WorldWideScience

Sample records for lwr type reactors

  1. LWR type reactor

    International Nuclear Information System (INIS)

    Kato, Kiyoshi.

    1993-01-01

    A water injection tank in an emergency reactor core cooling system is disposed at a position above a reactor pressure vessel. A liquid phase portion of the water injection tank and an inlet plenum portion in the reactor pressure vessel are connected by a water injection pipe. A gas phase portion of the water injection tank and an upper portion in the reactor pressure vessel are connected by a gas ventilation pipe. Hydraulic operation valves are disposed in the midway of the water injection pipe and the gas ventilation pipe respectively. A pressure conduit is disposed for connecting a discharge port of a main recycling pump and the hydraulic operation valve. In a case where primary coolants are not sent to the main recycling pump by lowering of a liquid level due to loss of coolants or in a case where the main recycling pump is stopped by electric power stoppage or occurrence of troubles, the discharge pressure of the main recycling pump is lowered. Then, the hydraulic operation valve is opened to release the flow channel, then, boric acid water in the water injection tank is sent into the reactor by a falling head, to lead the reactor to a scram state. (I.N.)

  2. Safety research for LWR type reactors

    International Nuclear Information System (INIS)

    1989-07-01

    The current R and D activities are to be seen in connection with the LWR risk assessment studies. Two trends are emerging, of which the one concentrates more on BWR-specific problems, and the other on the efficiency or safety-related assessment of accident management activities. This annual report of 1988 reviews the progress of work done by the institutes and departments of the Karlsruhe Nuclear Research Center, (KfK), or on behalf of KfK by external institutions, in the field of safety research. The papers of this report present the state of work at the end of the year 1988. They are written in German, with an abstract in English. (orig./HP) [de

  3. Aging of reactor vessels in LWR type reactors

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Serrano, M.

    2004-01-01

    Most of the degradation mechanisms of nuclear components were not included on the design so they have to be treated a posteriori, and that imply a loss of capacity. In this paper the state of the art on the reactor pressure vessel neutron embrittlement and on the irradiation assisted stress corrosion cracking that affects internal components, are explained. Special attention is devoted on the influence of the neutron fluence on IASCC process, on the material alterations promoted by irradiation and their consequences on the susceptibility to this phenomenon. Regarding the reactor pressure vessel degradation, this paper discuss the application of the Master Curve on the structural integrity evaluation of the vessel. Other aspects related to further developments are also mentioned and the importance of a good materials ageing management on the operation of the plant is pointed out. (Author) 12 refs

  4. Light Water Reactor (LWR) safety

    International Nuclear Information System (INIS)

    Sehgal, Bal Raj

    2006-01-01

    In this paper, a historical review of the developments in the safely of LWR power plants is presented. The paper reviews the developments prior to the TMI-2 accident, i.e. the concept of the defense in depth, the design basis, the large LOCA technical controversies and the LWR safety research programs. The TMI-2 accident, which became a turning point in the history of the development of nuclear power is described briefly. The Chernobyl accident, which terrified the world and almost completely curtailed the development of nuclear power is also described briefly. The great international effort of research in the LWR design-base and severe accidents, which was, respectively, conducted prior to and following the TMI-2 and Chernobyl accidents is described next. We conclude that with the knowledge gained and the improvements in plant organisation/management and in the training of the staff at the presently-installed nuclear power stations, the LWR plants have achieved very high standards of safety and performance. The Generation 3 + LWR power plants, next to be installed, may claim to have reached the goal of assuring the safety of the public to a very large extent. This review is based on the historical developments in LWR safety that occurred primarily in USA. however, they are valid for the rest of the Western World. This review can not do justice to the many many fine contributions that have been made over the last fifty years to the cause of LWR safety. We apologize if we have not mentioned them. We also apologize for not providing references to many of the fine investigations, which have contributed towards LWR safety earning the conclusions that we describe just above

  5. A nodal method of calculating power distributions for LWR-type reactors with square fuel lattices

    International Nuclear Information System (INIS)

    Hoeglund, Randolph.

    1980-06-01

    A nodal model is developed for calculating the power distribution in the core of a light water reactor with a square fuel lattice. The reactor core is divided into a number of more or less cubic nodes and a nodal coupling equation, which gives the thermal power density in one node as a function of the power densities in the neighbour nodes, is derived from the neutron diffusion equations for two energy groups. The three-dimensional power distribution can be computed iteratively using this coupling equation, for example following the point Jacobi, the Gauss-Seidel or the point successive overrelaxation scheme. The method has been included as the neutronic model in a reactor core simulation computer code BOREAS, where it is combined with a thermal-hydraulic model in order to make a simultaneous computation of the interdependent power and void distributions in a boiling water reactor possible. Also described in this report are a method for temporary one-dimensional iteration developed in order to accelerate the iterative solution of the problem and the Haling principle which is widely used in the planning of reloading operations for BWR reactors. (author)

  6. HFR irradiation testing of light water reactor (LWR) fuel

    International Nuclear Information System (INIS)

    Markgraf, J.F.W.

    1985-01-01

    For the materials testing reactor HFR some characteristic information with emphasis on LWR fuel rod testing capabilities and hot cell investigation is presented. Additionally a summary of LWR fuel irradiation programmes performed and forthcoming programmes are described. Project management information and a list of publications pertaining to LWR fuel rod test programmes is given

  7. Utilization of nuclear energy for generating electric power in the FRG, with special regard to LWR-type reactors

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    Comments on interdependencies in energy industry and energy generation as seen by energy supply utilities, stating that the generation of electric power in Germany can only be based on coal and nuclear energy in the long run, are followed by the most important, fundamental, nuclear-physical, technological and in part political interdependencies prevailing in the starting situation of 1955/58 when the construction of nuclear power plant reactors began. Then the development ranging to the 28000 MW nuclear power output to be expected in 1985 is outlined, totalling in 115000 MW electric power in the FRG. Finally, using the respectively latest order, the technical set up of each of the reactor types with 1300 MWe unit power offered by German manufacturers are described: BBC/BBR PWR-type reactor Neupotz, KWU-PWR-type reactor Hamm and KWU PWR-type reactor double unit B+C Gundremmingen. (orig.) [de

  8. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 1. Summary: alternatives for the back of the LWR fuel cycle types and properties of LWR fuel cycle wastes projections of waste quantities; selected glossary

    International Nuclear Information System (INIS)

    1976-05-01

    Volume I of the five-volume report contains executive and technical summaries of the entire report, background information of the LWR fuel cycle alternatives, descriptions of waste types, and projections of waste quantities. Overview characterizations of alternative LWR fuel cycle modes are also included

  9. Radiological impact of plutonium recycle in the fuel cycle of LWR type reactors: professional exposure during mormal operation

    International Nuclear Information System (INIS)

    White, I.F.; Kelly, G.N.

    1983-01-01

    The radiological impact of the fuel cycle of light water type reactors using enriched uranium may be changed by plutonium recycle. The impact on human population and on the persons professionally exposed may be different according to the different steps of the fuel cycle. This report analyses the differential radiological impact on the different types of personnel involed in the fuel cycle. Each step of the fuel cycle is separately studied (fuel fabrication, reactor operation, fuel reprocessing), as also the transport of the radioactive materials between the different steps. For the whole fuel cycle, one estimates that, with regard to the fuel cycle using enriched uranium, the plutonium recycle involves a small increase of the professional exposure

  10. Transmutation of LWR waste actinides in thermal reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-01-01

    Recycle of actinides to a reactor for transmutation to fission products is being considered as a possible means of waste disposal. Actinide transmutation calculations were made for two irradiation options in a thermal (LWR) reactor. The cases considered were: all actinides recycled in regular uranium fuel assemblies, and transuranic actinides recycled in separate mixed oxide (MOX) assemblies. When all actinides were recycled in a uranium lattice, a reduction of 62% in the transuranic inventory was achieved after 10 recycles, compared to the inventory accumulated without recycle. When the transuranics from 2 regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after 5 recycles

  11. FMDP reactor alternative summary report: Volume 4, Evolutionary LWR alternative

    International Nuclear Information System (INIS)

    1996-09-01

    Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] have become surplus to national defense needs both in the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES ampersand H) consequences if surplus fissile materials are not properly managed. The purpose of this report is to provide schedule, cost, and technical information that will be used to support the Record of Process (ROD). Following the screening process, DOE/MD via its national laboratories initiated a more detailed analysis activity to further evaluate each of the ten plutonium disposition alternatives that survived the screening process. Three ''Alternative Teams,'' chartered by DOE and comprised of technical experts from across the DOE national laboratory complex, conducted these analyses. One team was chartered for each of the major disposition classes (borehole, immobilization, and reactors). During the last year and a half, the Fissile Materials Disposition Program (FMDP) Reactor Alternative Team (RxAT) has conducted extensive analyses of the cost, schedule, technical maturity, S ampersand S, and other characteristics of reactor-based plutonium disposition. The results of the RxAT's analyses of the existing LWR, CANDU, and partially complete LWR alternatives are documented in Volumes 1-3 of this report. This document (Volume 4) summarizes the results of these analyses for the ELWR-based plutonium disposition option

  12. FMDP reactor alternative summary report: Volume 4, Evolutionary LWR alternative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] have become surplus to national defense needs both in the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES&H) consequences if surplus fissile materials are not properly managed. The purpose of this report is to provide schedule, cost, and technical information that will be used to support the Record of Process (ROD). Following the screening process, DOE/MD via its national laboratories initiated a more detailed analysis activity to further evaluate each of the ten plutonium disposition alternatives that survived the screening process. Three ``Alternative Teams,`` chartered by DOE and comprised of technical experts from across the DOE national laboratory complex, conducted these analyses. One team was chartered for each of the major disposition classes (borehole, immobilization, and reactors). During the last year and a half, the Fissile Materials Disposition Program (FMDP) Reactor Alternative Team (RxAT) has conducted extensive analyses of the cost, schedule, technical maturity, S&S, and other characteristics of reactor-based plutonium disposition. The results of the RxAT`s analyses of the existing LWR, CANDU, and partially complete LWR alternatives are documented in Volumes 1-3 of this report. This document (Volume 4) summarizes the results of these analyses for the ELWR-based plutonium disposition option.

  13. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  14. Recycle of LWR [Light Water Reactor] actinides to an IFR [Integral Fast Reactor

    International Nuclear Information System (INIS)

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    A large quantity of actinide elements is present in irradiated Light Water Reactor (LWR) fuel that is stored throughout the world. Because of the high fission-to-capture ratio for the transuranium (TRU) elements with the high-energy neutrons in the metal-fueled Integral Fast Reactor (IFR), that reactor can consume these elements effectively. The stored fuel represents a valuable resource for an expanding application of fast power reactors. In addition, removal of the TRU elements from the spent LWR fuel has the potential for increasing the capacity of a high-level waste facility by reducing the heat loads and increasing the margin of safety in meeting licensing requirements. Argonne National Laboratory (ANL) is developing a pyrochemical process, which is compatible with the IFR fuel cycle, for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. The major objective of the LWR fuel recovery process is high TRU element recovery, with decontamination a secondary issue, because fission product removal is accomplished in the IFR process. The extensive pyrochemical processing studies of the 1960s and 1970s provide a basis for the design of possible processes. Two processes were selected for laboratory-scale investigation. One is based on the Salt Transport Process studied at ANL for mixed-oxide fast reactor fuel, and the other is based on the blanket processing studies done for ANL's second Experimental Breeder Reactor (EBR-2). This paper discusses the two processes and is a status report on the experimental studies. 5 refs., 2 figs., 2 tabs

  15. Validation of the AZTRAN 1.1 code with problems Benchmark of LWR reactors; Validacion del codigo AZTRAN 1.1 con problemas Benchmark de reactores LWR

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo Q, J. A.; Bastida O, G. E.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Xolocostli M, J. V.; Gomez T, A. M., E-mail: amhed.jvq@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    The AZTRAN module is a computational program that is part of the AZTLAN platform (Mexican modeling platform for the analysis and design of nuclear reactors) and that solves the neutron transport equation in 3-dimensional using the discrete ordinates method S{sub N}, steady state and Cartesian geometry. As part of the activities of Working Group 4 (users group) of the AZTLAN project, this work validates the AZTRAN code using the 2002 Yamamoto Benchmark for LWR reactors. For comparison, the commercial code CASMO-4 and the free code Serpent-2 are used; in addition, the results are compared with the data obtained from an article of the PHYSOR 2002 conference. The Benchmark consists of a fuel pin, two UO{sub 2} cells and two other of MOX cells; there is a problem of each cell for each type of reactor PWR and BWR. Although the AZTRAN code is at an early stage of development, the results obtained are encouraging and close to those reported with other internationally accepted codes and methodologies. (Author)

  16. Official announcement of the directive on protection of nuclear power plant equipped with LWR-type reactors from human intrusion or other interference by third parties. Announcement of BMU (German Federal Ministry Environment), of 6 Dec. 1995 - RS I 3 13151 - 6/14

    International Nuclear Information System (INIS)

    1996-01-01

    An operating permit for a nuclear power plant is to be granted only if the applicant and facility operator presents evidence guaranteeing the legally required physical protection and other security measures for protection from human instrusion and other type of interference. As a basis for review and licensing, the competent authorities in 1987 have issued a directive specifying the requirements to be met for physical protection of nuclear power plant equipped with PWR-type reactors, and in 1994 followed a second, analogous directive relating to nuclear power plant with BWR-type reactors. The directive now announced for physical protection of nuclear power plant equipped with LWR-type reactors combines and replaces the two former ones, and from the date of the announcement is the only applicable directive. The text of the directive is not reproduced for reasons of secrecy protection. (orig./CB) [de

  17. Fast reactor core design studies to cope with TRU fuel composition changes in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    As part of the Fast Reactor Cycle Technology Development Project (FaCT Project), sodium-cooled fast reactor core design efforts have been made to cope with the TRU fuel composition changes expected during LWR-to-FBR transition period, in which a various kind of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and a way of recycling them. A 750 MWe mixed-oxide fuel core is firstly defined as a FaCT medium-size reference core and its neutronics characteristics are determined. The core is a high internal conversion type and has an average burnup of 150 GWD/T. The reference TRU fuel composition is assumed to come from the FBR equilibrium state. Compared to the LWR-to-FBR transition period, the TRU fuels in the FBR equilibrium period are multi-recycled through fast reactors and have a different composition. An available TRU fuel composition is determined by fast reactor spent fuel multi-recycling scenarios. Then the FaCT core corresponding to the TRU fuel with different compositions is set according to the TRU fuel composition changes in LWR-to-FBR transition period, and the key core neutronics characteristics are assessed. It is shown that among the core neutronics characteristics, the burnup reactivity and the safety parameters such as sodium void reactivity and Doppler coefficient are significantly influenced by the TRU fuel composition changes. As a result, a general characteristic in the FaCT core design to cope with TRU fuel composition changes is grasped and the design envelopes are identified in terms of the burnup reactivity and the safety parameters. (author)

  18. FMDP Reactor Alternative Summary Report: Volume 3 - partially complete LWR alternative

    International Nuclear Information System (INIS)

    Greene, S.R.; Fisher, S.E.; Bevard, B.B.

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 3 of a four volume report summarizes the results of these analyses for the partially complete LWR (PCLWR) reactor based plutonium disposition alternative

  19. FMDP Reactor Alternative Summary Report: Volume 3 - partially complete LWR alternative

    Energy Technology Data Exchange (ETDEWEB)

    Greene, S.R.; Fisher, S.E.; Bevard, B.B. [and others

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 3 of a four volume report summarizes the results of these analyses for the partially complete LWR (PCLWR) reactor based plutonium disposition alternative.

  20. Validation of the AZTRAN 1.1 code with problems Benchmark of LWR reactors

    International Nuclear Information System (INIS)

    Vallejo Q, J. A.; Bastida O, G. E.; Francois L, J. L.; Xolocostli M, J. V.; Gomez T, A. M.

    2016-09-01

    The AZTRAN module is a computational program that is part of the AZTLAN platform (Mexican modeling platform for the analysis and design of nuclear reactors) and that solves the neutron transport equation in 3-dimensional using the discrete ordinates method S_N, steady state and Cartesian geometry. As part of the activities of Working Group 4 (users group) of the AZTLAN project, this work validates the AZTRAN code using the 2002 Yamamoto Benchmark for LWR reactors. For comparison, the commercial code CASMO-4 and the free code Serpent-2 are used; in addition, the results are compared with the data obtained from an article of the PHYSOR 2002 conference. The Benchmark consists of a fuel pin, two UO_2 cells and two other of MOX cells; there is a problem of each cell for each type of reactor PWR and BWR. Although the AZTRAN code is at an early stage of development, the results obtained are encouraging and close to those reported with other internationally accepted codes and methodologies. (Author)

  1. Economical and engineering aspects of modular-type fast reactors

    International Nuclear Information System (INIS)

    Kirillov, E.V.; Demidova, L.S.

    1989-01-01

    Economical and engineering characteristics for SAFR and PRISM modular-type reactors are analyzed on the basis of foreign papers. Dependence of economical characteristics for SAFR modules on their output is shown. Cost of power generation for the NPPs with PRISM reactor, LWR reactor and for coal thermal power plant is presented

  2. Alternatives for managing post LWR reactor nuclear wastes

    International Nuclear Information System (INIS)

    Platt, A.M.

    1976-01-01

    The two extremes in the LWR fuel cycle are discarding the spent fuel and recycling the U and Pu to the maximum extent possible. The waste volumes from the two alternatives are compared. A preliminary evaluation is made of the technology available for handling wastes from each step of the fuel cycle. The wastes considered are fuel materials, high--level wastes, other liquids, combustible and non-combustible solids, and non--high--level wastes. Evaluation of processing gaseous wastes indicates that technology is available for capture of Kr and I 2 , but further development is needed for T 2 . Technology for interim storage and geological isolation is considered adequate. An outline is given of the steps in the selection of a final storage site

  3. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    International Nuclear Information System (INIS)

    Sample, C.R.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL

  4. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  5. In-core materials testing under LWR conditions in the Halden reactor

    International Nuclear Information System (INIS)

    Bennett, P.J.; Hauso, E.; Hoegberg, N.W.; Karlsen, T.M.; McGrath, M.A.

    2002-01-01

    The Halden boiling water reactor (HBWR) has been in operation since 1958. It is a test reactor with a maximum power of 18 MW and is cooled and moderated by boiling heavy water, with a normal operating temperature of 230 C and a pressure of 34 bar. In the past 15 years increasing emphasis has been placed on materials testing, both of in-core structural materials and fuel claddings. These tests require representative light water reactor (LWR) conditions, which are achieved by housing the test rigs in pressure flasks that are positioned in fuel channels in the reactor and connected to dedicated water loops, in which boiling water reactor (BWR) or pressurised water reactor (PWR) conditions are simulated. Understanding of the in-core behaviour of fuel or reactor materials can be greatly improved by on-line measurements during power operation. The Halden Project has performed in-pile measurements for a period of over 35 years, beginning with fuel temperature measurements using thermocouples and use of differential transformers for measurement of fuel pellet or cladding dimensional changes and internal rod pressure. Experience gained over this period has been applied to on-line instrumentation for use in materials tests. This paper gives details of the systems used at Halden for materials testing under LWR conditions. The techniques used to provide on-line data are described and illustrative results are presented. (authors)

  6. In-core materials testing under LWR conditions in the Halden reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.J.; Hauso, E.; Hoegberg, N.W.; Karlsen, T.M.; McGrath, M.A. [OECD Halden Reactor Project (Norway)

    2002-07-01

    The Halden boiling water reactor (HBWR) has been in operation since 1958. It is a test reactor with a maximum power of 18 MW and is cooled and moderated by boiling heavy water, with a normal operating temperature of 230 C and a pressure of 34 bar. In the past 15 years increasing emphasis has been placed on materials testing, both of in-core structural materials and fuel claddings. These tests require representative light water reactor (LWR) conditions, which are achieved by housing the test rigs in pressure flasks that are positioned in fuel channels in the reactor and connected to dedicated water loops, in which boiling water reactor (BWR) or pressurised water reactor (PWR) conditions are simulated. Understanding of the in-core behaviour of fuel or reactor materials can be greatly improved by on-line measurements during power operation. The Halden Project has performed in-pile measurements for a period of over 35 years, beginning with fuel temperature measurements using thermocouples and use of differential transformers for measurement of fuel pellet or cladding dimensional changes and internal rod pressure. Experience gained over this period has been applied to on-line instrumentation for use in materials tests. This paper gives details of the systems used at Halden for materials testing under LWR conditions. The techniques used to provide on-line data are described and illustrative results are presented. (authors)

  7. Fast reactors will eat nuclear waste from LWR

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu

    1999-01-01

    Although nuclear power is one of the indispensable energy sources to support modern life styles in developed countries, it becomes harder and harder to increase its capacity. Newspaper reported that there are numbers of evidences showing the suppression effect on cancer by the low level of radiation. It is expected for public people that the fear for radiation induced harm on health will mitigate through the explanation based on scientific evidences. Safe management of radioactive waste is one of the most serious issues to be solved. The neutron at fast reactors can eat more effectively the long lived several nuclear waste materials from light water reactor system, The key issue is to develop the fast reactor fuel cycle system technologies that are more economical, more proliferation resistant and higher breeding ratio. The Metallic Fuel Cycle is one of the options for the future fast breeder reactor and its related fuel cycle that enable to give the answer for the radioactive waste issues. The attractiveness of the metallic fuel cycle concept is briefly described. (author)

  8. Fast reactors will eat nuclear waste from LWR

    Energy Technology Data Exchange (ETDEWEB)

    Tokiwai, Moriyasu [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Res., Lab.

    1999-12-01

    Although nuclear power is one of the indispensable energy sources to support modern life styles in developed countries, it becomes harder and harder to increase its capacity. Newspaper reported that there are numbers of evidences showing the suppression effect on cancer by the low level of radiation. It is expected for public people that the fear for radiation induced harm on health will mitigate through the explanation based on scientific evidences. Safe management of radioactive waste is one of the most serious issues to be solved. The neutron at fast reactors can eat more effectively the long lived several nuclear waste materials from light water reactor system, The key issue is to develop the fast reactor fuel cycle system technologies that are more economical, more proliferation resistant and higher breeding ratio. The Metallic Fuel Cycle is one of the options for the future fast breeder reactor and its related fuel cycle that enable to give the answer for the radioactive waste issues. The attractiveness of the metallic fuel cycle concept is briefly described. (author)

  9. On reactor type comparisons for the next generation of reactors

    International Nuclear Information System (INIS)

    Alesso, H.P.; Majumdar, K.C.

    1991-01-01

    In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs

  10. FMDP reactor alternative summary report. Volume 1 - existing LWR alternative

    International Nuclear Information System (INIS)

    Greene, S.R.; Bevard, B.B.

    1996-01-01

    Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] are becoming surplus to national defense needs in both the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES ampersand H) consequences if surplus fissile materials are not properly managed. This document summarizes the results of analysis concerned with existing light water reactor plutonium disposition alternatives

  11. FMDP reactor alternative summary report. Volume 1 - existing LWR alternative

    Energy Technology Data Exchange (ETDEWEB)

    Greene, S.R.; Bevard, B.B. [and others

    1996-10-07

    Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] are becoming surplus to national defense needs in both the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES&H) consequences if surplus fissile materials are not properly managed. This document summarizes the results of analysis concerned with existing light water reactor plutonium disposition alternatives.

  12. Aging assessment and mitigation for major LWR [light water reactor] components

    International Nuclear Information System (INIS)

    Shah, Y.N.; Ware, A.G.; Conley, D.A.; MacDonald, P.E.; Burns, J.J. Jr.

    1989-01-01

    This paper summarizes some of the results of the Aging Assessment and Mitigation Project sponsored by the US Nuclear Regulatory Commission (USNRC), Office of Nuclear Regulatory Research. The objective of the project is to develop an understanding of the aging degradation of the major light water reactor (LWR) structures and components and to develop methods for predicting the useful life of these components so that the impact of aging on the safe operation of nuclear power plants can be evaluated and addressed. The research effort consists of integrating, evaluating, and updating the available aging-related information. This paper discusses current accomplishments and summarizes the significant degradation processes active in two major components: pressurized water reactor pressurizer surge and spray lines and nozzles, and light water reactor primary coolant pumps. This paper also evaluates the effectiveness of the current inservice inspection programs and presents conclusions and recommendations related to aging of these two major components. 37 refs., 7 figs., 3 tabs

  13. Radionuclide distribution in LWR [light-water reactor] spent fuel

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Thomas, L.E.; Baldwin, D.L.; Mendel, J.E.

    1990-09-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory (PNL) provides well-characterized spent fuel from light-water reactors (LWRs) for use in laboratory tests relevant to nuclear waste disposal in the proposed Yucca Mountain repository. Interpretation of results from tests on spent fuel oxidation, dissolution, and cladding degradation requires information on the inventory and distribution of radionuclides in the initial test materials. The MCC is obtaining this information from examinations of Approved Testing Materials (ATMs), which include spent fuel with burnups from 17 to 50 MWd/kgM and fission gas releases (FGR) from 0.2 to 18%. The concentration and distribution of activation products and the release of volatile fission products to the pellet-cladding gap and rod plenum are of particular interest because these characteristics are not well understood. This paper summarizes results that help define the 14 C inventory and distribution in cladding, the ''gap and grain boundary'' inventory of radionuclides in fuels with different FGRs, and the structure and radionuclide inventory of the fuel rim region within a few hundred micrometers from the fuel edge. 6 refs., 5 figs., 1 tab

  14. LWR fuel rod testing facilities in high flux reactor (HFT) Petten for investigation of power cycling and ramping behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Markgraf, J; Perry, D; Oudaert, J [Commission of the European Communities, Joint Reserach Centre, Petten Establishment, Petten (Netherlands)

    1983-06-01

    LWR fuel rod irradiation experiments are being performed in HFR's Pool Side Facility (PSF) by means of pressurized boiling water capsules (BWFC). For more than 6 years the major application of these devices has been in performing irradiation programs to investigate the power ramp behaviour of PWR and BWR rods which have been pre-irradiated in power reactors. Irradiation devices with various types of monitoring instrumentation are available, e.g. for fuel rod length, fuel stack length, fuel rod internal pressure and fuel rod central temperature measurements. The application scope covers PWR and BWR fuel rods, with burn-up levels up to 45 MWd/kg(U), max. linear heat generation rates up to 700 W/cm and simulation of constant power change rates between 0.05 and 1000 W/cm.min. The paper describes the different designs of LWR fuel rod testing facilities and associated non-destructive testing devices in use at the HFR Petten. It also addresses the new test capabilities that will become available after exchange of the HFR vessel in 1983. Furthermore it shows some typical results. (author)

  15. Hydrogen mixing study (HMS) in LWR type containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1983-01-01

    A numerical technique has been developed for calculating the full three-dimensional time-dependent Navier-Stokes equations with multiple speies transport. The method is a modified form of the Implicit Continuous-fluid Eulerian (ICE) technique to solve the governing equations for low Mach number flows where pressure waves and local variations in compression and expansion are not significant. Large density variations, due to thermal and species concentration gradients, are accounted for without the restrictions of the classical Boussinesq approximation. Calculations of the EPRI/HEDL standard problems verify the feasibility of using this finite-difference technique for analyzing hydrogen mixing within LWR containments

  16. Integral Inherently Safe Light Water Reactor (I2S-LWR)

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Memmott, Matthew; Boy, Guy; Charit, Indrajit; Manera, Annalisa; Downar, Thomas; Lee, John; Muldrow, Lycurgus; Upadhyaya, Belle; Hines, Wesley; Haghighat, Alierza

    2017-01-01

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project ''Integral Inherently Safe Light Water Reactors (I 2 S-LWR)''. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to address the preference of some utilities in the US power market for unit power level on the order of 1 GWe.

  17. Integral Inherently Safe Light Water Reactor (I2S-LWR)

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Memmott, Matthew [Brigham Young Univ., Provo, UT (United States); Boy, Guy [Florida Inst. of Technology, Melbourne, FL (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States); Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Lee, John [Univ. of Michigan, Ann Arbor, MI (United States); Muldrow, Lycurgus [Morehouse College, Atlanta, GA (United States); Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Hines, Wesley [Univ. of Tennessee, Knoxville, TN (United States); Haghighat, Alierza [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-10-02

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project “Integral Inherently Safe Light Water Reactors (I2S-LWR)”. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to address the preference of some utilities in the US power market for unit power level on the order of 1 GWe.

  18. Accelerator driven light water fast reactor (revisiting to the accelerator LWR fuel regenerator)

    International Nuclear Information System (INIS)

    Takahashi, H.; Zhang, J.

    1999-01-01

    A tight-latticed, high-enriched Pu fuel reactor cooled by water or by super-critical steam has a high neutron economy, similar to that of Na-or Pb-cooled fast reactor. Operating in a subcritical condition by providing spallation neutrons, this Pu-fueled reactor can run safely, despite the positive coolant void coefficients. It can be used to transmute the proliferation-prone Pu into proliferation-resistive U-233 fuel using thorium as the fertile material. Rather than employing the large linear accelerator proposed for the LWR fuel regenerator studied in the INFCE program, a small circular accelerator, such as a cyclotron or a Fixed Field Alternating Gradient Synchrotron (FFAG), can run a large power reactor in a slightly subcritical reactor using control rods, on-line fuel reshuffling, and slightly graded proton-beam injection. Some thoughts on improving the reliability of the proton accelerator, on transmutation of the long-lived fission products of Tc-99, and I-129, and the future direction of the development of the fast reactor are discussed. (author)

  19. Nuclear reactor types

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The characteristics of different reactor types designed to exploit controlled fission reactions are explained. Reactors vary from low power research devices to high power devices especially designed to produce heat, either for direct use or to produce steam to drive turbines to generate electricity or propel ships. A general outline of basic reactors (thermal and fast) is given and then the different designs considered. The first are gas cooled, including the Magnox reactors (a list of UK Magnox stations and reactor performance is given), advanced gas cooled reactors (a list of UK AGRs is given) and the high temperature reactor. Light water cooled reactors (pressurized water [PWR] and boiling water [BWR] reactors) are considered next. Heavy water reactors are explained and listed. The pressurized heavy water reactors (including CANDU type reactors), boiling light water, steam generating heavy water reactors and gas cooled heavy water reactors all come into this category. Fast reactors (liquid metal fast breeder reactors and gas cooled fast reactors) and then water-cooled graphite-moderated reactors (RBMK) (the type at Chernobyl-4) are discussed. (U.K.)

  20. AFCI : Co-extraction impacts on LWR and fast reactor fuel cycles

    International Nuclear Information System (INIS)

    Taiwo, T. A.; Szakalay, F. J.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2007-01-01

    A systematic investigation of the impact of the co-extraction COEXTM process on reactor performance has been performed. The proliferation implication of the process was also evaluated using the critical mass, radioactivity, decay heat and neutron and gamma source rates and gamma doses as indicators. The use of LWR-spent-uranium-based MOX fuel results in a higher initial plutonium content requirement in an LWR MOX core than if natural uranium based MOX fuel is used (by about 1%); the plutonium for both cases is derived from the spent LWR spent fuel. More transuranics are consequently discharged in the spent fuel of the MOX core. The presence of U-236 in the initial fuel was also found to result in higher content of Np-237 in the spent MOX fuel and less consumption of Pu-238 and Am-241 in the MOX core. The higher quantities of Np-237 (factor of 5), Pu-238 (20%) and Am-241 (14%) decrease the effective repository utilization, relative to the use of natural uranium in the PWR MOX core. Additionally, the minor actinides continue to accumulate in the fuel cycle, even if the U-Pu co-extraction products are continuously recycled in the PWR cores, and thus a solution is required for the minor actinides. The utilization of plutonium derived from LWR spent fuel versus weapons-grade plutonium for the startup core of a 1,000 MWT advanced burner fast reactor (ABR) increases the TRU content by about 4%. Differences are negligible for the equilibrium recycle core. The impact of using reactor spent uranium instead of depleted uranium was found to be relatively smaller in the fast reactor (TRU content difference less than 0.4%). The critical masses of the co-extraction products were found to be higher than that of weapons-grade plutonium and the decay heat and radiation sources of the materials (products) were also found to be generally higher than that of weapons-grade plutonium (WG-Pu) in the transuranics content range of 0.1 to 1.0 in the heavy-metal. The magnitude of the

  1. Preliminary reactor physics calculations for Exxon LWR fuel testing in the power burst facility

    International Nuclear Information System (INIS)

    Olson, W.O.; Nigg, D.W.

    1981-05-01

    The PFB reactor is being considered as an irradiation facility to test LWR fuel rods for Exxon Nuclear Company. Requested test conditions are 18 kW/ft axial peak steady state power in 2.5% initial enrichment, 20,000 MWd/Tu exposed rods. Multigroup transport theory calculations (S/sub n/ and Monte Carlo) showed that this was unattainable in the standard PBF test loop. Thus, a flux multiplier was developed in the form of a Zr-2-clad 0.15-inch thick cylindrical shell of 35% enriched, 88% T.D. UO 2 replacing the flow divider, surrounding the rod within the in-pile tube in PFB. With this flux multiplier installed and assuming an average water density of 0.86 g/cm 3 within the test loop, a Figure of Merit (FOM) for a single-rod test assembly of 0.86 kW/ft-MW +- 5% (at 95% confidence level) was calculated. This FOM is the axial peak linear test rod power per megawatt of reactor power. A reactor power of about 21 megawatts will therefore be required to supply the requested linear test rod axial peak heating rate of 18 kW/ft

  2. Technical description of other types of reactors

    International Nuclear Information System (INIS)

    Vollmer, H.

    1977-01-01

    The paper reviews the development of reactor systems other than LWR, i. e. gas cooled reactors, heavy water reactors and fast breeders. The specific features of these reactors are discussed. Technical details on plant design of the various systems will be given as well as the present status-of-the-art. (orig.) [de

  3. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  4. Phoenix type concepts for transmutation of LWR waste minor actinides

    International Nuclear Information System (INIS)

    Segev, M.

    1994-01-01

    A number of variations on the original Phoenix theme were studied. The basic rationale of the Phoenix incinerator is making oxide fuel of the LWR waste minor actinides, loading it in an FFTF-like subcritical core, then bombarding the core with the high current beam accelerated protons to generate considerable energy through spallation and fission reactions. As originally assessed, if the machine is fed with 1600 MeV protons in a 102 mA current, then 8 core modules are driven to transmute the yearly minor actinides waste of 75 1000 MW LWRs into Pu 238 and fission products; in a 2 years cycle the energy extracted is 100000 MW d/T. This performance cannot be substantiated in a rigorous analysis. A calculational consistent methodology, based on a combined execution of the Hermes, NCNP, and Korigen codes, shows, nonetheless that changes in the original Phoenix parameters can upgrade its performance.The original Phoenix contains 26 tons minor actinides in 8 core modules; 1.15 m 3 module is shaped for 40% neutron leakage; with a beam of 102 mA the 8 modules are driven to 100000 MW/T in 10.5 years, burning out the yearly minor actinide waste of 15 LWRs; the operation must be assisted by grid electricity. If the 1.15 m 3 module is shaped to allow only 28% leakage, then a beam of 102 mA will drive the 8 modules to 100000 MW/T in 3.5 years, burning out the yearly minor actinides waste of 45 LWRs. Some net grid electricity will be generated. If 25 tons minor actinides are loaded into 5 modules, each 1.72 m 3 in volume and of 24% leakage, then a 97 mA beam will drive the module to 100000 MW/T in 2.5 years, burning out the yearly minor actinides waste of 70 LWRs. A considerable amount of net grid electricity will be generated. If the lattice is made of metal fuel, and 26 tons minor actinides are loaded into 32 small modules, 0.17 m 3 each, then a 102 mA beam will drive the modules to 100000 MW/T in 2 years, burning out the yearly minor actinides waste of 72 LWRs. A considerable

  5. Neutron dosimetry at nuclear power plants with light water reactors (LWR)

    International Nuclear Information System (INIS)

    Hofmann, B.; Schwarz, W.; Burgkhardt, B.; Piesch, E.

    1989-02-01

    During nuclear start-up of the Muelheim-Kaerlich nuclear power plant in 1986 the neutron radiation fields in the primary and auxiliary component rooms of the containment were investigated using the Single Sphere Albedo Technique and additional measurement techniques. For personnel monitoring albedo neutron dosemeters were used consisting of thermoluminescent detectors and track etch detectors combined with boron converters. Results: (1) The neutron radiation fields reach dose rate values up to 1000 mSv/h at the sleeves of the reactor coolant pipes, in the refuelling pool and the reactor cavity sump. The neutron component varies between 10% in the steam generator rooms up to 92% in the refuelling pool. (2) The mean value of the effective neutron energy at the different locations was found to be about 100 keV. Thermal neutrons contribute with about 10% to the area dose. (3) By direct intercomparisons and different evaluation methods of the Single Sphere Albedo Dosemeter it was shown, that rem-counters used within routine monitoring in the mixed radiation fields of the LWR overestimate the neutron dose rate only insignificantly (+20%) and are therefore usable for practical radiation protection work. (4) The sensitivity of albedo neutron dosemeters allows the detection of neutrons above 10 μSv. The contribution of neutrons to the total personnel dose was 25% in maximum. For the evaluation of albedo detectors a constant calibration factor can be applied. (orig./HP) [de

  6. Minutes of the 13th light water reactor pressure vessel surveillance dosimetry improvement program (LWR-PV-SDIP) meeting

    International Nuclear Information System (INIS)

    1984-04-01

    Information is presented concerning ASTM LWR standards and program documentation; trend curves, PSF, and other test reactor metallurgical programs; PSF dosimetry and metallurgical capsule neutron and gamma environment characterization and metallurgical studies; PVS characterization program; other neutron fields; surveillance dosimetry measurement facility (SDMF) and perturbation studies; transport theory calculations; gamma field benchmarks and photo-reaction studies; and fission and non-fission sensor inventories and quality assurance

  7. Stylized whole-core benchmark of the Integral Inherently Safe Light Water Reactor (I2S-LWR) concept

    International Nuclear Information System (INIS)

    Hon, Ryan; Kooreman, Gabriel; Rahnema, Farzad; Petrovic, Bojan

    2017-01-01

    Highlights: • A stylized benchmark specification of the I2S-LWR core. • A library of cross sections were generated in both 8 and 47 groups. • Monte Carlo solutions generated for the 8 group library using MCNP5. • Cross sections and pin fission densities provided in journal’s repository. - Abstract: The Integral, Inherently Safe Light Water Reactor (I 2 S-LWR) is a pressurized water reactor (PWR) concept under development by a multi-institutional team led by Georgia Tech. The core is similar in size to small 2-loop PWRs while having the power level of current large reactors (∼1000 MWe) but using uranium silicide fuel and advanced stainless steel cladding. A stylized benchmark specification of the I 2 S-LWR core has been developed in order to test whole-core neutronics codes and methods. For simplification the core was split into 57 distinct material regions for cross section generation. Cross sections were generated using the lattice physics code HELIOS version 1.10 in both 8 and 47 groups. Monte Carlo solutions, including eigenvalue and pin fission densities, were generated for the 8 group library using MCNP5. Due to space limitations in this paper, the full cross section library and normalized pin fission density results are provided in the journal’s electronic repository.

  8. The concept of fuel cycle integrated molten salt reactor for transmuting Pu+MA from spent LWR fuels

    International Nuclear Information System (INIS)

    Hirose, Y.; Takashima, Y.

    2001-01-01

    Japan should need a new fuel cycle, not to save spent fuels indefinitely as the reusable resources but to consume plutonium and miner actinides orderly without conventional reprocessing. The key component is a molten salt reactor fueled with the Pu+MA (PMA) separated from LWR spent fuels using fluoride volatility method. A double-tiered once-through reactor system can burn PMA down to 5% remnant ratio, and can make PMA virtually free from the HAW to be disposed geometrically. A key issue to be demonstrated is the first of all solubility behavior of trifluoride species in the molten fuel salt of 7 LiF-BeF 2 mixture. (author)

  9. Light water reactor (LWR) innovation needs in the United States: The Massachusetts Institute of Technology LWR innovation project

    International Nuclear Information System (INIS)

    Golay, M.W.

    1988-01-01

    A major effort under way within the Massachusetts Institute of Technology (MIT) Engineering School is focused on the contributions that technology innovation can make in revitalizing nuclear power in the United States. A principal component of this effort is a project to improve the designs of the next generation of light water reactors (LWRs) with emphasis on achieving improved capacity factors and safety, and reducing the construction duration. The motivation for this overall effort is to prevent the nuclear option from being unnecessarily lost by being available only in uneconomic configurations. In considering how to advance this effort, the authors focused on refining the designs of new reactors because this is the area where the greatest opportunities for improvements exist

  10. Tank type reactor

    International Nuclear Information System (INIS)

    Otsuka, Fumio.

    1989-01-01

    The present invention concerns a tank type reactor capable of securing reactor core integrity by preventing incorporation of gases to an intermediate heat exchanger, thgereby improving the reliability. In a conventional tank type reactor, since vortex flows are easily caused near the inlet of an intermediate heat exchanger, there is a fear that cover gases are involved into the coolant main streams to induce fetal accidents. In the present invention, a reactor core is suspended by way of a suspending body to the inside of a reactor vessel and an intermediate heat exchanger and a pump are disposed between the suspending body and the reactor vessel, in which a vortex current preventive plate is attached at the outside near the coolant inlet on the primary circuit of the intermediate heat exchanger. In this way vortex or turbulence near the inlet of the intermediate heata exchanger or near the surface of coolants can be prevented. Accordingly, the cover gases are no more involved, to insure the reactor core integrity and obtain a tank type nuclear reactor of high reliability. (I.S.)

  11. Tank type LMFBR type reactors

    International Nuclear Information System (INIS)

    Shimizu, Hiroshi

    1985-01-01

    Purpose: To detect the abnormality in the suspended body or reactor core supporting structures thereby improve the safety and reliability of tank type LMFBR reactors. Constitution: Upon inspection during reactor operation period, the top end of the gripper sensing rod of a fuel exchanger is abutted against a supporting bed and the position of the reactor core supporting structures from the roof slab is measured by a stroke measuring device. Then, the sensing rod is pulled upwardly to abut against the arm portion and the position is measured by the stroke measuring device. The measuring procedures are carried out for all of the sensing rods and the measured values are compared with a previously determined value at the initial stage of the reactor operation. As a result, it is possible to detect excess distortions and abnormal deformation in the suspended body or reactor core supporting structures. Furthermore, integrity of the suspended body against thermal stresses can be secured by always measuring the coolant liquid level by the level measuring sensor. (Kamimura, M.)

  12. FBR type reactors

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Yamakawa, Masanori.

    1985-01-01

    Purpose: To enable safety and reliable after-heat removal from a reactor core. Constitution: During ordinary operation of a FBR type reactor, sodium coolants heated to a high temperature in a reactor core are exhausted therefrom, collide against the reactor core upper mechanisms to radially change the flowing direction and then enter between each of the guide vanes. In the case if a main recycling pump is failed and stopped during reactor operation and the recycling force is eliminated, the swirling stream of sodium that has been resulted by the flow guide mechanism during normal reactor operation is continuously maintained within a plenum at a high temperature. Accordingly, the sodium recycling force in the coolant flow channels within the reactor vessel can surely be maintained for a long period of time due to the centrifugal force of the sodium swirling stream. In this way, since the reactor core recycling flow rate can be secured even after the stopping of the main recycling pump, after-heat from the reactor core can safely and surely be removed. (Seki, T.)

  13. FBR type reactor

    International Nuclear Information System (INIS)

    Hayase, Tamotsu.

    1991-01-01

    The present invention concerns an FBR type reactor in which transuranium elements are eliminated by nuclear conversion. There are loaded reactor core fuels being charged with mixed oxides of plutonium and uranium, and blanket fuels mainly comprising depleted uranium. Further, liquid sodium is used as coolants. As transuranium elements, isotope elements of neptunium, americium and curium contained in wastes taken out from light water reactors or the composition thereof are used. The reactor core comprises a region with a greater mixing ratio and a region with a less mixing ratio of the transuranium elements. The mixing ratio of the transuranium elements is made greater for the fuels in the reactor core region at the boundary with the blanket of great neutron leakage. With such a constitution, since the positive reactivity value at the reactor core central portion is small in the Na void reactivity distribution in the reactor core, the positive reactivity is small upon Na boiling in the reactor core central region upon occurrence of imaginable accident, to attain reactor safety. (I.N.)

  14. FBR type reactor core

    International Nuclear Information System (INIS)

    Tamiya, Tadashi; Kawashima, Katsuyuki; Fujimura, Koji; Murakami, Tomoko.

    1995-01-01

    Neutron reflectors are disposed at the periphery of a reactor core fuel region and a blanket region, and a neutron shielding region is disposed at the periphery of them. The neutron reflector has a hollow duct structure having a sealed upper portion, a lower portion opened to cooling water, in which a gas and coolants separately sealed in the inside thereof. A driving pressure of a primary recycling pump is lowered upon reduction of coolant flow rate, then the liquid level of coolants in the neutron reflector is lowered due to imbalance between the driving pressure and a gas pressure, so that coolants having an effect as a reflector are eliminated from the outer circumference of the reactor core. Therefore, the amount of neutrons leaking from the reactor core is increased, and negative reactivity is charged to the reactor core. The negative reactivity of the neutron reflector is made greater than a power compensation reactivity. Since this enables reactor scram by using an inherent performance of the reactor core, the reactor core safety of an LMFBR-type reactor can be improved. (I.N.)

  15. Pressure tube type reactors

    International Nuclear Information System (INIS)

    Komada, Masaoki.

    1981-01-01

    Purpose: To increase the safety of pressure tube type reactors by providing an additional ECCS system to an ordinary ECCS system and injecting heavy water in the reactor core tank into pressure tubes upon fractures of the tubes. Constitution: Upon fractures of pressure tubes, reduction of the pressure in the fractured tubes to the atmospheric pressure in confirmed and the electromagnetic valve is operated to completely isolate the pressure tubes from the fractured portion. Then, the heavy water in the reactor core tank flows into and spontaneously recycles through the pressure tubes to cool the fuels in the tube to prevent their meltdown. By additionally providing the separate ECCS system to the ordinary ECCS system, fuels can be cooled upon loss of coolant accidents to improve the safety of the reactors. (Moriyama, K.)

  16. Reactor core in FBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1989-01-01

    In a reactor core in FBR type reactors, a portion of homogenous fuels constituting the homogenous reactor core is replaced with multi-region fuels in which the enrichment degree of fissile materials is lower nearer to the axial center. This enables to condition the composition such that a reactor core having neutron flux distribution either of a homogenous reactor core or a heterogenous reactor core has substantially identical reactivity. Accordingly, in the transfer from the homogenous reactor core to the axially heterogenous reactor core, the average reactivity in the reactor core is substantially equal in each of the cycles. Further, by replacing a portion of the homogenous fuels with a multi-region fuels, thereby increasing the heat generation near the axial center, it is possiable to reduce the linear power output in the regions above and below thereof and, in addition, to improve the thermal margin in the reactor core. (T.M.)

  17. LMFBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1988-01-01

    Purpose: To flatten the power distribution while maintaining the flattening in the axial power distribution in LMFBR type reactors. Constitution: Main system control rods are divided into control rods used for the operation and starting rods used for the starting of the reactor, and the starting rods are disposed in the radial periphery of the reactor core, while the control rods are disposed to the inside of the starting rods. With such a constitution, adjusting rods can be disposed in the region where the radial power peaking is generated to facilitate the flattening of the power distribution even in such a design that the ratio of the number of control rods to that of fuel assemblies is relatively large. That is, in this reactor, the radial power peaking is reduced by about 10% as compared with the conventional reactor core. As a result, the maximum linear power density during operation is reduced by about 10% to increase the thermal margin of the reactor core. If the maximum linear power density is set identical, the number of the fuel assemblies can be decreased by about 10%, to thereby reduce the fuel production cost. (K.M.)

  18. BWR type nuclear reactors

    International Nuclear Information System (INIS)

    Yamamoto, Toru.

    1987-01-01

    Purpose: To obtain reactor core characteristics with less changes in the excess reactivity due to fuel burnup even when the operation period varies. Constitution: In a BWR type reactor where fuel assemblies containing fuel rods incorporated with burnable poisons are arranged, the fuel assemblies are grouped into first fuel assemblies and second fuel assemblies. Then, the number of fuel rods incorporated with burnable poisons within the first fuel assemblies is made greater than that of the second fuel rods, while the concentration of the burnable poisons in the fuel rods incorporated with the burnable poisons in the first fuel assemblies is made lower than that of the fuel rods incorporated with the burnable poisons in the second fuel assemblies. In the BWR type reactor constituted in this way, the reactor core characteristics can be improved by changing the ratio between the first fuel assemblies and the second fuel assemblies charged to the reactor core, thereby decreasing the changes in the burnup of the excess reactivity. (Kamimura, M.)

