conservative. The generalized Lorenz system and disturbed gyrostat equations are exemplified for the validation of the proposed feedback control rule.
Robust Control Design for Flight Control
1989-07-01
to achieve desired performance over the full flight envelope when linear feedback is employed. Exact linearization methods [48] provide means for...designing nonlinear feedback laws which satisfy these requirements. However, exact linearization is not always compatible with control authority...specific situations. The most promising approaches appear to be those associated with methods of exact linearization . This procedure is based on some
Robust tracking control design for a flexible air-breathing hypersonic vehicle
Institute of Scientific and Technical Information of China (English)
张垚; 鲜斌; 刁琛; 赵勃; 郭建川
2014-01-01
A nonlinear robust controller was presented to improve the tracking control performance of a flexible air-breathing hypersonic vehicle (AHV) which is subjected to system parametric uncertainties and unknown additive time-varying disturbances. The longitudinal dynamic model for the flexible AHV was used for the control development. High-gain observers were designed to compensate for the system uncertainties and additive disturbances. Small gain theorem and Lyapunov based stability analysis were utilized to prove the stability of the closed loop system. Locally uniformly ultimately bounded tracking of the vehicle’s velocity, altitude and attack angle were achieved under aeroelastic effects, system parametric uncertainties and unknown additive disturbances. Matlab/Simulink simulation results were provided to validate the robustness of the proposed control design. The simulation results demonstrate that the tracking errors stay in a small region around zero.
Lyapunov functions for fractional order systems
Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A.; Gallegos, Javier A.
2014-09-01
A new lemma for the Caputo fractional derivatives, when 0<α<1, is proposed in this paper. This result has proved to be useful in order to apply the fractional-order extension of Lyapunov direct method, to demonstrate the stability of many fractional order systems, which can be nonlinear and time varying.
Inertia theorems for operator Lyapunov inequalities
Sasane, AJ; Curtain, RF
2001-01-01
We study operator Lyapunov inequalities and equations for which the infinitesimal generator is not necessarily stable, but it satisfies the spectrum decomposition assumption and it has at most finitely many unstable eigenvalues. Moreover, the input or output operators are not necessarily bounded, bu
Lyapunov Function Synthesis - Infeasibility and Farkas' Lemma
DEFF Research Database (Denmark)
Leth, Tobias; Wisniewski, Rafal; Sloth, Christoffer
2017-01-01
In this paper we prove the convergence of an algorithm synthesising continuous piecewise-polynomial Lyapunov functions for polynomial vector elds dened on simplices. We subsequently modify the algorithm to sub-divide locally by utilizing information from infeasible linear problems. We prove...
Inertia theorems for operator Lyapunov inequalities
Sasane, AJ; Curtain, RF
2001-01-01
We study operator Lyapunov inequalities and equations for which the infinitesimal generator is not necessarily stable, but it satisfies the spectrum decomposition assumption and it has at most finitely many unstable eigenvalues. Moreover, the input or output operators are not necessarily bounded,
Lyapunov exponents for continuous random transformations
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, the concept of Lyapunov exponent is generalized to random transformations that are not necessarily differentiable. For a class of random repellers and of random hyperbolic sets obtained via small perturbations of deterministic ones respectively, the new exponents are shown to coincide with the classical ones.
On stability of discontinuous systems via vector Lyapunov functions
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper deals with the stability of systems with discontinuous righthand side (with solutions in Filippov's sense) via locally Lipschitz continuous and regular vector Lyapunov functions. A new type of "set-valued derivative" of vector Lyapunov functions is introduced, some generalized comparison principles on dis(c)ontinuous systems are shown. Furthermore, Lyapunov stability theory is developed for a class of discontinuous systems based on locally Lipschitz continuous and regular vector Lyapunov functions.
Robust control design with MATLAB
Gu, Da-Wei; Konstantinov, Mihail M
2013-01-01
Robust Control Design with MATLAB® (second edition) helps the student to learn how to use well-developed advanced robust control design methods in practical cases. To this end, several realistic control design examples from teaching-laboratory experiments, such as a two-wheeled, self-balancing robot, to complex systems like a flexible-link manipulator are given detailed presentation. All of these exercises are conducted using MATLAB® Robust Control Toolbox 3, Control System Toolbox and Simulink®. By sharing their experiences in industrial cases with minimum recourse to complicated theories and formulae, the authors convey essential ideas and useful insights into robust industrial control systems design using major H-infinity optimization and related methods allowing readers quickly to move on with their own challenges. The hands-on tutorial style of this text rests on an abundance of examples and features for the second edition: · rewritten and simplified presentation of theoretical and meth...
Xu, Hao; Jagannathan, Sarangapani
2013-03-01
The stochastic optimal controller design for the nonlinear networked control system (NNCS) with uncertain system dynamics is a challenging problem due to the presence of both system nonlinearities and communication network imperfections, such as random delays and packet losses, which are not unknown a priori. In the recent literature, neuro dynamic programming (NDP) techniques, based on value and policy iterations, have been widely reported to solve the optimal control of general affine nonlinear systems. However, for realtime control, value and policy iterations-based methodology are not suitable and time-based NDP techniques are preferred. In addition, output feedback-based controller designs are preferred for implementation. Therefore, in this paper, a novel NNCS representation incorporating the system uncertainties and network imperfections is introduced first by using input and output measurements for facilitating output feedback. Then, an online neural network (NN) identifier is introduced to estimate the control coefficient matrix, which is subsequently utilized for the controller design. Subsequently, the critic and action NNs are employed along with the NN identifier to determine the forward-in-time, time-based stochastic optimal control of NNCS without using value and policy iterations. Here, the value function and control inputs are updated once a sampling instant. By using novel NN weight update laws, Lyapunov theory is used to show that all the closed-loop signals and NN weights are uniformly ultimately bounded in the mean while the approximated control input converges close to its target value with time. Simulation results are included to show the effectiveness of the proposed scheme.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved by the invariant eigenvalues and the gradually varying eigenvectors. A sufficient stability criterion is given by constructing a series of Lyapunov functions based on the selected discrete characteristic points. An important contribution is that it provides a simple and feasible approach for the design of gain-scheduled controllers for linear time-varying systems, which can guarantee both the global stability and the desired closed-loop performance of the resulted system. The method is applied to the design of a BTT missile autopilot and the simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.
Institute of Scientific and Technical Information of China (English)
ZHANG Song-tao; REN Guang
2006-01-01
This study presents an adaptive fuzzy neural network (FNN) control system for the ship steering autopilot. For the Norrbin ship steering mathematical model with the nonlinear and uncertain dynamic characteristics, an adaptive FNN control system is designed to achieve high-precision track control via the backstepping approach. In the adaptive FNN control system, a FNN backstepping controller is a principal controller which includes a FNN estimator used to estimate the uncertainties, and a robust controller is designed to compensate the shortcoming of the FNN backstepping controller. All adaptive learning algorithms in the adaptive FNN control system are derived from the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. The effectiveness of the proposed adaptive FNN control system is verified by simulation results.
Aerodynamic design via control theory
Jameson, Antony
1988-01-01
The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.
Consistent Design of Dependable Control Systems
DEFF Research Database (Denmark)
Blanke, M.
1996-01-01
Design of fault handling in control systems is discussed, and a method for consistent design is presented.......Design of fault handling in control systems is discussed, and a method for consistent design is presented....
Design of reconfigurable logic controllers
Bukowiec, Arkadiusz; Doligalski, Michał; Tkacz, Jacek
2016-01-01
This book presents the original concepts and modern techniques for specification, synthesis, optimisation and implementation of parallel logical control devices. It deals with essential problems of reconfigurable control systems like dependability, modularity and portability. Reconfigurable systems require a wider variety of design and verification options than the application-specific integrated circuits. The book presents a comprehensive selection of possible design techniques. The diversity of the modelling approaches covers Petri nets, state machines and activity diagrams. The preferences of the presented optimization and synthesis methods are not limited to increasing of the efficiency of resource use. One of the biggest advantages of the presented methods is the platform independence, the FPGA devices and single board computers are some of the examples of possible platforms. These issues and problems are illustrated with practical cases of complete control systems. If you expect a new look at the recon...
Hybrid Control Design for a Wheeled Mobile Robot
DEFF Research Database (Denmark)
Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter
2003-01-01
We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory trackin....... The stability of the hybrid control scheme is finally analyzed using Lyapunov-like arguments....
Novel controller design demonstration for vibration alleviation of helicopter rotor blades
Ulker, Fatma Demet; Nitzsche, Fred
2012-04-01
This paper presents an advanced controller design methodology for vibration alleviation of helicopter rotor sys- tems. Particularly, vibration alleviation in a forward ight regime where the rotor blades experience periodically varying aerodynamic loading was investigated. Controller synthesis was carried out under the time-periodic H2 and H∞ framework and the synthesis problem was solved based on both periodic Riccati and Linear Matrix Inequality (LMI) formulations. The closed-loop stability was analyzed using Floquet-Lyapunov theory, and the controller's performance was validated by closed-loop high-delity aeroelastic simulations. To validate the con- troller's performance an actively controlled trailing edge ap strategy was implemented. Computational cost was compared for both formulations.
Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu
2015-11-01
This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method.
Clustering and synchronization with positive Lyapunov exponents
Mendes, R V
1998-01-01
Clustering and correlation effects are frequently observed in chaotic systems in situations where, because of the positivity of the Lyapunov exponents, no dimension reduction is to be expected. In this paper, using a globally coupled network of Bernoulli units, one finds a general mechanism by which strong correlations and slow structures are obtained at the synchronization edge. A structure index is defined, which diverges at the transition points. Some conclusions are drawn concerning the construction of an ergodic theory of self-organization.
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
Design of passive fault-tolerant flight controller against actuator failures
Directory of Open Access Journals (Sweden)
Xiang Yu
2015-02-01
Full Text Available The problem of designing passive fault-tolerant flight controller is addressed when the normal and faulty cases are prescribed. First of all, the considered fault and fault-free cases are formed by polytopes. As considering that the safety of a post-fault system is directly related to the maximum values of physical variables in the system, peak-to-peak gain is selected to represent the relationships among the amplitudes of actuator outputs, system outputs, and reference commands. Based on the parameter dependent Lyapunov and slack methods, the passive fault-tolerant flight controllers in the absence/presence of system uncertainty for actuator failure cases are designed, respectively. Case studies of an airplane under actuator failures are carried out to validate the effectiveness of the proposed approach.
Design of passive fault-tolerant flight controller against actuator failures
Institute of Scientific and Technical Information of China (English)
Yu Xiang; Zhang Youmin
2015-01-01
The problem of designing passive fault-tolerant flight controller is addressed when the normal and faulty cases are prescribed. First of all, the considered fault and fault-free cases are formed by polytopes. As considering that the safety of a post-fault system is directly related to the maximum values of physical variables in the system, peak-to-peak gain is selected to represent the relationships among the amplitudes of actuator outputs, system outputs, and reference com-mands. Based on the parameter dependent Lyapunov and slack methods, the passive fault-tolerant flight controllers in the absence/presence of system uncertainty for actuator failure cases are designed, respectively. Case studies of an airplane under actuator failures are carried out to validate the effectiveness of the proposed approach.
Backstepping fuzzy-neural-network control design for hybrid maglev transportation system.
Wai, Rong-Jong; Yao, Jing-Xiang; Lee, Jeng-Dao
2015-02-01
This paper focuses on the design of a backstepping fuzzy-neural-network control (BFNNC) for the online levitated balancing and propulsive positioning of a hybrid magnetic levitation (maglev) transportation system. The dynamic model of the hybrid maglev transportation system including levitated hybrid electromagnets to reduce the suspension power loss and the friction force during linear movement and a propulsive linear induction motor based on the concepts of mechanical geometry and motion dynamics is first constructed. The ultimate goal is to design an online fuzzy neural network (FNN) control methodology to cope with the problem of the complicated control transformation and the chattering control effort in backstepping control (BSC) design, and to directly ensure the stability of the controlled system without the requirement of strict constraints, detailed system information, and auxiliary compensated controllers despite the existence of uncertainties. In the proposed BFNNC scheme, an FNN control is utilized to be the major control role by imitating the BSC strategy, and adaptation laws for network parameters are derived in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. The effectiveness of the proposed control strategy for the hybrid maglev transportation system is verified by experimental results, and the superiority of the BFNNC scheme is indicated in comparison with the BSC strategy and the backstepping particle-swarm-optimization control system in previous research.
H∞ controller synthesis of piecewise discrete time linear systems
Institute of Scientific and Technical Information of China (English)
Gang FENG
2003-01-01
This paper presents an H∞ controller design method for piecewise discrete time linear systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting closed loop system is globally stable with guaranteed H∞ perfomance and the controller can be obtained by solvng a set of bilinear matrix inequalities. It has been shown that piecewise quadratic Lyapnnov functions are less conservative than the global quadratic Lyapunov functions. A simulation example is also given to illustrate the advantage of the proposed approach.
Practical design control implementation for medical devices
Justiniano, Jose
2003-01-01
Bringing together the concepts of design control and reliability engineering, this book is a must for medical device manufacturers. It helps them meet the challenge of designing and developing products that meet or exceed customer expectations and also meet regulatory requirements. Part One covers motivation for design control and validation, design control requirements, process validation and design transfer, quality system for design control, and measuring design control program effectiveness. Part Two discusses risk analysis and FMEA, designing-in reliability, reliability and design verific
Canada, Antonio
2011-01-01
Several different problems make the study of the so called Lyapunov type inequalities of great interest, both in pure and applied mathematics. Although the original historical motivation was the study of the stability properties of the Hill equation (which applies to many problems in physics and engineering), other questions that arise in systems at resonance, crystallography, isoperimetric problems, Rayleigh type quotients, etc. lead to the study of $L_p$ Lyapunov inequalities ($1\\leq p\\leq \\infty$) for differential equations. In this work we review some recent results on these kinds of questions which can be formulated as optimal control problems. In the case of Ordinary Differential Equations, we consider periodic and antiperiodic boundary conditions at higher eigenvalues and by using a more accurate version of the Sturm separation theory, an explicit optimal result is obtained. Then, we establish Lyapunov inequalities for systems of equations. To this respect, a key point is the characterization of the be...
Lyapunov function and the basin of attraction for a single-joint muscle-skeletal model.
Giesl, Peter; Wagner, Heiko
2007-04-01
This paper provides an explicit Lyapunov function for a general single-joint muscle-skeletal model. Using this Lyapunov function one can determine analytically large subsets of the basin of attraction of an asymptotically stable equilibrium. Besides providing an analytical tool for the analysis of such a system we consider an elbow model and show that the theoretical predictions are in agreement with experimental results. Moreover, we can thus distinguish between regions where the self-stabilizing properties of the muscle-skeletal system guarantee stability and regions where nerval control and reflexes are necessary.
Lyapunov exponent corresponding to enslaved phase dynamics: Estimation from time series.
Moskalenko, Olga I; Koronovskii, Alexey A; Hramov, Alexander E
2015-07-01
A method for the estimation of the Lyapunov exponent corresponding to enslaved phase dynamics from time series has been proposed. It is valid for both nonautonomous systems demonstrating periodic dynamics in the presence of noise and coupled chaotic oscillators and allows us to estimate precisely enough the value of this Lyapunov exponent in the supercritical region of the control parameters. The main results are illustrated with the help of the examples of the noised circle map, the nonautonomous Van der Pole oscillator in the presence of noise, and coupled chaotic Rössler systems.
Hydrodynamische Lyapunov-Moden in mehrkomponentigen Lennard-Jones-Flüssigkeiten
Drobniewski, Christian
2011-01-01
Die Charakterisierung hochdimensionaler Systeme mit Lyapunov-Instabilität wird durch das Lyapunov-Spektrum und die zugehörigen Lyapunov-Vektoren ermöglicht. Für eine Vielzahl von derartigen Systemen (Coupled-Map-Lattices, Hartkugel-Systeme, Systeme mit ausgedehnten Potentialen ...) konnte durch die Untersuchung der Lyapunov-Vektoren die Existenz von hydrodynamischen Lyapunov-Moden nachgewiesen werden. Diese kollektiven Anregungen zeigen sich in Lyapunov-Vektoren, deren Lyapunov-Exponenten de...
Design of fault tolerant control system for individual blade control helicopters
Tamayo, Sergio
This dissertation presents the development of a fault tolerant control scheme for helicopters fitted with individually controlled blades. This novel approach attempts to improve fault tolerant capabilities of helicopter control system by increasing control redundancy using additional actuators for individual blade input and software re-mixing to obtain nominal or close to nominal conditions under failure. An advanced interactive simulation environment has been developed including modeling of sensor failure, swashplate actuator failure, individual blade actuator failure, and blade delamination to support the design, testing, and evaluation of the control laws. This simulation environment is based on the blade element theory for the calculation of forces and moments generated by the main rotor. This discretized model allows for individual blade analysis, which in turn allows measuring the consequences of a stuck blade, or loss of the surface area of the blade itself, with respect to the dynamics of the whole helicopter. The control laws are based on non-linear dynamic inversion and artificial neural network augmentation, which is a mix of linear and nonlinear methods that compensates for model inaccuracies due to linearization or failure. A stability analysis based on the Lyapunov function approach has shown that bounded tracking error is guaranteed, and under specific circumstances, global stability is guaranteed as well. An analysis over the degrees of freedom of the mechanical system and its impact over the helicopter handling qualities is also performed to measure the degree of redundancy achieved with the addition of individual blade actuators as compared to a classic swashplate helicopter configuration. Mathematical analysis and numerical simulation, using reconfiguration of the individual blade control under failure have shown that this control architecture can potentially improve the survivability of the aircraft and reduce pilot workload under failure
Nonuniform exponential dichotomies and Lyapunov functions
Barreira, Luis; Dragičević, Davor; Valls, Claudia
2017-05-01
For the nonautonomous dynamics defined by a sequence of bounded linear operators acting on an arbitrary Hilbert space, we obtain a characterization of the notion of a nonuniform exponential dichotomy in terms of quadratic Lyapunov sequences. We emphasize that, in sharp contrast with previous results, we consider the general case of possibly noninvertible linear operators, thus requiring only the invertibility along the unstable direction. As an application, we give a simple proof of the robustness of a nonuniform exponential dichotomy under sufficiently small linear perturbations.
Lyapunov exponents for infinite dimensional dynamical systems
Mhuiris, Nessan Mac Giolla
1987-01-01
Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.
Diverging Fluctuations of the Lyapunov Exponents.
Pazó, Diego; López, Juan M; Politi, Antonio
2016-07-15
We show that in generic one-dimensional Hamiltonian lattices the diffusion coefficient of the maximum Lyapunov exponent diverges in the thermodynamic limit. We trace this back to the long-range correlations associated with the evolution of the hydrodynamic modes. In the case of normal heat transport, the divergence is even stronger, leading to the breakdown of the usual single-function Family-Vicsek scaling ansatz. A similar scenario is expected to arise in the evolution of rough interfaces in the presence of suitably correlated background noise.
Hybrid Control Design for a Wheeled Mobile Robot
DEFF Research Database (Denmark)
Bak, Thomas; Bendtsen, Jan Dimon; Ravn, Anders Peter
2003-01-01
We present a hybrid systems solution to the problem of trajectory tracking for a four-wheel steered four-wheel driven mobile robot. The robot is modelled as a non-holonomic dynamic system subject to pure rolling, no-slip constraints. Under normal driving conditions, a nonlinear trajectory tracking...... feedback control law based on dynamic feedback linearization is sufficient to stabilize the system and ensure asymptotically stable tracking. Transitions to other modes are derived systematically from this model, whenever the configuration space of the controlled system has some fundamental singular points....... The stability of the hybrid control scheme is finally analyzed using Lyapunov-like arguments....
Lyapunov Functions and Solutions of the Lyapunov Matrix Equation for Marginally Stable Systems
DEFF Research Database (Denmark)
Kliem, Wolfhard; Pommer, Christian
2000-01-01
of the Lyapunov matrix equation and characterize the set of matrices $(B, C)$ which guarantees marginal stability. The theory is applied to gyroscopic systems, to indefinite damped systems, and to circulatory systems, showing how to choose certain parameter matrices to get sufficient conditions for marginal...
Directory of Open Access Journals (Sweden)
Tang Laiying
2016-01-01
Full Text Available Spacecraft Automatic Levelling and Equalizing Hoist Device (SALEHD is a kind of hoisting device developed for eccentric spacecraft level-adjusting, based on hanging point adjustment by utilizing XY-workbench. To make the device automatically adjust the spacecraft to be levelling, the controller for SALEHD was designed in this paper. Through geometry and mechanics analysis for SALEHD and the spacecraft, the mathematical model of the controller is established. And then, the link of adaptive control and the link of variable structure control were added into the controller to adapt the unknown parameter and eliminate the interference of support vehicle. The stability of the controller was analysed, through constructing Lyapunov energy function. It was proved that the controller system is asymptotically stable, and converged to origin that is equilibrium point. So the controller can be applied in SALEHD availably and safely.
