WorldWideScience

Sample records for lwr spent fuel

  1. Contributions to LWR spent fuel storage and transport

    International Nuclear Information System (INIS)

    The papers included in this document describe the aspects of spent LWR fuel storage and transport-behaviour of spent fuel during storage; use of compact storage packs; safety of storage; design of storage facilities AR and AFR; description of transport casks and transport procedures

  2. LWR Spent Fuel Management for the Smooth Deployment of FBR

    International Nuclear Information System (INIS)

    Fukasawa, T.; Yamashita, J.; Hoshino, K.; Sasahira, A.; Inoue, T.; Minato, K.; Sato, S.

    2015-01-01

    Fast breeder reactors (FBR) and FBR fuel cycle are indispensable to prevent the global warming and to secure the long-term energy supply. Commercial FBR expects to be deployed from around 2050 until around 2110 in Japan by the replacement of light water reactors (LWR) after their 60 years life. The FBR deployment needs Pu (MOX) from the LWR-spent fuel (SF) reprocessing. As Japan can posses little excess Pu, its balance control is necessary between LWR-SF management (reprocessing) and FBR deployment. The fuel cycle systems were investigated for the smooth FBR deployment and the effectiveness of proposed flexible system was clarified in this work. (author)

  3. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  4. Development of information management system on LWR spent fuel

    International Nuclear Information System (INIS)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S.

    2002-01-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility

  5. Development of information management system on LWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility.

  6. Economics of spent LWR fuel storage

    International Nuclear Information System (INIS)

    Clark, H.J.; O'Neill, G.F.

    1980-01-01

    A power reactor operator, confronted with rising spent fuel inventories that would soon exceed his storage capacity, has to decide what to do with this fuel if he wants to continue reactor operations. A low cost option would be to ship excess fuel from the overburdened reactor to another reactor in the utility's system that has available space. The only cost would be for cask leasing and shipping. Three other alternatives all require considerable capital expenditures: reracking, new at-reactor (AR) basins for storage, and away-from-reactor (AFR) basins for storage. Economic considerations for each of the alternatives are compared

  7. Preliminary concepts for detecting national diversion of LWR spent fuel

    International Nuclear Information System (INIS)

    Sonnier, C.S.; Cravens, M.N.

    1978-04-01

    Preliminary concepts for detecting national diversion of LWR spent fuel during storage, handling and transportation are presented. Principal emphasis is placed on means to achieve timely detection by an international authority. This work was sponsored by the Department of Energy/Office of Safeguards and Security (DOE/OSS) as part of the overall Sandia Fixed Facility Physical Protection Program

  8. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructive testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined

  9. Economics of spent LWR fuel storage

    International Nuclear Information System (INIS)

    Clark, H.J.

    1980-01-01

    A low cost option for spent fuel inventories would be to ship excess fuel from the overburdened reactor to another reactor in the utility's system that has available space. The only cost would be for cask leasing and shipping. Three other alternatives all require considerable capital expenditures: reracking, new at-reactor (AR) storage facilities, and away-from-reactor (AFR) storage facilities. Fuel storage requirements will be met best by transfer of fuel or by re-racking existing reactor basins whenever these options are available. These alternatives represent not only the lowest cost storage options but also the most timely. Fuel can be shipped to other storage pools for about $10/kg depending on the distance, while costs for reracking range from $18 to 25/kg depending on the approach. These alternatives are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than similar issues that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the next least costly alternative for most utilities will be use of a Federal AFR. Storage cost of about $137/kg at an AFR are less costly than charges of up to $350/kg that could be incurred by the use of AR basins. AR basins are practical only when a utility requires storage capacity to accommodate annual additions of 100 MT or more of spent fuel. The large reactor complexes discharging this much feul are not currently those that require relief from fuel storage problems. A recent development in Germany may offer an AR alternative of dry storage in transportation/storage casks at a cost of $200/kg; however, this method has not yet been accepted and licensed for use in the US

  10. Spent LWR fuel-storage costs

    International Nuclear Information System (INIS)

    Clark, H.J.

    1981-01-01

    Expanded use of existing storage basins is clearly the most economic solution to the spent fuel storage problem. The use of high-density racks followed by fuel disassembly and rod storage is an order of magnitude cheaper than building new facilities adjacent to the reactor. The choice of a new storage facility is not as obvious; however, if the timing of expenditures and risk allowance are to be considered, then modular concepts such as silos, drywells, and storage casks may cost less than water basins and air-cooled vaults. A comparison of the costs of the various storage techniques without allowances for timing or risk is shown. The impact of allowances for discounting and early resumption of reprocessing is also shown. Economics is not the only issue to be considered in selecting a storage facility. The licensing, environmental impact, timing, and social responses must also be considered. Each utility must assess all of these issues for their particular reactors before the best storage solution can be selected

  11. Baseline descriptions for LWR spent fuel storage, handling, and transportation

    International Nuclear Information System (INIS)

    Moyer, J.W.; Sonnier, C.S.

    1978-04-01

    Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables

  12. Baseline descriptions for LWR spent fuel storage, handling, and transportation

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, J.W.; Sonnier, C.S.

    1978-04-01

    Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables.

  13. Standard casks for the transport of LWR spent fuel

    International Nuclear Information System (INIS)

    Blum, P.

    1986-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks have been manufactured in different countries and are presently used for european and intercontinental transports. The main advantages of these casks are: large payload, moderate cost, reliability, standardisation facilitating fabrication, operation and spare part supply [fr

  14. Spent LWR fuel leach tests: Waste Isolation Safety Assessment program

    International Nuclear Information System (INIS)

    Katayama, Y.B.

    1979-04-01

    Spent light-water-reactor (LWR) fuels with burnups of 54.5, 28 and 9 MWd/kgU were leach-tested in deionized water at 25 0 C. Fuel burnup has no apparent effect on the calculated leach rates based upon the behavior of 137 Cs and 239+240 Pu. A leach test of 54.5 MWd/kgU spent fuel in synthetic sea brine showed that the cesium-based leach rate is lower in sea brine than in deionized water. A rise in the leach rate was observed after approximately 600 d of cumulative leaching. During the rise, the leach rate for all the measured radionuclides become nearly equal. Evidence suggests that exposure of new surfaces to the leachant may cause the increase. As a result, experimental work to study leaching mechanisms of spent fuel has been initiated. 22 figures

  15. Conceptual design of a spent LWR fuel recycle complex

    International Nuclear Information System (INIS)

    Kirk, B.H.

    1980-01-01

    Purpose was to design a licensable facility, to make cost-benefit analyses of alternatives, and to aid in developing licensing criteria. The Savannah River Plant was taken to be the site for the recycle complex. The spent LWR fuel will be processed through the plant at the rate of 3000 metric tons of heavy metal per year. The following aspects of the complex are discussed: operation, maintenance, co-conversion (Coprecal), waste disposal, off-gas treatment, ventilation, safeguards, accounting, equipment and fuel fabrication. Differences between the co-processing case and the separated streams case are discussed. 44 figures

  16. Nondestructive evaluation of LWR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Ballard, D.W.

    1978-02-01

    An analysis of nondestructve testing (NDT) methods currently being used to evaluate the integrity of Light Water Reactor (LWR) spent fuel shipping casks is presented. An assessment of anticipated NDT needs related to breeder reactor cask requirements is included. Specific R and D approaches to probable NDT problem areas such as the evaluation of austenitic stainless steel weldments are outlined. A comprehensive bibliography of current NDT methods for cask evaluation in the USA, Great Britain, Japan and West Germany was compiled for this study

  17. Standard casks for the transport of LWR spent fuel

    International Nuclear Information System (INIS)

    Blum, P.

    1985-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks have been manufacturer under TRANSNUCLEAIRE supervision in different countries and are presently used for European and intercontinental transports. The main advantages of these casks are: - large payload for considered modes of transport, - moderate cost, - reliability due to the large experience gained by TRANSNUCLEAIRE as concerns fabrication and operation problems, - standardisation facilitating fabrication, operation and spare part supply [fr

  18. A study on the behavior of defected LWR spent fuel

    International Nuclear Information System (INIS)

    You, Gil Sung; Kim, Eun Ka; Kim, Keon Sik; Suh, Hang Suck; Kim, Seung Jung; Ro, Seung Gy; Park, Chong Mook; Ji, Pyung Gook

    1992-03-01

    To investigate the storage behavior of the defective LWR spent fuel rods, the characteristic changes of fuel and cladding are to be measured and analyzed. In addition, the oxidation study in air on non-irradiated and irradiated U0 2 was performed. No changes were observed in the tested fuel rods after 30 month storage. The Cs-134, 137 released rapidly during the initial 3 months of storage, but remained in constant value after 3 month storage and the release was almost ceased after 30 month storage. The weight gain of non-irradiated U0 2 samples showed a trend of S type curves and the activation energies were 11OKJ/mol above 350 deg C. and 143KJ/mol below 350 deg C. But irradiated U0 2 showed a rapid increase at initial stage of oxidation and a decrease at later stage when compared with the results of non-irradiated U0 2 . (Author)

  19. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-01-01

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  20. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Permana, Sidik; Suzuki, Mitsutoshi; Su' ud, Zaki [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 Nuclear Physics and Bio (Indonesia); Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 (Japan); Nuclear Physics and Bio Physics Research Group, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  1. Technical development on burn-up credit for spent LWR fuels

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  2. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  3. Technical development on burn-up credit for spent LWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  4. Preliminary concepts for detecting diversion of LWR spent fuel

    International Nuclear Information System (INIS)

    Sellers, T.A.

    Sandia Laboratories, under the sponsorship of the Department of Energy, Office of Safeguards and Security, has been developing conceptual designs of advanced systems to rapidly detect diversion of LWR spent fuel. Three detection options have been identified and compared on the basis of timeliness of detection and cost. Option 1 is based upon inspectors visiting each facility on a periodic basis to obtain and review data acquired by surveillance instruments and to verify the inventory. Option 2 is based upon continuous inspector presence, aided by surveillance instruments. Option 3 is based upon the collection of data from surveillance instruments with periodic readout either at the facility or at a remote central monitoring and display module and occasional inspection. Surveillance instruments are included in each option to assure a sufficiently high probability of detection. An analysis technique with an example logic tree that was used to identify performance requirements is described. A conceptual design has been developed for Option 3 and the essential hardware elements are not being developed. These elements include radiation, crane and pool acoustic sensors, a Data Collection Module, a Local Collection Module, a Local Display Module and a Central Monitoring and Display Module. A demonstration, in operating facilities, of the overall system concept is planned for the March to June 1979 time frame

  5. Studies and research concerning BNFP: LWR spent fuel storage

    International Nuclear Information System (INIS)

    Shallo, F.A.

    1978-08-01

    This report describes potential spent fuel storage expansion programs using the Barnwell Nuclear Fuel Plant--Fuel Receiving and Storage Station (BNFP-FRSS) as a model. Three basic storage arrangements are evaluated with cost and schedule estimates being provided for each configuration. A general description of the existing facility is included with emphasis on the technical and equipment requirements which would be necessary to achieve increased spent fuel storage capacity at BNFP-FRSS

  6. Spent LWR fuel encapsulation and dry storage demonstration

    International Nuclear Information System (INIS)

    Bahorich, R.J.; Durrill, D.C.; Cross, T.E.; Unterzuber, R.

    1980-01-01

    In 1977 the Spent Fuel Handling and Packaging Program (SFHPP) was initiated by the Department of Energy to develop and test the capability to satisfactorily encapsulate typical spent fuel assemblies from commercial light-water nuclear power plants and to establish the suitability of one or more surface and near surface concepts for the interim dry storage of the encapsulated spent fuel assemblies. The E-MAD Facility at the Nevada Test Site, which is operated for the Department of Energy by the Advanced Energy Systems Division (AESD) of the Westinghouse Electric Corporation, was chosen as the location for this demonstration because of its extensive existing capabilities for handling highly radioactive components and because of the desirable site characteristics for the proposed storage concepts. This paper describes the remote operations related to the process steps of handling, encapsulating and subsequent dry storage of spent fuel in support of the Demonstration Program

  7. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  8. Projection of US LWR spent fuel storage requirements

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Cole, B.M.; Purcell, W.L.; Rau, R.G.

    1982-11-01

    The spent fuel storage requirements projection is based on data supplied for each operating or planned nuclear power power plant by the operting utilities. The data supplied by the utilities encompassed details of plant operating history, past records of fuel discharges, current inventories in reactor spent fuel storage pools, and projections of future discharge patterns. Data on storage capacity of storage pools and on characterization of the discharged fuel are also included. The data supplied by the utilities, plus additional data from other appropriate sources, are maintained on a computerized data base by Pacific Northwest Laboratory. The spent fuel requirements projection was based on utility data updated and verified as of December 31, 1981

  9. NAC-1 cask dose rate calculations for LWR spent fuel

    International Nuclear Information System (INIS)

    CARLSON, A.B.

    1999-01-01

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation

  10. Radionuclide distribution in LWR [light-water reactor] spent fuel

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Thomas, L.E.; Baldwin, D.L.; Mendel, J.E.

    1990-09-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory (PNL) provides well-characterized spent fuel from light-water reactors (LWRs) for use in laboratory tests relevant to nuclear waste disposal in the proposed Yucca Mountain repository. Interpretation of results from tests on spent fuel oxidation, dissolution, and cladding degradation requires information on the inventory and distribution of radionuclides in the initial test materials. The MCC is obtaining this information from examinations of Approved Testing Materials (ATMs), which include spent fuel with burnups from 17 to 50 MWd/kgM and fission gas releases (FGR) from 0.2 to 18%. The concentration and distribution of activation products and the release of volatile fission products to the pellet-cladding gap and rod plenum are of particular interest because these characteristics are not well understood. This paper summarizes results that help define the 14 C inventory and distribution in cladding, the ''gap and grain boundary'' inventory of radionuclides in fuels with different FGRs, and the structure and radionuclide inventory of the fuel rim region within a few hundred micrometers from the fuel edge. 6 refs., 5 figs., 1 tab

  11. Effect of long-term storage of LWR spent fuel on Pu-thermal fuel cycle

    International Nuclear Information System (INIS)

    Kurosawa, Masayoshi; Naito, Yoshitaka; Suyama, Kenya; Itahara, Kuniyuki; Suzuki, Katsuo; Hamada, Koji

    1998-01-01

    According to the Long-term Program for Research, Development and Utilization of Nuclear Energy (June, 1994) in Japan, the Rokkasho Reprocessing Plant will be operated shortly after the year 2000, and the planning of the construction of the second commercial plant will be decided around 2010. Also, it is described that spent fuel storage has a positive meaning as an energy resource for the future utilization of Pu. Considering the balance between the increase of spent fuels and the domestic reprocessing capacity in Japan, it can be expected that the long-term storage of UO 2 spent fuels will be required. Then, we studied the effect of long-term storage of spent fuels on Pu-thermal fuel cycle. The burnup calculation were performed on the typical Japanese PWR fuel, and the burnup and criticality calculations were carried out on the Pu-thermal cores with MOX fuel. Based on the results, we evaluate the influence of extending the spent fuel storage term on the criticality safety, shielding design of the reprocessing plant and the core life time of the MOX core, etc. As the result of this work on long-term storage of LWR spent fuels, it becomes clear that there are few demerits regarding the lifetime of a MOX reactor core, and that there are many merits regarding the safety aspects of the fuel cycle facilities. Furthermore, long-term storage is meaningful as energy storage for effective utilization of Pu to be improved by technological innovation in future, and it will allow for sufficient time for the important policymaking of nuclear fuel cycle establishment in Japan. (author)

  12. Method for pre-processing LWR spent fuel

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Ebihara, Hikoe.