  19. Proposal and analysis of the benchmark problem suite for reactor physics study of LWR next generation fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    In order to investigate the calculation accuracy of the nuclear characteristics of LWR next generation fuels, the Research Committee on Reactor Physics organized by JAERI has established the Working Party on Reactor Physics for LWR Next Generation Fuels. The next generation fuels mean the ones aiming for further extended burn-up such as 70 GWd/t over the current design. The Working Party has proposed six benchmark problems, which consists of pin-cell, PWR fuel assembly and BWR fuel assembly geometries loaded with uranium and MOX fuels, respectively. The specifications of the benchmark problem neglect some of the current limitations such as 5 wt% {sup 235}U to achieve the above-mentioned target. Eleven organizations in the Working Party have carried out the analyses of the benchmark problems. As a result, status of accuracy with the current data and method and some problems to be solved in the future were clarified. In this report, details of the benchmark problems, result by each organization, and their comparisons are presented. (author)

  20. PWR type reactor plant

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1993-01-01

    A water chamber of a horizontal U-shaped pipe type steam generator is partitioned to an upper high temperature water chamber portion and a lower low temperature water chamber portion. An exit nozzle of a reactor container containing a reactor core therein is connected to a suction port of a coolant pump by way of first high temperature pipelines. The exit port of the coolant pump is connected to the high temperature water chamber portion of the steam generator by way of second high temperature pipelines. The low temperature water chamber portion of the steam generator is connected to an inlet nozzle of the reactor container by way of the low temperature pipelines. The low temperature water chamber portion of the steam generator is positioned lower than the high temperature water chamber portion, but upper than the reactor core. Accordingly, all of the steam generator for a primary coolant system, coolant pumps as well as high temperature pipelines and low temperature pipelines connecting them are disposed above the reactor core. With such a constitution, there is no worry of interrupting core cooling even upon occurrence of an accident, to improve plant safety. (I.N.)

  1. Validation of Monte Carlo predictions of LWR-PROTEUS safety parameters using an improved whole-reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Plaschy, M. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen, PSI (Switzerland)], E-mail: michael.plaschy@eos.ch; Murphy, M.; Jatuff, F.; Perret, G.; Seiler, R. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen, PSI (Switzerland); Chawla, R. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen, PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, EPFL (Switzerland)

    2009-10-15

    The recent experimental programme conducted in the PROTEUS research reactor at the Paul Scherrer Institute (PSI) has concerned detailed investigations of advanced light water reactor (LWR) fuels. More than fifteen different configurations of the multi-zone critical facility have been studied, each of them requiring accurate estimation of operational safety parameters, in particular the critical driver loadings, shutdown rod worths and the effective delayed neutron fraction {beta}{sub eff}. The current paper presents a full-scale 3D Monte Carlo model for the facility, set up using the MCNPX code, which has been employed for calculation of the operational characteristics for seven different LWR-PROTEUS configurations. Thereby, a variety of nuclear data libraries (viz. ENDF/B6v2, ENDF/B6v8, JEF2.2, JEFF3.0, JEFF3.1, JENDL3.2, and JENDL3.3) have been used, and predictions of k{sub eff} and shutdown rod worths compared with experimental values. Even though certain library-specific trends have been observed, the k{sub eff} predictions are generally very satisfactory, viz. with discrepancies of <0.5% between calculation (C) and experiment (E). The results also confirm the consistent determination of reactivity variations, the C/E values for the shutdown (safety) rod worths being always within 5% of unity. In addition, the MCNP modelling of the multi-zone reactor has yielded interesting results for the delayed neutron fraction ({beta}{sub eff}) in the different configurations, a breakdown being made possible in each case in terms of delayed neutron group, fissioning nuclide, and reactor region.

  2. FBR type reactors

    International Nuclear Information System (INIS)

    Nakamura, Tsugio.

    1986-01-01

    Purpose: To ensure the thermal integrity of a reactor vessel in FBR type reactors by preventing sodium vapors or the likes from intruding into a shielding chamber and avoiding spontaneous convection thereof. Constitution: There are provided a shielding plug for shielding the upper opening of a reactor container, an annular thermal member disposed to the circumferential side in the container, a shielding member for shielding upper end of the shielding chamber and a plurality of convection preventive plates suspended from the thermal member into the shielding chamber, and the shielding chamber is communicated by way of the relatively low temperature portion of the container with a gas communication pipe. That is, by closing the upper end of the shielding chamber with the shielding member, coolant vapors, etc. can be prevented from intruding into the shielding chamber. Further, the convection preventive plates prevent the occurrence of spontaneous convection in the shielding chamber. Further, the gas communication pipe absorbs the expansion and contraction of gases in the shielding chamber to effectively prevent the deformation or the like for each of the structural materials. In this way, the thermal integrity of the reactor container can surely be maintained. (Horiuchi, T.)

  3. Loop type LMFBR reactor

    International Nuclear Information System (INIS)

    Ito, Hiroyuki

    1989-01-01

    In conventional FBR type reactors, primary coolants at high temperature uprise at a great flow rate and, due to the dynamic pressure thereof, the free surface is raised or sodium is partially jetted upwardly and then fallen again. Then, a wave killing plate comprising a buffer plate and a deflection plate is disposed to the liquid surface of coolants. Most of primary sodium uprising from the reactor core along the side of the upper mechanism during operation collide against the buffer plate of the wave killing plate to moderate the dynamic pressure and, further, disperse radially of the reactor vessel. On the other hand, primary sodium passing through flowing apertures collides against the deflection plate opposed to the flowing apertures to moderate the dynamic pressure, by which the force of raising the free surface is reduced. Thus, uprising and waving of the free surface can effectively be suppressed to reduce the incorporation of cover gases into the primary sodium, so that it is possible to prevent in injury of the recycling pump, abrupt increase of the reactor core reactivity and reduction of the heat efficiency of intermediate heat exchangers. (N.H.)

  4. Light water reactors development in Japan. (1) Introduction of LWR technology (PWR)

    International Nuclear Information System (INIS)

    Yamada, Ichita; Suzuki, Shigemitsu

    2008-01-01

    Evolutionary progress of the LWR plants in the last half-century was reviewed in series. Introduction of LWR technology (PWR) in Japan was reviewed in this article. Kansai Electric Power imported the Mihama-1 - a 340 MWe PWR built by Westinghouse Corp. It began operating in 1970 to supply power to the World Exposition (EXPO70). There followed a period in which designs was purchased from US vendors and they were constructed with the co-operation of Mitsubishi Heavy Industry, who would then receive a license to build similar plants in Japan and develop the capacity to design and construct PWRs by itself. Progress of designs, fabrications, project management and construction of PWRs were reviewed from technology transfer to its autonomy age. (T. Tanaka)

  5. Minutes of the 14th Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program (LWR-PV-SDIP) meeting, October 1-5, 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Topics discussed include: ASTM LWR standards; trend curves, PSF, and other test reactor metallurgical programs; PSF dosimetry and metallurgical capsule neutron and gamma characterization and metallurgical studies; PVS characterization program; other neutron fields; Surveillance Dosimetry Measurement Facility (SDMF) and perturbation studies; transport theory calculations; gamma field benchmarks and photo-reaction studies; and fission and non-fission sensor inventories and quality assurance

  6. BWR type reactors

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1986-01-01

    Purpose: To enable to remove water not by way of mechanical operation in a reactor core and improve the fuel economy in BWR type reactors. Constitution: A hollow water removing rod of a cross-like profile made of material having a smaller neutron absorption cross section than the moderator is disposed to the water gap for each of unit structures composed of four fuel assemblies, and water is charged and discharged to and from the water removing rod. Water is removed from the water removing rod to decrease the moderators in the water gap to carry out neutron spectrum shift operation from the initial to the medium stage of reactor core cycles. At the final stage of the cycle, airs in the water removing rod are extracted and the moderator is introduced. The moderator is filled and the criticality is maintained with the accumulated nuclear fission materials. The neutron spectrum shift operation can be attained by eliminating hydrothermodynamic instability and using a water removing rod of a simple structure. (Horiuchi, T.)

  7. FBR type reactor

    International Nuclear Information System (INIS)

    Jinbo, Masakazu; Kawakami, Hiroto; Nagaoka, Kazuhito.

    1996-01-01

    In a LMFBR type reactor, a liquid level control means is disposed for lowering a level of liquid metal present in an annular gap along with temperature elevation of the liquid metal after the level is once elevated upon start-up of the reactor. In addition, a liquid level measuring means is disposed for measuring the level of the liquid metal present in the annular gap so as to intermittently lower the liquid level. Thus, temperature gradient in the vertical direction of the container can be moderated compared with the case where the liquid level is not changed or the case where temperature is changed together with the elevation of the liquid level. As a result, the change of difference of thermal expansion is decreased to reduce stresses generated in the circumferential direction thereby preventing occurrence of a liquid level heat ratchet phenomenon. Even if the liquid level control means should stop during operation, the liquid level lowers and does not cause a sharp heat gradient as in the case where the liquid level is elevated, and since the temperature of the liquid level is lowered even after shut down of the reactor, generated stresses are not increased. Safety of an intermediate heat exchanger vessel is ensured and observation from a control chamber is enabled. (N.H.)

  8. BWR type reactor core

    International Nuclear Information System (INIS)

    Tatemichi, Shin-ichiro.

    1981-01-01

    Purpose: To eliminate the variation in the power distribution of a BWR type reactor core in the axial direction even if the flow rate is increased or decreased by providing a difference in the void coefficient between the upper part and the lower parts of the reactor core, and increasing the void coefficient at the lower part of the reactor core. Constitution: The void coefficient of the lower region from the center to the lower part along the axial direction of a nuclear fuel assembly is increased to decrease the dependence on the flow rate of the axial power distribution of the nuclear fuel assembly. That is, a water/fuel ratio is varied, the water in non-boiled region is increased or the neutron spectrum is varied so as to vary the void coefficient. In order to exemplify it, the rate of the internal pellets of the fuel rod of the nuclear fuel assembly or the shape of the channel box is varied. Accordingly, the power does not considerably vary even if the flow rate is altered since the power is varied in the power operation. (Yoshihara, H.)

  9. BWR type reactor

    International Nuclear Information System (INIS)

    Okano, Shigeru.

    1992-01-01

    In a BWR type reactor, control rod drives are disposed in the upper portion of a reactor pressure vessel, and a control rod guide tube is disposed in adjacent with a gas/liquid separator at a same height, as well as a steam separator is disposed in the control rod guide tube. The length of a connection rod can be shortened by so much as the control rod guide tube and the gas/liquid separator overlapping with each other. Since the control rod guide tube and the gas/liquid separator are at the same height, the number of the gas/liquid separators to be disposed is decreased and, accordingly, even if the steam separation performance by the gas/liquid separator is lowered, it can be compensated by the steam separator of the control rod guide tube. In view of the above, since the direction of emergent insertion of the control rod is not against gravitational force but it is downward direction utilizing the gravitational force, reliability for the emergent insertion of the control rod can be further improved. Further, the length of the connection rod can be minimized, thereby enabling to lower the height of the reactor pressure vessel. The construction cost for the nuclear power plant can be reduced. (N.H.)

  10. Reactor core for LMFBR type reactors

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Azekura, Kazuo; Kurihara, Kunitoshi; Bando, Masaru; Watari, Yoshio.

    1987-01-01

    Purpose: To reduce the power distribution fluctuations and obtain flat and stable power distribution throughout the operation period in an LMFBR type reactor. Constitution: In the inner reactor core region and the outer reactor core region surrounding the same, the thickness of the inner region is made smaller than the axial height of the reactor core region and the radial width thereof is made smaller than that of the reactor core region and the volume thereof is made to 30 - 50 % for the reactor core region. Further, the amount of the fuel material per unit volume in the inner region is made to 70 - 90 % of that in the outer region. The difference in the neutron infinite multiplication factor between the inner region and the outer region is substantially constant irrespective of the burnup degree and the power distribution fluctuation can be reduced to about 2/3, by which the effect of thermal striping to the reactor core upper mechanisms can be moderated. Further, the maximum linear power during operation can be reduced by 3 %, by which the thermal margin in the reactor core is increased and the reactor core fuels can be saved by 3 %. (Kamimura, M.)

  11. Tank type nuclear reactors

    International Nuclear Information System (INIS)

    Naito, Kesahiro; Shimoyashiki, Shigehiro; Yokota, Norikatsu; Takahashi, Kazuo.

    1985-01-01

    Purpose: To improve the seismic proofness and the radiation shielding of LMFBR type reactors by providing the reactor with a structure reduced in the size and the weight, excellent in satisfactory heat insulating property and having radioactive material capturing performance. Constitution: Two sheets of ceramic plate members (for instance, mullite, steatite, beryllium ceramics or the like) which can be fabricated into plate-like shape and have high heat insulating property are overlapped with each other, between which magnetic heat-insulating material with magnetizing magnetic ceramics (for example, Lisub(0.5)Fesub(2.5)O 4 , Ni-Fe 2 O 4 , Fe-Fe 2 O 4 ) are sandwiched and the whole assembly is covered with metal coating material (for example, stainless steels). The inside of the coating material is evacuated or filled with an inert gas with low heat-conductivity (argon) at a pressure less than 1 kg/cm 2 abs, considering that the temperature goes higher and the inner pressure increases upon operation. In this way, the size of the laminated structure can be reduced to about 1/7 of the conventional case. The magnetic heat insulating materials can capture the magnetic impurities in sodium. (Kawakami, Y.)

  12. Deep underground reactor (passive heat removal of LWR with hard neutron energy spectrum)

    Energy Technology Data Exchange (ETDEWEB)

    Hiroshi, Takahashi [Brookhaven National Lab., Upton, NY (United States)

    2001-07-01

    To run a high conversion reactor with Pu-Th fueled tight fueled assembly which has a long burn-up of a fuel, the reactor should be sited deep underground. By putting the reactor deep underground heat can be removed passively not only during a steady-state run and also in an emergency case of loss of coolant and loss of on-site power; hence the safety of the reactor can be much improved. Also, the evacuation area around the reactor can be minimized, and the reactor placed near the consumer area. This approach reduces the cost of generating electricity by eliminating the container building and shortening transmission lines. (author)

  13. Deep underground reactor (passive heat removal of LWR with hard neutron energy spectrum)

    International Nuclear Information System (INIS)

    Hiroshi, Takahashi

    2001-01-01

    To run a high conversion reactor with Pu-Th fueled tight fueled assembly which has a long burn-up of a fuel, the reactor should be sited deep underground. By putting the reactor deep underground heat can be removed passively not only during a steady-state run and also in an emergency case of loss of coolant and loss of on-site power; hence the safety of the reactor can be much improved. Also, the evacuation area around the reactor can be minimized, and the reactor placed near the consumer area. This approach reduces the cost of generating electricity by eliminating the container building and shortening transmission lines. (author)

  14. BWR type reactors

    International Nuclear Information System (INIS)

    Yano, Ryoichi; Sato, Takashi; Osaki, Masahiko; Hirayama, Fumio; Watabe, Atsushi.

    1980-01-01

    Purpose: To effectively eliminate radioactive substances released upon loss of coolant accidents in BWR type reactors. Constitution: A high pressure gas jetting device having a plurality of small aperture nozzles is provided above a spray nozzle, that is, at the top of a dry well. The jetting device is connected to a vacuum breaker provided in a pressure suppression chamber. Upon loss of coolant accident, coolants are sprayed from the spray nozzle and air or nitrogen is jetted from the gas jetting device as well. Then, the gases in the dry well are disturbed, whereby radioactive iodine at high concentration liable to be accumulated in the dry well is forced downwardly, dissolved in the spray water and eliminated. (Ikeda, J.)

  15. LWR physics in SKODA Works

    International Nuclear Information System (INIS)

    Zbytovsky, A.; Lehmann, M.; Vyskocil, V.; Vacek, J.; Krysl, V.

    1980-01-01

    Computation of nuclear power reactors of the WWER-1000 type is described as are computer programs used by Skoda Works for the solution of neutron problems. The programs are analyzed for applicability in the unified program system of the CMEA countries which will be used in the preparation of safety reports, the evaluation of safety hazards, the design of fuel charges, economical studies etc. A detailed description is also presented of multigroup transport calculations and of the preparation of input data for macrocalculations of the heterogeneous lattices of LWR's. (author)

  16. Summary remarks and recommended reactions for an international data file for dosimetry applications for LWR, FBR, and MFR reactor research, development and testing programs

    International Nuclear Information System (INIS)

    McElroy, W.N.; Lippincott, E.P.; Grundl, J.A.; Fabry, A.; Dierckx, R.; Farinelli, U.

    1979-01-01

    The need for the use of an internationally accepted data file for dosimetry applications for light water reactor (LWR), fast breeder reactor (FBR), and magnetic fusion reactor (MFR) research, development, and testing programs continues to exist for the Nuclear Industry. The work of this IAEA meeting, therefore, will be another important step in achieving consensus agreement on an internationally recommended file and its purpose, content, structure, selected reactions, and associated uncertainy files. Summary remarks and a listing of recommended reactions for consideration in the formulation of an ''International Data File for Dosimetry Applications'' are presented in subsequent sections of this report

  17. Reactor core for FBR type reactor

    International Nuclear Information System (INIS)

    Fujita, Tomoko; Watanabe, Hisao; Kasai, Shigeo; Yokoyama, Tsugio; Matsumoto, Hiroshi.

    1996-01-01

    In a gas-sealed assembly for a FBR type reactor, two or more kinds of assemblies having different eigen frequency and a structure for suppressing oscillation of liquid surface are disposed in a reactor core. Coolant introduction channels for introducing coolants from inside and outside are disposed in the inside of structural members of an upper shielding member to form a shielding member-cooling structure in the reactor core. A structure for promoting heat conduction between a sealed gas in the assembly and coolants at the inner side or the outside of the assembly is disposed in the reactor core. A material which generates heat by neutron irradiation is disposed in the assembly to heat the sealed gases positively by radiation heat from the heat generation member also upon occurrence of power elevation-type event to cause temperature expansion. Namely, the coolants flown out from or into the gas sealed-assemblies cause differential fluctuation on the liquid surface, and the change of the capacity of a gas region is also different on every gas-sealed assemblies thereby enabling to suppress fluctuation of the reactor power. Pressure loss is increased by a baffle plate or the like to lower the liquid surface of the sodium coolants or decrease the elevating speed thereof thereby suppressing fluctuation of the reactor power. (N.H.)

  18. BWR type reactor

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1983-01-01

    Purpose : To flatten the radial power distribution in the reactor core thereby improve the thermal performance of the reactor core by making the moderator-fuel ratio of fuel assemblies different depending on their position in the reactor core. Constitution : The volume of fuels disposed in the peripheral area of the reactor core is decreased by the increase of the volume of moderators in fuel assemblies disposed in the peripheral area of the reactor core to thereby make the moderator-fuel volume greater in the peripheral area than that in the central area. The moderator-fuel ratio adjustment is attained by making the number of water rods greater, decreasing the diameter of fuel pellets or decreasing the number of fuel pins in fuel assemblies disposed at the peripheral area of the reactor core as compared with fuel assemblies disposed at the central area of the reactor core. In this way, the infinite multiplication factors of fuels can be increased to thereby improve the reactor core performance. (Aizawa, K.)

  19. Fusion reactors - types - problems

    International Nuclear Information System (INIS)

    Schmitter, K.H.

    1979-07-01

    A short account is given of the principles of fusion reactions and of the expected advantages of fusion reactors. Descriptions are presented of various Tokamak experimental devices being developed in a number of countries and of some mirror machines. The technical obstacles to be overcome before a fusion reactor could be self-supporting are discussed. (U.K.)

  20. LWR-WIMS, a computer code for light water reactor lattice calculations

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1982-06-01

    LMR-WIMS is a comprehensive scheme of computation for studying the reactor physics aspects and burnup behaviour of typical lattices of light water reactors. This report describes the physics methods that have been incorporated in the code, and the modifications that have been made since the code was issued in 1972. (U.K.)

  1. Pool-type reactor

    International Nuclear Information System (INIS)

    Hopkins, S.R.

    1977-01-01

    This invention relates to a pool nuclear reactor fitted with a perfected system to raise the buckets into a vertical position at the bottom of a channel. This reactor has an inclined channel to guide a bucket containing a fuel assembly to introduce it into the reactor jacket or extract it therefrom and a damper at the bottom of the channel to stop the drop of the bucket. An upright vertically movable rod has a horizontally articulated arm with a hook. This can pivot to touch a radial lug on the bucket and pivot the bucket around its base in a vertical position, when the rod moves up [fr

  2. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  3. FBR type reactor

    International Nuclear Information System (INIS)

    Yamaoka, Mitsuaki

    1988-01-01

    Purpose: To enable to increase the burning period by enabling to decrease the reduction of burning reactivity and unifying the irradiation amount of fast neutrons. Constitution: A cylindrical reactor core made of fissile material-enriched fuel is constituted so as to form a plurality of layer-like enriched regions in which the enrichment degree of the fissile material is increased from the center to the radial and axial directions. Then, the ratio between the average enrichment degree for all of the enrichment regions other than the region at the reactor core center with the lowest enrichment degree and the enrichment degree of the enriched region formed at the center of the reactor core is made greater by 5 % or 20 % than the ratio at the initial burning stage where the power distribution of the reactor core is most flattened. (Kawakami, Y.)

  4. BWR type reactors

    International Nuclear Information System (INIS)

    Nakajima, Yoshitaka

    1983-01-01

    Purpose: To decrease the control rod exchanging frequency by increasing the working life of control rods for ordinary operation with large neutron irradiation dose, to thereby decrease the exposure dose for operators performing exchanging work, as well as decrease the amount of radioactive wastes resulted upon exchange of the control rods. Constitution: Hafnium solid metal is employed as the neutron absorber of control rods for usual operation inserted into and withdrawn from fuel assemblies for the reactor power control over the entire cycle of the ordinary reactor operation and boron carbide powder is employed as the neutron absorber for emergency control rods to be inserted between the fuel assemblies only upon reactor scram or shutdown, whereby the working life of the control rods for ordinary reactor operation with greater neutron irradiation dose can be improved. Accordingly, the control rod exchanging frequency can be reduced to decrease the exposure dose to the operator for conducting the exchanging work. (Yoshihara, H.)

  5. BWR type reactor

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1988-01-01

    Purpose: To inhibit the lowering of the neutron moderation effect due to voids in the upper portion of the reactor core, thereby flatten the axial power distribution. Constitution: Although it has been proposed to enlarge the diameter at the upper portion of a water rod thereby increasing the moderator in the upper portion, since the water rod situates within the channel box, the increase in the capacity thereof is has certain limit. In the present invention, it is designed such that the volume of the region at the outside of the channel box for the fuel assembly to which non-boiling water in the non-boiling water region can enter is made greater in the upper portion than in the lower portion of the reactor core. Thus, if the moderator density in the upper portion of the reactor core should be decreased due to the generation of the voids, the neutron moderating effect in the upper portion of the reactor core is not lowered as compared with the lower portion of the reactor core and, accordingly, the axial power distribution can be flattening more as compared with that in the conventional nuclear reactors. (Takahashi, M.)

  6. Development of Next-Generation LWR (Light Water Reactor) in Japan

    International Nuclear Information System (INIS)

    Yamamoto, T.; Kasai, S.

    2011-01-01

    The Next-Generation Light Water Reactor development program was launched in Japan in April 2008. The primary objective of the program is to cope with the need to replace existing nuclear power plants in Japan after 2030. The reactors to be developed are also expected to be a global standard design. Several innovative features are envisioned, including a reactor core system with uranium enrichment above 5%, a seismic isolation system, the use of long-life materials and innovative water chemistry, innovative construction techniques, safety systems with the best mix of passive and active concepts, and innovative digital technologies to further enhance reactor safety, reliability, economics, etc. In the first 3 years, a plant design concept with these innovative features is established and the effectiveness of the program is reevaluated. The major part of the program will be completed in 2015. (author)

  7. Overall plant concept for a tank-type fast reactor

    International Nuclear Information System (INIS)

    Yamaki, Hideo; Davies, S.M.; Goodman, L.

    1984-01-01

    Japanese nuclear industries are expressing interest in the merits of the tank-type FBR as a large plant (demonstration) after JOYO (experimental, in operation) and MONJU (prototype, under construction). In response to this growing interest in a tank-type FBR demonstration plant, Hitachi has initiated a conceptual study of a 1000 MWe tank plant concept in collaboration with GE and Bechtel. Key objectives of this study have been: to select reliable and competitive tank plant concepts, with emphases on a seismic-resistant and compact tank reactor system;to select reliable shutdown heat removal system;and to identify R and D items needed for early 1990s construction. Design goals were defined as follows: capital costs must be less than twice, and as close as practical to 1.5 those of equivalent LWR plants;earthquake resistant structures to meet stringent Japanese seismic conditions must be as simple and reliable as practical;safety must be maintained at LWR-equivalent risks;and R and D needs must be limited to minimum cost for the limited time allowed. This paper summarizes the overall plant concepts with some selected topics, whereas detailed descriptions of the reactor assembly and the layout design are found in separate papers

  8. Regulatory instrument review: Aging management of LWR cables, containment and basemat, reactor coolant pumps, and motor-operated valves

    International Nuclear Information System (INIS)

    Werry, E.V.; Somasundaram, S.

    1995-09-01

    The results of Stage 2 of the Regulatory Instrument Review are presented in this volume. Selected regulatory instruments, such as the Code of Federal Regulations (CFR), US Nuclear Regulatory Commission (NRC), Regulatory Guides, and ASME Codes, were investigated to determine the extent to which these regulations apply aging management to selected safety-related components in nuclear power plants. The Regulatory Instrument Review was funded by the NRC under the Nuclear Plant Aging Research (NPAR) program. Stage 2 of the review focused on four safety-related structures and components; namely, cables, containment and basemat, reactor coolant pumps, and motor-operated valves. The review suggests that the primary-emphasis of the regulatory instruments was on the design, construction, start-up, and operation of a nuclear power plant, and that aging issues were primarily addressed after an aging-related problem was recognized. This Stage 2 review confirms the results of the prior review; (see Regulatory Instrument Review: Management of Aging of LWR Major Safety-Related Components NUREG/CR-5490. The observations indicate that the regulations generally address management of age-related degradation indirectly. Specific age-related degradation phenomena frequently are dealt with in bulletins and notices or through generic issues, letters, etc. The major recommendation of this report, therefore, is that the regulatory instruments should more directly and explicitly address the aging phenomenon and the management of the age-related degradation process

  9. BWR type reactors

    International Nuclear Information System (INIS)

    Hayashi, Katsuhisa; Watanabe, Shigeru.

    1983-01-01

    Purpose: To simplify the structure of control rod driving systems, as well as improve the safety and maintainability thereof. Constitution: Control-rod-guide tubes are disposed vertically above the reactor core and control-rod drives are disposed further thereabove, by which the control rods are moved upwardly and downwardly from above the reactor core through the guide tubes. Further, a partitioning cylinder is provided between the inner cirumferential wall at the upper portion of a pressure vessel and the control-rod-guide tubes and a gas-liquid separator is disposed to the space between the partitioning cylinder and the pressure vessel wall, to which steams generated in the reactor core are introduced. In such a structure of the reactor, since all of the control rods are inserted or extracted by the control rod drive system from above the reactor core, if the control rod drives or the likes should fail and accidentally drop the control rods, they exert in the direction of suppressing the nuclear reaction, whereby the safety can be improved. (Sekiya, K.)

  10. FBR type reactors

    International Nuclear Information System (INIS)

    Maemoto, Junko.

    1985-01-01

    Purpose: To moderate abrupt temperature change near the inner walls of a suspended body thereby prevent thermal shocks and thermal deformations to structural materials. Constitution: High temperature coolants during ordinary operation of the nuclear reactor flow from the reactor core through the flow holes of the suspended body and from the upper plenum into an intermediate heat exchanger. The temperature of the coolants is lowered with heat exchanging effect with secondary coolants in the heat exchange and the coolants are then flow through the lower plenum into the reactor core and heated again. Upon generation of reactor scram, the temperature of the coolants at the exit of the reactor core is reduced abruptly and the flow rate is lowered due to the pump coast down. However, mixing of the coolants in the suspended body is accelerated by the coolants at high temperature flowing out of the flow holes and the coolants at the low temperature flowing from the flow hole group, to reduce the temperature difference and moderate the stratification flow forming an abrupt temperature slope. (Yoshihara, H.)

  11. FBR type reactor

    International Nuclear Information System (INIS)

    Inoue, Kotaro; Kawashima, Katsuyuki; Zuketen, Atsushi.

    1982-01-01

    Purpose: To flatten the power distribution of a reactor core and shorten the breeding time. Constitution: The reactor core comprises a core region having fission products, an outer blanket region surrounding the outer side of the core region and having fertile material and an inner blanket region disposed within the core region and having fertile material. The axial thickness of the inner blanket region is made greater at the central portion and smaller at the peripheral portion of the inner blanket region, and the outermost peripheral end at the peripheral portion of the inner blanket region is opposed by way of the core region to the outer blanket region. In such an arrangement, the power decrease in the peripheral portion of the core region can be suppressed to thereby flatten the power distribution in the reactor core and shorten the breeding time. (Moriyama, K.)

  12. BWR type reactor system

    International Nuclear Information System (INIS)

    Morooka, Shin-ichi.

    1980-01-01

    Purpose: To reduce the internal structure in a reactor by rapidly and efficiently transferring heat generated in a reactor core out of the reactor and eliminating the danger of radiation exposure. Constitution: Steam generated in a pressure vessel is introduced into heat pipe group by inserting the heat pipe group into the steam dome of the pressure vessel. The introduced steam is condensed in the heat pipes to transfer the heat of the steam to the heat pipe group. The transferred heat is transmitted to a heat exchanger provided out of a containment vessel to generate steam to operate a turbine. Thus, it is not necessary to introduce the steam including radioactive substance externally and can remove only the heat so as to carry out the desired purpose. (Kamimura, M.)

  13. Natural convection type reactor

    International Nuclear Information System (INIS)

    Nakayama, Takafumi; Horiuchi, Tetsuo; Moriya, Kimiaki; Matsumoto, Masayoshi; Akita, Minoru.

    1988-01-01

    Purpose: To improve the reliability by decreasing the number of dynamic equipments and safely shutdown the reactor core upon occurrence of accidents. Constitution: A pressure relief valve and a pressurizing tank or gravitational water falling tank disposed to the main steam pipe of a reactor are installed in combination. Upon loss-of-coolant accident, the pressure relief valve is opened to reduce the pressure in the reactor pressure vessel to the operation pressure for each of the tanks, thereby enabling to inject water in the pressurizing tank at first and, thereafter, water in the gravitational water falling tank successively to the inside of the pressure vessel. By utilizing the natural force in this way, the reliability can be improved as compared with the case of pumped water injection. Further, by injecting an aqueous boric acid to a portion of a plurality of tanks, if the control rod insertion becomes impossible, aqueous boric acid can be injected. (Takahashi, M.)

  14. Neutron collar calibration for assay of LWR [light-water reactor] fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the 235 U content, and the 238 U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities

  15. LWR nuclear power plant component failures

    International Nuclear Information System (INIS)

    Schmidt, W.H.

    1980-10-01

    An analysis of the most significant light water reactor (LWR) nuclear power plant component failures, from information in the computerized Nuclear Safety Information Center (NSIC) data bank, shows that for both pressurized water reactor (PWR) and boiling water reactor (BWR) plants the component category most responsible for reactor shutdowns is valves. Next in importance for PWR shutdowns is steam generators followed by seals of all kinds. For BWR plants, seals, and pipes and pipe fittings are the second and third most important component failure categories which lead to reactor shutdown. The data are for records extending from early 1972 through September 1978. A list of the most significant component categories and a breakdown of the number of component citations for both PWR and BWR reactor types are presented

  16. How well does ORIGEN predict spent LWR [Light Water Reactor] fuel characteristics

    International Nuclear Information System (INIS)

    Mailen, J.C.; Roddy, J.W.

    1987-01-01

    The ORIGEN computer code is widely used to estimate the radionuclide content (actinides, activation and fission products) of irradiated reactor fuel and the resultant heat generation and radiation levels associated with such fuel. These estimates are used as source terms in safety evaluations of operating reactors, for evaluation of fuel behavior and regulation of the at-reactor storage, for transportation studies, and for evaluation of the ultimate geologic storage of the fuel. Calculated values determined using several variations of ORIGEN have been compared with experimentally determined values for actual fuel for many, but not all, of the parameters desired. In most cases, the comparisons did not use the most recent ORIGEN2 program, the most recent data libraries, or currently required quality assurance (QA) procedures. Comparisons of fuel composition data with ORIGEN2 are very limited, and the only data with proper QA are currently being acquired by Battelle Pacific Northwest Laboratory. This survey summarizes the fuel data available in the open literature and, where given, the calculated values by ORIGEN. Plans for additional analyses of well-characterized reactor fuel samples to improve the validation of ORIGEN2 are discussed

  17. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  18. Reactor scram device for FBR type reactor

    International Nuclear Information System (INIS)

    Kumasaka, Katsuyuki; Arashida, Genji; Itooka, Satoshi.

    1991-01-01

    In a control rod attaching structure in a reactor scram device of an FBR type reactor, an anti-rising mechanism proposed so far against external upward force upon occurrence of earthquakes relies on the engagement of a mechanical structure but temperature condition is not taken into consideration. Then, in the present invention, a material having curie temperature characteristics and which exhibits ferromagnetism only under low temperature condition and a magnet device are disposed to one of a movable control rod and a portion secured to the reactor. Alternatively, a bimetal member or a shape memory alloy which actuates to fix to the mating member only under low temperature condition is secured. The fixing device is adapted to operate so as to secure the control rods when the low temperature state is caused depending on the temperature condition. With such a constitution, when the control rods are separated from a driving device, they are prevented from rising even if they undergo external upward force due to earthquakes and so on, which can improve the reactor safety. (N.H.)

  19. FBR type reactors

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Azekura, Kazuo; Inoue, Kotaro.

    1981-01-01

    Purpose: To decrease power fluctuations due to burning of blanket fuel element clusters by partially replacing the fertile materials in the blanket fuel element clusters with fissile materials. Constitution: Fertile materials in the radial blanket fuel element clusters disposed to the outside or inside of the reactor core are partially replaced with fissile materials. Since the power density of the fissile materials is at the maximum in the initial burning stage and decreases as the burning proceeds, the power density of the materials which is smaller in the initial burning stage and becomes greater with the burning by the neutron-accumulated plutonium is offset. Accordingly, the power fluctuations in the blanket fuel element clusters due to the burning made smaller thereby enable to form a reactor core with less power fluctuations due to burning under the constant coolant flow rate depending on the power in the final burning stage where the blanket power is maximum. (Moriyama, K.)

  20. FBR type reactors

    International Nuclear Information System (INIS)

    Otsuka, Masaya; Yamakawa, Masanori; Goto, Tadashi; Ikeuchi, Toshiaki; Yamaki, Hideo.

    1986-01-01

    Purpose: To prevent thermal deformation and making the container compact by improving the cooling performance of main container walls. Constitution: A pipeway is extended from a high pressure plenum below the reactor core and connected to the lower side of the flow channel at the inside of a thermal shielding layer disposed to the inside of the main container wall. Low pressure sodium sent from the low temperature plenum into the high pressure plenum is introduced to the pipeway, caused to uprise in the inside flow channel, then turned for the direction, caused to descend in the outer side flow channel between the main container and the inside flow channel and then returned to the low temperature plenum. A heat insulating layer disposed with argon gas is installed to the inside of the flow channel to reduce the temperature change applied upon reactor scram. An annular linear induction pump capable of changing the voltage polarity is disposed at the midway of the pipeway and the polarity is switched such that the direction of flow of the liquid sodium is exerted as a braking force upon rated operation, whereas exerted as a pumping force upon reactor scram. (Sekiya, K.)

  1. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part 'CIRCUITS' regroups under a condensed form - in French and using international units - the essential information contained in both basic documents of the American project for a molten-salt breeder power plant. This part is only dealing with things relating to the CEA-EDF workshop 'CIRCUITS'. It is not concerned with information on: the reactor and the moderator replacement, the primary and secondary salts, and the fuel salt reprocessing, that are dealt with in parts 'CORE' and 'CHEMISTRY' respectively. The possible evolutions in the data - and solutions - taken by the American designers for their successive projects (1970 to 1972) are shown. The MSBR power plant comprises three successive heat transfer circuits. The primary circuit (Hastelloy N), radioactive and polluted, containing the fuel salt, includes the reactor, pumps and exchangers. The secondary circuit (pipings made of modified Hastelloy N) contaminated in the exchanger, ensures the separation between the fuel and the fluid operating the turbo-alternator. The water-steam circuit feeds the turbine with steam. This steam is produced in the steam generator flowed by the secondary fluid. Some subsidiary circuits (discharge and storage of the primary and secondary salts, ventilation of the primary circuit ...) complete the three principal circuits which are briefly described. All circuits are enclosed inside the controlled-atmosphere building of the nuclear boiler. This building also ensures the biological protection and the mechanical protection against outer aggressions [fr

  2. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. Emphasize is put essentially on the fuel salt of the primary circuit inside which fission reactions occur. The reasons why the (LiF-BeF 2 -ThF 4 -UF 4 ) salt was chosen for the M.S.B.R. concept are examined; the physical, physicochemical and chemical properties of this salt are discussed with its interactions with the structural materials and its evolution in time. An important part of this volume is devoted to the continuous reprocessing of the active salt, the project designers having deemed advisable to take advantage at best from the availability of a continuous purification, in a thermal breeding. The problem of tritium formation and distribution inside the reactor is also envisaged and the fundamentals of the chemistry of the secondary coolant salt are given. The solutions proposed are: the hydrogen scavenging of the primary circuit, a reduction in metal permeability by an oxyde layer deposition on the side in contact with the vapor, and tritium absorption through an isotope exchange with the hydroxifluoroborate [fr

  3. FBR type reactor

    International Nuclear Information System (INIS)

    Nagai, Fumio.

    1979-01-01

    Purpose: To unify the temperature distribution in a nuclear reactor vessel by the provision of a gas recycle path for pressurizing a cover gas to recycle the cover gas and thus stir the gas in a cover gas chamber. Constitution: A plurality of gas inlet tubes and gas discharge tubes are provided to the wall of a cover gas chamber above the liquid level of coolants in a nuclear reactor vessel and the cover gas is recycled through the tubes. The plurality of gas inlet tubes are each provided at their tops with nozzles opening circumferentially and communicated to the outlet of a compressor. While on the other hand, the plurality of gas discharge tubes are communicated to the inlet of a compressor. Upon operation of the compressor, the pressurized cover gas is jetted out from the nozzles, swirls along the inner circumferential surface of the vessel and interrupts and stirs the vertical thermal convection. The gas, after swirling one-half of the inner circumferential surface of the vessel, automatically flows out of the gas discharging tubes opening behind the nozzles and then flows into the inlet of the compressor. (Seki, T.)

  4. Separated type nuclear superheating reactor

    International Nuclear Information System (INIS)

    Hida, Kazuki.

    1993-01-01

    In a separated type nuclear superheating reactor, fuel assemblies used in a reactor core comprise fuel rods made of nuclear fuel materials and moderator rods made of solid moderating materials such as hydrogenated zirconium. Since the moderating rods are fixed or made detachable, high energy neutrons generated from the fuel rods are moderated by the moderating rods to promote fission reaction of the fuel rods. Saturated steams supplied from the BWR type reactor by the fission energy are converted to high temperature superheated steams while passing through a steam channel disposed between the fuel rods and the moderating rods and supplied to a turbine. Since water is not used but solid moderating materials sealed in a cladding tube are used as moderation materials, isolation between superheated steams and water as moderators is not necessary. Further, since leakage of heat is reduced to improve a heat efficiency, the structure of the reactor core is simplified and fuel exchange is facilitated. (N.H.)

  5. Reprocessing techniques of LWR spent fuel for reutilization in hybrid systems and IV generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aruquipa, Wilmer; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany de P. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Since the era of nuclear technology begins, nuclear reactors have been produced spent fuel. This spent fuel contains material that could be recycle and reprocessed by different processes. All these processes aim to reduce the contribution to the final repository through the re-utilization of the nuclear material. Therefore, some new reprocessing options with non-proliferation characteristics have been proposed and the goal is to compare the different techniques used to maximize the effectiveness of the spent fuel utilization and to reduce the volume and long-term radiotoxicity of high-level waste by irradiation with neutron with high energy such as the ones created in hybrid reactors. In order to compare different recovery methods, the cross sections of fuels are calculated with de MCNP code, the first set consists of thorium-232 spiked with the reprocessed material and the second set in depleted uranium that containing 4.5% of U-235 spiked with the reprocessed material; These sets in turn are compared with the cross section of the UO{sub 2} in order to evaluate the efficiency of the reprocessed fuel as nuclear fuel. (author)

  6. WWER-440 type reactor core

    International Nuclear Information System (INIS)

    Mizov, J.; Svec, P.; Rajci, T.

    1987-01-01

    Assemblies with patly spent fuel of enrichment within 5 and 36 MWd/kg U or lower than the maximum enrichment of freshly charged fuel are placed in at least one of the peripheral positions of each hexagonal sector of the WWER-440 reactor type core. This increases fuel availability and reduces the integral neutron dose to the reactor vessel. The duration is extended of the reactor campaign and/or the mean fuel enrichment necessary for the required duration of the period between refuellings is reduced. Thus, fuel costs are reduced by 1 up to 3%. The results obtained in the experiment are tabulated. (J.B.). 1 fig., 3 tabs

  7. BWR type reactors

    International Nuclear Information System (INIS)

    Tsunoyama, Shigeaki; Tanabe, Akira.

    1979-01-01

    Purpose: To provide a main steam pressure shock absorber for reflecting the effect of the pressure propagation to coolants surface in the reactor core. Constitution: An annular shock absorber having near the water level through holes for water level measurement is provided to the gap between the skirt of a steam separator and a pressure vessel. Pressure waves are made the rapid closure of a main steam check valve. If arrived from the dome to the shock absorber, are mostly reflected to the side of the dome and give no substantial effects on the water surface. If the through holes are made small enough, the effects of pressure waves passing through the holes are negligible if they reach the water surface. (Kawakami, Y.)

  8. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part describes the MSBR core (data presented are from ORNL 4541). The principal characteristics of the core are presented in tables together with plane and elevation drawings, stress being put upon the reflector, and loading and unloading. Neutronic, and thermal and hydraulic characteristics (core and reflectors) are more detailed. The reasons why a graphite with a tight graphite layer has been chosen are briefly exposed. The physical properties of the standard graphite (irradiation behavior) have been determined for an isotropic graphite with fine granulometry; its dimensional variations largely ressemble that of Gilsonite. The mechanical stresses computed (Wigner effect) do not implicate in any way the graphite stack [fr

  9. LMFBR type reactors

    International Nuclear Information System (INIS)

    Sakurai, Akio; Matsushita, Kazuo.

    1985-01-01

    Purpose: To surely prevent the vibrational displacement of a rector core, and remove the sliding portions so as to avoid sticking or localized load concentration. Constitution: Cylindrical vibration-damping walls are protruded from the inner surface at the bottom of the main vessel. The vibration-damping walls constituted with outer and inner walls defining a coolant passage surround the reactor core support structures with small gaps between the inner surface of the inner wall and the outer circumferential surface of the core support structures. If the core support structures tend to displace horizontally due to earthquakes or the likes, the small gaps are varied and the coolants flow through the gap. Vibration-damping for the core support structures can be obtained by the flowing resistance to the coolants. (Yoshino, Y.)

  10. Categorization of failed and damaged spent LWR [light-water reactor] fuel currently in storage

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1987-11-01

    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs

  11. LWR [Light Water Reactor] power plant simulations using the AD10 and AD100 systems

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Chien, C.J.; Jang, J.Y.; Lin, H.C.; Mallen, A.N.; Wang, S.J.

    1989-01-01

    Boiling (BWR) and Pressurized (PWR) Water Reactor Power Plants are being simulated at BNL with the AD10 and AD100 Peripheral Processor Systems. The AD10 system has been used for BWR simulations since 1984 for safety analyses, emergency training and optimization studies. BWR simulation capabilities have been implemented recently on the AD100 system and PWR simulation capabilities are currently being developed under the auspices of international cooperation. Modeling and simulation methods are presented with emphasis on the simulation of the Nuclear Steam Supply System. Results are presented for BWR simulation and performance characteristics are compared of the AD10 and AD100 systems. It will be shown that the AD100 simulates two times faster than two AD10 processors operating in parallel and that the computing capacity of one AD100 (with FMU processor) is twice as large as that of two AD10 processors. 9 refs., 5 figs., 1 tab

  12. CYLFUX, Fast Reactor Reactivity Transients Simulation in LWR by 2-D 2 Group Diffusion

    International Nuclear Information System (INIS)

    Schmidt, A.

    1973-01-01

    1 - Nature of physical problem solved: A 2-dimensional calculation of the 2-group, space-dependent neutron diffusion equations is performed in r-z geometry using an arbitrary number of groups of delayed neutron precursors. The program is designed to simulate fast reactivity excursions in light water reactors taking into account Doppler feedback via adiabatic heatup of fuel. Axial motions of control rods may be considered including scram action on option. 2 - Method of solution: The differential equations are solved at each time step by an explicit finite difference method using two time levels. The stationary distributions are obtained by using the same algorithm. 3 - Restrictions on the complexity of the problem: No restriction to the number of space points and delayed neutron energy groups besides the computer size

  13. A review and analysis of European industrial experience in handling LWR [light water reactor] spent fuel and vitrified high-level waste

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1988-06-01

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performances of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States. 79 refs., 71 figs., 10 tabs

  14. Development and application of an LWR reactor pressure vessel-specific flaw distribution

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Kennedy, E.L.; Foulds, J.R.

    1991-01-01

    Previous efforts by the US Department of Energy have shown that the PWR reactor vessel integrity predictions performed through probabilistic fracture mechanics analysis for a pressurized thermal shock event are significantly sensitive to the overall flaw distribution input. It has also been shown that modern vessel in-service inspection (ISI) results can be used for development of vessel flaw distribution(s) that are more representative of US vessels. This paper describes the development and application of a methodology to analyze ISI data for the purpose of flaw distribution determination. The resultant methodology considers detection reliability, flaw sizing accuracy, and flaw detection threshold in its application. Application of the methodology was then demonstrated using four recently acquired US PWR vessel inspection data sets. The methodology helped provide original insight into several key inspection performance and vessel integrity prediction practice issues that will impact future vessel integrity evaluation. This paper briefly discusses the development and application of the methodology and the impact to future vessel integrity analyses

  15. Regulatory instrument review: Management of aging of LWR [light water reactor] major safety-related components

    International Nuclear Information System (INIS)

    Werry, E.V.

    1990-10-01

    This report comprises Volume 1 of a review of US nuclear plant regulatory instruments to determine the amount and kind of information they contain on managing the aging of safety-related components in US nuclear power plants. The review was conducted for the US Nuclear Regulatory Commission (NRC) by the Pacific Northwest Laboratory (PNL) under the NRC Nuclear Plant Aging Research (NPAR) Program. Eight selected regulatory instruments, e.g., NRC Regulatory Guides and the Code of Federal Regulations, were reviewed for safety-related information on five selected components: reactor pressure vessels, steam generators, primary piping, pressurizers, and emergency diesel generators. Volume 2 will be concluded in FY 1991 and will also cover selected major safety-related components, e.g., pumps, valves and cables. The focus of the review was on 26 NPAR-defined safety-related aging issues, including examination, inspection, and maintenance and repair; excessive/harsh testing; and irradiation embrittlement. The major conclusion of the review is that safety-related regulatory instruments do provide implicit guidance for aging management, but include little explicit guidance. The major recommendation is that the instruments be revised or augmented to explicitly address the management of aging

  16. Recycling U and Pu in LWR

    International Nuclear Information System (INIS)

    Zheng Hualing.

    1986-01-01

    This article, from viewpoints of technical feasibility, safety evaluation and socioeconomic benefit-risk analysis, introduces and comments on history and status of recycling U and Pu in LWR, dealing with reactor, reprocessing, conversion and fuel element fabrication et al. Author has analysed LWR fuel cycle strategies in China and made a proposal

  17. Design of passive decay heat removal system using thermosyphon for low temperature and low pressure pool type LWR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; You, Byung Hyun; Jung, Yong Hun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In seawater desalination process which doesn't need high temperature steam, the reactor has profitability. KAIST has be developing the new reactor design, AHR400, for only desalination. For maximizing safety, the reactor requires passive decay heat removal system. In many nuclear reactors, DHR system is loop form. The DHR system can be designed simple by applying conventional thermosyphon, which is fully passive device, shows high heat transfer performance and simple structure. DHR system utilizes conventional thermosyphon and its heat transfer characteristics are analyzed for AHR400. For maximizing safety of the reactor, passive decay heat removal system are prepared. Thermosyphon is useful device for DHR system of low pressure and low temperature pool type reactor. Thermosyphon is operated fully passive and has simple structure. Bundle of thermosyphon get the goal to prohibit boiling in reactor and high pressure in reactor vessel.

  18. International collaboration for development of accident-resistant LWR fuel. International Collaboration for Development of Accident Resistant Light Water Reactor Fuel

    International Nuclear Information System (INIS)

    Sowder, Andrew

    2013-01-01

    Following the March 2011 multi-unit accident at the Fukushima Daiichi plant, there has been increased interest in the development of breakthrough nuclear fuel designs that can reduce or eliminate many of the outcomes of a severe accident at a light water reactor (LWR) due to loss of core cooling following an extended station blackout or other initiating event. With this interest and attention comes a unique opportunity for the nuclear industry to fundamentally change the nature and impact of severe accidents. Clearly, this is no small feat. The challenges are many and the technical barriers are high. Early estimates for moving maturing R and D concepts to the threshold of commercialisation exceed one billion USD. Given the anticipated effort and resources required, no single entity or group can succeed alone. Accordingly, the Electric Power Research Institute (EPRI) sees the need for and promise of cooperation among many stakeholders on an international scale to bring about what could be transformation in LWR fuel performance and robustness. An important initial task in any R and D programme is to define the goals and metrics for measuring success. As starting points for accident-tolerant fuel development, the extension of core coolability under loss of coolant conditions and the elimination or reduction of hydrogen generation are widely recognised R and D endpoints for deployment. Furthermore, any new LWR fuel technology will, at a minimum, need to (1) be compatible with the safe, economic operation of existing plants and (2) maintain acceptable or improve nuclear fuel performance under normal operating conditions. While the primary focus of R and D to date has been on cladding and fuel improvements, there are a number of other potential paths to improve outcomes following a severe accident at an LWR that include modifications to other fuel hardware and core internals to fully address core coolability, criticality, and hydrogen generation concerns. The US

  19. Reactor core of FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Ichimiya, Masakazu.

    1994-01-01

    A reactor core is a homogeneous reactor core divided into two regions of an inner reactor core region at the center and an outer reactor core region surrounding the outside of the inner reactor core region. In this case, the inner reactor core region has a lower plutonium enrichment degree and less amount of neutron leakage in the radial direction, and the outer reactor core region has higher plutonium enrichment degree and greater amount of neutron leakage in the radial direction. Moderator materials containing hydrogen are added only to the inner reactor core fuels in the inner reactor core region. Pins loaded with the fuels with addition of the moderator materials are inserted at a ratio of from 3 to 10% of the total number of the fuel pins. The moderator materials containing hydrogen comprise zirconium hydride, titanium hydride, or calcium hydride. With such a constitution, fluctuation of the power distribution in the radial direction along with burning is suppressed. In addition, an absolute value of the Doppler coefficient can be increased, and a temperature coefficient of coolants can be reduced. (I.N.)