Institute of Scientific and Technical Information of China (English)
Pousga Kabore; Husam Baki; Hong Yue; Hong Wang
2005-01-01
This paper presents a linearized approach for the controller design of the shape of output probability density functions for general stochastic systems. A square root approximation to an output probability density function is realized by a set of B-spline functions. This generally produces a nonlinear state space model for the weights of the B-spline approximation. A linearized model is therefore obtained and embedded into a performance function that measures the tracking error of the output probability density function with respect to a given distribution. By using this performance function as a Lyapunov function for the closed loop system, a feedback control input has been obtained which guarantees closed loop stability and realizes perfect tracking. The algorithm described in this paper has been tested on a simulated example and desired results have been achieved.
Li, Zhichen; Bai, Yan; Li, Tianqi
2016-07-01
This paper investigates stability analysis and stabilization for networked control systems. By a refined delay decomposition approach, slightly different Lyapunov-Krasovskii functionals (LKFs) with quadruple-integral terms and augmented vectors containing triple-integral forms of state are constructed. New integral inequalities are proposed to estimate the cross terms from derivatives of the LKFs, which can be proved to offer tighter bounds than what the Jensen one produces theoretically. Moreover, the non-strictly proper rational functions in deriving process are fully handled via reciprocally convex approach. A state feedback controller design approach is also developed. Numerical examples and applications to practical power and oscillator systems demonstrate the superiority of the proposed criteria in conservatism reduction compared to some existing ones.
Statistics of Lyapunov exponent spectrum in randomly coupled Kuramoto oscillators.
Patra, Soumen K; Ghosh, Anandamohan
2016-03-01
Characterization of spatiotemporal dynamics of coupled oscillatory systems can be done by computing the Lyapunov exponents. We study the spatiotemporal dynamics of randomly coupled network of Kuramoto oscillators and find that the spectral statistics obtained from the Lyapunov exponent spectrum show interesting sensitivity to the coupling matrix. Our results indicate that in the weak coupling limit the gap distribution of the Lyapunov spectrum is Poissonian, while in the limit of strong coupling the gap distribution shows level repulsion. Moreover, the oscillators settle to an inhomogeneous oscillatory state, and it is also possible to infer the random network properties from the Lyapunov exponent spectrum.
Energy Technology Data Exchange (ETDEWEB)
Blanchini, F. [Universita di Udine (Italy); Carabelli, S. [Politecnico di Torino (Italy)
1994-12-31
We apply a technique recently proposed in literature for the robust stabilization of linear systems with time-varying uncertain parameters to a magnetic levitation system. This technique allows the construction of a polyhedral Lyapunov function and a linear variable-structure stabilizing controller.
Design of Controllers for Liquid Level Control
Augustin Simon,; Elizabeth Varghese
2015-01-01
The liquid level control system is commonly used in many process control applications. The aim of the process is to keep the liquid level in the tank at the desired value. The conventional proportional-integral-derivative (PID) controller is simple, reliable and eliminates the error rate but it cannot handle complex problems. Fuzzy logic controllers are rule based systems which simulates human behavior of the process. The fuzzy controller is combined with the PID controller and th...
Li, Yongming; Tong, Shaocheng
2016-08-25
In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.
Linear Design Approach to a Fuzzy Controller
DEFF Research Database (Denmark)
Jantzen, Jan
1999-01-01
A ball-balancer, basically an inverted pendulum problem, is stabilised by a linear controller. With certain design choices, a fuzzy controller is equivalent to a summation; thus it can replace the linear controller. It can be claimed, that the fuzzy controller performs at least as well...... as the linear controller, since the linear controller is contained in the fuzzy controller. The approach makes it somewhat easier to design a fuzzy controller....
Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids
Kabalan, Mahmoud
study. This will enable future studies to save computational effort and produce the most accurate results according to the needs of the study being performed. Moreover, the effect of grid (line) impedance on the accuracy of droop control is explored using the 5th order model. Simulation results show that traditional droop control is valid up to R/X line impedance value of 2. Furthermore, the 3rd order nonlinear model improves the currently available inverter-infinite bus models by accounting for grid impedance, active power-frequency droop and reactive power-voltage droop. Results show the 3rd order model's ability to account for voltage and reactive power changes during a transient event. Finally, the large-signal Lyapunov-based stability analysis is completed for a 3 bus microgrid system (made up of 2 inverters and 1 linear load). The thesis provides a systematic state space large-signal nonlinear mathematical modeling method of inverter-based microgrids. The inverters include the dc-side dynamics associated with dc sources. The mathematical model is then used to estimate the domain of asymptotic stability of the 3 bus microgrid. The three bus microgrid system was used as a case study to highlight the design and optimization capability of a large-signal-based approach. The study explores the effect of system component sizing, load transient and generation variations on the asymptotic stability of the microgrid. Essentially, this advancement gives microgrid designers and engineers the ability to manipulate the domain of asymptotic stability depending on performance requirements. Especially important, this research was able to couple the domain of asymptotic stability of the ac microgrid with that of the dc side voltage source. Time domain simulations were used to demonstrate the mathematical nonlinear analysis results.
Stabilization of fuzzy systems with constrained controls by using positively invariant sets
Directory of Open Access Journals (Sweden)
A. El Hajjaji
2006-01-01
Full Text Available We deal with the extension of the positive invariance approach to nonlinear systems modeled by Takagi-Sugeno fuzzy systems. The saturations on the control are taken into account during the design phase. Sufficient conditions of asymptotic stability are given ensuring at the same time that the control is always admissible inside the corresponding polyhedral set. Both a common Lyapunov function and piecewise Lyapunov function are used.
The Lyapunov exponents of the Van der Pol oscillator
Grasman, J.; Verhulst, F.; Shih, S.D.
2005-01-01
Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non-zero Lyapunov exponent
Construction of Lyapunov functions by the localization method
Krishchenko, A. P.; Kanatnikov, A. N.
2017-07-01
In this paper, we examine the problem of construction of Lyapunov functions for asymptotically stable equilibrium points. We exploit conditions of asymptotic stability in terms of compact invariant sets and positively invariant sets. Our results are methods of verification of these conditions and construction of Lyapunov functions by the localization method of compact invariant sets. These results are illustrated by an example.
Analysis of stability problems via matrix Lyapunov functions
Directory of Open Access Journals (Sweden)
Anatoly A. Martynyuk
1990-01-01
Full Text Available The stability of nonlinear systems is analyzed by the direct Lyapunov's method in terms of Lyapunov matrix functions. The given paper surveys the main theorems on stability, asymptotic stability and nonstability. They are applied to systems of nonlinear equations, singularly-perturbed systems and hybrid systems. The results are demonstrated by an example of a two-component system.
Controller Design Automation for Aeroservoelastic Design Optimization of Wind Turbines
Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.
2010-01-01
The purpose of this paper is to integrate the controller design of wind turbines with structure and aerodynamic analysis and use the final product in the design optimization process (DOP) of wind turbines. To do that, the controller design is automated and integrated with an aeroelastic simulation
10 CFR 72.146 - Design control.
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Design control. 72.146 Section 72.146 Energy NUCLEAR... Design control. (a) The licensee, applicant for a license, certificate holder, and applicant for a CoC... shall establish measures for the identification and control of design interfaces and for...
Backstepping feedback control of open channel flow
Huo, Mandy; Malek, Sami
2014-01-01
We derive a feedback control law for the control of the downstream flow in a 1-D open channel by manipulating the water flow at an upstream location. We use backstepping for controller design and Lyapunov techniques for stability analysis. Finally, the controller is verified with simulations.
Design, implementation and analysis of fully digital 1-D controllable multiscroll chaos
Mansingka, Abhinav S.
2011-12-01
This paper introduces the fully digital implementation of a 1-D multiscroll chaos generator based on a staircase nonlinearity in the 3rd-order jerk system using the Euler approximation. For the first time, digital design is exploited to provide real-time controllability of (i) number of scrolls, (ii) position in 1-D space, (iii) Euler step size and (iv) system parameter. The effect of variations in these fields on the maximum Lyapunov exponent (MLE) is analyzed. The system is implemented using Verilog HDL and synthesized on an Xilinx Virtex 4 FPGA, exhibiting area utilization less than 3.5% and high performance with experimentally verified throughput up to 3.33 Gbits/s. This fully digital system enables applications in modulation schemes and chaos-based cryptosystems without analog to digital conversion. © 2011 IEEE.
Lyapunov functionals and stability of stochastic functional differential equations
Shaikhet, Leonid
2013-01-01
Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of di...
Generalized Lyapunov exponent as a unified characterization of dynamical instabilities.
Akimoto, Takuma; Nakagawa, Masaki; Shinkai, Soya; Aizawa, Yoji
2015-01-01
The Lyapunov exponent characterizes an exponential growth rate of the difference of nearby orbits. A positive Lyapunov exponent (exponential dynamical instability) is a manifestation of chaos. Here, we propose the Lyapunov pair, which is based on the generalized Lyapunov exponent, as a unified characterization of nonexponential and exponential dynamical instabilities in one-dimensional maps. Chaos is classified into three different types, i.e., superexponential, exponential, and subexponential chaos. Using one-dimensional maps, we demonstrate superexponential and subexponential chaos and quantify the dynamical instabilities by the Lyapunov pair. In subexponential chaos, we show superweak chaos, which means that the growth of the difference of nearby orbits is slower than a stretched exponential growth. The scaling of the growth is analytically studied by a recently developed theory of a continuous accumulation process, which is related to infinite ergodic theory.
Design of nonlinear adaptive steam valve controllers for a turbo-generator system
Energy Technology Data Exchange (ETDEWEB)
Bekiaris-Liberis, N.K.; Paraskevopoulos, P.N. [National Technical Univ. of Athens Zographou, Athens (Greece); Boglou, A.K. [Technology Education Inst. of Kavala Agios Loukas, Kavala (Greece); Arvanitis, K.G.; Pasgianos, G.D. [Agricultural Univ. of Athens, Athens (Greece)
2008-07-01
This paper reported on a study that investigated the control of power systems consisting of interconnected networks of transmission lines linking generators and loads. Improving both small and large perturbation stability and dynamic performance is important because power systems have become less stable in the past 15 years due to the use of controllers that have been designed on the basis of linearized synchronous generators and turbine models. The high nonlinear nature of power system models and the resulting disturbances render conventional linear controller design techniques obsolete for use in power systems control. Power system engineers are becoming aware of the role of turbine steam valves in improving the dynamic stability of power systems and damping low frequency oscillations. Advanced nonlinear control strategies are needed since the conventional steam valve control theory cannot guarantee transient stability in cases where operational conditions and parameters vary considerably. A design approach to a nonlinear adaptive control system with unknown parameters was developed and applied to the turbine main steam valve control of a power system. A fourth order machine model was used along with an adaptive backstepping method to construct the Lyapunov function in order to obtain a nonlinear adaptive controller to solve the turbine fast valving nonlinear control problem. The newly designed nonlinear adaptive controller can make the resulting adaptive system asymptotically stable. The proposed controller is accompanied by a dynamic estimator of parameters and includes nonlinear damping terms, which guarantee input-output stability even without the use of the adaptive law. Simulation results showed that the proposed nonlinear adaptive controller performs better than other turbine main steam valve control techniques. It can face large parametric uncertainty and results in a closed-loop system that is able to face large and smaller disturbances, providing a
Directory of Open Access Journals (Sweden)
Fang Wang
2017-05-01
Full Text Available The tracking control problem of a flexible air-breathing hypersonic vehicle subjects to aerodynamic parameter uncertainty and input constraint is investigated by combining nonlinear disturbance observer and dynamic surface control. To design controller simply, a control-oriented model is firstly derived and divided into two subsystems, velocity subsystem and altitude subsystem based on the engineering backgrounds of flexible air-breathing hypersonic vehicle. In every subsystem, compounded disturbances are included to consider aerodynamic uncertainty and the effect of the flexible modes. Then, disturbance observer is not only used to handle the compounded disturbance but also to handle the input constraint, where the estimation error converges to a random small region through appropriately choosing the observer parameters. To sequel, the disturbance observer–based robust control scheme and the disturbance observer-based dynamic surface control scheme are developed for the velocity subsystem and altitude subsystem, respectively. Besides, novel filters are designed to alleviate the problem of “explosion of terms” induced by backstepping method. On the basis of Lyapunov stability theory, the presented control scheme can assure that tracking error converges to an arbitrarily small neighborhood around zero by rigorous theoretical analysis. At last, simulation result shows the effectiveness of the presented control method.
Mechanical engineers' handbook, design, instrumentation, and controls
Kutz, Myer
2015-01-01
Full coverage of electronics, MEMS, and instrumentation andcontrol in mechanical engineering This second volume of Mechanical Engineers' Handbookcovers electronics, MEMS, and instrumentation and control, givingyou accessible and in-depth access to the topics you'll encounterin the discipline: computer-aided design, product design formanufacturing and assembly, design optimization, total qualitymanagement in mechanical system design, reliability in themechanical design process for sustainability, life-cycle design,design for remanufacturing processes, signal processing, dataacquisition and dis
Networked and Distributed Predictive Control
Christofides, Panagiotis D; De La Pena, David Munoz
2011-01-01
"Networked and Distributed Predictive Control" presents rigorous, yet practical, methods for the design of networked and distributed predictive control systems - the first book to do so. The design of model predictive control systems using Lyapunov-based techniques accounting for the influence of asynchronous and delayed measurements is followed by a treatment of networked control architecture development. This shows how networked control can augment dedicated control systems in a natural way and takes advantage of additional, potentially asynchronous and delayed measurements to main
Yang, Qinmin; Jagannathan, Sarangapani
2012-04-01
In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Based on an appropriate Lyapunov function,this paper analyzes the design of a delay-dependent robust H∞ state feedback control,with a focus on a class of non linear uncertainty linear time-delay systems with input delay using linear matrix inequalities.Under the condition that the nonlinear uncertain functions are gain bounded,a sufficient condition dependent on the delays of the state and input is presented for the existence of H∞ controller.The proposed controller not only stabilized closed-loop uncertain systems but also guaranteed a prescribed H∞ norm bound of closed-loop transfer matrix from the disturbance to controlled output.By solving a linear matrix inequation,we can obtain the robust H∞ controller.An example is given to show the effectiveness of the proposed method.
Design of an Adaptive Controller for Dive-plane Control of a Torpedo-shaped AUV
Institute of Scientific and Technical Information of China (English)
Jian Cao; Yumin Su; Jinxin Zhao
2011-01-01
Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models.To guarantee robustness against parameter uncertainty,an adaptive controller for dive-plane control,based on Lyapunov theory and back-stepping techniques,was proposed.In the closed-loop system,asymptotic tracking of the reference depth and pitch angle trajectories was accomplished.Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters.
Design tool for wind turbine control algorithms
Energy Technology Data Exchange (ETDEWEB)
Van der Hooft, E.L.; Van Engelen, T.G.; Schaak, P.; Wiggelinkhuizen, E.J. [ECN Wind Energy, Petten (Netherlands)
2004-11-01
Advanced wind turbine control algorithms have become more important over the last years in order to deal with high requirements on reliability, cost of energy and extreme operating (offshore) conditions. An open source modular 'Design tool for wind turbine control algorithms' within the Matlab environment enables possibilities for wind turbine designers to develop industrial control algorithms and to utilize the benefits of more advanced control solutions. The design tool offers a proven design procedure, which takes the different design stages of a wind turbine into account. It supports initial design and evaluation of control algorithms, linking to aero-elastic codes and implementation in the turbine controller. In addition, the tool assists the designer to operate the design procedure, to avoid design failures and ordering of all the design data, models and versions. Currently, the incorporated design and evaluation models are focussed on design of classic 'rotor speed feedback control' for a variable speed and active pitch turbine and have been verified in practice. More advanced control design modules are within reach as a result of current developments on frequency domain analysis and synthesis of (linearised) turbine models.
Institute of Scientific and Technical Information of China (English)
SU BaiLi; LI ShaoYuan; ZHU QuanMin
2009-01-01
Stabilization of the constrained switched nonlinear systems is an attractive research subject. Predictive control can handle variable constraints well and make the system stable. Its stability is typically based on an assumption of initial feasibility of the optimization problem; however the set of initial conditions, starting from where a given predictive formulation is guaranteed to be feasible, is not explicitly char-acterized. In this paper, a hybrid predictive control method is proposed for a class of switched nonlin-ear systems with input constraints and un-measurable states. The main idea is to design a mixed con-troller using Lyapunov functions and a state observer, which switches appropriately between a bounded feedback controller and a predictive controller, and to give an explicitly characterized set of initial conditions to stabilize each closed-loop subsystem. For the whole switched nonlinear system, a suitable switched law based on the state estimation is designed to orchestrate the transitions between the consistituent modes and their respective controllers, and to ensure the whole closed-loop system's stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Stabilization of the constrained switched nonlinear systems is an attractive research subject. Predictive control can handle variable constraints well and make the system stable. Its stability is typically based on an assumption of initial feasibility of the optimization problem; however the set of initial conditions, starting from where a given predictive formulation is guaranteed to be feasible, is not explicitly characterized. In this paper, a hybrid predictive control method is proposed for a class of switched nonlinear systems with input constraints and un-measurable states. The main idea is to design a mixed controller using Lyapunov functions and a state observer, which switches appropriately between a bounded feedback controller and a predictive controller, and to give an explicitly characterized set of initial conditions to stabilize each closed-loop subsystem. For the whole switched nonlinear system, a suitable switched law based on the state estimation is designed to orchestrate the transitions between the consistituent modes and their respective controllers, and to ensure the whole closed-loop system’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.
Yuan, L. H.; Wang, C. N.; Zhang, Z. Z.
2016-10-01
Based on the Lyapunov stability theory, an improved Lyapunov function scheme is used to understand the complete synchronization of hyperchaotic systems by imposing pulse linear coupling on the response system. According to this scheme, the controller begins to control the response system in a period when the output error variables are increasing; otherwise, the controller turns off. The distribution of conditional Lyapunov exponent versus coupling intensity, and the synchronization cost (averaged power consumption of controller) is calculated, respectively. By designing an exponential type of Lyapunov function, it is found that complete synchronization could be realized between two Chen hyperchaotic systems and two 4-dimensional LC hyperchaotic systems. Our numerical results are consistent with the previous theoretical discussion.
Computer Aided Control System Design (CACSD)
Stoner, Frank T.
1993-01-01
The design of modern aerospace systems relies on the efficient utilization of computational resources and the availability of computational tools to provide accurate system modeling. This research focuses on the development of a computer aided control system design application which provides a full range of stability analysis and control design capabilities for aerospace vehicles.
Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok
2015-08-01
This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers.
Integrated design approach for controlled mechanical structures
Energy Technology Data Exchange (ETDEWEB)
Kiriazov, P. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. of Mechanics
1998-10-01
This study is addressed to design problems of controlled mechanical structures (CMS) like robot manipulators and engineering systems with active vibration control that may be subject to arbitrary disturbances. Along with the basic design requirement for strength/load capacity, additional design criteria for CMS are needed to meet the continuously increasing demands for faster response, improved precision and reduced energy consumption. As a CMS is a functionally directed assembly of mutually influencing components: control, actuator, mechanical, and sensor subsystems, a conceptual framework for their integrated design is required. Parameters of these subsystems influencing the dynamic performance of CMS define a matrix that transfers the control inputs into the controlled outputs (accelerations). This transfer matrix plays the key role in the integrated structure-control design. We consider the design optimization problem for CMS having decentralized control architecture. An integrated design criterion for such systems is proposed which is based on optimal trade-off relations between bounds of model uncertainties and control force limits. Optimizing this criterion leads to CMS with maximum degree of robustness. The approach proposed makes it possible a decomposition of the overall design problem into design problems for the CMS`s components. The design concepts are applied to the mechanical subsystem of planar linkage systems. Robust decentralized controllers are designed for a two-degree-of-freedom manipulator with elastic joints. (orig.)
Covariant Lyapunov vectors of chaotic Rayleigh-Bénard convection.