    1986-01-01

    Purpose: To facilitate the decladding of spent fuel, cladding tube processing, and waste gas recovery, and to enable the efficient execution of main re-processing process thereafter. Constitution: Spent fuel assemblies are sent to a cutting process where they are cut into chips of easy-to-process size. The chips, in a thermal decladding process, undergo a thermal cycle processing in air with the processing temperatures increased and decreased within the range of from 700 deg C to 1200 deg C, oxidizing zircaloy comprising the cladding tubes into zirconia. The oxidized cladding tubes have a number of fine cracks and become very brittle and easy to loosen off from fuel pellets when even a slight mechanical force is applied thereto, thus changing into a form of powder. Processed products are then separated into zirconia sand and fuel pellets by a gravitational selection method or by a sifting method, the zirconia sand being sent to a waste processing process and the fuel pellets to a melting-refining process. (Yoshino, Y.)

  13. Standard casks for the transport of LWR spent fuel. Storage/transport casks for long cooled spent fuel

    International Nuclear Information System (INIS)

    Blum, P.; Sert, G.; Gagnon, R.

    1983-01-01

    During the past decade, TRANSNUCLEAIRE has developed, licensed and marketed a family of standard casks for the transport of spent fuel from LWR reactors to reprocessing plants and the ancillary equipments necessary for their operation and transport. A large number of these casks are presently used for European and intercontinental transports and manufactured under TRANSNUCLEAIRE supervision in different countries. The main advantages of these casks are: - large payload for considered modes of transport, - moderate cost, - reliability due to the large experience gained by TRANSNUCLEAIRE as concerns fabrication and operation problems, - standardization faciliting fabrication, operation and spare part supply. Recently, TRANSNUCLEAIRE also developed a new generation of casks for the dry storage and occasional transport of LWR spent fuel which has been cooled for 5 years or 7 years in case of consolidated fuel rods. These casks have an optimum payload which takes into account the shielding requirements and the weight limitations at most sites. This paper deals more particularly with the TN 24 model which exists in 4 versions among which one for 24 PWR 900 fuel assemblies and another one for the consolidated fuel rods from 48 of same fuel assemblies

  14. Tools for LWR spent fuel characterization: Assembly classes and fuel designs

    International Nuclear Information System (INIS)

    Moore, R.S.; Notz, K.J.

    1991-01-01

    The Characteristics Data Base (CDB) is sponsored by the DOE's Office of Civilian Radioactive Waste Management (OCRWM). The CDB provides a single, comprehensive source of data pertaining to radioactive wastes that will or may require geologic disposal, including detailed data describing the physical, quantitative, and radiological characteristics of light-water reactor (LWR) spent fuel. In developing the CDB, tools for the classification of fuel assembly types have been developed. The assembly class scheme is particularly useful for size- and handling-based describes these tools and presents results of their applications in the areas of fuel assembly type identification, characterization of projected discharges, cask accommodation analyses, and defective fuel analyses. Suggestions for additional applications are also made. 7 refs., 1 fig., 2 tabs

  15. Physical and decay characteristics of commercial LWR spent fuel

    International Nuclear Information System (INIS)

    Roddy, J.W.; Claiborne, H.C.; Ashline, R.C.; Johnson, P.J.; Rhyne, B.T.

    1986-01-01

    Information was collected from the literature and from major manufacturers that will be useful in the design and construction of a mined geologic repository for the disposal of light-water-reactor spent fuel. Pertinent data are included on mechanical design characteristics and materials of construction for fuel assemblies and fuel rods and computed values for heat generation rates, radioactivity, and photon and neutron emission rates as a function of time for four reference cases. Calculations were made with the ORIGEN2 computer code for burnups of 27,500 and 40,000 MWd for a typical boiling-water reactor and 33,000 and 60,000 MWd for a typical pressurized-water reactor. The results are presented in figures depicting the individual contributions per metric ton of initial heavy metal for the activation products, fission products, and actinides and their daughters to the radioactivity and thermal power as a function of time. Tables are also presented that list the contribution of each major nuclide to the radioactivity, thermal power, and photons and neutrons emitted for disposal emitted for disposal periods from 1 to 100,000 years

  16. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  17. Spent fuel handling and storage facility for an LWR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Baker, W.H.; King, F.D.

    1979-01-01

    The facility will have the capability to handle spent fuel assemblies containing 10 MTHM/day, with 30% if the fuel received in legal weight truck (LWT) casks and the remaining fuel received in rail casks. The storage capacity will be about 30% of the annual throughput of the reprocessing plant. This size will provide space for a working inventory of about 50 days plant throughput and empty storage space to receive any fuel that might be in transit of the reprocessing plant should have an outage. Spent LWR fuel assemblies outside the confines of the shipping cask will be handled and stored underwater. To permit drainage, each water pool will be designed so that it can be isolated from the remaining pools. Pool water quality will be controlled by a filter-deionizer system. Radioactivity in the water will be maintained at less than or equal to 2 x 10 -4 Ci/m 3 ; conductivity will be maintained at 1 to 2 μmho/cm. The temperature of the pool water will be maintained at less than or equal to 40 0 C to retard algae growth and reduce evaporation. Decay heat will be transferred to the environment via a heat exchanger-cooling tower system

  18. Comment: collection of assay data on isotopic composition in LWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Yoshitaka; Kurosawa, Masayoshi; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Many assay data of LWR spent fuels have been collected from reactors in the world and some of them are already stored in the database SFCOMPO which was constructed on a personal computer IBM PC/AT. On the other hand, Group constant libraries for burnup calculation code ORIGEN-II were generated from the nuclear data file JENDL3.2. These libraries were evaluated by using the assay data in SFCOMPO. (author)

  19. How well does ORIGEN predict spent LWR fuel characteristics

    International Nuclear Information System (INIS)

    Mailen, J.C.; Roddy, J.W.

    1987-01-01

    The ORIGEN computer code is widely used to estimate the radionuclide content (actinides, activation and fission products) of irradiated reactor fuel and the resultant heat generation and radiation levels associated with such fuel. These estimates are used as source terms in safety evaluations of operating reactors, for evaluation of fuel behavior and regulation of the at-reactor storage, for transportation studies, and for evaluation of the ultimate geologic storage of the fuel. This survey summarizes the fuel data available in the open literature and, where given, the calculated values by ORIGEN. Plans for additional analyses of well-characterized reactor fuel samples to improve the validation of ORIGEN2 are discussed

  20. Standard problem exercise to validate criticality codes for spent LWR fuel transport container calculations

    International Nuclear Information System (INIS)

    Whitesides, G.H.; Stephens, M.E.

    1984-01-01

    During the past two years, a Working Group established by the Organization for Economic Co-Operation and Development's Nuclear Energy Agency (OECD-NEA) has been developing a set of criticality benchmark problems which could be used to help establish the validity of criticality safety computer programs and their associated nuclear data for calculation of ksub(eff) for spent light water reactor (LWR) fuel transport containers. The basic goal of this effort was to identify a set of actual critical experiments which would contain the various material and geometric properties present in spent LWR transport contrainers. These data, when used by the various computational methods, are intended to demonstrate the ability of each method to accurately reproduce the experimentally measured ksub(eff) for the parameters under consideration

  1. Assessment of nitrogen as an atmosphere for dry storage of spent LWR fuel

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Knox, C.A.; White, G.D.

    1985-09-01

    Interim dry storage of spent light-water reactor (LWR) fuel is being developed as a licensed technology in the United States. Because it is anticipated that license agreements will specify dry storage atmospheres, the behavior of spent LWR fuel in a nitrogen atmosphere during dry storage was investigated. In particular, the thermodynamics of reaction of nitrogen compounds (expected to form in the cover gas during dry storage) and residual impurities (such as moisture and oxygen) with Zircaloy cladding and with spent fuel at sites of cladding breaches were examined. The kinetics of reaction were not considered it was assumed that the 20 to 40 years of interim dry storage would be sufficient for reactions to proceed to completion. The primary thermodynamics reactants were found to be NO 2 , N 2 O, H 2 O 2 , and O 2 . The evaluation revealed that the limited inventories of these reactants produced by the source terms in hermetically sealed dry storage systems would be too low to cause significant spent fuel degradation. Furthermore, the oxidation of spent fuel to degrading O/U ratios is unlikely because the oxidation potential in moist nitrogen limits O/U ratios to values less than UO/sub 2.006/ (the equilibrium stoichiometric form in equilibrium with moist nitrogen). Tests were performed with bare spent UO 2 fuel and nonirradiated UO 2 pellets (with no Zircaloy cladding) in a nitrogen atmosphere containing moisture concentrations greater than encountered under dry storage conditions. These tests were performed for at least 1100 h at temperatures as high as 380 0 C, where oxidation reactions proceed in a matter of minutes. No visible degradation was detected, and weight changes were negligible

  2. The concept of fuel cycle integrated molten salt reactor for transmuting Pu+MA from spent LWR fuels

    International Nuclear Information System (INIS)

    Hirose, Y.; Takashima, Y.

    2001-01-01

    Japan should need a new fuel cycle, not to save spent fuels indefinitely as the reusable resources but to consume plutonium and miner actinides orderly without conventional reprocessing. The key component is a molten salt reactor fueled with the Pu+MA (PMA) separated from LWR spent fuels using fluoride volatility method. A double-tiered once-through reactor system can burn PMA down to 5% remnant ratio, and can make PMA virtually free from the HAW to be disposed geometrically. A key issue to be demonstrated is the first of all solubility behavior of trifluoride species in the molten fuel salt of 7 LiF-BeF 2 mixture. (author)

  3. Evaluating the loss of a LWR spent fuel or plutonium shipping package into the sea

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Baker, D.A.

    1976-06-01

    As the nations of the world turn to nuclear power for an energy source, commerce in nuclear fuel cycle materials will increase. Some of this commerce will be transported by sea. Such shipments give rise to the possibility of loss of these materials into the sea. This paper discusses the postulated accidental loss of two materials, light water reactor (LWR) spent fuel and plutonium, at sea. The losses considered are that of a single shipping package which is either undamaged or damaged by fire prior to the loss. The containment failure of the package in the sea,

  4. Development of Voloxidation Process for Treatment of LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Jung, I. H.; Shin, J. M. (and others)

    2007-08-15

    The objective of the project is to develop a process which provides a means to recover fuel from the cladding, and to simplify downstream processes by recovering volatile fission products. This work focuses on the process development in three areas ; the measurement and assessment of the release behavior for the volatile and semi-volatile fission products from the voloxidation process, the assessment of techniques to trap and recover gaseous fission products, and the development of process cycles to optimize fuel cladding separation and fuel particle size. High temperature adsorption method of KAERI was adopted in the co-design of OTS for hot experiment in INL. KAERI supplied 6 sets of filter for hot experiment. Three hot experiment in INL hot cell from the 25th of November for two weeks with attaching 4 KAERI staffs had been carried out. The results were promising. For example, trapping efficiency of Cs was 95% and that of I was 99%, etc.

  5. Decay heat and gamma dose-rate prediction capability in spent LWR fuel

    International Nuclear Information System (INIS)

    Neely, G.J.; Schmittroth, F.

    1982-08-01

    The ORIGEN2 code was established as a valid means to predict decay heat from LWR spent fuel assemblies for decay times up to 10,000 year. Calculational uncertainties ranged from 8.6% to a maximum of 16% at 2.5 years and 300 years cooling time, respectively. The calculational uncertainties at 2.5 years cooling time are supported by experiment. Major sources of uncertainty at the 2.5 year cooling time were identifed as irradiation history (5.7%) and nuclear data together with calculational methods (6.3%). The QAD shielding code was established as a valid means to predict interior and exterior gamma dose rates of spent LWR fuel assemblies. A calculational/measurement comparison was done on two assemblies with different irradiation histories and supports a 35% calculational uncertainty at the 1.8 and 3.0 year decay times studied. Uncertainties at longer times are expected to increase, but not significantly, due to an increased contribution from the actinides whose inventories are assigned a higher uncertainty. The uncertainty in decay heat rises to a maximum of 16% due to actinide uncertainties. A previous study was made of the neutron emission rate from a typical Turkey Point Unit 3, Region 4 spent fuel assembly at 5 years decay time. A conservative estimate of the neutron dose rate at the assembly surface was less than 0.5 rem/hr

  6. A simplified computational scheme for thermal analysis of LWR spent fuel dry storage and transportation casks

    International Nuclear Information System (INIS)

    Kim, Chang Hyun

    1997-02-01

    A simplified computational scheme for thermal analysis of the LWR spent fuel dry storage and transportation casks has been developed using two-step thermal analysis method incorporating effective thermal conductivity model for the homogenized spent fuel assembly. Although a lot of computer codes and analytical models have been developed for application to the fields of thermal analysis of dry storage and/or transportation casks, some difficulties in its analysis arise from the complexity of the geometry including the rod bundles of spent fuel and the heat transfer phenomena in the cavity of cask. Particularly, if the disk-type structures such as fuel baskets and aluminium heat transfer fins are included, the thermal analysis problems in the cavity are very complex. To overcome these difficulties, cylindrical coordinate system is adopted to calculate the temperature profile of a cylindrical cask body using the multiple cylinder model as the step-1 analysis of the present study. In the step-2 analysis, Cartesian coordinate system is adopted to calculate the temperature distributions of the disk-type structures such as fuel basket and aluminium heat transfer fin using three- dimensional conduction analysis model. The effective thermal conductivity for homogenized spent fuel assembly based on Manteufel and Todreas model is incorporated in step-2 analysis to predict the maximum fuel temperature. The presented two-step computational scheme has been performed using an existing HEATING 7.2 code and the effective thermal conductivity for the homogenized spent fuel assembly has been calculated by additional numerical analyses. Sample analyses of five cases are performed for NAC-STC including normal transportation condition to examine the applicability of the presented simplified computational scheme for thermal analysis of the large LWR spent fuel dry storage and transportation casks and heat transfer characteristics in the cavity of the cask with the disk-type structures

  7. Assessment of dry storage performance of spent LWR fuel assemblies with increasing burnup

    International Nuclear Information System (INIS)

    Peehs, M.; Garzarolli, F.; Goll, W.