  20. High Fluency Low Flux Embrittlement Models of LWR Reactor Pressure Vessel Embrittlement and a Supporting Database from the UCSB ATR-2 Irradiation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G. Robert [Univ. of California, Santa Barbara, CA (United States)

    2017-01-24

    Reactor pressure vessel embrittlement may limit the lifetime of light water reactors (LWR). Embrittlement is primarily caused by formation of nano-scale precipitates, which cause hardening and a subsequent increase in the ductile-to-brittle transition temperature of the steel. While the effect of Cu has historically been the largest research focus of RPV embrittlement, there is increasing evidence that Mn, Ni and Si are likely to have a large effect at higher fluence, where Mn-Ni-Si precipitates can form, even in the absence of Cu. Therefore, extending RPV lifetimes will require a thorough understanding of both precipitation and embrittlement at higher fluences than have ever been observed in a power reactor. To address this issue, test reactors that irradiate materials at higher neutron fluxes than power reactors are used. These experiments at high neutron flux can reach extended life neutron fluences in only months or several years. The drawback of these test irradiations is that they add additional complexity to interpreting the data, as the irradiation flux also plays a role into both precipitate formation and irradiation hardening and embrittlement. This report focuses on developing a database of both microstructure and mechanical property data to better understand the effect of flux. In addition, a previously developed model that enables the comparison of data taken over a range of neutron flux is discussed.

  1. Evaluation of conceptual flowsheets for incorporating Light Water Reactor (LWR) fuel materials in an advanced nuclear fuel cycle

    International Nuclear Information System (INIS)

    Bell, J.T.; Burch, W.D.; Collins, E.D.; Forsberg, C.W.; Prince, B.E.; Bond, W.D.; Campbell, D.O.; Delene, J.G.; Mailen, J.C.

    1990-08-01

    A preliminary study by a group of experts at ORNL has generated and evaluated a number of aqueous and non-aqueous flowsheets for recovering transuranium actinides from LWR fuel for use as fuel in an LMR and, at the same time, for transmutation of the wastes to less hazardous materials. The need for proliferation resistance was a consideration in the flowsheets. The current state of development of the flowsheets was evaluated and recommendations for additional study were made. 3 refs., 6 figs

  2. LWR-core behaviour project

    International Nuclear Information System (INIS)

    Paratte, J.M.

    1982-07-01

    The LWR-Core behaviour project concerns the mathematical simulation of a light water reactor in normal operation (emergency situations excluded). Computational tools are assembled, i.e. programs and libraries of data. These computational tools can likewise be used in nuclear power applications, industry and control applications. The project is divided into three parts: the development and application of calculation methods for quantisation determination of LWR physics; investigation of the behaviour of nuclear fuels under radiation with special attention to higher burnup; simulation of the operating transients of nuclear power stations. (A.N.K.)

  3. OMR type process heat reactor

    International Nuclear Information System (INIS)

    Franzetti, Franco.

    1974-01-01

    A description is given of an OMR type reactor for heat generation. It includes a vessel the upper part of which is shut by a plug. The lower part of the vessel includes a core of fuel elements and is filled with an organic liquid. Over this there is a middle area filled with an inert gas. The plug includes an upper part forming a closure and resting around its edge on the vessel, and a lower part fixed under the closure and composed of a hollow cylindrical tank fitted with a bottom and filled with another organic liquid. The height of the cylindrical tank is such that, increased by the height of the first organic liquid in the lower area and above the core, it provides biological protection. The cooling system includes a heat exchanger and a pump to move the liquid from the lower part of the core and to inject some as spray into that part of the vessel filled with the inert gas. When loading and unloading, after the reactor is shut down, the clear organic liquid contained in the plug is discharged into the reactor vessel in such a way that it does not mix with the opaque organic liquid already contained in the vessel, and in that the opaque organic liquid is emptied out [fr

  4. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

    1983-01-01

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  5. United Kingdom and USSR reactor types

    International Nuclear Information System (INIS)

    Lewins, Jeffery

    1988-01-01

    The features of the RBMK reactor operated at Chernobyl are compared with reactor types pertinent to the UK. The UK reactors covered are in three classes: the commercial reactors now built and operated or in commission (Magnox and Advanced Gas-cooled Reactor (AGR)); the prototype Steam Generating Heavy Water Reactor (SGHWR) and Prototype Fast Reactor (PFR) that have comparable performance to commercial reactors; and the proposed Pressurised Water Reactor (PWR) or Sizewell 'B' design which, it will be recollected, is different in detail from PWRs built elsewhere. We do not include research and test reactors nor the Royal Navy PWRs. The appendices explain resonances, Doppler and Xenon effects, the reactor physics of Chernobyl and positive void coefficients all of which are relevant to the comparisons. (author)

  6. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  7. Livermore pool-type reactor

    International Nuclear Information System (INIS)

    Mann, L.G.

    1977-01-01

    The Livermore Pool-Type Reactor (LPTR) has served a dual purpose since 1958--as an instrument for fundamental research and as a tool for measurement and calibration. Our early efforts centered on neutron-diffraction, fission, and capture gamma-ray studies. During the 1960's it was used for extensive calibration work associated with radiochemical and physical measurements on nuclear-explosive tests. Since 1970 the principal applications have been for trace-element measurements and radiation-damage studies. Today's research program is dominated by radiochemical studies of the shorter-lived fission products and by research on the mechanisms of radiation damage. Trace-element measurement for the National Uranium Resource Evaluation (NURE) program is the major measurement application today

  8. PWR type process heat reactor

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1974-01-01

    The nuclear reactor described is of the pressurized water type. It includes a prestressed concrete vessel, the upper part of which is shut by a closure, and a core surrounded by a core ring. The core fuel assemblies are supported by an initial set of vertical tubes integral with the bottom of the vessel, which serve to guide the rods of the control system. Over the core there is a second set of vertical tubes, able to receive the absorbing part of a control rod when this is raised above the core. An annular pressurizer around the core ring keeps the water in a liquid state. A pump is located above the second set of tubes and is integral with the closure. It circulates the water between the core and the intake of at least one primary heat exchanger, the exchanger (s) being placed between the wall of the vessel and the core ring [fr

  9. Radioactive waste management in nuclear power plants with WWER-type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dlouhy, Z; Napravnik, J; Safar, O

    1975-05-01

    The possibilities of radioactive waste solidification in nuclear power plants with LWR reactors (of the WWER type) and the problems of their safe storage in Czechoslovakia are discussed. The most suitable method for the treatment of emitted sorbents and concentrates seems to be their incorporation in bitumen or concrete. In the disposal of solidified blocks all requirements should be met including the selection of suitable sites and of convenient methods of transportation. A preliminary economic estimate shows that the storage of bitumen-incorporated wastes in trenches seems to be less expensive from the point of view of exploitation of the storage facility as well as from the point of view of investment.

  10. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  11. Power control system in BWR type reactors

    International Nuclear Information System (INIS)

    Nishizawa, Yasuo.

    1980-01-01

    Purpose: To control the reactor power so that the power distribution can satisfy the limiting conditions, by regulating the reactor core flow rate while monitoring the power distribution in the reactor core of a BWR type reactor. Constitution: A power distribution monitor determines the power distribution for the entire reactor core based on the data for neutron flux, reactor core thermal power, reactor core flow rate and control rod pattern from the reactor and calculates the linear power density distribution. A power up ratio computing device computes the current linear power density increase ratio. An aimed power up ratio is determined by converting the electrical power up ratio transferred from a load demand input device into the reactor core thermal power up ratio. The present reactor core thermal power up ratio is subtracted from the limiting power up ratio and the difference is sent to an operation amount indicator and the reactor core flow rate is changed in a reactor core flow rate regulator, by which the reactor power is controlled. (Moriyama, K.)

  12. Evaluation of cover gas impurities and their effects on the dry storage of LWR [light-water reactor] spent fuel

    International Nuclear Information System (INIS)

    Knoll, R.W.; Gilbert, E.R.

    1987-11-01

    The purposes of this report are to (1) identify the sources of impurity gases in spent fuel storage casks; (2) identify the expected concentrations and types of reactive impurity gases from these sources over an operating lifetime of 40 years; and (3) determine whether these impurities could significantly degrade cladding or exposed fuel during this period. Four potential sources of impurity gases in the helium cover gas in operating casks were identified and evaluated. Several different bounding cases have been considered, where the reactive gas inventory is either assumed to be completely gettered by the cladding or where all oxygen is assumed to react completely with the exposed fuel. It is concluded that the reactive gas inventory will have no significant effect on the cladding unless all available oxygen reacts with the UO 2 fuel to produce U 3 O 8 at one or two cladding breaches. Based on Zircaloy oxidation data, the oxygen inventory in a fully loaded pressurized water reactor cask such as the Castor-V/21 will be gettered by the Zircaloy cladding in about 1 year if the peak cladding temperature within the task is ≥300 0 C. Only a negligible decrease in the thickness of the cladding would result. 24 refs., 4 tabs

  13. Reactor types for the future

    International Nuclear Information System (INIS)

    Hall, A.C.

    1990-01-01

    The factors impacting a utility's choice of reactor for commercial exploitation are discussed. Concepts available in time frames of 5, 10 and 20 years are considered. It is concluded that future programmes are likely to be based on a relatively small number of largely pre-licensed turnkey station designs. The near future is likely to be dominated by light water reactors. The Westinghouse AP600 design is briefly described. (author)

  14. Reactor types for the future

    Energy Technology Data Exchange (ETDEWEB)

    Hall, A C [PWR Power Projects Ltd., Knutsford, Cheshire (United Kingdom)

    1990-06-01

    The factors impacting a utility's choice of reactor for commercial exploitation are discussed. Concepts available in time frames of 5, 10 and 20 years are considered. It is concluded that future programmes are likely to be based on a relatively small number of largely pre-licensed turnkey station designs. The near future is likely to be dominated by light water reactors. The Westinghouse AP600 design is briefly described. (author)

  15. The use of ferritic materials in light water reactor power plants

    International Nuclear Information System (INIS)

    Marston, T.V.

    1984-01-01

    This paper reviews the use of ferritic materials in LWR power plant components. The two principal types of LWR systems, the boiling water reactor (BWR) and the pressurized water reactor (PWR) are described. The evolution of the construction materials, including plates and forgings, is presented. The fabrication process for both reactors constructed with plates and forgings are described in detail. Typical mechanical properties of the reactor vessel materials are presented. Finally, one critical issue radiation embrittlement dealing with ferritic materials is discussed. This has been one of the major issues regarding the use of ferritic material in the construction of LWR pressure vessels

  16. Design and analytic evaluation of a rim effect reduction type LWR fuel for extending burnup

    International Nuclear Information System (INIS)

    Matsumura, Tetsuo; Kameyama, Takanori; Kinoshita, Motoyasu

    1991-01-01

    We have designed a new concept fuel design 'Rim effect reduction type fuel' which has thin natural UO 2 layer on surface of a UO2 pellet. Our neutronic analyses with ANRB code show this fuel design can reduce rim effect (burnup at plelet rim) by about 30 GWd/t comparing a normal fuel. It is known that a high burnup fuel has different microstructure from as-fabricated one at fuel rim (which is called as rim region) due to rim effect. Therefore this fuel design can expect smaller rim region than a normal fuel. Our fuel performance analyses with EIMUS code show this fuel design can reduce fuel center temperature at high burnup if thermal conductivity of fuel pellet decreases with burnup in inverse proportion. However, this fuel design increases fuel center temperature at low and middle burnup than a normal fuel due to increase of thermal power density at pellet center. Additionally Irradiation experiment of this fuel design can be considered to offer important data which make clear the relation between rim effect and fuel performance. (author)

  17. Pool type liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Guthrie, B.M.

    1978-08-01

    Various technical aspects of the liquid metal fast breeder reactor (LMFBR), specifically pool type LMFBR's, are summarized. The information presented, for the most part, draws upon existing data. Special sections are devoted to design, technical feasibility (normal operating conditions), and safety (accident conditions). A survey of world fast reactors is presented in tabular form, as are two sets of reference reactor parameters based on available data from present and conceptual LMFBR's. (auth)

  18. Verification test of advanced LWR fuel components of Westinghouse type nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho

    2004-08-01

    The purpose of this project is to independently conduct the performance test of the spacer grids and the cladding material of the 16x16 and 17x17 advanced fuels for Westinghouse type plants, and to improve the relevant test technology. Major works and results of the present research are as follows. 1. The design and structural features of the spacer grids were investigated, especially the finally determined I-spring was thoroughly analyzed in the point of the mechanical damage and characteristic. 2. As for the mechanical tests of the space grids, the characterization, the impact and the fretting wear tests were carried out. The block as well as the in-grid tests were conducted for the spring/dimple characterization, from which a simple method was developed that simulated the boundary conditions of the assembled grid straps. The impact tester was modified and improved to accommodate a full size grid assembly. The impact result showed that the grid assembly fulfilled the design criteria. As for the fretting wear tests, a sliding test under the room temperature air/water, a sliding/impact test under the room temperature air and a sliding/impact tests under the high temperature and pressure environments were carried out. To this end, a high temperature and pressure fretting wear tester was newly developed. The wear characteristic and the resistibility of the advanced grid spring/dimple were analyzed in detail. The test results were verified through comparing those with the test results by the Westinghouse company. 3. The properties and performance of the newly adopted material for the cladding, Low Sn Zirlo was investigated by a room and high temperature tensile tests and a corrosion tests under the environments of 360 .deg. C water, 400 steam and 360 .deg. C 70ppm LiOH. Through the present project, all the test equipment and technologies for the fuel components were procured, which will be used for future domestic development of a new fuel

  19. A study for small-medium LWR development of JAPC

    International Nuclear Information System (INIS)

    Okazaki, Toshihiko; Hida, Takahiko; Hoshi, Takashi; Kawahara, Hiroto; Tominaga, Kenji; Asano, Hiromitsu

    2011-01-01

    LWR (Light Water Reactor) power stations have accumulated many experiences of design, construction and operation. In addition, large-sized reactors have an advantage of economy of scale and 1,000 MWe LWR has therefore become the mainstream reactor in Japan. Meanwhile, introduction of the medium and small-sized LWRs (SMRs) has also been under review in Japan in order to respond to stagnant growth in electricity demand and electricity market liberalization or for investment risk mitigation; however, it has not been realized due to the economic disadvantage of scale. Therefore, JAPC has been developing the concept of SMR (300 MWe - 600 MWe) which is competitive to the large-sized LWR cooperating with Japanese plant makers (Hitachi, Toshiba Corporation and Mitsubishi Heavy Industries), assessing the possibility of realization of SMRs as one of the electric power sources in the future. As the result of the JAPC's study, we developed SMR concepts whose cost and safety are almost equal to large-sized LWR and confirmed technical feasibility of the concept in order to start developing basic design. In this paper, the outline of the SMR concepts and the current development status are presented. Concepts have been developed for two types of SMRs (i.e. BWR and PWR). As for the BWR type, reactor system is simplified by adopting natural circulation core method and CRD falling under gravity in order to downsize the reactor containments. As for the PWR type, the risk of LOCA occurrence is eliminated by unifying the primary system (e.g. incorporating steam generator into reactor). Furthermore, the primary system is simplified by adopting natural circulation core method in operation and containment vessel also become compact for the PWR. As for JAPC's further development of SMRs, key elements of SMR concepts are studied. In addition, the environment surrounding the SMRs has changed in recent years and the one with capacity exceeding 300-600 MWe class or small-sized reactor with

  20. Review and comparison of WWER and LWR Codes and Standards

    International Nuclear Information System (INIS)

    Buckthorpe, D.; Tashkinov, A.; Brynda, J.; Davies, L.M.; Cueto-Felgeueroso, C.; Detroux, P.; Bieniussa, K.; Guinovart, J.

    2003-01-01

    The results of work on a collaborative project on comparison of Codes and Standards used for safety related components of the WWER and LWR type reactors is presented. This work was performed on behalf of the European Commission, Working Group Codes and Standards and considers areas such as rules, criteria and provisions, failure mechanisms , derivation and understanding behind the fatigue curves, piping, materials and aging, manufacturing and ISI. WWERs are essentially designed and constructed using the Russian PNAE Code together with special provisions in a few countries (e.g. Czech Republic) from national standards. The LWR Codes have a strong dependence on the ASME Code. Also within Western Europe other codes are used including RCC-M, KTA and British Standards. A comparison of procedures used in all these codes and standards have been made to investigate the potential for equivalencies between the codes and any grounds for future cooperation between eastern and western experts in this field. (author)

  1. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  2. Development of information management system on LWR spent fuel

    International Nuclear Information System (INIS)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S.

    2002-01-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility

  3. Development of information management system on LWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility.

  4. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  5. Research, Development and Demonstration (RD&D) Needs for Light Water Reactor (LWR) Technologies A Report to the Reactor Technology Subcommittee of the Nuclear Energy Advisory Committee (NEAC) Office of Nuclear Energy U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Bradley J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    The LWR RD&D Working Group developed a detailed list of RD&D suggestions and recommendations, which are provided in Appendix D. The Working Group then undertook a systematic ranking process, described in Appendix E. The results of the ranking process are not meant to be a strict set of priorities, but rather should provide insight into how the items generally ranked within the Working Group. Future discussions and investigation into these items could provide information that would support a change in these priorities or in their emphasis. The results of this prioritization are provided below. Note that in general, many RD&D ideas are applicable to both new Advanced Light Water Reactor (ALWR) plants and currently operating plants.

  6. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    Abdelrazek, I.D.

    2008-01-01

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235 U or 239 Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  7. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-01-01

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  8. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Permana, Sidik; Suzuki, Mitsutoshi; Su' ud, Zaki [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 Nuclear Physics and Bio (Indonesia); Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 (Japan); Nuclear Physics and Bio Physics Research Group, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  9. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V [ed.; Feinberg, O; Morozov, A [Russian Research Centre ` Kurchatov Institute` , Moscow (Russian Federation); Devell, L [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  10. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    Ignatiev, V.; Devell, L.

    1995-01-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  11. Feedwater control system in BWR type reactor

    International Nuclear Information System (INIS)

    Tanji, Jun-ichi; Oomori, Takashi.

    1980-01-01

    Purpose: To improve the water level control performance in BWR type reactor by regulating the water level set to the reactor depending on the rate of change in the recycling amount of coolant to thereby control the fluctuations in the water level resulted in the reactor within an aimed range even upon significant fluctuations in the recycling flow rate. Constitution: The recycling flow rate of coolant in the reactor is detected and the rate of its change with time is computed to form a rate of change signal. The rate of change signal is inputted to a reactor level setter to amend the actual reactor water level demand signal and regulate the water level set to the reactor water depending on the rate of change in the recycling flow rate. Such a regulation method for the set water level enables to control the water level fluctuation resulted in the reactor within the aimed range even upon the significant fluctuation in the recycling flow rate and improve the water level control performance of the reactor, whereby the operationability for the reactor is improved to enhance the operation rate. (Moriyama, K.)

  12. Creep damage in zircaloy-4 at LWR temperatures

    International Nuclear Information System (INIS)

    Keusseyan, R.L.; Hu, C.P.; Li, C.Y.

    1978-08-01

    The observation of creep damage in the form of grain boundary cavitation in Zircaloy-4 in the temperature range of interest to Light Water Reactor (LWR) applications is reported. The observed damage is shown to reduce the ductility of Zircaloy-4 in a tensile test at LWR temperatures

  13. Implementation of static generalized perturbation theory for LWR design applications

    International Nuclear Information System (INIS)

    Byron, R.F.; White, J.R.

    1987-01-01

    A generalized perturbation theory (GPT) formulation is developed for application to light water reactor (LWR) design. The extensions made to standard generalized perturbation theory are the treatment of thermal-hydraulic and fission product poisoning feedbacks, and criticality reset. This formulation has been implemented into a standard LWR design code. The method is verified by comparing direct calculations with GPT calculations. Data are presented showing that feedback effects need to be considered when using GPT for LWR problems. Some specific potential applications of this theory to the field of LWR design are discussed

  14. HTGR type reactors for the heat market

    International Nuclear Information System (INIS)

    Oesterwind, D.

    1981-01-01

    Information about the standard of development of the HTGR type reactor are followed by an assessment of its utilization on the heat market. The utilization of HTGR type reactors is considered suitable for the production of synthesis gas, district heat, and industrial process heat. A comparison with a pit coal power station shows the economy of the HTGR. Finally, some aspects of introducing new technologies into the market, i.e. small plants in particular are investigated. (UA) [de

  15. Improvements to PWR type reactors

    International Nuclear Information System (INIS)

    Ailloud, Jean; Monteil, Marcel.

    1978-01-01

    Improvements to pressurized water nuclear reactors are described, where the core coolant, called primary fluid, flows under the effect of a circulating pump in a primary loop between a steam generator and a pressure vessel containing the reactor core. The steam generator includes a bundle of tubes through which flows the primary fluid which exchanges calories with a secondary fluid, generally water, entering the generator as a liquid and issuing from it as steam. After expansion in turbines and recovery in a condenser, this steam is returned to the inside of the generator. Each primary fluid circulating pump is powered by a back-pressure turbine located in parallel with the high pressure section of the main turbine and hence fed with steam taken directly from the steam generator or the main steam pipe outside it [fr

  16. Loop-type FBR reactor

    International Nuclear Information System (INIS)

    Ogura, Kenji; Kimura, Kimitaka; Jinbo, Masaichi; Hirayama, Hiroshi; Taguchi, Junzo; Hirata, Noriaki; Ozaki, Kenji; Maruyama, Shigeki.

    1996-01-01

    The inside of a vessel of an intermediate heat exchanger is divided vertically by a partition wall into a high temperature plenum region and a low temperature plenum region, a perforated horizontal plate is disposed in a horizontal direction at the upper portion and a flow shroud is disposed so as to surround the upper outside of the intermediate heat exchanger while passing through a lid from a perforated hole of the perforated horizontal plate. In addition, there is disposed a cylinder passing through the partition wall and the horizontal perforated plate for inserting a liquid surface penetrating equipment. The cylinder has an upper end opened above the liquid level of a liquid metal during normal operation and below the liquid level of the liquid metal during shut down of the reactor, and the lower end is opened in a lower plenum region. Vibrations of liquid level due to the high temperature liquid metal inflown from a hot leg pipeline to the inside of the vessel of the intermediate heat exchanger are suppressed by the perforated horizontal plate during reactor operation. On the other hand, upon shut down of the reactor, since the liquid level rises up to the upper portion of the cylinder, the liquid metal at low temperature inflows into the lower plenum region, and the liquid metal at high temperature above the horizontal perforated plate is eliminated in an early stage. (N.H.)

  17. Pressure tube type research reactor

    International Nuclear Information System (INIS)

    Ueda, Hiroshi.

    1975-01-01

    Object: To permit safe and reliable replacement of primary pipes by providing a reactor container so as to surround a pressure pipe, with upper portions of the two separably coupled together, and coupling the pressure pipe and primary piping by joint coupling above and below the reactor container, with the lower coupling joint surrounded by drain receptacle. Structure: At the time of replacement of a pressure pipe, a partition valve is opened to exhaust primary cooling water within pressure pipe and upper and lower portions of the primary piping and replace the decelerator within the reactor container with water of the same quality as that of pool water within an upper shield pool. Thereafter, the entire space above the drain receptacle is filled with pool water by closing a partition valve and opening a water supply valve. Then, upper portion seal cover, pool bottom lid, upper joint and upper portion primary piping are removed, then bolts and nuts are loosened, and the pressure pipe is taken out together with the shield block. (Kamimura, M.)

  18. Strategies of development of reactor types

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    The development of nuclear energy in the coming decades will depend on the goals followed, on the available technologies and on the strategies implemented in the world in agreement with public acceptation. This article is limited to the technical aspects of the strategies of development of reactor types: 1 - objectives; 2 - common constraints to all reactor types: safety and terrorism risks, wastes, non-proliferation, economics; 3 - different reactor types: general considerations, proven technologies (PWR, BWR, Candu), non-proven technologies but having an important experience, technologies at the design stage; 4 - energy systems and 'Generation IV forum': systems based on thermal neutron reactors and low enrichment, systems for the valorization of 238 U, systems for Pu burning, systems allowing the destruction of minor actinides, thorium-based systems, the Gen IV international forum; 5 - conclusion. (J.S.)

  19. Solid-Core Heat-Pipe Nuclear Batterly Type Reactor

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2008-01-01

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE 400 space nuclear reactor core, the HPENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The core is oriented horizontally and has a square rather cylindrical cross section for effective heat transfer. The HPs extend from the two axial reflectors in which the fission gas plena are embedded and transfer heat to an intermediate coolant that flows by natural-circulation. The HP-ENHS is designed to preserve many features of the ENHS including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walkaway passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of advantageous features including: (1) significantly enhanced passive decay heat removal capability; (2) no positive void reactivity coefficients; (3) relatively lower corrosion of the cladding (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. This preliminary study focuses on five areas: material compatibility analysis, HP performance analysis, neutronic analysis, thermal-hydraulic analysis and safety analysis. Of the four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the

  20. Decommissioning of TRIGA Mark II type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Jeong, Gyeonghwan; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  1. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  2. Fuel exchanger in FBR type reactor

    International Nuclear Information System (INIS)

    Shinden, Kazuhiko; Tanaka, Osamu.

    1990-01-01

    The present invention concerns a fuel exchanger for exchanging fuels in an LMFBR type reactor using liquid metals as coolants. An outer gripper cylinder rotating device for rotating an outer gripper cylinder that holds a gripper is driven, to lower the gripper driving portion and the outer gripper cylinder, fuels are caught by the finger at the top end of the outer gripper cylinder and elevated to extract the fuels from the reactor core. Then, the gripper driving portion casing and the outer gripper cylinder are rotated to rotate the fuels caught by the gripper. Subsequently, the gripper driving portion and the outer gripper cylinder are lowered to charge the fuels in the reactor core. This can directly shuffle the fuels in the reactor core without once transferring the fuels into a reactor storing pot and replacing with other fuels, thereby shortening the shuffling time. (I.N.)

  3. Use of phenomena identification and ranking (PIRT) process in research related to design certification of the AP600 advanced passive light water reactor (LWR)

    International Nuclear Information System (INIS)

    Wilson, G.E.; Fletcher, C.D.; Eltawila, F.

    1996-01-01

    The AP600 LWR is a new advanced passive design that has been submitted to the USNRC for design certification. Within the certification process the USNRC will perform selected system thermal hydraulic response audit studies to help confirm parts of the vendor's safety analysis submittal. Because of certain innovative design features of the safety systems, new experimental data and related advances in the system thermal hydraulic analysis computer code are being developed by the USNRC. The PIRT process is being used to focus the experimental and analytical work to obtain a sufficient and cost effective research effort. The objective of this paper is to describe the application and most significant results of the PIRT process, including several innovative features needed in the application to accommodate the short design certification schedule. The short design certification schedule has required that many aspects of the USNRC experimental and analytical research be performed in parallel, rather than in series as was normal for currently operating LWRS. This has required development and use of management techniques that focus and integrate the various diverse parts of the research. The original PIRTs were based on inexact knowledge of an evolving reactor design, and concentrated on the new passive features of the design. Subsequently, the PIRTs have evolved in two more stages as the design became more firm and experimental and analytical data became available. A fourth and final stage is planned and in progress to complete the PIRT development. The PIRTs existing at the end of each development stage have been used to guide the experimental program, scaling analyses and code development supporting the audit studies

  4. Reactor Power Meter type SG-8

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1981-01-01

    The report describes the principle and electronic circuits of the Reactor Power Meter type SG-8. The gamma radiation caused by the activity of the reactor first cooling circuit affectes the ionization chamber being the detector of the instrument. The output detector signal direct current is converted into the frequency of electric pulses by means of the current-to-frequency converter. The output converter frequency is measured by the digital frequency meter: the number of measured digits in time unit is proportional to the reactor power.

  5. Method of operating FBR type reactors

    International Nuclear Information System (INIS)

    Arie, Kazuo.

    1984-01-01

    Purpose: To secure the controlling performance and the safety of FBR type reactors by decreasing the amount of deformation due to the difference in the heat expansion of a control rod guide tube. Method: The reactor is operated while disposing reactor core fuel assemblies of a same power at point-to-point symmetrical positions relative to the axial center for the control rod assembly. This can eliminate the temperature difference between opposing surfaces of the control rod guide tube and eliminate the difference in the thermal expansion. (Yoshino, Y.)

  6. Recycling systems for BWR type reactors

    International Nuclear Information System (INIS)

    Takagi, Akio; Yamamoto, Fumiaki; Fukumoto, Ryuji.

    1986-01-01

    Purpose: To stabilize the coolant flowing characteristics and reactor core reactivity. Constitution: The recycling system in a BWR type reactor comprises a recycling pump disposed to the outside of a reactor pressure vessel, a ring header connected to the recycling pump through main pipe ways, and a plurality of pipes branched from and connected with the ring header and connected to a plurality of jet pumps within the pressure vessel. Then, by making the diameter for the pipeways of each of the branched pipes different from each other, the effective cross-sectional area is varied to thereby average the coolant flow rate supplied to each of the jet pumps. (Seki, T.)

  7. Different types of power reactors and provenness

    International Nuclear Information System (INIS)

    Goodman, E.I.

    1977-01-01

    The lecture guides the potential buyer in the selection of a reactor type. Recommended criteria regarding provenness, licensability, and contractual arrangements are defined and discussed. Tabular data summarizing operating experience and commercial availability of units are presented and discussed. The status of small and medium power reactors which are of interest to many developing countries is presented. It is stressed that each prospective buyer will have to establish his own criteria based on specific conditions which will be applied to reactor selection. In all cases it will be found that selection, either pre-selection of bidders or final selection of supplier, will be a fairly complex evaluation. (orig.) [de

  8. Down-selection of candidate alloys for further testing of advanced replacement materials for LWR core internals

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States). Applied Physics Program; Leonard, Keith J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superior degradation resistance in light water reactor (LWR)-relevant environments by 2024.

  9. Radioactive waste management at WWER type reactors

    International Nuclear Information System (INIS)

    1993-05-01

    This report was prepared within the framework of the Technical Assistance Regional Project on Advice on Waste Management at WWER Type Reactors, which was initiated by the IAEA in 1991. The Regional Project is an integral part of the IAEA's activities directed towards improvement of the safety and reliability of nuclear power plants with WWER type reactors (Soviet designed PWRs). Forty-five WWER type units are currently in operation and twenty-five are under construction in Bulgaria, Czechoslovakia, Finland, Hungary and the former USSR. The idea of regional collaboration between eastern European countries under the auspices of the IAEA was discussed for the first time during the last meeting of the Council for Mutual Economic Assistance (CMEA) on spent fuel and radioactive waste management, held in Rez, Czechoslovakia, in October 1990. Since then, the CMEA and some of its former Member States have ceased to exist. However, there are many reasons for eastern European countries to continue their regional collaboration at a higher level. The USSR, the designer and supplier of WWER type reactors in eastern European countries, participated in the first phase of the project. The majority of WWER type reactors are situated in States of the former USSR (Russia and Ukraine). The main results of the first phase of the Regional Project are: (i) Re-establishment of communication channels among eastern European countries operating WWER type reactors by incorporating the IAEA's technical assistance; (ii) Identification of common waste management problems (administrative and technical) requiring resolution; (iii) Familiarization with radioactive waste management systems at nuclear power plants with WWER type reactors - Paks (Hungary), Loviisa (Finland), Jaslovske Bohunice (Czechoslovakia) and Novovoronezh (Russian Federation). Tabs

  10. Completely integrated prestressed-concrete reactor pressure vessel, type 'Star'

    International Nuclear Information System (INIS)

    Neunert, B.; Jueptner, G.; Kumpf, H.

    1975-01-01

    The star support vessel is suitable for the connection to all primary circuit systems consisting of a main vessel and a number of satellite vessels around and connected to it, i.e. for LWR, HTR and process reactor. It must be made clear, however, that the PWR in particular with its components does not appear to be suited for the optimum incorporation in a prestressed-concrete pressure vessel system, no matter what kind. There are clear concepts about modifications which, however, require considerable development expenditure. (orig./LH) [de

  11. Vibration-proof FBR type reactor

    International Nuclear Information System (INIS)

    Kawamura, Yutaka.

    1992-01-01

    In a reactor container in an FBR type reactor, an outer building and upper and lower portions of a reactor container are connected by a load transmission device made of a laminated material of rubber and steel plates. Each of the reactor container and the outer building is disposed on a lower raft disposed on a rock by way of a vibration-proof device made of a laminated material of rubber and steel plates. Vibration-proof elements for providing vertical eigen frequency of the vibration-proof system comprising the reactor building and the vibration-proof device within a range of 3Hz to 5Hz are used. That is, the peak of designed acceleration for response spectrum in the horizontal direction of the reactor structural portions is shifted to side of shorter period from the main frequency region of the reactor structure. Alternatively, rigidity of the vibration-proof elements is decreased to shift the peak to the side of long period from the main frequency region. Designed seismic force can be greatly reduced both horizontally and vertically, to reduce the wall thickness of the structural members, improve the plant economy and to ensure the safety against earthquakes. (N.H.)

  12. LWR Spent Fuel Management for the Smooth Deployment of FBR

    International Nuclear Information System (INIS)

    Fukasawa, T.; Yamashita, J.; Hoshino, K.; Sasahira, A.; Inoue, T.; Minato, K.; Sato, S.

    2015-01-01

    Fast breeder reactors (FBR) and FBR fuel cycle are indispensable to prevent the global warming and to secure the long-term energy supply. Commercial FBR expects to be deployed from around 2050 until around 2110 in Japan by the replacement of light water reactors (LWR) after their 60 years life. The FBR deployment needs Pu (MOX) from the LWR-spent fuel (SF) reprocessing. As Japan can posses little excess Pu, its balance control is necessary between LWR-SF management (reprocessing) and FBR deployment. The fuel cycle systems were investigated for the smooth FBR deployment and the effectiveness of proposed flexible system was clarified in this work. (author)

  13. Energy profit ratio on LWR by uranium recycles

    International Nuclear Information System (INIS)

    Amano, Osamu; Uno, Takeki; Matsushima, Jun

    2009-01-01

    Energy profit ratio is defined as the ratio of output energy/input system total energy. In case of electric power generation, input energy is a total for fuel such as uranium mining and enrichment, fuel transportation, build nuclear power plant, M and O and for disposal waste and decommission of reactor vessel. Output energy is the total electricity on LWR during the plant life. EPR on both PWR and BWR is high value using gas centrifuge enrichment compared other type of electric power generation such as a thermal power, a hydraulic power, a wind power and a photovoltaic power. How is the EPR on LWR by MOX? We need understanding the energy of reprocessing spent fuel, MOX fuel fabrication, low level waste disposal and high level radioactive glass disposal. As we show the material balance for two cases, the first is the case of long term storage and reprocessing before FBR, the second is the MOX fuel cycle on LWR plant. The MOX fuel recycle is better EPR value rather than the case of long term storage and reprocessing before FBR (LTSRBF). At the gaseous diffusion enrichment case, MOX fuel recycle has 15 to 18% higher EPR value than LTSRBF. At the gas centrifuge enrichment case the MOX fuel recycle has 17 to 18 higher EPR value than LTSRBF. MOX fuel recycle decreases the uranium mining and refine mass, enrichment separative work and the spent fuel interim storage. It tells us the MOX fuel recycle is good way from view of EPR. (author)

  14. Energy from nuclear reactors

    International Nuclear Information System (INIS)

    Hospe, J.

    1977-01-01

    This VDI-Nachrichten series has the target to provide a technical-objective basis for the discussion of the pros and cons of nuclear power. The first part deals with LWR-type reactors which so far have prevailed in nuclear power generation. (orig.) [de

  15. Fuel assembly for FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki.

    1995-01-01

    Ordinary sodium bond-type fuel pins using nitride fuels, carbide fuels or metal fuels and pins incorporated with hydride moderators are loaded in a wrapper tube at a ratio of from 2 to 10% based on the total number of fuel pins. The hydride moderators are sealed in the hydride moderator incorporated pins at the position only for a range from the upper end to a reactor core upper position of substantially 1/4 of the height of the reactor core from the upper end of the reactor core as a center. Then, even upon occurrence of ULOF (loss of flow rate scram failure phenomenon), it gives characteristic of reducing the power only by a doppler coefficient and not causing boiling of coolant sodium but providing stable cooling to the reactor core. Therefore, a way of thinking on the assurance of passive safety is simplified to make a verification including on the reactor structure unnecessary. In an LMFBR type reactor using the fuel assembly, a critical experiment for confirming accuracy of nuclear design is sufficient for the item required for study and development, which provides a great economical effect. (N.H.)

  16. Behavior and properties of Zircaloys in power reactors: A short review of pertinent aspects in LWR fuel

    International Nuclear Information System (INIS)

    Garzarolli, F.; Stehle, H.; Steinberg, E.

    1996-01-01

    Zircaloy-2 and -4, developed mainly in the US, have been used in Germany for fuel rod claddings and in-core structural components from the beginning of reactor technology. Extensive studies of the material properties of the Zircaloys have been performed in Siemens laboratories since 1957. Zircaloy-2 and -4 turned out to be very reliable materials that fulfilled all requirements for normal operation and likewise the requirements for postulated accidental conditions and for intermediate storage for many years. Optimization of Zircaloy-2 and -4 during recent years includes both optimization of microstructure and of chemical composition. BWRs and PWRs need differently optimized materials. Today's more demanding operation conditions and discharge burnups required a further optimization of the Zircaloys and for hot PWRs even the development of more corrosion-resistant Zr alloys. A significant improvement of PWR corrosion behavior can be achieved with Zr alloys using the alloying elements of Zircaloy with somewhat modified concentrations. Sn should be below or at least in the lower range of the ASTM specification range for Zircaloy-4, Fe and Cr should be somewhat higher, and Si should be specified as an alloying element rather than as an impurity

  17. A preliminary evaluation of the ability of from-reactor casks to geometrically accommodate commercial LWR spent nuclear fuel

    International Nuclear Information System (INIS)

    Andress, D.; Joy, D.S.; McLeod, N.B.; Peterson, R.W.; Rahimi, M.

    1991-01-01

    The Department of Energy has sponsored a number of cask design efforts to define several transportation casks to accommodate the various assemblies expected to be accepted by the Federal Waste Management System. At this time, three preliminary cask designs have been selected for the final design--the GA-4 and GA-9 truck casks and the BR-100 rail cask. In total, this assessment indicates that the current Initiative I cask designs can be expected to dimensionally accommodate 100% of the PWR fuel assemblies (other than the extra-long South Texas Fuel) with control elements removed, and >90% of the assemblies having the control elements as an integral part of the fuel assembly. For BWR assemblies, >99% of the assemblies can be accommodated with fuel channels removed. This paper summarizes preliminary results of one part of that evaluation related to the ability of the From-Reactor Initiative I casks to accommodate the physical and radiological characteristics of the Spent Nuclear Fuel projected to be accepted into the Federal Waste Management System. 3 refs., 5 tabs

  18. Study on vertical seismic response model of BWR-type reactor building

    International Nuclear Information System (INIS)

    Konno, T.; Motohashi, S.; Izumi, M.; Iizuka, S.

    1993-01-01

    A study on advanced seismic design for LWR has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan. As a part of the study, it has been investigated to construct an accurate analytical model of reactor buildings for a seismic response analysis, which can reasonably represent dynamic characteristics of the building. In Japan, vibration models of reactor buildings for horizontal ground motion have been studied and examined through many simulation analyses for forced vibration tests and earthquake observations of actual buildings. And now it is possible to establish a reliable horizontal vibration model on the basis of multi-lumped mass and spring model. However, vertical vibration models have not been so much studied as horizontal models, due to less observed data for vertical motions. In this paper, the vertical seismic response models of a BWR-type reactor building including soil-structure interaction effect are numerically studied, by comparing the dynamic characteristics of (1) three dimensional finite element model, (2) multi-stick lumped mass model with a flexible base-mat, (3) multi-stick lumped mass model with a rigid base-mat and (4) single-stick lumped mass model. In particular, the BWR-type reactor building has the long span truss roof which is considered to be one of the critical members to vertical excitation. The modelings of the roof trusses are also studied

  19. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)

  20. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    International Nuclear Information System (INIS)

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials

  1. Method of operating BWR type reactors

    International Nuclear Information System (INIS)

    Sekimizu, Koichi

    1980-01-01

    Purpose: To enable reactor control depending on any demanded loads by performing control by the insertion of control rods in addition to the control by the regulation of the flow rate of the reactor core water at high power operation of a BWR type reactor. Method: The power is reduced at high power operation by decreasing the flow rate of reactor core water from the starting time for the power reduction and the flow rate is maintained after the time at which it reaches the minimum allowable flow rate. Then, the control rod is started to insert from the above time point to reduce the power to an aimed level. Thus, the insufficiency in the reactivity due to the increase in the xenon concentration can be compensated by the withdrawal of the control rods and the excess reactivity due to the decrease in the xenon concentration can be compensated by the insertion of the control rods, whereby the reactor power can be controlled depending on any demanded loads without deviating from the upper or lower limit for the flow rate of the reactor core water. (Moriyama, K.)

  2. Heavy water moderated tubular type nuclear reactor

    International Nuclear Information System (INIS)

    Oohashi, Masahisa.

    1986-01-01

    Purpose: To enable to effectively change the volume of heavy water per unit fuel lattice in heavy water moderated pressure tube type nuclear reactors. Constitution: In a nuclear reactor in which fuels are charged within pressure tubes and coolants are caused to flow between the pressure tubes and the fuels, heavy water tubes for recycling heavy water are disposed to a gas region formed to the outside of the pressure tubes. Then, the pressure tube diameter at the central portion of the reactor core is made smaller than that at the periphery of the reactor core. Further, injection means for gas such as helium is disposed to the upper portion for each of the heavy water tubes so that the level of the heavy water can easily be adjusted by the control for the gas pressure. Furthermore, heavy water reflection tubes are disposed around the reactor core. In this constitution, since the pitch for the pressure tubes can be increased, the construction and the maintenance for the nuclear reactor can be facilitated. Also, since the liquid surface of the heavy water in the heavy water tubes can be varied, nuclear properties is improved and the conversion ratio is improved. (Ikeda, J.)

  3. Effect of cladding defect size on the oxidation of irradiated spent LWR [light-water reactor] fuel below 3690C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Strain, R.V.

    1984-01-01

    Tests on spent fuel fragments and rod segments were conducted between 250 and 360 0 C to relate temperature, defect size, and fuel oxidation rate with time-to-cladding-splitting. Defect sizes from 760 μm diameter down to 8 μm, the size of an SCC type breach, were used. Above 283 0 C, the time-to-cladding-splitting was longer for the smaller defects. The enhancement of the incubation time by smaller defects steadily decreased with temperature and was not detected at 250 0 C. 18 refs., 10 figs., 4 tabs

  4. Development of glass compositions with 9% waste content for the vitrification of high-level waste from LWR nuclear reactors

    International Nuclear Information System (INIS)

    Lakatos, T.

    1979-10-01

    Reduction of the contents of waste in glass from 20-25% to 9% causes a decrease of the leaching resistance of the glass. The addition of Zn0 reduces the leaching values by a factor of approximately 10. The crystallized glass ceramics have a lower coefficient of thermal expansion than glassy waste bodies. The separation of the phase which contains Mo occurs during heat treatment. The amount of separated Mo is lower for low alkali sac type (Si0 2 - A1 2 0 3 -Ca0 system) of glasses by a factor of approximately 50. All the glasses were prepared with simulated waste composition. (GBn.)

  5. Utilization of thorium in PWR type reactors

    International Nuclear Information System (INIS)

    Correa, F.

    1977-01-01

    Uranium 235 consumption is comparatively evaluated with thorium cycle for a PWR type reactor. Modifications are only made in fuels components. U-235 consumption is pratically unchanged in both cycles. Some good results are promised to the mixed U-238/Th-232 fuel cycle in 1/1 proportion [pt

  6. Hydrogen injection device in BWR type reactor

    International Nuclear Information System (INIS)

    Takagi, Jun-ichi; Kubo, Koji.

    1988-01-01

    Purpose: To reduce the increasing ratio of main steam system dose rate due to N-16 activity due to excess hydrogen injection in the hydrogen injection operation of BWR type reactors. Constitution: There are provided a hydrogen injection mechanism for injecting hydrogen into primary coolants of a BWR type reactor, and a chemical injection device for injecting chemicals such as methanol, which makes nitrogen radioisotopes resulted in the reactor water upon hydrogen injection non-volatile, into the pressure vessel separately from hydrogen. Injected hydrogen and the chemicals are not reacted in the feedwater system, but the reaction proceeds due to the presence of radioactive rays after the injection into the pressure vessel. Then, hydrogen causes re-combination in the downcomer portion to reduce the dissolved oxygen concentration. Meanwhile, about 70 % of the chemicals is supplied by means of a jet pump directly to the reactor core, thereby converting the chemical form of N-16 in the reactor core more oxidative (non-volatile). (Kawakami, Y.)

  7. Level controlling system in BWR type reactors

    International Nuclear Information System (INIS)

    Joge, Toshio; Higashigawa, Yuichi; Oomori, Takashi.

    1981-01-01

    Purpose: To reasonably attain fully automatic water level control in the core of BWR type nuclear power plants. Constitution: A feedwater flow regulation valve for reactor operation and a feedwater flow regulation valve for starting are provided at the outlet of a motor-driven feedwater pump in a feedwater system, and these valves are controlled by a feedwater flow rate controller. While on the other hand, a damp valve for reactor clean up system is controlled either in ''computer'' mode or in ''manual'' mode selected by a master switch, that is, controlled from a computer or the ON-OFF switch of the master switch by way of a valve control analog memory and a turn-over switch. In this way, the water level in the nuclear reactor can be controlled in a fully automatic manner reasonably at the starting up and shutdown of the plant to thereby provide man power saving. (Seki, T.)

  8. Control rod for HTGR type reactor

    International Nuclear Information System (INIS)

    Mogi, Haruyoshi; Saito, Yuji; Fukamichi, Kenjiro.

    1990-01-01

    Upon dropping control rod elements into the reactor core, impact shocks are applied to wire ropes or spines to possibly deteriorate the integrity of the control rods. In view of the above in the present invention, shock absorbers such as springs or bellows are disposed between a wire rope and a spine in a HTGR type reactor control rod comprising a plurality of control rod elements connected axially by means of a spine that penetrates the central portion thereof, and is suspended at the upper end thereof by a wire rope. Impact shocks of about 5 kg are applied to the wire rope and the spine and, since they can be reduced by the shock absorbers, the control rod integrity can be maintained and the reactor safety can be improved. (T.M.)

  9. Method for controlling FBR type reactor

    International Nuclear Information System (INIS)

    Tamano, Toyomi; Iwashita, Tsuyoshi; Sakuragi, Masanori

    1991-01-01

    The present invention provides a controlling method for moderating thermal transient upon trip in an FBR type reactor. A flow channel for bypassing an intermediate heat exchanger is disposed in a secondary Na system. Then, bypassing flow rate is controlled so as to suppress fluctuations of temperature at a primary exit of the intermediate heat exchanger. Bypassing operation by using the bypassing flow channel is started at the same time with plant trip, to reduce the flow rate of secondary Na flown to the intermediate heat exchanger, so that the imbalance between the primary and the secondary Na flowrates is reduced. Accordingly, fluctuations of the temperature at the primary exit of the intermediate heat exchanger upon trip is suppressed. In view of the above, thermal transient applied to the reactor container upon plant trip can be moderated. As a result, the working life of the reactor can be extended, to improve plant integrity and safety. (I.S.)

  10. Primary coolant circuits in FBR type reactors

    International Nuclear Information System (INIS)

    Kutani, Masushiro.

    1985-01-01

    Purpose: To eliminate the requirement of a pump for the forcive circulation of primary coolants and avoid the manufacturing difficulty of equipments. Constitution: In primary coolant circuits of an LMFBR type reactor having a recycling path forming a closed loop between a reactor core and a heat exchanger, coolants recycled through the recycling path are made of a magnetic fluid comprising liquid sodium incorporated with fine magnetic powder, and an electromagnet is disposed to the downstream of the heat exchanger. In the above-mentioned structure, since the magnetic fluid as the primary coolants losses its magnetic property when heated in the reactor core but recovers the property at a lower temperature after the completion of the heat exchange, the magnetic fluid can forcively be flown through the recycling path under the effect of the electromagnet disposed to the down stream of the heat exchanger to thereby forcively recycle the primary coolants. (Kawakami, Y.)