Xu, M; Paul, M R
2016-06-01
We explore numerically the high-dimensional spatiotemporal chaos of Rayleigh-Bénard convection using covariant Lyapunov vectors. We integrate the three-dimensional and time-dependent Boussinesq equations for a convection layer in a shallow square box geometry with an aspect ratio of 16 for very long times and for a range of Rayleigh numbers. We simultaneously integrate many copies of the tangent space equations in order to compute the covariant Lyapunov vectors. The dynamics explored has fractal dimensions of 20≲D_{λ}≲50, and we compute on the order of 150 covariant Lyapunov vectors. We use the covariant Lyapunov vectors to quantify the degree of hyperbolicity of the dynamics and the degree of Oseledets splitting and to explore the temporal and spatial dynamics of the Lyapunov vectors. Our results indicate that the chaotic dynamics of Rayleigh-Bénard convection is nonhyperbolic for all of the Rayleigh numbers we have explored. Our results yield that the entire spectrum of covariant Lyapunov vectors that we have computed are tangled as indicated by near tangencies with neighboring vectors. A closer look at the spatiotemporal features of the Lyapunov vectors suggests contributions from structures at two different length scales with differing amounts of localization.
Optimal Control Design with Limited Model Information
Farokhi, F; Johansson, K H
2011-01-01
We introduce the family of limited model information control design methods, which construct controllers by accessing the plant's model in a constrained way, according to a given design graph. We investigate the achievable closed-loop performance of discrete-time linear time-invariant plants under a separable quadratic cost performance measure with structured static state-feedback controllers. We find the optimal control design strategy (in terms of the competitive ratio and domination metrics) when the control designer has access to the local model information and the global interconnection structure of the plant-to-be-controlled. At last, we study the trade-off between the amount of model information exploited by a control design method and the best closed-loop performance (in terms of the competitive ratio) of controllers it can produce.
Directory of Open Access Journals (Sweden)
Lihua Liang
2017-01-01
Full Text Available An adaptive sliding mode controller based on fuzzy input design is presented, in order to reduce the roll motion of surface vessel fin stabilizers with shock and vibration of waves. The nonlinearities and uncertainties of the system including feedback errors and disturbance induced by waves are analyzed. And the lift-feedback system is proposed, which improves the shortage of conventional fin angle-feedback. Then the fuzzy input-based adaptive sliding mode control is designed for the system. In the controller design, the Lyapunov function is adopted to guarantee the system stability. Finally, experimental results demonstrate the superior performance of the controller designed using fuzzy input, when compared to the PID controller used in practical engineering.
Circular orbits, Lyapunov stability and Manev-type forces
Blaga, Cristina
2016-01-01
In this article we study the stability in the sense of Lyapunov of the circular orbits in the generalized Manev two bodies problem. First, we explore the existence of the circular orbits and determine their radius. Then, using the first integrals of motion we build a positive definite function, known as a Lyapunov function. It's existence proves that the circular orbit is stable in the sense of Lyapunov. In the end, we consider several real systems of two bodies and compare the characteristics of the circular orbits in Newtonian and modified Manev gravitational field, arguing about our possibilities to observe the differences between the motion in these two fields.
Design of Grain Dryers’ Control System
Li, Shizhuang; Cao, Shukun; Meng, Wenjing
2017-06-01
TMS320F28335 which is a TI high-performance TMS320C28x series 32-bit floating point DSP processor is used as the core of the controller, and the hardware is designed, which includes temperature collection, temperature and humidity collection, moisture detection and motor control. The development environment of the system CCS, and then for the characteristics of grain dryer control system, the control system software modular design, the use of fuzzy control method to achieve food grain motor control, and MATLAB simulation analysis, Fuzzy control is used to control the feasibility of the grain moisture.
Gao, Shigen; Dong, Hairong; Lyu, Shihang; Ning, Bin
2016-07-01
This paper studies decentralised neural adaptive control of a class of interconnected nonlinear systems, each subsystem is in the presence of input saturation and external disturbance and has independent system order. Using a novel truncated adaptation design, dynamic surface control technique and minimal-learning-parameters algorithm, the proposed method circumvents the problems of 'explosion of complexity' and 'dimension curse' that exist in the traditional backstepping design. Comparing to the methodology that neural weights are online updated in the controllers, only one scalar needs to be updated in the controllers of each subsystem when dealing with unknown systematic dynamics. Radial basis function neural networks (NNs) are used in the online approximation of unknown systematic dynamics. It is proved using Lyapunov stability theory that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. The tracking errors of each subsystems, the amplitude of NN approximation residuals and external disturbances can be attenuated to arbitrarily small by tuning proper design parameters. Simulation results are given to demonstrate the effectiveness of the proposed method.
Adaptive external torque estimation by means of tracking a Lyapunov function
Energy Technology Data Exchange (ETDEWEB)
Schaub, H.; Junkins, J.L. [Texas A and M Univ., College Station, TX (United States); Robinett, R.D. [Sandia National Labs., Albuquerque, NM (United States)
1996-03-01
A real-time method is presented to adoptively estimate three-dimensional unmodeled external torques acting on a spacecraft. This is accomplished by forcing the tracking error dynamics to follow the Lyapunov function underlying the feedback control law. For the case where the external torque is constant, the tracking error dynamics are shown to converge asypmtotically. The methodology applies not only to the control law used in this paper, but can also be applied to most Lyapunov derived feedback control laws. The adaptive external torque estimation is very robust in the presence of measurement noise, since a numerical integration is used instead of a numerical differentiation. Spacecraft modeling errors, such as in the inertia matrix, are also compensated for by this method. Several examples illustrate the practical significance of these ideas.
Optimal low-thrust spiral trajectories using Lyapunov-based guidance
Yang, Da-lin; Xu, Bo; Zhang, Lei
2016-09-01
For an increasing number of electric propulsion systems used for real missions, it is very important to design optimal low-thrust spiral trajectories for these missions. However, it is particularly challenging to search for optimal low-thrust transfers. This paper describes an efficient optimal guidance scheme for the design of time-optimal and time-fixed fuel-optimal low-thrust spiral trajectories. The time-optimal solution is obtained with Lyapunov-based guidance, in which the artificial neural network (ANN) is adopted to implement control gains steering and the evolutionary algorithm is used as the learning algorithm for ANN. Moreover, the relative efficiency introduced in Q-law is analyzed and a periapis-and-apoapsis-centered burn structure is proposed for solving time-fixed fuel-optimal low-thrust orbit transfer problem. In this guidance scheme, the ANN is adopted to determine the burn structure within each orbital revolution and the optimal low-thrust orbit transfer problem is converted to the parameter optimization problem. This guidance scheme runs without an initial guess and provides closed form solutions. In addition, Earth J2 perturbation and Earth-shadow eclipse effects are considered in this paper. Finally, a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method.
Design controls for the medical device industry
Teixeira, Marie B
2013-01-01
The second edition of a bestseller, Design Controls for the Medical Device Industry provides a comprehensive review of the latest design control requirements, as well as proven tools and techniques to ensure your company's design control program evolves in accordance with current industry practice. The text assists in the development of an effective design control program that not only satisfies the US FDA Quality System Regulation (QSR) and ISO 9001 and 13485 standards, but also meets today's third-party auditor/investigator expectations and saves you valuable time and money.The author's cont
Lyapunov exponents for a Duffing oscillator
Zeni, Andrea R.; Gallas, Jason A. C.
With the help of a parallel computer we perform a systematic computation of Lyapunov exponents for a Duffing oscillator driven externally by a force proportional to cos( t). In contrast to the familiar situation in discrete-time systems where one finds “windows” of regularity embedded in intervals of chaos, we find the continuous-time Duffing oscillator to contain a quite regular epetition of relatively self-similar “islands of chaos” (i.e. regions characterized by positive exponents) embedded in large “seas of regularity” (negative exponents). We also investigate the effect of driving the oscillator with a Jacobian elliptic function cn( t, m). For m = 0 one has cn( t, 0) ≡ cos( t), the usual trigonometric pumping. For m = 1 one has cn( t, 1) ≡ sech( t), a hyperbolic pumping. When 0 displace the islands of chaos in parameter space. Thus, Jacobian pumping provides a possible way of “cleaning chaos” in regions of the parameter space for periodically driven systems.
Yedavalli, R. K.
1992-01-01
The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.
Yedavalli, R. K.
1992-01-01
The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.
Using the centre of percussion to design a steering controller for an autonomous race car
Kritayakirana, Krisada; Gerdes, J. Christian
2012-01-01
Understanding how a race car driver controls a vehicle at its friction limits can provide insights into the development of vehicle safety systems. In this paper, a race car driver's behaviour inspires the design of an autonomous racing controller. The resulting controller uses the vehicle's centre of percussion (COP) to design feedforward and feedback steering. At the COP, the effects of rotation and translation from the rear tire force cancel each other out; consequently, the feedforward steering command is robust to the disturbances from the rear tire force. Using the COP also simplifies the equations of motion, as the vehicle's lateral motion is decoupled from the vehicle's yaw motion and highlights the challenge of controlling a vehicle when the rear tires are highly saturated. The resulting dynamics can be controlled with a linear state feedback based on a lane-keeping system with additional yaw damping. Utilising Lyapunov theory, the closed-loop system is shown to remain stable even when the rear tires are highly saturated. The experimental results demonstrate that an autonomous vehicle can operate at its limits while maintaining a minimal lateral error.
Design of adaptive switching control for hypersonic aircraft
Directory of Open Access Journals (Sweden)
Xin Jiao
2015-10-01
Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.
Convex Optimization methods for computing the Lyapunov Exponent of matrices
Protasov, Vladimir Yu
2012-01-01
We introduce a new approach to evaluate the largest Lyapunov exponent of a family of nonnegative matrices. The method is based on using special positive homogeneous functionals on $R^{d}_+,$ which gives iterative lower and upper bounds for the Lyapunov exponent. They improve previously known bounds and converge to the real value. The rate of convergence is estimated and the efficiency of the algorithm is demonstrated on several problems from applications (in functional analysis, combinatorics, and lan- guage theory) and on numerical examples with randomly generated matrices. The method computes the Lyapunov exponent with a prescribed accuracy in relatively high dimensions (up to 60). We generalize this approach to all matrices, not necessar- ily nonnegative, derive a new universal upper bound for the Lyapunov exponent, and show that such a lower bound, in general, does not exist.
A Lyapunov approach to strong stability of semigroups
Paunonen, L.T.; Zwart, Heiko J.
2013-01-01
In this paper we present Lyapunov based proofs for the well-known Arendt–Batty–Lyubich–Vu Theorem for strongly continuous and discrete semigroups. We also study the spectral properties of the limit isometric groups used in the proofs.
Lyapunov functionals and stability of stochastic difference equations
Shaikhet, Leonid
2011-01-01
This book offers a general method of Lyapunov functional construction which lets researchers analyze the degree to which the stability properties of differential equations are preserved in their difference analogues. Includes examples from physical systems.
Directory of Open Access Journals (Sweden)
Jesus Manuel Munoz-Pacheco
2013-01-01
Full Text Available An algorithm to compute the Lyapunov exponents of piecewise linear function-based multidirectional multiscroll chaotic oscillators is reported. Based on the m regions in the piecewise linear functions, the suggested algorithm determines the individual expansion rate of Lyapunov exponents from m-piecewise linear variational equations and their associated m-Jacobian matrices whose entries remain constant during all computation cycles. Additionally, by considering OpAmp-based chaotic oscillators, we study the impact of two analog design procedures on the magnitude of Lyapunov exponents. We focus on analyzing variations of both frequency bandwidth and voltage/current dynamic range of the chaotic signals at electronic system level. As a function of the design parameters, a renormalization factor is proposed to estimate correctly the Lyapunov spectrum. Numerical simulation results in a double-scroll type chaotic oscillator and complex chaotic oscillators generating multidirectional multiscroll chaotic attractors on phase space confirm the usefulness of the reported algorithm.
A metamorphic controller for plant control system design
Directory of Open Access Journals (Sweden)
Tomasz Klopot
2016-07-01
Full Text Available One of the major problems in the design of industrial control systems is the selection and parameterization of the control algorithm. In practice, the most common solution is the PI (proportional-integral controller, which is simple to implement, but is not always the best control strategy. The use of more advanced controllers may result in a better efficiency of the control system. However, the implementation of advanced control algorithms is more time-consuming and requires specialized knowledge from control engineers. To overcome these problems and to support control engineers at the controller design stage, the paper describes a tool, i.e., a metamorphic controller with extended functionality, for selection and implementation of the most suitable control algorithm. In comparison to existing solutions, the main advantage of the metamorphic controller is its possibility of changing the control algorithm. In turn, the candidate algorithms can be tested through simulations and the total time needed to perform all simulations can be less than a few minutes, which is less than or comparable to the design time in the concurrent design approach. Moreover, the use of well-known tuning procedures, makes the system easy to understand and operate even by inexperienced control engineers. The application was implemented in the real industrial programmable logic controller (PLC and tested with linear and nonlinear virtual plants. The obtained simulation results confirm that the change of the control algorithm allows the control objectives to be achieved at lower costs and in less time.
The control of an optical hyper-chaotic system
Energy Technology Data Exchange (ETDEWEB)
Jiang Shumin [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Tian Lixin [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)]. E-mail: tianlx@ujs.edu.cn; Wang Xuedi [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)
2007-12-15
This paper discusses the problem of hyper-chaos control of an optical system. Based on Lyapunov stability theory, a non-autonomous feedback controller is designed. The proposed controller ensures that the hyper-chaotic system will be asymptotically stable. Numerical simulation of the original and the controlled system is provided to show the effectiveness of our method.
Stability, Resonance and Lyapunov Inequalities for Periodic Conservative Systems
Canada, Antonio
2010-01-01
This paper is devoted to the study of Lyapunov type inequalities for periodic conservative systems. The main results are derived from a previous analysis which relates the best Lyapunov constants to some especial (constrained or unconstrained) minimization problems. We provide some new results on the existence and uniqueness of solutions of nonlinear resonant and periodic systems. Finally, we present some new conditions which guarantee the stable boundedness of linear periodic conservative systems.
Lyapunov Computational Method for Two-Dimensional Boussinesq Equation
Mabrouk, Anouar Ben
2010-01-01
A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.
Stabilizing equilibrium by linear feedback control for controlling chaos in Chen system
Energy Technology Data Exchange (ETDEWEB)
Costa, V A [Departamento de Ciencias Basicas, Facultad de IngenierIa (UNLP), La Plata (Argentina); Gonzalez, G A, E-mail: vacosta@ing.unlp.edu.ar, E-mail: ggonzal@fi.ub.ar [Departamento de Matematica, Facultad de Ingenieria (UBA), Buenos Aires (Argentina)
2011-03-01
Stabilization of a chaotic system in one of its unstable equilibrium points by applying small perturbations is studied. A two-stage control strategy based on linear feedback control is applied. Improvement of system performance is addressed by exploiting the ergodicity of the original dynamics and using Lyapunov stability results for control design. Extension to the not complete observability case is also analyzed.
Chaos control of a Bose-Einstein condensate in a moving optical lattice
Zhang, Zhiying; Feng, Xiuqin; Yao, Zhihai
2016-07-01
Chaos control of a Bose-Einstein condensate (BEC) loaded into a moving optical lattice with attractive interaction is investigated on the basis of Lyapunov stability theory. Three methods are designed to control chaos in BEC. As a controller, a bias constant, periodic force, or wavelet function feedback is added to the BEC system. Numerical simulations reveal that chaotic behavior can be well controlled to achieve periodicity by regulating control parameters. Different periodic orbits are available for different control parameters only if the maximal Lyapunov exponent of the system is negative. The abundant effect of chaotic control is also demonstrated numerically. Chaos control can be realized effectively by using our proposed control strategies.
Observer-based predictive controller design with network-enhanced time-delay compensation
Florin Caruntu, Constantin
2015-02-01
State feedback control is very attractive due to the precise computation of the gain matrix, but the implementation of a state feedback controller is possible only when all state variables are directly measurable. This condition is almost impossible to accomplish due to the excess number of required sensors or unavailability of states for measurement in most of the practical situations. Hence, the need for an estimator or observer is obvious to estimate all the state variables by observing the input and the output of the controlled system. As such, the goal of this paper is to provide a control design methodology based on a Luenberger observer design that can assure the closed-loop performances of a vehicle drivetrain with backlash, while compensating the network-enhanced time-varying delays. This goal is achieved in a sequential manner: firstly, a piecewise linear model of two inertias drivetrain, which takes into consideration the backlash nonlinearity and the network-enhanced time-varying delay effects is derived; then, a Luenberger observer which estimates the state variables is synthesized and the robust full state-feedback predictive controller based on flexible control Lyapunov functions is designed to explicitly take into account the bounds of the disturbances caused by time-varying delays and to guarantee also the input-to-state stability of the system in a non-conservative way. The full state-feedback predictive control strategy based on the Luenberger observer design was experimentally tested on a vehicle drivetrain emulator controlled through controller area network, with the aim of minimizing the backlash effects while compensating the network-enhanced delays.
Directory of Open Access Journals (Sweden)
Amin Jalali
2013-09-01
Full Text Available The increasing demand for multi-degree-of-freedom (DOF continuum robot in presence of highly nonlinear dynamic parameters in a number of industries has motivated a flurry of research in the development of soft computing nonlinear methodology. This robot is capable of providing smooth and isotropic three-dimensional motion in each joint. Compared to conventional robotic manipulators that offer the same motion capabilities, the innovative spherical motor possesses several advantages. Not only can the spherical motor combine 3-DOF motion in a single joint, it has a large range of motion with no singularities in its workspace. This research contributes to the on-going research effort by exploring alternate methods for controlling the continuum robot manipulator. This research addresses two basic issues related to the control of a continuum robots; (1 a more accurate representation of the dynamic model of an existing prototype, and (2 the design of a robust feedback controller. The robust backstepping controller proposed in this research is used to further demonstrate the appealing features exhibited by the continuum robot. Robust feedback controller is used to position control of continuum robot in presence of uncertainties. Using Lyapunov type stability arguments, a robust backstepping controller is designed to achieve this objective. The controller developed in this research is designed in two steps. Firstly, a robust stabilizing torque is designed for the nominal continuum robot dynamics derived using the constrained Lagrangian formulation. Next, the fuzzy logic methodology applied to it to solution uncertainty problem. The fuzzy model free problem is formulated to minimize the nonlinear formulation of continuum robot. The eventual stability of the controller depends on the torque generating capabilities of the continuum robots.
Directory of Open Access Journals (Sweden)
Shaohua Luo
2016-09-01
Full Text Available This paper addresses chaos suppression of the mechanical centrifugal flywheel governor system with output constraint and fully unknown parameters via adaptive dynamic surface control. To have a certain understanding of chaotic nature of the mechanical centrifugal flywheel governor system and subsequently design its controller, the useful tools like the phase diagrams and corresponding time histories are employed. By using tangent barrier Lyapunov function, a dynamic surface control scheme with neural network and tracking differentiator is developed to transform chaos oscillation into regular motion and the output constraint rule is not broken in whole process. Plugging second-order tracking differentiator into chaos controller tackles the “explosion of complexity” of backstepping and improves the accuracy in contrast with the first-order filter. Meanwhile, Chebyshev neural network with adaptive law whose input only depends on a subset of Chebyshev polynomials is derived to learn the behavior of unknown dynamics. The boundedness of all signals of the closed-loop system is verified in stability analysis. Finally, the results of numerical simulations illustrate effectiveness and exhibit the superior performance of the proposed scheme by comparing with the existing ADSC method.
Luo, Shaohua; Hou, Zhiwei; Zhang, Tao
2016-09-01
This paper addresses chaos suppression of the mechanical centrifugal flywheel governor system with output constraint and fully unknown parameters via adaptive dynamic surface control. To have a certain understanding of chaotic nature of the mechanical centrifugal flywheel governor system and subsequently design its controller, the useful tools like the phase diagrams and corresponding time histories are employed. By using tangent barrier Lyapunov function, a dynamic surface control scheme with neural network and tracking differentiator is developed to transform chaos oscillation into regular motion and the output constraint rule is not broken in whole process. Plugging second-order tracking differentiator into chaos controller tackles the "explosion of complexity" of backstepping and improves the accuracy in contrast with the first-order filter. Meanwhile, Chebyshev neural network with adaptive law whose input only depends on a subset of Chebyshev polynomials is derived to learn the behavior of unknown dynamics. The boundedness of all signals of the closed-loop system is verified in stability analysis. Finally, the results of numerical simulations illustrate effectiveness and exhibit the superior performance of the proposed scheme by comparing with the existing ADSC method.
Directory of Open Access Journals (Sweden)
Zhi-Lin Zeng
2014-01-01
Full Text Available This paper focuses on high precision leveling control of an underwater heavy load platform, which is viewed as an underwater parallel robot on the basis of its work pattern. The kinematic of platform with deformation is analyzed and the dynamics model of joint space is established. An adaptive backstepping controller according to Lyapunov's function is proposed for leveling control of platform based on joint space. Furthermore, the “lowest point fixed angle error” leveling scheme called “chase” is chosen for leveling control of platform. The digital simulation and practical experiment of single joint space actuator are carried out, and the results show high precision servo control of joint space. On the basis of this, the platform leveling control simulation relies on the hardware-in-loop system. The results indicate that the proposed controller can effectively restrain the influence from system parameter uncertainties and external disturbance to realize high precision leveling control of the underwater platform.