    1999-01-01

    Although the safety of a dry long-term spent fuel store is scarcely influenced if a few fuel rods start to leak during extended storage - since all confinement systems are designed to retain gaseous activity safely - it is a very conservative safety goal to avoid the occurrence of systematic rod defects. To assess the extended storage performance of a spent fuel assembly (FA), the experience can be collated into 3 storage modes: I - fast rate of temperature decrease δ max ≥ δ ≥ 300 deg. C, II - medium rate of decrease for the fuel rod dry storage temperature 300 deg. C > δ ≥ 200 deg. C, III - slow to negligible rate of temperature decrease for δ 2 -fuel are practically immobile during storage. Consequently all fission-product-driven defect mechanisms will not take place. The leading defect mechanism - also for fuel rods with increased burnup - remains creep due to the hoop strain resulting from the fuel rod internal fission gas pressure. Limiting the creep to its primary and secondary stages prevents fuel rod degradation. The allowable uniform strain of the cladding is 1 - 2%. Calculations were performed to predict the dry storage performance of fuel assemblies with a burnup ≤ 55 GW · d/tHM based on the fuel assemblies end of life (EOL)-data and on a representative curve T = f(t). The maximum allowable hot spot temperature of a fuel rod in the CASTOR V cask was between 348 deg. C (U FA) and 358 deg. C (MOX FA). The highest hoop strain predicted after 40 years of storage is 0.77% proving that spent LWR fuel dry storage is safe. (author)

  8. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DelCul, Guillermo Daniel [ORNL; Trowbridge, Lee D [ORNL; Renier, John-Paul [ORNL; Ellis, Ronald James [ORNL; Williams, Kent Alan [ORNL; Spencer, Barry B [ORNL; Collins, Emory D [ORNL

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  9. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    International Nuclear Information System (INIS)

    DelCul, Guillermo D.; Trowbridge, Lee D.; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B.; Collins, Emory D.

    2009-01-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the 235 U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of 238 Pu due to the presence of 236 U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance

  10. Design of a dry cask storage system for spent LWR fuels: radiation protection, subcriticality, and heat removal aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, U. [Turkish Atomic Energy Authority, Ankara (Turkey). Nuclear Safety Dept.; Zabunoolu, O.H. [Hacettepe Univ., Ankara (Turkey). Dept. of Nuclear Engineering

    2006-08-15

    Spent nuclear fuel resulting from reactor operation must be safely stored and managed prior to reprocessing and/or final disposal of high-level waste. Any spent fuel storage system must provide for safe receipt, handling, retrieval, and storage of spent fuel. In order to achieve the safe storage, the design should primarily provide for radiation protection, subcriticality of spent fuel, and removal of spent fuel residual heat. This article is focused on the design of a metal-shielded dry-cask storage system, which will host spent LWR fuels burned to 33 000, 45 000, and 55 000 MWd/t U and cooled for 5 or 10 years after discharge from reactor. The storage system is analyzed by taking into account radiation protection, subcriticality, and heat-removal aspects; and appropriate designs, in accordance with the international standards. (orig.)

  11. Extending dry storage of spent LWR fuel for up to 100 years

    International Nuclear Information System (INIS)

    Einziger, R.E.; McKinnon, M.A.; Machiels, A.J.

    1999-01-01

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and excessive

  12. Extending dry storage of spent LWR fuel for up to 100 years

    International Nuclear Information System (INIS)

    Einziger, R. E.

    1998-01-01

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and

  13. Effects of gaseous radioactive nuclides on the design and operation of repositories for spent LWR fuel in rock salt

    International Nuclear Information System (INIS)

    Jenks, G.H.

    1979-12-01

    Information relating to the identities and amounts of gaseous radionuclides present in spent LWR fuel and to their release from canistered spent fuel under plausible storage and disposal conditions was assembled, reviewed, and analyzed. Information was also reviewed and analyzed on several other subjects that relate to the integrity of the carbon steel canister in which the spent fuel is to be encapsulated and to the expected rates of transfer of gaseous radionuclides through crushed salt backfill within a disposal room in a reference repository in rock salt. The advantages and disadvantages were considered for several different canister-backfill materials, and recommendations were made regarding preferred materials. Other recommendations relate to encapsulation procedures and specifications and to needs for additional experimental studies. The objective of this work was to provide reference information, conclusions, and recommendations that could be used to establish design and operating conditions and procedures for a bedded salt repository for spent LWR fuel and that could also be used to help evaluate the safety of the repository. The results of this work will also generally apply to spent fuel repositories in domal salt. However, because the domal salt may have little or no brine inclusions within it, there may be little or no possibility that brine will migrate into open spaces around an emplaced canister. Addordingly, some of the concerns that result from the possible occurrence of brine migration in bedded salt may be of no importance in domal salt

  14. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    International Nuclear Information System (INIS)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0 2 ) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations

  15. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  16. Issues for Conceptual Design of AFCF and CFTC LWR Spent Fuel Separations Influencing Next-Generation Aqueous Fuel Reprocessing

    International Nuclear Information System (INIS)

    D. Hebditch; R. Henry; M. Goff; K. Pasamehmetoglu; D. Ostby

    2007-01-01

    In 2007, the U.S. Department of Energy (DOE) published the Global Nuclear Energy Partnership (GNEP) strategic plan, which aims to meet US and international energy, safeguards, fuel supply and environmental needs by harnessing national laboratory R and D, deployment by industry and use of international partnerships. Initially, two industry-led commercial scale facilities, an advanced burner reactor (ABR) and a consolidated fuel treatment center (CFTC), and one developmental facility, an advanced fuel cycle facility (AFCF) are proposed. The national laboratories will lead the AFCF to provide an internationally recognized R and D center of excellence for developing transmutation fuels and targets and advancing fuel cycle reprocessing technology using aqueous and pyrochemical methods. The design drivers for AFCF and the CFTC LWR spent fuel separations are expected to impact on and partly reflect those for industry, which is engaging with DOE in studies for CFTC and ABR through the recent GNEP funding opportunity announcement (FOA). The paper summarizes the state-of-the-art of aqueous reprocessing, gives an assessment of engineering drivers for U.S. aqueous processing facilities, examines historic plant capital costs and provides conclusions with a view to influencing design of next-generation fuel reprocessing plants

  17. Study on material attractiveness aspect of spent nuclear fuel of LWR and FBR cycles based on isotopic plutonium production

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Saito, Masaki; Novitrian,; Waris, Abdul; Suud, Zaki

    2013-01-01

    Highlights: • The paper analyzes the plutonium production of recycling nuclear fuel option. • To evaluate material attractiveness based on intrinsic feature of material barrier. • Evaluation based on isotopic plutonium composition of spent fuel LWR and FBR. • Even mass number of plutonium gives a significant contribution to material barrier, in particular Pu-238 and Pu-240. • Doping MA in FBR blanket is effective to increase material barrier from weapon grade plutonium to more than MOX fuel grade. - Abstract: Recycling minor actinide (MA) as well as used uranium and plutonium can be considered to reduce nuclear waste production as well as to increase the intrinsic aspect of nuclear nonproliferation as doping material. Plutonium production as a significant aspect of recycling nuclear fuel option, gives some advantages and challenges, such as fissile material utilization of plutonium as well as production of some even mass number plutonium. The study intends to evaluate the material attractiveness based on the intrinsic feature of material barrier such as plutonium composition, decay heat and spontaneous fission neutron components from spent fuel (SF) light water reactor (LWR) and fast breeder reactor (FBR) cycles. A significant contribution has been shown by decay heat (DH) and spontaneous fission neutron (SFN) of even mass number of plutonium isotopes to the total DH and SFN of plutonium element, in particular from isotopic plutonium Pu-238 and Pu-240 contributions. Longer decay cooling time and higher burnup are effective to increase the material barrier (DH and SFN) level from reactor grade plutonium level to MOX grade plutonium level. Material barrier of plutonium element from spent fuel (SF) FBR in the core regions has similarity to the material barrier profile of SF LWR which can be categorized as MOX fuel grade plutonium. Plutonium compositions, DH and SFN components are categorized as weapon grade plutonium level for FBR blanket regions with no

  18. Allowable spent LWR fuel storage temperatures in inert gases, nitrogen, and air

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Cunningham, M.E.; Simonen, E.P.; Thomas, L.E.; Campbell, T.K.; Barnhart, D.M.

    1990-01-01

    Spent fuel in inert dry storage is now a reality in the US; recommended maximum temperature-time conditions are specified in an IBM PC-compatible code. However, spent fuel cannot yet be stored in air because the data and theory needed for predicting allowable temperatures are still being developed. Tests to determine the behavior of spent UO 2 fragments and breached rod specimens in air are providing data that will be used to determine the temperatures that can be allowed for fuel stored in air. 13 refs., 5 figs

  19. Conceptual design of a system for detecting national diversion of LWR spent fuel

    International Nuclear Information System (INIS)

    Holmes, J.P.

    1978-09-01

    A conceptual design for detecting the national diversion of light water reactor spent fuel in water basin storage or in transit between facilities is described. This is the third in a series of reports dealing with this topic. The first report provides the spent fuel facilities and operations baseline description; the second report discusses cost and performance tradeoffs for three inspection and surveillance concepts for the detection of a national diversion of spent fuel. The conceptual design presented herein will provide a basis for future feasibility investigations and tradeoff analyses of hardware configurations and inspection options

  20. A Review and Analysis of European Industrial Experience in Handling LWR Spent Fuel and Vitrified High-Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    2001-07-10

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performance of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States.

  1. Categorization of failed and damaged spent LWR [light-water reactor] fuel currently in storage

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1987-11-01

    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs

  2. Reprocessing techniques of LWR spent fuel for reutilization in hybrid systems and IV generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aruquipa, Wilmer; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany de P. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Since the era of nuclear technology begins, nuclear reactors have been produced spent fuel. This spent fuel contains material that could be recycle and reprocessed by different processes. All these processes aim to reduce the contribution to the final repository through the re-utilization of the nuclear material. Therefore, some new reprocessing options with non-proliferation characteristics have been proposed and the goal is to compare the different techniques used to maximize the effectiveness of the spent fuel utilization and to reduce the volume and long-term radiotoxicity of high-level waste by irradiation with neutron with high energy such as the ones created in hybrid reactors. In order to compare different recovery methods, the cross sections of fuels are calculated with de MCNP code, the first set consists of thorium-232 spiked with the reprocessed material and the second set in depleted uranium that containing 4.5% of U-235 spiked with the reprocessed material; These sets in turn are compared with the cross section of the UO{sub 2} in order to evaluate the efficiency of the reprocessed fuel as nuclear fuel. (author)

  3. LWR spent-fuel radiochemical measurements and comparison with ORIGEN2 predictions

    International Nuclear Information System (INIS)

    Blahnik, D.E.; Jenquin, U.P.; Guenther, R.J.

    1988-01-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory is responsible for providing characterized spent fuel, designated approved testing material (ATMs) for subsequent use in the investigation of nuclear waste disposal forms by the US Department of Energy geologic repository project. The ATMs are selected to assure that test material is available that has a representative range of characteristics important to spent-fuel behavior in a geologic repository. Burnup and fission gas release were the primary criteria for selecting the ATMs. The five spent-fuel ATMs (ATM-101, -103, -104, -105, and -106) currently being characterized by the MCC have rod average burnups ranging from 20 to 43 MWd/kg M, fission gas releases ranging from 0.2 to 11.2%, and are from both boiling water reactors and pressurized water reactors. Radiochemical analyses of the fuel included measurements of 148 Nd (for fuel burnup), the isotopes of uranium and plutonium, and nuclides of importance to repository performance. Cladding samples were analyzed for 14 C. The measured values of selected nuclides were compared with values obtained from calculations with the ORIGEN2 code that was used to predict isotopic quantities for all of the ATMS. Ratios of the ORIGEN2 calculated values to the measured values for ATM-103 and ATM-106 fuel are given

  4. Investigation of Nuclide Importance to Functional Requirements Related to Transport and Long-Term Storage of LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Broadhead, B.L.

    1995-01-01

    The radionuclide characteristics of light-water-reactor (LWR) spent fuel play key roles in the design and licensing activities for radioactive waste transportation systems, interim storage facilities, and the final repository site. Several areas of analysis require detailed information concerning the time-dependent behavior of radioactive nuclides including (1) neutron/gamma-ray sources for shielding studies, (2) fissile/absorber concentrations for criticality safety determinations, (3) residual decay heat predictions for thermal considerations, and (4) curie and/or radiological toxicity levels for materials assumed to be released into the ground/environment after long periods of time. The crucial nature of the radionuclide predictions over both short and long periods of time has resulted in an increased emphasis on thorough validation for radionuclide generation/depletion codes. Current radionuclide generation/depletion codes have the capability to follow the evolution of some 1600 isotopes during both irradiation and decay time periods. Of these, typically only 10 to 20 nuclides dominate contributions to each analysis area. Thus a quantitative ranking of nuclides over various time periods is desired for each of the analysis areas of shielding, criticality, heat transfer, and environmental dose (radiological toxicity). These rankings should allow for validation and data improvement efforts to be focused only on the most important nuclides. This study investigates the relative importances of the various actinide, fission-product, and light-element isotopes associated with LWR spent fuel with respect to five analysis areas: criticality safety (absorption fractions), shielding (dose rate fractions), curies (fractional curies levels), decay heat (fraction of total watts), and radiological toxicity (fraction of potential committed effective dose equivalent). These rankings are presented for up to six different burnup/enrichment scenarios and at decay times from 2 to

  5. Long-term kinetic effects and colloid formations in dissolution of LWR spent fuels

    International Nuclear Information System (INIS)

    Ahn, T.M.

    1996-11-01

    This report evaluates continuous dissolution and colloid formation during spent-fuel performance under repository conditions in high-level waste disposal. Various observations suggest that reprecipitated layers formed on spent-fuel surfaces may not be protective. This situation may lead to continuous dissolution of highly soluble radionuclides such as C-14, Cl-36, Tc-99, I-129, and Cs-135. However, the diffusion limits of various species involved may retard dissolution significantly. For low-solubility actinides such as Pu-(239+240) or Am-(241+243), various processes regarding colloid formation have been analyzed. The processes analyzed are condensation, dispersion, and sorption. Colloid formation may lead to significant releases of low-solubility actinides. However, because there are only limited data available on matrix dissolution, colloid formation, and solubility limits, many uncertainties still exist. These uncertainties must be addressed before the significance of radionuclide releases can be determined. 118 refs

  6. Long-term kinetic effects and colloid formations in dissolution of LWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.M.

    1996-11-01

    This report evaluates continuous dissolution and colloid formation during spent-fuel performance under repository conditions in high-level waste disposal. Various observations suggest that reprecipitated layers formed on spent-fuel surfaces may not be protective. This situation may lead to continuous dissolution of highly soluble radionuclides such as C-14, Cl-36, Tc-99, I-129, and Cs-135. However, the diffusion limits of various species involved may retard dissolution significantly. For low-solubility actinides such as Pu-(239+240) or Am-(241+243), various processes regarding colloid formation have been analyzed. The processes analyzed are condensation, dispersion, and sorption. Colloid formation may lead to significant releases of low-solubility actinides. However, because there are only limited data available on matrix dissolution, colloid formation, and solubility limits, many uncertainties still exist. These uncertainties must be addressed before the significance of radionuclide releases can be determined. 118 refs.

  7. Design features for enhancing international safeguards of AFR dry storage for spent LWR fuel

    International Nuclear Information System (INIS)

    Roberts, F.P.; Harms, N.L.