  11. Control rod for FBR type reactor

    International Nuclear Information System (INIS)

    Nakai, Koichi.

    1993-01-01

    In a control rod for an LMFBR type reactor, a thermal resistor is disposed between a temperature sensitive cylinder and a cam unit support rod. A thermal expansion difference due to the temperature difference is caused between the temperature sensitive cylinder and the cam unit support rod only upon abrupt temperature change of coolants. A control rod shaft extending mechanism of downwardly depressing an absorbent portion by amplifying the thermal expansion difference by an extension link mechanism and the cam unit is provided. The thermal resistor comprises inconel 625 or like other steel of small heat conductivity. If a certain abnormality should cause to the reactor system to elevate the coolant temperature in the reactor elevates abruptly and the reactor shutdown system does not actuate, since the control rod extension shaft extends to urge the absorbent and lower the reactor core reactivity, so that leading to serious accident can be prevented surely. Further, the control rod extension shaft does not extend upon moderate temperature elevation in the usual startup and causes no unnecessary reactivity change. (N.H.)

  12. Power generator in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to perform stable and dynamic conditioning operation for nuclear fuels in BWR type reactors. Constitution: The conditioning operation for the nuclear fuels is performed by varying the reactor core thermal power in a predetermined pattern by changing the predetermined power changing pattern of generator power, the rising rate of the reactor core thermal power and the upper limit for the rising power of the reactor core thermal power are calculated and the power pattern for the generator is corrected by a power conditioning device such that the upper limit for the thermal power rising rate and the upper limit for the thermal power rising rate are at the predetermined levels. Thus, when the relation between the reactor core thermal power and the generator electrical power is fluctuated, the fluctuation is detected based on the variation in the thermal power rising rate and the limit value for the thermal power rising rate, and the correction is made to the generator power changing pattern so that these values take the predetermined values to thereby perform the stable conditioning operation for the nuclear fuels. (Moriyama, K.)

  13. Comparison of nuclear reactor types of the next generation; Komparativni prikaz novih tipova reaktorskih komercijalnih postrojenja slijedece generacije

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Z; Kastelan, M [NPP Krsko (Slovenia)

    1992-07-01

    The paper presents a comparison for a selected relevant set of parameters for different commercial nuclear reactor types at the next generation. This parameters overview could serve as the base for the semi-quantitative decision bases for the selection of the future nuclear strategy. The number of advanced reactor designs of the LWR, HWR, GCR and LMR type are presented. Even currently many of them are still on the drawing boards, the concepts and designs should be assessed in the sense of sensible approach for planning the possible future nuclear strategy. (author) Clanek predstavlja usporedbu odabranih bitnih parametara karakteristicnih za razlicite tipove energetskih nuklearnih postrojenja slijedece generacije. Prikazani pregled parametara omogucava osnov za polu kvantitativnu osnovu za odlucivanje u svrhu donosenja odluke oko odrednica buduce strategije uporabe nuklearne energije. Brojni koncepti naprednih nuklearnih reaktora tipa LWR, HWR, GCR i LMR su prezentirani. S obzirom na cinjenicu da se mnogi of prezentiranih nalaze jos uvijek na crtacim daskama projektanata, koncepti i projekti koji su iz njih proizasli zahtijevaju analizu u smislu kvalitativnog pristupa planiranja moguce buduce nuklearne startegije. (author)

  14. Water-immersion type ship reactor

    International Nuclear Information System (INIS)

    Okada, Hiroki; Yamamura, Toshio.

    1996-01-01

    In a water immersion-type ship reactor in which a water-tight wall is formed around a pressure vessel by way of an air permeable heat insulation layer and immersing the wall under water in a reactor container, a pressure equalizing means equipped with a back flow check valve and introducing a gas in a gas phase portion above the water level of the container into a water tight wall and a relief valve for releasing the gas in the water tight wall to the reactor container are disposed on the water tight wall. When the pressure in the water tight wall exceeds the pressure in the container, the gas in the water tight wall is released from the relief valve to the reactor container. On the contrary, when the pressure in the container exceeds the pressure in the water tight wall, the gas in the gas phase portion is flown from the pressure equalizing means equipped with a back flow check valve to the inside of the water tight wall. Thus, a differential pressure between both of them is kept around 0kg/cm 2 . A large differential pressure is not exerted on the water tight wall thereby capable of preventing rupture of them to improve reliability, as well as the thickness of the plate can be decreased thereby enabling to moderate the design for the pressure resistance and reduce the weight. (N.H.)

  15. Fuel assemblies for BWR type reactors

    International Nuclear Information System (INIS)

    Ishizuka, Takao.

    1981-01-01

    Purpose: To enable effective failed fuel detection by the provision of water rod formed with a connecting section connected to a warmed water feed pipe of a sipping device at the lower portion and with a warmed water jetting port in the lower portion in a fuel assembly of a BWR type reactor to thereby carry out rapid sipping. Constitution: Fuel rods and water rods are contained in the channel box of a fuel assembly, and the water rod is provided at its upper portion with a connecting section connected to the warmed water feed pipe of the sipping device and formed at its lower portion with a warmed water jetting port for jetting warmed water fed from the warmed water feed pipe. Upon detection of failed fuels, the reactor operation is shut down and the reactor core is immersed in water. The cover for the reactor container is removed and the cap of the sipping device is inserted to connect the warmed water feed pipe to the connecting section of the water rod. Then, warmed water is fed to the water rod and jetted out from the warmed water jetting port to cause convection and unify the water of the channel box in a short time. Thereafter, specimen is sampled and analyzed for the detection of failed fuels. (Moriyama, K.)

  16. Assessment of management alternatives for LWR wastes. Volume 8. Cost and radiological impact associated with near-surface disposal of reactor waste (Spanish concept)

    International Nuclear Information System (INIS)

    Alamo Berna, S.; Sanchez Delgado, N.

    1993-01-01

    This report deals with the determination of the cost and the radiological impact associated with a near-surface disposal site (Spanish concept) for low and medium-level radioactive waste generated during operation of a 20 GWe nuclear park composed of LWRs for 30 years. This study is part of an overall theoretical exercise aimed at evaluating a selection of management routes for LWR waste based on economical and radiological criteria

  17. Assessment of management alternatives for LWR wastes. Volume 7. Cost and radiological impact associated with near-surface disposal of reactor waste (French concept)

    International Nuclear Information System (INIS)

    Malherbe, J.

    1993-01-01

    This report deals with the determination of the cost and the radiological impact associated with a near-surface disposal site (French concept) for low and medium-level radioactive waste generated during operation of a 20 GWe nuclear park composed of LWRs for 30 years. This study is part of an overall theoretical exercise aimed at evaluating a selection of management routes for LWR waste based on economical and radiological criteria

  18. 'CANDLE' burnup regime after LWR regime

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Nagata, Akito

    2008-01-01

    CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) burnup strategy can derive many merits. From safety point of view, the change of excess reactivity along burnup is theoretically zero, and the core characteristics, such as power feedback coefficients and power peaking factor, are not changed along burnup. Application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replacing fuels. About 40% of natural or depleted uranium undergoes fission without the conventional reprocessing and enrichment. If the LWR produced energy of X Joules, the CANDLE reactor can produce about 50X Joules from the depleted uranium left at the enrichment facility for the LWR fuel. If we can say LWRs have produced energy sufficient for full 20 years, we can produce the energy for 1000 years by using the CANDLE reactors with depleted uranium. We need not mine any uranium ore, and do not need reprocessing facility. The burnup of spent fuel becomes 10 times. Therefore, the spent fuel amount per produced energy is also reduced to one-tenth. The details of the scenario of CANDLE burnup regime after LWR regime will be presented at the symposium. (author)

  19. Status of the CONTAIN computer code for LWR containment analysis

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.

    1983-01-01

    The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment

  20. Status of the CONTAIN computer code for LWR containment analysis

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Murata, K.K.; Rexroth, P.E.; Clauser, M.J.; Senglaub, M.E.; Sciacca, F.W.; Trebilcock, W.

    1982-01-01

    The current status of the CONTAIN code for LWR safety analysis is reviewed. Three example calculations are discussed as illustrations of the code's capabilities: (1) a demonstration of the spray model in a realistic PWR problem, and a comparison with CONTEMPT results; (2) a comparison of CONTAIN results for a major aerosol experiment against experimental results and predictions of the HAARM aerosol code; and (3) an LWR sample problem, involving a TMLB' sequence for the Zion reactor containment

  1. Control rod drives for FBR type reactor

    International Nuclear Information System (INIS)

    Ikakura, Hiroaki.

    1990-01-01

    The control rod drives for an FBR type reactor of the present invention eliminate obstacles deposited on attracting surfaces between an electromagnet and an armature which connect control rods to recover their retaining power. That is, a sealed chamber capable of controlling its inner pressure by an operation from the outside of a reactor is disposed in an extension pipe, and a nozzle connected to the sealed chamber and facing at the lower end thereof to the attracting surface is disposed. Liquid sodium sucked by evacuating the sealed chamber is jetted out from the nozzle by pressurizing the chamber to simultaneously eliminate obstacles deposited to the attracting surfaces of the electromagnet and the control rod. Alternatively, a nozzle protruding from and retracting to the lower surface of the electromagnet is disposed opposing to each of the attracting surfaces of the electromagnet and the control rod. Similar effect can also be obtained if gases are jetted out in this state. As a result, control rod drives of high reliability for a FBR type reactor can be obtained. (I.S.)

  2. Fueling method in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Inoue, Kotaro.

    1985-01-01

    Purpose: To extend the burning cycle and decrease the number of fuel exchange batches without increasing the excess reactivity at the initial stage of burning cycles upon fuel loading to an LMFBR type reactor. Method: Each of the burning cycles is divided into a plurality of burning sections. Fuels are charged at the first burning section in each of the cycles such that driver fuel assemblies and blanket assemblies or those assemblies containing neutron absorbers such as boron are distributed in mixture in the reactor core region. At the final stage of the first burning section, the blanket assemblies or neutron absorber-containing assemblies present in mixture are partially or entirely replaced with driver fuel assemblies depending on the number of burning sections such that all of them are replaced with the driver fuel assemblies till the start of the final burning section of the abovementioned cycle. The object of this invention can thus be attained. (Horiuchi, T.)

  3. Reactors of different types in the world nuclear power

    International Nuclear Information System (INIS)

    Simonov, K.V.

    1991-01-01

    The status of the world nuclear power is briefly reviewed. It is noted that PWR reactors have decisive significance in the world power. The second place is related to gas-cooled graphite-moderated reactors. Channel-type heavy water moderated reactors are relatively important. Nuclear power future is associated with fast liquid-metal cooled breeder reactors

  4. Development of training simulator for LWR

    International Nuclear Information System (INIS)

    Sureshbabu, R.M.

    2009-01-01

    A full-scope training simulator was developed for a light water reactor (LWR). This paper describes how the development evolved from a desktop simulator to the full-scope training simulator. It also describes the architecture and features of the simulator including the large number of failures that it simulates. The paper also explains the three-level validation tests that were used to qualify the training simulator. (author)

  5. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  6. Lining facility for FBR type reactor

    International Nuclear Information System (INIS)

    Shimano, Kunio.

    1991-01-01

    In a lining facility for protecting structural material concretes for concrete buildings in an FBR type power plant, sodium-resistant and heat-resistant first and second coating layers are lined at the surface of concretes, and steam releasing materials are disposed between the first and the second coating layers for releasing water contents evaporated from the concretes to the outside. With such a constitution, since there is no structures for welding steel plates to each other as in the prior art, the fabrication is made easy. Further, since cracks of coating materials can be suppressed, reactor safety is improved. (T.M.)

  7. Coolant degassing device for PWR type reactors

    International Nuclear Information System (INIS)

    Kita, Kaoru; Takezawa, Kazuaki; Minemoto, Masaki.

    1982-01-01

    Purpose: To efficiently decrease the rare gas concentration in primary coolants, as well as shorten the degassing time required for the periodical inspection in the waste gas processing system of a PWR type reactor. Constitution: Usual degassing method by supplying hydrogen or nitrogen to a volume control tank is replaced with a method of utilizing a degassing tower (method of flowing down processing liquid into the filled tower from above while uprising streams from the bottom of the tower thereby degassing the gases dissolved in the liquid into the steams). The degassing tower is combined with a hydrogen separator or hydrogen recombiner to constitute a waste gas processing system. (Ikeda, J.)

  8. Shielding plug for LMFBR type reactors

    International Nuclear Information System (INIS)

    Hashiguchi, Ko.

    1979-01-01

    Purpose: To enable effective removal of liquid metals deposited, if any, in the gaps between a rotary plug and a fixed plug in LMFBR type reactors. Constitution: A plate incorporated with a heater and capable of projecting in a gap between a rotary plug and a fixed plug, and a scraper connected in perpendicular to it are provided to the rotary plug. Solidified liquid metals such as sodium deposited in the gap are effectively removed by the heating with the heater and the scraping action due to the rotation. (Horiuchi, T.)

  9. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructive testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined

  10. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gavenda, D.J.

    1997-01-01

    The ASME Boiler and Pressure Vessel Code fatigue design curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue life of pressure vessel and piping materials in light water reactor (LWR) environments. Fatigue tests have been conducted on Types 304 and 316NG stainless steel in air and LWR environments to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on fatigue lives of these steels. The results confirm the significant decrease in fatigue life in water. The environmentally assisted decrease in fatigue life depends both on strain rate and DO content in water. A decrease in strain rate from 0.4 to 0.004%/s decreases fatigue life by a factor of ∼ 8. However, unlike carbon and low-alloy steels, environmental effects are more pronounced in low-DO than in high-DO water. At ∼ 0.004%/s strain rate, reduction in fatigue life in water containing <10 ppb D is greater by a factor of ∼ 2 than in water containing ≥ 200 ppb DO. Experimental results have been compared with estimates of fatigue life based on the statistical model. The formation and growth of fatigue cracks in austenitic stainless steels in air and LWR environments are discussed

  11. Assessment of LWR piping design loading based on plant operating experience

    International Nuclear Information System (INIS)

    Svensson, P.O.

    1980-08-01

    The objective of this study has been to: (1) identify current Light Water Reactor (LWR) piping design load parameters, (2) identify significant actual LWR piping loads from plant operating experience, (3) perform a comparison of these two sets of data and determine the significance of any differences, and (4) make an evaluation of the load representation in current LWR piping design practice, in view of plant operating experience with respect to piping behavior and response to loading

  12. Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis

    International Nuclear Information System (INIS)

    Ivanov, Kostadin; Avramova, Maria

    2007-01-01

    The simulation of nuclear power plant accident conditions requires three-dimensional (3D) modeling of the reactor core to ensure a realistic description of physical phenomena. The operational flexibility of Light Water Reactor (LWR) plants can be improved by utilizing accurate 3D coupled neutronics/thermal-hydraulics calculations for safety margins evaluations. There are certain requirements to the coupling of thermal-hydraulic system codes and neutron-kinetics codes that ought to be considered. The objective of these requirements is to provide accurate solutions in a reasonable amount of CPU time in coupled simulations of detailed operational transient and accident scenarios. These requirements are met by the development and implementation of six basic components of the coupling methodologies: ways of coupling (internal or external coupling); coupling approach (integration algorithm or parallel processing); spatial mesh overlays; coupled time-step algorithms; coupling numerics (explicit, semi-implicit and implicit schemes); and coupled convergence schemes. These principles of the coupled simulations are discussed in details along with the scientific issues associated with the development of appropriate neutron cross-section libraries for coupled code transient modeling. The current trends in LWR nuclear power generation and regulation as well as the design of next generation LWR reactor concepts along with the continuing computer technology progress stimulate further development of these coupled code systems. These efforts have been focused towards extending the analysis capabilities as well as refining the scale and level of detail of the coupling. This article analyses the coupled phenomena and modeling challenges on both global (assembly-wise) and local (pin-wise) levels. The issues related to the consistent qualification of coupled code systems as well as their application to different types of LWR transients are presented. Finally, the advances in numerical

  13. Fast reactor parameter optimization taking into account changes in fuel charge type during reactor operation time

    International Nuclear Information System (INIS)

    Afrin, B.A.; Rechnov, A.V.; Usynin, G.B.

    1987-01-01

    The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated

  14. Concept of innovative water reactor for flexible fuel cycle (FLWR)

    International Nuclear Information System (INIS)

    Iwamura, T.; Uchikawa, S.; Okubo, T.; Kugo, T.; Akie, H.; Nakatsuka, T.

    2005-01-01

    In order to ensure sustainable energy supply in the future based on the matured Light Water Reactor (LWR) and coming LWR-Mixed Oxide (MOX) technologies, a concept of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) has been investigated in Japan Atomic Energy Research Institute (JAERI). The concept consists of two parts in the chronological sequence. The first part realizes a high conversion type core concept, which is basically intended to keep the smooth technical continuity from current LWR and coming LWR-MOX technologies without significant gaps in technical point of view. The second part represents the Reduced-Moderation Water Reactor (RMWR) core concept, which realizes a high conversion ratio over 1.0 being useful for the long-term sustainable energy supply through plutonium multiple recycling based on the well-experienced LWR technologies. The key point is that the two core concepts utilize the compatible and the same size fuel assemblies, and hence, the former concept can proceed to the latter in the same reactor system, based flexibly on the fuel cycle circumstances during the reactor operation period around 60 years. At present, since the fuel cycle for the plutonium multiple recycling with MOX fuel reprocessing has not been realized yet, reprocessed plutonium from the LWR spent fuel is to be utilized in LWR-MOX. After this stage, the first part of FLWR, i.e. the high conversion type, can be introduced as a replacement of LWR or LWR-MOX. Since the plutonium inventory of FLWR is much larger, the number of the reactor with MOX fuel will be significantly reduced compared to the LWR-MOX utilization. The size of the fuel assembly for the first part is the same as in the RMWR concept, i.e. the hexagonal fuel assembly with the inner face-to-face distance of about 200 mm. Fuel rods are arranged in the triangular lattice with a relatively wide gap size around 3 mm between rods, and the effective MOX length is less than 1.5 m without using the blanket. When

  15. Fission product release from high gap-inventory LWR fuel under LOCA conditions

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Collins, J.L.; Osborne, M.F.; Malinauskas, A.P.

    1980-01-01

    Fission product release tests were performed with light water reactor (LWR) fuel rod segments containing large amounts of cesium and iodine in the pellet-to-cladding gap space in order to check the validity of the previously published Source Term Model for this type of fuel. The model describes the release of fission product cesium and iodine from LWR fuel rods for controlled loss-of-coolant accident (LOCA) transients in the temperature range 500 to 1200 0 C. The basis for the model was test data obtained with simulated fuel rods and commercial fuel irradiated to high burnup but containing relatively small amounts of cesium and iodine in the pellet-to-cladding gap space

  16. Design guide for Category III reactors: pool type reactors

    International Nuclear Information System (INIS)

    Brynda, W.J.; Lobner, P.R.; Powell, R.W.; Straker, E.A.

    1978-11-01

    The Department of Energy (DOE) in the ERDA Manual requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirement of Category III reactor structures, components, and systems

  17. Qualification of the neutronic evolution of LWR fuels in MELUSINE

    International Nuclear Information System (INIS)

    Beretz, D.; Garcin, J.; Ducros, G.; Vanhumbeeck, D.; Chaucheprat, P.

    1984-09-01

    MELUSINE, a swimming pool type reactor, in Grenoble, for research and technological irradiations is well fitted to the neutronic evolution qualification of the LWR fuel. Thus, with an adjustment of the lattice pitch, representative neutron spectrum locations are available. The re-leading management and the regulation mode flexibility of MELUSINE lead to reproductible neutronic parameters configurations without restricting the reactor to this purpose only. Under these conditions, simple calculations can be carried out for interpretation, without taking into account the whole core. An instrumentation by Self Power Neutron Detectors (collectrons) gives on-line information on the fluxes at the periphery of the device. When required by the neutronicians, experimental pins can be unloaded during the irradiation process and scanned on a gammametry bench immersed in the reactor-pool itself, before their isotopic composition analysis. Thus, within the framework of neutronic evolution qualification, are studied fuel pins for advanced assemblies for the light water reactors or their derivatives, with large advantages over irradiations in power reactors [fr

  18. Upper shielding body in LMFBR type reactors

    International Nuclear Information System (INIS)

    Shoji, Koichi.

    1986-01-01

    Purpose: Preference is given to the strength and thermal insulation of a roof slab thereby ensuring axial size and improving the operationability upon inserting the control rod in the upper shielding body of LMFBR type reactors. Constitution: In an upper shielding body in which a large rotational plug is rotatably mounted to a circular hole formed at an eccentric position of a roof slab, while a small rotational plug is rotatably mounted to a circular hole disposed at an eccentric position of the large rotational plug and the reactor core upper mechanisms are supported on the small rotational plug, heat insulation layers are attached to the inside of the inner circumferential wall of the roof slab and the outer circumferential wall of the large rotational plug. By attaching the heat insulation layers, the heat conduction between the roof slab and the large rotational plug can be suppressed remarkably, by which occurrence of specific heat pass or local generation of large thermal stresses can be avoided even if difference is resulted to the temperature distribution between them. In this way, functions taking advantage of respective features of the roof slab and the small rotational plug can be obtained to achieve the purpose. (Kamimura, M.)

  19. Method of starting up PWR type reactor

    International Nuclear Information System (INIS)

    Kadokami, Akira; Ueno, Ryuji; Tsuge, Ayao; Onimura, Kichiro; Ochi, Tatsuya.

    1988-01-01

    Purpose: To start-up a PWR type reactor so as to effectively impregnate and concentrate corrosion inhibitors in intergranular corrosive faces. Method: Upon reactor start-up, after transferring from the warm zero output state to thermal power loaded state and injecting corrosion inhibitors, thermal power is returned to zero and, subsequently, increased up to a rated power. By selecting the thermal power upon injecting the corrosion inhibitors to a steam generator body, that is, by selecting a thermal power load that starts to boil in heat conduction tubes, feedwater in the clavis portion can be formed into an appropriate boiling convection and, accordingly, the corrosion inhibitors can be penetrated to the clevis portion at a higher rate and in a greater amount as compared with those under zero power condition. Subsequently, when the thermal power is reduced, a sub-cooled state is attained in the clevis portion, in which steams present in the intergranular corrosion faces in the heat conduction tubes are condensated. As a result, the corrosion inhibitors at high concentration are impregnated into the intergranular corrosive faces to provide excellent effects. (Kamimura, M.)

  20. Self operation type reactor control device

    International Nuclear Information System (INIS)

    Saito, Makoto; Gunji, Minoru.

    1990-01-01

    A boiling-requefication chamber containing transporting materials having somewhat higher boiling point that the usual reactor operation temperature and liquid neutron absorbers having a boiling point sufficiently higher than that of the transporting materials is disposed near the coolant exit of a fuel assembly and connected with a tubular chamber in the reactor core with a moving pipe at the bottom. Since the transporting materials in the boiling-requefication chamber is boiled and expanded by heating, the liquid neutron absorbers are introduced passing through the moving pipe into the cylindrical chamber to control the nuclear reactions. When the temperature is lowered by the control, the transporting materials are liquefied to contract the volume and the liquid neutron absorbers in the cylindrical chamber are returned passing through the moving tube into the boiling-liquefication chamber to make the nuclear reaction vigorous. Thus, self-operation type power conditioning and power stopping are enabled not by way of control rods and not requiring external control, to prevent scram failure or misoperation. (N.H.)

  1. Principles of MONJU maintenance. Characteristic of MONJU maintenance and reflection of LWR maintenance experience to FBR

    International Nuclear Information System (INIS)

    Nakai, Satoru; Nishio, Ryuichi; Uchihashi, Masaya; Kaneko, Yoshihisa; Yamashita, Hironobu; Yamaguchi, Atsunori; Aoki, Takayuki

    2014-01-01

    A sodium cooled fast breeder reactor (FBR) has unique systems and components and different degradation mechanism from light water reactor (LWR) so that need to establish maintenance technology in accordance with its features. The examination of the FBR maintenance technology is carried out in the special committee for considering the maintenance for Monju established in the Japan Society of Maintenology (JSM). As a result of the study such as extraction of Monju maintenance feature, maintenance technology benchmark between Monju and LWR components and survey of LWR maintenance experience, it is clear that principles of maintenance are same as LWR, necessity of LWR maintenance experience reflection and points to be considered in Monju maintenance. The road map to establish a FBR maintenance technology in the technical aspect became clear and it is vital to acquire operation and maintenance experience of the plant to implement this road map, and to establish a fast reactor maintenance. (author)

  2. Pressure vessel for a BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To prevent the retention of low temperature water and also prevent the thermal fatigue of the pressure vessel by making large the curvature radius of a pressure vessel of a feed water sparger fitting portion and accelerating the mixing of low-temperature water at the feed water sparger base and in-pile hot water. Constitution: The curvature radius of the corner of the feed water sparger fitting portion in a pressure vessel is formed largely. In-pile circulating water infiltrates up to the base portion of the feed water sparger to carry outside low-temperature water at the base part, which is mixed with in-pile hot water. Accordingly, low temperature water does not stay at the base portion of the feed water sparger and generation of thermal fatigue in the pressure vessel can be prevented and the safety of the BWR type reactor can be improved. (Yoshino, Y.)

  3. The minimum attention plant inherent safety through LWR simplification

    International Nuclear Information System (INIS)

    Turk, R.S.; Matzie, R.A.

    1987-01-01

    The Minimum Attention Plant (MAP) is a unique small LWR that achieves greater inherent safety, improved operability, and reduced costs through design simplification. The MAP is a self-pressurized, indirect-cycle light water reactor with full natural circulation primary coolant flow and multiple once-through steam generators located within the reactor vessel. A fundamental tenent of the MAP design is its complete reliance on existing LWR technology. This reliance on conventional technology provides an extensive experience base which gives confidence in judging the safety and performance aspects of the design

  4. Channel type reactors with supercritical water coolant. Russian experience

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Gabaraev, B.A.

    2003-01-01

    Transition to coolant of supercritical parameters allows for principle engineering-andeconomic characteristics of light-water nuclear power reactors to be substantially enhanced. Russian experience in development of channel-type reactors with supercritical water coolant has demonstrated advantages and practical feasibility of such reactors. (author)

  5. Experience and prospects for developing research reactors of different types

    International Nuclear Information System (INIS)

    Kuatbekov, R.P.; Tretyakov, I.T.; Romanov, N.V.; Lukasevich, I.B.

    2015-01-01

    NIKIET has a 60-year experience in the development of research reactors. Altogether, there have been more than 25 NIKIET-designed plants of different types built in Russia and 20 more in other countries, including pool-type water-cooled and water moderated research reactors, tank-type and pressure-tube research reactors, pressurized high-flux, heavy-water, pulsed and other research reactors. Most of the research reactors were designed as multipurpose plants for operation at research centers in a broad range of applications. Besides, unique research reactors were developed for specific application fields. Apart from the experience in the development of research reactor designs and the participation in the reactor construction, a unique amount of knowledge has been gained on the operation of research reactors. This makes it possible to use highly reliable technical solutions in the designs of new research reactors to ensure increased safety, greater economic efficiency and maintainability of the reactor systems. A multipurpose pool-type research reactor of a new generation is planned to be built at the Center for Nuclear Energy Science & Technology (CNEST) in the Socialist Republic of Vietnam to be used to support a spectrum of research activities, training of skilled personnel for Vietnam nuclear industry and efficient production of isotopes. It is exactly the applications a research reactor is designed for that defines the reactor type, design and capacity, and the selection of fuel and components subject to all requirements of industry regulations. The design of the new research reactor has a great potential in terms of upgrading and installation of extra experimental devices. (author)

  6. Critical corrosion issues and mitigation strategies impacting the operability of LWR's

    International Nuclear Information System (INIS)

    Jones, R.L.

    1996-01-01

    Recent corrosion experience in US light water reactor nuclear power plants is reviewed with emphasis on mitigation strategies to control the cost of corrosion to LWR operators. Many components have suffered corrosion problems resulting in industry costs of billions of dollars. The most costly issues have been stress corrosion cracking of stainless steel coolant piping in boiling water reactors and corrosion damage to steam generator tubes in pressurized water reactors. Through industry wide R and D programs these problems are now understood and mitigation strategies have been developed to address the issues in a cost effective manner. Other significant corrosion problems for both reactor types are briefly reviewed. Tremendous progress has been made in controlling corrosion, however, minimizing its impact on plant operations will present a continuing challenge throughout the remaining service lives of these power plants

  7. Deployable nuclear fleet based on available quantities of uranium and reactor types – the case of fast reactors started up with enriched uranium

    Directory of Open Access Journals (Sweden)

    Baschwitz Anne

    2016-01-01

    Full Text Available International organizations regularly produce global energy demand scenarios. To account for the increasing population and GDP trends, as well as to encompass evolving energy uses while satisfying constraints on greenhouse gas emissions, long-term installed nuclear power capacity scenarios tend to be more ambitious, even after the Fukushima accident. Thus, the amounts of uranium or plutonium needed to deploy such capacities could be limiting factors. This study first considers light-water reactors (LWR, GEN III using enriched uranium, like most of the current reactor technologies. It then examines the contribution of future fast reactors (FR, GEN IV operating with an initial fissile load and then using depleted uranium and recycling their own plutonium. However, as plutonium is only available in limited quantity since it is only produced in nuclear reactors, the possibility of starting up these Generation IV reactors with a fissile load of enriched uranium is also explored. In one of our previous studies, the uranium consumption of a third-generation reactor like an EPR™ was compared with that of a fast reactor started up with enriched uranium (U5-FR. For a reactor lifespan of 60 years, the U5-FR consumes three times less uranium than the EPR and represents a 60% reduction in terms of separative work units (SWU, though its requirements are concentrated over the first few years of operation. The purpose of this study is to investigate the relevance of U5-FRs in a nuclear fleet deployment configuration. Considering several power demand scenarios and assuming different finite quantities of available natural uranium, this paper examines what types of reactors must be deployed to meet the demand. The deployment of light-water reactors only is not sustainable in the long run. Generation IV reactors are therefore essential. Yet when started up with plutonium, the number of reactors that can be deployed is also limited. In a fleet deployment

  8. Baseline descriptions for LWR spent fuel storage, handling, and transportation

    International Nuclear Information System (INIS)

    Moyer, J.W.; Sonnier, C.S.

    1978-04-01

    Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables

  9. Baseline descriptions for LWR spent fuel storage, handling, and transportation

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, J.W.; Sonnier, C.S.

    1978-04-01

    Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables.

  10. Non-electric applications of pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Adamov, E.O.; Cherkashov, Yu.M.; Romenkov, A.A.

    1997-01-01

    This paper recommends the use of pool-type light water reactors for thermal energy production. Safety and reliability of these reactors were already demonstrated to the public by the long-term operation of swimming pool research reactors. The paper presents the design experience of two projects: Apatity Underground Nuclear Heating Plant and Nuclear Sea-Water Desalination Plant. The simplicity of pool-type reactors, the ease of their manufacturing and maintenance make this type of a heat source attractive to the countries without a developed nuclear industry. (author). 6 figs, 1 tab

  11. Simulation of a pool type research reactor

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe da Silva de; Moreira, Maria de Lourdes

    2011-01-01

    Computational fluid dynamic is used to simulate natural circulation condition after a research reactor shutdown. A benchmark problem was used to test the viability of usage such code to simulate the reactor model. A model which contains the core, the pool, the reflector tank, the circulation pipes and chimney was simulated. The reactor core contained in the full scale model was represented by a porous media. The parameters of porous media were obtained from a separate CFD analysis of the full core model. Results demonstrate that such studies can be carried out for research and test of reactors design. (author)

  12. The market for HTGR type reactors

    International Nuclear Information System (INIS)

    Roehler, E.

    1986-01-01

    High-temperature-reactors with pebble-bed-reactor cores as a progressive reactor line, have been developed by BBC/HRB the Federal Republic of Germany over a period of 27 years and will soon be mature to be introduced to the market. They represent an important innovation in the field of reactor engineering. Due to its high degree of applicability on the power and heat market and its high flexibility regarding the site and fuel cycle the HTR is extremely suitable for providing energy to consumers, especially in countries using nuclear energy supply for the first time. (orig.) [de

  13. Recycle of LWR actinides to an IFR

    International Nuclear Information System (INIS)

    Pierce, R.D.; Ackerman, J.P.; Johnson, G.K.; Mulcahey, T.P.; Poa, D.S.

    1991-01-01

    Large quantities of actinide elements are present in irradiated light water reactor fuel that is stored throughout the world. Because of the high fission to capture ratio for the transuranium (TRU) elements with the high energy neutrons in metal-fueled integral fast reactors (IFR), that reactor can consume these elements effectively. The stored fuel may represent valuable resource for the expanding application of fast power reactors. In addition, the removal of TRU elements from spent LWR fuel has the potential for increasing the capacity of high level waste facilities by reducing the heat load and may increase the margin of safety in meeting licensing requirement. Argonne National Laboratory is developing a pyrochemical process, which is compatible with the IFR fuel cycle for the recovery of TRU elements from LWR fuel. The proposed product is a metallic actinide ingot, which can be introduced into the electrorefining step of the IFR process. Two pyrochemical processes, that is, salt transport process and blanket processing study, are discussed in this paper. Also the experimental studies are reported. (K.I.)

  14. Simplified analysis of trasients in pool type liquid metal reactors

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1987-01-01

    The conceptual design of a liquid metal fast breeder reactor will require a great effort of development in several technical disciplines. One of them is the thermal-hydraulic design of the reactor and of the heat and fluid transport components inside the reactor vessel. A simplified model to calculate the maximum sodium temperatures is presented in this paper. This model can be used to optimize the layout of components inside the reactor vessel and was easily programmed in a small computer. Illustrative calculations of two transients of a typical hot pool type fast reactor are presented and compared with the results of other researchers. (author) [pt

  15. Steam generator of FBR type reactor

    International Nuclear Information System (INIS)

    Hashiguchi, Ko.

    1992-01-01

    Liquid metal (for example, mercury) which is scarcely reactive with metal sodium is contained and cover gases which are scarcely reactive with the liquid metal are filled in a steam generator of an FBR type reactor and it is closed. The heat of primary sodium is transferred to the liquid metal, which is not reactive with sodium, in a primary thermal conduction portion. Since the temperature of the primary thermal conduction portion is high, the density is extremely low. On the other hand, since a second thermal conduction portion is kept at a single phase and the temperature is lower compared with that of the first thermal conduction portion, the density is kept high. since the density difference and gas jetting speed generate a great circulating force to liquid metal passing the opening of a partition plate, heat can be conducted on the side of water without disposing pumps. The steam concentration in the liquid metal is low being in a single phase of steams, corrosion caused from the outside of pipes of the primary thermal conduction pipe is scarcely promoted. Even if sodium leaks should be caused, since the sodium concentration in the liquid metal is extremely low and the reactivity is low, the temperature of the liquid metal is not elevated. (N.H.)

  16. Primary coolant system of BWR type reactor

    International Nuclear Information System (INIS)

    Ibe, Hidefumi; Takahashi, Masanori; Aoki, Yasuko

    1997-01-01

    The present invention provides a water quality control system for preventing corrosion and for extending working life of structural materials of a BWR-type reactor. Namely, a sensor group 1 and a sensor group 2 are disposed at different positions such as in a feedwater system, a recycling system, main steam pipes, and a pressure vessel, respectively. Each sensor group can record and generate alarms independently. The sensor group 1 for usual monitoring is connected to a calculation device by way of a switch to confirm that the monitored values are within a proper range by the injection of a water quality moderating agent. The sensor group 2 is caused to stand alone or connected with the calculation device by way of a switch optionally. When abnormality should occur in the sensor group 1, the sensor group 2 determines the limit for the increase/decrease of controlling amount of the moderating agent at a portion where the conditions are changed to the most severe direction by using data base. The moderating agent is injected and controlled based on the controlling amount. The system of the present invention can optionally cope with a new sensor and determination for new water quality standards. Then the evaluation/control accuracy of the entire system can be improved while covering up the errors of each sensor. (I.S.)

  17. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  18. Reactor core and control rod assembly in FBR type reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi.

    1993-01-01

    Fuel assemblies and control rod assemblies are attached respectively to reactor core support plates each in a cantilever fashion. Intermediate spacer pads are disposed to the lateral side of a wrapper tube just above the fuel rod region. Intermediate space pads are disposed to the lateral side of a control rod guide tube just above a fuel rod region. The thickness of the intermediate spacer pad for the control rod assembly is made smaller than the thickness of the intermediate spacer pad for the fuel assembly. This can prevent contact between intermediate spacer pads of the control guide tube and the fuel assembly even if the temperature of coolants is elevated to thermally expand the intermediate spacer pad, by which the radial displacement amount of the reactor core region along the direction of the height of the control guide tube is reduced substantially to zero. Accordingly, contribution of the control rod assembly to the radial expansion reactivity can be reduced to zero or negative level, by which the effect of the negative radial expansion reactivity of the reactor is increased to improve the safety upon thermal transient stage, for example, loss of coolant flow rate accident. (I.N.)

  19. Validation of the LWR-EIR methods for the evaluation of compact beds

    International Nuclear Information System (INIS)

    Foskolos, K.; Grimm, P.; Maeder, C.; Paratte, J.M.

    1983-10-01

    The EIR code system for the calculation of light water reactors is presented and the methods used are briefly described. The application of the system on various types of critical experiments and benchmark problems proves its good precision, even for heterogeneous configurations with strong neutron absorbers like Boral. As the accuracy of the multiplication factor ksub(eff) is always better than 0.5% for normal LWR configurations, this code system is validated for the calculation of such configurations with a safety margin of 1.5% on ksub(eff). (Auth.)

  20. N Reactor Lessons Learned workshop

    International Nuclear Information System (INIS)

    Heaberlin, S.W.

    1993-07-01

    This report describes a workshop designed to introduce participants to a process, or model, for adapting LWR Safety Standards and Analysis Methods for use on rector designs significantly different than LWR. The focus of the workshop is on the ''Lessons Learned'' from the multi-year experience in the operation of N Reactor and the efforts to adapt the safety standards developed for commercial light water reactors to a graphite moderated, water cooled, channel type reactor. It must be recognized that the objective of the workshop is to introduce the participants to the operation of a non-LWR in a LWR regulatory world. The total scope of this topic would take weeks to provide a through overview. The objective of this workshop is to provide an introduction and hopefully establish a means to develop a longer term dialogue for technical exchange. This report provides outline of the workshop, a proposed schedule of the workshop, and a description of the tasks will be required to achieve successful completion of the project

  1. Dynamic behaviour of a CAREM type reactor

    International Nuclear Information System (INIS)

    Abbate, P.; Doval, A.

    1990-01-01

    As complement to CAREM reactor design studies, behaviour analysis were made in a non-stationary regime, with the aim of developing plant systems and determining process variables variation ranges, characteristic of normal operating conditions, specifying alarm values for different variables, as well as for operating policies. Transient accidental scenes analysis were made, concluding that reactor characteristics provide security, maintaining the core integrity. (Author) [es

  2. Fuel exchange device for FBR type reactor

    International Nuclear Information System (INIS)

    Onuki, Koji.

    1993-01-01

    The device of the present invention can provide fresh fuels with a rotational angle aligned with the direction in the reactor core, so that the fresh fuels can be inserted being aligned with apertures of the reactor core even if a self orientation mechanism should fail to operate. That is, a rotational angle detection means (1) detects the rotational angle of fresh fuels before insertion to the reactor core. A fuel rotational angle control means (2) controls the rotational angle of the fresh fuels by comparing the detection result of the means (1) and the data for the insertion position of the reactor core. A fuel rotation means (3) compensates the rotational angel of the fresh fuels based on the control signal from the means (2). In this way, when the fresh fuels are inserted to the reactor core, the fresh fuels set at the same angle as that for the aperture of the reactor core. Accordingly, even if the self orientation mechanism should not operate, the fresh fuels can be inserted smoothly. As a result, it is possible to save loss time upon fuel exchange and mitigate operator's burden during operation. (I.S.)

  3. Power distribution investigation in the transition phase of the low moderation type MOX fueled LWR from the high conversion core to the breeding core

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    The key concept of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is a core transition from a high conversion (HC) type to a plutonium breeding (BR) type in a same reactor system only by replacing fuel assemblies. Consequently in this transition phase, there are two types of assemblies in the same core. Due to the differences of the two assembly types, region-wise soft to hard neutron spectra appears and result in a large power peaking. Therefore, power distribution of FLWR in the HC to BR transition phase was studied by performing assembly and core calculations. For the whole core calculation, a new 14-group energy structure is developed to better represent the power distribution obtained with the fine 107-group structure than the 9-group structure in the previous evaluations. Calculations on few assemblies geometries show large local power peakings can be effectively reduced by considering plutonium enrichment distribution in an assembly. In the whole core calculation, there is a power level mismatch between HC and BR assemblies, but overall power distribution flattening is possible by optimizing fuel assemblies loading. Although the fuel loading should be decided also taking into account the void coefficient, transition from HC to BR type FLWR seems feasible without difficulty. (author)

  4. Study on high conversion type core of innovative water reactor for flexible fuel cycle (FLWR) for minor actinide (MA) recycling

    International Nuclear Information System (INIS)

    Fukaya, Yuji; Nakano, Yoshihiro; Okubo, Tsutomu

    2009-01-01

    In order to ensure sustainable energy supplies in the future based on the well-established light water reactor (LWR) technologies, conceptual design studies have been performed on the innovative water reactor for flexible fuel cycle (FLWR) with the high conversion ratio core. For early introduction of FLWR without a serious technical gap from the LWR technologies, the conceptual design of the high conversion type one (HC-FLWR) was constructed to recycle reprocessed plutonium. Furthermore, an investigation of minor actinide (MA) recycling based on the HC-FLWR core concept has been performed and is presented in this paper. Because HC-FLWR is a near-term technology, it would be a good option in the future if HC-FLWR can recycle MAs. In order to recycle MAs in HC-FLWR, it has been found that the core design should be changed, because the loaded MA makes the void reactivity coefficient worse and decreases the discharge burn-up. To find a promising core design specification, the investigation on the core characteristics were performed using the results from parameter surveys with core burn-up calculations. The final core designs were established by coupled three dimensional neutronics and thermal-hydraulics core calculations. The major core specifications are as follows. The plutonium fissile (Puf) content is 13 wt%. The discharge burn-up is about 55 GWd/t. Around 2 wt% of Np or Am can be recycled. The MA conversion ratios are around unity. In particular, it has been found that loaded Np can be transmuted effectively in this core concept. Therefore, these concepts would be a good option to reduce environmental burdens.

  5. Assesment On The Possibility To Modify Fabrication Equipment For Fabrication Of HWR And LWR Fuel Elements

    International Nuclear Information System (INIS)

    Tri-Yulianto

    1996-01-01

    Based on TOR BATAN for PELITA VI. On of BATAN program in the fuel element production technology section is the acquisition of the fuel element fabrication technology for research reactor as well as power reactor. The acquisition can be achieved using different strategies, e.g. by utilizing the facility owned for research and development of the technology desired or by transferring the technology directly from the source. With regards to the above, PEBN through its facility in BEBE has started the acquisition of the fuel element fabrication technology for power reactor by developing the existing equipment initially designed to fabricate HWR Cinere fuel element. The development, by way of modifying the equipment, is intended for the production of HWR (Candu) and LWR (PWR and BWR) fuel elements. To achieve above objective, at the early stage of activity, an assesment on the fabrication equipment for pelletizing, component production and assembly. The assesment was made by comparing the shape and the size of the existing fuel element with those used in the operating reactors such as Candu reactors, PWR and BWR. Equipment having the potential to be modified for the production of HWR fuel elements are as followed: For the pelletizing equipment, the punch and dies can be used of the pressing machine for making green pellet can be modified so that different sizes of punch and dies can be used, depending upon the size of the HWR and LWR pellets. The equipment for component production has good potential for modification to produce the HWR Candu fuel element, which has similar shape and size with those of the existing fuel element, while the possibility of producing the LWR fuel element component is small because only a limited number of the required component can be made with the existing equipment. The assembly equipment has similar situation whit that of the component production, that is, to assemble the HWR fuel element modification of few assembly units very probable

  6. CCGT + LWR = the power plant of the future?

    International Nuclear Information System (INIS)

    Tsiklauri, G.

    1997-01-01

    The thermal efficiency of LWR type reactors can be increased making use of the Tsikl-Durst cycle, where the gas turbine is combined with the nuclear reactor using a steam mixer. The principle of this combined cycle is outlined. It is envisaged that the overall thermal efficiency of the power plant can be increased to 41 - 44%. The total output would be two to three times higher. With advanced light-water reactors (ABWR, AP-600) and advanced gas turbines in combination with the one-way steam generator as developed by Solar Turbines Inc., producing steam at 650 degC to 750 degC, it is feasible to attain a total thermal efficiency of 55%. The combination of two kinds of fuel (nuclear fuel and natural gas) improves operating flexibility of the cycle in various regimes so as to respond to natural gas prices and electricity demands. The gas turbine adds to the nuclear power plant an independent source of power, so that standby dieselgenerators are no more necessary. (P.A.). 1 tab., 2 figs

  7. Strategies of operation cycles in BWR type reactors

    International Nuclear Information System (INIS)

    Molina, D.; Sendino, F.

    1996-01-01

    The article analyzes the operation cycles in BWR type reactors. The cycle size of operation is the consequence on the optimization process of the costs with the technical characteristics of nuclear fuel and the characteristics of demand and production. The authors analyze the cases of Garona NP and Cofrentes NP, both with BWR reactors. (Author)

  8. Power controlling method for BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1983-01-01

    Purpose: To enable reactor operation exactly following after an aimed curve in the high power resuming and maintaining period without failures in cladding tubes. Method: Upon recovery of the reactor power to a high power level after changing the reactor power from the high power to the low power level, control rod is operated under such conditions that the linear power density after operation of the control rod does not exceed the PC envelope in the low power period, and the core flow rate is coordinated to the control rod operation. The linear power density can be suppressed within an allowable linear power density by the above operation during high power resuming and maintaining period and, as the result, PCI failures can be prevented. (Kamimura, M.)

  9. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented

  10. Method of repairing pressure tube type reactors

    International Nuclear Information System (INIS)

    Asada, Takashi.

    1983-01-01

    Purpose: To enable to re-start the reactor operation in a short time, upon occurrence of failures in a pressure tube, as well as directly examine the cause for the failures in the pressure tube. Method: The pressure tube reactor main body comprises a calandria tank of a briquette form, pressure tubes, fuel assemblies and an iron-water shielding body. If failure is resulted to a pressure tube, the reactor operation is at first shutdown and nuclear fuel assemblies are extracted to withdraw from the pressure tube. Then, to an inlet pipe way and an outlet pipeway connected to the failed pressure tube, are attached plugs by means of welding or the like at the appropriate position where the radiation exposure dose is lower and the repairing work can be performed with ease. The pressure tube is disconnected to withdraw from the inlet pipeway and the outlet pipeway and, instead, radiation shielding plug tube is inserted and shield cooling device is actuated if required, wherein the reactor is actuated to re-start the operation. (Yoshino, Y.)

  11. Reactor physics calculations on HTR type configurations

    Energy Technology Data Exchange (ETDEWEB)

    Klippel, H.T.; Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Kuijper, J.C.; Levin, P.

    1995-04-01

    In this paper a short description of the ECN nuclear analysis code system is given with respect to application in HTR reactor physics calculations. First results of calculations performed on the PROTEUS benchmark are shown. Also first results of a HTGR benchmark are given. (orig.).

  12. Reactor physics calculations on HTR type configurations

    International Nuclear Information System (INIS)

    Klippel, H.T.; Hogenbirk, A.; Stad, R.C.L. van der; Janssen, A.J.; Kuijper, J.C.; Levin, P.

    1995-04-01

    In this paper a short description of the ECN nuclear analysis code system is given with respect to application in HTR reactor physics calculations. First results of calculations performed on the PROTEUS benchmark are shown. Also first results of a HTGR benchmark are given. (orig.)

  13. Design consideration on severe accident for future LWR

    International Nuclear Information System (INIS)

    Omoto, A.

    1998-01-01

    Utilities' Severe Accident Management strategies, selected based on Individual Plant Examination, are in the process of implementation for each operating plant. Activities for the next generation LWR design are going on by Utilities, NSSS vendors and Research Institutes. The proposed new designs vary from evolutionary design to revolutionary design such as the supercritical LWR. Discussion on the consideration of Severe Accident in the design of next generation LWR is being held to establish the industry's self-regulatory document on containment design and its performance, which ABWR-IER (Improved Evolutionary Reactor) on the part of BWR and Evolutionary APWR and New PWR21 on the part of PWR are expected to comply. Conceptual design study for ABWR-IER will illustrate an example of design approach for the prevention and mitigation of Severe Accident and its impact on capital cost

  14. Exploitation questions regarding channel type reactors: water graphite channel reactors (operation, reconstruction, advantages and disadvantages)

    International Nuclear Information System (INIS)

    Chichindaev, D.A.

    2001-01-01

    An overview of up-grade of the RBMK-type reactors is given. I this paper the core design and core monitoring, pressure boundary integrity, RBMK basic design and safety improvements emergency core cooling system (ECCS) as well as reactor cavity overpressure protection system (RCOPS) are discussed

  15. Manufacturing and testing of fuel cans with barrier coating for LWR type reactors in USA and Japan

    International Nuclear Information System (INIS)

    Gorskij, V.V.