Computer support for mechatronic control system design
van Amerongen, J.; Coelingh, H.J.; de Vries, Theodorus J.A.
2000-01-01
This paper discusses the demands for proper tools for computer aided control system design of mechatronic systems and identifies a number of tasks in this design process. Real mechatronic design, involving input from specialists from varying disciplines, requires that the system can be represented
Flight Control Design - Best Practices
2007-11-02
certains aspects théoriques. Vient d’abord un débat sur les critères de qualités de vol, en particulier sur les spécifications militaires...was designed such that a failure could not result in an unsafe recovery. The system is credited with saving the test aircraft during the evaluation of a...Recherche et développement - Estado Maior da Força Aérea AnalysisCommunications et gestion de SDFA - Centro de Documentação Institute of Military
Wang, Qiqi; Rigas, Georgios; Esclapez, Lucas; Magri, Luca; Blonigan, Patrick
2016-11-01
Bluff body flows are of fundamental importance to many engineering applications involving massive flow separation and in particular the transport industry. Coherent flow structures emanating in the wake of three-dimensional bluff bodies, such as cars, trucks and lorries, are directly linked to increased aerodynamic drag, noise and structural fatigue. For low Reynolds laminar and transitional regimes, hydrodynamic stability theory has aided the understanding and prediction of the unstable dynamics. In the same framework, sensitivity analysis provides the means for efficient and optimal control, provided the unstable modes can be accurately predicted. However, these methodologies are limited to laminar regimes where only a few unstable modes manifest. Here we extend the stability analysis to low-dimensional chaotic regimes by computing the Lyapunov covariant vectors and their associated Lyapunov exponents. We compare them to eigenvectors and eigenvalues computed in traditional hydrodynamic stability analysis. Computing Lyapunov covariant vectors and Lyapunov exponents also enables the extension of sensitivity analysis to chaotic flows via the shadowing method. We compare the computed shadowing sensitivities to traditional sensitivity analysis. These Lyapunov based methodologies do not rely on mean flow assumptions, and are mathematically rigorous for calculating sensitivities of fully unsteady flow simulations.
Dynamic optimization and adaptive controller design
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Optimization-based controller design for rotorcraft
Tsing, N.-K.; Fan, M. K. H.; Barlow, J.; Tits, A. L.; Tischler, M. B.
1993-01-01
An optimization-based methodology for linear control system design is outlined by considering the design of a controller for a UH-60 rotorcraft in hover. A wide range of design specifications is taken into account: internal stability, decoupling between longitudinal and lateral motions, handling qualities, and rejection of windgusts. These specifications are investigated while taking into account physical limitations in the swashplate displacements and rates of displacement. The methodology crucially relies on user-machine interaction for tradeoff exploration.
New approach to stochastic stability and controller design for networked control systems
Institute of Scientific and Technical Information of China (English)
Shanbin LI; Youxian SUN
2005-01-01
This paper addresses the random time-delays and packet losses issues of networked control systems (NCS) within the framework of jump linear systems with mode-dependent time-delays.A new delay-dependent condition on the stochastic stability is proposed by a new stochastic Lyapunov-Krasovskii functional.The condition is formulated as a set of coupled linear matrix inequalities (LMIs).As an example to verify the proposed method,an inverted-pendulum system with network is considered.The simulation results demonstrate the effectiveness of the method.
H∞ reference tracking control design for a class of nonlinear systems with time-varying delays
Institute of Scientific and Technical Information of China (English)
Mei-qin LIU; Hai-yang CHEN; Sen-lin ZHANG
2015-01-01
This paper investigates the H∞ trajectory tracking control for a class of nonlinear systems with time-varying delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. A unifi ed model consisting of a linear delayed dynamic system and a bounded static nonlinear operator is introduced, which covers most of the nonlinear systems with bounded nonlinear terms, such as the one-link robotic manipulator, chaotic systems, complex networks, the continuous stirred tank reactor (CSTR), and the standard genetic regulatory network (SGRN). First, the defi nition of the tracking control is given. Second, the H∞ performance analysis of the closed-loop system including this unifi ed model, reference model, and state feedback controller is presented. Then criteria on the tracking controller design are derived in terms of LMIs such that the output of the closed-loop system tracks the given reference signal in the H∞ sense. The reference model adopted here is modifi ed to be more fl exible. A scaling factor is introduced to deal with the disturbance such that the control precision is improved. Finally, a CSTR system is provided to demonstrate the effectiveness of the established control laws.
Liu, Xiaoyang; Yu, Wenwu; Cao, Jinde; Chen, Shun
2015-08-01
This paper is concerned with the sampled-data state estimation and H(∞) filtering for a class of Markovian jump systems with the discontinuous Lyapunov approach. The system measurements are sampled and then transmitted to the estimator and filter in order to estimate the state of the jumped system under consideration. The corresponding error dynamics is represented by a system with two types of delays: one is from the system itself, and the other from the sampling period. As the delay due to sampling is discontinuous, a corresponding discontinuous Lyapunov functional is constructed, and sufficient conditions are established so as to guarantee both the asymptotic mean-square stability and the H(∞) performance for the filtering error systems. The explicit expressions of the desired estimator and filter are further provided. Finally, two simulation examples are given to illustrate the design procedures and performances of the proposed method.
Recursive design of nonlinear H∞ excitation controller
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This work is concerned with the problem of L2 gain disturbance attenuation for nonlinear systems and nonlinear robust control for power systems. In terms of the recurrence design approach proposed, the nonnegative solution of dissipative inequality and the storage function of nonlinear H∞ control for a generator excitation system are acquired. From this storage function, the excitation controller is constructed. Moreover, simulation results manifest the effectiveness of this design method.
Resilient Control Systems: Next Generation Design Research
Energy Technology Data Exchange (ETDEWEB)
Craig Rieger
2009-05-01
Since digital control systems were introduced to the market more than 30 years ago, the operational efficiency and stability gained through their use have fueled our migration and ultimate dependence on them for the monitoring and control of critical infrastructure. While these systems have been designed for functionality and reliability, a hostile cyber environment and uncertainties in complex networks and human interactions have placed additional parameters on the design expectations for control systems.
Design of Wireless Remote Control Solar Cleaner
Directory of Open Access Journals (Sweden)
Ma Zhicai
2015-01-01
Full Text Available This paper describes the operation principle and the hardware composition of the wireless remote control cleaner by adopting solar panel power supply mode in detail. The experimental circuit is designed and on based on the designed experimental circuit the wireless remote control solar cleaner is made. The experimental results show that it is feasible that the combination of solar panels and wireless remote control cleaner.
Feedback Control Design for Counterflow Thrust Vectoring
2005-09-01
in Figures 3 thru 6, but enabled the experimentation to much more closely mimic flight conditions. PID controllers were designed using robust -f1...compensation of both delayed and non-delayed processes. 8 PID controllers often display robustness to incorrect process model order assumptions and...valve saturation is also a significant obstacle. PID controllers are the most commonly used controllers in industrial practice.’ PID control was used
Towards synthesis of polynomial controllers - a multi-affine approach
DEFF Research Database (Denmark)
Ribard, Nicolas; Wisniewski, Rafael; Sloth, Christoffer
2016-01-01
In the paper, we strive to develop an algorithm that simultaneously computes a polynomial control and a polynomial Lyapunov function. This ensures asymptotic stability of the designed feedback system. The above problem is translated to a certificate of positivity. To this end, we use the represen......In the paper, we strive to develop an algorithm that simultaneously computes a polynomial control and a polynomial Lyapunov function. This ensures asymptotic stability of the designed feedback system. The above problem is translated to a certificate of positivity. To this end, we use...... the representation of the given control system in Bernstein basis. Subsequently, the control synthesis problem is reduced to finite number of evaluations of a polynomial on vertices of cubes in the space of parameters representing admissible controls and Lyapunov functions....
Lyapunov-Based Feedback Preparation of GHZ Entanglement of N-Qubit Systems.
Liu, Yanan; Kuang, Sen; Cong, Shuang
2016-07-09
The Greenberger-Horne-Zeilinger (GHZ) entangled states are a typical class of entangled states in multiparticle systems and play an important role in the applications of quantum communication and quantum computation. For a general quantum system of N qubits, degenerate measurement operators are often met, which cause the convergence obstacle in the state preparation or stabilization problem. This paper first generalizes the traditional quantum state continuous reduction theory to the case of a degenerate measurement operator and chooses a measurement operator for an arbitrarily given target GHZ entangled state, then presents a state stabilization control strategy based on the Lyapunov method and achieves the feedback preparation of the target GHZ state. In our stabilization strategy, we separate the target GHZ state and all the other GHZ states that often form the equilibrium points of the closed-loop system by dividing the state space into several different regions; and formally design a switching control law between the regions, which contains the control Hamiltonians to be constructed. By analyzing the stability of the closed-loop system in the different regions, we propose a systematic method for constructing the control Hamiltonians and solve the convergence problem caused by the degenerate measurement operator. The global stability of the whole closed-loop stochastic system is strictly proved. Also, we perform some simulation experiments on a three-qubit system and prepare a three-qubit GHZ entangled state. At the same time, the simulation results show the effectiveness of the switching control law and the construction method for the control Hamiltonians proposed in this paper.
Logical design for computers and control
Dodd, Kenneth N
1972-01-01
Logical Design for Computers and Control Logical Design for Computers and Control gives an introduction to the concepts and principles, applications, and advancements in the field of control logic. The text covers topics such as logic elements; high and low logic; kinds of flip-flops; binary counting and arithmetic; and Boolean algebra, Boolean laws, and De Morgan's theorem. Also covered are topics such as electrostatics and atomic theory; the integrated circuit and simple control systems; the conversion of analog to digital systems; and computer applications and control. The book is recommend
Robust LQR Control Design of Gyroscope
Directory of Open Access Journals (Sweden)
Ashok S. Chandak
2013-04-01
Full Text Available The basic problem in designing control systems isthe ability to achieve good performance inthepresenceofuncertainties such as outputdisturbances, measurement noise or unmodeleddynamics (i.e. robust controllers. Recentdevelopment in the area has been directed towardsdeveloping a consistent design methodology withinthis uncertain environment. The attitude control/momentum management of the space station posesatypical problem in ahighlyuncertain environment(such asmass properties of the Space Station andenvironmental disturbancesas well as parametricuncertainties. The objective of this research is touse LQR control for the position control of spin axisrotor position at reference value in the presence ofparametric uncertainties, external unmeasurabledisturbances and system inherent non-linearitywithdifferenttype’sreference tracking signal areconsidered extensively in this paper.
A MODEL AND CONTROLLER REDUCTION METHOD FOR ROBUST CONTROL DESIGN.
Energy Technology Data Exchange (ETDEWEB)
YUE,M.; SCHLUETER,R.
2003-10-20
A bifurcation subsystem based model and controller reduction approach is presented. Using this approach a robust {micro}-synthesis SVC control is designed for interarea oscillation and voltage control based on a small reduced order bifurcation subsystem model of the full system. The control synthesis problem is posed by structured uncertainty modeling and control configuration formulation using the bifurcation subsystem knowledge of the nature of the interarea oscillation caused by a specific uncertainty parameter. Bifurcation subsystem method plays a key role in this paper because it provides (1) a bifurcation parameter for uncertainty modeling; (2) a criterion to reduce the order of the resulting MSVC control; and (3) a low order model for a bifurcation subsystem based SVC (BMSVC) design. The use of the model of the bifurcation subsystem to produce a low order controller simplifies the control design and reduces the computation efforts so significantly that the robust {micro}-synthesis control can be applied to large system where the computation makes robust control design impractical. The RGA analysis and time simulation show that the reduced BMSVC control design captures the center manifold dynamics and uncertainty structure of the full system model and is capable of stabilizing the full system and achieving satisfactory control performance.
Improvement on fuzzy controller design techniques
Wang, Paul P.
1993-01-01
This paper addresses three main issues, which are somewhat interrelated. The first issue deals with the classification or types of fuzzy controllers. Careful examination of the fuzzy controllers designed by various engineers reveals distinctive classes of fuzzy controllers. Classification is believed to be helpful from different perspectives. The second issue deals with the design according to specifications, experiments related to the tuning of fuzzy controllers, according to the specification, will be discussed. General design procedure, hopefully, can be outlined in order to ease the burden of a design engineer. The third issue deals with the simplicity and limitation of the rule-based IF-THEN logical statements. The methodology of fuzzy-constraint network is proposed here as an alternative to the design practice at present. It is our belief that predicate calculus and the first order logic possess much more expressive power.
Design and Control of the MINDWALKER Exoskeleton
Wang, Shiqian; Wang, Letian; Meijneke, C.; Asseldonk, van E.H.F.; Hoellinger, T.; Cheron, G.; Ivanenko, Y.; Scaleia, La V.; Sylos-Labini, F.; Molinari, M.; Tamburella, F.; Pisotta, I.; Thorsteinsson, F.; Ilzkovitz, M.; Gancet, J.; Nevatia, Y.; Hauffe, R.; Zanow, F.; Kooij, van der H.
2015-01-01
Powered exoskeletons can empower paraplegics to stand and walk. Actively controlled hip ab/adduction (HAA) is needed for weight shift and for lateral foot placement to support dynamic balance control and to counteract disturbances in the frontal plane. Here, we describe the design, control, and prel
Directory of Open Access Journals (Sweden)
Wei Guan
2014-01-01
Full Text Available This paper is concerned with the variable initial states problem in iterative learning control (ILC for linear continuous systems. Firstly, the properties of the trajectory of 2-D continuous-discrete Roesser model are analyzed by using Lyapunov's method. Then, for any variable initial states which absolutely converge to the desired initial state, some ILC design criteria in the form of linear matrix inequalities (LMI are given to ensure the convergence of the PD-type ILC rules. The convergence for variable initial states implies that the ILC rules can be used to achieve the perfect tacking for variable initial states, even if the system dynamic is unknown. Finally, the micropropulsion system is considered to illustrate efficiency of the proposed ILC design criteria.
Directory of Open Access Journals (Sweden)
Qin Zou
2015-09-01
Full Text Available A nonlinear constrained controller is designed for a reusable launch vehicle during re-entry phase in the presence of model uncertainty, external disturbance, and input constraint, via combining sliding mode control and adaptive backstepping control. Since the complex coupling between the translational and rotational dynamics of reusable launch vehicle, a control-oriented model derived from rotational dynamic is used for controller design. During the virtual control input design procedure, a dynamic robust term is utilized to compensate for the uncertainty. In addition, a filter is applied to handle “explosion of terms” problem during the actual control input design. To reduce the computational burden, adaptive law is used to evaluate the unknown norm bound of the lumped uncertainty. An auxiliary system is constructed to compensate for the input constraint effect. The stability of the closed-loop system is analyzed based on Lyapunov theory. Simulation results demonstrate the validity of the developed controller in providing stable tracking of the guidance command by numerical simulation on the 6-degree-of-freedom model of reusable launch vehicle.
Lyapunov-based Low-thrust Optimal Orbit Transfer: An approach in Cartesian coordinates
Zhang, Hantian; Cao, Qingjie
2014-01-01
This paper presents a simple approach to low-thrust optimal-fuel and optimal-time transfer problems between two elliptic orbits using the Cartesian coordinates system. In this case, an orbit is described by its specific angular momentum and Laplace vectors with a free injection point. Trajectory optimization with the pseudospectral method and nonlinear programming are supported by the initial guess generated from the Chang-Chichka-Marsden Lyapunov-based transfer controller. This approach successfully solves several low-thrust optimal problems. Numerical results show that the Lyapunov-based initial guess overcomes the difficulty in optimization caused by the strong oscillation of variables in the Cartesian coordinates system. Furthermore, a comparison of the results shows that obtaining the optimal transfer solution through the polynomial approximation by utilizing Cartesian coordinates is easier than using orbital elements, which normally produce strongly nonlinear equations of motion. In this paper, the Eart...
Rudra, Shubhobrata; Barai, Ranjit Kumar; Maitra, Madhubanti
2014-03-01
This paper presents the formulation of a novel block-backstepping based control algorithm to address the stabilization problem for a generalized nonlinear underactuated mechanical system. For the convenience of compact design, first, the state model of the underactuated system has been converted into the block-strict feedback form. Next, we have incorporated backstepping control action to derive the expression of the control input for the generic nonlinear underactuated system. The proposed block backstepping technique has further been enriched by incorporating an integral action additionally for enhancing the steady state performance of the overall system. Asymptotic stability of the overall system has been analyzed using Lyapunov stability criteria. Subsequently, the stability of the zero dynamics has also been analyzed to ensure the global asymptotic stability of the entire nonlinear system at its desired equilibrium point. The proposed control algorithm has been applied for the stabilization of a benchmarked underactuated mechanical system to verify the effectiveness of the proposed control law in real-time environment.
Lyapunov, Floquet, and singular vectors for baroclinic waves
Directory of Open Access Journals (Sweden)
R. M. Samelson
2001-01-01
Full Text Available The dynamics of the growth of linear disturbances to a chaotic basic state is analyzed in an asymptotic model of weakly nonlinear, baroclinic wave-mean interaction. In this model, an ordinary differential equation for the wave amplitude is coupled to a partial differential equation for the zonal flow correction. The leading Lyapunov vector is nearly parallel to the leading Floquet vector f1 of the lowest-order unstable periodic orbit over most of the attractor. Departures of the Lyapunov vector from this orientation are primarily rotations of the vector in an approximate tangent plane to the large-scale attractor structure. Exponential growth and decay rates of the Lyapunov vector during individual Poincaré section returns are an order of magnitude larger than the Lyapunov exponent l ≈ 0.016. Relatively large deviations of the Lyapunov vector from parallel to f1 are generally associated with relatively large transient decays. The transient growth and decay of the Lyapunov vector is well described by the transient growth and decay of the leading Floquet vectors of the set of unstable periodic orbits associated with the attractor. Each of these vectors is also nearly parallel to f1. The dynamical splitting of the complete sets of Floquet vectors for the higher-order cycles follows the previous results on the lowest-order cycle, with the vectors divided into wave-dynamical and decaying zonal flow modes. Singular vectors and singular values also generally follow this split. The primary difference between the leading Lyapunov and singular vectors is the contribution of decaying, inviscidly-damped wave-dynamical structures to the singular vectors.
Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo
2014-01-01
Measures of nonlinearity and complexity, and in particular the study of Lyapunov exponents, have been increasingly used to characterize dynamical properties of a wide range of biological nonlinear systems, including cardiovascular control. In this work, we present a novel methodology able to effectively estimate the Lyapunov spectrum of a series of stochastic events in an instantaneous fashion. The paradigm relies on a novel point-process high-order nonlinear model of the event series dynamics. The long-term information is taken into account by expanding the linear, quadratic, and cubic Wiener-Volterra kernels with the orthonormal Laguerre basis functions. Applications to synthetic data such as the Hénon map and Rössler attractor, as well as two experimental heartbeat interval datasets (i.e., healthy subjects undergoing postural changes and patients with severe cardiac heart failure), focus on estimation and tracking of the Instantaneous Dominant Lyapunov Exponent (IDLE). The novel cardiovascular assessment demonstrates that our method is able to effectively and instantaneously track the nonlinear autonomic control dynamics, allowing for complexity variability estimations.
Controller Design of Intelligent Lighting Network
Institute of Scientific and Technical Information of China (English)
RONG Xue-juan; NIU Ping-juan; XU Xiu-zhi
2009-01-01
Studied are the controller design and basic principles of intelligent lighting network. TI's MSP430F123 is used as a main controller.By using the ZigBee modules (Xbee/Xbee-PRO) and the GSM module(SIM300C) for wireless communications,the lighting control is enabled to access wireless network.This system uses a mobile phone to achieve light on-off directly,which can accomplish wireless control of intelligent lighting in families.
Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents
Athanassoulis, Agissilaos
2016-08-30
Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.
[A Standing Balance Evaluation Method Based on Largest Lyapunov Exponent].
Liu, Kun; Wang, Hongrui; Xiao, Jinzhuang; Zhao, Qing
2015-12-01
In order to evaluate the ability of human standing balance scientifically, we in this study proposed a new evaluation method based on the chaos nonlinear analysis theory. In this method, a sinusoidal acceleration stimulus in forward/backward direction was forced under the subjects' feet, which was supplied by a motion platform. In addition, three acceleration sensors, which were fixed to the shoulder, hip and knee of each subject, were applied to capture the balance adjustment dynamic data. Through reconstructing the system phase space, we calculated the largest Lyapunov exponent (LLE) of the dynamic data of subjects' different segments, then used the sum of the squares of the difference between each LLE (SSDLLE) as the balance capabilities evaluation index. Finally, 20 subjects' indexes were calculated, and compared with evaluation results of existing methods. The results showed that the SSDLLE were more in line with the subjects' performance during the experiment, and it could measure the body's balance ability to some extent. Moreover, the results also illustrated that balance level was determined by the coordinate ability of various joints, and there might be more balance control strategy in the process of maintaining balance.