    1985-05-01

    The Pacific Northwest Laboratory has performed a study for the Nuclear Regulatory Commission to identify and analyze design features that can facilitate the implementation of IAEA safeguards at facilities for dry storage of light water reactor spent fuels. Specific design features are identified that can enhance nuclear material flow and inventory verification. These are assessed from the viewpoint of safeguards effectiveness and possible impacts on the IAEA and the operator of the AFR facility. 11 refs., 3 figs., 2 tabs

  8. Federal fees and contracts for storage and disposal of spent LWR fuel

    International Nuclear Information System (INIS)

    Clark, H.J.

    1979-01-01

    The methodology for establishing a fee for federal spent fuel storage and disposal services is explained along with a presentation of the cost centers and cost data used to calculate the fee. Results of the initial fee calculation and the attendant sensitivity studies are also reviewed. The current status of the fee update is presented. The content of the proposed contract for federal services is briefly reviewed

  9. Measurements of decay heat and gamma-ray intensity of spent LWR fuel assemblies

    International Nuclear Information System (INIS)

    Vogt, J.; Agrenius, L.; Jansson, P.; Baecklin, A.; Haakansson, A.; Jacobsson, S.

    1999-01-01

    Calorimetric measurements of the decay heat of a number of BWR and PWR fuel assemblies have been performed in the pools at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel, CLAB. Gamma-ray measurements, using high-resolution gamma-ray spectroscopy (HRGS), have been carried out on the same fuel assemblies in order to test if it is possible to find a simple and accurate correlation between the 137 CS -intensity and the decay heat for fuel with a cooling time longer than 10-12 years. The results up to now are very promising and may ultimately lead to a qualified method for quick and accurate determination of the decay heat of old fuel by gamma-ray measurements. By means of the gamma spectrum the operator declared data on burnup, cooling time and initial enrichment can be verified as well. CLAB provides a unique opportunity in the world to follow up the decay heat of individual fuel assemblies during several decades to come. The results will be applicable for design and operation of facilities for wet and dry interim storage and subsequent encapsulation for final disposal of the fuel. (author)

  10. Investigation of nuclide importance to functional requirements related to transport and long-term storage of LWR spent fuel

    International Nuclear Information System (INIS)

    Broadhead, B.L.; DeHart, M.D.; Ryman, J.C.; Tang, J.S.; Parks, C.V.

    1995-06-01

    This study investigates the relative importances of the various actinide, fission-product, and light-element isotopes associated with LWR spent fuel with respect to five analysis areas: criticality safety (absorption fractions), shielding (dose rate fractions), curies (fractional curies levels), decay heat (fraction of total watts), and radiological toxicity (fraction of potential committed effective dose equivalent). These rankings are presented for up to six different burnup/enrichment scenarios and at decay times from 2 to 100,000 years. Ranking plots for each of these analysis areas are given in an Appendix for completeness, as well as summary tables in the main body of the report. Summary rankings are presented in terms of high (greater than 10% contribution to the total), medium (between 1% and 10% contribution), and low (less than 1% contribution) for both short- and long-term cooling. When compared with the expected measurement accuracies, these rankings show that most of the important isotopes can be characterized sufficiently for the purpose of radionuclide generation/depletion code validation in each of the analysis areas. Because the main focus of this work is on the relative importances of isotopes associated with L at sign spent fuel, some conclusions may not be applicable to similar areas such as high-level waste (HLW) and nonfuel-bearing components (NFBC)

  11. Spent LWR fuel storage costs: reracking, AR basins, and AFR basins

    International Nuclear Information System (INIS)

    1980-01-01

    Whenever possible, fuel storage requirements will be met by reracking existing reactor basins and/or transfer of fuel to available space in other reactor basins. These alternatives represent not only the lowest cost storage options but also the most timely. They are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than those that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the least costly alternative for most utilities will be use of a Federal AFR. Storage costs of $100,000 to $150,000 MTU at a AFR are less costly than charges of up to $320,000/MTU that could be incurred by the use of AR basins. AFR storage costs do not include transportation from the reactor to the AFR. This cost would be paid by the utility separately. Only when a utility requires annual storage capacity for 100 MTU of spent fuel can self-storage begin to compete with AFR costs. The large reactor complexes discharging these fuel quantities are not currently those that require relief from fuel storage problems

  12. Combined storage system for LWR spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Baxter, B.J.; Ganley, J.T.; Washington, J.A.

    1983-01-01

    The MODREX storage system consists of four basic elements: (1) the storage canister, (2) the storage module, (3) the storage cask, and (4) the transport cask. The storage canister is the heart of the system and, when used in combination with the module or either of the casks, allows the MODREX system to respond quickly to varied storage system requirements. The MODREX system can be used to hold either spent fuel assemblies or canistered solidified HLW. The ability to combine a basic storage canister with either a concrete module or a metal cask provides flexibility to meet a wide range of storage requirements. The spent fuel is stored in a dry, inert atmosphere, which essentially eliminates corrosion or deterioration of the cladding during extended storage periods. The storage canister and concrete storage module provide additional barriers against radioactivity release, enhancing long-term safety. Heat dissipation is passive, eliminating the need for additional emergency cooling systems or special redundancy. Modular, expandable construction permits minimum initial investment and capital carrying charges; additional capacity is built and paid for only as it is needed, retaining flexibility. 6 references, 2 figures, 1 table

  13. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation: Appendix 2B, User's guide to the LWR assemblies data base, Appendix 2C, User's guide to the LWR radiological data base, Appendix 2D, User's guide to the LWR quantities data base

    International Nuclear Information System (INIS)

    1987-12-01

    This User's Guide for the LWR Assemblies data base system is part of the Characteristics Data Base being developed under the Waste Systems Data Development Program. The objective of the LWR Assemblies data base is to provide access at the personal computer level to information about fuel assemblies used in light-water reactors. The information available is physical descriptions of intact fuel assemblies and radiological descriptions of spent fuel disassembly hardware. The LWR Assemblies data base is a user-oriented menu driven system. Each menu is instructive about its use. Section 5 of this guide provides a sample session with the data base to assist the user

  14. Development of a dry transport and storage cask for spent LWR fuel assemblies in Spain

    International Nuclear Information System (INIS)

    Melches, C.; Uriarte, A.; Espallardo, J.A.

    1982-01-01

    One of the advantages of the cask storage concept is its flexibility which makes it specially attractive in the case of the Spanish circumstances. For these reasons the Empresa Nacional del Uranio, S.A. (ENUSA), Junta de Energia Nuclear (JEN) and Equipos Nucleares, S.A. (ENSA) initiated in 1981 a joint program for the development of a prototype cask for the dry transport and storage of spent fuel assemblies. This program includes as main steps the analysis of the conceptual design, the detailed design and experimental tests, the fabrication of a prototype and its licencing and safety testing. The mentioned program, which started in the early 1981, is scheduled to be completed at the end of 1984

  15. Consequences of postulated losses of LWR spent fuel and plutonium shipping packages at sea

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Baker, D.A.; Beyer, C.E.; Friley, J.R.; Mandel, S.; Peterson, P.L.; Sominen, F.A.

    1977-10-01

    The potential consequences of the loss of a large spent fuel cask and of a single 6M plutonium shipping package into the sea for two specific accident cases are estimated. The radiation dose to man through the marine food chain following the loss of undamaged and fire-damaged packages to the continental shelf and in the deep ocean are conservatively estimated. Two failure mechanisms that could lead to release of radioactive material after loss of packages into the ocean have been considered: corrosion and hydrostatic pressure. A third possible mechanism is thermal overpressurization following burial in marine sediments. It was determined that the seals or pressure relief devices on an undamaged spent fuel cask might fail from hydrostatic forces for losses on the continental shelf although some cask designs would retain their integrity at this depth. The population dose to man through the marine food chain following these scenarios has been estimated. The dose estimates are made relating the radioactive material released and the seafood productivity in the region of the release. Doses are based on a one-year consumption of contaminated seafood. The loss of a single plutonium package on the continental shelf is estimated to produce a population dose commitment of less than 250 man-rem for recycle plutonium. The dose commitment to the average individual is less than one millirem. Doses for losses of undamaged casks to the continental shelf and deep ocean and for loss of a fire-damaged cask to the deep ocean were determined to be several orders of magnitude smaller. 22 tables, 10 figures

  16. Road transport of LWR spent fuel in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Bach, R.

    1987-01-01

    Since 1967, when fuel from LWRs was first transported by road from the Kahl reactor in the Federal Republic of Germany to the Eurochemic reprocessing plant in Belgium, a total of more than 400 road transports have been performed without any adverse effect on the environment. In the beginning, road transport was the dominant mode. However, in recent years large capacity rail flasks with a weight ranging from 80 to 110 tonnes have been put into service in order to cope with the increasing demand of transport services and to replace existing smaller flasks designed primarily for road transport. Therefore, the number of spent fuel transports by road has declined. However, road transport of heavy flasks from reactor sites without a direct rail link to a nearby rail terminal has become an important task and a number of special problems have had to be solved. The following items are discussed, with special emphasis placed on heavy load transports by road from the reactor to a nearby rail terminal: design of road transport equipment to meet the requirements of the national traffic law; application of technical and administrative procedures to meet the IAEA Regulations; transport restrictions due to overload/oversize; transfer of the flask from the reactor to the transport vehicle; handling of the flask at the rail terminal; turn-around inspection and periodic maintenance of equipment to ensure safe performance of transport; and physical protection during transport and handling at rail terminals. (author). 4 figs

  17. Melting process to condition decladding hulls generated by the reprocessing of LWR and FBR spent fuels

    International Nuclear Information System (INIS)

    Bonniaud, R.; Jacquet-Francillon, N.; Jouan, A.; Sombret, C.

    1981-01-01

    The fusion compaction of metallic waste from spent fuel hulls is shown to be easily feasible for both Zircaloy and for stainless steel, and volume reduction factors in the region of 5 to 7, corresponding to the theoretical density of the alloy obtained, are arrived at quite easily. The Zircaloy copper alloy, put into use to lower the fusion point of the Zircaloy, appears extremely interesting both as to the ease with which it can be used and the possibility which it offers of working at temperatures always lower than 1250 0 C. The decreasing of fusion temperature is less spectacular with stainless steel; only the use of silicon enabling the lowering of the temperature to around 1200 0 C appears really feasible. The use of decontaminating agents either during or at the end of the fusion operation seems to be a promising technique, especially in the case of stainless steel where the use of a borosilicated glass is easy. The choice of decontaminating agent is more difficult for Zircaloy which reduces the principal oxide components of glasses and makes necessary the use of molten salts mixtures, the composition of which has not yet been defined. The decontamination factors obtained during the tests run on steel are encouraging although they were obtained using artificially contaminated hulls; they should therefore be considered with precaution and be confirmed by further tests in hot cells using real hulls

  18. Calculation of burn-up data for spent LWR-fuels with respect to the design of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1976-11-01

    The design of spent fuel reprocessing plants makes necessary a detailed knowledge of the composition of the incoming fuels as a function of burn-up. This report gives a broad review on the composition of radionuclides in fuels (fission products, actinides) and structural materials for different burn-up data. (orig.) [de

  19. How well does ORIGEN predict spent LWR [Light Water Reactor] fuel characteristics

    International Nuclear Information System (INIS)

    Mailen, J.C.; Roddy, J.W.

    1987-01-01

    The ORIGEN computer code is widely used to estimate the radionuclide content (actinides, activation and fission products) of irradiated reactor fuel and the resultant heat generation and radiation levels associated with such fuel. These estimates are used as source terms in safety evaluations of operating reactors, for evaluation of fuel behavior and regulation of the at-reactor storage, for transportation studies, and for evaluation of the ultimate geologic storage of the fuel. Calculated values determined using several variations of ORIGEN have been compared with experimentally determined values for actual fuel for many, but not all, of the parameters desired. In most cases, the comparisons did not use the most recent ORIGEN2 program, the most recent data libraries, or currently required quality assurance (QA) procedures. Comparisons of fuel composition data with ORIGEN2 are very limited, and the only data with proper QA are currently being acquired by Battelle Pacific Northwest Laboratory. This survey summarizes the fuel data available in the open literature and, where given, the calculated values by ORIGEN. Plans for additional analyses of well-characterized reactor fuel samples to improve the validation of ORIGEN2 are discussed

  20. The safety of French installations for storing LWR spent fuel elements

    International Nuclear Information System (INIS)

    Lefort, G.; Puit, J.C.

    1978-01-01

    The operation of the LWRs requires the storage of irradiated fuel elements in cooling pools, to which it is possible to access directly from the reactor core. After transportation to the reprocessing plants, the storage must be continued in storage pools located at the entry of the plant. The requirements retained in order that no safety problems arise during the overall storage time have been defined from the acquired experience; they are relative to all functions having an effect on the normal operating conditions: cooling, containment, shielding, handling, controls, waste and effluents processing, etc. The requirements have been defined so that the storages cannot be the cause of accidents either resulting in an impact on the environment or being the consequences of the environment conditions: criticality, loss of water, missile impact, earthquakes, etc... They need the permanent presence of a qualified staff [fr

  1. A review and analysis of European industrial experience in handling LWR [light water reactor] spent fuel and vitrified high-level waste

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1988-06-01

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performances of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States. 79 refs., 71 figs., 10 tabs

  2. Control of degradation of spent LWR [light-water reactor] fuel during dry storage in an inert atmosphere

    International Nuclear Information System (INIS)

    Cunningham, M.E.; Simonen, E.P.; Allemann, R.T.; Levy, I.S.; Hazelton, R.F.

    1987-10-01

    Dry storage of Zircaloy-clad spent fuel in inert gas (referred to as inerted dry storage or IDS) is being developed as an alternative to water pool storage of spent fuel. The objectives of the activities described in this report are to identify potential Zircaloy degradation mechanisms and evaluate their applicability to cladding breach during IDS, develop models of the dominant Zircaloy degradation mechanisms, and recommend cladding temperature limits during IDS to control Zircaloy degradation. The principal potential Zircaloy cladding breach mechanisms during IDS have been identified as creep rupture, stress corrosion cracking (SCC), and delayed hydride cracking (DHC). Creep rupture is concluded to be the primary cladding breach mechanism during IDS. Deformation and fracture maps based on creep rupture were developed for Zircaloy. These maps were then used as the basis for developing spent fuel cladding temperature limits that would prevent cladding breach during a 40-year IDS period. The probability of cladding breach for spent fuel stored at the temperature limit is less than 0.5% per spent fuel rod. 52 refs., 7 figs., 1 tab

  3. Destructive examination of 3-cycle LWR fuel rods from Turkey Point Unit 3 for the Climax-Spent Fuel Test

    International Nuclear Information System (INIS)

    Atkin, S.D.

    1981-06-01

    The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reactor fuel rods with similar burnups (28 GWd/MTU) and operating histories

  4. Effect of cladding defect size on the oxidation of irradiated spent LWR [light-water reactor] fuel below 3690C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Strain, R.V.