    1988-01-01

    Papers on manufacturing methods for fuel cans of zircalloy with barrier coating of zirconium prepared by pressing an internal tube into external one as well as by pressing of two-layer tubes with further rolling are reviewed. Heat treatment based on creation of the assigned gradient of temperature over tube wall cross section in order to change the structure of a thin layer of the outside surfce when conserving the initial structure of the rest cross section is developed to increase corrosion resistance. Eddy current and ultrasound methods for control of quality and thickness of the barrier layer of zirconium are used

  16. Operation control equipment for BWR type reactor

    International Nuclear Information System (INIS)

    Izumi, Masayuki; Takeda, Renzo.

    1981-01-01

    Purpose: To improve the temperature balance in a feedwater heater by obtaining the objective value of a feedwater enthalpy upon calculation of respective measured values and controlling the opening or closing of an extraction valve so that the objective value may coincide with the measured value, thereby averaging the axial power distribution. Constitution: A plurality of stages of extraction lines are connected to a turbine, and extraction valves are respectively provided at the lines. By calculating the measured values of ractor pressure, reactor core flow rate, vapor flow rate and reactor core inlet enthalpy determined to predetermined value using heat balance the objective feedwater enthalpy is obtained, is fed as an extraction valve opening or closing signal from a control equipment, the extraction stages of the turbine extraction are altered in accordance with this signal, and the feedwater enthalpy is controlled. (Sekiya, K.)

  17. Feedwater recycling system in BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To improve the reactor safety by preventing thermal stresses and cracks generated in structural materials due to the fluctuations in the temperature for high temperature water - low temperature water mixture near the feedwater nozzle. Method: Feedwater pipes are connected to a pressure vessel not directly but by way of a flow control valve. While the recycled water is circulated from an inlet nozzle to an outlet nozzle through a recycle pump, flow control valve and recycling pipeways, feedwater is fed from the feedwater pipes to the recycling pipeways by way of the flow control valve. More specifically, since the high temperature recycle water and the low temperature recycle water are mixed within the pipeways, the temperature fluctuations resulted from the temperature difference between the recycle water and the feedwater is reduced to prevent thermal fatigue and generation of cracks thereby securing the reactor safety. (Furukawa, Y.)

  18. Core arrangement in BWR type reactors

    International Nuclear Information System (INIS)

    Asano, Masayuki.

    1981-01-01

    Purpose: To decrease the number of fuel assemblies whose locations are to be changed upon fuel exchange, as well as unify the power distribution in the core by arranging, in a chess board configuration, a plurality pattern of unit reactor lattices each containing fuel assemblies of different burnup degrees in orthogonal positions to each other. Constitution: A first pattern of unit reactor lattice is formed by disposing fuel assemblies of burnup degree 1 and fuel assemblies of burnup degree 3 at orthogonal positions to each other. A second pattern of unit reactor lattice is formed by disposing fuel assemblies of burnup degree 2 and fuel assemblies of burnup degree 1 at orthogonal positions to each other. The unit lattices each in such a dispositions are arranged in a chess board arrangement. Since, the fuel assemblies of the burnup degree 1 in the first pattern unit lattices proceed to the burnup degree 2 and the fuel assemblies of the burnup degree 2 in the second pattern unit lattices proceed to the burnup degree 3 up to the fuel exchange stage, fuel exchange and movement have only to be made, not for those fuel assemblies, but for another half of the fuel assemblies. (Kawakami, Y.)

  19. Primary cooling system for BWR type reactor

    International Nuclear Information System (INIS)

    Ibe, Eishi; Takahashi, Masanori; Aoki, Yasuko

    1993-01-01

    The present invention effectively uses information from a plurality of sensors in order to suppress corrosion circumstance of a nuclear reactor. That is, a predetermined general water quality factor at a predetermined position is determined as a standard index. A concentration of a water quality improver is controlled such that the index is within an aimed range. For this purpose, the entire sensor groups disposed in a primary coolant system of a nuclear reactor are divided into a plural systems of sensor groups each disposed on every different positions. Then, a predetermined sensor group (standard sensor group) is connected to a computing device and a data base so that it is always monitored for calculating and estimating the standard index. Only oxidative ingredient in water at the measuring point is noted, and a concentration distribution which agrees with an actually measured value of oxidative ingredients is extracted from data base and used as a correct concentration distribution. With such procedures, reactor water quality can be estimated accurately while compensating erroneous factors of individual sensors. Even when a new sensor is used, it is not necessary to greatly change control logic. (I.S.)

  20. Self-operation type power control device for nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru.

    1993-07-23

    The device of the present invention operates by sensing the temperature change of a reactor core in all of LMFBR type reactors irrespective of the scale of the reactor core power. That is, a region where liquid poison is filled is disposed at the upper portion and a region where sealed gases are filled is disposed at the lower portion of a pipe having both ends thereof being closed. When the pipe is inserted into the reactor core, the inner diameter of the pipe is determined smaller than a predetermined value so that the boundary between the liquid poison and the sealed gases in the pipe is maintained relative to an assumed maximum acceleration. The sealed gas region is disposed at the reactor core region. If the liquid poison is expanded by the elevation of the reactor core exit temperature, it is moved to the lower gas region, to control the reactor power. Since high reliability can be maintained over a long period of time by this method, it is suitable to FBR reactors disposed in such environments that maintenance can not easily be conducted, such as desserts, isolated islands and undeveloped countries. Further, it is also suitable to ultra small sized nuclear reactors disposed at environments that the direction and the magnitude of gravity are different from those on the ground. (I.S.).

  1. Self-operation type power control device for nuclear reactor

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru.

    1993-01-01

    The device of the present invention operates by sensing the temperature change of a reactor core in all of LMFBR type reactors irrespective of the scale of the reactor core power. That is, a region where liquid poison is filled is disposed at the upper portion and a region where sealed gases are filled is disposed at the lower portion of a pipe having both ends thereof being closed. When the pipe is inserted into the reactor core, the inner diameter of the pipe is determined smaller than a predetermined value so that the boundary between the liquid poison and the sealed gases in the pipe is maintained relative to an assumed maximum acceleration. The sealed gas region is disposed at the reactor core region. If the liquid poison is expanded by the elevation of the reactor core exit temperature, it is moved to the lower gas region, to control the reactor power. Since high reliability can be maintained over a long period of time by this method, it is suitable to FBR reactors disposed in such environments that maintenance can not easily be conducted, such as desserts, isolated islands and undeveloped countries. Further, it is also suitable to ultra small sized nuclear reactors disposed at environments that the direction and the magnitude of gravity are different from those on the ground. (I.S.)

  2. Expert system for estimating LWR plutonium production

    International Nuclear Information System (INIS)

    Sandquist, G.M.

    1988-01-01

    An Artificial Intelligence-Expert System called APES (Analysis of Proliferation by Expert System) has been developed and tested to permit a non proliferation expert to evaluate the capability and capacity of a specified LWR reactor and PUREX reprocessing system for producing and separating plutonium even when system information may be limited and uncertain. APES employs an expert system coded in LISP and based upon an HP-RL (Hewlett Packard-Representational Language) Expert System Shell. The user I/O interface communicates with a blackboard and the knowledge base which contains the quantitative models required to describe the reactor, selected fission product production and radioactive decay processes, Purex reprocessing and ancillary knowledge

  3. NUPEC proves reliability of LWR fuel assemblies

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    It is very important in assuring the safety of nuclear reactors to confirm the reliability of fuel assemblies. The test program of the Nuclear Power Engineering Center on the reliability of fuel assemblies has verified the high performance and reliability of Japanese LWR fuels, and confirmed the propriety of their design and fabrication. This claim is based on the data obtained from the fuel assemblies irradiated in commercial reactors. The NUPEC program includes irradiation test which has been conducted for 11 years since fiscal 1976, and the maximum thermal loading test using the out of pile test facilities simulating a real reactor which has been continued since fiscal 1978. The irradiation test on BWR fuel assemblies in No.3 reactor in Fukushima No.1 Nuclear Power Station, Tokyo Electric Power Co., Inc., and on PWR fuel assemblies in No.3 reactor in Mihama Power Station, Kansai Electric Power Co., Inc., and the maximum thermal loading test on BWR and PWR fuel assemblies are reported. The series of postirradiation examination of the fuel assemblies used for commercial reactors was conducted for the first time in Japan, and the highly systematic data on 27 items were obtained. (Kako, I.)

  4. Fuel assembly for pressure loss variable PWR type reactor

    International Nuclear Information System (INIS)

    Yoshikuni, Masaaki.

    1993-01-01

    In a PWR type reactor, a pressure loss control plate is attached detachably to a securing screw holes on the lower surface of a lower nozzle to reduce a water channel cross section and increase a pressure loss. If a fuel assembly attached with the pressure loss control plate is disposed at a periphery of the reactor core where the power is low and heat removal causes no significant problem, a flowrate at the periphery of the reactor core is reduced. Since this flowrate is utilized for removal of heat from fuel assemblies of high powder at the center of the reactor core where a pressure loss control plate is not attached, a thermal limit margin of the whole reactor core is increased. Thus, a limit of power peaking can be moderated, to obtain a fuel loading pattern improved with neutron economy. (N.H.)

  5. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1981-01-01

    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  6. Conceptual designs of power tokamak-type thermonuclear reactors

    International Nuclear Information System (INIS)

    Shejndlin, A.E.; Nedospasov, A.V.

    1978-01-01

    Physico-technical and ecological aspects of conceptual designing power tokamak-type reactors have been briefly considered. Only ''pure'' (''non-hybride'') reactors are discussed. Presented are main plasma-physical parameters, characteristics of blankets and magnetic systems of the following projects: PPPL; V-2; V-3; Culham-2, JAERI; TBEh-2500; TFTR. Two systems of the first wall protection have been considered: divertor one and by means of a layer of a cool turbulent plasma. Examined are the following problems: fuel loading, choice of the first wall material, blanket structure, magnetic system, environmental contamination. The comparison of relative hazards of fast neutron reactors and fusion reactors has shown that in respect of fusion reactors the biological hazard potential value is less by one-two orders

  7. Prevention device for rapid reactor core shutdown in BWR type reactors

    International Nuclear Information System (INIS)

    Koshi, Yuji; Karatsu, Hiroyuki.

    1986-01-01

    Purpose: To surely prevent rapid shutdown of a nuclear reactor upon partial load interruption due to rapid increase in the system frequency. Constitution: If a partial load interruption greater than the sum of the turbine by-pass valve capacity and the load setting bias portion is applied in a BWR type power plant, the amount of main steams issued from the reactor is decreased, the thermal input/output balance of the reactor is lost, the reactor pressure is increased, the void is collapsed, the neutron fluxes are increased and the reactor power rises to generate rapid reactor shutdown. In view of the above, the turbine speed signal is compared with a speed setting value in a recycling flowrate control device and the recycling pump is controlled to decrease the recycling flowrate in order to compensate the increase in the neutron fluxes accompanying the reactor power up. In this way, transient changes in the reactor core pressure and the neutron fluxes are kept within a setting point for the rapid reactor shutdown operation thereby enabling to continue the plant operation. (Horiuchi, T.)

  8. Non-linear analysis in Light Water Reactor design

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.; Nickell, R.E.; Esztergar, E.P.; Jones, J.W.

    1980-03-01

    The results obtained from a scoping study sponsored by the US Department of Energy (DOE) under the Light Water Reactor (LWR) Safety Technology Program at Sandia National Laboratories are presented. Basically, this project calls for the examination of the hypothesis that the use of nonlinear analysis methods in the design of LWR systems and components of interest include such items as: the reactor vessel, vessel internals, nozzles and penetrations, component support structures, and containment structures. Piping systems are excluded because they are being addressed by a separate study. Essentially, the findings were that nonlinear analysis methods are beneficial to LWR design from a technical point of view. However, the costs needed to implement these methods are the roadblock to readily adopting them. In this sense, a cost-benefit type of analysis must be made on the various topics identified by these studies and priorities must be established. This document is the complete report by ANATECH International Corporation

  9. Control rod drives for HTGR type reactor

    International Nuclear Information System (INIS)

    Nishiguchi, Isoharu; Katagiri, Shigeo.

    1991-01-01

    The device of the present invention has a feature of having stable braking characteristics upon scram operation of control rods. That is, control rod drives are moved upon and down by a dram which rotates the control rod suspended from to a wire rope, and the dram is disconnected from the driving mechanism by a crutch mechanism upon scram, to rapidly insert the control rod in the reactor by its own weight. An electric generator is used as a braking mechanism for controlling the scram speed of the control rod. A plurality of resistors disposed outside of the reactor coolants boundary are connected in parallel between input/output terminals of the electric generator. With such a constitution, braking characteristics are determined by the intensity of the permanent magnet, number of the coil windings and values of the resistors constituting the power generator. Accordingly, the braking characteristics are less changed relative to the working circumstantial conditions, the history of use and the state of mounting. As a result, stable braking characteristics can always be obtained. Further, braking characteristics can easily be controlled by varying the resistance value. (I.S.)

  10. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  11. Thermal shielding device in LMFBR type reactors

    International Nuclear Information System (INIS)

    Nakamura, Hiroshi.

    1985-01-01

    Purpose: To improve the soundness and earthquake proofness of mounting structures to a reactor vessel in a thermal shielding device comprising a plurality of tightly closed casings evacuated or shield with heat insulation gases, by reducing the wall thickness and weight of the casing. Constitution: the thermal shielding body comprises tightly closed casings and compressing core materials for preventing the deformation of the casings. The tightly closed casing is in the shape of a hollow vessel, completely sealed in gastight manner, and evacuated or sealed with heat insulation gases at a low pressure of about less than 0.5 kg/cm 2 G, such that the inner pressure is lower than the outer pressure. Compressing core materials made of porous metals or porous ceramics are contained to the inside of the casing. In this way, the wall thickness of the tightly closed casing can be reduced significantly as compared with the conventional case, whereby the mounting work on the site to the reactor container on the field can remarkably be improved and high reliability can be maintained at the mounting portion. (Kamimura, M.)

  12. Self operation type reactor scram device

    International Nuclear Information System (INIS)

    Saito, Makoto; Gunji, Minoru.

    1992-01-01

    A control rod having neutron absorbers therein is held by a curie point electromagnet by way of a control rod extension shaft. The electromagnet is suspended from a vertically movable driving shaft in an upper guide tube. Then, a heater is disposed at the lower portion in the inner side of the upper guide tube. Upon a function confirmation test, the electromagnet is at first pulled up to the inside of the upper guide tube. Subsequently, the electromagnet is heated by the heater by a temperature higher than the curie point of the temperature sensing magnetic material. If the function is normal, armature connected to the control rod extension tube is separated. With such a constitution, the electromagnetic portion is isolated from a coolant main stream, thereby enabling to avoid the cooling effect by the stream of coolants. Accordingly, the operation test for confirming the integrity of the function of the curie point electromagnet can be conducted while placing the electromagnet in the reactor core as it is during actual reactor operation. (I.N.)

  13. BWR type reactor and its operating method

    International Nuclear Information System (INIS)

    Ootsuji, Niro.

    1983-01-01

    Purpose: To regulate the control rod extraction operation such that an assumed control rod drop accident, if should occur, may not lead to further serious accidents, as well as enable to improve the working life of the control rod. Method: A plurality of control rods disposed among a plurality of fuel assemblies constituting the reactor core for suppressing the reactor core reactivity are divided into two groups depending on the descending speed, and the number of rods with a faster descending speed is set to less than 1/4 of the total number of the control rods. Then, the control rods are arranged such that those rods of the faster descending speed may be set every one another in any of the vertical, lateral and orthogonal directions. Further, it is always judged as to the possibility of extracting the control rods with the faster descending speed by a fast control rod extraction judging circuit to issue a signal to a control rod extraction inhibition circuit, so that the extraction operation for the control rods with the faster descending speed is started after all of the control rods with the slow descending speed have been extracted. Accordingly, if a control rod dropping accident should occur, abrupt power change can be avoided to thereby minimize the development of the accident. (Horiuchi, T.)

  14. Nuclear reactors: physics and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G

    2005-07-01

    In the form of a tutorial addressed to non-specialists, the article provides an introduction to nuclear reactor technology and more specifically to Light Water Reactors (LWR); it also shows where materials and chemistry problems are encountered in reactor technology. The basics of reactor physics are reviewed, as well as the various strategies in reactor design and the corresponding choices of materials (fuel, coolant, structural materials, etc.). A brief description of the various types of commercial power reactors follows. The design of LWRs is discussed in greater detail; the properties of light water as coolant and moderator are put in perspective. The physicochemical and metallurgical properties of the materials impose thermal limits that determine the performance and the maximum power a reactor can deliver. (author)

  15. Serious accidents of PWR type reactors for power generation

    International Nuclear Information System (INIS)

    2008-12-01

    This document presents the great lines of current knowledge on serious accidents relative to PWR type reactors. First, is exposed the physics of PWR type reactor core meltdown and the possible failure modes of the containment building in such a case. Then, are presented the dispositions implemented with regards to such accidents in France, particularly the pragmatic approach that prevails for the already built reactors. Then, the document tackles the case of the European pressurized reactor (E.P.R.), for which the dimensioning takes into account explicitly serious accidents: it is a question of objectives conception and their respect must be the object of a strict demonstration, by taking into account uncertainties. (N.C.)

  16. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    In equilibrium symbiotic power plant system containing both thermal reactors and fast breeders, excess plutonium produced by the fast breeders is used to enrich the fuel of the thermal reactors. In plutonium deficient symbiotic power plant system plutonium is supplied both by thermal plants and fast breeders. Mathematical models were constructed and different equations solved to characterize the fuel utilization of both systems if they contain only a single thermal type and a single fast type reactor. The more plutonium is produced in the system, the higher output ratio of thermal to fast reactors is achieved in equilibrium symbiotic power plant system. Mathematical equations were derived to calculate the doubling time and the breeding gain of the equilibrium symbiotic system. (V.N.) 2 figs.; 2 tabs

  17. Nuclear reactor of pressurized liquid coolant type

    International Nuclear Information System (INIS)

    Costes, D.

    1976-01-01

    The reactor comprises a vertical concrete pressure vessel, a bell-housing having an open lower end and disposed coaxially with the interior of the pressure vessel so as to delimit therewith a space filled with gas under pressure for the thermal insulation of the internal vessel wall, a pressurizing device for putting the coolant under pressure within the bell-housing and comprising a volume of control gas in contact with a large free surface of coolant in order that an appreciable variation in volume of liquid displaced within the coolant circuit inside the bell-housing should correspond to a small variation in pressure of the control gas. 9 claims, 3 drawing figures

  18. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kyrki-Rajamaeki, R. [VTT Energy, Espoo (Finland)

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.).

  19. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.)

  20. A Brief Assessment of North Korea's Capacities for Building an Experimental LWR

    International Nuclear Information System (INIS)

    Lee, Jung Hyu; An, Jin Soo

    2011-01-01

    On November 2010, North Korea revealed the construction site of 100 MWt (thermal) experimental LWR in the early stage with a target operation date of 2012. And they claimed that their first LWR construction project is proceeding with strictly domestic talent and resources. Introduction of LWR imposes various technical challenges, even though North Korea has experiences in the construction and management of graphite-moderated and gas-cooled reactor. So, there are doubts about whether they can successfully complete the project in time without any external support. In this paper, to estimate the fate of the LWR construction, we focused on the North Korea's capability to deal with the technical challenges which differ from those of gas-graphite reactor

  1. A Brief Assessment of North Korea's Capacities for Building an Experimental LWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Hyu; An, Jin Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2011-10-15

    On November 2010, North Korea revealed the construction site of 100 MWt (thermal) experimental LWR in the early stage with a target operation date of 2012. And they claimed that their first LWR construction project is proceeding with strictly domestic talent and resources. Introduction of LWR imposes various technical challenges, even though North Korea has experiences in the construction and management of graphite-moderated and gas-cooled reactor. So, there are doubts about whether they can successfully complete the project in time without any external support. In this paper, to estimate the fate of the LWR construction, we focused on the North Korea's capability to deal with the technical challenges which differ from those of gas-graphite reactor

  2. Understanding of the operation behaviour of a Passive Autocatalytic Recombiner (PAR) for hydrogen mitigation in realistic containment conditions during a severe Light Water nuclear Reactor (LWR) accident

    International Nuclear Information System (INIS)

    Payot, Frédéric; Reinecke, Ernst-Arndt; Morfin, Franck; Sabroux, Jean-Christophe; Meynet, Nicolas; Bentaib, Ahmed; March, Philippe; Zeyen, Roland

    2012-01-01

    Highlights: ► Recombineur operation in the presence of fission products (severe accident conditions). ► Operation of catalysts in the integral and small-scale tests. ► The catalyst performance was observed by measuring the coupon temperature increase. ► The experimental observations were corroborated by numerical calculations (SPARK code). - Abstract: In the context of hydrogen risk mitigation in nuclear power plants (NPPs), experimental studies of a possible poisoning of Passive Autocatalytic Recombiners (PARs) by fission products (FPs) and aerosols released during a core meltdown accident were mainly conducted in the past with non-radioactive fission product surrogates (e.g., in the H2PAR facility at Cadarache, France). The decision was taken in 1997 to complete these studies by a test in the Phébus facility, a research nuclear reactor also at Cadarache: it was a rare opportunity to expose catalyst samples to an atmosphere as representative as possible of a core meltdown accident, containing gaseous fission products and aerosols released during the degradation of an actual irradiated nuclear fuel bundle. Before testing in Phébus during the FPT3 experiment, reference and qualification tests were performed in the H2PAR facility using the same samples — the so-called “coupons” — and coupons holder to check that the apparatus was functional and correctly designed for avoiding to tamper with the thermal-hydraulics and chemical conditions in the Phébus containment. The correct operation of catalysts was checked by measuring the surface temperature increase of the coupons due to the exothermic reaction between hydrogen and oxygen. After the Phébus FPT3 test (November 2004), REKO-1 tests were initiated at Jülich, Germany, to confirm the discrepancy in coupons temperature observed in Phébus FPT3 and H2PAR PHEB-03 tests, and to study the operation behaviour of PARs. Besides, before REKO-1 tests, a first interpretation of H2PAR and Phébus experiments

  3. Flooding of a large, passive, pressure-tube LWR

    Energy Technology Data Exchange (ETDEWEB)

    Hejzlar, P.; Todreas, N.E.; Driscoll, M.J. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-09-01

    A reactor concept has been developed which can survive LOCA without scram and without replenishing primary coolant inventory. The proposed concept is a pressure tube type reactor similar to CANDU reactors, but differing in three key aspects: (1) a solid SiC-coated graphite fuel matrix is used in place of fuel pin bundles, (2) the heavy water coolant in the pressure tubes is replaced by light water, and (3) the calandria tank contains a low pressure gas instead of heavy water moderator. The gas displaces the light water from the calandria during normal operation, while during loss of coolant or loss of heat sink accidents, it allows passive calandria flooding. This paper describes the thermal hydraulic characteristics of the gravity driven calandria flooding process. Flooding the calandria space with light water is a unique and very important feature of the proposed pressure-tube LWR concept. The flooding of the top row of fuel channels must be accomplished fast enough so that none of the critical components of the fuel channel exceed their design limits. The flooding process has been modeled and shown to be rapid enough to maintain all components within their design limits. Two other considerations are important. The thermal shock experienced by the calandria and pressure tubes has been evaluated and shown to be within acceptable bounds. Finally, although complete flooding renders the reactor deeply subcritical, various steam/water densities can be hypothesized to be present during the flooding process which could cause reactivity to increase from the initially voided calandria case. One such hypothesis which leads to the maximum possible density of the steam/water mixture in the still unflooded calandria space is entrainment from the free surface. It is shown that the steam/water mixture density yielding the maximum reactivity peak cannot be achieved by entrainment because it exceeds thermohydraulically attainable densities of steam/water by an order of magnitude.

  4. Study on reprocessing plant during transition period from LWR to FBR

    International Nuclear Information System (INIS)

    Shimada, Takashi; Matsui, Minefumi; Nishimura, Masashi; Ishida, Yasuhiro; Mori, Yukihide; Kuroda, Kazuhiko

    2011-01-01

    We have proposed a concept of a reprocessing plant suitable for the transition period from the light water reactors (LWRs) to the fast breeder reactors (FBRs) by making comparison of two plant concepts: (1) Independent Plant which processes LWR fuel and FBR fuel in separately constructed lines and (2) Modularized Plant which processes LWR fuel and FBR fuel in a same line. We made construction plans based on the reference power generation plan, and evaluated the Pu supply capability using the power generation plan as an indicator of plant operation flexibility. In general, a margin of processing capacity increases the Pu supply capability. The margin of the Modularized Plant necessary to obtain equivalent Pu supply capability is smaller than that of the Independent Plant. Also the margin of the Independent Plant results in decrease in the plant utilization factor. But the margin of the Modularized Plant results in little decrease in the plant utilization factor, because the Modularized Plant can address the types of reprocessing fuel to adjust to Pu demand and processing capacity. Therefore, the Modularized Plant has a greater potential for the reprocessing plants during transition period. (author)

  5. Fuel assembly for BWR type reactor

    International Nuclear Information System (INIS)

    Kato, Shigeru.

    1993-01-01

    In the fuel assembly of the present invention, a means for mounting and securing short fuel rods is improved. Not only long fuel rods but also short fuel rods are disposed in channel of the fuel assembly to improve reactor safety. The short fuel rods are supported by a screw means only at the lower end plug. The present invention prevents the support for the short fuel rod from being unreliable due to the slack of the screw by the pressure of inflowing coolants. That is, coolant abutting portions such as protrusions or concave grooves are disposed at a portion in the channel box where coolants flowing from the lower tie plate, as an uprising stream, cause collision. With such a constitution, a component caused by the pressure of the flowing coolants is formed. The component acts as a rotational moment in the direction of screwing the male threads of the short fuel rod into the end plug screw hole. Accordingly, the screw is not slackened, and the short fuel rods are mounted and secured certainly. (I.S.)

  6. Double-walled tank type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Izumi; Nishiguchi, Yohei.

    1993-01-01

    A secondary vessel containing a steam generator is disposed on a base slab, and a roof slab is disposed to the upper end opening of the base slab. A manometer sealing is formed between the upper end opening of the secondary vessel and the roof slab. A primary vessel is disposed in the second vessel for containing a reactor core therein. A communication pipeline system (equalizer) is disposed for communicating the cover gas space of the secondary vessel with the cover gas space of the primary vessel by way of the roof slab. The communication pipeline system comprises a breakable plate, a check valve which opens from the secondary system to the primary system, a closing valve and pipelines connecting them. Upon occurrence of a sodium-water reaction accident caused by rupture of heat transfer pipes of a steam generator in the secondary vessel, the breakable plate is broken to equalize the gas pressure by way of the communication pipelines. This can avoid external pressure buckling of the primary vessel. (I.N.)

  7. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    Science.gov (United States)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  8. Research reactors for power reactor fuel and materials testing - Studsvik's experience

    International Nuclear Information System (INIS)

    Grounes, M.

    1998-01-01

    Presently Studsvik's R2 test reactor is used for BWR and PWR fuel irradiations at constant power and under transient power conditions. Furthermore tests are performed with defective LWR fuel rods. Tests are also performed on different types of LWR cladding materials and structural materials including post-irradiation testing of materials irradiated at different temperatures and, in some cases, in different water chemistries and on fusion reactor materials. In the past, tests have also been performed on HTGR fuel and FBR fuel and materials under appropriate coolant, temperature and pressure conditions. Fuel tests under development include extremely fast power ramps simulating some reactivity initiated accidents and stored energy (enthalpy) measurements. Materials tests under development include different types of in-pile tests including tests in the INCA (In-Core Autoclave) facility .The present and future demands on the test reactor fuel in all these cases are discussed. (author)

  9. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  10. Flexible fuel cycle system for the transition from LWR to FBR

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Yamashita, Junichi; Hoshino, Kuniyoshi; Sasahira, Akira; Inoue, Tadashi; Minato, Kazuo; Sato, Seichi

    2009-01-01

    Japan will deploy commercial fast breeder reactor (FBR) from around 2050 under the suitable conditions for the replacement of light water reactor (LWR) with FBR. The transition scenario from LWR to FBR is investigated in detail and the flexible fuel cycle initiative (FFCI) system has been proposed as a optimum transition system. The FFCI removes ∼95% uranium from LWR spent fuel (SF) in LWR reprocessing and residual material named Recycle Material (RM), which is ∼1/10 volume of original SF and contains ∼50% U, ∼10% Pu and ∼40% other nuclides, is treated in FBR reprocessing to recover Pu and U. If the FBR deployment speed becomes lower, the RM will be stored until the higher speed again. The FFCI has some merits compared with ordinary system that consists of full reprocessing facilities for both LWR and FBR SF during the transition period. The economy is better for FFCI due to the smaller LWR reprocessing facility (no Pu/U recovery and fabrication). The FFCI can supply high Pu concentration RM, which has high proliferation resistance and flexibly respond to FBR introduction rate changes. Volume minimization of LWR SF is possible for FFCI by its conversion to RM. Several features of FFCI were quantitatively evaluated such as Pu mass balance, reprocessing capacities, LWR SF amounts, RM amounts, and proliferation resistance to compare the effectiveness of the FFCI system with other systems. The calculated Pu balance revealed that the FFCI could supply enough but no excess Pu to FBR. These evaluations demonstrated the applicability of FFCI system to the transition period from LWR to FBR cycles. (author)

  11. Development of LWR fuel performance code FEMAXI-6

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2006-01-01

    LWR fuel performance code: FEMAXI-6 (Finite Element Method in AXIs-symmetric system) is a representative fuel analysis code in Japan. Development history, background, design idea, features of model, and future are stated. Characteristic performance of LWR fuel and analysis code, what is model, development history of FEMAXI, use of FEMAXI code, fuel model, and a special feature of FEMAXI model is described. As examples of analysis, PCMI (Pellet-Clad Mechanical Interaction), fission gas release, gap bonding, and fission gas bubble swelling are reported. Thermal analysis and dynamic analysis system of FEMAXI-6, function block at one time step of FEMAXI-6, analytical example of PCMI in the output increase test by FEMAXI-III, analysis of fission gas release in Halden reactor by FEMAXI-V, comparison of the center temperature of fuel in Halden reactor, and analysis of change of diameter of fuel rod in high burn up BWR fuel are shown. (S.Y.)

  12. Long term review of research on light water reactor types

    International Nuclear Information System (INIS)

    Sumiya, Yutaka

    1982-01-01

    In Japan, 24 nuclear power plants of 17.18 million kWe capacity are in operation, and their rate of operation has shown the good result of more than 60% since 1980. One of the research on the development of light water reactors is the electric power common research, which was started in 1976, and 272 researches were carried out till 1982. It contributed to the counter-measures to stress corrosion cracking, thermal fatigue and the thinning of steam generator tubes, to the reduction of crud generation and the remote control and automation of inspection and maintenance, and to the verification of safety. The important items for the future are the cost down of nuclear power plant construction, the development of robots for nuclear power plants, the improvement of the ability to follow load variation, and the development of light water reactors of new types. It is necessary to diversify the types of reactors to avoid the effect of a serious trouble which may occur in one type of reactors. Tokyo Electric Power Co., Inc., thinks that the Japanese type PWRs having the technical features of KWU type PWRs are desirable for the future development. The compatibility with the condition of installation permission in Japan, the required design change and the economy of the standard design PWRs of KWU (1.3 million kW) have been studied since October, 1981, by KWU and three Japanese manufacturers. (Kako, I.)

  13. Safety-related LWR research. Annual report 1993

    International Nuclear Information System (INIS)

    Hueper, R.

    1994-06-01

    The reactor safety R and D work of the Karlsruhe Nuclear Research Centre (KfK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1993 summarizes the results on LWR safety. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status at the end of 1993. (orig./HP) [de

  14. Standard casks for the transport of LWR spent fuel

    International Nuclear Information System (INIS)

    Blum, P.

    1986-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks have been manufactured in different countries and are presently used for european and intercontinental transports. The main advantages of these casks are: large payload, moderate cost, reliability, standardisation facilitating fabrication, operation and spare part supply [fr

  15. Investigation of valve failure problems in LWR power plants

    International Nuclear Information System (INIS)

    1980-04-01

    An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems

  16. Paired replacement fuel assemblies for BWR-type reactor

    International Nuclear Information System (INIS)

    Oguchi, Kazushige.

    1997-01-01

    There are disposed a large-diameter water rod constituting a non-boiling region at a central portion and paired replacement fuel assemblies for two streams having the same average enrichment degree and different amount of burnable poisons. The paired replacement fuel assemblies comprise a first fuel assembly having a less amount of burnable poisons and a second fuel assembly having a larger amount of burnable poisons. A number of burnable poison-containing fuel rods in adjacent with the large diameter water rod is increased in the second fuel assembly than the first fuel assembly. Then, the poison of the paired replacement fuel assemblies for the BWR type reactor can be annihilated simultaneously at the final stage of the cycle. Accordingly, fuels for a BWR type reactor excellent in economical property and safety and facilitating the design of the replacement reactor core can be obtained. (N.H.)

  17. Economic analyses of LWR fuel cycles

    International Nuclear Information System (INIS)

    Field, F.R.

    1977-05-01

    An economic comparison was made of three options for handling irradiated light-water reactor (LWR) fuel. These options are reprocessing of spent reactor fuel and subsequent recycle of both uranium and plutonium, reprocessing and recycle of uranium only, and direct terminal storage of spent fuel not reprocessed. The comparison was based on a peak-installed nuclear capacity of 507 GWe by CY 2000 and retirement of reactors after 30 years of service. Results of the study indicate that: Through the year 2000, recycle of uranium and plutonium in LWRs saves about $12 billion (FY 1977 dollars) compared with the throwaway cycle, but this amounts to only about 1.3% of the total cost of generating electricity by nuclear power. If deferred costs are included for fuel that has been discharged from reactors but not reprocessed, the economic advantage increases to $17.7 billion. Recycle of uranium only (storage of plutonium) is approximately $7 billion more expensive than the throwaway fuel cycle and is, therefore, not considered an economically viable option. The throwaway fuel cycle ultimately requires >40% more uranium resources (U 3 O 8 ) than does reprocessing spent fuel where both uranium and plutonium are recycled

  18. Reactor handbook. 2. rev. ed.

    International Nuclear Information System (INIS)

    Lederer, B.J.; Wildberg, D.W.

    1992-01-01

    On the basis of the guidelines on expert knowledge, the book discusses the subjects of atomic physics, heat transfer, nuclear power plants, reactor materials, radiation protection, reactor safety, reactor instrumentation, and reactor operation, with special regard to nuclear power plants with LWR-type reactors. The book is intended for shift personnel, especially gang bosses, reactor operators, and control station operators: for this reason a practical and rather popular style has been chosen. However, the book will also be a manual for other operating personnel, personnel of producer companies, expert organisations, authorities, and students. It can be used as a textbook for staff training, a manual for the practice, and as accompanying book for teaching at nuclear engineering schools. (orig.) With 173 figs [de

  19. Evaluation of plate type fuel options for small power reactors

    International Nuclear Information System (INIS)

    Andrzejewski, Claudio de Sa

    2005-01-01

    Plate type fuels are generally used in research reactor. The utilization of this kind of configuration improves significantly the overall performance fuel. The conception of new fuels for small power reactors based in plate-type configuration needs a complete review of the safety criteria originally used to conduce power and research reactor projects. In this work, a group of safety criteria is established for the utilization of plate-type fuels in small power reactors taking into consideration the characteristics of power and research reactors. The performance characteristics of fuel elements are strongly supported by its materials properties and the adopted configuration for its fissile particles. The present work makes an orientated bibliographic investigation searching the best material properties (structural materials and fuel compounds) related to the performance fuel. Looking for good parafermionic characteristics and manufacturing exequibility associated to existing facilities in national research centres, this work proposes several alternatives of plate type fuels, considering its utilization in small power reactors: dispersions of UO 2 in stainless steel, of UO 2 in zircaloy, and of U-Mo alloy in zircaloy, and monolithic plates of U-Mo cladded with zircaloy. Given the strong dependency of radiation damage with temperature increase, the safety criteria related to heat transfer were verified for all the alternatives, namely the DNBR; coolant temperature lower than saturation temperature; peak meat temperature to avoid swelling; peak fuel temperature to avoid meat-matrix reaction. It was found that all alternatives meet the safety criteria including the 0.5 mm monolithic U-Mo plate cladded with zircaloy. (author)

  20. Description of the advanced gas cooled type of reactor (AGR)

    Energy Technology Data Exchange (ETDEWEB)

    Nonboel, E. [Risoe National Lab., Roskilde (Denmark)

    1996-11-01

    The present report comprises a technical description of the Advanced Gas cooled Reactor (AGR), a reactor type which has only been built in Great Britain. 14 AGR reactors have been built, located at 6 different sites and each station is supplied with twin-reactors. The Torness AGR plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other 6 stations, Dungeness B, Hinkely Point B, Hunterston G, Hartlepool, Heysham I and Heysham II, are given only in tables with a summary of design data. Where specific data for Torness AGR has not been available, corresponding data from other AGR plans has been used, primarily from Heysham II, which belongs to the same generation of AGR reactors. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 subproject 3: `Reactors in Nordic Surroundings`, which comprises a description of nuclear power plants neighbouring the Nordic countries. (au) 11 refs.

  1. Description of the advanced gas cooled type of reactor (AGR)

    International Nuclear Information System (INIS)

    Nonboel, E.

    1996-11-01

    The present report comprises a technical description of the Advanced Gas cooled Reactor (AGR), a reactor type which has only been built in Great Britain. 14 AGR reactors have been built, located at 6 different sites and each station is supplied with twin-reactors. The Torness AGR plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other 6 stations, Dungeness B, Hinkely Point B, Hunterston G, Hartlepool, Heysham I and Heysham II, are given only in tables with a summary of design data. Where specific data for Torness AGR has not been available, corresponding data from other AGR plans has been used, primarily from Heysham II, which belongs to the same generation of AGR reactors. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 subproject 3: 'Reactors in Nordic Surroundings', which comprises a description of nuclear power plants neighbouring the Nordic countries. (au) 11 refs

  2. Materials choices for the advanced LWR steam generators

    International Nuclear Information System (INIS)

    Paine, J.P.N.; Shoemaker, C.E.; McIlree, A.R.

    1987-01-01

    Current light water reactor (LWR) steam generators have been affected by a variety of corrosion and mechanical damage degradation mechanisms. Included are wear caused by tube vibration, intergranular corrosion, pitting, and thinning or wastage of the steam generator tubing and accelerated corrosion of carbon steel supports (denting). The Electric Power Research Institute (EPRI) and the Steam Generator Owners Groups (I, II) have sponsored laboratory and field studies to provide ameliorative actions for the majority of the damage forms experienced to date. Some of the current corrosion mechanisms are aggravated or caused by unique materials choices or materials interactions. New materials have been proposed and at least partially qualified for use in replacement model steam generators, including an advanced LWR design. In so far as possible, the materials choices for the advanced LWR steam generator avoid the corrosion pitfalls seemingly inherent in the current designs. The EPRI Steam Generator Project staff has recommended materials and design choices for a new steam generator. Based on these recommendations we believe that the advanced LWR steam generators will be much less affected by corrosion and mechanical damage mechanisms than are now experienced

  3. Potential of thorium use in the HTR reactor

    International Nuclear Information System (INIS)

    Engelmann, P.; Hansen, U.; Kolb, G.; Leushacke, D.; Teuchert, E.; Werner, H.

    1979-08-01

    In this investigation, several types of reactors and fuel circulations are dealt with as they refer to the region of the Federal Republic of Germany and are compared with each other as to their need for uranium and their costs until 2100. This includes also an investigation covering the effects of a postponed application of uranium-saving reactors, a delayed reprocessing and two variants of the nuclear energy's contribution to electricity generation. After today's light water reactor (LWR) of the pressure water reactor type (DWR) and the sodium-cooled fast breeder (SBR) which is being developed, the technically rather developed helium-cooled high temperature reactor (HTR) is dealt with as another system. The high temperature reactor is, because of its high coolant temperatures, not only suitable as a nuclear power plant, but can also be used to substitute fossile energy sources on the heat market and is being developed in Germany also for use as process heat reactor for nuclear coal gasification. Here the application of nuclear energy is only considered with regard to the region of power generation. Besides the case of the LWR and HTR-operation without reprocessing and fuel recycling for all reactor systems, the calculations also take into consideration the case of the closed fuel recycling. While LWR and SBR are based on the uranium-plutonium-fuel recycling, the thorium-uranium fuel circulation is considered for the HTR with globular fuel elements. As investigations made until today are generally restricted to the system LWR/SBR and the uranium-plutonium circulation, a main concern of the investigations presented here is to show the potential of the Thorium-utilization in high-temperature reactors and to determine how this system can also be applied during the time period concerned to set up a nuclear energy strategy which is safe and profitable as far as the uranium supply is concerned. (orig./UA) 891 UA/orig.- 892 HIS [de

  4. Problems associated with domestic LWR technology development

    International Nuclear Information System (INIS)

    Watamori, Tikara

    1975-01-01

    To cope with the future energy problem in Japan, the enhancement of her own technology is continuing in the nuclear power field. Developments in the past, current state, and problems for the future are described regarding LWR power plants. The technology introduced from overseas countries cannot be used as it is. The domestic technology thus consists of the conversion of nuclear power technology so as to meet Japan's own condition and the domestic manufacture of machinery. In the former category, there are the aspects of aseismatic design, waste disposal, software, etc. In the latter, there are the productions of reactor vessels, steam generators, large valves, piping, etc. As the problems for the future, there are reliability and safety and the associated standardization. (Mori, K.)

  5. LIFE vs. LWR: End of the Fuel Cycle

    International Nuclear Information System (INIS)

    Farmer, J.C.; Blink, J.A.; Shaw, H.F.

    2008-01-01

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources (International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of

  6. Benchmarking LWR codes capability to model radionuclide deposition within SFR containments: An analysis of the Na ABCOVE tests

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, Luis E., E-mail: luisen.herranz@ciemat.es [CIEMAT, Unit of Nuclear Safety Research, Av. Complutense, 40, 28040 Madrid (Spain); Garcia, Monica, E-mail: monica.gmartin@ciemat.es [CIEMAT, Unit of Nuclear Safety Research, Av. Complutense, 40, 28040 Madrid (Spain); Morandi, Sonia, E-mail: sonia.morandi@rse-web.it [Nuclear and Industrial Plant Safety Team, Power Generation System Department, RSE, via Rubattino 54, 20134 Milano (Italy)

    2013-12-15

    Highlights: • Assessment of LWR codes capability to model aerosol deposition within SFR containments. • Original hypotheses proposed to partially accommodate drawbacks from Na oxidation reactions. • A defined methodology to derive a more accurate characterization of Na-based particles. • Key missing models in LWR codes for SFR applications are identified. - Abstract: Postulated BDBAs in SFRs might result in contaminated-coolant discharge at high temperature into the containment. A full scope safety analysis of this reactor type requires computation tools properly validated in all the related fields. Radionuclide transport, particularly within the containment, is one of those fields. This sets two major challenges: to have reliable codes available and to build up a sound data base. Development of SFR source term codes was abandoned in the 80's and few data are available at present. The ABCOVE experimental programme conducted in the 80's is still a reference in the field. Postulated BDBAs in SFRs might result in contaminated-coolant discharge at high temperature into the containment. A full scope safety analysis of this reactor type requires computation tools properly validated in all the related fields. Radionuclide deposition, particularly within the containment, is one of those fields. This sets two major challenges: to have reliable codes available and to build up a sound data base. Development of SFR source term codes was abandoned in the 80's and few data are available at present. The ABCOVE experimental programme conducted in the 80's is still a reference in the field. The present paper is aimed at assessing the current capability of LWR codes to model aerosol deposition within a SFR containment under BDBA conditions. Through a systematic application of the ASTEC, ECART and MELCOR codes to relevant ABCOVE tests, insights have been gained into drawbacks and capabilities of these computation tools. Hypotheses and approximations have

  7. Benchmarking LWR codes capability to model radionuclide deposition within SFR containments: An analysis of the Na ABCOVE tests

    International Nuclear Information System (INIS)

    Herranz, Luis E.; Garcia, Monica; Morandi, Sonia

    2013-01-01

    Highlights: • Assessment of LWR codes capability to model aerosol deposition within SFR containments. • Original hypotheses proposed to partially accommodate drawbacks from Na oxidation reactions. • A defined methodology to derive a more accurate characterization of Na-based particles. • Key missing models in LWR codes for SFR applications are identified. - Abstract: Postulated BDBAs in SFRs might result in contaminated-coolant discharge at high temperature into the containment. A full scope safety analysis of this reactor type requires computation tools properly validated in all the related fields. Radionuclide transport, particularly within the containment, is one of those fields. This sets two major challenges: to have reliable codes available and to build up a sound data base. Development of SFR source term codes was abandoned in the 80's and few data are available at present. The ABCOVE experimental programme conducted in the 80's is still a reference in the field. Postulated BDBAs in SFRs might result in contaminated-coolant discharge at high temperature into the containment. A full scope safety analysis of this reactor type requires computation tools properly validated in all the related fields. Radionuclide deposition, particularly within the containment, is one of those fields. This sets two major challenges: to have reliable codes available and to build up a sound data base. Development of SFR source term codes was abandoned in the 80's and few data are available at present. The ABCOVE experimental programme conducted in the 80's is still a reference in the field. The present paper is aimed at assessing the current capability of LWR codes to model aerosol deposition within a SFR containment under BDBA conditions. Through a systematic application of the ASTEC, ECART and MELCOR codes to relevant ABCOVE tests, insights have been gained into drawbacks and capabilities of these computation tools. Hypotheses and approximations have been adopted so that

  8. Dynamic design load of type 2 water-flow capsule in Nuclear Safety Research Reactor in Tokai Research Establishment of Japan Atomic Energy Research Institute, and its reuse test

    International Nuclear Information System (INIS)

    1981-01-01

    A report by the Nuclear Safety Bureau of the Science and Technology Agency to the Nuclear Safety Commission was presented on the validity of the dynamic design load of type 2 water-flow capsule and the method of its reuse test. The safety in both aspects of the capsule was confirmed. The Nuclear Safety Research Reactor (NSRR), in which the water-flow capsule is set, is a swimming pool type reactor, fueled with enriched uranium, having heat output of 300 kW in normal operation and maximum instantaneous heat output of 23,000 MW in pulse operation. The type 2 water-flow capsule, with the initial conditions simulating a power generating LWR plant and being appropriately set, is used to acquire the data on fuel behavior and destructive power in pulse irradiation. (J.P.N.)

  9. Dynamic design load of type 2 water-flow capsule in Nuclear Safety Research Reactor in Tokai Research Establishment of Japan Atomic Energy Research Institute, and its reuse test

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A report by the Nuclear Safety Bureau of the Science and Technology Agency to the Nuclear Safety Commission was presented on the validity of the dynamic design load of type 2 water-flow capsule and the method of its reuse test. The safety in both aspects of the capsule was confirmed. The Nuclear Safety Research Reactor (NSRR), in which the water-flow capsule is set, is a swimming pool type reactor, fueled with enriched uranium, having heat output of 300 kW in normal operation and maximum instantaneous heat output of 23,000 MW in pulse operation. The type 2 water-flow capsule, with the initial conditions simulating a power generating LWR plant and being appropriately set, is used to acquire the data on fuel behavior and destructive power in pulse irradiation.

  10. Core construction in a pressure tube type heavy water reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto; Aoki, Katsutada.

    1975-01-01

    Object: To replace a centrally positioned fuel assembly of a fuel assembly unit with a reactor controlling machinery to decrease a distance between the fuel assemblies thereby saving use of heavy water and enhancing economy. Structure: A centrally positioned fuel assembly of a fuel assembly unit, which is composed of a plurality of fuel assemblies orderly arranged in lattice fashion, is replaced with a reactor controlling members such as control rods, poison tubes and the like to provide an arrangement of lattice-free type fuel assembly, thus reducing the pitch as small as possible. (Kamimura, M.)

  11. Method of controlling power distribution in FBR type reactors

    International Nuclear Information System (INIS)

    Sawada, Shusaku; Kaneto, Kunikazu.

    1982-01-01

    Purpose: To attain the power distribution flattening with ease by obtaining a radial power distribution substantially in a constant configuration not depending on the burn-up cycle. Method: As the fuel burning proceeds, the radial power distribution is effected by the accumulation of fission products in the inner blancket fuel assemblies which varies the effect thereof as the neutron absorbing substances. Taking notice of the above fact, the power distribution is controlled in a heterogeneous FBR type reactor by varying the core residence period of the inner blancket assemblies in accordance with the charging density of the inner blancket assemblies in the reactor core. (Kawakami, Y.)

  12. New generation nuclear power units of PWR type integral reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.; Kurachen Kov, A.V.; Malamud, V.A.; Panov, Yu.K.; Runov, B.I.; Flerov, L.N.

    1997-01-01

    Design bases of new generation nuclear power units (nuclear power plants - NPP, nuclear co-generation plants - NCP, nuclear distract heating plants - NDHP), using integral type PWPS, developed in OKBM, Nizhny Novgorod and trends of design decisions optimization are considered in this report. The problems of diagnostics, servicing and repair of the integral reactor components in course of operation are discussed. The results of safety analysis, including the problems of several accident localization with postulated core melting and keeping corium in the reactor vessel and guard vessel are presented. Information on experimental substantiation of the suggested plant design decisions is presented. (author)

  13. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    Breeding gain in symbiotic nuclear power plant system consisting of both thermal and fast breeder reactors depends on the characteristics and the ratio of thermal and fast reactors. The composition of the symbiotic power plant systems was determined for equilibrium and plutonium deficient systems. According to natural uranium utilization, symbiotic power plant systems are not less efficient than the systems containing only fast breeders. Depleted uranium can be applied in both types of systems. Reprocessing demands of the symbiotic power plant sytems were determined. (V.N.) 23 figs.; 1 tab

  14. Development of a coupling scheme between MCNP5 and subchanflow for the PIN- and fuel Assembly-Wise simulation of LWR and innovative reactors

    International Nuclear Information System (INIS)

    Ivanov, A.; Sanchez, V.; Imke, U.