Wind energy systems control engineering design
Garcia-Sanz, Mario
2012-01-01
IntroductionBroad Context and MotivationConcurrent Engineering: A Road Map for EnergyQuantitative Robust ControlNovel CAD Toolbox for QFT Controller DesignOutline Part I: Advanced Robust Control Techniques: QFT and Nonlinear SwitchingIntroduction to QFTQuantitative Feedback TheoryWhy Feedback? QFT OverviewInsight into the QFT TechniqueBenefits of QFTMISO Analog QFT Control SystemIntroductionQFT Method (Single-Loop MISO System)Design Procedure OutlineMinimum-Phase System Performance SpecificationsJ LTI Plant ModelsPlant Templates of P?(s), P( j_i )Nominal PlantU-Contour (Stability Bound)Trackin
Design Robust Controller for Rotary Kiln
Directory of Open Access Journals (Sweden)
Omar D. Hernández-Arboleda
2013-11-01
Full Text Available This paper presents the design of a robust controller for a rotary kiln. The designed controller is a combination of a fractional PID and linear quadratic regulator (LQR, these are not used to control the kiln until now, in addition robustness criteria are evaluated (gain margin, phase margin, strength gain, rejecting high frequency noise and sensitivity applied to the entire model (controller-plant, obtaining good results with a frequency range of 0.020 to 90 rad/s, which contributes to the robustness of the system.
Two-Valued Control for a Second-Order Plant with Additive External Disturbance
Directory of Open Access Journals (Sweden)
Alejandro Rincon
2012-01-01
Full Text Available In this work a two-valued state feedback control for a plant of second order with known constant coefficients and an additive bounded disturbance is designed. In this controller the control signal can take only two possible values. The controller design is based on Lyapunov-like function method, achieving the convergence of the tracking error to a user-defined residual set. A boundedness condition for the user-defined reference signal is defined, which is necessary to allow out-put tracking. The developed scheme avoids large commutation rate of the control input. The controller design and stability analysis have important contributions with respect to closely related controllers based on the direct Lyapunov method, namely, (i conditions to guarantee the expected convergence of the tracking error are established. These conditions are imposed on the reference signal and the extreme values of the control input. The stability analysis is developed by means of the Lyapunov-like function method and the Barbalat's Lemma and includes (ii the bounded nature of the Lyapunov function, (iii the monotonic convergence of the Lyapunov function to a residual set, and (iv the asymptotic convergence of the tracking error to a residual set of user-defined size.
The direct Lyapunov method for the stabilisation of the Furuta pendulum
Aguilar-Ibañez, Carlos; Suárez-Castañón, Miguel S.; Gutiérres-Frias, Oscar O.
2010-11-01
A nonlinear controller for the stabilisation of the Furuta pendulum is presented. The control strategy is based on a partial feedback linearisation. In a first stage only the actuated coordinate of the Furuta pendulum is linearised. Then, the stabilising feedback controller is obtained by applying the Lyapunov direct method. That is, using this method we prove local asymptotic stability and demonstrate that the closed-loop system has a large region of attraction. The stability analysis is carried out by means of LaSalle's invariance principle. To assess the controller effectiveness, the results of the corresponding numerical simulations are presented.
Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai
2015-07-01
The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.
Neng-Sheng Pai; Her-Terng Yau
2010-01-01
This paper focuses on the chaos control problem of the unified chaotic systems with structured uncertainties. Applying Schur-complement and some matrix manipulation techniques, the controlled uncertain unified chaotic system is then transformed into the linear matrix inequality (LMI) form. Based on Lyapunov stability theory and linear matrix inequality (LMI) formulation, a simple linear feedback control law is obtained to enforce the prespecified exponential decay dynamics of the uncertain un...
Integrated Design Tools for Embedded Control Systems
Jovanovic, D.S.; Hilderink, G.H.; Broenink, Johannes F.; Karelse, F.
2001-01-01
Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded systems in a very short time at a fraction of the present day costs. The ultimate focus of current research is on transformation control laws to efficient concurrent algorithms, with concerns about...
Progress in multirate digital control system design
Berg, Martin C.; Mason, Gregory S.
1991-01-01
A new methodology for multirate sampled-data control design based on a new generalized control law structure, two new parameter-optimization-based control law synthesis methods, and a new singular-value-based robustness analysis method are described. The control law structure can represent multirate sampled-data control laws of arbitrary structure and dynamic order, with arbitrarily prescribed sampling rates for all sensors and update rates for all processor states and actuators. The two control law synthesis methods employ numerical optimization to determine values for the control law parameters. The robustness analysis method is based on the multivariable Nyquist criterion applied to the loop transfer function for the sampling period equal to the period of repetition of the system's complete sampling/update schedule. The complete methodology is demonstrated by application to the design of a combination yaw damper and modal suppression system for a commercial aircraft.
Integrated Design Tools for Embedded Control Systems
Jovanovic, D.S.; Hilderink, G.H.; Broenink, Johannes F.; Karelse, F.
2001-01-01
Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded
Biological Systems Thinking for Control Engineering Design
Directory of Open Access Journals (Sweden)
D. J. Murray-Smith
2004-01-01
Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control.
Remote Control Guidance Law Design Using Variable Structure Control
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A method of sliding mode variable structure control for the missile body being a time varying system is presented. A remote control guidance law is designed. The method has strong robustness to target's maneuver. To reduce the chattering phenomena, quasi-sliding mode variable structure control method is used. Simulation results show that the proposed method has small miss distance for any kind of maneuvering targets and requires small control energy.
Remote Pressure Control - Considering Pneumatic Tubes in Controller Design
Rager, David; Neumann, Rüdiger; Murrenhoff, Hubertus
2016-01-01
In pneumatic pressure control applications the influence of tubes that connect the valve with the control volume ist mainly neglected. This can lead to stability and robustness issues and limit either control performance or tube length. Modeling and considering tube behavior in controller design procedure allows longer tubes while maintaining the required performance and robustness properties without need for manual tuning. The author\\'s previously published Simplified Fluid Transmission Line...
Controlled air incinerator conceptual design study
Energy Technology Data Exchange (ETDEWEB)
1982-01-01
This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location.
Flying qualities criteria and flight control design
Berry, D. T.
1981-01-01
Despite the application of sophisticated design methodology, newly introduced aircraft continue to suffer from basic flying qualities deficiencies. Two recent meetings, the DOD/NASA Workshop on Highly Augmented Aircraft Criteria and the NASA Dryden Flight Research Center/Air Force Flight Test Center/AIAA Pilot Induced Oscillation Workshop, addressed this problem. An overview of these meetings is provided from the point of view of the relationship between flying qualities criteria and flight control system design. Among the items discussed are flying qualities criteria development, the role of simulation, and communication between flying qualities specialists and control system designers.
Robust reliable control design for networked control system with sampling communication
Sakthivel, R.; Santra, Srimanta; Mathiyalagan, K.; Su, Hongye
2015-12-01
In this article, the problem of robust exponential stability and reliable stabilisation for a class of continuous-time networked control systems (NCSs) with a sample-data controller and unknown time-varying sampling rate is considered. The analysis is based on average dwell-time, Lyapunov-Krasovskii functional and linear matrix inequality (LMI) technique. The delay-dependent criteria are developed for ensuring the robust exponential stability of the considered NCSs. The obtained conditions are formulated in terms of LMIs that can easily be solved by using standard software packages. Furthermore, the result is extended to study the robust stabilisation for NCS with parameter uncertainties. A state feedback controller is constructed in terms of the solution to a set of LMIs, which guarantee the robust exponential stabilisation of NCS and the controller. Finally, numerical examples are presented to illustrate the effectiveness of the obtained results.
Lyapunov exponent in quantum mechanics A phase-space approach
Man'ko, V I
2000-01-01
Using the symplectic tomography map, both for the probability distributionsin classical phase space and for the Wigner functions of its quantumcounterpart, we discuss a notion of Lyapunov exponent for quantum dynamics.Because the marginal distributions, obtained by the tomography map, are alwayswell defined probabilities, the correspondence between classical and quantumnotions is very clear. Then we also obtain the corresponding expressions inHilbert space. Some examples are worked out. Classical and quantum exponentsare seen to coincide for local and non-local time-dependent quadraticpotentials. For non-quadratic potentials classical and quantum exponents aredifferent and some insight is obtained on the taming effect of quantummechanics on classical chaos. A detailed analysis is made for the standard map.Providing an unambiguous extension of the notion of Lyapunov exponent toquantum mechnics, the method that is developed is also computationallyefficient in obtaining analytical results for the Lyapunov expone...
Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization
Christiansen, F; Christiansen, Freddy; Rugh, Hans Henrik
1996-01-01
We present a straightforward and reliable continuous method for computing the full or a partial Lyapunov spectrum associated with a dynamical system specified by a set of differential equations. We do this by introducing a stability parameter beta>0 and augmenting the dynamical system with an orthonormal k-dimensional frame and a Lyapunov vector such that the frame is continuously Gram-Schmidt orthonormalized and at most linear growth of the dynamical variables is involved. We prove that the method is strongly stable when beta > -lambda_k where lambda_k is the k'th Lyapunov exponent in descending order and we show through examples how the method is implemented. It extends many previous results.
OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.
Ott, William; Rivas, Mauricio A; West, James
2015-12-01
Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ (N) using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C(1) maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time-T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).
Detecting Epileptic Seizure from Scalp EEG Using Lyapunov Spectrum
Directory of Open Access Journals (Sweden)
Truong Quang Dang Khoa
2012-01-01
Full Text Available One of the inherent weaknesses of the EEG signal processing is noises and artifacts. To overcome it, some methods for prediction of epilepsy recently reported in the literature are based on the evaluation of chaotic behavior of intracranial electroencephalographic (EEG recordings. These methods reduced noises, but they were hazardous to patients. In this study, we propose using Lyapunov spectrum to filter noise and detect epilepsy on scalp EEG signals only. We determined that the Lyapunov spectrum can be considered as the most expected method to evaluate chaotic behavior of scalp EEG recordings and to be robust within noises. Obtained results are compared to the independent component analysis (ICA and largest Lyapunov exponent. The results of detecting epilepsy are compared to diagnosis from medical doctors in case of typical general epilepsy.
Detecting epileptic seizure from scalp EEG using Lyapunov spectrum.
Khoa, Truong Quang Dang; Huong, Nguyen Thi Minh; Toi, Vo Van
2012-01-01
One of the inherent weaknesses of the EEG signal processing is noises and artifacts. To overcome it, some methods for prediction of epilepsy recently reported in the literature are based on the evaluation of chaotic behavior of intracranial electroencephalographic (EEG) recordings. These methods reduced noises, but they were hazardous to patients. In this study, we propose using Lyapunov spectrum to filter noise and detect epilepsy on scalp EEG signals only. We determined that the Lyapunov spectrum can be considered as the most expected method to evaluate chaotic behavior of scalp EEG recordings and to be robust within noises. Obtained results are compared to the independent component analysis (ICA) and largest Lyapunov exponent. The results of detecting epilepsy are compared to diagnosis from medical doctors in case of typical general epilepsy.
Characterizing weak chaos using time series of Lyapunov exponents.
da Silva, R M; Manchein, C; Beims, M W; Altmann, E G
2015-06-01
We investigate chaos in mixed-phase-space Hamiltonian systems using time series of the finite-time Lyapunov exponents. The methodology we propose uses the number of Lyapunov exponents close to zero to define regimes of ordered (stickiness), semiordered (or semichaotic), and strongly chaotic motion. The dynamics is then investigated looking at the consecutive time spent in each regime, the transition between different regimes, and the regions in the phase space associated to them. Applying our methodology to a chain of coupled standard maps we obtain (i) that it allows for an improved numerical characterization of stickiness in high-dimensional Hamiltonian systems, when compared to the previous analyses based on the distribution of recurrence times; (ii) that the transition probabilities between different regimes are determined by the phase-space volume associated to the corresponding regions; and (iii) the dependence of the Lyapunov exponents with the coupling strength.
Lyapunov exponents for synchronous 12-lead ECG signals
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The Lyapunov exponents of synchronous 12-lead ECG signals have been investigated for the first time using a multi-sensor (electrode) technique. The results show that the Lyapunov exponents computed from different locations on the body surface are not the same, but have a distribution characteristic for the ECG signals recorded from coronary artery disease (CAD) patients with sinus rhythms and for signals from healthy older people. The maximum Lyapunov exponent L1 of all signals is positive. While all the others are negative, so the ECG signal has chaotic characteristics. With the same leads, L1 of CAD patients is less than that of healthy people, so the CAD patients and healthy people can be classified by L1, L1 therefore has potential values in the diagnosis of heart disease.
Lyapunov exponents of stochastic systems—from micro to macro
Laffargue, Tanguy; Tailleur, Julien; van Wijland, Frédéric
2016-03-01
Lyapunov exponents of dynamical systems are defined from the rates of divergence of nearby trajectories. For stochastic systems, one typically assumes that these trajectories are generated under the ‘same noise realization’. The purpose of this work is to critically examine what this expression means. For Brownian particles, we consider two natural interpretations of the noise: intrinsic to the particles or stemming from the fluctuations of the environment. We show how they lead to different distributions of the largest Lyapunov exponent as well as different fluctuating hydrodynamics for the collective density field. We discuss, both at microscopic and macroscopic levels, the limits in which these noise prescriptions become equivalent. We close this paper by providing an estimate of the largest Lyapunov exponent and of its fluctuations for interacting particles evolving with Dean-Kawasaki dynamics.
Humanoid robot Lola: design and walking control.
Buschmann, Thomas; Lohmeier, Sebastian; Ulbrich, Heinz
2009-01-01
In this paper we present the humanoid robot LOLA, its mechatronic hardware design, simulation and real-time walking control. The goal of the LOLA-project is to build a machine capable of stable, autonomous, fast and human-like walking. LOLA is characterized by a redundant kinematic configuration with 7-DoF legs, an extremely lightweight design, joint actuators with brushless motors and an electronics architecture using decentralized joint control. Special emphasis was put on an improved mass distribution of the legs to achieve good dynamic performance. Trajectory generation and control aim at faster, more flexible and robust walking. Center of mass trajectories are calculated in real-time from footstep locations using quadratic programming and spline collocation methods. Stabilizing control uses hybrid position/force control in task space with an inner joint position control loop. Inertial stabilization is achieved by modifying the contact force trajectories.
Design, modeling and control of nanopositioning systems
Fleming, Andrew J
2014-01-01
Covering the complete design cycle of nanopositioning systems, this is the first comprehensive text on the topic. The book first introduces concepts associated with nanopositioning stages and outlines their application in such tasks as scanning probe microscopy, nanofabrication, data storage, cell surgery and precision optics. Piezoelectric transducers, employed ubiquitously in nanopositioning applications are then discussed in detail including practical considerations and constraints on transducer response. The reader is then given an overview of the types of nanopositioner before the text turns to the in-depth coverage of mechanical design including flexures, materials, manufacturing techniques, and electronics. This process is illustrated by the example of a high-speed serial-kinematic nanopositioner. Position sensors are then catalogued and described and the text then focuses on control. Several forms of control are treated: shunt control, feedback control, force feedback control and feedforward control (...
Circulation control STOL aircraft design aspects
Loth, John L.
1987-01-01
Since Davidson patented Circulation Control Airfoils in 1960, there have been only 2 aircraft designed and flown with circulation control (CC). Designing with CC is complex for the following reasons: the relation between lift increase and blowing momentum is nonlinear; for good cruise performance one must change the wing geometry in flight from a round to a sharp trailing edge. The bleed air from the propulsion engines or an auxiliary compressor, must be used efficiently. In designing with CC, the propulsion and control aspects are just as important as aerodynamics. These design aspects were examined and linearized equations are presented in order to facilitate a preliminary analysis of the performance potential of CC. The thrust and lift requirements for takeoff make the calculated runway length very sensitive to the bleed air ratio. Thrust vectoring improves performance and can offset nose down pitching moments. The choice of blowing jet to free stream velocity ratio determines the efficiency of applying bleed air power.
Matlab as a robust control design tool
Gregory, Irene M.
1994-01-01
This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.
Controller Architecture Design for MMC-HVDC
Directory of Open Access Journals (Sweden)
ZHANG, B.
2014-05-01
Full Text Available Compared with high voltage direct current (HVDC, the primary and secondary systems of modular multilevel converter based HVDC (MMC-HVDC are complicated. And the characteristics of the control system determine the properties of the MMC-HVDC system to a certain extent. This paper investigates the design of control architecture. First, the structure and parameters of the 21-level MMC-HVDC are designed. Second, the framework of the control system is studied in details and a complete control system is established. The communication mode and content are built between each layer, and the control system program is developed and debugged. Then The steady state test platform of the sub-module and the relevant control system are designed. Finally, the steady-state tests and the system test of the physical MMC-HVDC simulation system are conducted, which prove that the SMC can control the sub-module (SM efficiently, and the control system could realize efficient start and stop of the physical system. Meanwhile, the capacitor voltage balance between the sub-modules and the basic fault protection and control of the DC voltage and power are verified to be effective.
Lyapunov inequalities for Partial Differential Equations at radial higher eigenvalues
Canada, Antonio
2011-01-01
This paper is devoted to the study of $L_{p}$ Lyapunov-type inequalities ($ \\ 1 \\leq p \\leq +\\infty$) for linear partial differential equations at radial higher eigenvalues. More precisely, we treat the case of Neumann boundary conditions on balls in $\\real^{N}$. It is proved that the relation between the quantities $p$ and $N/2$ plays a crucial role to obtain nontrivial and optimal Lyapunov inequalities. By using appropriate minimizing sequences and a detailed analysis about the number and distribution of zeros of radial nontrivial solutions, we show significant qualitative differences according to the studied case is subcritical, supercritical or critical.
The Lyapunov stabilization of satellite equations of motion using integrals
Nacozy, P. E.
1973-01-01
A method is introduced that weakens the Lyapunov or in track instability of satellite equations of motion. The method utilizes a linearized energy integral of satellite motion as a constraint on solutions obtained by numerical integration. The procedure prevents local numerical error from altering the frequency associated with the fast angular variable and thereby reduces the Lyapunov instability and the global numerical error. Applications of the method to satellite motion show accuracy improvements of two to three orders of magnitude in position and velocity after 50 revolutions. A modification of the method is presented that allows the use of slowly varying integrals of motion.
An iterative decoupling solution method for large scale Lyapunov equations
Athay, T. M.; Sandell, N. R., Jr.
1976-01-01
A great deal of attention has been given to the numerical solution of the Lyapunov equation. A useful classification of the variety of solution techniques are the groupings of direct, transformation, and iterative methods. The paper summarizes those methods that are at least partly favorable numerically, giving special attention to two criteria: exploitation of a general sparse system matrix structure and efficiency in resolving the governing linear matrix equation for different matrices. An iterative decoupling solution method is proposed as a promising approach for solving large-scale Lyapunov equation when the system matrix exhibits a general sparse structure. A Fortran computer program that realizes the iterative decoupling algorithm is also discussed.
Do Finite-Size Lyapunov Exponents detect coherent structures?
Karrasch, Daniel; Haller, George
2013-12-01
Ridges of the Finite-Size Lyapunov Exponent (FSLE) field have been used as indicators of hyperbolic Lagrangian Coherent Structures (LCSs). A rigorous mathematical link between the FSLE and LCSs, however, has been missing. Here, we prove that an FSLE ridge satisfying certain conditions does signal a nearby ridge of some Finite-Time Lyapunov Exponent (FTLE) field, which in turn indicates a hyperbolic LCS under further conditions. Other FSLE ridges violating our conditions, however, are seen to be false positives for LCSs. We also find further limitations of the FSLE in Lagrangian coherence detection, including ill-posedness, artificial jump-discontinuities, and sensitivity with respect to the computational time step.
The Lyapunov stabilization of satellite equations of motion using integrals
Nacozy, P. E.
1973-01-01
A method is introduced that weakens the Lyapunov or in track instability of satellite equations of motion. The method utilizes a linearized energy integral of satellite motion as a constraint on solutions obtained by numerical integration. The procedure prevents local numerical error from altering the frequency associated with the fast angular variable and thereby reduces the Lyapunov instability and the global numerical error. Applications of the method to satellite motion show accuracy improvements of two to three orders of magnitude in position and velocity after 50 revolutions. A modification of the method is presented that allows the use of slowly varying integrals of motion.