    1984-01-01

    Tests on spent fuel fragments and rod segments were conducted between 250 and 360 0 C to relate temperature, defect size, and fuel oxidation rate with time-to-cladding-splitting. Defect sizes from 760 μm diameter down to 8 μm, the size of an SCC type breach, were used. Above 283 0 C, the time-to-cladding-splitting was longer for the smaller defects. The enhancement of the incubation time by smaller defects steadily decreased with temperature and was not detected at 250 0 C. 18 refs., 10 figs., 4 tabs

  5. Spent fuel workshop'2002

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2002-01-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO 2 fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO 2 dissolution determined from electrochemical experiments with 238 Pu doped UO 2 M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO 2 studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with α doped UO 2 in Boom clay conditions (K. Lemmens), Studies of the behavior of UO 2 / water interfaces under He 2+ beam (C. Corbel), Alpha and gamma radiolysis effects on UO 2 alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines (M. Kelm), On the potential catalytic behavior of

  6. Criticality impacts on LWR fuel storage efficiency

    International Nuclear Information System (INIS)

    Napolitano, D.

    1992-01-01

    This presentation discusses the criticality impacts throughout storage of fuel onsite including new fuel storage, spent fuel storage, consolidation, and dry storage. The general principles for criticality safety are also be discussed. There is first an introduction which explains today's situation for criticality safety concerns. This is followed by a discussion of criticality safety Regulatory Guides, safety limits and fundamental principles. Design objectives for criticality safety in the 1990's include higher burnups, longer cycles, and higher enrichments which impact the criticality safety design. Criticality safety for new fuel storage, spent fuel storage, fuel consolidation, and dry storage are followed by conclusions. Today's situation is one in which the US does not reprocess, and does not have an operating MRS facility or repository. High density fuel storage rack designs of the 1980s, are filling up. Dry cask storage systems for spent fuel storage are being utilized. Enrichments continue to increase PWR fuel assemblies with enrichments of 4.5 to 5.0 weight percent U-235 and BWR fuel assemblies with enrichments of 3.25 to 3.5 weight percent U-235 are common. Criticality concerns affect the capacity and the economics of light water reactor (LWR) fuel storage arrays by dictating the spacing of fuel assemblies in a storage system, or the use of poisons or exotic materials in the storage system design

  7. A preliminary evaluation of the ability of from-reactor casks to geometrically accommodate commercial LWR spent nuclear fuel

    International Nuclear Information System (INIS)

    Andress, D.; Joy, D.S.; McLeod, N.B.; Peterson, R.W.; Rahimi, M.

    1991-01-01

    The Department of Energy has sponsored a number of cask design efforts to define several transportation casks to accommodate the various assemblies expected to be accepted by the Federal Waste Management System. At this time, three preliminary cask designs have been selected for the final design--the GA-4 and GA-9 truck casks and the BR-100 rail cask. In total, this assessment indicates that the current Initiative I cask designs can be expected to dimensionally accommodate 100% of the PWR fuel assemblies (other than the extra-long South Texas Fuel) with control elements removed, and >90% of the assemblies having the control elements as an integral part of the fuel assembly. For BWR assemblies, >99% of the assemblies can be accommodated with fuel channels removed. This paper summarizes preliminary results of one part of that evaluation related to the ability of the From-Reactor Initiative I casks to accommodate the physical and radiological characteristics of the Spent Nuclear Fuel projected to be accepted into the Federal Waste Management System. 3 refs., 5 tabs

  8. Evaluation of cover gas impurities and their effects on the dry storage of LWR [light-water reactor] spent fuel

    International Nuclear Information System (INIS)

    Knoll, R.W.; Gilbert, E.R.

    1987-11-01

    The purposes of this report are to (1) identify the sources of impurity gases in spent fuel storage casks; (2) identify the expected concentrations and types of reactive impurity gases from these sources over an operating lifetime of 40 years; and (3) determine whether these impurities could significantly degrade cladding or exposed fuel during this period. Four potential sources of impurity gases in the helium cover gas in operating casks were identified and evaluated. Several different bounding cases have been considered, where the reactive gas inventory is either assumed to be completely gettered by the cladding or where all oxygen is assumed to react completely with the exposed fuel. It is concluded that the reactive gas inventory will have no significant effect on the cladding unless all available oxygen reacts with the UO 2 fuel to produce U 3 O 8 at one or two cladding breaches. Based on Zircaloy oxidation data, the oxygen inventory in a fully loaded pressurized water reactor cask such as the Castor-V/21 will be gettered by the Zircaloy cladding in about 1 year if the peak cladding temperature within the task is ≥300 0 C. Only a negligible decrease in the thickness of the cladding would result. 24 refs., 4 tabs

  9. Spent fuel receipt and lag storage facility for the spent fuel handling and packaging program

    International Nuclear Information System (INIS)

    Black, J.E.; King, F.D.

    1979-01-01

    Savannah River Laboratory (SRL) is participating in the Spent Fuel Handling and Packaging Program for retrievable, near-surface storage of spent light water reactor (LWR) fuel. One of SRL's responsibilities is to provide a technical description of the wet fuel receipt and lag storage part of the Spent Fuel Handling and Packaging (SFHP) facility. This document is the required technical description

  10. Reference concepts for the final disposal of LWR spent fuel and other high activity wastes in Spain

    International Nuclear Information System (INIS)

    Huertas, F.; Ulibarri, A.

    1993-01-01

    Studies over the last three years have been recently concluded with the selection of a reference repository concept for the final disposal of spent fuel and other high activity wastes in deep geological formations. Two non-site specific preliminary designs, at a conceptual level, have been developed; one considers granite as the host rock and the other rock salt formations. The Spanish General Radioactive Waste Program also considers clay as a potential host rock for HLW deep disposal; conceptualization for a deep repository in clay is in the initial phase of development. The salt repository concept contemplates the disposal of the HLW in self-shielding casks emplaced in the drifts of an underground facility, excavated at a depth of 850 m in a bedded salt formation. The Custos Type I(7) cask admits up to seven intact PWR fuel assemblies or 21 of BWR type. The final repository facilities are planned to accept a total of 20,000 fuel assemblies (PWR and BWR) and 50 vitrified waste canisters over a period of 25 years. The total space needed for the surface facilities amounts to 322,000 m 2 , including the rock salt dump. The space required for the underground facilities amounts to 1.2 km 2 , approximately. The granite repository concept contemplates the disposal of the HLW in carbon steel canisters, embedded in a 0.75 m thick buffer of swelling smectite clay, in the drifts of an underground facility, excavated at a depth of 55 m in granite. Each canister can host 3 PWR or 9 BWR fuel assemblies. For this concept the total number of canisters needed amounts to 4,860. The space required for the surface and underground facilities is similar to that of the salt concept. The technical principles and criteria used for the design are discussed, and a description of the repository concept is presented

  11. Effects of environments on spent fuel

    International Nuclear Information System (INIS)

    Funk, C.W.; Jacobson, L.D.; Menon, M.N.

    1979-07-01

    This report describes the influence of water storage environment and transportation on spent light water reactor (LWR) fuel assemblies. It also estimates the storage duration and capacity requirements for several assumed scenarios

  12. Economic analyses of LWR fuel cycles

    International Nuclear Information System (INIS)

    Field, F.R.

    1977-05-01

    An economic comparison was made of three options for handling irradiated light-water reactor (LWR) fuel. These options are reprocessing of spent reactor fuel and subsequent recycle of both uranium and plutonium, reprocessing and recycle of uranium only, and direct terminal storage of spent fuel not reprocessed. The comparison was based on a peak-installed nuclear capacity of 507 GWe by CY 2000 and retirement of reactors after 30 years of service. Results of the study indicate that: Through the year 2000, recycle of uranium and plutonium in LWRs saves about $12 billion (FY 1977 dollars) compared with the throwaway cycle, but this amounts to only about 1.3% of the total cost of generating electricity by nuclear power. If deferred costs are included for fuel that has been discharged from reactors but not reprocessed, the economic advantage increases to $17.7 billion. Recycle of uranium only (storage of plutonium) is approximately $7 billion more expensive than the throwaway fuel cycle and is, therefore, not considered an economically viable option. The throwaway fuel cycle ultimately requires >40% more uranium resources (U 3 O 8 ) than does reprocessing spent fuel where both uranium and plutonium are recycled

  13. Effects of cooling time on a closed LWR fuel cycle

    International Nuclear Information System (INIS)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E.

    2012-01-01

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  14. A preliminary evaluation of the ability of from-reactor casks to geometrically accommodate commercial LWR spent nuclear fuel

    International Nuclear Information System (INIS)

    Andress, D.; McLeod, N.B.; Rahimi, M.; Joy, D.S.; Peterson, R.W.

    1991-01-01

    The DOE has sponsored a number of cask design efforts to define several transportation casks to accommodate the various assemblies expected to be accepted by the Federal Waste Management System. At this time, three preliminary cask designs have been selected for the final design - the GA-4 and GA-9 truck casks and the BR-100 rail cask. The GA-4 cask is designed for PWR fuel only; the GA-9 cask is a longer cask with less shielding designed for BWR fuel only; and the BR-100 cask is designed to accommodate both PWR and BWR fuels. In total, this assessment indicates that the current Initiative I cask designs can be expected to dimensionally accommodate 100% of the PWR fuel assemblies (other than the extra-long South Texas Fuel) with control elements removed, and >90% of the assemblies having the control elements as an integral part of the fuel assembly. For BWR assemblies, >99% of the assemblies can be accommodated with fuel channels removed. Because of the button and spring interference, the basket openings in these casks will not accommodate assemblies in the BWR/2,3 and BWR/4-6 fuel classes with the fuel channels in place

  15. Spent fuel shipping cask accident evaluation

    International Nuclear Information System (INIS)

    Fields, S.R.

    1975-12-01

    Mathematical models have been developed to simulate the dynamic behavior, following a hypothetical accident and fire, of typical casks designed for the rail shipment of spent fuel from nuclear reactors, and to determine the extent of radioactive releases under postulated conditions. The casks modeled were the IF-300, designed by the General Electric Company for the shipment of spent LWR fuel, and a cask designed by the Aerojet Manufacturing Company for the shipment of spent LMFBR fuel

  16. Outline of Swedish activities on LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M [Studsvik Nuclear, Nykoeping (Sweden); Roennberg, G [OKG AB (Sweden)

    1997-12-01

    The presentation outlines the Swedish activities on LWR fuel and considers the following issues: electricity production; performance of operating nuclear power plants; nuclear fuel cycle and waste management; research and development in nuclear field. 4 refs, 4 tabs.

  17. The dupic fuel cycle synergism between LWR and HWR

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Lee, H.H.; Kim, K.P.; Sullivan, J.D.; Boczar, P.G.; Gadsby, R.D.

    1999-01-01

    The DUPIC fuel cycle can be developed as an alternative to the conventional spent fuel management options of direct disposal or plutonium recycle. Spent LWR fuel can be burned again in a HWR by direct refabrication into CANDU-compatible DUPIC fuel bundles. Such a linkage between LWR and HWR can result in a multitude of synergistic effects, ranging from savings of natural uranium to reductions in the amount of spent fuel to be buried in the earth, for a given amount of nuclear electricity generated. A special feature of the DUPIC fuel cycle is its compliance with the 'Spent Fuel Standard' criteria for diversion resistance, throughout the entire fuel cycle. The DUPIC cycle thus has a very high degree of proliferation resistance. The cost penalty due to this technical factor needs to be considered in balance with the overall benefits of the DUPIC fuel cycle. The DUPIC alternative may be able to make a significant contribution to reducing spent nuclear fuel burial in the geosphere, in a manner similar to the contribution of the nuclear energy alternative in reducing atmospheric pollution from fossil fuel combustion. (author)

  18. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Shirahashi, K.; Maeda, M.; Nakai, T.

    1996-01-01

    Japan has scarce energy resources and depends on foreign resources for 84% of its energy needs. Therefore, Japan has made efforts to utilize nuclear power as a key energy source since mid-1950's. Today, the nuclear energy produced from 49 nuclear power plants is responsible for about 31% of Japan's total electricity supply. The cumulative amount of spent fuel generated as of March 1995 was about 11,600 Mg U. Japan's policy of spent fuel management is to reprocess spent nuclear fuel and recycle recovered plutonium and uranium as nuclear fuel. The Tokai reprocessing plant continues stable operation keeping the annual treatment capacity or around 90 Mg U. A commercial reprocessing plant is under construction at Rokkasho, northern part of Japan. Although FBR is the principal reactor to use plutonium, LWR will be a major power source for some time and recycling of the fuel in LWRs will be prompted. (author). 3 figs

  19. Nuclear criticality safety studies applicable to spent fuel shipping cask designs and spent fuel storage

    International Nuclear Information System (INIS)

    Tang, J.S.

    1980-11-01

    Criticality analyses of water-moderated and reflected arrays of LWR fresh and spent fuel assemblies were carried out in this study. The calculated results indicate that using the assumption of fresh fuel loading in spent fuel shipping cask design leads to assembly spacings which are about twice the spacings of spent fuel loadings. Some shipping cask walls of composite lead and water are more effective neutron reflectors than water of 30.48 cm

  20. Characteristics of spent nuclear fuel

    International Nuclear Information System (INIS)

    Notz, K.J.

    1988-04-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will, or may, eventually be disposed of in a geological repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. This report deals with spent fuels, but for completeness, the other sources are described briefly. Detailed characterizations are required for all of these potential repository wastes. These characteristics include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. In addition, the present inventories and projected quantities of the various wastes are needed. This information has been assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. 5 refs., 3 figs., 4 tabs

  1. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    1992-10-01

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  2. Materials behavior in interim storage of spent fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Gilbert, E.R.; Inman, S.C.

    1982-01-01

    Interim storage has emerged as the only current spent-fuel management method in the US and is essential in all countries with nuclear reactors. Materials behavior is a key aspect in licensing interim-storage facilities for several decades of spent-fuel storage. This paper reviews materials behavior in wet storage, which is licensed for light-water reactor (LWR) fuel, and dry storage, for which a licensing position for LWR fuel is developing

  3. Spent fuel storage for ISER plant

    International Nuclear Information System (INIS)

    Nakajima, Takasuke; Kimura, Yuzi

    1987-01-01

    ISER is an intrinsically safe reactor basing its safety only on physical laws, and uses a steel reactor vessel in order to be economical. For such a new type reactor, it is essentially important to be accepted by the society by showing that the reactor is more profitable than conventional reactors to the public in both technical and economic viewpoint. It is also important that the reactor raises no serious problem in the total fuel cycle. Reprocessing seems one of the major worldwide fuel cycle issues. Spent fuel storage is also one of the key technologies for fuel cycle back end. Various systems for ISER spent fuel storages are examined in the present report. Spent fuel specifications of ISER are similar to those of LWR and therefore, most of LWR spent fuel technologies are basically applicable to ISER spent fuel. Design requirements and examples of storage facilities are also discussed. Dry storage seems to be preferable for the relatively long cooling time spent fuel like ISER's one from economical viewpoint. Vault storage will possibly be the most advantageous for large storage capacity. Another point for discussion is the location and international collaboration for spent fuel storages: ISER expected to be a worldwide energy source and therefore, international spent fuel management seems to be fairly attractive way for an energy recipient country. (Nogami, K.)