    2011-01-01

    In order to increase the accuracy and the degree of spatial resolution of core design studies, coupled 3D neutronic (deterministic and Monte Carlo) and 3D thermal hydraulics (CFD and subchannel) codes are being developed worldwide. At KIT both deterministic and Monte Carlo codes were coupled with subchannel codes and applied to predict the safety-related design parameters such as pin power, maximal cladding and fuel temperature, DNB. These coupling approaches were revised and improved based on the experience gained. One particular example is replacing COBRA-TF with SUBCHANFLOW, in-house development subchannel code, in the COBRA-TF/MCNP coupling, accompanied with new way of radial mapping between the neutronic and thermal hydraulic domains. The new coupled system MCNP5/SUBCHANFLOW makes it possible to investigate variety of fuel assembly types (BWR, PWR or SCFR). Key issues in such a coupled system are the way in which thermal-hydraulic/neutronic feedbacks, accuracy of the Monte Carlo solutions and observation of convergence during the iterative solution are handled. Another key issue that might be considered is the optimal application of parallel computing. Using multi-processor computer architectures, it is possible to reduce the Monte- Carlo running time and obtain converged results within reasonable time limit. In particular it is shown that by exploiting the capabilities of multi-processor calculation, it is possible to investigate large fuel assemblies in a pin-by-pin manner with a resolution at pin and subchannel level. One of the most important issues addressed in the current work is the temperature effects on nuclear data. For the particular studies pseudo material approach was used, which produces interpolated results for Doppler broadened cross sections from NJOY pre-generated nuclear data. (author)

  15. Reactor design and safety approach for a tank-type fast reactor

    International Nuclear Information System (INIS)

    Davies, S.M.; Yamaki, Hideo; Goodman, L.

    1984-06-01

    A tank type plant has been designed that offers compactness, high reliability under seismic and thermal transients, and a safety design approach that provides a balance between public safety and plant availability. This report provides a description of the design philosophy and safety features of the reactor

  16. After-heat removing system in FBR type reactor

    International Nuclear Information System (INIS)

    Ohashi, Yukio.

    1990-01-01

    The after-heat removing system of the present invention removes the after heat generated in a reactor core without using dynamic equipments such as pumps or blowers. There are disposed a first heat exchanger for heating a heat medium by the heat in a reactor container and a second heat exchanger situated above the first heat exchanger for spontaneously air-cooling the heat medium. Recycling pipeways connect the first and the second heat exchangers to form a recycling path for the heat medium. Then, since the second heat exchanger for spontaneously air-cooling the heat medium is disposed above the first heat exchanger and they are connected by the recycling pipeways, the heat medium can be circulated spontaneously. Accordingly, dynamic equipments such as pumps or blowers are no more necessary. As a result, the after-heat removing system of the FBR type reactor of excellent safety and reliability can be obtained. (I.S.)

  17. Description of the magnox type of gas cooled reactor (MAGNOX)

    International Nuclear Information System (INIS)

    Jensen, S.E.; Nonboel, E.

    1999-05-01

    The present report comprises a technical description of the MAGNOX type of reactor as it has been build in Great Britain. The Magnox reactor is gas cooled (CO 2 ) with graphite moderators. The fuels is natural uranium in metallic form, canned with a magnesium alloy called 'Magnox'. The Calder Hall Magnox plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail. Data on the other stations are given in tables with a summary of design data. Special design features are also shortly described. Where specific data for Calder Hall Magnox has not been available, corresponding data from other Magnox plants has been used. The information presented is based on the open literature. The report is written as a part of the NKS/RAK-2 sub-project 3: 'Reactors in Nordic Surroundings', which comprises a description of nuclear power plants neighbouring the Nordic countries. (au)

  18. Plenum separator system for pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1983-01-01

    This invention provides a plenum separator system for pool-type nuclear reactors which substantially lessens undesirable thermal effects on major components. A primary feature of the invention is the addition of one or more intermediate plena, containing substantially stagnant and stratified coolant, which separate the hot and cold plena and particularly the hot plena from critical reactor components. This plenum separator system also includes a plurality of components which together form a dual pass flow path annular region spaced from the reactor vessel wall by an annular gas space. The bypass flow through the flow path is relatively small and is drawn from the main coolant pumps and discharged to an intermediate plenum

  19. Conceptual mechanical design for a pressure-tube type supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Diamond, W.; Leung, L.K.H.; Martin, D.; Duffey, R. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    This paper presents a conceptual mechanical design for a heavy-water-moderated pressure-tube supercritical water (SCW) reactor, which has evolved from the well-established CANDU nuclear reactor. As in the current designs, the pressure-tube SCW reactor uses a calandria vessel and, as a result, many of today's technologies (such as the shutdown safety systems) can readily be adopted with small changes. Because the proposed concept uses a low-pressure moderator, it does not require a pressure vessel that is subject to the full SCW pressure and temperature conditions. The proposed design uses batch refueling and hence, the reactor core is orientated vertically. Significant simplifications result in the design with the elimination of on line fuelling systems, fuel channel end fittings and fuel channel closure seals and thus utilize the best features of Light Water Reactor (LWR) and Heavy Water Reactor (HWR) technologies. The safety goal is based on achieving a passive 'no core melt' configuration for the channels and core, so the mechanical features and systems directly reflect this desired attribute. (author)

  20. Conceptual mechanical design for a pressure-tube type supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Yetisir, M.; Diamond, W.; Leung, L.K.H.; Martin, D.; Duffey, R.

    2011-01-01

    This paper presents a conceptual mechanical design for a heavy-water-moderated pressure-tube supercritical water (SCW) reactor, which has evolved from the well-established CANDU nuclear reactor. As in the current designs, the pressure-tube SCW reactor uses a calandria vessel and, as a result, many of today's technologies (such as the shutdown safety systems) can readily be adopted with small changes. Because the proposed concept uses a low-pressure moderator, it does not require a pressure vessel that is subject to the full SCW pressure and temperature conditions. The proposed design uses batch refueling and hence, the reactor core is orientated vertically. Significant simplifications result in the design with the elimination of on line fuelling systems, fuel channel end fittings and fuel channel closure seals and thus utilize the best features of Light Water Reactor (LWR) and Heavy Water Reactor (HWR) technologies. The safety goal is based on achieving a passive 'no core melt' configuration for the channels and core, so the mechanical features and systems directly reflect this desired attribute. (author)

  1. BR2 Reactor: Irradiation of fuels

    International Nuclear Information System (INIS)

    Verwimp, A.

    2005-01-01

    Safe, reliable and economical operation of reactor fuels, both UO 2 and MOX types, requires in-pile testing and qualification up to high target burn-up levels. In-pile testing of advanced fuels for improved performance is also mandatory. The objectives of research performed at SCK-CEN are to perform Neutron irradiation of LWR (Light Water Reactor) fuels in the BR2 reactor under relevant operating and monitoring conditions, as specified by the experimenter's requirements and to improve the on-line measurements on the fuel rods themselves

  2. Artificial intelligence applied to fuel management in BWR type reactors

    International Nuclear Information System (INIS)

    Ortiz S, J.J.

    1998-01-01

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  3. Perspective channel-type reactor with enhanced safety

    International Nuclear Information System (INIS)

    Adamov, E.O.; Grozdov, I.I.; Kuznetsov, S.P.; Petrov, A.A.; Rozhdestvensky, M.I.; Cherkashov, Yu.M.

    1994-01-01

    Following the search for new design solutions to develop within the framework of channel trends the reactor with enhanced safety the Research and Development Institute of Power Engineering has developed the design of the multiloop boiling water reactor (MKER). The MKER enhanced safety is attained when involving the inherent safety features, passive safety systems as well as the accident consequences confinement devices. The design realizes several advantages which are typical of the channel-type reactors, namely: The design desintegration simplifying the manufacture, control, equipment delivery and decreasing, versus the pressure vessel reactors, the accident effect if it proceeds in an explosive manner; small operating reactivity margin and fuel burnup increased due to continuous refuelling; fuel cycle flexibility allowing comparatively easily to adopt the reactor to the conjuncture of the country fuel balance; multiloop circuit of the main coolant which reduces the degree and effect of the accidents connected with the equipment and pipings rupture; monitoring of the channels and fuel assemblies leak-tightness. (orig.)

  4. A Study on Dismantling of Westinghouse Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Lee, Sang-Guk

    2014-01-01

    KHNP started a research project this year to develop a methodology to dismantle nuclear reactors and internals. In this paper, we reviewed 3D design model of the reactor and suggested feasible cutting scheme.. Using 3-D CAD model of Westinghouse type nuclear reactor and its internals, we reviewed possible options for disposal. Among various options of dismantling the nuclear reactor, plasma cutting was selected to be the best feasible and economical method. The upper internals could be segmented by using a band saw. It is relatively fast, and easily maintained. For cutting the lower internals, plasma torch was chosen to be the best efficient tool. Disassembling the baffle and the former plate by removing the baffle former bolts was also recommended for minimizing storage volume. When using plasma torch for cutting the reactor vessel and its internal, installation of a ventilation system for preventing pollution of atmosphere was recommended. For minimizing radiation exposure during the cutting operation, remotely controlled robotic tool was recommended to be used

  5. Sensitivity analysis of reflector types and impurities in 10 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Khamis, I.

    2007-01-01

    The 2-D and 3-D neutronics models for 10 MW nuclear research reactor of MTR type have been developed and presented in this paper. Our results agree very well with the results of seven countries mentioned in the IAEA-TECDOC-233. To study the effect of reflector types on the reactor effective multiplication factor, five types of reflectors such as pure beryllium, beryllium, heavy water, carbon and water are selected for this study. The pure beryllium is found to be the most efficient reflector in this group. The effect of the most important impurities, which exist on the beryllium reflector such as iron, silicon and aluminium on the reactor multiplication factor, have been analyzed as well. It is found that the iron impurity affects the reactor multiplication factor the most compared to silicon and aluminium impurities. (author)

  6. Sensitivity analysis of reflector types and impurities in a 10 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Khamis, I.

    2008-01-01

    The 2-D and 3-D neutronics models for 10 MW nuclear research reactor of MTR type have been developed and presented in this paper. Our results agree very well with the results of seven countries mentioned in the IAEA-TECDOC-233. To study the effect of reflector types on the reactor effective multiplication factor, five types of reflectors such as pure beryllium, beryllium, heavy water, carbon and water are selected for this study. The pure beryllium is found to be the most efficient reflector in this group. The effect of the most important impurities, which exist on the beryllium reflector such as iron, silicon and aluminium on the reactor multiplication factor, have been analyzed as well. It is found that the iron impurity affects the reactor multiplication factor the most compared to silicon and aluminium impurities. (author)

  7. Tools for LWR spent fuel characterization: Assembly classes and fuel designs

    International Nuclear Information System (INIS)

    Moore, R.S.; Notz, K.J.

    1991-01-01

    The Characteristics Data Base (CDB) is sponsored by the DOE's Office of Civilian Radioactive Waste Management (OCRWM). The CDB provides a single, comprehensive source of data pertaining to radioactive wastes that will or may require geologic disposal, including detailed data describing the physical, quantitative, and radiological characteristics of light-water reactor (LWR) spent fuel. In developing the CDB, tools for the classification of fuel assembly types have been developed. The assembly class scheme is particularly useful for size- and handling-based describes these tools and presents results of their applications in the areas of fuel assembly type identification, characterization of projected discharges, cask accommodation analyses, and defective fuel analyses. Suggestions for additional applications are also made. 7 refs., 1 fig., 2 tabs

  8. Proven commercial reactor types: an introduction to their principal advantages and disadvantages

    International Nuclear Information System (INIS)

    Alesso, H.P.

    1981-01-01

    This study deals with the principal advantages and disadvantages of the five types of proven commercial reactors. A description of each class of commercial reactor (light water, gas-cooled, and heavy water) and their proven reactors is followed by a comparison of reactor types on the basis of technical merit, economics of operation, availability of technology, and associated political issues. (author)

  9. Overall aspects of control of ISIS-type nuclear reactor

    International Nuclear Information System (INIS)

    Amato, S.; Santinelli, A.

    1996-01-01

    The paper describes the main aspects related to the definition of main controls required to operate an ISIS-type nuclear power reactors. ISIS is a PWR-type intrinsically safe nuclear reactor designed by ANSALDO, based on density lock concept; it presents, between the other safety functions, self-depressurization and core cooling capability for unlimited time. Due to its specific characteristics, the ISIS reactor required to development of new control philosophy (if compared with actual nuclear power reactor) with the implementation of new control functions, for instance the density locks hot/cold interface locations control. This paper describes the main control functions implemented, their rationale, as well as the dynamic simulation performed to verify the adequacy of controls definitions. The dynamic simulations here described refers to a step-wise power ramp of 100-90-100 (% of nominal power) and to a power ramp of 100-50-100 with a slope of 5%/min; the results obtained have shown the ISIS capability to perform such operational transients, despite its innovative design was mainly focused on intrinsically safe behaviour. (author)

  10. Hamor-2: a computer code for LWR inventory calculation

    International Nuclear Information System (INIS)

    Guimaraes, L.N.F.; Marzo, M.A.S.

    1985-01-01

    A method for calculating the accuracy inventory of LWR reactors is presented. This method uses the Hamor-2 computer code. Hamor-2 is obtained from the coupling of two other computer codes Hammer-Techion and Origen-2 for testing Hamor-2, its results were compared to concentration values measured from activides of two PWR reactors; Kernkraftwerk Obrighein (KWO) and H.B. Robinson (HBR). These actinides are U 235 , U 236 , U 238 , Pu 239 , Pu 241 and PU 242 . The computer code Hammor-2 shows better results than the computer code Origem-2, when both are compared with experimental results. (E.G.) [pt

  11. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructve testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined. A comprehensive bibliography of current NDT methods for cask evaluation in the USA, Great Britain, Japan and West Germany was compiled for this study

  12. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  13. Preliminary Study for Radioactivity Evaluation of MSR compared with LWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geun Hyeong; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    LWR uses fuel as {sup 235}U and fissile material as solid (enriched uranium). Those cannot control its component artificially and hard to change fuel frequently. Therefore this fuel remains as much as possible. That makes risk of high radiation leakage because of long neutron irradiation time. On the other hand, MSR (Molten Salt Reactor) uses fuel as thorium-uranium; fissile {sup 233}U when {sup 232}Th absorbs one neutron, and fissile material as liquid (molten salt). It has plenty of benefits respect to radioactive safety. It leads nuclear fuel dump when accident happens, diminishes basic fission substances' radiation and even the cost (Th exist 3∼4 times more on the earth compared with natural uranium). Source term is much lower than conventional LWR in order to processing time. Radiation exposure from volatile fission products in severe accidents is thought to be negligible due to the continuous removal mechanism. The generation of high level radioactive wastes from MSR is estimated to be much smaller than that of conventional LWR because of its less converting probability of thorium to minor actinides. It was thought the fundamental approach to MSR would make it possible to realize the safety of reactor when considering the severe accidents affecting on nuclear power plants due to natural disaster.

  14. Preliminary Study for Radioactivity Evaluation of MSR compared with LWR

    International Nuclear Information System (INIS)

    Lee, Geun Hyeong; Kim, Hee Reyoung

    2014-01-01

    LWR uses fuel as 235 U and fissile material as solid (enriched uranium). Those cannot control its component artificially and hard to change fuel frequently. Therefore this fuel remains as much as possible. That makes risk of high radiation leakage because of long neutron irradiation time. On the other hand, MSR (Molten Salt Reactor) uses fuel as thorium-uranium; fissile 233 U when 232 Th absorbs one neutron, and fissile material as liquid (molten salt). It has plenty of benefits respect to radioactive safety. It leads nuclear fuel dump when accident happens, diminishes basic fission substances' radiation and even the cost (Th exist 3∼4 times more on the earth compared with natural uranium). Source term is much lower than conventional LWR in order to processing time. Radiation exposure from volatile fission products in severe accidents is thought to be negligible due to the continuous removal mechanism. The generation of high level radioactive wastes from MSR is estimated to be much smaller than that of conventional LWR because of its less converting probability of thorium to minor actinides. It was thought the fundamental approach to MSR would make it possible to realize the safety of reactor when considering the severe accidents affecting on nuclear power plants due to natural disaster

  15. Raw materials problems in connection with fast breeder type reactors

    International Nuclear Information System (INIS)

    Hirsch, H.; Kreusch, J.

    1981-01-01

    The power supply by the FBR type reactors which depends upon the availability of essential raw materials such as Cr and Mo for structural and special steels is supposed to be less ensured than supply by fossil-fueled power plants. This contribution tries to verify this statement by means of estimates of the annual Cr and Mo demand, of the resources, production and consumption as well as by a study of the possibilities of recycling and substituting Cr and Mo. The only realistic alternative to the fast breeder type reactor is supposed to be a soft path of development according to the principle of decentralization, utilization of renewable energy sources regard to environmental protection, and use of less sophisticated technology. (DG) [de

  16. Advanced light-water reactors

    International Nuclear Information System (INIS)

    Golay, M.W.; Todreas, N.E.

    1990-01-01

    Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four basic types of reactor: the heavy-water reactor (HWR), the gas-cooled rector (GCR), the liquid-metal-cooled reactor (LMR) and the light-water reactor (LWR). Each design is briefly described before the paper discusses the passive safety features of the AP-600 rector, so-called because it employs an advanced pressurized water design and generates 600 MW of power

  17. Improving the safety of LWR power plants. Final report

    International Nuclear Information System (INIS)

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs

  18. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    International Nuclear Information System (INIS)

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited

  19. Temperature fluctuation reducing device for FBR type reactor

    International Nuclear Information System (INIS)

    Ootsuka, Fumio; Shiratori, Fumihiro.

    1991-01-01

    In existent FBR type reactors, since temperature fluctuation in the reactor upper portion has been inevitable, thermal fatigue may be caused possibly in reactor core upper mechanisms. Then, a valve is disposed to a control rod lower guide tube contained in a reactor container for automatically controlling the amount of passing coolants in accordance with the temperature of the passing coolants, to mix and control coolants passing through a fuel assembly in adjacent with the guide tube and coolants passing through the guide tube. Further, a rectification cylinder is disposed, in which a portion of coolants passing through the fuel assembly is caused to flow. An orifice is disposed to the cylinder with an exit being disposed to the upstream thereof such that the coolants not flown into the rectification cylinder and the coolants passing through the guide tube are mixed to moderate the temperature fluctuation. That is, a portion of the coolants flown into the rectification cylinder can not pass through the orifice, but flow backwardly to the upstream and is discharged out of the rectification cylinder from the coolants exit and mixed sufficiently with coolants passing through the guide tube. In this way, temperature fluctuation can be moderated. (N.H.)

  20. Calculation device for fuel power history in BWR type reactors

    International Nuclear Information System (INIS)

    Sakagami, Masaharu.

    1980-01-01

    Purpose: To enable calculations for power history and various variants of power change in the power history of fuels in a BWR type reactor or the like. Constitution: The outputs of the process computation for the nuclear reactor by a process computer are stored and the reactor core power distribution is judged from the calculated values for the reactor core power distribution based on the stored data. Data such as for thermal power, core flow rate, control rod position and power distribution are recorded where the changes in the power distribution exceed a predetermined amount, and data such as for thermal power and core flow rate are recorded where the changes are within the level of the predetermined amount, as effective data excluding unnecessary data. Accordingly, the recorded data are taken out as required and the fuel power history and the various variants in the fuel power are calculated and determined in a calculation device for fuel power history and variants for fuel power fluctuation. (Furukawa, Y.)

  1. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  2. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  3. WWER type reactor primary loop imitation on large test loop facility in MARIA reactor

    International Nuclear Information System (INIS)

    Moldysh, A.; Strupchevski, A.; Kmetek, Eh.; Spasskov, V.P.; Shumskij, A.M.

    1982-01-01

    At present in Poland in cooperation with USSR a nuclear water loop test facility (WL) in 'MARIA' reactor in Sverke is under construction. The program objective is to investigate processes occuring in WWER reactor under emergency conditions, first of all after the break of the mainprimary loop circulation pipe-line. WL with the power of about 600 kW consists of three major parts: 1) an active loop, imitating the undamaged loops of the WWER reactor; 2) a passive loop assignedfor modelling the broken loop of the WWER reactor; 3) the emergency core cooling system imitating the corresponding full-scale system. The fuel rod bundle consists of 18 1 m long rods. They were fabricated according to the standard WWER fuel technology. In the report some general principles of WWERbehaviour imitation under emergency conditions are given. They are based on the operation experience obtained from 'SEMISCALE' and 'LOFT' test facilities in the USA. A description of separate modelling factors and criteria effects on the development of 'LOCA'-type accident is presented (the break cross-section to the primary loop volume ratio, the pressure differential between inlet and outlet reactor chambers, the pressure drop rate in the loop, the coolant flow rate throuh the core etc.). As an example a comparison of calculated flow rate variations for the WWER-1000 reactor and the model during the loss-of-coolant accident with the main pipe-line break at the core inlet is given. Calculations have been carried out with the use of TECH'-M code [ru

  4. Installation of a new type of nuclear reactor in Mexico: advantages and disadvantages

    International Nuclear Information System (INIS)

    Jurado P, M.; Martin del Campo M, C.

    2005-01-01

    In this work the main advantages and disadvantages of the installation of a new type of nuclear reactor different to the BWR type reactor in Mexico are presented. A revision of the advanced reactors is made that are at the moment in operation and of the advanced reactors that are in construction or one has already planned its construction in the short term. Specifically the A BWR and EPR reactors are analyzed. (Author)

  5. Primary system thermal-hydraulic simulation of a experimental pool type research fast reactor

    International Nuclear Information System (INIS)

    Borges, E.M.; Braz Filho, F.A.

    1993-01-01

    The first step of the Fast Reactor Program (REARA) is the design of an experimental reactor. To this end a 5 MW t pool type reactor was adapted. The objective of this work is to evaluate the reactor behaviour at the on set protected accidents. The program NALAP was used in this study and the results showed the outstanding safety margins that this reactor type presents inherently. (author)

  6. Emergency core cooling system for LMFBR type reactors

    International Nuclear Information System (INIS)

    Tamano, Toyomi; Fukutomi, Shigeki.

    1980-01-01

    Purpose: To enable elimination of decay heat in an LMFBR type reactor by securing natural cycling force in any state and securing reactor core cooling capacity even when both an external power supply and an emergency power supply are failed in emergency case. Method: Heat insulating material portion for surrounding a descent tube of a steam drum provided at high position for obtaining necessary flow rate for flowing resistance is removed from heat transmitting surface of a recycling type steam generator to provide a heat sink. That is, when both an external power supply and an emergency power supply are failed in emergency, the heat insulator at part of a steam generator recycling loop is removed to produce natural cycling force between it and the heat transmitting portion of the steam generator as a heat source for the heat sink so as to secure the flow rate of the recycling loop. When the power supply is failed in emergency, the heat removing capacity of the steam generator is secured so as to remove the decay heat produced in the reactor core. (Yoshihara, H.)

  7. Mechanical damage due to corrosion of parts of pump technology and valves of LWR power installations

    International Nuclear Information System (INIS)

    Hron, J.; Krumpl, M.

    1986-01-01

    Two types are described of uneven corrosion of austenitic chromium-nickel steel: pitting and slit corrosion. The occurrence of slit corrosion is typical of parts of pumping technology and valves. The corrosion damage of austenitic chromium-nickel steels spreads as intergranular, transgranular or mixed corrosion. In nuclear power facilities with LWR's, intergranular corrosion is due to chlorides and sulphur compounds while transgranular corrosion is due to the presence of dissolved oxygen and chlorides. In mechanically stressed parts, stress corrosion takes place. The recommended procedures are discussed of reducing the corrosion-mechanical damage of pumping equipment of light water reactors during design, production and assembly. During the service of the equipment, corrosion cracks are detected using nondestructive methods and surface cracks are repaired by grinding and welding. (E.S.)

  8. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  9. Critical experiments supporting close proximity water storage of power reactor fuel. Technical progress report, July 1, 1978-September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.N.; Hoovler, G.S.; Eng, R.L.; Welfare, F.G.

    1978-11-01

    Experimental measurements are being taken on critical configurations of clusters of fuel rods mocking up LWR-type fuel elements in close proximity water storage. The results will serve to benchmark the computer codes used in designing nuclear power reactor fuel storage racks. KENO calculations of Cores I to VI are within two standard deviations of the measured k/sub eff/ values.

  10. ERDA LWR plant technology program: role of government/industry in improving LWR performance

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented under the following chapter headings: executive summary; LWR plant outages; LWR plant construction delays and cancellations; programs addressing plant outages, construction delays, and cancellations; need for additional programs to remedy continuing problems; criteria for government role in LWR commercialization; and the proposed government program

  11. Accident transient processes at NPPs with the WWER type reactors

    International Nuclear Information System (INIS)

    Bukrinskij, A.M.

    1982-01-01

    Thermal-physical and nuclear-physical transient processes at NPPs with the WWER type reactors during accidents with the main technological equipment failures and the accidents with loss of coolant in the primary and secondary coolant circuits are considered. Mathematical methods used for these processes modelling is described. Examples of concrete calculations for accidents with different failures are given. Comparative analysis of the results of dynamic tests at the Novo-Voronezh-3 reactor is presented. It is concluded that the modern NPP design is impossible without application of mathematical modelling methods. The mathematical modelling of transients is also necessary for proper and safe NPP operation. Mathematical modelling of accidents at NPPs is a comparatively new method of investigation. Its success and development are completely based on the progress in modern computer development. With their improvement the mathematical models will become more complicate and adequacy of real physical process representation by their means will increase

  12. Reactor building seismic analysis of a PWR type - NPP

    International Nuclear Information System (INIS)

    Kakubo, Masao

    1983-01-01

    Earthquake engineering studies raised up in Brazil during design licensing and construction phases of Almirante Alvaro Alberto NPP, units 1 and 2. State of art of soil - structure interaction analysis with particular reference to the impedance function calculation analysis with particular reference to the impedance function calculation of a group of pile is presented in this M.Sc. Dissertation, as an example the reactor building dynamic response of a 1325 MWe NPP PWR type is calculated. The reactor building is supported by a pile foundation with 2002 end bearing piles. Upper and lower bound soil parameters are considered in order to observe their influence on dynamic response of structure. Dynamic response distribution on pile heads show pile-soil-pile interaction effects. (author)

  13. The CANDUR Reactor - The Practical Path to RU and TH use in Nuclear Reactors

    International Nuclear Information System (INIS)

    Kuran, Sermet; Yang, Dezi

    2012-01-01

    The CANDU heavy water reactor has unrivalled flexibility for using a variety of fuels, such as Natural Uranium (NU), Low Enriched Uranium (LEU), Recycled Uranium (RU), Mixed Oxide (MOX), and Thorium (Th). Recently, this unique CANDU reactor feature attracted considerable attention due to favourable commercial, environmental and strategic needs. This paper summarizes the solid progress over the last three years and outlines CANDU Energy Incorporated's (CEI) multi-stage vision of utilizing various fuels in currently operational and new build CANDU reactors. In CEI's fuel-cycle vision, CANDU reactors will operate in conjunction with other reactor types and use advanced fuels to produce more energy and ensure the most efficient and least costly method of utilizing Light Water Reactor (LWR) used fuel. With this vision and the tandem goal of systematic adoption of Thorium based fuels, CANDU reactors will be a strong technology partner in ensuring the availability of long-term stable resources for nuclear power plants

  14. LWR-PV Surveillance Dosimetry Improvement Program review graphics

    International Nuclear Information System (INIS)

    McElroy, W.N.; Gold, R.; Gutherie, G.L.

    1979-10-01

    A primary objective of the multilaboratory program is to prepare an updated and improved set of dosimetry, damage correlation, and the associated reactor analysis ASTM standards for LWR-PV irradiation surveillance programs. Supporting this objective are a series of analytical and experimental validation and calibration studies in Benchmark Neutron Fields, reactor Test Regions, and operating power reactor Surveillance Positions. These studies will establish and certify the precision and accuracy of the measurement and predictive methods which are recommended for use in these standards. Consistent and accurate measurement and data analysis techniques and methods, therefore, will have been developed and validated along with guidelines for required neutron field calculations that are used to (1) correlate changes in material properties with the characteristics of the neutron radiation field and (2) predict pressure vessel steel toughness and embrittlement from power reactor surveillance data

  15. Analysis on small long life reactor using thorium fuel for water cooled and metal cooled reactor types

    International Nuclear Information System (INIS)

    Permana, Sidik

    2009-01-01

    Long-life reactor operation can be adopted for some special purposes which have been proposed by IAEA as the small and medium reactor (SMR) program. Thermal reactor and fast reactor types can be used for SMR and in addition to that program the utilization of thorium fuel as one of the candidate as a 'partner' fuel with uranium fuel which can be considered for optimizing the nuclear fuel utilization as well as recycling spent fuel. Fissile U-233 as the main fissile material for thorium fuel shows higher eta-value for wider energy range compared with other fissile materials of U-235 and Pu-239. However, it less than Pu-239 for fast energy region, but it still shows high eta-value. This eta-value gives the reactor has higher capability for obtaining breeding condition or high conversion capability. In the present study, the comparative analysis on small long life reactor fueled by thorium for different reactor types (water cooled and metal cooled reactor types). Light water and heavy water have been used as representative of water-cooled reactor types, and for liquid metal-cooled reactor types, sodium-cooled and lead-bismuth-cooled have been adopted. Core blanket arrangement as general design configuration, has been adopted which consist of inner blanket region fueled by thorium oxide, and two core regions (inner and out regions) fueled by fissile U-233 and thorium oxide with different percentages of fissile content. SRAC-CITATION and JENDL-33 have been used as core optimization analysis and nuclear data library for this analysis. Reactor operation time can reaches more than 10 years operation without refueling and shuffling for different reactor types and several power outputs. As can be expected, liquid metal cooled reactor types can be used more effective for obtaining long life reactor with higher burnup, higher power density, higher breeding capability and lower excess reactivity compared with water-cooled reactors. Water cooled obtains long life core operation

  16. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation: Appendix 2B, User's guide to the LWR assemblies data base, Appendix 2C, User's guide to the LWR radiological data base, Appendix 2D, User's guide to the LWR quantities data base

    International Nuclear Information System (INIS)

    1987-12-01

    This User's Guide for the LWR Assemblies data base system is part of the Characteristics Data Base being developed under the Waste Systems Data Development Program. The objective of the LWR Assemblies data base is to provide access at the personal computer level to information about fuel assemblies used in light-water reactors. The information available is physical descriptions of intact fuel assemblies and radiological descriptions of spent fuel disassembly hardware. The LWR Assemblies data base is a user-oriented menu driven system. Each menu is instructive about its use. Section 5 of this guide provides a sample session with the data base to assist the user

  17. Recent advances in the utilization and the irradiation technology of the refurbished BR2 reactor

    International Nuclear Information System (INIS)

    Dekeyser, J.; Benoit, P.; Decloedt, C.; Pouleur, Y.; Verwimp, A.; Weber, M.; Vankeerberghen, M.; Ponsard, B.

    1999-01-01

    Operation and utilization of the materials testing reactor BR2 at the Belgian Nuclear Research Centre (SCK·CEN) has since its start in 1963 always followed closely the needs and developments of nuclear technology. In particular, a multitude of irradiation experiments have been carried out for most types of nuclear power reactors, existing or under design. Since the early 1990s and increased focus was directed towards more specific irradiation testing needs for light water reactor fuels and materials, although other areas of utilization continued as well (e.g. fusion reactor materials, safety research, ...), including also the growing activities of radioisotope production and silicon doping. An important milestone was the decision in 1994 to implement a comprehensive refurbishment programme for the BR2 reactor and plant installations. The scope of this programme comprised very substantial studies and hardware interventions, which have been completed in early 1997 within planning and budget. Directly connected to this strategic decision for reactor refurbishment was the reinforcement of our efforts to requalify and upgrade the existing irradiation facilities and to develop advanced devices in BR2 to support emerging programs in the following fields: - LWR pressure vessel steel, - LWR irradiation assisted stress corrosion cracking (IASCC), - reliability and safety of high-burnup LWR fuel, - fusion reactor materials and blanket components, - fast neutron reactor fuels and actinide burning, - extension and diversification of radioisotope production. The paper highlights these advances in the areas of BR2 utilisation and the ongoing development activities for the required new generation of irradiations devices. (author)

  18. The utility of different reactor types for the research

    International Nuclear Information System (INIS)

    Stiennon, G.

    1983-01-01

    The report presents a general view of the use of the different belgian research reactor i.e. venus reactor, BR-1 reactor, BR-2 reactor and BR-3 reactor. Particular attention is given to the programmes which is in the interest of international collaboration. In order to reach an efficient utilization of such reactors they require a specialized personnel groups to deal with the irradiation devices and radioactive materials and post irradiation examinations, creating a complete material testing station. (A.J.)

  19. Method of freezing type dismantling for wasted reactors

    International Nuclear Information System (INIS)

    Tatsumi, Toshiyuki.

    1985-01-01

    Purpose: To enable to operate a cutting device in the air by placing a working table on ice while utilizing the ice as radiation shielding materials thereby prevent the diffusion of air contaminations. Method: Upon dismantling a BWR type reactor, ice is packed into a reactor container and a pressure vessel and frozen state is maintained by cooling coils disposed to the outer circumference of the pressure vessel. Then, an airtight hood is covered over the pressure vessel and a working table is rotatably disposed therein. Upon working, when the upper layer ice is melted by a heat pump and discharged, the airtight hood is lowered to a predetermined level. After freezing the melted portion again at the lowered level, cutting work is conducted by an operator in the hood. The cut pieces are conveyed after hoisting the airtight hood by a crane. The pressure vessel is dismantled by repeating the foregoing procedures. In this way, cut pieces can be recovered without falling them to the reactor bottom as in the conventional work in water. In addition, since the procedures are conducted while covering the airtight hood, diffusion of air contaminations can be prevented. (Kamimura, M.)

  20. Saturated steam turbines for power reactors of WWER-type

    International Nuclear Information System (INIS)

    Czwiertnia, K.

    1978-01-01

    The publication deals with design problems of large turbines for saturated steam and with problem of output limitations of single shaft normal speed units. The possibility of unification of conventional and nuclear turbines, which creates the economic basis for production of both types of turbines by one manufacturer based on standarized elements and assemblies is underlined. As separate problems the distribution of nuclear district heating power systems are considered. The choice of heat diagram for district heating saturated steam turbines, the advantages of different diagrams and evaluaton for further development are presented. On this basis a program of unified turbines both condensing and district heating type suitable for Soviet reactors of WWER-440 and WWER-1000 type for planned development of nuclear power in Poland is proposed. (author)

  1. Experience of European LWR irradiated fuel transport: the first five hundred tonnes

    International Nuclear Information System (INIS)

    Curtis, H.W.

    1978-01-01

    The paper describes the service provided by an international company specializing in the transport of LWR irradiated fuel throughout Europe. Methods of transport used to the reprocessing plants at La Hague and Windscale include road transport of 38 te flasks over the whole route; transport of flasks between 55 and 105 te by rail, with rail-head and the reprocessing plant, where required, performed by road using heavy trailers; roll-on, roll-off sea ferries; and charter ships. Different modes of transport have been developed to cater for the various limitations on access to reactor sites arising from geographical and routing considerations. The experience of transporting more than 500 tonnes of irradiated uranium from twenty-one power reactors is used to illustrate the flexibility which the transport organization requires when the access and handling facilities are different at almost every reactor. Variations in fuel cross sections and lengths of fuel elements used in first generation reactors created the need for first generation flasks with sufficient variants to accommodate all reactor fuels but the trend now is towards standardization of flasks to perhaps two basic types. The safety record of irradiated fuel transport is examined with explanation of the means whereby this has been achieved. The problems of programming the movement of a pool of eighteen flasks for twenty-one reactors in eight countries are discussed together with the steps taken to ensure that the service operates fairly to give priority to those reactors with the greatest problems. The transport of irradiated fuel across several national frontiers is an international task which requires an international company. The transport of European irradiated fuel can be presented as an example of international collaboration which works

  2. Thermalhydraulics of flowing particle-bed-type fusion reactor blankets

    International Nuclear Information System (INIS)

    Nietert, R.E.; Abdelk-Khalik, S.I.

    1982-01-01

    An experimental investigation has been conducted to determine the heat transfer characteristics of gravity-flowing particle beds using a special heat transfer loop. Glass microspheres were allowed to flow by gravity at controlled rates through an electrically heated stainless steel tubular test section. Values of the local and average convective heat transfer coefficient as a function of the average bed velocity, particle size and heat flux were determined. Such information is necessary for the design of gravity-flowing particle-bed type fusion reactor-blankets and associated tritium recovery systems. (orig.)

  3. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  4. WWER type reactors used as multipurpose nuclear power sources

    International Nuclear Information System (INIS)

    Fiala, J.; Mulak, J.

    1976-01-01

    Safety aspects are assessed of the siting of nuclear power installations in the vicinity of large housing estates and in areas with a high population density, mainly the aspect of the liquidation of the consequences of the maximum credible accident, i.e., the transversal rupture of the primary coolant circuit. The application of WWER type reactors as multipurpose nuclear power sources in Czechoslovakia is justified. It is shown that such a multipurpose nuclear power source differs from a purely condensation nuclear power plant mainly in the design of the secondary stage. The possibilities of such projects are indicated with a view to power and heat operation. (F.M.)

  5. Microencapsulated fuel technology for commercial light water and advanced reactor application

    International Nuclear Information System (INIS)

    Terrani, Kurt A.; Snead, Lance L.; Gehin, Jess C.

    2012-01-01

    The potential application of microencapsulated fuels to light water reactors (LWRs) has been explored. The specific fuel manifestation being put forward is for coated fuel particles embedded in silicon carbide or zirconium metal matrices. Detailed descriptions of these concepts are presented, along with a review of attributes, potential benefits, and issues with respect to their application in LWR environments, specifically from the standpoints of materials, neutronics, operations, and economics. Preliminary experiment and modeling results imply that with marginal redesign, significant gains in operational reliability and accident response margins could be potentially achieved by replacing conventional oxide-type LWR fuel with microencapsulated fuel forms.

  6. Validation of the reactor dynamics code TRAB

    International Nuclear Information System (INIS)

    Raety, H.; Kyrki-Rajamaeki, R.; Rajamaeki, M.

    1991-05-01

    The one-dimensional reactor dynamics code TRAB (Transient Analysis code for BWRs) developed at VTT was originally designed for BWR analyses, but it can in its present version be used for various modelling purposes. The core model of TRAB can be used separately for LWR calculations. For PWR modelling the core model of TRAB has been coupled to circuit model SMABRE to form the SMATRA code. The versatile modelling capabilities of TRAB have been utilized also in analyses of e.g. the heating reactor SECURE and the RBMK-type reactor (Chernobyl). The report summarizes the extensive validation of TRAB. TRAB has been validated with benchmark problems, comparative calculations against independent analyses, analyses of start-up experiments of nuclear power plants and real plant transients. Comparative RBMES type reactor calculations have been made against Soviet simulations and the initial power excursion of the Chernobyl reactor accident has also been calculated with TRAB

  7. The water desalination complex based on ABV-type reactor plant

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Fadeev, Yu.P.; Vorobiev, V.M.; Baranaev, Yu.D.

    1997-01-01

    A floating nuclear desalination complex with two barges, one for ABV type reactor plant, with twin reactor 2 x 6 MW(e), and one for reverse osmosis desalination plant, was described. The principal specifications of the ABV type reactor plant and desalination barge were given. The ABV type reactor has a traditional two-circuit layout using an integral type reactor vessel with all mode natural convection of primary coolant. The desalted water cost was estimated to be around US $0.86 per cubic meter. R and D work has been performed and preparations for commercial production are under way. (author)

  8. Radioactive waste management and disposal scenario for fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tabara, Takashi; Yamano, Naoki [Sumitomo Atomic Energy Industries Ltd., Tokyo (Japan); Seki, Yasushi; Aoki, Isao

    1997-10-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a light water reactor (LWR) have been evaluated and compared. At first, the amount and the radioactive level of the radwaste generated in five fusion reactors ware evaluated by an activation calculation code. Next, a possible radwaste disposal scenario applicable to fusion radwaste in Japan is considered and the disposal cost evaluated under certain assumptions. The exposure doses are evaluated for the skyshine of gamma-rays during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical LWR was estimated based on a literature survey and the disposal cost was evaluated using the same assumptions as for the fusion reactors. It is found that the relative cost of disposal is strongly dependent on the cost for interim storage of medium level waste of fusion reactors and the cost of high level waste for the LWR. (author)

  9. Fuel loading method to exchangeable reactor core of BWR type reactor and its core

    International Nuclear Information System (INIS)

    Koguchi, Kazushige.

    1995-01-01

    In a fuel loading method for an exchangeable reactor core of a BWR type reactor, at least two kinds of fresh fuel assemblies having different reactivities between axial upper and lower portions are preliminarily prepared, and upon taking out fuel assemblies of advanced combustion and loading the fresh fuel assemblies dispersingly, they are disposed so as to attain a predetermined axial power distribution in the reactor. At least two kinds of fresh fuel assemblies have a content of burnable poisons different between the axial upper portion and lower portions. In addition, reactivity characteristics are made different at a region higher than the central boundary and a region lower than the central boundary which is set within a range of about 6/24 to 16/24 from the lower portion of the fuel effective length. There can be attained axial power distribution as desired such as easy optimization of the axial power distribution, high flexibility, and flexible flattening of the power distribution, and it requires no special change in view of the design and has a good economical property. (N.H.)

  10. Computer program of iodine removal in the LWR containment vessel under LOCA conditions, MIRA-PB

    International Nuclear Information System (INIS)

    Nishio, Gunji; Tanaka, Mitsugu; Tamura, Tomohiko.

    1978-03-01

    LWR plants have a containment system for reactor safety consisting of spray and air cleaning filter. R.L.Ritzman of Battele Columbus Lab. developed computer code MIRAP/MIRAB for predicting iodine removal by containment system for PWR and BWR; which has some problem, however. The computer code MIRA-PB prepared by the authors is a modification of MIRAP/MIRAB. (auth.)

  11. Transmutation of plutonium in pebble bed type high temperature reactors

    International Nuclear Information System (INIS)

    Bende, E.E.

    1997-01-01

    The pebble bed type High Temperature Reactor (HTR) has been studied as a uranium-free burner of reactor grade plutonium. In a parametric study, the plutonium loading per pebble as well as the type and size of the coated particles (CPs) have been varied to determine the plutonium consumption, the final plutonium burnup, the k ∞ and the temperature coefficients as a function of burnup. The plutonium loading per pebble is bounded between 1 and 3 gr Pu per pebble. The upper limit is imposed by the maximal allowable fast fluence for the CPs. A higher plutonium loading requires a longer irradiation time to reach a desired burnup, so that the CPs are exposed to a higher fast fluence. The lower limit is determined by the temperature coefficients, which become less negative with increasing moderator-actinide ratio. A burnup of about 600 MWd/kgHM can be reached. With the HTR's high efficiency of 40%, a plutonium supply of 1520 kg/GW e a is achieved. The discharges of plutonium and minor actinides are then 450 and 110 kg/GW e a, respectively. (author)

  12. After-heat removing system in FBR type reactor

    International Nuclear Information System (INIS)

    Goto, Tadashi; Inoue, Kotaro; Yamakawa, Masanori; Ikeda, Takashi.

    1988-01-01

    Purpose: To promote more positive forcive circulation of primary circuit fluids thereby increase the heat removing amount. Constitution: The primary side of an electromagnetic flow coupler type heat exchanger is opened to the primary fluid of a reactor, while the secondary side is connected with the secondary circuit comprising an air cooler and an electromagnetic pump. Since the secondary circuit stands-by during normal operation, the electromagnetic flow coupler does not operate and does not generate force for flowing primary circuit fluid. If flow due to the external force to the primary circuit fluid should occur in the electromagnetic flow coupler type heat exchanger, an electromagnetic force tending to flow the secondary circuit fluid is exerted oppositely. However the coupler undergoes reaction inertia of the fluid or flowing resistance, to exert in the direction of suppressing the flow, thereby prevent the heat loss. (Yoshihara, H.)

  13. Measurement and characterization of fission products released from LWR fuel

    International Nuclear Information System (INIS)

    Osborne, M.F.; Collins, J.L.; Lorenz, R.A.; Norwood, K.S.; Strain, R.V.

    1984-01-01

    Samples of commercial LWR fuel have been heated under simulated accident conditions to determine the extent and the chemical forms of fission product release. This project was sponsored by the USNRC under a broad program of reactor safety studies. Of the five tests discussed, the fractional releases of Kr, I, and Cs varied from approx. 2% at 1400 0 C to >50% at 2000 0 C; much smaller fractions of Ru, Ag, Sb, and Te were measured in some tests. The major chemical forms in the effluent appeared to include CsI, CsOH, Sb, Te, and Ag

  14. Issues in risk analysis of passive LWR designs

    International Nuclear Information System (INIS)

    Youngblood, R.W.; Pratt, W.T.; Amico, P.J.; Gallagher, D.

    1992-01-01

    This paper discusses issues which bear on the question of how safety is to be demonstrated for ''simplified passive'' light water reactor (LWR) designs. First, a very simplified comparison is made between certain systems in today's plants. comparable systems in evolutionary designs, and comparable systems in the simplified passives. in order to introduce the issues. This discussion is not intended to describe the designs comprehensively, but is offered only to show why certain issues seem to be important in these particular designs. Next, an important class of accident sequences is described; finally, based on this discussion, some priorities in risk analysis are presented and discussed

  15. Standard casks for the transport of LWR spent fuel

    International Nuclear Information System (INIS)

    Blum, P.

    1985-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks have been manufacturer under TRANSNUCLEAIRE supervision in different countries and are presently used for European and intercontinental transports. The main advantages of these casks are: - large payload for considered modes of transport, - moderate cost, - reliability due to the large experience gained by TRANSNUCLEAIRE as concerns fabrication and operation problems, - standardisation facilitating fabrication, operation and spare part supply [fr

  16. Investigation of valve failure problems in LWR power plants

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    An analysis of component failures from information in the computerized Nuclear Safety Information Center (NSIC) data bank shows that for both PWR and BWR plants the component category most responsible for approximately 19.3% of light water reactor (LWR) power plant shutdowns. This investigation by Burns and Roe, Inc. shows that the greatest cause of shutdowns in LWRs due to valve failures is leakage from valve stem packing. Both BWR plants and PWR plants have stem leakage problems (BWRs, 21% and PWRs, 34%).

  17. PLUTON: A Three-Group Model for the Radial Distribution of Plutonium, Burnup, and Power Profiles in Highly Irradiated LWR Fuel Rods

    International Nuclear Information System (INIS)

    Lemehov, Sergei; Nakamura, Jinichi; Suzuki, Motoe

    2001-01-01

    A three-group model (PLUTON) is described, which predicts the power density distribution, plutonium buildup, and burnup profiles across the fuel pellet radius as a function of in-pile time and parameters characterizing the type of reactor system with respect to fuel temperature and changes of density during the irradiation period. The PLUTON model is a part of two fuel performance codes (ASFAD and FEMAXI-V), which provide all necessary input for this model, mainly local temperatures and fuel matrix density across the radius. Comparisons between measurements and predictions of the PLUTON model are made on fuels with enrichments in the range 2.9 to 8.25% and with burnup between 21 000 and 64 000 MWd/t. It is shown that the PLUTON predictions are in good agreement with measurements as well as with predictions of the well-known TUBRNP model. The proposed model is flexibly applicable for all types of light water reactor (LWR) fuels, including mixed oxide, and for fuel tested in the Organization for Economic Corporation and Development's Halden heavy water reactor. The PLUTON three-group model is based on analytical (theoretical) consideration of neutron absorption in a resonant region of the fuel in its apparent form. It makes the model more flexible in comparison with the semi-empirical TUBRNP one-group model and allows the physically based model analysis of commercial LWR-type fuels at high burnup as well as analysis of experimental fuel rods tested in the Halden heavy water reactor, which is one of the main test reactors in the world. The differences in fuel behavior in the Halden reactor in terms of burnup distribution and plutonium buildup can be more clearly understood with the PLUTON model

  18. Feasibility assessment of the once-through thorium fuel cycle for the PTVM LWR concept

    International Nuclear Information System (INIS)

    Rachamin, R.; Fridman, E.; Galperin, A.

    2015-01-01

    Highlights: • The PTVM LWR is an innovation reactor concept operating in a “breed & burn” mode. • An advanced once-through thorium fuel cycle for the PTVM LWR concept is proposed. • The PTVM LWR concept makes use of a seed-blanket geometry. • A novel fuel management scheme based on two separate fuel flow routes is analyzed. • The analysis indicates a potential for utilizing the fuel in an efficient manner. - Abstract: This paper investigates the feasibility of a once-through thorium fuel cycle for the novel reactor-design concept named the pressure tube light water reactor with variable moderator control (PTVM LWR). The PTVM LWR operates in a “breed & burn” mode, which makes it an attractive system for utilizing thorium fuel in a once-through mode. The “breed & burn” mode can emphasize the in situ generation as well as incineration of 233 U, which are the basic foundations of the once-through thorium fuel cycle. The PTVM LWR concept makes use of a seed–blanket geometry, whereby the core is divided into separated regions of thorium-based fuel channel assemblies (blanket) and low-enriched uranium (LEU) based fuel channel assemblies (seed). A novel fuel in-core management scheme based on two separate fuel flow routes (i.e., seed route and blanket route) is proposed and analyzed. Neutronic performance analysis indicates that the proposed novel fuel in-core management scheme has the potential to utilize both LEU- and thorium-based fuel in an efficient manner. The once-through thorium cycle, presented and discussed in this paper, provide interesting research leads and can serve as a bridge between current LEU-based fuel cycles and a thorium fuel cycle based on recycling of 233 U

  19. Liquid-metal-gas heat exchanger for HTGR type reactors

    International Nuclear Information System (INIS)

    Werth, G.