Lyapunov spectra of Coulombic and gravitational periodic systems
Kumar, Pankaj
2016-01-01
We compute Lyapunov spectra for Coulombic and gravitational versions of the one-dimensional systems of parallel sheets with periodic boundary conditions. Exact time evolution of tangent-space vectors are derived and are utilized toward computing Lypaunov characteristic exponents using an event-driven algorithm. The results indicate that the energy dependence of the largest Lyapunov exponent emulates that of Kolmogorov-entropy density for each system at different degrees of freedom. Our approach forms an effective and approximation-free tool toward studying the dynamical properties exhibited by the Coulombic and gravitational systems and finds applications in investigating indications of thermodynamic transitions in large versions of the spatially periodic systems.
An iterative decoupling solution method for large scale Lyapunov equations
Athay, T. M.; Sandell, N. R., Jr.
1976-01-01
A great deal of attention has been given to the numerical solution of the Lyapunov equation. A useful classification of the variety of solution techniques are the groupings of direct, transformation, and iterative methods. The paper summarizes those methods that are at least partly favorable numerically, giving special attention to two criteria: exploitation of a general sparse system matrix structure and efficiency in resolving the governing linear matrix equation for different matrices. An iterative decoupling solution method is proposed as a promising approach for solving large-scale Lyapunov equation when the system matrix exhibits a general sparse structure. A Fortran computer program that realizes the iterative decoupling algorithm is also discussed.
Integral expressions of Lyapunov exponents for autonomous ordinary differential systems
Institute of Scientific and Technical Information of China (English)
DAI XiongPing
2009-01-01
In the paper,the author addresses the Lyapunov characteristic spectrum of an ergodic autonomous ordinary differential system on a complete riemannian manifold of finite dimension such as the d-dimensional euclidean space Rd,not necessarily compact,by Liaowise spectral theorems that give integral expressions of Lyapunov exponents.In the context of smooth linear skew-product flows with Polish driving systems,the results are still valid.This paper seems to be an interesting contribution to the stability theory of ordinary differential systems with non-compact phase spaces.
Integral expressions of Lyapunov exponents for autonomous ordinary differential systems
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In the paper, the author addresses the Lyapunov characteristic spectrum of an ergodic autonomous ordinary differential system on a complete riemannian manifold of finite dimension such as the d-dimensional euclidean space Rd, not necessarily compact, by Liaowise spectral theorems that give integral expressions of Lyapunov exponents. In the context of smooth linear skew-product flows with Polish driving systems, the results are still valid. This paper seems to be an interesting contribution to the stability theory of ordinary differential systems with non-compact phase spaces.
Control/structure interaction conceptual design tool
Briggs, Hugh C.
1990-01-01
The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.
Directory of Open Access Journals (Sweden)
Karthikeyan Rajagopal
2017-01-01
Full Text Available We announce a new 4D hyperchaotic system with four parameters. The dynamic properties of the proposed hyperchaotic system are studied in detail; the Lyapunov exponents, Kaplan-Yorke dimension, bifurcation, and bicoherence contours of the novel hyperchaotic system are derived. Furthermore, control algorithms are designed for the complete synchronization of the identical hyperchaotic systems with unknown parameters using sliding mode controllers and genetically optimized PID controllers. The stabilities of the controllers and parameter update laws are proved using Lyapunov stability theory. Use of the optimized PID controllers ensures less time of convergence and fast synchronization speed. Finally the proposed novel hyperchaotic system is realized in FPGA.
Robust LQR Control Design of Gyroscope
Directory of Open Access Journals (Sweden)
Ashok S. Chandak
2013-03-01
Full Text Available The basic problem in designing control systems is the ability to achieve good performance in the presence of uncertainties such as output disturbances, measurement noise or unmodeled dynamics (i.e. robust controllers. Recent development in the area has been directed towards developing a consistent design methodology within this uncertain environment. The attitude control/ momentum management of the space station poses a typical problem in a highly uncertain environment (such as mass properties of the Space Station and environmental disturbances as well as parametric uncertainties. The objective of this research is to use LQR control for the position control of spin axis rotor position at reference value in the presence of parametric uncertainties, external unmeasurable disturbances and system inherent non-linearity with different type’s reference tracking signal are considered extensively in this paper.
Unfalsified Control; Application to automatic flight control system design
Directory of Open Access Journals (Sweden)
Adrian-Mihail STOICA
2011-09-01
Full Text Available Unfalsified Control Theory has been developed to provide a way for avoiding modeling uncertainties in controller design. It belongs to the class of control methods called Adaptive Supervisory Switching Control, which work by introducing in the control scheme a supervisory unit which chooses, from a set of candidate controllers the one most suited for the current plant. Unfalsified Control works by using a switching logic that dispenses with the need for a-priori knowledge of the dynamic model. At discrete moments of time, using the input/output data recorded up to that point, the supervisory calculates for each candidate controller a performance index, and compares it to a given threshold. Controllers surpassing that threshold are removed from the candidate controller set. This process is called falsification. If the controller in the loop is one such falsified controller it is replaced. In this paper we investigate the suitability of this method for aeronautical control applications. We review the theory behind this control scheme and adapt it to the case of controlling a fighter aircraft. We also provide a case study, where we test this control scheme on a simulated fighter aircraft.
Parametric control systems design with applications in missile control
Institute of Scientific and Technical Information of China (English)
DUAN GuangRen; YU HaiHua; TAN Feng
2009-01-01
This paper considers parametric control of high-order descriptor linear systems via proportional plus derivative feedback.By employing general parametric solutions to a type of so-called high-order Sylvester matrix equations,complete parametric control approaches for high-order linear systems are presented.The proposed approaches give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices,and produce all the design degrees of freedom.Furthermore,Important special cases are particularly treated.Based on the proposed parametric design approaches,a parametric method for the gain-scheduling controller design of a linear time-varying system is proposed and the design of a BTT missile autopilot is carried out.The simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.
SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN
Energy Technology Data Exchange (ETDEWEB)
D.C. Randle
2000-01-07
The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I&C) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I&C and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I&C systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I&C systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored, controlled, and
A new Observer for Speed Sensorless Field Oriented Control of an Induction Motor
DEFF Research Database (Denmark)
Rasmussen, Henrik
2002-01-01
Using adaptive Lyapunov design a new approach for the design of an observer for speed sensorless field oriented control is developed. The resulting scheme leads to a nonlinear full order observer for the motor states including the rotor speed. Assuming motor parameters known the design achieves...
Actuator topology design using the controllability Gramian
DEFF Research Database (Denmark)
Alves da Silveira, Otávio Augusto; Ono Fonseca, Jun Sérgio; Santos, Ilmar
2015-01-01
This work develops a methodology for the optimal design of actuators for the vibration control of flexible structures. The objective is the maximization of a measure of the controllability Gramian. The test case is the embedding of piezoelectric inserts in elastic structures for vibration control...... in modal space. A topology optimization was formulated to distribute two material phases in the domain: a passive linear elastic material and an active linear piezoelectric material, with a volume constraint in the latter. The objective function is the trace of the controllability Gramian of a LQR control...... system. Analytical sensitivities for the finite element model are derived for the objective function and constraints. Results are shown for two dimensional vibration control of a short beam with varying number of electrodes (control inputs) and vibration modes....
Hwang, Chih-Lyang; Han, Song-Yu
2005-08-01
In this paper, a decentralized discrete variable structure control via mixed H2/H infinity design was developed. In the beginning, the H2-norm of output error and weighted control input was minimized to obtain a control such that smaller energy consumption with bounded tracking error was assured. In addition, a suitable selection of this weighted function (connected with frequency) could reduce the effect of disturbance on the control input. However, an output disturbance caused by the interactions among subsystems, modeling error, and external load deteriorated system performance or even brought about instability. In this situation, the H infinity-norm of weighted sensitivity between output disturbance and output error was minimized to attenuate the effect of output disturbance. Moreover, an appropriate selection of this weighted function (related to frequency) could reject the corresponding output disturbance. No solution of Diophantine equation was required; the computational advantage was especially dominated for low-order system. For further improving system performance, a switching control for every subsystem was designed. The proposed control (mixed H2/H infinity DDVSC) was a three-step design method. The stability of the overall system was verified by Lyapunov stability criterion. The simulations and experiments of mobile robot were carried out to evaluate the usefulness of the proposed method.
Generalized synchronization of hyperchaos and chaos using active backstepping design
Institute of Scientific and Technical Information of China (English)
张浩; 马西奎; 杨宇; 徐翠东
2005-01-01
A novel active backstepping control method is presented for synchronizing two identical Rossler hyperchaotic systems with each other, and extended to achieve the generalized synchronization of the Chua chaotic system with the Rossler hyperchaotic system. It is a systematic design approach and consists of a recursive procedure interlacing the choice of a Lyapunov function with the design of active control. In particular, this technique gives flexibility in constructing a control law. Numerical experiments verify the feasibility and effectiveness of the proposed control technique.
Control/structure interaction design methodology
Briggs, Hugh C.; Layman, William E.
1989-01-01
The Control Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts (such as active structure) and new tools (such as a combined structure and control optimization algorithm) and their verification in ground and possibly flight test. The new CSI design methodology is centered around interdisciplinary engineers using new tools that closely integrate structures and controls. Verification is an important CSI theme and analysts will be closely integrated to the CSI Test Bed laboratory. Components, concepts, tools and algorithms will be developed and tested in the lab and in future Shuttle-based flight experiments. The design methodology is summarized in block diagrams depicting the evolution of a spacecraft design and descriptions of analytical capabilities used in the process. The multiyear JPL CSI implementation plan is described along with the essentials of several new tools. A distributed network of computation servers and workstations was designed that will provide a state-of-the-art development base for the CSI technologies.
Infection control in design and construction work.
Collinge, William H
2015-01-01
To clarify how infection control requirements are represented, communicated, and understood in work interactions through the medical facility construction project life cycle. To assist project participants with effective infection control management by highlighting the nature of such requirements and presenting recommendations to aid practice. A 4-year study regarding client requirement representation and use on National Health Service construction projects in the United Kingdom provided empirical evidence of infection control requirement communication and understanding through design and construction work interactions. An analysis of construction project resources (e.g., infection control regulations and room data sheets) was combined with semi-structured interviews with hospital client employees and design and construction professionals to provide valuable insights into the management of infection control issues. Infection control requirements are representationally indistinct but also omnipresent through all phases of the construction project life cycle: Failure to recognize their nature, relevance, and significance can result in delays, stoppages, and redesign work. Construction project resources (e.g., regulatory guidance and room data sheets) can mask or obscure the meaning of infection control issues. A preemptive identification of issues combined with knowledge sharing activities among project stakeholders can enable infection control requirements to be properly understood and addressed. Such initiatives should also reference existing infection control regulatory guidance and advice. © The Author(s) 2015.
Design of control systems with uncertain parameters
Auslander, D. M.; Spear, R. C.; Young, G. E.
1981-01-01
A design method for control systems with uncertain parameters is presented. The method utilizes a generalized sensitivity approach which separates the parameter space into regions which produce a system response that satisfies given design criteria and regions which do not. Nonparametric statistics and confidence limits for the binomial distribution are used to determine degree of parameter sensitivity and to locate regions in the parameter space which maximize the probability of producing a desirable system response. In an example it is shown that a given parameter may have to be known to a lesser degree of uncertainty to be able to specify a satisfactory design.
Monitoring and design of stormwater control basins
Veenhuis, J.E.; Parrish, J.H.; Jennings, M.E.
1989-01-01
The City of Austin, Texas, has played a pioneering role in the control of urban nonpoint source pollution by enacting watershed and stormwater ordinances, overseeing detailed monitoring programs, and improving design criteria for stormwater control methods. The effectiveness of the methods used in Austin, and perhaps in other areas of the United States, to protect urban water resources has not yet been fully established. Therefore, detailed monitoring programs capable of quantitatively determining the effectiveness of control methods and of stormwater ordinances, are required. The purpose of this report is to present an overview of the City of Austin's stormwater monitoring program, including previous monitoring programs with the U.S. Environmental Protection Agency and the U.S. Geological Survey, and to describe the relation of monitoring to design of stormwater control basins.
Quadrocopter Control Design and Flight Operation
Karwoski, Katherine
2011-01-01
A limiting factor in control system design and analysis for spacecraft is the inability to physically test new algorithms quickly and cheaply. Test flights of space vehicles are costly and take much preparation. As such, EV41 recently acquired a small research quadrocopter that has the ability to be a test bed for new control systems. This project focused on learning how to operate, fly, and maintain the quadrocopter, as well as developing and testing protocols for its use. In parallel to this effort, developing a model in Simulink facilitated the design and analysis of simple control systems for the quadrocopter. Software provided by the manufacturer enabled testing of the Simulink control system on the vehicle.
The design of multirate digital control systems
Berg, M. C.
1986-01-01
The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.
Robust Control Design via Linear Programming
Keel, L. H.; Bhattacharyya, S. P.
1998-01-01
This paper deals with the problem of synthesizing or designing a feedback controller of fixed dynamic order. The closed loop specifications considered here are given in terms of a target performance vector representing a desired set of closed loop transfer functions connecting various signals. In general these point targets are unattainable with a fixed order controller. By enlarging the target from a fixed point set to an interval set the solvability conditions with a fixed order controller are relaxed and a solution is more easily enabled. Results from the parametric robust control literature can be used to design the interval target family so that the performance deterioration is acceptable, even when plant uncertainty is present. It is shown that it is possible to devise a computationally simple linear programming approach that attempts to meet the desired closed loop specifications.
SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN
Energy Technology Data Exchange (ETDEWEB)
C.J. Fernado
1998-09-17
The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that
Boundary control of fluid flow through porous media
DEFF Research Database (Denmark)
Hasan, Agus; Foss, Bjarne; Sagatun, Svein Ivar
2010-01-01
The flow of fluids through porous media can be described by the Boussinesq’s equation with mixed boundary conditions; a Neumann’s boundary condition and a nonlinear boundary condition. The nonlinear boundary condition provides a means to control the fluid flow through porous media. In this paper,......, some stabilizing controllers are constructed for various cases using Lyapunov design....
Nonlinear superheat and capacity control of a refrigeration plant
DEFF Research Database (Denmark)
Rasmussen, Henrik; Larsen, Lars F. S.
2009-01-01
This paper proposes a novel method for superheat and capacity control of refrigeration systems. A new low order nonlinear model of the evaporator is developed and used in a backstepping design of a nonlinear controller. The stability of the proposed method is validated theoretically by Lyapunov a...
A conjecture on the norm of Lyapunov mapping
Institute of Scientific and Technical Information of China (English)
Daizhan CHENG; Yahong ZHU; Hongsheng QI
2009-01-01
A conjecture that the norm of Lyapunov mapping LA equals to its restriction to the symmetric set,S,i.e.,‖LA‖ = ‖LA |s‖ was proposed in [1].In this paper,a method for numerical testing is provided first.Then,some recent progress on this conjecture is presented.
Construction of Lyapunov Function for Dissipative Gyroscopic System
Institute of Scientific and Technical Information of China (English)
XU Wei; YUAN Bo; AO Ping
2011-01-01
@@ We introduce a force decomposition to construct a potential function in deterministic dynamics described by ordinary differential equations in the context of dissipative gyroscopic systems.Such a potential function serves as the corresponding Lyapunov function for the dynamics,hence it gives both quantitative and qualitative descriptions for stability of motion.As an example we apply our force decomposition to a four-dimensional dissipative gyroscopic system.We explicitly obtain the potential function for all parameter regimes in the linear limit,including those regimes where the Lyapunov function was previously believed not to exist.%We introduce a force decomposition to construct a potential function in deterministic dynamics described by ordinary differential equations in the context of dissipative gyroscopic systems. Such a potential function serves as the corresponding Lyapunov function for the dynamics, hence it gives both quantitative and qualitative descriptions for stability of motion. As an example we apply our force decomposition to a four-dimensional dissipative gyroscopic system. We explicitly obtain the potential function for all parameter regimes in the linear limit, including those regimes where the Lyapunov function was previously believed not to exist.
On the Computation of Lyapunov Functions for Interconnected Systems
DEFF Research Database (Denmark)
Sloth, Christoffer
2016-01-01
This paper addresses the computation of additively separable Lyapunov functions for interconnected systems. The presented results can be applied to reduce the complexity of the computations associated with stability analysis of large scale systems. We provide a necessary and sufficient condition...
Quadratic Lyapunov Function and Exponential Dichotomy on Time Scales
Institute of Scientific and Technical Information of China (English)
ZHANG JI; LIU ZHEN-XIN
2011-01-01
In this paper, we study the relationship between exponential dichotomy and quadratic Lyapunov function for the linear equation x△ ＝ A(t)x on time scales.Moreover, for the nonlinear perturbed equation x△ ＝ A(t)x + f(t,x) we give the instability of the zero solution when f is sufficiently small.
Alignment of Lyapunov Vectors: A Quantitative Criterion to Predict Catastrophes?
Beims, Marcus W; Gallas, Jason A C
2016-11-15
We argue that the alignment of Lyapunov vectors provides a quantitative criterion to predict catastrophes, i.e. the imminence of large-amplitude events in chaotic time-series of observables generated by sets of ordinary differential equations. Explicit predictions are reported for a Rössler oscillator and for a semiconductor laser with optoelectronic feedback.
Alignment of Lyapunov Vectors: A Quantitative Criterion to Predict Catastrophes?
Beims, Marcus W.; Gallas, Jason A. C.
2016-11-01
We argue that the alignment of Lyapunov vectors provides a quantitative criterion to predict catastrophes, i.e. the imminence of large-amplitude events in chaotic time-series of observables generated by sets of ordinary differential equations. Explicit predictions are reported for a Rössler oscillator and for a semiconductor laser with optoelectronic feedback.
The Lyapunov exponents of C~1 hyperbolic systems
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Let f be a C 1 diffeomorphisim of smooth Riemannian manifold and preserve a hyperbolic ergodic measure μ. We prove that if the Osledec splitting is dominated, then the Lyapunov exponents of μ can be approximated by the exponents of atomic measures on hyperbolic periodic orbits.
Analysis of human standing balance by largest lyapunov exponent.
Liu, Kun; Wang, Hongrui; Xiao, Jinzhuang; Taha, Zahari
2015-01-01
The purpose of this research is to analyse the relationship between nonlinear dynamic character and individuals' standing balance by the largest Lyapunov exponent, which is regarded as a metric for assessing standing balance. According to previous study, the largest Lyapunov exponent from centre of pressure time series could not well quantify the human balance ability. In this research, two improvements were made. Firstly, an external stimulus was applied to feet in the form of continuous horizontal sinusoidal motion by a moving platform. Secondly, a multiaccelerometer subsystem was adopted. Twenty healthy volunteers participated in this experiment. A new metric, coordinated largest Lyapunov exponent was proposed, which reflected the relationship of body segments by integrating multidimensional largest Lyapunov exponent values. By using this metric in actual standing performance under sinusoidal stimulus, an obvious relationship between the new metric and the actual balance ability was found in the majority of the subjects. These results show that the sinusoidal stimulus can make human balance characteristics more obvious, which is beneficial to assess balance, and balance is determined by the ability of coordinating all body segments.
Lyapunov exponents and particle dispersion in drift wave turbulence
DEFF Research Database (Denmark)
Pedersen, T.S.; Michelsen, Poul; Juul Rasmussen, J.
1996-01-01
The Hasegawa-Wakatani model equations for resistive drift waves are solved numerically for a range of values of the coupling due to the parallel electron motion. The largest Lyapunov exponent, lambda(1), is calculated to quantify the unpredictability of the turbulent flow and compared to other...
From Lyapunov modes to their exponents for hard disk systems.
Chung, Tony; Truant, Daniel; Morriss, Gary P
2010-06-01
We demonstrate the preservation of the Lyapunov modes in a system of hard disks by the underlying tangent space dynamics. This result is exact for the Zero modes and correct to order ϵ for the Transverse and Longitudinal-Momentum modes, where ϵ is linear in the mode number. For sufficiently large mode numbers, the ϵ terms become significant and the dynamics no longer preserves the mode structure. We propose a modified Gram-Schmidt procedure based on orthogonality with respect to the center zero space that produces the exact numerical mode. This Gram-Schmidt procedure can also exploit the orthogonality between conjugate modes and their symplectic structure in order to find a simple relation that determines the Lyapunov exponent from the Lyapunov mode. This involves a reclassification of the modes into either direction preserving or form preserving. These analytic methods assume a knowledge of the ordering of the modes within the Lyapunov spectrum, but gives both predictive power for the values of the exponents from the modes and describes the modes in greater detail than was previously achievable. Thus the modes and the exponents contain the same information.