  4. Comparison of scale/triton and helios burnup calculations for high burnup LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tittelbach, S.; Mispagel, T.; Phlippen, P.W. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany)

    2009-07-01

    The presented analyses provide information about the suitability of the lattice burnup code HELIOS and the recently developed code SCALE/TRITON for the prediction of isotopic compositions of high burnup LWR fuel. The accurate prediction of the isotopic inventory of high burnt spent fuel is a prerequisite for safety analyses in and outside of the reactor core, safe loading of spent fuel into storage casks, design of next generation spent fuel casks and for any consideration of burnup credit. Depletion analyses are performed with both burnup codes for PWR and BWR fuel samples which were irradiated far beyond 50 GWd/t within the LWR-PROTEUS Phase II project. (orig.)

  5. Arrival condition of spent fuel after storage, handling, and transportation

    International Nuclear Information System (INIS)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables

  6. Pie technique of LWR fuel cladding fracture toughness test

    International Nuclear Information System (INIS)

    Endo, Shinya; Usami, Koji; Nakata, Masahito; Fukuda, Takuji; Numata, Masami; Kizaki, Minoru; Nishino, Yasuharu

    2006-01-01

    Remote-handling techniques were developed by cooperative research between the Department of Hot Laboratories in the Japan Atomic Energy Research Institute (JAERI) and the Nuclear Fuel Industries Ltd. (NFI) for evaluating the fracture toughness on irradiated LWR fuel cladding. The developed techniques, sample machining by using the electrical discharge machine (EDM), pre-cracking by fatigue tester, sample assembling to the compact tension (CT) shaped test fixture gave a satisfied result for a fracture toughness test developed by NFL. And post-irradiation examination (PIE) using the remote-handling techniques were carried out to evaluate the fracture toughness on BWR spent fuel cladding in the Waste Safety Testing Facility (WASTEF). (author)

  7. HFR irradiation testing of light water reactor (LWR) fuel

    International Nuclear Information System (INIS)

    Markgraf, J.F.W.

    1985-01-01

    For the materials testing reactor HFR some characteristic information with emphasis on LWR fuel rod testing capabilities and hot cell investigation is presented. Additionally a summary of LWR fuel irradiation programmes performed and forthcoming programmes are described. Project management information and a list of publications pertaining to LWR fuel rod test programmes is given

  8. Release of segregated nuclides from spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.H.; Tait, J.C. [Atomic Energy Canada Ltd., Pinawa, MB (Canada). Whiteshell Laboratories

    1997-10-01

    The potential release of fission and activation products from spent nuclear fuel into groundwater after container failure in the Swedish deep repository is discussed. Data from studies of fission gas release from representative Swedish BWR fuel are used to estimate the average fission gas release for the spent fuel population. Information from a variety of leaching studies on LWR and CANDU fuel are then reviewed as a basis for estimating the fraction of the inventory of key radionuclides that could be released preferentially (the Instant Release Fraction of IRF) upon failure of the fuel cladding. The uncertainties associated with these estimates are discussed. 33 refs, 6 figs, 3 tabs.

  9. Spent fuel storage

    International Nuclear Information System (INIS)

    Huppert

    1976-01-01

    To begin with, the author explains the reasons for intermediate storage of fuel elements in nuclear power stations and in a reprocessing plant and gives the temperature and radioactivity curves of LWR fuel elements after removal from the reactor. This is followed by a description of the facilities for fuel element storage in a reprocessing plant and of their functions. Futher topics are criticality and activity control, the problem of cooling time and safety systems. (HR) [de

  10. Providing flexibility in spent fuel and vitrified waste management

    International Nuclear Information System (INIS)

    Bradley, N.; O'Tallamhain, C.; Brown, G.A.

    1986-01-01

    The UK Central Electricity Generating Board is pondering a decision to build a dry vault store as a buffer in its overall AGR spent fuel management programme. The application of the dry vault is not limited to fuel from gas cooled reactors, it can be used for spent LWR fuel and vitrified waste. A cutaway diagram of such a vault is presented. (UK)

  11. Spent fuels program

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1983-01-01

    The goal of this task is to support the Domestic Spent Fuel Storage Program through studies involving the transport of spent fuel. A catalog was developed to provide authoritative, timely, and accessible transportation information for persons involved in the transport of irradiated reactor fuel. The catalog, drafted and submitted to the Transportation Technology Center, Sandia National Laboratories, for their review and approval, covers such topics as federal, state, and local regulations, spent fuel characteristics, cask characteristics, transportation costs, and emergency response information

  12. Transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Lung, M.; Lenail, B.

    1987-01-01

    From a safety standpoint, spent fuel is clearly not ideal for permanent disposal and reprocessing is the best method of preparing wastes for long-term storage in a repository. Furthermore, the future may demonstrate that some fission products recovered in reprocessing have economic applications. Many countries have in fact reached the point at which the recycling of plutonium and uranium from spent fuel is economical in LWR's. Even in countries where this is not yet evident, (i.e., the United States), the French example shows that the day will come when spent fuel will be retrieved for reprocessing and recycle. It is highly questionable whether spent fuel will ever be considered and treated as waste in the same sense as fission products and processed as such, i.e., packaged in a waste form for permanent disposal. Even when recycled fuel material can no longer be reused in LWR's because of poor reactivity, it will be usable in FBR's. Based on the considerable experience gained by SGN and Cogema, this paper has provided practical discussion and illustrations of spent fuel transport and storage of a very important step in the nuclear fuel management process. The best of spent fuel storage depends on technical, economic and policy considerations. Each design has a role to play and we hope that the above discussion will help clarify certain issues

  13. Spent fuel transportation in the United States: commercial spent fuel shipments through December 1984

    International Nuclear Information System (INIS)

    1986-04-01

    This report has been prepared to provide updated transportation information on light water reactor (LWR) spent fuel in the United States. Historical data are presented on the quantities of spent fuel shipped from individual reactors on an annual basis and their shipping destinations. Specifically, a tabulation is provided for each present-fuel shipment that lists utility and plant of origin, destination and number of spent-fuel assemblies shipped. For all annual shipping campaigns between 1980 and 1984, the actual numbers of spent-fuel shipments are defined. The shipments are tabulated by year, and the mode of shipment and the casks utilized in shipment are included. The data consist of the current spent-fuel inventories at each of the operating reactors as of December 31, 1984. This report presents historical data on all commercial spent-fuel transportation shipments have occurred in the United States through December 31, 1984

  14. Nondestructive verification and assay systems for spent fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Phillips, J.R.; Bosler, G.E.; Eccleston, G.W.; Halbig, J.K.; Hatcher, C.R.; Hsue, S.T.

    1982-04-01

    This is an interim report of a study concerning the potential application of nondestructive measurements on irradiated light-water-reactor (LWR) fuels at spent-fuel storage facilities. It describes nondestructive measurement techniques and instruments that can provide useful data for more effective in-plant nuclear materials management, better safeguards and criticality safety, and more efficient storage of spent LWR fuel. In particular, several nondestructive measurement devices are already available so that utilities can implement new fuel-management and storage technologies for better use of existing spent-fuel storage capacity. The design of an engineered prototype in-plant spent-fuel measurement system is approx. 80% complete. This system would support improved spent-fuel storage and also efficient fissile recovery if spent-fuel reprocessing becomes a reality

  15. Spent fuel characteristics provided by the CDB: An update

    International Nuclear Information System (INIS)

    Notz, K.J.; Salmon, R.; Welch, T.D.; Reich, W.J.; Moore, R.S.

    1992-01-01

    The Characteristics Data Base (CDB) task provides OCRWM with the detailed technical characteristics of potential repository wastes, which consist primarily of commercial spent nuclear fuel, but also includes other spent fuel (and also high-level and miscellaneous wastes). A major revision of the original CDB report and PC data bases has just been completed under formal QA peer review guidelines and Revision 1 is ready to be issued. This paper describes the classification scheme developed for LWR fuel assemblies and the five PC data bases for LWR spent fuel, which provide data on quantities, assemblies, radiological properties, non-fuel assembly hardware, and serial numbers. The future role of other (i.e., non-LWR) spent fuel is also cited

  16. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  17. Spent fuel data base: commercial light water reactors

    International Nuclear Information System (INIS)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel

  18. Reprocessing facility for spent fuel from LWR type reactors and mixed-oxide fuel fabrication plant in the Taxoeldern Forest near Wackersdorf, Bavaria (WAA) - first partial licence

    International Nuclear Information System (INIS)

    1985-01-01

    Full text of the first partial licence for the WAA, allowing erection of the following buildings or structures: External fence; guardhouse 1, i.e. the building and the ground connection system with lightning protection system, the fire alarm system and mobile fire-fighting systems; the fuel receiving station, including building and operation systems; excavation work for the main reprocessing building. (HP) [de

  19. Properties of light water reactor spent fuel cladding. Interim report

    International Nuclear Information System (INIS)

    Farwick, D.G.; Moen, R.A.

    1979-08-01

    The Commercial Waste and Spent Fuel Packaging Program will provide containment packages for the safe storage or disposal of spent Light Water Reactor (LWR) fuel. Maintaining containment of radionuclides during transportation, handling, processing and storage is essential, so the best understanding of the properties of the materials to be stored is necessary. This report provides data collection, assessment and recommendations for spent LWR fuel cladding materials properties. Major emphasis is placed on mechanical properties of the zircaloys and austenitic stainless steels. Limited information on elastic constants, physical properties, and anticipated corrosion behavior is also provided. Work is in progress to revise these evaluations as the program proceeds

  20. Preliminary study on direct recycling of spent PWR fuel in PWR system

    International Nuclear Information System (INIS)

    Waris, Abdul; Nuha; Novitriana; Kurniadi, Rizal; Su'ud, Zaki

    2012-01-01

    Preliminary study on direct recycling of PWR spent fuel to support SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario has been conducted. Several spent PWR fuel compositions in loaded PWR fuel has been evaluated to obtain the criticality of reactor. The reactor can achieve it criticality for U-235 enrichment in the loaded fresh fuel is at least 4.0 a% with the minimum fraction of the spent fuel in the core is 15.0 %. The neutron spectra become harder with the escalating of U-235 enrichment in the loaded fresh fuel as well as the amount of the spent fuel in the core.

  1. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  2. Evaluation of nuclear fuel reprocessing strategies. 2. LWR fuel storage, recycle economics and plutonium logistics

    International Nuclear Information System (INIS)

    Prince, B.E.; Hadley, S.W.

    1983-01-01

    This is the second of a two-part report intended as a critical review of certain issues involved with closing the Light Water Reactor (LWR) fuel cycle and establishing the basis for future transition to commercial breeder applications. The report is divided into four main sections consisting of (1) a review of the status of the LWR spent fuel management and storage problem; (2) an analysis of the economic incentives for instituting reprocessing and recycle in LWRs; (3) an analysis of the time-dependent aspects of plutonium economic value particularly as related to the LWR-breeder transition; and (4) an analysis of the time-dependent aspects of plutonium requirements and supply relative to this transition

  3. Melting process to condition decladding hulls generated by the reprocessing of L.W.R. and F.B.R. spent fuels

    International Nuclear Information System (INIS)

    Bonniaud, R.; Jacquet-Francillon, N.; Jouan, A.; Sombret, C.

    1980-11-01

    The fusion compaction of metallic waste from spent fuel hulls is shown to be easily feasible for both Zircaloy and for stainless steel with volume reduction factors of 5 to 7. The Zircaloy copper alloy, put into use to lower the fusion point of the Zircaloy appears extremely interesting both as to the ease with which it can be used and the possibility which it offers of working at temperatures always lower than 1250 0 C. With stainless steel, only the use of silicon enabling the lowering of the temperature to around 1200 0 C appears really feasible. The use of decontaminating agents either during or at the end of the fusion operation seems to be a promising technique, especially in the case of stainless steel where the use of a borosilicated glass is easy. The choice of decontaminating agent is more difficult for Zircaloy and makes necessary the use of molten salts mixtures, the composition of which has not yet been defined. The decontamination factors obtained during the tests run on steel are encouraging, they should be confirmed by further tests in hot cells using real hulls. This study has made it possible to determine the principal parameters necessitated by the setting up of an industrial furnace project. The realisation of fusion compaction units for waste from fuel hulls generated by future reprocessing plants seems to be a real short-term possibility

  4. Status of LWR fuel design and future usage of JENDL

    International Nuclear Information System (INIS)

    Ito, Takuya

    2008-01-01

    For all conventional LWR fuel design codes of LWR fuel manufactures in Japan, the cross section library are based on the ENDF/B. Recently we can see several movements for the utilization of JENDL library for the LWR fuel design. The latest version of NEUPHYS cross section library is based on the JENDL-3.2. To accelerate this movement of JENDL utilization in LWR fuel design, it is necessary to prepare a high quality JENDL document, systematic validation of JENDL and to appeal them abroad effectively. (author)

  5. Spent fuel management

    International Nuclear Information System (INIS)

    2005-01-01

    The production of nuclear electricity results in the generation of spent fuel that requires safe, secure and efficient management. Appropriate management of the resulting spent fuel is a key issue for the steady and sustainable growth of nuclear energy. Currently about 10,000 tonnes heavy metal (HM) of spent fuel are unloaded every year from nuclear power reactors worldwide, of which 8,500 t HM need to be stored (after accounting for reprocessed fuel). This is the largest continuous source of civil radioactive material generated, and needs to be managed appropriately. Member States have referred to storage periods of 100 years and even beyond, and as storage quantities and durations extend, new challenges arise in the institutional as well as in the technical area. The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs

  6. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Ferguson, D.E.; Croff, A.G.

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  7. Spent fuel storage facility, Kalpakkam

    International Nuclear Information System (INIS)

    Shreekumar, B.; Anthony, S.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Kalpakkam is designed to store spent fuel arising from PHWRs. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Kalpakkam was hot commissioned in December 2006. All systems, structures and components (SSCs) related to safety are designed to meet the operational requirements

  8. Spent fuel storage and isolation

    International Nuclear Information System (INIS)

    Bensky, M.S.; Kurzeka, W.J.; Bauer, A.A.; Carr, J.A.; Matthews, S.C.

    1979-02-01

    The principal spent fuel activities conducted within the commercial waste and spent fuel within the Commercial Waste and Spent Fuel Packaging Program are: simulated near-surface (drywell) storage demonstrations at Hanford and the Nevada Test Site; surface (sealed storage cask) and drywell demonstrations at the Nevada Test Site; and spent fuel receiving and packaging facility conceptual design. These investigations are described

  9. Automatic spent fuel ID number reader (I)

    International Nuclear Information System (INIS)

    Tanabe, S.; Kawamoto, H.; Fujimaki, K.; Kobe, A.