    1980-01-01

    The aim of this study is to investigate the heat transfer characteristics of a liquid metal heat exchanger (HE) for a helium-cooled high temperature reactor. A tube-type heat exchanger is considered as well as two direct exchangers: a bubble-type heat exchanger and a heat exchanger according to the spray principle. Experiments are made in order to determine the gas content of bubble-type heat exchangers, the dependence of the droplet diameter on the nozzle diameter, the falling speed of the droplets, the velocity of the liquid jet, and the temperature variation of liquid jets. The computer codes developed for HE calculation are structured so that they may be used for gas/liquid HE, too. Each type of HE that is dealt with is designed by accousting for a technical and an economic assessment. The liquid-lead jet spray is preferred to all other types because of its small space occupied and its simple design. It shall be used in near future in the HTR by the name of lead/helium HE. (GL) [de

  20. Development of toroid-type HTS DC reactor series for HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon; Yu, In-Keun [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2015-11-15

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  1. Development of toroid-type HTS DC reactor series for HVDC system

    International Nuclear Information System (INIS)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-01-01

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  2. Criticality impacts on LWR fuel storage efficiency

    International Nuclear Information System (INIS)

    Napolitano, D.

    1992-01-01

    This presentation discusses the criticality impacts throughout storage of fuel onsite including new fuel storage, spent fuel storage, consolidation, and dry storage. The general principles for criticality safety are also be discussed. There is first an introduction which explains today's situation for criticality safety concerns. This is followed by a discussion of criticality safety Regulatory Guides, safety limits and fundamental principles. Design objectives for criticality safety in the 1990's include higher burnups, longer cycles, and higher enrichments which impact the criticality safety design. Criticality safety for new fuel storage, spent fuel storage, fuel consolidation, and dry storage are followed by conclusions. Today's situation is one in which the US does not reprocess, and does not have an operating MRS facility or repository. High density fuel storage rack designs of the 1980s, are filling up. Dry cask storage systems for spent fuel storage are being utilized. Enrichments continue to increase PWR fuel assemblies with enrichments of 4.5 to 5.0 weight percent U-235 and BWR fuel assemblies with enrichments of 3.25 to 3.5 weight percent U-235 are common. Criticality concerns affect the capacity and the economics of light water reactor (LWR) fuel storage arrays by dictating the spacing of fuel assemblies in a storage system, or the use of poisons or exotic materials in the storage system design

  3. Development status of PIUS/ISER - a inherently safe reactor for the international use

    International Nuclear Information System (INIS)

    Wakabayashi, Hiroaki

    1987-01-01

    It is just in early 1980s that LWR-based nuclear power has become a substantial power source. Though the safety level of nuclear power is always claimed to be sufficiently high by the industry, it rests on the idea of defense in depth, the calculation by probabilistic risk assessment (PRA) or probabilistic safety assessment (PSA). The TMI-2 and Chernobyl-4 accidents occurred in the industrially most advanced countries. In this paper, an alternative way to safe nuclear power is sought in so-called inherently safe reactors (ISR) including the LWR type PIUS/ISER. With proper consideration into the design of nuclear reactor plants, those can be made basically safe through the use of passive safe mechanism for their design. In short, an ISR is a nuclear power reactor which has passive and intrinsic core cooling capability and automatic shutdown capability. As the nuclear power reactors which are currently claimed to be inherently safe, there are the process inherent and ultimately safe reactor (PIUS) of ASEA-ATOM Sweden and the inherently safe and economical reactor (ISER) of the University of Tokyo, Japan, of LWR type. The current status of the development, the reliability, and some technical problems of ISER/PIUS and the attitude of various countries toward ISER/PIUS are described. (Kako, I.)

  4. ORIGEN2 libraries based on JENDL-3.2 for LWR-MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Katakura, Jun-ichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Onoue, Masaaki; Matsumoto, Hideki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Sasahara, Akihiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2000-11-01

    A set of ORIGEN2 libraries for LWR MOX fuels was developed based on JENDL-3.2. The libraries were compiled with SWAT using the specification of MOX fuels that will be used in nuclear power reactors in Japan. The verification of the libraries were performed by the analyses of post irradiation examinations for the fuels from European PWR. By the analysis of PIE data from PWR in United States, the comparison was made between calculation and experimental results in the case of that parameters for making the libraries are different from irradiation conditions. These new libraries for LWR MOX fuels are packaged in ORLIBJ32, the libraries released in 1999. (author)

  5. Comparison of scale/triton and helios burnup calculations for high burnup LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tittelbach, S.; Mispagel, T.; Phlippen, P.W. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany)

    2009-07-01

    The presented analyses provide information about the suitability of the lattice burnup code HELIOS and the recently developed code SCALE/TRITON for the prediction of isotopic compositions of high burnup LWR fuel. The accurate prediction of the isotopic inventory of high burnt spent fuel is a prerequisite for safety analyses in and outside of the reactor core, safe loading of spent fuel into storage casks, design of next generation spent fuel casks and for any consideration of burnup credit. Depletion analyses are performed with both burnup codes for PWR and BWR fuel samples which were irradiated far beyond 50 GWd/t within the LWR-PROTEUS Phase II project. (orig.)

  6. Degradation of austenitic stainless steel (SS) light water ractor (LWR) core internals due to neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Appajosula S., E-mail: Appajosula.Rao@nrc.gov

    2014-04-01

    Austenitic stainless steels (SSs) are extensively being used in the fabrication of light water reactor (LWR) core internal components. It is because these steels have relatively high ductility, fracture toughness and moderate strength. However, the LWR internal components exposure to neutron irradiation over an extended period of plant operation degrades the materials mechanical properties such as the fracture toughness. This paper summarizes some of the results of the existing open literature data on irradiation assisted stress corrosion cracking (IASCC) of 316 CW steels that have been published by the United States Nuclear Regulatory Commission (USNRC), industry, academia, and other research agencies.

  7. Estimates of relative areas for the disposal in bedded salt of LWR wastes from alternative fuel cycles

    International Nuclear Information System (INIS)

    Lincoln, R.C.; Larson, D.W.; Sisson, C.E.

    1978-01-01

    The relative mine-level areas (land use requirements) which would be required for the disposal of light-water reactor (LWR) radioactive wastes in a hypothetical bedded-salt formation have been estimated. Five waste types from alternative fuel cycles have been considered. The relative thermal response of each of five different site conditions to each waste type has been determined. The fuel cycles considered are the once-through (no recycle), the uranium-only recycle, and the uranium and plutonium recycle. The waste types which were considered include (1) unreprocessed spent reactor fuel, (2) solidified waste derived from reprocessing uranium oxide fuel, (3) plutonium recovered from reprocessing spent reactor fuel and doped with 1.5% of the accompanying waste from reprocessing uranium oxide fuel, (4) waste derived from reprocessing mixed uranium/plutonium oxide fuel in the third recycle, and (5) unreprocessed spent fuel after three recycles of mixed uranium/plutonium oxide fuels. The relative waste-disposal areas were determined from a calculated value of maximum thermal energy (MTE) content of the geologic formations. Results are presented for each geologic site condition in terms of area ratios. Disposal area requirements for each waste type are expressed as ratios relative to the smallest area requirement (for waste type No. 2 above). For the reference geologic site condition, the estimated mine-level disposal area ratios are 4.9 for waste type No. 1, 4.3 for No. 3, 2.6 for No. 4, and 11 for No. 5

  8. Method of stopping operation of PWR type reactor

    International Nuclear Information System (INIS)

    Ueno, Takashi; Tsuge, Ayao; Kawanishi, Yasuhira; Onimura, Kichiro; Kadokami, Akira.

    1989-01-01

    In PWR type reactors after long period of l00 % power operation, since boiling is caused in heat conduction pipes and water is depleted within the intergranular corrosion fracture face in the crevis portion to result in a dry-out state, impregnation and concentration of corrosion inhibitors into the intergranular corrosion fracture face are insufficient. In view of the above, the corrosion inhibitor at a high concentration is impregnated into the intergranular corrosion fracture face by keeping to inject the corrosion inhibitor from l00 % thermal power load by way of the thermal power reduction to the zero power state upon operatioin shutdown. That is, if the thermal power is reduced to or near the 0 power upon reactor shutdown, feedwater in the crevis portion is put to subcooled state, by which the steam present in the intergranular corrosion fracture face are condensated and the corrosion inhibitor at high concentration impregnated into the crevis portion are penetrated into the intergranular corrosion fracture face. (K.M.)

  9. Aqueous Boric acid injection facility of PWR type reactor

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi; Iwami, Masao.

    1996-01-01

    If a rupture should be caused in a secondary system of a PWR type reactor, pressure of a primary coolant recycling system is lowered, and a back flow check valve is opened in response to the lowering of the pressure. Then, low temperature aqueous boric acid in the lower portion of a pressurized tank is flown into the primary coolant recycling system based on the pressure difference, and the aqueous boric acid reaches the reactor core together with coolants to suppress reactivity. If the injection is continued, high temperature aqueous boric acid in the upper portion boils under a reduced pressure, further urges the low temperature aqueous boric acid in the lower portion by the steam pressure and injects the same to the primary system. The aqueous boric acid stream from the pressurized tank flowing by self evaporation of the high temperature aqueous boric acid itself is rectified by a rectifying device to prevent occurrence of vortex flow, and the steam is injected in a state of uniform stream. When the pressure in the pressurized tank is lowered, a bypass valve is opened to introduce the high pressure fluid of primary system into the pressurized tank to keep the pressure to a predetermined value. When the pressure in the pressurized tank is elevated to higher than the pressure of the primary system, a back flow check valve is opened, and high pressure aqueous boric acid is flown out of the pressurized tank to keep the pressure to a predetermined value. (N.H.)

  10. LWR safety research in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Seipel, H.G.

    1977-01-01

    The paper gives a review of the German LWR safety research programme. It describes how the programme was initiated and informs on its goals, development andpractical realization, and indicates how it is bound up with international collaboration. The contribution so far made by the programme to an enhancement of the understanding of major safety problems and to the improvement of safety technology is demonstrated by means of a few selected examples. Experiments relating to loss-of--coolant accidents have deepened our understanding of the heat transfer in the reactor core during blowdown as well as during the flooding phase. Investigations of the dynamic effects going on in dry full pressure containments and pressure suppression systems, following a loss-of--coolant accident, have indicated that existing computer models cannot satisfactorily predict all relevant physical phenomena. Yet, the experimental results obtained constitute a sufficient basis for safe containment design. Research work on core meltdown accidents has identified the particular importance of the type of concrete used for the containment structures and its foundation. If basaltic concrete is used, a substantial fission product release to the environment is extremely unlikely even in the case of a core meltdown accident. At least, it would take place much later than was previously assumed. Resrach on the safety of pressurized components has been concentrated on the problem of cracks in the heat-affected zone of welds. New methods were developed for the detection and analysis of the acceptability of microcrack fields. Additional investigations of specimens and components to increase the understanding of the long-term behaviour of components with microcracks are envisaged in the frame of a new major project on ''component safety''. Considerable progress has been made in the development of methods for automatic remote-control volumetric testing of reactor pressure vessels using ultrasonic techniques

  11. Identification of the impacts of maintenance and testing upon the safety of LWR power plants. Final report

    International Nuclear Information System (INIS)

    Husseiny, A.A.; Sabri, Z.A.; Turnage, J.J.

    1980-04-01

    The present study was designed to identify the impact of maintenance and testing (M and T) upon the safety of LWR power plants. The study involved data extraction from various sources reporting safety-related and operation-related nuclear power plant experience. Primary sources reviewed, including Licensee Event Reports (LER's) submitted to the NRC, revealed that only ten percent of events reported could be identified as M and T problems. The collected data were collated in a manner that would allow identification of principal types of problems which are associated with the performance of M and T tasks in LWR power plants. Frequencies of occurrence of events and their general endemic nature were analyzed using data clustering and pattern recognition techniques, as well as chi-square analyses for sparse contingency tables. The results of these analyses identified seven major categories of M and T error modes which were related to individual facilities and reactor type. Data review indicated that few M and T problems were directly related to procedural inadequacies, with the majority of events being attributable to human error

  12. Application of NDT and ISI to research reactor in the Czech Republic

    International Nuclear Information System (INIS)

    Peterka, F.

    2001-01-01

    Full text: The objectives of the proposed research project are: (a) to review the present status of ISI and NDT to VR-1 and LVR-15 research reactors. (b) to be involved in the development of the ISI programme for VR-1 and LVR-15 research reactors and medium and high power research reactors of WWER type. Dr. Peterka briefly described the activities on the VR-1 and LWR-15 reactors and presented an example of a procedure to apply liquid penetrant testing. (author)

  13. Leak detector for a steam generator in FBR type reactors

    International Nuclear Information System (INIS)

    Miyaji, Nobuyoshi.

    1979-01-01

    Purpose: To facilitate maintenance for liquid leak detectors such as exchange of nickel membrane sensors during operation in a sodium-cooled fbr type reactor. Constitution: A pipeway capable of supplying a cover gas such as argon into the cylinder of a hydrogen detector containing a nickel membrane sensor is provided in a liquid leak detector constituting a part of a by-pass loop. The pipeway is also adapted to be evacuated. A pipeway and a small sodium tank for drain use are provided on the side of the by-pass loop near valves. Then, after closing the inlet and outlet valves to disconnect the by-pass loop from the sodium main pipeway, the cover gas is supplied to drive liquid sodium to the drain tank. After the drain of the liquid sodium, the sensor can be replaced. (Ikeda, J.)

  14. Gamma spectrum measurement in a swimming-pool-type reactor

    International Nuclear Information System (INIS)

    Pla, E.

    1969-01-01

    After recalling the various modes of interaction of gamma rays with matter, the authors describe the design of a spectrometer for gamma energies of between 0.3 and 10 MeV. This spectrometer makes use of the Compton and pair-production effects without eliminating them. The collimator, the crystals and the electronics have been studied in detail and are described in their final form. The problem of calibrating the apparatus is then considered ; numerous graphs are given. The sensitivity of the spectrometer for different energies is determined mainly for the 'Compton effect' group. Finally, in the last part of the report, are given results of an experimental measurement of the gamma spectrum of a swimming-pool type reactor with new elements. (author) [fr

  15. Inteligent control system for a CANDU 600 type reactor process

    International Nuclear Information System (INIS)

    Venescu, B.; Zevedei, D.; Jurian, M.; Venescu, R.

    2013-01-01

    The present paper is set on presenting a highly intelligent configuration, capable of controlling, without the need of the human factor, a complete nuclear power plant type of system, giving it the status of an autonomous system. The urge for such a controlling system is justified by the amount of drawbacks that appear in real life as disadvantages, loses and sometimes even inefficiency in the current controlling and comanding systems of the nuclear reactors. The application stands in the comand sent from the auxiliary feedwater flow control valves to the steam generators. As an environment fit for development I chose Matlab Simulink to simulate the behaviour of the process and the adjusted system. Comparing the results obtained after the fuzzy regulation with those obtained after the classical regulation, we can demonstrate the necessity of implementing artificial intelligence techniques in nuclear power plants and we can agree to the advantages of being able to control everything automatically. (authors)

  16. IRT-type research reactor physical calculation methodology

    International Nuclear Information System (INIS)

    Carrera, W.; Castaneda, S.; Garcia, F.; Garcia, L.; Reyes, O.

    1990-01-01

    In the present paper an established physical calculation procedure for the research reactor of the Nuclear Research Center (CIN) is described. The results obtained by the method are compared with the ones reported during the physical start up of a reactor with similar characteristics to the CIN reactor. 11 refs

  17. Consideration of BORAX-type reactivity accidents applied to research reactors

    International Nuclear Information System (INIS)

    Couturier, Jean; Meignen, Renaud; Bourgois, Thierry; Biaut, Guillaume; Mireau, Jean-Pierre; Natta, Marc

    2011-01-01

    Most of the research reactors discussed in this document are pool-type reactors in which the reactor vessel and some of the reactor coolant systems are located in a pool of water. These reactors generally use fuel in plate assemblies formed by a compact layer of uranium (or U 3 Si 2 ) and aluminium particles, sandwiched between two thin layers of aluminium serving as cladding. The fuel melting process begins at 660 deg. C when the aluminium melts, while the uranium (or U 3 Si 2 ) particles may remain solid. The accident that occurred in the American SL-1 reactor in 1961, together with tests carried out in the United States as of 1954 in the BORAX-1 reactor and then, in 1962, in the SPERT-1 reactor, showed that a sudden substantial addition of reactivity in this type of reactor could lead to explosive mechanisms caused by degradation, or even fast meltdown, of part of the reactor core. This is what is known as a 'BORAX-type' accident. The aim of this document is first to briefly recall the circumstances of the SL-1 reactor accident, the lessons learned, how this operational feedback has been factored into the design of various research reactors around the world and, second, to describe the approach taken by France with regard to this type of accident and how, led by IRSN, this approach has evolved in the last decade. (authors)

  18. ZZ SAIL, Albedo Scattering Data Library for 3-D Monte-Carlo Radiation Transport in LWR Pressure Vessel

    International Nuclear Information System (INIS)

    1982-01-01

    1 - Description of problem or function: Format: SAIL format; Number of groups: 23 neutron / 17 gamma-ray; Nuclides: Type 04 Concrete and Low Carbon Steel (A533B). Origin: Science Applications, Inc (SAI); Weighting spectrum: yes. SAIL is a library of albedo scattering data to be used in three-dimensional Monte Carlo codes to solve radiation transport problems specific to the reactor pressure vessel cavity region of a LWR. The library contains data for Type 04 Concrete and Low Carbon Steel (A533B). 2 - Method of solution: The calculation of the albedo data was perform- ed with a version of the discrete ordinates transport code DOT which treats the transport of neutrons, secondary gamma-rays and gamma- rays in one dimension, while maintaining the complete two-dimension- al treatment of the angular dependence

  19. Evaluation of nuclear fuel reprocessing strategies. 2. LWR fuel storage, recycle economics and plutonium logistics

    International Nuclear Information System (INIS)

    Prince, B.E.; Hadley, S.W.

    1983-01-01

    This is the second of a two-part report intended as a critical review of certain issues involved with closing the Light Water Reactor (LWR) fuel cycle and establishing the basis for future transition to commercial breeder applications. The report is divided into four main sections consisting of (1) a review of the status of the LWR spent fuel management and storage problem; (2) an analysis of the economic incentives for instituting reprocessing and recycle in LWRs; (3) an analysis of the time-dependent aspects of plutonium economic value particularly as related to the LWR-breeder transition; and (4) an analysis of the time-dependent aspects of plutonium requirements and supply relative to this transition

  20. Pretest aerosol code comparisons for LWR aerosol containment tests LA1 and LA2

    International Nuclear Information System (INIS)

    Wright, A.L.; Wilson, J.H.; Arwood, P.C.

    1986-01-01

    The Light-Water-Reactor (LWR) Aerosol Containment Experiments (LACE) are being performed in Richland, Washington, at the Hanford Engineering Development Laboratory (HEDL) under the leadership of an international project board and the Electric Power Research Institute. These tests have two objectives: (1) to investigate, at large scale, the inherent aerosol retention behavior in LWR containments under simulated severe accident conditions, and (2) to provide an experimental data base for validating aerosol behavior and thermal-hydraulic computer codes. Aerosol computer-code comparison activities are being coordinated at the Oak Ridge National Laboratory. For each of the six LACE tests, ''pretest'' calculations (for code-to-code comparisons) and ''posttest'' calculations (for code-to-test data comparisons) are being performed. The overall goals of the comparison effort are (1) to provide code users with experience in applying their codes to LWR accident-sequence conditions and (2) to evaluate and improve the code models

  1. Task types and error types involved in the human-related unplanned reactor trip events

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Park, Jin Kyun

    2008-01-01

    In this paper, the contribution of task types and error types involved in the human-related unplanned reactor trip events that have occurred between 1986 and 2006 in Korean nuclear power plants are analysed in order to establish a strategy for reducing the human-related unplanned reactor trips. Classification systems for the task types, error modes, and cognitive functions are developed or adopted from the currently available taxonomies, and the relevant information is extracted from the event reports or judged on the basis of an event description. According to the analyses from this study, the contributions of the task types are as follows: corrective maintenance (25.7%), planned maintenance (22.8%), planned operation (19.8%), periodic preventive maintenance (14.9%), response to a transient (9.9%), and design/manufacturing/installation (6.9%). According to the analysis of the error modes, error modes such as control failure (22.2%), wrong object (18.5%), omission (14.8%), wrong action (11.1%), and inadequate (8.3%) take up about 75% of the total unplanned trip events. The analysis of the cognitive functions involved in the events indicated that the planning function had the highest contribution (46.7%) to the human actions leading to unplanned reactor trips. This analysis concludes that in order to significantly reduce human-induced or human-related unplanned reactor trips, an aide system (in support of maintenance personnel) for evaluating possible (negative) impacts of planned actions or erroneous actions as well as an appropriate human error prediction technique, should be developed

  2. Task types and error types involved in the human-related unplanned reactor trip events

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Park, Jin Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    In this paper, the contribution of task types and error types involved in the human-related unplanned reactor trip events that have occurred between 1986 and 2006 in Korean nuclear power plants are analysed in order to establish a strategy for reducing the human-related unplanned reactor trips. Classification systems for the task types, error modes, and cognitive functions are developed or adopted from the currently available taxonomies, and the relevant information is extracted from the event reports or judged on the basis of an event description. According to the analyses from this study, the contributions of the task types are as follows: corrective maintenance (25.7%), planned maintenance (22.8%), planned operation (19.8%), periodic preventive maintenance (14.9%), response to a transient (9.9%), and design/manufacturing/installation (6.9%). According to the analysis of the error modes, error modes such as control failure (22.2%), wrong object (18.5%), omission (14.8%), wrong action (11.1%), and inadequate (8.3%) take up about 75% of the total unplanned trip events. The analysis of the cognitive functions involved in the events indicated that the planning function had the highest contribution (46.7%) to the human actions leading to unplanned reactor trips. This analysis concludes that in order to significantly reduce human-induced or human-related unplanned reactor trips, an aide system (in support of maintenance personnel) for evaluating possible (negative) impacts of planned actions or erroneous actions as well as an appropriate human error prediction technique, should be developed.

  3. LWR aerosol containment experiments (LACE) program and initial test results

    International Nuclear Information System (INIS)

    Muhlestein, L.D.; Hilliard, R.K.; Bloom, G.R.; McCormack, J.D.; Rahn, F.J.

    1985-01-01

    The LWR aerosol containment experiments (LACE) program is described. The LACE program is being performed at the Hanford Engineer Development Laboratory (operated by Westinghouse Hanford Company) and the initial tests are sponsored by EPRI. The objectives of the LACE program are: to demonstrate, at large-scale, inherent radioactive aerosol retention behavior for postulated high consequence LWR accident situations; and to provide a data base to be used for aerosol behavior . Test results from the first phase of the LACE program are presented and discussed. Three large-scale scoping tests, simulating a containment bypass accident sequence, demonstrated the extent of agglomeration and deposition of aerosols occurring in the pipe pathway and vented auxiliary building under realistic accident conditions. Parameters varied during the scoping tests were aerosol type and steam condensation

  4. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  5. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 1: Plenary sessions; Pressure vessel research; BWR strainer blockage and other generic safety issues; Environmentally assisted degradation of LWR components; Update on severe accident code improvements and applications

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following information: (1) plenary sessions; (2) pressure vessel research; (3) BWR strainer blockage and other generic safety issues; (4) environmentally assisted degradation of LWR components; and (5) update on severe accident code improvements and applications. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  6. Liquid-poison type power controlling device for nuclear reactor

    International Nuclear Information System (INIS)

    Horiuchi, Tetsuo; Yamanari, Shozo; Sugisaki, Toshihiko; Goto, Hiroshi.

    1981-01-01

    Purpose: To improve the safety and the operability of a nuclear reactor by adjusting the density of liquid poison. Constitution: The thermal expansion follow-up failure between cladding and a pellet upon abrupt and local variations of the power is avoided by adjusting the density of liquid poison during ordinary operation in combination with a high density liquid poison tank and a filter and smoothly controlling the reactor power through a pipe installed in the reactor core. The high density liquid poison is abruptly charged in to the reactor core under relatively low pressure through the tube installed in the reactor core at the time of control rod insertion failure in an accident, thereby effectively shutting down the reactor and improving the safety and the operability of the reactor. (Yoshihara, H.)

  7. Installation of a new type of nuclear reactor in Mexico: advantages and disadvantages; Instalacion de un nuevo tipo de reactor nuclear en Mexico: ventajas y desventajas

    Energy Technology Data Exchange (ETDEWEB)

    Jurado P, M.; Martin del Campo M, C. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: mjp_green@hotmail.com

    2005-07-01

    In this work the main advantages and disadvantages of the installation of a new type of nuclear reactor different to the BWR type reactor in Mexico are presented. A revision of the advanced reactors is made that are at the moment in operation and of the advanced reactors that are in construction or one has already planned its construction in the short term. Specifically the A BWR and EPR reactors are analyzed. (Author)

  8. Effects of cooling time on a closed LWR fuel cycle

    International Nuclear Information System (INIS)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E.

    2012-01-01

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  9. Evaluation of LWR fuel rod behavior under operational transient conditions

    International Nuclear Information System (INIS)

    Nakamura, M.; Hiramoto, K.; Maru, A.

    1984-01-01

    To evaluate the effects of fission gas flow and diffusion in the fuel-cladding gap on fuel rod thermal and mechanical behaviors in light water reactor (LWR) fuel rods under operational transient conditions, computer sub-programs which can calculate the gas flow and diffusion have been developed and integrated into the LWR fuel rod performance code BEAF. This integrated code also calculates transient temperature distribution in the fuel-pellet and cladding. The integrated code was applied to an analysis of Inter Ramp Project data, which showed that by taking into account the gas flow and diffusion effects, the calculated cladding damage indices predicted for the failed rods in the ramp test were consistent with iodine-SCC (Stress Corrosion Cracking) failure conditions which were obtained from out-of-reactor pressurized tube experiments with irradiated Zircaloy claddings. This consistency was not seen if the gas flow and diffusion effects were neglected. Evaluation were also made for the BWR 8x8 RJ fuel rod temperatures under power ramp conditions. (orig.)

  10. Safety classification of systems, structures, and components for pool-type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-08-15

    Structures, systems, and components (SSCs) important to safety of nuclear facilities shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions. Although SSC classification guidelines for nuclear power plants have been well established and applied, those for research reactors have been only recently established by the International Atomic Energy Agency (IAEA). Korea has operated a pool-type research reactor (the High Flux Advanced Neutron Application Reactor) and has recently exported another pool-type reactor (Jordan Research and Training Reactor), which is being built in Jordan. Korea also has a plan to build one more pool-type reactor, the Kijang Research Reactor, in Kijang, Busan. The safety classification of SSCs for pool-type research reactors is proposed in this paper based on the IAEA methodology. The proposal recommends that the SSCs of pool-type research reactors be categorized and classified on basis of their safety functions and safety significance. Because the SSCs in pool-type research reactors are not the pressure-retaining components, codes and standards for design of the SSCs following the safety classification can be selected in a graded approach.

  11. Development of toroid-type HTS DC reactor series for HVDC system

    Science.gov (United States)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  12. Outline of Swedish activities on LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M [Studsvik Nuclear, Nykoeping (Sweden); Roennberg, G [OKG AB (Sweden)

    1997-12-01

    The presentation outlines the Swedish activities on LWR fuel and considers the following issues: electricity production; performance of operating nuclear power plants; nuclear fuel cycle and waste management; research and development in nuclear field. 4 refs, 4 tabs.

  13. Reactor BR2: Introduction

    International Nuclear Information System (INIS)

    Gubel, P.

    2000-01-01

    The BR2 reactor is still SCK-CEN's most important nuclear facility. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. A safety audit was conduced by the IAEA, the conclusions of which demonstrated the excellent performance of the plant in terms of operational safety. In 1999, the CALLISTO facility was extensively used for various programmes involving LWR pressure vessel materials, IASCC of LWR structural materials, fusion reactor materials and martensic steels for use in ADS systems. In 1999, BR2's commercial programmes were further developed

  14. Development of PIE techniques for irradiated LWR pressure vessel steels

    International Nuclear Information System (INIS)

    Nishi, Masahiro; Kizaki, Minoru; Sukegawa, Tomohide

    1999-01-01

    For the evaluation of safety and integrity of light water reactors (LWRs), various post irradiation examinations (PIEs) of reactor pressure vessel (RPV) steels and fuel claddings have been carried out in the Research Hot Laboratory (RHL). In recent years, the instrumented Charpy impact testing machine was remodeled aiming at the improvement of accuracy and reliability. By this remodeling, absorbed energy and other useful information on impact properties can be delivered from the force-displacement curve for the evaluation of neutron irradiation embrittlement behavior of LWR-RPV steels at one-time striking. In addition, two advanced PIE technologies are now under development. One is the remote machining of mechanical test pieces from actual irradiated pressure vessel steels. The other is development of low-cycle and high-cycle fatigue test technology in order to clarify the post-irradiation fatigue characteristics of structural and fuel cladding materials. (author)

  15. Experience gained in the current LWR that influence the design and operation of the LWR advanced from the viewpoint of safety analysis

    International Nuclear Information System (INIS)

    Barrera, J.; Corisco, M.; Riverola, J.

    2010-01-01

    Since the construction of the first light water reactors (LWR) safety analysis has played a very important role in the operation and its evolution to come up with designs that are currently operating. With new tools available, this role will see increased allowing more efficient operation with security assessments in real time, and a more efficient designs both in terms of fuel efficiency and from the security of the plant during operation.

  16. Development and study of a control and reactor shutdown device for FBR-type reactors with a modified open core

    International Nuclear Information System (INIS)

    Goswami, S.

    1983-01-01

    The doctoral thesis at hand presents a newly designed control and shutdown device to be used for output control and fast shutdown of modified open core FBR-type reactors. The task was the design of a new control and shutdown device having economic and operation advantages, using reactor components time-tested under reactor conditions. This control and shutdown device was adapted to the specific needs concerning dimensions and design. The actuation is based on the magnetic-jack principle, which has been upgraded for the purpose. The principle is now combined with pneumatic acceleration. The improvements mainly concern a smaller number of piece parts and system simplification. (orig./RW) [de

  17. Neutron dosimetry. Environmental monitoring in a BWR type reactor

    International Nuclear Information System (INIS)

    Tavera D, L.; Camacho L, M.E.

    1991-01-01

    The measurements carried out on reactor dosimetry are applied mainly to the study on the effects of the radiation in 108 materials of the reactor; little is on the environmental dosimetry outside of the primary container of BWR reactors. In this work the application of a neutron spectrometer formed by plastic detectors of nuclear traces manufactured in the ININ, for the environmental monitoring in penetrations around the primary container of the unit I of the Laguna Verde central is presented. The neutron monitoring carries out with purposes of radiological protection, during the operational tests of the reactor. (Author)

  18. In-service inspection of pool type research reactors

    International Nuclear Information System (INIS)

    Rajamani, K.

    2002-01-01

    In the case of Apsara Reactor, it has been proposed to carry out major modifications in the near future. It is planned to modify the core suitably with a heavy water reflector tank to demonstrate the Multiple Purpose Research Reactor concept. The core structure will be a stationary one and will be located at the 'B' position of the pool. The modified reactor will be operated at 1 MW power level. Suitable methodologies are evolved for carrying out a planned ISI for this modified reactor

  19. Method of cooling a pressure tube type reactor

    International Nuclear Information System (INIS)

    Kanazawa, Nobuhiro.

    1983-01-01

    Purpose: To improve the operation efficiency of a nuclear reactor by carrying out cooling depending on the power distribution in the reactor core. Constitution: Reactor core channels are divided into a plurality of channel groups depending on the reactor power, and a water drum and a pump are disposed to each of the channel groups so as to increase the amount of coolants in response to the magnitude of the power from each of the channel groups. In this way, the minimum limiting power ratio can be increased. (Seki, T.)

  20. Seismic responses of a pool-type fast reactor with different core support designs

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Seidensticker, R.W.

    1989-01-01

    In designing the core support system for a pool-type fast reactor, there are many issues which must be considered in order to achieve an optimum and balanced design. These issues include safety, reliability, as well as costs. Several design options are possible to support the reactor core. Different core support options yield different frequency ranges and responses. Seismic responses of a large pool-type fast reactor incorporated with different core support designs have been investigated. 4 refs., 3 figs

  1. Problems of control of WWER-type pressurized water reactors (PWR's)

    International Nuclear Information System (INIS)

    Drab, F.; Grof, V.

    1978-01-01

    The problems are dealt with of nuclear power reactor control. Special attention is paid to the reactor of the WWER type, which will play the most important part in the Czechoslovak power system in the near future. The subsystems are described which comprise the systems of reactor control and protection. The possibilities are outlined of using Czechoslovak instrumentation for the control and safety system of the WWER-type PWR. (author)

  2. Utilization of the experimental reactor Osiris for the study and the development of fuels of the fast neutron reactor type

    International Nuclear Information System (INIS)

    Marcon, M.; Faugere, J.L.; Genthon, J.P.; Maillot, R.

    1977-01-01

    Nuclear fuel tests for the fast neutron reactor type have been carried out at the Osiris reactor: thermal study of (U,Pu)O 2 oxide by measurement with thermocouples in the core of the fuel pellet; study of the effects of power cycling on nuclear fuel; study of the mechanical interactions between oxide and cladding by measurement of the cladding deformation during irradiation [fr

  3. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, P.C. [BNFL International Transport, Spent Fuel Services (United Kingdom); Dallongeville, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme.

  4. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    International Nuclear Information System (INIS)

    Purcell, P.C.; Dallongeville, M.

    2004-01-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme

  5. Transient thermal creep of nuclear reactor pressure vessel type concretes

    International Nuclear Information System (INIS)

    Khoury, G.A.

    1983-01-01

    The immediate aim of the research was to study the transient thermal strain behaviour of four AGR type nuclear reactor concretes during first time heating in an unsealed condition to 600 deg. C. The work being also relevant to applications of fire exposed concrete structures. The programme was, however, expanded to serve a second more theoretical purpose, namely the further investigation of the strain development of unsealed concrete under constant, transient and cyclic thermal states in particular and the effect of elevated temperatures on concrete in general. The range of materials investigated included seven different concretes and three types of cement paste. Limestone, basalt, gravel and lightweight aggregates were employed as well as OPC and SRC cements. Cement replacements included pfa and slag. Test variables comprised two rates of heating (0.2 and 1 deg. C/minute), three initial moisture contents (moist as cast, air-dry and oven dry at 105 deg. C), two curing regimes (bulk of tests represented mass cured concrete), five stress levels (0, 10, 20, 30 and a few tests at 60% of the cold strength), two thermal cycles and levels of test temperature up to 720 deg. C. Supplementary, dilatometry, TGA and DTA tests were performed at CERL on individual samples of aggregate and cement paste which helped towards explaining the observed trends in the concretes. A simple formula was developed which relates the elastic thermal stresses generated from radial temperature gradients to the solution obtained from the transient heat conduction equation. Thermal stresses can, therefore, be minimized by reductions in the radius of the specimen and the rate of heating The results were confirmed by finite element analysis which indicate( tensile stresses in the central region and compressive stresses near the surf ace during heating which are reversed during cooling. It is shown that the temperature gradients, pore pressures and tensile thermal stresses during both heating and

  6. On the slimeless water operation in the RBMK type reactors

    International Nuclear Information System (INIS)

    Margulova, T.Kh.; Mamet, V.A.; Nikitina, I.S.; Karakhanyan, L.N.

    1988-01-01

    Water chemistry conditions of the operating RBMK-1000 and RBMK-1500 units are analysed. Inevitability of iron oxide deposits in RBMK-1000 and particularly in RBMK-1500 reactors is demonstrated. Organization of a new slimeless correcting water chemistry for RBMK-1000 and RBMK-1500 reactors is recommended

  7. Auxiliary water supply device for BWR type reactor

    International Nuclear Information System (INIS)

    Sasagawa, Hiroshi.

    1994-01-01

    In the device of the present invention, a cooling condensation means is disposed to a steam discharge channel of a turbine for driving pumps to directly return condensates to the reactor, so that the temperature of the suppression pool water is not elevated. Namely, the cooling condensation means for discharged steams is disposed to the discharge channel of the turbine. The condensate channel from the cooling condensation means is connected to a sucking side of the turbine driving pump. With such a constitution, when the reactor is isolated from a main steam system, reactor scram is conducted. Although the reactor water level is lowered by the reactor scram, the lowering of the reactor water level is prevented by supplementing cooling water by the turbine driving pump using steams generated in the reactor as a power source. The discharged steams after driving the turbine are cooled and condensated by the cooling condensation means by way of the discharge channel and returned to the reactor again by way of the condensate channel. With such procedures, since the temperature of suppression pool water is not elevated, there is no need to operate other cooling systems. In addition, auxiliary water can be supplied for a long period of time. (I.S.)

  8. Fuel assemblies for use in BWR type reactors

    International Nuclear Information System (INIS)

    Hirukawa, Koji.

    1987-01-01

    Purpose: To moderate the peak configuration of the burnup degree change curve for the infinite multiplication factor by applying an improvement to the arrangement of fuel rods. Constitution: In a fuel assembly for a BWR type reactor comprising a plurality of fuel rods and water rods arranged in a square lattice, fuel rods containing burnable poisons are arranged at four corners at the second and the third layers from the outside of the square lattice arrangement. Among them, the Cd poison effect in the burnable poison incorporated fuel rods disposed at the second layer is somewhat greater at the initial burning stage and then rapidly decreased along with burning. While on the other hand, the poison effect of the burnable poison-incorporated fuel rods at the third layer is smaller than that at the second layer at the initial burning stage and the reduction in the poison effect due to burning is somewhat more moderate. Since these fuel rods are in adjacent with each other, they interfere to each other and also provide an effect of moderating the burning of the burnable poisons. (Takahashi, M.)

  9. Safety of next generation power reactors

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address

  10. Investigation on innovative water reactor for flexible fuel cycle (FLWR). (1) Conceptual design

    International Nuclear Information System (INIS)

    Uchikawa, Sadao; Okubo, Tsutomu; Kugo, Teruhiko; Akie, Hiroshi; Nakano, Yoshihiko; Ohnuki, Akira; Iwamura, Takamichi

    2005-01-01

    A concept of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) has been investigated in Japan Atomic Energy Research Institute (JAERI) in order to ensure sustainable energy supply in the future based on the well-experienced Light Water Reactor (LWR). The concept aims at effective and flexible utilization of uranium and plutonium resources through plutonium multiple recycling by two stages. In the first stage, the FLWR core realizes a high conversion type core concept, which is basically intended to keep the smooth technical continuity from current LWR and coming LWR-MOX technologies without significant gaps in technical point of view. The core in the second stage represents the Reduced-Moderation Water Reactor (RMWR) core concept, which realizes a high conversion ratio over 1.0 being useful for the long-term sustainable energy supply through plutonium multiple recycling based on the well-experienced LWR technologies. The key point is that the core concepts in both stages utilize the compatible and the same size fuel assemblies, and hence during the reactor operation period, the former concept can proceed to the latter in the same reactor system, corresponding flexibly to the expected change in the future circumstances of natural uranium resource, or establishment of economical reprocessing technology of MOX spent fuel. The FLWR is essentially a BWR-type reactor, and its core design is characterized by use of hexagonal-shaped fuel assemblies with the triangular-lattice fuel rod configuration of highly enriched MOX fuel, control rods with Y-shaped blades, and a short and flat core design. Detailed investigations have been performed on the core design, in conjunction with the other related studies such as on thermal hydraulics in the tight lattice core including experimental activities, and the results obtained so far have shown the proposed concept is feasible and promising. (author)

  11. Application of the Combined Cycle LWR-Gas Turbine to PWR for NPP Life Extension Safety Upgrade and Improving Economy

    International Nuclear Information System (INIS)

    Kuznetsov, Yu. N.

    2006-01-01

    Currently, some of the most important problem for the nuclear industry are life extension, advance competitiveness and safety of aging LWR NPPs. Based on results of studies performed in the USA (Battelle Memorial Institute) and in Russia (NIKIET), a new power technology, using a combined cycle gas-turbine facility CCGT - LWR, so called TD-Cycle, can significantly help in resolution of some problems of nuclear power industry. The nuclear steam and gas topping cycle is used for re-powering a light water pressurized reactor of PWR or VVER type. An existing NPP is topped with a gas turbine facility with a heat recovery steam generator (HRSG) generating steam from waste heat. The superheated steam of high pressure (P=90-165 bar, T=500-550 C) generated in the HRSG, is expanded in a high pressure (HP) turbine for producing electricity. The HP turbine can work on one shaft with the the gas turbine or at one shaft with intermediate (IP) or low (LP) pressure parts of the main nuclear steam turbine, or with a separate electric generator. The exhausted steam from the HP turbine is injected into the steam mixer where it is mixed with the saturated steam from the NPP steam generator (SG). The mixer is intended to superheat the main nuclear steam and should be characterized by minimum losses during mixing superheated and saturated steam. Steam from the mixer superheated by 20-60 C directs to the existing IP turbine, and then, through a separator-reheater flows into the LP turbine. Feed water re-heaters of LP and HP are actually unchanged in this case. Feed water extraction to the HRSG is supplied after one of LP water heaters. This proposal is intended to re-power existing LWR NPPs. To minimize cost, the IP and LP turbines and electric generator would remain the same. The reactor thermal power and fast neutron flux to the reactor vessel would decrease by 30-50 percent of nominal values. The external peripheral row of fuel elements can be replaced with metal absorber rods to

  12. PIE of nuclear grade SiC/SiC flexural coupons irradiated to 10 dpa at LWR temperature

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Silicon carbide fiber-reinforced SiC matrix (SiC/SiC) composites are being actively investigated for accident-tolerant core structures of light water reactors (LWRs). Owing to the limited number of irradiation studies previously conducted at LWR-coolant temperature, this study examined SiC/SiC composites following neutron irradiation at 230–340°C to 2.0 and 11.8 dpa in the High Flux Isotope Reactor. The investigated materials are chemical vapor infiltrated (CVI) SiC/SiC composites with three different reinforcement fibers. The fiber materials were monolayer pyrolytic carbon (PyC)-coated Hi-NicalonTM Type-S (HNS), TyrannoTM SA3 (SA3), and SCS-UltraTM (SCS) SiC fibers. The irradiation resistance of these composites was investigated based on flexural behavior, dynamic Young’s modulus, swelling, and microstructures. There was no notable mechanical properties degradation of the irradiated HNS and SA3 SiC/SiC composites except for reduction of the Young’s moduli by up to 18%. The microstructural stability of these composites supported the absence of degradation. In addition, no progressive swelling from 2.0 to 11.8 dpa was confirmed for these composites. On the other hand, the SCS composite showed significant mechanical degradation associated with cracking within the fiber. This study determined that SiC/SiC composites with HNS or SA3 SiC/SiC fibers, a PyC interphase, and a CVI SiC matrix retain their properties beyond the lifetime dose for LWR fuel cladding at the relevant temperature.

  13. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  14. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  15. HTGR type reactors in West Germany. Realizations and prospects

    International Nuclear Information System (INIS)

    Dauenert, U.

    1978-01-01

    The framework within which the research studies on high temperature reactors have been pursued in West Germany since 1960 is recalled. The principles guiding the present policy of the country in this domain are given: choice of a single technical conception that be applied both to reactors generating electricity and reactors producing high temperature heat for industrial processes such as coal gasification; to group the technical and industrial potentials of West Germany in this domain; financial and technical participation of electricity producers in the expected realizations; international cooperation. In this technique, West Germany is at present among the most advanced nations with the realization of a prototype 300 MWe reactor, financed by the electricity producers and a contribution of government [fr

  16. Startup method for natural convection type nuclear reactor

    International Nuclear Information System (INIS)

    Utsuno, Hideaki.

    1993-01-01

    In a nuclear reactor started by natural convection, no sufficient stability margin can be ensured upon start up. Then, in the present invention, a deaerating operation is conducted before start-up of the reactor, then control rods are withdrawn after conducting the deaerating operation and temperature and pressure are raised by nuclear heating, to obtain a rated power. As a result, reactor power and subcooling at the inlet of the reactor core are within a range of lower than a geysering forming region, thereby enabling to prevent occurence of geysering inherent to the start-up of operation in a natural convection state, shorten the start-up time, as well as remove oxygen dissolved in coolants. (N.H.)

  17. Seismic response of a block-type nuclear reactor core

    International Nuclear Information System (INIS)

    Dove, R.C.; Bennett, J.G.; Merson, J.L.

    1976-05-01

    An analytical model is developed to predict seismic response of large gas-cooled reactor cores. The model is used to investigate scaling laws involved in the design of physical models of such cores, and to make parameter studies

  18. Performance and reliability of LWR fuel

    International Nuclear Information System (INIS)

    Bairiot, H.; Deramaix, P.; Vandenberg, C.

    1977-01-01

    The main requirements for fuel reloads are: good reliability, minimum fuel cycle costs and flexibility of operation. Fulfilling these goals requires a background of experience. The approach to the acquisition of this experience in the particular case of BN has included over the last 15 years a proper development and cross-checking of the design methods and criteria, a continuous updating of the drawings and specifications and the qualification of adequate fabrication plants. This approach can best be outlined on the basis of the gradual implementation of the modern features of the LWR fuel. The first fuel clad with stainless steel was loaded in the BR 3 (11 MWe) in 1969 and later on (since 1974) in the SENA plant (310 MWe). Similarly, Zircaloy 4 cladding was first introduced in a reactor reload in 1969 as autoclaved cladding and later on (in 1971) the autoclaving was suppressed for the further reloads. Zircaloy 2 was loaded in DODEWAARD (51.5 MWe) in 1970. The first demonstration assembly in a PWR was a Pu-island assembly loaded in the BR 3 in 1963. It was followed by an all-Pu assembly in the same reactor in 1965 and by the loading of Pu fuels in four prototype assemblies in GARIGLIANO (160 MWe) in 1968. A full reload incorporating Pu fuel has been experienced by the supply of fuel for GARIGLIANO (BOL: 1975) and for BR 3 (BOL: 1972 and 1976). While in the early sixties the brazed design was still being utilized, the first assembly incorporating grids with springs was introduced in BR 3 in 1963. The first Inconel grids were loaded in the same reactor in 1969 and the first Zircaloy grids in 1972 (the first Zr grid has been loaded in a BWR in 1973). The experience covered successively the shrouded design (BOL: 1963), the shroudless design (BOL: 1969), a BWR assembly (BOL: 1971), a typical RCC assembly first with large diameter fuel rods (1972) and later on with small diameter fuel rods (1974). The experience on the reactivity control covered successively diluted

  19. Nonlinear punctual dynamic applied to simulation of PWR type reactors

    International Nuclear Information System (INIS)

    Cysne, F.S.

    1978-01-01

    In order to study some kinds of nuclear reactor accidents, a simulation is made using the punctual kinetics model to the reactor core. The following integration methods are used: Hansen's method in which a linearization is made and C S M P using a variable interval fourth-order Runge Kutta method. The results were good and were compared with those obtained by the code Dinamica I which uses a finite difference integration method of backward kind. (author)

  20. Radiological characterization for small type light water reactor

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi; Ichige, Hideaki; Tanabe, Hidenori

    2011-01-01

    In order to plan a decommissioning, amount investigation of waste materials and residual radioactivity inventory evaluation must be performed at the first stage of preparatory tasks. These tasks are called radiological characterization. Reliable information from radiological characterization is crucial for specification of decommissioning plan. With the information, we can perform radiological safety analysis and optimize decommissioning scenario. Japan Atomic Power Company (JAPC) has already started preparatory tasks for Tsuruga Nuclear Power Plant Unit 1 (TS-1) that is the first commercial Small Type Light Water Reactor in Japan. To obtain reliable information about residual radioactivity inventory, we improved radioactivity inventory evaluation procedure. The procedure consists of neutron flux distribution calculation and radioactivity distribution calculation. We need a better understanding about characteristics of neutron transport phenomena in order to obtain reliable neutron flux distribution. Neutron flux was measured in Primary Containment Vessel (PCV) at 30 locations using activation foils. We chose locations where characteristic phenomena can be observed. Three dimensional (3D) neutron flux calculation was also performed to simulate continuous changes of neutron flux distribution. By assessing both the measured values and 3D calculation results, we could perform the calculation that simulates the phenomena well. We got knowledge about how to perform an appropriate neutron flux distribution calculation and also became able to calculate a reliable neutron flux distribution. Using the neutron flux distribution, we can estimate a reliable radioactivity distribution. We applied network-parallel-computing method to the estimation. And further we developed 'flux level approximation method' which use linear or parabola fitting method to estimation. Using these new methods, radioactivity by neutron irradiation, which is radioisotope formation, was calculated at

  1. Fracture toughness evaluation of select advanced replacement alloys for LWR core internals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chen, Xiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to develop and test degradation resistant alloys from current commercial alloy specifications by 2021 to a new advanced alloy with superior degradation resistance in light water reactor (LWR)-relevant environments by 2024. Fracture toughness is one of the key engineering properties required for core internal materials. Together with other properties, which are being examined such as high-temperature steam oxidation resistance, radiation hardening, and irradiation-assisted stress corrosion cracking resistance, the alloys will be down-selected for neutron irradiation study and comprehensive post-irradiation examinations. According to the candidate alloys selected under the ARRM program, ductile fracture toughness of eight alloys was evaluated at room temperature and the LWR-relevant temperatures. The tested alloys include two ferritic alloys (Grade 92 and an oxide-dispersion-strengthened alloy 14YWT), two austenitic stainless steels (316L and 310), four Ni-base superalloys (718A, 725, 690, and X750). Alloy 316L and X750 are included as reference alloys for low- and high-strength alloys, respectively. Compact tension specimens in 0.25T and 0.2T were machined from the alloys in the T-L and R-L orientations according to the product forms of the alloys. This report summarizes the final results of the specimens tested and analyzed per ASTM Standard E1820. Unlike the

  2. Emergency core cooling system in BWR type reactors

    International Nuclear Information System (INIS)

    Takizawa, Yoji

    1981-01-01

    Purpose: To rapidly recover the water level in the reactor upon occurrence of slight leakages in the reactor coolant pressure boundary, by promoting the depressurization in the reactor to thereby rapidly increase the high pressure core spray flow rate. Constitution: Upon occurrence of reactor water level reduction, a reactor isolation cooling system and a high pressure core spray system are actuated to start the injection of coolants into a reactor pressure vessel. In this case, if the isolation cooling system is failed to decrease the flow rate in a return pipeway, flow rate indicators show a lower value as compared with a predetermined value. The control device detects it and further confirms the rotation of a high pressure spray pump to open a valve. By the above operation, coolants pumped by the high pressure spray pump is flown by way of a communication pipeway to the return pipeway and sprayed from the top of the pressure vessel. This allows the vapors on the water surface in the pressure vessel to be cooled rapidly and increases the depressurization effects. (Horiuchi, T.)