Sliding Mode Control Applied to Reconfigurable Flight Control Design
Hess, R. A.; Wells, S. R.; Bacon, Barton (Technical Monitor)
2002-01-01
Sliding mode control is applied to the design of a flight control system capable of operating with limited bandwidth actuators and in the presence of significant damage to the airframe and/or control effector actuators. Although inherently robust, sliding mode control algorithms have been hampered by their sensitivity to the effects of parasitic unmodeled dynamics, such as those associated with actuators and structural modes. It is known that asymptotic observers can alleviate this sensitivity while still allowing the system to exhibit significant robustness. This approach is demonstrated. The selection of the sliding manifold as well as the interpretation of the linear design that results after introduction of a boundary layer is accomplished in the frequency domain. The design technique is exercised on a pitch-axis controller for a simple short-period model of the High Angle of Attack F-18 vehicle via computer simulation. Stability and performance is compared to that of a system incorporating a controller designed by classical loop-shaping techniques.
Simplified microprocessor design for VLSI control applications
Cameron, K.
1991-01-01
A design technique for microprocessors combining the simplicity of reduced instruction set computers (RISC's) with the richer instruction sets of complex instruction set computers (CISC's) is presented. They utilize the pipelined instruction decode and datapaths common to RISC's. Instruction invariant data processing sequences which transparently support complex addressing modes permit the formulation of simple control circuitry. Compact implementations are possible since neither complicated controllers nor large register sets are required.
Lyapunov analysis: from dynamical systems theory to applications
Cencini, Massimo; Ginelli, Francesco
2013-06-01
The study of deterministic laws of evolution has characterized the development of science since Newton's times. Chaos, namely the manifestation of irregular and unpredictable dynamics (not random but look random [1]), entered the debate on determinism at the end of the 19th century with the discovery of sensitivity to initial conditions, meaning that small infinitesimal differences in the initial state might lead to dramatic differences at later times. Poincaré [2, 3] was the first to realize that solutions of the three-body problem are generically highly sensitive to initial conditions. At about the same time, this property was recognized in geodesic flows with negative curvature by Hadamard [4]. One of the first experimental observations of chaos, as understood much later, was when irregular noise was heard by Van der Pol in 1927 [5] while studying a periodically forced nonlinear oscillator. Nevertheless, it was only with the advent of digital computing that chaos started to attract the interest of the wider scientific community. After the pioneering investigation of ergodicity in a chain of nonlinear oscillators by Fermi, Pasta and Ulam in 1955 [6], it was in the early 1960s that the numerical studies of Lorenz [7] and Hénon and Heiles [8] revealed that irregular and unpredictable motions are a generic feature of low-dimensional nonlinear deterministic systems. The existence and onset of chaos was then rigorously analyzed in several systems. While an exhaustive list of such mathematical proofs is beyond the scope of this preface, one should mention the contributions of Kolmogorov [9, 10], Chirikov [11], Smale [12], Ruelle and Takens [13], Li and Yorke [14] and Feigenbaum [15]. The characteristic Lyapunov exponents introduced by Oseledets in 1968 [16] are the fundamental quantities for measuring the sensitivity to initial conditions. Oseledets' work generalized the concept of Lyapunov stability to irregular trajectories building upon earlier studies of Birkhoff
Controller Design Of Unicycle Mobile Robot
Directory of Open Access Journals (Sweden)
Mohd Zamzuri Abd Rashid
2012-10-01
Full Text Available ABSTRACT: The ability of unicycle mobile robot to stand and move around using one wheel has attracted a lot of researchers to conduct studies about the system, particularly in the design of the system mechanisms and the control strategies. This paper reports the investigation done on the design of the controller of the unicycle mobile robot system to maintain its stability in both longitudinal and lateral directions. The controller proposed is a Linear Quadratic Controller (LQR type which is based on the linearized model of the system. A thorough simulation studies have been carried out to find out the performance of the LQR controller. The best controller gain, K acquired through the simulation is selected to be implemented and tested in the experimental hardware. Finally, the results obtained from the experimental study are compared to the simulation results to study the controller efficacy. The analysis reveals that the proposed controller design is able to stabilize the unicycle mobile robot.ABSTRAK: Kemampuan robot satu roda untuk berdiri dan bergerak di sekitar telah menarik minat ramai penyelidik untuk mengkaji sistem robot terutamanya didalam bidang rangka mekanikal dan strategi kawalan robot. Kertas kajian ini melaporkan hasil penyelidikan ke atas strategi kawalan robot bagi memastikan sistem robot satu roda dapat distabilkan dari arah sisi dan hadapan. Strategi kawalan yang dicadang, menggunakan teknik kawalan kuadratik sejajar (Linear Quadratic Control yang berdasarkan model robot yang telah dipermudahkan. Kajian simulasi secara terperinci telah dijalankan bagi mengkaji prestasi strategi kawalan yang dicadangkan. Dari kajian simulasi sistem robot, pemilihan faktor konstan, K yang sesuai di dalam strategi kawalan telah dibuat, agar dapat dilaksanakan ke atas sistem robot yang dibangunkan. Keputusan dari kajian simulasi dan tindak balas oleh sistem robot yang dibangunkan akhirnya dibandingkan bagi melihat kesesuaian faktor kostan, K
Design of Threshold Controller Based Chaotic Circuits
DEFF Research Database (Denmark)
Mohamed, I. Raja; Murali, K.; Sinha, Sudeshna
2010-01-01
We propose a very simple implementation of a second-order nonautonomous chaotic oscillator, using a threshold controller as the only source of nonlinearity. We demonstrate the efficacy and simplicity of our design through numerical and experimental results. Further, we show that this approach of ...
Analysis, Control and Design of Walking Robots
van Oort, Gijs
2011-01-01
In this thesis five research questions are discussed that are related to the development of two-legged (bipedal) walking robots. The research questions are categorized in three main topics: analysis, control and actuation and design. The research questions are: - How can we analyze the behavior of a
Design of POLCA material control systems
Riezebos, J.
2010-01-01
POLCA is a material control system designed for make-to-order or engineer-to-order companies. These firms have to cope with a high variety of customised products, and strong pressure to provide short throughput times. POLCA constrains the amount of work in progress on the shop floor in order to achi
Main Strategies for Autonomous Robotic Controller Design
Paterega, I.
2011-01-01
This review gives an overall introduction to the artificial evolution mechanism. It presents the main strategies for robotic controller design. It gives a review of the pertinent literature, focusing on approaches that use neural networks, evolutionary computing, and fuzzy logic. Various applications of artificial evolution in robotics are surveyed and classified.
Agile Design of Sewer System Control
Van Nooijen, R.P.; Kolechkina, A.G.; Van Leeuwen, P.E.R.M.; Van Velzen, E.
2011-01-01
We describe the first part of an attempt to include stakeholder participation in the design of a central automatic controller for a sewer system in a small pilot project (five subcatchments) and present lessons learned so far. The pilot is part of a project aimed at the improvement of water quality
Design of POLCA material control systems
Riezebos, J.
2010-01-01
POLCA is a material control system designed for make-to-order or engineer-to-order companies. These firms have to cope with a high variety of customised products, and strong pressure to provide short throughput times. POLCA constrains the amount of work in progress on the shop floor in order to
Controller design approach based on linear programming.
Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa
2013-11-01
This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor.
Basic design of beamline and polarization control
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The basic concept of synchrotron radiation beamlines for vacuum ultraviolet and X-ray experiments has been introduced to beginning users and designers of beamlines. The beamline defined here is composed of a front end,pre-mirrors, and a monochromator with refocusing mirrors, which are connected by beam pipes, providing monochromatic light for the experiments. Firstly, time characteristics of the synchrotron radiation are briefly reviewed.Secondly, the basic technology is introduced as the fundamental knowledge required to both users and designers. The topics are photoabsorption by air and solids, front ends and beam pipes, mirrors, monochromators, and filters. Thirdly,the design consideration is described mainly for the designers. The topics are design principle, principle of ray tracing,optical machinery and control, and vacuum. Fourthly, polarization control is considered. The topics are polarizers,polarization diagnosis of beamline, and circularly-polarized light generation. Finally, a brief summary is given introducing some references for further knowledge of the users and the designers.
Designing MPC controllers by reverse-engineering existing LTI controllers
Hartley, Edward N
2011-01-01
This technical report presents a method for designing a constrained output-feedback model predictive controller (MPC) that behaves in the same way as an existing baseline stabilising linear time invariant output-feedback controller when constraints are inactive. The baseline controller is cast into an observer-compensator form and an inverse-optimal cost function is used as the basis of the MPC controller. The available degrees of design freedom are explored, and some guidelines provided for the selection of an appropriate observer-compensator realisation that will best allow exploitation of the constraint-handling and redundancy management capabilities of MPC. Consideration is given to output setpoint tracking, and the method is demonstrated with three different multivariable plants of varying complexity.
Design of Dependable Control System Using a Component Based Approach
DEFF Research Database (Denmark)
Blanke, M.
1995-01-01
Design of fault handling in control systems is discussed and a consistent method for design is presented.......Design of fault handling in control systems is discussed and a consistent method for design is presented....
CV controls from design to operation
Blanc, D
2002-01-01
The cooling and Ventilation (CV) group has emphasised the need to redefine its organisational structure at the end of 98. The main objective of this operation was to ensure the CV group to be more competitive and efficient through the growing tasks of the LHC projects. The main evolution given to this reorganisation is that the new structure is more project oriented and then operates on three distinct axes: Design, Work and Operation. Process control project management requires a complete and early interaction and participation of all the actors involved. This procedure to be efficient and constructive must be considered and performed not only during the design stage but along the project planning phases and must go beyond the completion work including the process control operation activity. The paper explains the present project management for process control. It describes the present constraints and gives suggestions to a different approach to these projects to improve performances and efficiency of a contr...
System identification for robust control design
Energy Technology Data Exchange (ETDEWEB)
Dohner, J.L.
1995-04-01
System identification for the purpose of robust control design involves estimating a nominal model of a physical system and the uncertainty bounds of that nominal model via the use of experimentally measured input/output data. Although many algorithms have been developed to identify nominal models, little effort has been directed towards identifying uncertainty bounds. Therefore, in this document, a discussion of both nominal model identification and bounded output multiplicative uncertainty identification will be presented. This document is divided into several sections. Background information relevant to system identification and control design will be presented. A derivation of eigensystem realization type algorithms will be presented. An algorithm will be developed for calculating the maximum singular value of output multiplicative uncertainty from measured data. An application will be given involving the identification of a complex system with aliased dynamics, feedback control, and exogenous noise disturbances. And, finally, a short discussion of results will be presented.
Sun Safe Mode Controller Design for LADEE
Fusco, Jesse C.; Swei, Sean S. M.; Nakamura, Robert H.
2015-01-01
This paper presents the development of sun safe controllers which are designed to keep the spacecraft power positive and thermally balanced in the event an anomaly is detected. Employed by NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE), the controllers utilize the measured sun vector and the spacecraft body rates for feedback control. To improve the accuracy of sun vector estimation, the least square minimization approach is applied to process the sensor data, which is proven to be effective and accurate. To validate the controllers, the LADEE spacecraft model engaging the sun safe mode was first simulated and then compared with the actual LADEE orbital fight data. The results demonstrated the applicability of the proposed sun safe controllers.
Automated design of controlled diffusion blades
Sanz, Jose M.
1989-01-01
A numerical automation procedure was developed to be used in conjunction with an inverse hodograph method for the design of controlled diffusion blades. With this procedure a cascade of airfoils with a prescribed solidity, inlet Mach No., inlet air flow angle and air flow turning can be produced automatically. The trailing edge thickness of the airfoil, an important quantity in inverse methods, is also prescribed. The automation procedure consists of a multi-dimensional Newton iteration in which the objective design conditions are achieved by acting on the hodograph input parameters of the underlying inverse code. The method, although more general in scope, is applied to the design of axial flow turbomachinery blade sections, both compressors and turbines. A collaborative effort with U.S. Engine Companies to identify designs of interest to the industry will be described.
Directory of Open Access Journals (Sweden)
Sajad Tabatabaee
2011-06-01
Full Text Available This paper presents a new approach to a robust fuzzy controller design for the bilateral teleportation system with varying time delays using linear matrix inequalities. Communication channels are considered with different forwarding and returning time delays. The time delays of communication channels are assumed to be unknown and randomly time varying, but the upper bounds of the delay interval and the derivative of the delay are assumed to be known. In order to design the controllers, first, an impedance controller is designed for the master system to achieve desired impedance behavior for the master. Then, nonlinear Euler-Lagrange equation of motion of the slave system is linearized in the neighborhood of some operating points. In the sequel, an open-loop scheme is considered for the slave system. The linear model of the slave system has two imaginary/unstable poles. The slave system is stabilized by a PD-controller to be used in the open-loop scheme. To design the slave controller, the tele-operator block diagram is rearranged such that the tele-operator block diagram converts to a standard representation of a feedback control system which helps us to design a robust H-infinity controller for the slave system. The local linear models of the system are combined to form a Takagi-Sugeno fuzzy model of the whole tele-operation system. A Lyapunov-Krasovskii function is defined to analyze the closed-loop system’s stability and derive a sufficient delay-dependent stability criterion. An H-infinity performance index is defined and the design criteria for the slave controller are expressed as a set of LMIs, which can be tested readily using standard numerical software.
HETDEX tracker control system design and implementation
Beno, Joseph H.; Hayes, Richard; Leck, Ron; Penney, Charles; Soukup, Ian
2012-09-01
To enable the Hobby-Eberly Telescope Dark Energy Experiment, The University of Texas at Austin Center for Electromechanics and McDonald Observatory developed a precision tracker and control system - an 18,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 13 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). Due to this complexity, demanding accuracy requirements, and stringent safety requirements, two independent control systems were developed. First, a versatile and easily configurable centralized control system that links with modeling and simulation tools during the hardware and software design process was deemed essential for normal operation including motion control. A second, parallel, control system, the Hardware Fault Controller (HFC) provides independent monitoring and fault control through a dedicated microcontroller to force a safe, controlled shutdown of the entire system in the event a fault is detected. Motion controls were developed in a Matlab-Simulink simulation environment, and coupled with dSPACE controller hardware. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of operational control software, the HFC, algorithms, tuning, debugging, testing, and lessons learned.
Directory of Open Access Journals (Sweden)
Jun Song
2013-01-01
Full Text Available The nonfragile robust finite-time L2-L∞ control problem for a class of nonlinear uncertain systems with uncertainties and time-delays is considered. The nonlinear parameters are considered to satisfy the Lipschitz conditions and the exogenous disturbances are unknown but energy bounded. By using the Lyapunov function approach, the sufficient condition for the existence of nonfragile robust finite-time L2-L∞ controller is given in terms of linear matrix inequalities (LMIs. The finite-time controller is designed such that the resulting closed-loop system is finite-time bounded for all admissible uncertainties and satisfies the given L2-L∞ control index. Simulation results illustrate the validity of the proposed approach.
Design of Air Traffic Control Operation System
Directory of Open Access Journals (Sweden)
Gabriela STROE
2017-09-01
Full Text Available This paper presents a numerical simulation for a different aircraft, based on the specific aircraft data that can be incorporated in the model and the equations of motions which can be consequently solved. The aircraft flight design involves various technical steps and requires the use of sophisticated software having modeling and simulation capabilities. Within the flight simulation model, the aerodynamic model can be regarded as the most complex and most important. With appropriate aerodynamic modeling the aerodynamic forces and moments acting on the aircraft's center of gravity can be numerically solved with accuracy. These forces and moments are further used to solve the equations of motion. The development of control and computing technology makes it possible for advanced flight control strategy. The advanced control techniques tend to make the control design and their implementation much more complicated with more control loops or channels; in this line, the autopilot of modern aircrafts includes a variety of automatic control systems that aid and support the flight navigation, flight management, and perform the enhancing and/or augmenting of the stability characteristics of the airplane. Therefore in this context it is very important to choose the dynamic that will satisfy the performance and robustness specifications.
Wang, Zheng; Liu, Xiaoping; Liu, Kefu; Li, Shuai; Wang, Huanqing
2017-10-01
In this paper, backstepping for a class of block strict-feedback nonlinear systems is considered. Since the input function could be zero for each backstepping step, the backstepping technique cannot be applied directly. Based on the assumption that nonlinear systems are polynomials, for each backstepping step, Lypunov function can be constructed in a polynomial form by sum of square (SOS) technique. The virtual control can be obtained by the Sontag feedback formula, which is equivalent to an optimal control-the solution of a Hamilton-Jacobi-Bellman equation. Thus, approximate dynamic programming (ADP) could be used to estimate value functions (Lyapunov functions) instead of SOS. Through backstepping technique, the control Lyapunov function (CLF) of the full system is constructed finally making use of the strict-feedback structure and a stabilizable controller can be obtained through the constructed CLF. The contributions of the proposed method are twofold. On one hand, introducing ADP into backstepping can broaden the application of the backstepping technique. A class of block strict-feedback systems can be dealt by the proposed method and the requirement of nonzero input function for each backstepping step can be relaxed. On the other hand, backstepping with surface dynamic control actually reduces the computation complexity of ADP through constructing one part of the CLF by solving semidefinite programming using SOS. Simulation results verify contributions of the proposed method.
Vector Lyapunov Functions for Stochastic Interconnected Systems
Boussalis, D.
1985-01-01
Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.
Vector Lyapunov Functions for Stochastic Interconnected Systems
Boussalis, D.
1985-01-01
Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.
Design of PI Controllers for Hydraulic Control Systems
Directory of Open Access Journals (Sweden)
LJubiša Dubonjić
2013-01-01
Full Text Available The paper proposes a procedure for design of PI controllers for hydraulic systems with long transmission lines which are described by models of high order. Design is based on the combination of the IE criterion and engineering specifications (settling time and relative stability as well as on the application of D-decomposition. In comparison with some known results, the method is of graphical character, and it is very simple (solving nonlinear algebraic equations is eliminated. The paper presents the algorithm of software procedure for design of the controller. The method is compared with other methods at the level of simulation, and its superiority is shown. By applying the Nyquist criterion, it is shown that the method possesses robustness in relation to non modelled dynamics.
The design of image stabilization control system
Lin, Zhe; Wu, Chunnan; Yu, Fei; Kang, Xiaojun
2012-09-01
For high resolution satellite remote sensing cameras, the line of sight (LOS) moving during the image exposure period will cause the modulation transfer function (MTF) degradation and image blurring. Image stabilization component is used to improve image quality by actively removing the apparent motion induced by vibration, tracking error and attitude instability. In this paper, the image stabilization component is considered as a kind of closed loop servo control system, and the image stabilization effect is converted into servo control performance for research. Firstly, the image stabilization servo loop scheme and transfer function model are constructed and the LOS jitter is considered as the output of a stochastic system derived by white-Gaussian noise. Based on the proposed model, the demand boundary of jitter rejection function is described, and the design criterion to be satisfied is obtained according to the requirement of image stabilization performance. And then, a discrete Kalman estimation algorithm is introduced into image stabilization servo loop to filter out the noise caused by pixel-shift sensor (PSS) and compensate for the delay due to the PSS measurement. Based on the given design criterion, the control law is designed by using the output of Kalman filter. The computer simulation is achieved to show that the proposed control strategy can significantly improve the image stabilization performance.
Quantitative resilience analysis through control design.
Energy Technology Data Exchange (ETDEWEB)
Sunderland, Daniel; Vugrin, Eric D.; Camphouse, Russell Chris (Sandia National Laboratories, Carlsbad, NM)
2009-09-01
Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. Few quantitative resilience methods exist, and those existing approaches tend to be rather simplistic and, hence, not capable of sufficiently assessing all aspects of critical infrastructure resilience. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the development of quantitative resilience through application of control design methods. Specifically, we conducted a survey of infrastructure models to assess what types of control design might be applicable for critical infrastructure resilience assessment. As a result of this survey, we developed a decision process that directs the resilience analyst to the control method that is most likely applicable to the system under consideration. Furthermore, we developed optimal control strategies for two sets of representative infrastructure systems to demonstrate how control methods could be used to assess the resilience of the systems to catastrophic disruptions. We present recommendations for future work to continue the development of quantitative resilience analysis methods.
Evaluation of Design Methods for Geometric Control
DEFF Research Database (Denmark)
Kymmel, Mogens; Beran, M.; Foldager, L.;
1985-01-01
Geometric control can produce desirable control by decoupling the input disturbances from the selected output variables. The basic principle for this method was originally introduced by Wonham. The mathematical complexity involved, however, makes the method very hard to get accepted by the chemical...... community. The paper evaluates Wonham's original method together with three other methods, i.e. eigenvalue/eigenvector methods by Shah et al, the graph theory by Schizas and Evans and the simplified method by KÃ¼mmel et al. The evaluation considers the basic potential of the methods, the prerequisite...... of the designer, transparency, computer demand, and potential for pole shift....