    1991-01-01

    An effective and efficient technique has been developed for facilitating identification works of LWR spent fuel stored in large scale spent fuel storage pools of such as processing plants. Experience shows that there are often difficulties in the implementation of operator's nuclear material accountancy and control works as well as safeguards inspections conducted on spent fuel assemblies stored in deep water pool. This paper reports that the technique is realized as an automatic spent fuel ID number reader system installed on fuel handling machine. The ID number reader system consists of an optical sub-system and an image processing sub-system. Thousands of spent fuel assemblies stored in under water open racks in each storage pool could be identified within relatively short time (e.g. within several hours) by using this combination. Various performance tests were carried out on image processing sub-system in 1990 using TV images obtained from different types of spent fuel assemblies stored in various storage pools of PWR and BWR power stations

  10. The cascad spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Guay, P.; Bonnet, C.

    1991-01-01

    France has a wide variety of experimental spent fuels different from LWR spent fuel discharged from commercial reactors. Reprocessing such fuels would thus require the development and construction of special facilities. The French Atomic Energy Commission (CEA) has consequently opted for long-term interim storage of these spent fuels over a period of 50 years. Comparative studies of different storage concepts have been conducted on the basis of safety (mainly containment barriers and cooling), economic, modular design and operating flexibility criteria. These studies have shown that dry storage in a concrete vault cooled by natural convection is the best solution. A research and development program including theoretical investigations and mock-up tests confirmed the feasibility of cooling by natural convection and the validity of design rules applied for fuel storage. A facility called CASCAD was built at the CEA's Cadarache Nuclear Research Center, where it has been operational since mid-1990. This paper describes the CASCAD facility and indicates how its concept can be applied to storage of LWR fuel assemblies

  11. NUPEC proves reliability of LWR fuel assemblies

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    It is very important in assuring the safety of nuclear reactors to confirm the reliability of fuel assemblies. The test program of the Nuclear Power Engineering Center on the reliability of fuel assemblies has verified the high performance and reliability of Japanese LWR fuels, and confirmed the propriety of their design and fabrication. This claim is based on the data obtained from the fuel assemblies irradiated in commercial reactors. The NUPEC program includes irradiation test which has been conducted for 11 years since fiscal 1976, and the maximum thermal loading test using the out of pile test facilities simulating a real reactor which has been continued since fiscal 1978. The irradiation test on BWR fuel assemblies in No.3 reactor in Fukushima No.1 Nuclear Power Station, Tokyo Electric Power Co., Inc., and on PWR fuel assemblies in No.3 reactor in Mihama Power Station, Kansai Electric Power Co., Inc., and the maximum thermal loading test on BWR and PWR fuel assemblies are reported. The series of postirradiation examination of the fuel assemblies used for commercial reactors was conducted for the first time in Japan, and the highly systematic data on 27 items were obtained. (Kako, I.)

  12. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  13. APEX nuclear fuel cycle for production of LWR fuel and elimination of radioactive waste

    International Nuclear Information System (INIS)

    Steinberg, M.; Powell, J.R.

    1981-08-01

    The development of a nuclear fission fuel cycle is proposed which eliminates all the radioactive fission product waste effluent and the need for geological-age high level waste storage and provides a long term supply of fissile fuel for an LWR power reactor economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 years old) to remove the stable nonradioactive (NRFP, e.g. lanthanides, etc.) and short-lived fission products SLFP e.g. half-lives of (1 to 2 years) and returning, in dilute form, the long-lived fission products, ((LLFPs, e.g. 30 y half-life Cs, Sr, and 10 y Kr, and 16 x 10 6 y I) and the transuranics (TUs, e.g. Pu, Am, Cm, and Np) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel are to be supplied through the use of a Spallator (linear accelerator spallation-target fuel-producer). The reprocessing of LWR fuel elements is to be performed by means of the Chelox process which consists of Airox treatment (air oxidation and hydrogen reduction) followed by chelation with an organic reagent (β-diketonate) and vapor distillation of the organometallic compounds for separation and partitioning of the fission products

  14. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  15. Guidebook on spent fuel storage

    International Nuclear Information System (INIS)

    1984-01-01

    The Guidebook summarizes the experience and information in various areas related to spent fuel storage: technological aspects, the transport of spent fuel, economical, regulatory and institutional aspects, international safeguards, evaluation criteria for the selection of a specific spent fuel storage concept, international cooperation on spent fuel storage. The last part of the Guidebook presents specific problems on the spent fuel storage in the United Kingdom, Sweden, USSR, USA, Federal Republic of Germany and Switzerland

  16. Final Generic Environmental Impact Statement. Handling and storage of spent light water power reactor fuel. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1979-08-01

    This volume contains the following appendices: LWR fuel cycle, handling and storage of spent fuel, termination case considerations (use of coal-fired power plants to replace nuclear plants), increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data, characteristics of nuclear fuel, away-from-reactor storage concept, spent fuel storage requirements for higher projected nuclear generating capacity, and physical protection requirements and hypothetical sabotage events in a spent fuel storage facility

  17. The scale analysis sequence for LWR fuel depletion

    International Nuclear Information System (INIS)

    Hermann, O.W.; Parks, C.V.

    1991-01-01

    The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system is used extensively to perform away-from-reactor safety analysis (particularly criticality safety, shielding, heat transfer analyses) for spent light water reactor (LWR) fuel. Spent fuel characteristics such as radiation sources, heat generation sources, and isotopic concentrations can be computed within SCALE using the SAS2 control module. A significantly enhanced version of the SAS2 control module, which is denoted as SAS2H, has been made available with the release of SCALE-4. For each time-dependent fuel composition, SAS2H performs one-dimensional (1-D) neutron transport analyses (via XSDRNPM-S) of the reactor fuel assembly using a two-part procedure with two separate unit-cell-lattice models. The cross sections derived from a transport analysis at each time step are used in a point-depletion computation (via ORIGEN-S) that produces the burnup-dependent fuel composition to be used in the next spectral calculation. A final ORIGEN-S case is used to perform the complete depletion/decay analysis using the burnup-dependent cross sections. The techniques used by SAS2H and two recent applications of the code are reviewed in this paper. 17 refs., 5 figs., 5 tabs

  18. Spent fuel workshop'2002

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch

    2002-07-01

    This document gathers the transparencies of the presentations given at the 2002 spent fuel workshop: Session 1 - Research Projects: Overview on the IN CAN PROCESSES European project (M. Cowper), Overview on the SPENT FUEL STABILITY European project (C. Poinssot), Overview on the French R and D project on spent fuel long term evolution, PRECCI (C. Poinssot); Session 2 - Spent Fuel Oxidation: Oxidation of uranium dioxide single crystals (F. Garrido), Experimental results on SF oxidation and new modeling approach (L. Desgranges), LWR spent fuel oxidation - effects of burn-up and humidity (B. Hanson), An approach to modeling CANDU fuel oxidation under dry storage conditions (P. Taylor); Session 3 - Spent Fuel Dissolution Experiments: Overview on high burnup spent fuel dissolution studies at FZK/INE (A. Loida), Results on the influence of hydrogen on spent fuel leaching (K. Spahiu), Leaching of spent UO{sub 2} fuel under inert and reducing conditions (Y. Albinsson), Fuel corrosion investigation by electrochemical techniques (D. Wegen), A reanalysis of LWR spent fuel flow through dissolution tests (B. Hanson), U-bearing secondary phases formed during fuel corrosion (R. Finch), The near-field chemical conditions and spent fuel leaching (D. Cui), The release of radionuclides from spent fuel in bentonite block (S.S. Kim), Trace actinide behavior in altered spent fuel (E. Buck, B. Hanson); Session 4 - Radiolysis Issues: The effect of radiolysis on UO{sub 2} dissolution determined from electrochemical experiments with {sup 238}Pu doped UO{sub 2} M. Stroess-Gascoyne (F. King, J.S. Betteridge, F. Garisto), doped UO{sub 2} studies (V. Rondinella), Preliminary results of static and dynamic dissolution tests with {alpha} doped UO{sub 2} in Boom clay conditions (K. Lemmens), Studies of the behavior of UO{sub 2} / water interfaces under He{sup 2+} beam (C. Corbel), Alpha and gamma radiolysis effects on UO{sub 2} alteration in water (C. Jegou), Behavior of Pu-doped pellets in brines

  19. Processing of spent nuclear fuel from light water reactors

    International Nuclear Information System (INIS)

    Sraier, V.

    1978-11-01

    A comprehensive review is given of the reprocessing of spent nuclear fuel from LWR's (covering references up to No. 18 (1977) of INIS inclusively). Particular attention is devoted to waste processing, safety, and reprocessing plants. In the addendum, the present status is shown on the example of KEWA, the projected large German fuel reprocessing plant. (author)

  20. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  1. Spent Fuel in Chile

    International Nuclear Information System (INIS)

    López Lizana, F.

    2015-01-01

    The government has made a complete and serious study of many different aspects and possible road maps for nuclear electric power with strong emphasis on safety and energy independence. In the study, the chapter of SFM has not been a relevant issue at this early stage due to the fact that it has been left for later implementation stage. This paper deals with the options Chile might consider in managing its Spent Fuel taking into account foreign experience and factors related to safety, economics, public acceptance and possible novel approaches in spent fuel treatment. The country’s distinctiveness and past experience in this area taking into account that Chile has two research reactors which will have an influence in the design of the Spent Fuel option. (author)

  2. Legal, institutional, and political issues in transportation of nuclear materials at the back end of the LWR nuclear fuel cycle

    International Nuclear Information System (INIS)

    Lippek, H.E.; Schuller, C.R.

    1979-03-01

    A study was conducted to identify major legal and institutional problems and issues in the transportation of spent fuel and associated processing wastes at the back end of the LWR nuclear fuel cycle. (Most of the discussion centers on the transportation of spent fuel, since this activity will involve virtually all of the legal and institutional problems likely to be encountered in moving waste materials, as well.) Actions or approaches that might be pursued to resolve the problems identified in the analysis are suggested. Two scenarios for the industrial-scale transportation of spent fuel and radioactive wastes, taken together, high-light most of the major problems and issues of a legal and institutional nature that are likely to arise: (1) utilizing the Allied General Nuclear Services (AGNS) facility at Barnwell, SC, as a temporary storage facility for spent fuel; and (2) utilizing AGNS for full-scale commercial reprocessing of spent LWR fuel

  3. Legal, institutional, and political issues in transportation of nuclear materials at the back end of the LWR nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lippek, H.E.; Schuller, C.R.

    1979-03-01

    A study was conducted to identify major legal and institutional problems and issues in the transportation of spent fuel and associated processing wastes at the back end of the LWR nuclear fuel cycle. (Most of the discussion centers on the transportation of spent fuel, since this activity will involve virtually all of the legal and institutional problems likely to be encountered in moving waste materials, as well.) Actions or approaches that might be pursued to resolve the problems identified in the analysis are suggested. Two scenarios for the industrial-scale transportation of spent fuel and radioactive wastes, taken together, high-light most of the major problems and issues of a legal and institutional nature that are likely to arise: (1) utilizing the Allied General Nuclear Services (AGNS) facility at Barnwell, SC, as a temporary storage facility for spent fuel; and (2) utilizing AGNS for full-scale commercial reprocessing of spent LWR fuel.

  4. Magnetic scanning of LWR fuel assemblies

    International Nuclear Information System (INIS)

    Fiarman, S.; Moodenbaugh, A.

    1980-01-01

    Nondestructive assay (NDA) techniques are available both for fresh and spent fuel, but generally are too time consuming and do not uniquely identify an assembly. A new method is reported to obtain a signature from a magnetic scan of each assembly. This scan is an NDA technique that detects magnetic inclusions. It is potentially fast (5 min/assembly), and may provide a unique signature from the magnetic properties of each fuel assembly

  5. Data needs for long-term dry storage of LWR fuel. Interim report

    International Nuclear Information System (INIS)

    Einziger, R.E.; Baldwin, D.L.; Pitman, S.G.

    1998-04-01

    The NRC approved dry storage of spent fuel in an inert environment for a period of 20 years pursuant to 10CFR72. However, at-reactor dry storage of spent LWR fuel may need to be implemented for periods of time significantly longer than the NRC's original 20-year license period, largely due to uncertainty as to the date the US DOE will begin accepting commercial spent fuel. This factor is leading utilities to plan not only for life-of-plant spent-fuel storage during reactor operation but also for the contingency of a lengthy post-shutdown storage. To meet NRC standards, dry storage must (1) maintain subcriticality, (2) prevent release of radioactive material above acceptable limits, (3) ensure that radiation rates and doses do not exceed acceptable limits, and (4) maintain retrievability of the stored radioactive material. In light of these requirements, this study evaluates the potential for storing spent LWR fuel for up to 100 years. It also identifies major uncertainties as well as the data required to eliminate them. Results show that the lower radiation fields and temperatures after 20 years of dry storage promote acceptable fuel behavior and the extension of storage for up to 100 years. Potential changes in the properties of dry storage system components, other than spent-fuel assemblies, must still be evaluated

  6. Flexible fuel cycle system for the transition from LWR to FBR

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Yamashita, Junichi; Hoshino, Kuniyoshi; Sasahira, Akira; Inoue, Tadashi; Minato, Kazuo; Sato, Seichi

    2009-01-01

    Japan will deploy commercial fast breeder reactor (FBR) from around 2050 under the suitable conditions for the replacement of light water reactor (LWR) with FBR. The transition scenario from LWR to FBR is investigated in detail and the flexible fuel cycle initiative (FFCI) system has been proposed as a optimum transition system. The FFCI removes ∼95% uranium from LWR spent fuel (SF) in LWR reprocessing and residual material named Recycle Material (RM), which is ∼1/10 volume of original SF and contains ∼50% U, ∼10% Pu and ∼40% other nuclides, is treated in FBR reprocessing to recover Pu and U. If the FBR deployment speed becomes lower, the RM will be stored until the higher speed again. The FFCI has some merits compared with ordinary system that consists of full reprocessing facilities for both LWR and FBR SF during the transition period. The economy is better for FFCI due to the smaller LWR reprocessing facility (no Pu/U recovery and fabrication). The FFCI can supply high Pu concentration RM, which has high proliferation resistance and flexibly respond to FBR introduction rate changes. Volume minimization of LWR SF is possible for FFCI by its conversion to RM. Several features of FFCI were quantitatively evaluated such as Pu mass balance, reprocessing capacities, LWR SF amounts, RM amounts, and proliferation resistance to compare the effectiveness of the FFCI system with other systems. The calculated Pu balance revealed that the FFCI could supply enough but no excess Pu to FBR. These evaluations demonstrated the applicability of FFCI system to the transition period from LWR to FBR cycles. (author)

  7. Spent fuel dissolution mechanisms

    International Nuclear Information System (INIS)

    Ollila, K.

    1993-11-01

    This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO 2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO 2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90 Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO 2 , dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)

  8. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Gunasekaran, M.

    1979-01-01

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  9. The spent fuel safety experiment

    International Nuclear Information System (INIS)

    Harmms, G.A.; Davis, F.J.; Ford, J.T.

    1995-01-01

    The Department of Energy is conducting an ongoing investigation of the consequences of taking fuel burnup into account in the design of spent fuel transportation packages. A series of experiments, collectively called the Spent Fuel Safety Experiment (SFSX), has been devised to provide integral benchmarks for testing computer-generated predictions of spent fuel behavior. A set of experiments is planned in which sections of unirradiated fuel rods are interchanged with similar sections of spent PWR fuel rods in a critical assembly. By determining the critical size of the arrays, one can obtain benchmark data for comparison with criticality safety calculations. The integral reactivity worth of the spent fuel can be assessed by comparing the measured delayed critical fuel loading with and without spent fuel. An analytical effort to model the experiments and anticipate the core loadings required to yield the delayed critical conditions runs in parallel with the experimental effort

  10. Spent fuel reprocessing method

    International Nuclear Information System (INIS)

    Shoji, Hirokazu; Mizuguchi, Koji; Kobayashi, Tsuguyuki.