  3. LWR development in the USA

    International Nuclear Information System (INIS)

    Taylor, J.J.; Stahlkopf, K.E.; Noble, D.M.; Dau, G.J.

    1987-01-01

    The U.S. Nuclear Power Industry is developing improved reactor systems to be repared for the expected need of new base load electric generating capacity in the 1990s. The approach being taken is to build upon the large base of existing light water reactor technology, making evolutionary improvements, and finding innovative ways to simplify, shorten construction time, and reduce cost. The U.S. reactor manufacturers, working in collaboration with Japanese utilities, are developing 1300 MWe improved designs. This paper reviews the EPRI ALWR Program which is coordinated with these efforts by the reactor manufactureres. Emphasis is given to that portion of the EPRI Program dealing with conceptual design of smaller rated Advanced Simplified LWRs using passive system design to accomplish major simplification. (author)

  4. Current status and perspective of advanced loop type fast reactor in fast reactor cycle technology development project

    International Nuclear Information System (INIS)

    Niwa, Hajime; Aoto, Kazumi; Morishita, Masaki

    2007-01-01

    After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologies together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)

  5. Reprocessing facility for spent fuel from LWR type reactors and mixed-oxide fuel fabrication plant in the Taxoeldern Forest near Wackersdorf, Bavaria (WAA) - first partial licence

    International Nuclear Information System (INIS)

    1985-01-01

    Full text of the first partial licence for the WAA, allowing erection of the following buildings or structures: External fence; guardhouse 1, i.e. the building and the ground connection system with lightning protection system, the fire alarm system and mobile fire-fighting systems; the fuel receiving station, including building and operation systems; excavation work for the main reprocessing building. (HP) [de

  6. Proceedings of the 2007 LWR Fuel Performance Meeting / TopFuel 2007 'Zero by 2010'

    International Nuclear Information System (INIS)

    2007-01-01

    ANS, ENS, AESJ and KNS are jointly organizing the 2007 International LWR Fuel Performance Meeting following the successful ENS TopFuel meeting held during 22-26 October, 2006 in Salamaca, Spain. Merging three premier nuclear fuel design and performance meetings: the ANS LWR Fuel Performance Meeting, the ENS TopFuel and Asian Water Reactor Fuel Performance Meeting (WRFPM) created this international meeting. The meeting will be held annually on a tri-annual rotational basis in USA, Asia, and Europe. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as performance experience in commercial and test reactors. The meeting excludes front end and back end fuel issues, however, it covers all front and/or back issues that impact fuel designs and performance

  7. Development and testing of standardized procedures and reference data for LWR surveillance

    International Nuclear Information System (INIS)

    McElroy, W.N.

    1979-02-01

    The resources and talents of many national and international organizations and laboratories, both governmental and industrial, are being used to establish analysis methods for predicting the embrittlement condition of light water reactor (LWR) primary systems. The exact interrelationships and responsibilities between those developing, understanding, combining, and applying state-of-the-art technology in dosimetry, metallurgy, and fracture mechanics for reactor systems analysis are being carefully reviewed and studied. This has resulted in a more comprehensive definition of the scope of new and updated ASTM standards required for the analysis and interpretation of LWR pressure vessel surveillance results. Fifteen new and updated ASTM standards have now been identified, together with a restructuring of the main interfaces between the individual standard practices, guides, and methods. The paper briefly discusses these standards and the initial results of multi-laboratory research work involved in their validation and calibration

  8. Convective cooling in a pool-type research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sipaun, Susan, E-mail: susan@nm.gov.my [Malaysian Nuclear Agency, Industrial Technology Division, Blok 29T, Bangi 43200, Selangor (Malaysia); Usman, Shoaib, E-mail: usmans@mst.edu [Missouri University of Science and Technology, Nuclear Engineering, 222 Fulton Hall 301 W.14th St., Rolla 64509 MO (United States)

    2016-01-22

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U{sub 3}Si{sub 2}Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system’s performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm{sup −3}. An MSTR model consisting of 20% of MSTR’s nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s{sup −1} from the 4” pipe, and predicted pool surface temperature not exceeding 30°C.

  9. Recycling flow rate control device in BWR type reactor

    International Nuclear Information System (INIS)

    Fujiwara, Tadashi; Koda, Yasushi

    1988-01-01

    Purpose: To reduce the recycling pump speed if the pressure variation width and the variation ratio in the nuclear reactor exceed predetermined values, to thereby avoid the shutdown of the plant. Constitution: There has been proposed a method of monitoring the neutron flux increase thereby avoiding unnecessary plant shutdown, but it involves a problems of reactor scram depending on the state of the plant and the set values. In view of the above, in the plant using internal pumps put under the thyristor control and having high response to recycling flow rate, the reactor pressure is monitored and the speed of the internal pump is rapidly reduced when the pressure variation width and variation ratio exceed predetermined values to reduce the reactor power and avoid the plant shutdown. This can reduce the possibility of unnecessary power reduction due to neutron flux noises or the possibility of plant shutdown under low power conditions. Further, since the reactor operation can be continued without stopping the recycling pump, the operation upon recovery can be made rapid. (Horiuchi, T.)

  10. Convective cooling in a pool-type research reactor

    Science.gov (United States)

    Sipaun, Susan; Usman, Shoaib

    2016-01-01

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system's performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR's nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s-1 from the 4" pipe, and predicted pool surface temperature not exceeding 30°C.

  11. Capital cost evaluation of liquid metal reactor by plant type - comparison of modular type with monolithic type -

    International Nuclear Information System (INIS)

    Mun, K. H.; Seok, S. D.; Song, K. D.; Kim, I. C.

    1999-01-01

    A preliminary economic comparison study was performed for KALIMER(Korea Advanced LIquid MEtal Reactor)between a modular plant type with 8 150MWe modules and a 1200MWe monolithic plant type. In both cases of FOAK (First-Of-A-Kind) Plant and NOAK (Nth-Of-A-Kind) Plant, the result says that the economics of monolithic plant is superior to its modular plant. In case of NOAK plant comparison, however, the cost difference is not significant. It means that modular plant can compete with monolithic plant in capital cost if it makes efforts of cost reduction and technical progress on the assumption that the same type of NOAK plant will be constructed continuously

  12. Developing the European Center of Competence on VVER-Type Nuclear Power Reactors

    Science.gov (United States)

    Geraskin, Nikolay; Pironkov, Lyubomir; Kulikov, Evgeny; Glebov, Vasily

    2017-01-01

    This paper presents the results of the European educational projects CORONA and CORONA-II which are dedicated to preserving and further developing nuclear knowledge and competencies in the area of VVER-type nuclear power reactors technologies (Water-Water Energetic Reactor, WWER or VVER). The development of the European Center of Competence for…

  13. Electroerosion cutting of low-sized templets from WWER-1000 type reactor vessel

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Ozhigov, L.S.; Gozhenko, S.V.

    2012-01-01

    The article presents the results of developed method of electroerosion cutting of low-sized templets for the reactor vessel metal composition and structure control in laboratory environment. The article describes the equipment for the remote electroerosive cutting of templets from WWER-1000 type reactor vessel by rigid electrode. The testing results are also shown.

  14. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  15. Mechanical, chemical and radiological characterization of the graphite of the UNGG reactors type

    International Nuclear Information System (INIS)

    Bresard, I.; Bonal, J.P.

    2000-01-01

    In the framework of UNGG reactors type dismantling procedures, the characterization of the graphite, used as moderator, has to be realized. This paper presents the mechanical, chemical and radiological characterizations, the properties measured and gives some results in the case of the Bugey 1 reactor. (A.L.B.)

  16. The development of the physical conceptions of the FBR type reactors control methods

    International Nuclear Information System (INIS)

    Matveev, V.I.; Ivanov, A.P.

    1984-01-01

    The physical concepts and specific problems of the control elements for LMFBR type reactors are discussed in this paper. Typical temperature coefficient of reactivity, its dependency on reactor power and burnup level are given. The authors give us the most advisable methods of the reactivity coefficient compensation

  17. Digital reactor period meter type of NSSG-7

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, S W

    1981-01-01

    The paper presents the idea and electronic circuits of the Digital Reactor Period Meter. The instrument consists of a neutron ionisation chamber, the amplifier logarithming the output chamber current, the circuit taking two samples of the log amplifier output signal and subtracting them, the analog -to -digital dividing circuit and the scaler providing the final information of the reactor period value in seconds and in the digital form. Besides it, the instrument produces the acoustic signal in the case, when the rise-time of neutron flux exceeds the permitted value. The untypical construction of the reactor period meter has been developed to obtain both good measurement accuracy and the resistance against the electromagnetic background pulses interfering with the measuring process. The applied measuring system has been patented.

  18. Identification of process dynamics. Stability monitoring in BWR type reactors

    International Nuclear Information System (INIS)

    Abrahamsson, P.; Hallgren, P.

    1991-06-01

    Identification of process dynamics is used for stability monitoring in nuclear reactors (Boiling Water Reactor). This report treats the problem of estimating a damping factor and a resonance frequency from the neutron flux as measured in the reactor. A new parametric online method for identification is derived and presented, and is shown to meet the requirements of stability monitoring. The technique for estimating the process parameters is based on a recursive lattice filter algorithm. The problem of time varying parameters and offset, as well as offline experiments and signal processing are treated. All parts are implemented in a realtime program, using the language C. In comparison with earlier identifications, the new way of estimating the damping factor is shown to work well. Estimates of both the damping factor and the resonance frequency show a stable and reliable behavior. Future development and improvements are also indicated. (au)

  19. Mathematical game type optimization of powerful fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    To obtain maximum speed of putting into operation fast breeders it is recommended on the initial stage of putting into operation these reactors to apply lower power which needs less fission materials. That is why there is an attempt to find a configuration of a high-power reactor providing maximum power for minimum mass of fission material. This problem has a structure of the mathematical game with two partners of non-zero-order total and is solved by means of specific aids of theory of games. Optimal distribution of fission and breeding materials in a multizone reactor first is determined by solution of competitive game and then, on its base, by solution of the cooperation game. The second problem the solution for which is searched is developed from remark on the fact that a reactor with minimum coefficient of flux heterogenity has a configuration different from the reactor with power coefficient heterogenity. Maximum burn-up of fuel needs minimum heterogenity of the flux coefficient and the highest power level needs minimum coefficient of power heterogenity. That is why it is possible to put a problem of finding of the reactor configuration having both coefficients with minimum value. This problem has a structure of a mathematical game with two partners of non-zero-order total and is solved analogously giving optimal distribution of fuel from the new point of view. In the report is shown that both these solutions are independent which is a result of the aim put in the problem of optimization. (author)

  20. Comment: collection of assay data on isotopic composition in LWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Many assay data of LWR spent fuels have been collected from reactors in the world and some of them are already stored in the database SFCOMPO which was constructed on a personal computer IBM PC/AT. On the other hand, Group constant libraries for burnup calculation code ORIGEN-II were generated from the nuclear data file JENDL3.2. These libraries were evaluated by using the assay data in SFCOMPO. (author)

  1. New development in nondestructive measurement and verification of irradiated LWR fuels

    International Nuclear Information System (INIS)

    Lee, D.M.; Phillips, J.R.; Halbig, J.K.; Hsue, S.T.; Lindquist, L.O.; Ortega, E.M.; Caine, J.C.; Swansen, J.; Kaieda, K.; Dermendjiev, E.

    1979-01-01

    Nondestructive techniques for characterizing irradiated LWR fuel assemblies are discussed. This includes detection systems that measure the axial activity profile, neutron yield and gamma yield. A multi-element profile monitor has been developed that offers a significant improvement in speed and complexity over existing mechanical scanning systems. New portable detectors and electronics, applicable to safeguard inspection, are presented and results of gamma-ray and neutron measurements at commercial reactor facilities are given

  2. Democratic People's Republic of Korea LWR project status

    International Nuclear Information System (INIS)

    Mulligan, J.B.

    1996-01-01

    In October 1994, at Geneva, the United States and the Democratic People's Republic of Korea (DPRK) signed an Agreed Framework as a first step toward resolving international concerns about nuclear activities in the DPRK. This Agreement, when implemented, will ultimately lead to the complete dismantlement of those aspects of the DPRK's nuclear program, including reprocessing-related facilities, that have undermined the viability of the international nuclear non-proliferation regime and the stability of the Asia-Pacific region. The essence of the Agreement is that the DPRK will take near-term action to cease the activities of concern and permit some International Atomic Energy Agency (IAEA) verification inspection. In the future, it will dismantle its production reactors and accept full-scope IAWA safeguards. In return, the United Stated agreed to lead an international effort to supply the DPRK with light-water reactors which are less of proliferation concern than are graphite-moderated production reactors. Until the first LWR is in operation the DPRK will receive shipments of heavy oil to replace the energy lost by shutting down the production reactors

  3. Discussion of OECD LWR Uncertainty Analysis in Modelling Benchmark

    International Nuclear Information System (INIS)

    Ivanov, K.; Avramova, M.; Royer, E.; Gillford, J.

    2013-01-01

    The demand for best estimate calculations in nuclear reactor design and safety evaluations has increased in recent years. Uncertainty quantification has been highlighted as part of the best estimate calculations. The modelling aspects of uncertainty and sensitivity analysis are to be further developed and validated on scientific grounds in support of their performance and application to multi-physics reactor simulations. The Organization for Economic Co-operation and Development (OECD) / Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC) has endorsed the creation of an Expert Group on Uncertainty Analysis in Modelling (EGUAM). Within the framework of activities of EGUAM/NSC the OECD/NEA initiated the Benchmark for Uncertainty Analysis in Modelling for Design, Operation, and Safety Analysis of Light Water Reactor (OECD LWR UAM benchmark). The general objective of the benchmark is to propagate the predictive uncertainties of code results through complex coupled multi-physics and multi-scale simulations. The benchmark is divided into three phases with Phase I highlighting the uncertainty propagation in stand-alone neutronics calculations, while Phase II and III are focused on uncertainty analysis of reactor core and system respectively. This paper discusses the progress made in Phase I calculations, the Specifications for Phase II and the incoming challenges in defining Phase 3 exercises. The challenges of applying uncertainty quantification to complex code systems, in particular the time-dependent coupled physics models are the large computational burden and the utilization of non-linear models (expected due to the physics coupling). (authors)

  4. Assessment of the integrity of WWER type reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1995-01-01

    Procedures are given for the assessment of the residual lifetime of reactor pressure vessels with respect to a sudden failure, the lifetime of vessels with defects disclosed during in-service inspections, and the fatigue or corrosion-mechanical lifetime. Also outlined are the ways of assessing the effects of major degradation mechanisms, i.e. radiation embrittlement, thermal aging, and fatigue damage, including the use of calculated values and experimental examination, by means of surveillance specimens in particular. All results of assessment performed so far indicate that the life of reactor pressure vessels at the Dukovany, Jaslovske Bohunice, and Temelin nuclear power plants is well secured. 7 figs., 3 refs

  5. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1979-01-01

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  6. Study on regimes of nuclear power plants with WWER-type reactors

    International Nuclear Information System (INIS)

    Akkerman, G.; Khampel', R.; Khentshel', G.; Kertsher, F.; Lyuttsov, K.

    1976-01-01

    The problems are considered of optimization of nuclear fuel loading, the peculiarities of the NPP operation at decreased power, and also the problem of stability operation of NPP with WWER type reactors taking into account specific features of these reactors (partial fuel overloads, change in reactor reactivity with power changes). The two particular interconnected problems discussed are: choice of such a sequence of partial rechargings which ensures the minimum cost of the electric power generated, and increasing the reactor operating time by reducing its power output. Besides the technical and economic estimates, much attention is given to analysing the stability of NPP operation

  7. Concept of safe tank-type water cooled and moderated reactor with HTGR microparticle fuel compacts

    International Nuclear Information System (INIS)

    Gol'tsev, A.O.; Kukharkin, N.E.; Mosevitskij, I.S.; Ponomarev-Stepnoj, N.N.; Popov, S.V.; Udyanskij, Yu.N.; Tsibul'skij, V.F.

    1993-01-01

    Concept of safe tank-type water-cooled and moderated reactor on the basis of HTGR fuel microparticles which enable to avoid environment contamination with radioactive products under severe accidents, is proposed. Results of neutron-physical and thermal-physical studies of water cooled and moderated reactor with HTGR microparticle compacts are presented. Characteristics of two reactors with thermal power of 500 and 1500 MW are indicated within the concept frames. The reactor behaviour under severe accident connected with complete loss of water coolant is considered. It is shown that under such an accident the fission products release from fuel microparticles does not occur

  8. Analysis of man-machine interaction for control and display system in main control room of light water reactor

    International Nuclear Information System (INIS)

    Santosa, Kussigit; Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Darlis; Sudiono, Bambang

    1998-01-01

    One of potential hazard in Nuclear Power Plant is the failure of its operation. The accident or operation failure in the reactor must be concerned event its probability is low. The important thing should be concerned is 'Analysis of Man-Machine Interaction (MMI) for Control and Display System in Main Control Room (MCR) of Nuclear Power Reactor', especially LWR type. Control and Display System in MCR of Reactor is the main part of MMI link process in Reactor MCR work system. Signal from display system showed performance process in reactor, while this signal will be received by operator. This signal will be described through central nerve for making decision what kind must be done. Then the operator manage the next process of reactor operation through control system. So by knowing Analysis of Man-Machine Interaction for Control and Display System in Main Control Room of Power Reactor, we can understand human error probability of the operator in reactor operation

  9. The economic potential of a cassette-type-reactor-installed nuclear ice-breaking container ship

    International Nuclear Information System (INIS)

    Kondo, K.; Takamasa, T.

    2000-01-01

    The design concept of the cassette-type-reactor MRX (Marine Reactor X), being under development in Japan for the nuclear ice-breaker container ship is described. The MRX reactor is the monoblock water-cooled and moderated reactor with passive cooling system of natural circulation. It is shown that application of the reactor being under consideration gives an opportunity to decrease greatly the difference in prices for similar nuclear and diesel ships. Economic estimations for applicability of the nuclear ice-breaker container ship with the MRX reactor in Arctics for transportation of standard containers TEU from Europe to Far East as compared with transportation of the same containers by diesel ships via Suets Canal are made [ru

  10. Spent LWR fuel leach tests: Waste Isolation Safety Assessment program

    International Nuclear Information System (INIS)

    Katayama, Y.B.

    1979-04-01

    Spent light-water-reactor (LWR) fuels with burnups of 54.5, 28 and 9 MWd/kgU were leach-tested in deionized water at 25 0 C. Fuel burnup has no apparent effect on the calculated leach rates based upon the behavior of 137 Cs and 239+240 Pu. A leach test of 54.5 MWd/kgU spent fuel in synthetic sea brine showed that the cesium-based leach rate is lower in sea brine than in deionized water. A rise in the leach rate was observed after approximately 600 d of cumulative leaching. During the rise, the leach rate for all the measured radionuclides become nearly equal. Evidence suggests that exposure of new surfaces to the leachant may cause the increase. As a result, experimental work to study leaching mechanisms of spent fuel has been initiated. 22 figures

  11. Irradiation effects on thermal properties of LWR hydride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt, E-mail: terrani@berkeley.edu [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Balooch, Mehdi [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Carpenter, David; Kohse, Gordon [Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Keiser, Dennis; Meyer, Mitchell [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Olander, Donald [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States)

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH{sub 1.6}) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  12. Progress in Development of I2S-LWR Concept

    International Nuclear Information System (INIS)

    Petrovic, Bojan

    2014-01-01

    The paper will present the progress in developing the Integral Inherently Safe Light Water Reactor (12S-LWR) concept. This new concept aims to combine the competitive economics of a large nuclear power plant, with enhanced safety achieved by the integral primary circuit configuration (previously considered only for PWRs with power levels not exceeding several hundred MWc), and with enhanced accident tolerance (to address concerns after the Fukushima Dai-lchi accidents). Several new technologies are being developed to enable this concept, including novel silicide fuel and micro-channel primary heat exchangers. This project is performed by a multi-disciplinary multi-organization team led by Georgia Tech, including academia, a national laboratory, nuclear industry, and a power utility, wit expected participation of the University of Zagreb. (author)

  13. Results of the LIRES Round Robin test on high temperature reference electrodes for LWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, R.W. [SCK.CEN, Nuclear Research Centre Belgium, Boeretang 200, B-2400 Mol (Belgium); Nagy, G. [Magyar Tudomanyos Akademia KFKI Atomenergia Kutatointezet, AEKI, Konkoly Thege ut 29-33, 1121 Budapest (Hungary); Feron, D. [CEA Saclay, 91191 Gif-Sur-Yvette Cedex (France); Navas, M. [CIEMAT, Edificio 30, Dpto. Fision Nuclear, Avda. Complutense 22, 28040 Madrid, (Spain); Bogaerts, W. [KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven (Belgium); Karnik, D. [Nuclear Research Institute, NRI, Rez (Czech Republic); Dorsch, T. [Framatone ANP, Inc., Charlotte, North Carolina (United States); Molander, A. [Studsvik AB SE-611 82 Nykoeping (Sweden); Maekelae, K. [Materials and Structural Integrity, VTT Technical Research Centre of Finland, Kemistintie 3, P.O. Box 1704, FIN-02044 VTT (Finland)

    2004-07-01

    A European sponsored research project has been started on 1 October 2000 to develop high temperature reference electrodes that can be used for in-core electrochemical measurements in Light Water Reactors (LWR's). This LIRES-project (Development of Light Water Reactor Reference Electrodes) consists of 9 partners (SCK-CEN, AEKI, CEA, CIEMAT, KU Leuven, NRI Rez, Framatone ANP, Studsvik Nuclear and VTT) and will last for four years. The main objective of this LIRES project is to develop a reference electrode, which is robust enough to be used inside a LWR. Emphasize is put on the radiation hardness of both the mechanical design of the electrode as the proper functioning of the electrode. A four steps development trajectory is foreseen: (1) To set a testing standard for a Round Robin, (2) To develop different reference electrodes, (3) To perform a Round Robin test of these reference electrodes followed by selection of the best reference electrode(s), (4) To perform irradiation tests under appropriate LWR conditions in a Material Test Reactor (MTR). Four different high temperature reference electrodes have been developed and are being tested in a Round Robin test. These electrodes are: A Ceramic Membrane Electrode (CME), a Rhodium electrode, an external Ag/AgCl electrode and a Palladium electrode. The presentation will focus on the results obtained with the Round Robin test. (authors)

  14. Power distribution monitoring and control in the RBMK type reactors

    International Nuclear Information System (INIS)

    Emel'yanov, I.Ya.; Postnikov, V.V.; Volod'ko, Yu.I.

    1980-01-01

    Considered are the structures of monitoring and control systems for the RBMK-1000 reactor including three main systems with high independence: the control and safety system (CSS); the system for physical control of energy distribution (SPCED) as well as the Scala system for centralized control (SCC). Main functions and peculiarities of each system are discussed. Main attention is paid to new structural solutions and new equipment components used in these systems. Described are the RBMK operation software and routine of energy distribution control in it. It is noted that the set of reactor control and monitoring systems has a hierarchical structure, the first level of which includes analog systems (CSS and SPCED) normalizing and transmitting detector signals to the systems of the second level based on computers and realizing computer data processing, data representation to the operator, automatic (through CSS) control for energy distribution, diagnostics of equipment condition and local safety with provision for existing reserves with respect to crisis and thermal loading of fuel assemblies. The third level includes a power computer carrying out complex physical and optimization calculations and providing interconnections with the external computer of power system. A typical feature of the complex is the provision of local automatic safety of the reactor from erroneous withdrawal of any control rod. The complex is designed for complete automatization of energy distribution control in reactor in steady and transient operation conditions

  15. Deterministic estimation of crack growth rates in steels in LWR coolant environments

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Lu, P.C.; Urquidi-Macdonald, M.

    1995-01-01

    In this paper, the authors extend the coupled environment fracture model (CEFM) for intergranular stress corrosion cracking (IGSCC) of sensitized Type 304SS in light water reactor heat transport circuits by incorporating steel corrosion, the oxidation of hydrogen, and the reduction of hydrogen peroxide, in addition to the reduction of oxygen (as in the original CEFM), as charge transfer reactions occurring on the external surfaces. Additionally, the authors have incorporated a theoretical approach for estimating the crack tip strain rate, and the authors have included a void nucleation model to account for ductile failure at very negative potentials. The key concept of the CEFM is that coupling between the internal and external environments, and the need to conserve charge, are the physical and mathematical constraints that determine the rate of crack advance. The model provides rational explanations for the effects of oxygen, hydrogen peroxide, hydrogen, conductivity, stress intensity, and flow velocity on the rate of crack growth in sensitized Type 304 in simulated LWR in-vessel environments. They propose that the CEFM can serve as the basis of a deterministic method for estimating component life times

  16. Reactor power automatically controlling method and device for BWR type reactor

    International Nuclear Information System (INIS)

    Murata, Akira; Miyamoto, Yoshiyuki; Tanigawa, Naoshi.

    1997-01-01

    For an automatic control for a reactor power, when a deviation exceeds a predetermined value, the aimed value is kept at a predetermined value, and when the deviation is decreased to less than the predetermined value, the aimed value is increased from the predetermined value again. Alternatively, when a reactor power variation coefficient is decreased to less than a predetermine value, an aimed value is maintained at a predetermined value, and when the variation coefficient exceeds the predetermined value, the aimed value is increased. When the reactor power variation coefficient exceeds a first determined value, an aimed value is increased to a predetermined variation coefficient, and when the variation coefficient is decreased to less than the first determined value and also when the deviation between the aimed value and an actual reactor power exceeds a second determined value, the aimed value is maintained at a constant value. When the deviation is increased or when the reactor power variation coefficient is decreased, since the aimed value is maintained at predetermined value without increasing the aimed value, the deviation is not increased excessively thereby enabling to avoid excessive overshoot. (N.H.)

  17. EDF's (Electricite de France) in service control for GCR type reactor vessels

    International Nuclear Information System (INIS)

    Douillet, M.G.

    1979-01-01

    This paper presents the performance of the data acquisition and processing systems developed by the French EDF for controlling and testing the mechanical properties (thermal stress, deformations, cracks,...) of prestressed concrete vessels for GCR type reactors

  18. Core design of super LWR with double tube water rods

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2014-01-01

    Highlights: • Supercritical light water cooled and moderated reactor with double tube water rods is developed. • Double-row fuel rod assembly and out-in fuel loading pattern are applied. • Separation plates in peripheral assemblies increase average outlet temperature. • Neutronic and thermal design criteria are satisfied during the cycle. - Abstract: Double tube water rods are employed in core design of super LWR to simplify the upper core structure and refueling procedure. The light water moderator flows up in the inner tube from the bottom of the core, then, changes the flow direction at the top of the core into the outer tube and flows out at the bottom of the core. It eliminates the moderator guide/distribution tubes into the single tube water rods from the top dome of the reactor pressure vessel of the previous super LWR design. Two rows of fuel rods are filled between the water rods in the fuel assembly. Out-in refueling pattern is adopted to flatten radial power distribution. The peripheral fuel assemblies of the core are divided into four flow zones by separation plates for increasing the average core outlet temperature. Three enrichment zones are used for axial power flattening. The equilibrium core is analyzed based on neutronic/thermal-hydraulic coupled model. The results show that, by applying the separation plates in peripheral fuel assemblies and low gadolinia enrichment, the maximum cladding surface temperature (MCST) is limited to 653 °C with the average outlet temperature of 500 °C. The inherent safety is satisfied by the negative void reactivity effects and sufficient shutdown margin

  19. Safety oriented LWR research. Annual report 1990

    International Nuclear Information System (INIS)

    1991-07-01

    The contributions describe phenomenons of severe fuel damage and aspects of core meltdown accidents. These accidents deal with aerosol behaviour and ventilation systems and the methods for assessing and reducing the radiological concequences of nuclear accidents. Other contributions describe selected questions of safety of HCLWR type reactors. (DG)

  20. Short Communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures"

    Science.gov (United States)

    Miao, Yinbin; Harp, Jason; Mo, Kun; Bhattacharya, Sumit; Baldo, Peter; Yacout, Abdellatif M.

    2017-02-01

    The radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 1015 ions/cm2 to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.

  1. Technical program to study the benefits of nonlinear analysis methods in LWR component designs. Technical report TR-3723-1

    International Nuclear Information System (INIS)

    Raju, P.P.

    1980-05-01

    This report summarizes the results of the study program to assess the benefits of nonlinear analysis methods in Light Water Reactor (LWR) component designs. The current study reveals that despite its increased cost and other complexities, nonlinear analysis is a practical and valuable tool for the design of LWR components, especially under ASME Level D service conditions (faulted conditions) and it will greatly assist in the evaluation of ductile fracture potential of pressure boundary components. Since the nonlinear behavior is generally a local phenomenon, the design of complex components can be accomplished through substructuring isolated localized regions and evaluating them in detail using nonlinear analysis methods

  2. Uncertainties in radioactivity release from LWR plants under LOCA conditions - magnitude and consequences

    International Nuclear Information System (INIS)

    Mattila, L.J.

    1977-01-01

    Standardized, deterministic, and supposedly conservative calculation methods and parameter values are applied in radiological safety analyses required for licensing individual nuclear power plants. As realistic as possible and comprehensive analyses are, however, absolutely necessary for many purposes, such as developing improved designs, comparisons between nuclear and non-nuclear power plant alternatives or entire energy production strategies, and also formulating improved acceptance criteria for plant licensing. A specific type of LOCA, called design basis accident (DBA), has obtained an exceptionally important status in the licensing procedure of light water reactor nuclear power plants. This postulated accident has a decisive influence on plant siting and on the design of the various engineered safety features. To avoid certain potential negative effects of the highly standardized guideline-based accident analysis procedure - such as introduction of apparent design ''improvements'', wrong priorization of research efforts, etc. - and to provide a realistic view about the safety of light water reactors to supplement the conservative results from regulatory analyses, a comprehensive understanding of the radiological consequences of LOCA's is indispensable. Estimates of fission product release from LWR plants under different LOCA conditions are associated with uncertainties due to deficient knowledge and truly random variability. The following steps of the fission product transport chain are discussed: generation of activity, fission product release from fuel to fuel pin voids prior to the accident, fuel rod puncturing and fission product release from punctured rods during the accident, further release from fuel during the transient, transport to the containment and finally removal in and leakage from the containment. Numerical examples are given by comparing assumptions, parameter values, and results from the following four analyses: the present guideline

  3. Simulation test of PIUS-type reactor with large scale experimental apparatus

    International Nuclear Information System (INIS)

    Tamaki, M.; Tsuji, Y.; Ito, T.; Tasaka, K.; Kukita, Yutaka

    1995-01-01

    A large scale experimental apparatus for simulating the PIUS-type reactor has been constructed keeping the volumetric scaling ratio to the realistic reactor model. Fundamental experiments such as a steady state operation and a pump trip simulation were performed. Experimental results were compared with those obtained by the small scale apparatus in JAERI. We have already reported the effectiveness of the feedback control for the primary loop pump speed (PI control) for the stable operation. In this paper this feedback system is modified and the PID control is introduced. This new system worked well for the operation of the PIUS-type reactor even in a rapid transient condition. (author)

  4. An assessment of the low seismic risk of the inherently safe sodium advanced fast reactor (SAFR)

    International Nuclear Information System (INIS)

    Rutherford, P.D.

    1988-01-01

    A recent probabilistic risk assessment (PRA) of the sodium advanced fast reactor (SAFR) demonstrated the inherently low risk of advanced liquid-metal, pool-type fast reactors with inherent safety systems. As a result, it was recognized that external events, especially seismic events, may not only be a major contributor to risk (as shown in several LWR PRAs) but also may completely dominate the risk. Accordingly, a seismic risk assessment has been completed for SAFR, which resulted in a core damage frequency of 2 x 10 -7 /year and a large release frequency of 4 x 10 -9 /year. This paper reports that public health risk in terms of early fatality risk and latent fatality risk were also several orders of magnitude below the NRC safety goals and below recent LWR risks reported in NUREB/CR1150

  5. Dynamic power behavior of a PWR type nuclear reactor

    International Nuclear Information System (INIS)

    Moreira, F.J.

    1984-01-01

    A methodology for the power level evaluation (dynamic behavior) in a Pressurized Water Reactor, during a transient is developed, by solving the point kinetic equation related to the control rod insertion effects and fuel or moderator temperature 'feed-back'. A new version of the thermal-hydraulic code COBRA III P/MIT, is used. In this new version was included, as an option, the methodology developed. (E.G.) [pt

  6. Pump/heat exchanger assembly for pool-type reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Slepian, R.M.

    1987-01-01

    A heat exchanger and pump assembly comprising a heat exchanger including a housing for defining an annularly shaped cavity and supporting therein a plurality of heat transfer tubes. A pump is disposed beneath the heat exchanger and is comprised of a plurality of flow couplers disposed in a circular array. Each flow coupler is comprised of a pump duct for receiving a first electrically conductive fluid, i.e. the primary liquid metal, from a pool thereof, and a generator duct for receiving a second electrically conductive fluid, i.e. the intermediate liquid metal. The primary liquid metal is introduced from the reactor pool into the top, inlet ends of the tubes, flowing downward therethrough to be discharged from the tubes' bottom ends directly into the reactor pool. The primary liquid metal is variously introduced into the pump ducts directly from the reactor pool, either from the bottom or top end of the flow coupler. The intermediate fluid introduced into the generator ducts via the inlet duct and inlet plenum and after leaving the generator ducts passes through the annular cavity of the exchanger to cool the primary liquid in the tubes. The annular magnetic field of the pump is produced by a circular array of electromagnets having hollow windings cooled by a flow of the intermediate metal. (author)

  7. Concept of magnet systems for LHD-type reactor

    International Nuclear Information System (INIS)

    Imagawa, S.; Takahata, K.; Tamura, H.; Yanagi, N.; Mito, T.; Obana, T.; Sagara, A.

    2008-10-01

    Heliotron reactors have attractive features for fusion power plants, such as no need for current drive and a wide space between the helical coils for the maintenance of in-vessel components. Their main disadvantage was considered the necessarily large size of their magnet systems. According to the recent reactor studies based on the experimental results in the Large Helical Device, the major radius of plasma of 14 to 17 m with a central toroidal field of 6 to 4 T is needed to attain the self-ignition condition with a blanket space thicker than 1.1 m. The stored magnetic energy is estimated at 120 to 140 GJ. Although both the major radius and the magnetic energy are about three times as large as ITER, the maximum magnetic field and mechanical stress can be comparable. In the preliminary structural analysis, the maximum stress intensity including the peak stress is less than 1,000 MPa that is allowed for strengthened stainless steel. Although the length of the helical coil is longer than 150 m that is about five times as long as the ITER TF coil, cable-in-conduit conductors can be adopted with a parallel winding method of five-in-hand. The concept of the parallel winding is proposed. Consequently, the magnet systems for helical reactors can be realized with small extension of the ITER technology. (author)

  8. Response of Voronezh reactor type to horizontal ground motion

    International Nuclear Information System (INIS)

    Pecinka, L.

    1983-01-01

    For the purposes of vibration monitoring of PWR's the well known 'double pendulum model' has been developed and experimentally verified. It is shown, that this model is possible to use for response calculations of Voronezh reactor pressure vessel and its internals to horizontal ground motion. The equation of motion is given in usual matrix form, the damping matrix is calculated by Rayleigh formula. Driving force is given by vector of ground motion in horizontal direction. For the numerical integration of equation of motion is possible to use following methods - matrix exponential in state space; - modal analysis; - one-step direct integration. For our purposes the last one has been chosen and related computer code TRANS has been developed. The results of calculations are given in the graphically form using generalized angular coordinates and its second derivatives, which describes the displacement or acceleration of reactor pressure vessel to ground and the core barrel to reactor pressure vessel. The driving vector is given in the form of artificially generated accelerogram. (orig./HP)

  9. Method for pre-heating lmfbr type reactors

    International Nuclear Information System (INIS)

    Yokozawa, Atsushi; Kataoka, Hajime.

    1978-01-01

    Purpose: To enable pre-heating for the inside of the reactor container and the inside of the coolant recycling system with no additional facilities. Method: The coolant recycling system is composed of a heat exchanger, a mechanical pump, a check valve, a flow meter or the like and it is connected in series by way of a pipe line to a reactor container. The mechanical pump is used as a gas recycling device upon pre-heating and it is designed so that a blower such as a fan can be replaced for the impeller of the pump. The inside of the reactor container and the inside of the coolant recycling system is at first filled with an inert gas such as for use with cover gas. Then, nuclear fuels are loaded to attain criticality. Simultaneously, the blower is started and the control rods are operated while cooling the nuclear fuel with the inert gas thus to obtain heat required for pre-heating the pipe line or the like from the nuclear fuels. After the completion of the pre-heating, the liquid metal is charged. (Ikeda, J.)

  10. Coolant make-up device for BWR type reactor

    International Nuclear Information System (INIS)

    Sasagawa, Hiroshi.

    1994-01-01

    In a coolant make-up device, an opening of a pressure equalizing pipeline in a pressure vessel is disposed in coolants above a reactor core and below a usual fluctuation range of a reactor vessel water level. Further, a float check valve is disposed to the pressure equalizing pipeline for preventing coolants in the pressure vessel flowing into the pipeline. If the water level in the pressure vessel is lowered than the setting position for the float check valve, the float drops by its own weight to open the opening of the pressure equalizing pipeline. Then, steams in the pressure vessel are flown into the pipeline, to equalize the pressure between a coolant storage tank and the pressure vessel of the reactor. Coolants in the coolant storage tank is injected to the pressure vessel by way of the water injection pipeline due to the difference of the pressure head between the water level in the coolants storage tank and the water level in the pressure vessel. If the coolants are lowered than the setting position for the float check value, the float check valve does not close unless the water level is recovered to the setting position for the float valve and, accordingly, the coolant make-up is continued. (N.H.)

  11. Neutronics comparative analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON and DONJON are applied and verified in calculations of research reactors. • Continuous-energy Monte Carlo calculations by RMC are chosen as the references. • “ECCO” option of DRAGON is suitable for the calculations of research reactors. • Manual modifications of cross-sections are not necessary with DRAGON and DONJON. • DRAGON and DONJON agree well with RMC if appropriate treatments are applied. - Abstract: Simulation of the behavior of the plate-type research reactors such as JRR-3M and CARR poses a challenge for traditional neutronics calculation tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity and large leakage of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON and DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic approach. The goal of this research is to examine the capability of the deterministic code system DRAGON and DONJON to reliably simulate the research reactors. The results indicate that the DRAGON and DONJON code system agrees well with the continuous-energy Monte Carlo simulation on both k eff and flux distributions if the appropriate treatments (such as the ECCO option) are applied

  12. Proven power reactor systems - novel features and developments in operation performance, safety and reliability

    International Nuclear Information System (INIS)

    Bugl, J.

    1975-01-01

    As the development of nuclear reactors for the generation of electric power started after the end of the Second World War, the prospective use of diverse materials as fuel, moderator and coolant resulted in a wide diversity of design possibilities. Of the 10 nuclear reactor types which were being considered most seriously in those days, only a few have achieved acceptance. This development is best illustrated by listing the nuclear power plants in service, under construction and on order at present, separately by reactor types (table). In the lead at present and for some years to come are the thermal reactors and especially the light water reactors (LWR). In the LWR group the lead is held by the pressurised water reactor (PWR) which accounts for 44% of the installed capacity of all the nuclear power plants in service at present. In the early 1980s this share will increase to 58%, whereas the share of the boiling water reactor (BWR) will increase to only 28% from 23% at present. (orig./TK) [de

  13. Conceptual design of control rod regulating system for plate type fuels of Triga-2000 reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Saminto

    2016-01-01

    Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor has been made. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor was made with refer to study result of instrument and control system which is used in BATAN'S reactor. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor consist of 4 segments that is control panel, translator, driver and display. Control panel is used for regulating, safety and display control rod, translator is used for signal processing from control panel, driver is used for driving control rod and display is used for display control rod level position. The translator was designed in 2 modes operation i.e operation by using PLC modules and IC TTL modules. These conceptual design can be used as one of reference of control rod regulating system detail design. (author)

  14. Comparison of performance indicators of different types of reactors based on ISOE database

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2005-01-01

    The optimisation of the operation of a nuclear power plant (NPP) is a challenging issue due to the fact that besides general management issues, a risk associated to nuclear facilities should be included. In order to optimise the radiation protection programmes in around 440 reactors in operation with more than 500 000 monitored workers each year, the international exchange of performance indicators (PI) related to radiation protection issues seems to be essential. Those indicators are a function of a type of a reactor as well as the age and the quality of the management of the reactor. in general three main types of radiation protection PI could be recognised. These are: occupational exposure of workers, public exposure and management of PI related to radioactive waste. The occupational exposure could be efficiently studied using ISOC database. The dependence of occupational exposure on different types of reactors, e.g. PWR, BWR, are given, analysed and compared. (authors)

  15. Adapting LWR to future needs: SECURE-P (PIUS)

    International Nuclear Information System (INIS)

    Hannerz, K.

    1984-01-01

    Advanced nuclear technology based on breeder reactors and fuel reprocessing may eventually be applied on a large scale, although the timing for this appears uncertain. However, in many parts of the world societal conditions and technological infrastructure mandate the use of a less complicated technology if the benefits of clean, safe nuclear power are to be available. Such a technology must be based on thermal reactors. Lack of fuel resources for their operation through most of the next century is unlikely to be a serious limitation. A natural contender would be the light water reactor, but today's designs lack many of the desired characteristics. However, introduction of certain new design features can eliminate the shortcomings and make the LWR the prime longterm candidate for a simple, technologically unsophisticated generation of nuclear power. Availability of such an option will also be a major asset for utilities in the large industrial countries before the advent of the era of advanced 'second generation' nuclear power. The costs of demonstrating the new design features are miniscule in relation to the benefits that should accrue. (author)

  16. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    International Nuclear Information System (INIS)

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables

  17. LWR reactivity/isotopics code for pedagogical and scoping applications

    International Nuclear Information System (INIS)

    AbuZaied, G.; Driscoll, M.J.

    1986-01-01

    A program designated BRICC (Burnup Reactivity and Isotopic Composition Computation), has been programmed for use on microcomputers to permit rapid parametric studies of the neutronics of light water reactor (LWR) assemblies. It is currently employed as a teaching tool in a graduate-level subject on nuclear fuel management, and has proven to be of sufficient accuracy to permit its use as a submodule in a more comprehensive program used to evaluate various mechanical spectral shift concepts for pressurized water reactor control. It should also prove useful in teaching reactor physics as it will fill an important gap between hand calculations of inadequate accuracy and state-of-the-art multigroup programs of daunting complexity. The BRICC program combines a minimum adequate set of old-fashioned phenomenological submodels that describe key physics attributed in an integral fashion, thereby providing the student or researcher with convenient mental pictures to serve as the basis for deductive reasoning. The program is short, written in a simplistic version of the Basic language, with many interspersed Remark statements, and is therefore easy to tinker with for various constructive purposes

  18. The scale analysis sequence for LWR fuel depletion

    International Nuclear Information System (INIS)

    Hermann, O.W.; Parks, C.V.

    1991-01-01

    The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system is used extensively to perform away-from-reactor safety analysis (particularly criticality safety, shielding, heat transfer analyses) for spent light water reactor (LWR) fuel. Spent fuel characteristics such as radiation sources, heat generation sources, and isotopic concentrations can be computed within SCALE using the SAS2 control module. A significantly enhanced version of the SAS2 control module, which is denoted as SAS2H, has been made available with the release of SCALE-4. For each time-dependent fuel composition, SAS2H performs one-dimensional (1-D) neutron transport analyses (via XSDRNPM-S) of the reactor fuel assembly using a two-part procedure with two separate unit-cell-lattice models. The cross sections derived from a transport analysis at each time step are used in a point-depletion computation (via ORIGEN-S) that produces the burnup-dependent fuel composition to be used in the next spectral calculation. A final ORIGEN-S case is used to perform the complete depletion/decay analysis using the burnup-dependent cross sections. The techniques used by SAS2H and two recent applications of the code are reviewed in this paper. 17 refs., 5 figs., 5 tabs

  19. Sensitivity Analysis on LOCCW of Westinghouse typed Reactors Considering WOG2000 RCP Seal Leakage Model

    International Nuclear Information System (INIS)

    Na, Jang-Hwan; Jeon, Ho-Jun; Hwang, Seok-Won

    2015-01-01

    In this paper, we focus on risk insights of Westinghouse typed reactors. We identified that Reactor Coolant Pump (RCP) seal integrity is the most important contributor to Core Damage Frequency (CDF). As we reflected the latest technical report; WCAP-15603(Rev. 1-A), 'WOG2000 RCP Seal Leakage Model for Westinghouse PWRs' instead of the old version, RCP seal integrity became more important to Westinghouse typed reactors. After Fukushima accidents, Korea Hydro and Nuclear Power (KHNP) decided to develop Low Power and Shutdown (LPSD) Probabilistic Safety Assessment (PSA) models and upgrade full power PSA models of all operating Nuclear Power Plants (NPPs). As for upgrading full power PSA models, we have tried to standardize the methodology of CCF (Common Cause Failure) and HRA (Human Reliability Analysis), which are the most influential factors to risk measures of NPPs. Also, we have reviewed and reflected the latest operating experiences, reliability data sources and technical methods to improve the quality of PSA models. KHNP has operating various types of reactors; Optimized Pressurized Reactor (OPR) 1000, CANDU, Framatome and Westinghouse. So, one of the most challengeable missions is to keep the balance of risk contributors of all types of reactors. This paper presents the method of new RCP seal leakage model and the sensitivity analysis results from applying the detailed method to PSA models of Westinghouse typed reference reactors. To perform the sensitivity analysis on LOCCW of the reference Westinghouse typed reactors, we reviewed WOG2000 RCP seal leakage model and developed the detailed event tree of LOCCW considering all scenarios of RCP seal failures. Also, we performed HRA based on the T/H analysis by using the leakage rates for each scenario. We could recognize that HRA was the sensitive contributor to CDF, and the RCP seal failure scenario of 182gpm leakage rate was estimated as the most important scenario

  20. Sensitivity Analysis on LOCCW of Westinghouse typed Reactors Considering WOG2000 RCP Seal Leakage Model

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jang-Hwan; Jeon, Ho-Jun; Hwang, Seok-Won [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, we focus on risk insights of Westinghouse typed reactors. We identified that Reactor Coolant Pump (RCP) seal integrity is the most important contributor to Core Damage Frequency (CDF). As we reflected the latest technical report; WCAP-15603(Rev. 1-A), 'WOG2000 RCP Seal Leakage Model for Westinghouse PWRs' instead of the old version, RCP seal integrity became more important to Westinghouse typed reactors. After Fukushima accidents, Korea Hydro and Nuclear Power (KHNP) decided to develop Low Power and Shutdown (LPSD) Probabilistic Safety Assessment (PSA) models and upgrade full power PSA models of all operating Nuclear Power Plants (NPPs). As for upgrading full power PSA models, we have tried to standardize the methodology of CCF (Common Cause Failure) and HRA (Human Reliability Analysis), which are the most influential factors to risk measures of NPPs. Also, we have reviewed and reflected the latest operating experiences, reliability data sources and technical methods to improve the quality of PSA models. KHNP has operating various types of reactors; Optimized Pressurized Reactor (OPR) 1000, CANDU, Framatome and Westinghouse. So, one of the most challengeable missions is to keep the balance of risk contributors of all types of reactors. This paper presents the method of new RCP seal leakage model and the sensitivity analysis results from applying the detailed method to PSA models of Westinghouse typed reference reactors. To perform the sensitivity analysis on LOCCW of the reference Westinghouse typed reactors, we reviewed WOG2000 RCP seal leakage model and developed the detailed event tree of LOCCW considering all scenarios of RCP seal failures. Also, we performed HRA based on the T/H analysis by using the leakage rates for each scenario. We could recognize that HRA was the sensitive contributor to CDF, and the RCP seal failure scenario of 182gpm leakage rate was estimated as the most important scenario.