Designer's handbook of instrumentation and control circuits
Carr, Joseph J
1991-01-01
Here is a comprehensive, practical guide to the entire process of analog instrumentation and control, from sensor input to data conversion circuitry and final output. This readable handbook avoids complex mathematical treatments, instead taking an applications-oriented approach and presenting many sample circuits and concrete examples. It is an essential reference for engineers and high-level technicians in a variety of scientific and engineering fields--anywhere data is collected electronically and where such data is used to control physical processes.Key Features* Covers design o
Design and control of swarm dynamics
Bouffanais, Roland
2016-01-01
The book is about the key elements required for designing, building and controlling effective artificial swarms comprised of multiple moving physical agents. Therefore this book presents the fundamentals of each of those key elements in the particular frame of dynamic swarming, specifically exposing the profound connections between these elements and establish some general design principles for swarming behaviors. This scientific endeavor requires an inter-disciplinary approach: biomimetic inspiration from ethology and ecology, study of social information flow, analysis of temporal and adaptive signaling network of interaction, considerations of control of networked real-time systems, and lastly, elements of complex adaptive dynamical systems. This book offers a completely new perspective on the scientific understanding of dynamic collective behaviors thanks to its multi-disciplinary approach and its focus on artificial swarm of physical agents. Two of the key problems in understanding the emergence of swarm ...
Hospital design for better infection control
Directory of Open Access Journals (Sweden)
Lateef Fatimah
2009-01-01
Full Text Available The physical design and infrastructure of a hospital or institution is an essential component of its infection control measure. Thus is must be a prerequisite to take these into consideration from the initial conception and planning stages of the building. The balance between designing a hospital to be an open, accessible and public place and the control to reduce the spread of infections diseases is a necessity. At Singapore General Hospital, many lessons were learnt during the SARS outbreak pertaining to this. During and subsequent to the SARS outbreak, many changes evolved in the hospital to enable us to handle and face any emerging infectious situation with calm, confidence and the knowledge that staff and patients will be in good stead. This paper will share some of our experiences as well as challenges
Wai, Rong-Jong; Yang, Zhi-Wei
2008-10-01
This paper focuses on the development of adaptive fuzzy neural network control (AFNNC), including indirect and direct frameworks for an n-link robot manipulator, to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances, and parameter variations. In order to cope with this problem, an indirect AFNNC (IAFNNC) scheme and a direct AFNNC (DAFNNC) strategy are investigated without the requirement of prior system information. In these model-free control topologies, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with online learning ability is constructed to represent the system dynamics of an n-link robot manipulator. In the IAFNNC, an FNN estimator is designed to tune the nonlinear dynamic function vector in fuzzy local models, and then, the estimative vector is used to indirectly develop a stable IAFNNC law. In the DAFNNC, an FNN controller is directly designed to imitate a predetermined model-based stabilizing control law, and then, the stable control performance can be achieved by only using joint position information. All the IAFNNC and DAFNNC laws and the corresponding adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by dc servomotors are given to verify the effectiveness and robustness of the proposed methodologies. In addition, the superiority of the proposed control schemes is indicated in comparison with proportional-differential control, fuzzy-model-based control, T-S-type FNN control, and robust neural fuzzy network control systems.
Automated design of controlled-diffusion blades
Sanz, J. M.
1988-01-01
A numerical automation procedure has been developed to be used in conjunction with an inverse hodograph method for the design of controlled diffusion blades. With this procedure a cascade of airfoils with a prescribed solidity, inlet Mach number, inlet air flow angle, and air flow turning can be produced automatically. The trailing edge thickness of the airfoil, an important quantity in inverse methods, is also prescribed. The automation procedure consists of a multidimensional Newton iteration in which the objective design conditions are achieved by acting on the hodograph input parameters of the underlying inverse code. The method, although more general in scope, is applied in this paper to the design of axial flow compressor blade sections, and a wide range of examples is presented.
Computational Methods for Design, Control and Optimization
2007-10-01
34scenario" that applies to channel flows ( Poiseuille flows , Couette flow ) and pipe flows . Over the past 75 years many complex "transition theories" have...other areas of flow control, optimization and aerodynamic design. approximate sensitivity calculations and optimization codes. The effort was built on a...for fluid flow problems. The improved robustness and computational efficiency of this approach makes it practical for a wide class of problems. The
Controller Design Considerations for ACM APFC Systems
Directory of Open Access Journals (Sweden)
Alexander Abramovitz
2012-01-01
Full Text Available This paper is concerned with performance of the current shaping network in Average Current Mode (ACM Active Power Factor Correction (APFC systems. Theoretical expressions for the ripple components are derived. Then, ripple interaction and impact on the current loop reference signal are investigated. A modification of the controller network is suggested that results in an improved Total Harmonic Distortion (THD. Design guidelines are suggested. The theoretical predictions were validated by simulation.
On finite-size Lyapunov exponents in multiscale systems
Mitchell, Lewis
2012-01-01
We study the effect of regime switches on finite size Lyapunov exponents (FSLEs) in determining the error growth rates and predictability of multiscale systems. We consider a dynamical system involving slow and fast regimes and switches between them. The surprising result is that due to the presence of regimes the error growth rate can be a non-monotonic function of initial error amplitude. In particular, troughs in the large scales of FSLE spectra is shown to be a signature of slow regimes, whereas fast regimes are shown to cause large peaks in the spectra where error growth rates far exceed those estimated from the maximal Lyapunov exponent. We present analytical results explaining these signatures and corroborate them with numerical simulations. We show further that these peaks disappear in stochastic parametrizations of the fast chaotic processes, and the associated FSLE spectra reveal that large scale predictability properties of the full deterministic model are well approximated whereas small scale feat...
Behavior of the Lyapunov Exponent and Phase Transition in Nuclei
Institute of Scientific and Technical Information of China (English)
WANG Nan; WU Xi-Zhen; LI Zhu-Xia; WANG Ning; ZHUO Yi-Zhong; SUN Xiu-Quan
2000-01-01
Based on the quantum molecular dynamics model, we investigate the dynamical behaviors of the excited nuclear system to simulate the latter stage of heavy ion reactions, which associate with a liquid-gas phase transition. We try to search a microscopic way to describe the phase transition in realnuclei. The Lyapunov exponent is employed and examined for our purpose. We find out that the Lyapunov exponent is one of good microscopic quantities to describe the phase transition in hot nuclei. Coulomb potential and the finite size effect may give a strong influence on the critical temperature. However, the collision term plays a minor role in the process of the liquid-gas phase transition in finite systems.
Lyapunov exponents a tool to explore complex dynamics
Pikovsky, Arkady
2016-01-01
Lyapunov exponents lie at the heart of chaos theory, and are widely used in studies of complex dynamics. Utilising a pragmatic, physical approach, this self-contained book provides a comprehensive description of the concept. Beginning with the basic properties and numerical methods, it then guides readers through to the most recent advances in applications to complex systems. Practical algorithms are thoroughly reviewed and their performance is discussed, while a broad set of examples illustrate the wide range of potential applications. The description of various numerical and analytical techniques for the computation of Lyapunov exponents offers an extensive array of tools for the characterization of phenomena such as synchronization, weak and global chaos in low and high-dimensional set-ups, and localization. This text equips readers with all the investigative expertise needed to fully explore the dynamical properties of complex systems, making it ideal for both graduate students and experienced researchers...
Scaling of Lyapunov Exponents in Homogeneous, Isotropic DNS
Fitzsimmons, Nicholas; Malaya, Nicholas; Moser, Robert
2013-11-01
Lyapunov exponents measure the rate of separation of initially infinitesimally close trajectories in a chaotic system. Using the exponents, we are able to probe the chaotic nature of homogeneous isotropic turbulence and study the instabilities of the chaotic field. The exponents are measured by calculating the instantaneous growth rate of a linear disturbance, evolved with the linearized Navier-Stokes equation, at each time step. In this talk, we examine these exponents in the context of homogeneous isotropic turbulence with two goals: 1) to investigate the scaling of the exponents with respect to the parameters of forced homogeneous isotropic turbulence, and 2) to characterize the instabilities that lead to chaos in turbulence. Specifically, we explore the scaling of the Lyapunov exponents with respect to the Reynolds number and with respect to the ratio of the integral length scale and the computational domain size.
Complementarity Properties of the Lyapunov Transformation over Symmetric Cones
Institute of Scientific and Technical Information of China (English)
Yuan Min LI; Xing Tao WANG; De Yun WEI
2012-01-01
The well-known Lyapunov's theorem in matrix theory/continuous dynamical systems asserts that a square matrix A is positive stable if and only if there exists a positive definite matrix X such that AX+XA* is positive definite.In this paper,we extend this theorem to the setting of any Euclidean Jordan algebra V.Given any element a ∈ V,we consider the corresponding Lyapunov transformation La and show that the P and S-properties are both equivalent to a being positive. Then we characterize the Ro-property for La and show that La has the R0-property if and only if a is invertible.Finally,we provide La with some characterizatious of the E0-property and the nondegeneracy property.
Geometry of dynamics, Lyapunov exponents and phase transitions
Caiani, L; Clementi, C; Pettini, M; Caiani, Lando; Casetti, Lapo; Clementi, Cecilia; Pettini, Marco
1997-01-01
The Hamiltonian dynamics of classical planar Heisenberg model is numerically investigated in two and three dimensions. By considering the dynamics as a geodesic flow on a suitable Riemannian manifold, it is possible to analytically estimate the largest Lyapunov exponent in terms of some curvature fluctuations. The agreement between numerical and analytical values for Lyapunov exponents is very good in a wide range of temperatures. Moreover, in the three dimensional case, in correspondence with the second order phase transition, the curvature fluctuations exibit a singular behaviour which is reproduced in an abstract geometric model suggesting that the phase transition might correspond to a change in the topology of the manifold whose geodesics are the motions of the system.
Riemannian theory of Hamiltonian chaos and Lyapunov exponents
Casetti, L; Pettini, M; Casetti, Lapo; Clementi, Cecilia; Pettini, Marco
1996-01-01
This paper deals with the problem of analytically computing the largest Lyapunov exponent for many degrees of freedom Hamiltonian systems. This aim is succesfully reached within a theoretical framework that makes use of a geometrization of newtonian dynamics in the language of Riemannian geometry. A new point of view about the origin of chaos in these systems is obtained independently of homoclinic intersections. Chaos is here related to curvature fluctuations of the manifolds whose geodesics are natural motions and is described by means of Jacobi equation for geodesic spread. Under general conditions ane effective stability equation is derived; an analytic formula for the growth-rate of its solutions is worked out and applied to the Fermi-Pasta-Ulam beta model and to a chain of coupled rotators. An excellent agreement is found the theoretical prediction and the values of the Lyapunov exponent obtained by numerical simulations for both models.
Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests
Energy Technology Data Exchange (ETDEWEB)
Wright, A. D.; Fingersh, L. J.
2008-03-01
The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.
Designing hydrogels for controlled drug delivery
Li, Jianyu; Mooney, David J.
2016-12-01
Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform on which various physiochemical interactions with the encapsulated drugs occur to control drug release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.
Lyapunov functions for a dengue disease transmission model
Energy Technology Data Exchange (ETDEWEB)
Tewa, Jean Jules [Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)], E-mail: tewa@univ-metz.fr; Dimi, Jean Luc [Department of Mathematics, Faculty of Science, University Marien Ngouabi, P.O. Box 69, Brazzaville (Congo, The Democratic Republic of the)], E-mail: jldimi@yahoo.fr; Bowong, Samuel [Department of Mathematics and Computer Science, Faculty of Science, University of Douala, P.O. Box 24157, Douala (Cameroon)], E-mail: samuelbowong@yahoo.fr
2009-01-30
In this paper, we study a model for the dynamics of dengue fever when only one type of virus is present. For this model, Lyapunov functions are used to show that when the basic reproduction ratio is less than or equal to one, the disease-free equilibrium is globally asymptotically stable, and when it is greater than one there is an endemic equilibrium which is also globally asymptotically stable.
Analisis Kestabilan Model Matematika Penyakit Leukimia dengan Fungsi Lyapunov
2015-01-01
This study aims to analyze the stability of the equilibrium point of the mathematical model of leukemia before and after undergoing chemotherapy. Analysis of the stability of the model is done by analyzing the model by using a Lyapunov function. By using MATLAB program will be described stability of the model before chemotherapy and after chemotherapy. The results showed that the equilibrium point of stem cell compartment model is asymptotically stable for certain parameter values. This is be...
Lyapunov Criteria for Structural Stability of Supply Chain System
Institute of Scientific and Technical Information of China (English)
LU Ying-jin; TANG Xiao-wo; ZHOU Zong-fang
2004-01-01
In this paper, based on Cobb-Douglas production function, the structural stability of the supply chain system are analyzed by employing Lyapunov criteria. That the supply chain system structure,with the variance of the rate of re-production input funding, becomes unstable is proved. Noticeably, the solutions shows that when the optimal combination of input parameter element, the qualitative properties of supply chain system change and the supply chain system becomes unstable.
A local Echo State Property through the largest Lyapunov exponent.
Wainrib, Gilles; Galtier, Mathieu N
2016-04-01
Echo State Networks are efficient time-series predictors, which highly depend on the value of the spectral radius of the reservoir connectivity matrix. Based on recent results on the mean field theory of driven random recurrent neural networks, enabling the computation of the largest Lyapunov exponent of an ESN, we develop a cheap algorithm to establish a local and operational version of the Echo State Property.
Design of computer controlled combustion engines
Energy Technology Data Exchange (ETDEWEB)
Isermann, R.; Mueller, N. [Darmstadt University of Technology (Germany). Inst. of Automatic Control
2003-12-01
Globalization and growing new markets, as well as increasing emission and fuel consumption requirements, force the car manufacturers and their suppliers to develop new engine control strategies in shorter time periods. This can mainly be reached by development tools and an integrated hardware and software environment enabling rapid implementation and testing of advanced engine control algorithms. The structure of a rapid control prototyping (RCP) system is explained, which allows fast measurement signal evaluation, and rapid prototyping of advanced engine control algorithms. A hardware-in-the-loop simulator for diesel engine control design is illustrated, simulation results for a 40 tons truck are presented. Providing efficient engine models for the proposed development tools, a dynamic local linear neural network approach is explained and applied for modelling the NO{sub x} emission characteristics of a 1.9 1 direct injection diesel engine. Furthermore the application of a RCP system is exemplified by the application of combustion pressure based closed-loop ignition timing control for a SI engine. Experimental results are shown for a 1.01 SI engine on a dynamic engine test stand. (author)
Fuzzy Sliding Mode Controller Design Using Takagi-Sugeno Modelled Nonlinear Systems
Directory of Open Access Journals (Sweden)
S. Bououden
2013-01-01
Full Text Available Adaptive fuzzy sliding mode controller for a class of uncertain nonlinear systems is proposed in this paper. The unknown system dynamics and upper bounds of the minimum approximation errors are adaptively updated with stabilizing adaptive laws. The closed-loop system driven by the proposed controllers is shown to be stable with all the adaptation parameters being bounded. The performance and stability of the proposed control system are achieved analytically using the Lyapunov stability theory. Simulations show that the proposed controller performs well and exhibits good performance.
Directory of Open Access Journals (Sweden)
Neng-Sheng Pai
2010-01-01
Full Text Available This paper focuses on the chaos control problem of the unified chaotic systems with structured uncertainties. Applying Schur-complement and some matrix manipulation techniques, the controlled uncertain unified chaotic system is then transformed into the linear matrix inequality (LMI form. Based on Lyapunov stability theory and linear matrix inequality (LMI formulation, a simple linear feedback control law is obtained to enforce the prespecified exponential decay dynamics of the uncertain unified chaotic system. Numerical results validate the effectiveness of the proposed robust control scheme.
Lyapunov exponents for one-dimensional aperiodic photonic bandgap structures
Kissel, Glen J.
2011-10-01
Existing in the "gray area" between perfectly periodic and purely randomized photonic bandgap structures are the socalled aperoidic structures whose layers are chosen according to some deterministic rule. We consider here a onedimensional photonic bandgap structure, a quarter-wave stack, with the layer thickness of one of the bilayers subject to being either thin or thick according to five deterministic sequence rules and binary random selection. To produce these aperiodic structures we examine the following sequences: Fibonacci, Thue-Morse, Period doubling, Rudin-Shapiro, as well as the triadic Cantor sequence. We model these structures numerically with a long chain (approximately 5,000,000) of transfer matrices, and then use the reliable algorithm of Wolf to calculate the (upper) Lyapunov exponent for the long product of matrices. The Lyapunov exponent is the statistically well-behaved variable used to characterize the Anderson localization effect (exponential confinement) when the layers are randomized, so its calculation allows us to more precisely compare the purely randomized structure with its aperiodic counterparts. It is found that the aperiodic photonic systems show much fine structure in their Lyapunov exponents as a function of frequency, and, in a number of cases, the exponents are quite obviously fractal.
Design of Controller for New EAST Fast Control Power Supply
Institute of Scientific and Technical Information of China (English)
HUANG Haihong; YIN Ming; WANG Haixin
2014-01-01
The effectiveness of the magnetic confinement of plasma can be improved by elongating the plasma cross-section in tokamak devices.But elongated plasma has vertical displacement instability,so a feedback control system is needed to restrain the plasma's vertical displacement.A fast control power supply is needed to excite the active feedback coils,which produces a magnetic field to control the plasma's displacement.With the development of EAST,the fast control power supply needs to keep on enhancing the fast response and output current.The structure of a new power supply is introduced in this paper.The method of multiple inverters paralleled with the current sharing reactor is presented to meet the need for large current and fast control.According to the design demands of the EAST fast control power supply,the adjuster of the current close loop is applied to the inverter,which can advance its ability to restrain the loop current in low frequency and DC output.The result of the experiment confirms the validity of the proposed scheme and control strategy.
Chaos control and synchronization, with input saturation, via recurrent neural networks.
Sanchez, Edgar N; Ricalde, Luis J
2003-01-01
This paper deals with the adaptive tracking problem of non-linear systems in presence of unknown parameters, unmodelled dynamics and input saturation. A high order recurrent neural network is used in order to identify the unknown system and a learning law is obtained using the Lyapunov methodology. Then a stabilizing control law for the reference tracking error dynamics is developed using the Lyapunov methodology and the Sontag control law. Tracking error boundedness is established as a function of a design parameter. The new approach is illustrated by examples of complex dynamical systems: chaos control and synchronization.
Solar Power Station Output Inverter Control Design
Directory of Open Access Journals (Sweden)
J. Bauer
2011-04-01
Full Text Available The photovoltaic applications spreads in these days fast, therefore they also undergo great development. Because the amount of the energy obtained from the panel depends on the surrounding conditions, as intensity of the sun exposure or the temperature of the solar array, the converter must be connected to the panel output. The Solar system equipped with inverter can supply small loads like notebooks, mobile chargers etc. in the places where the supplying network is not present. Or the system can be used as a generator and it shall deliver energy to the supply network. Each type of the application has different requirements on the converter and its control algorithm. But for all of them the one thing is common – the maximal efficiency. The paper focuses on design and simulation of the low power inverter that acts as output part of the whole converter. In the paper the design of the control algorithm of the inverter for both types of inverter application – for islanding mode and for operation on the supply grid – is discussed. Attention is also paid to the design of the output filter that should reduce negative side effects of the converter on the supply network.
Directory of Open Access Journals (Sweden)
M Seidi
2016-12-01
Full Text Available Lyapunov exponent method is one of the best tools for investigating the range of stability and the transient behavior of the dynamical systems. In beryllium-moderated and heavy water-moderated reactors, photo-neutron plays an important role in dynamic behavior of the reactor. Therefore, stability analysis for changes in the control parameters of the reactor in order to guarantee safety and control nuclear reactor is important. In this work, the range of stability has been investigated using Lyapunov exponent method in response to step, ramp and sinusoidal external reactivities regarding six groups of delayed neutrons plus nine groups of photo-neutrons. The qualitative results are in good agreement with quantitative results of other works
MAP Attitude Control System Design and Analysis
Andrews, S. F.; Campbell, C. E.; Ericsson-Jackson, A. J.; Markley, F. L.; ODonnell, J. R., Jr.
1997-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point to suppress potential instrument disturbances. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used. MAP requires a propulsion system to reach L(sub 2), to unload system momentum, and to perform stationkeeping maneuvers once at L(sub 2). A minimum hardware, power and thermal safe control mode must also be provided. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.8 arc-minutes. The short development time and tight budgets require a new way of designing, simulating, and analyzing the Attitude Control System (ACS). This paper presents the design and analysis of the control system to meet these requirements.