    1996-01-01

    Spent oxide fuels containing oxides of uranium and transuranium elements are dismantled and sheared, then oxide fuels are reduced into metals of uranium and transuranium elements in a molten salt with or without mechanical removal of coatings. The reduced metals of uranium and transuranium elements and the molten salts are subjected to phase separation. From the metals of uranium and transuranium elements subjected to phase separation, uranium is separated to a solid cathode and transuranium elements are separated to a cadmium cathode by an electrolytic method. Molten salts deposited together with uranium to the solid cathode, and uranium and transuranium elements deposited to the cadmium cathode are distilled to remove deposited molten salts and cadmium. As a result, TRU oxides (solid) such as UO 2 , Pu 2 in spent fuels can be reduced to U and TRU by a high temperature metallurgical method not using an aqueous solution to separate them in the form of metal from other ingredients, and further, metal fuels can be obtained through an injection molding step depending on the purpose. (N.H.)

  11. International safeguards for spent fuel storage

    International Nuclear Information System (INIS)

    Kratzer, M.; Wonder, E.; Immerman, W.; Crane, F.

    1981-08-01

    This report analyzes the nonproliferation effectiveness and political and economic acceptability of prospective improvements in international safeguard techniques for LWR spent fuel storage. Although the applicability of item accounting considerably eases the safeguarding of stored spent fuel, the problem of verification is potentially serious. A number of simple gamma and neutron nondestructive assay techniques were found to offer considerable improvements, of a qualitative rather than quantitative nature, in verification-related data and information, and possess the major advantage of intruding very little on facility operations. A number of improved seals and monitors appear feasible as well, but improvements in the timeliness of detection will not occur unless the frequency of inspection is increased or a remote monitoring capability is established. Limitations on IAEA Safeguards resources and on the integration of results from material accounting and containment and surveillance remain problems

  12. Spent fuel storage requirements

    International Nuclear Information System (INIS)

    Fletcher, J.

    1982-06-01

    Spent fuel storage requirements, as projected through the year 2000 for U.S. LWRs, were calculated using information supplied by the utilities reflecting plant status as of December 31, 1981. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 165 GWe projected by the Energy Information Administration (EIA) for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor (AR) capacity case, assumes that all reactor storage pools are increased to their maximum capacities as estimated by the utilities for spent fuel storage utilizing currently licensed technologies. The reference case assumes no transshipments between pools except as currently licensed by the Nuclear Regulatory Commission (NRC). This case identifies an initial requirement for 13 MTU of additional storage in 1984, and a cumulative requirement for 14,490 MTU additional storage in the year 2000. The reference case is bounded by two alternative cases. One, a current capacity case, assumes that only those pool storage capacity increases currently planned by the operating utilities will occur. The second, or maximum capacity with transshipment case, assumes maximum development of pool storage capacity as described above and also assumes no constraints on transshipment of spent fuel among pools of reactors of like type (BWR, PWR) within a given utility. In all cases, a full core discharge capability (full core reserve or FCR) is assumed to be maintained for each reactor, except that only one FCR is maintained when two reactors share a common pool. For the current AR capacity case the indicated storage requirements in the year 2000 are indicated to be 18,190 MTU; for the maximum capacity with transshipment case they are 11,320 MTU

  13. Spent fuel transportation problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.A.

    1977-01-01

    In this paper, problems of transportation of nuclear spent fuel to reprocessing plants are discussed. The solutions proposed are directed toward the achievement of the transportation as economic and safe as possible. The increase of the nuclear power plants number in the USSR and the great distances between these plants and the reprocessing plants involve an intensification of the spent fuel transportation. Higher burnup and holdup time reduction cause the necessity of more bulky casks. In this connection, the economic problems become still more important. One of the ways of the problem solution is the development of rational and cheap cask designs. Also, the enforcement in the world of the environmental and personnel health protection requires to increase the transportation reliability and safety. The paper summarizes safe transportation rules with clarifying the following questions: the increase of the transport unit quantity of the spent fuel; rational shipment organization that minimizes vehicle turnover cycle duration; development of the reliable calculation methods to determine strength, thermal conditions and nuclear safety of transport packaging as applied to the vehicles of high capacity; maximum unification of vehicles, calculation methods and documents; and cask testing on models and in pilot scale on specific test rigs to assure that they meet the international safe fuel shipment rules. Besides, some considerations on the choice and use of structural materials for casks are given, and problems of manufacturing such casks from uranium and lead are considered, as well as problems of the development of fireproof shells, control instrumentation, vehicles decontamination, etc. All the problems are considered from the point of view of normal and accidental shipment conditions. Conclusions are presented [ru

  14. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    International Nuclear Information System (INIS)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO 2 fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed

  15. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO[sub 2] fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  16. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO{sub 2} fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  17. Spent fuel: prediction model development

    International Nuclear Information System (INIS)

    Almassy, M.Y.; Bosi, D.M.; Cantley, D.A.

    1979-07-01

    The need for spent fuel disposal performance modeling stems from a requirement to assess the risks involved with deep geologic disposal of spent fuel, and to support licensing and public acceptance of spent fuel repositories. Through the balanced program of analysis, diagnostic testing, and disposal demonstration tests, highlighted in this presentation, the goal of defining risks and of quantifying fuel performance during long-term disposal can be attained

  18. Final environmental impact statement: US Spent Fuel Policy. Charge for spent fuel storage

    International Nuclear Information System (INIS)

    1980-05-01

    The United States Government policy relating to nuclear fuel reprocessing, which was announced by President Carter on April 7, 1977, provides for an indefinite deferral of reprocessing, and thus commits light water reactor (LWR) plants to a once-through fuel cycle during that indefinite period. In a subsequent action implementing that policy, the Department of Energy (DOE) on October 18, 1977 announced a spent fuel policy which would enable domestic, and on a selective basis, foreign utilities to deliver spent fuel to the US Government for interim storage and final geologic disposal, and pay the Government a fee for such services. This volume addresses itself to whether the fee charged for these services, by its level or its structure, would have any effect on the environmental impacts of implementing the Spent Fuel Policy itself. This volume thus analyzes the fee and various alternatives to determine the interaction between the fee and the degree of participation by domestic utilities and foreign countries in the proposed spent fuel program for implementing the Spent Fuel Policy. It also analyzes the effect, if any, of the fee on the growth of nuclear power

  19. Metal Matrix Microencapsulated Fuel Technology for LWR Applications

    International Nuclear Information System (INIS)

    Terrani, Kurt A.; Bell, Gary L.; Kiggans, Jim; Snead, Lance Lewis

    2012-01-01

    An overview of the metal matrix microencapsulated (M3) fuel concept for the specific LWR application has been provided. Basic fuel properties and characteristics that aim to improve operational reliability, enlarge performance envelope, and enhance safety margins under design-basis accident scenarios are summarized. Fabrication of M3 rodlets with various coated fuel particles over a temperature range of 800-1300 C is discussed. Results from preliminary irradiation testing of LWR M3 rodlets with surrogate coated fuel particles are also reported.

  20. Important parameters in ORIGEN2 calculations of spent fuel compositions

    International Nuclear Information System (INIS)

    Welch, T.D.; Notz, K.J.; Andermann, R.J. Jr.

    1990-01-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for implementing federal policy for the management and permanent disposal of spent nuclear fuel from civilian nuclear power reactors and of high-level radioactive waste. The Characteristics Data Base (CDB) provides an extensive collection of data on the four waste steams that may require long-term isolation: LWR spent fuel, high-level waste, non-LWR spent fuel, and miscellaneous wastes (such as greater-than-class-C). The eight-volume report and the five supplemental menu-driven PC data bases encompass radiological characteristics, chemical compositions, physical descriptions, inventories, and projections. An overview of these data bases, which are available through the Oak Ridge National Laboratory, is provided by Notz. This paper reports that the radiological characteristics in the CDB are calculated using ORIGEN2

  1. West Valley facility spent fuel handling, storage, and shipping experience

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs

  2. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    International Nuclear Information System (INIS)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-01-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  3. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  4. Performance and reliability of LWR fuel

    International Nuclear Information System (INIS)

    Bairiot, H.; Deramaix, P.; Vandenberg, C.

    1977-01-01

    The main requirements for fuel reloads are: good reliability, minimum fuel cycle costs and flexibility of operation. Fulfilling these goals requires a background of experience. The approach to the acquisition of this experience in the particular case of BN has included over the last 15 years a proper development and cross-checking of the design methods and criteria, a continuous updating of the drawings and specifications and the qualification of adequate fabrication plants. This approach can best be outlined on the basis of the gradual implementation of the modern features of the LWR fuel. The first fuel clad with stainless steel was loaded in the BR 3 (11 MWe) in 1969 and later on (since 1974) in the SENA plant (310 MWe). Similarly, Zircaloy 4 cladding was first introduced in a reactor reload in 1969 as autoclaved cladding and later on (in 1971) the autoclaving was suppressed for the further reloads. Zircaloy 2 was loaded in DODEWAARD (51.5 MWe) in 1970. The first demonstration assembly in a PWR was a Pu-island assembly loaded in the BR 3 in 1963. It was followed by an all-Pu assembly in the same reactor in 1965 and by the loading of Pu fuels in four prototype assemblies in GARIGLIANO (160 MWe) in 1968. A full reload incorporating Pu fuel has been experienced by the supply of fuel for GARIGLIANO (BOL: 1975) and for BR 3 (BOL: 1972 and 1976). While in the early sixties the brazed design was still being utilized, the first assembly incorporating grids with springs was introduced in BR 3 in 1963. The first Inconel grids were loaded in the same reactor in 1969 and the first Zircaloy grids in 1972 (the first Zr grid has been loaded in a BWR in 1973). The experience covered successively the shrouded design (BOL: 1963), the shroudless design (BOL: 1969), a BWR assembly (BOL: 1971), a typical RCC assembly first with large diameter fuel rods (1972) and later on with small diameter fuel rods (1974). The experience on the reactivity control covered successively diluted

  5. Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Lori Braase

    2013-01-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), in collaboration with the nuclear industry, has been conducting research and development (R&D) activities on advanced Light Water Reactor (LWR) fuels for the last few years. The emphasis for these activities was on improving the fuel performance in terms of increased burnup for waste minimization and increased power density for power upgrades, as well as collaborating with industry on fuel reliability. After the events at the Fukushima Nuclear Power Plant in Japan in March 2011, enhancing the accident tolerance of LWRs became a topic of serious discussion. In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the U.S. Congress directed DOE-NE to: • Give “priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools.” • Give “special technical emphasis and funding priority…to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of light water reactors.” • Report “to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown-resistant fuels leading to reactor testing and utilization by 2020.” Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, and operational transients, as well as design-basis and beyond design-basis events. The overall draft strategy for development and demonstration is comprised of three phases: Feasibility Assessment and Down-selection; Development and Qualification; and

  6. Safe transport of spent fuels after long-term storage

    International Nuclear Information System (INIS)

    Aritomi, M.; Takeda, T.; Ozaki, S.

    2004-01-01

    Considering the scarcity of energy resources in Japan, a nuclear energy policy pertaining to the spent fuel storage has been adopted. The nuclear energy policy sets the rules that spent fuels generated from LWRs shall be reprocessed and that plutonium and unburnt uranium shall be recovered and reused. For this purpose, a reprocessing plant, which has a reprocessing capability of 800 ton/yr, is under construction at Rokkasho Village. However, it is anticipated that the start of its operation will be delayed. In addition, the amount of spent fuels generated from nuclear power plants exceeds its reprocessing capability. Therefore, the establishment of storage technology for spent fuels becomes an urgent problem in Japan in order to continue smoothly the LWR operations. In this paper, the background of nuclear power generation in Japan is introduced at first. Next, the policy of spent fuel storage in Japan and circumstances surrounding the spent fuels in Japan are mentioned. Furthermore, the major subjects for discussions to settle and improve 'Standard for Safety Design and Inspection of Metal Casks for Spent Fuel Interim Storage Facility' in Atomic Energy Society of Japan are discussed, such as the integrity of fuel cladding, basket, shielding material and metal gasket for the long term storage for achieving safe transport of spent fuels after the storage. Finally, solutions to the unsolved subject in establishing the spent fuel interim storage technologies ase introduced accordingly

  7. Spent fuel interim storage

    International Nuclear Information System (INIS)

    Bilegan, Iosif C.

    2003-01-01

    The official inauguration of the spent fuel interim storage took place on Monday July 28, 2003 at Cernavoda NNP. The inaugural event was attended by local and central public authority representatives, a Canadian Government delegation as well as newsmen from local and central mass media and numerous specialists from Cernavoda NPP compound. Mr Andrei Grigorescu, State Secretary with the Economy and Commerce Ministry, underlined in his talk the importance of this objective for the continuous development of nuclear power in Romania as well as for Romania's complying with the EU practice in this field. Also the excellent collaboration between the Canadian contractor AECL and the Romanian partners Nuclear Montaj, CITON, UTI, General Concret in the accomplishment of this unit at the planned terms and costs. On behalf of Canadian delegation, spoke Minister Don Boudria. He underlined the importance which the Canadian Government affords to the cooperation with Romania aiming at specific objectives in the field of nuclear power such as the Cernavoda NPP Unit 2 and spent fuel interim storage. After traditional cutting of the inaugural ribbon by the two Ministers the festivities continued on the Cernavoda NPP Compound with undersigning the documents regarding the project completion and a press conference

  8. Spent fuel storage rack

    International Nuclear Information System (INIS)

    Kurokawa, Hideaki; Kumagaya, Naomi; Oda, Masashi; Matsuda, Masami; Maruyama, Hiromi; Yamanaka, Tsuneyasu.

    1997-01-01

    The structure of a spent fuel storage rack is determined by the material, thickness, size of square cylindrical tubes (the gap between spent fuel assemblies and the square cylindrical tubes) and pitch of the arrangement (the gap between each of the square cylindrical tubes). In the present invention, the thickness and the pitch of the arrangement of the square tubes are optimized while evaluating subcriticality. Namely, when the sum of the thickness of the water gap at the outer side (the pitch of arrangement of the cylindrical tubes) and the thickness of the cylindrical tubes is made constant, the storage rack is formed by determining the thickness of the cylindrical tubes which is smaller than the optimum value among the combination of the thickness of the water gap at the outer side and that of the cylindrical tube under the effective multiplication factor to be performed. Then, the weight of the rack can be reduced, and the burden of the load on the bottom of the pool can be reduced. Further, the amount of the constitutional materials of the rack itself can be reduced thereby capable of reducing the cost for the materials of the rack. (T.M.)

  9. WWER spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Bower, C C; Lettington, C [GEC Alsthom Engineering Systems Ltd., Whetstone (United Kingdom)

    1994-12-31

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs.

  10. WWER spent fuel storage

    International Nuclear Information System (INIS)

    Bower, C.C.; Lettington, C.

    1994-01-01

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs

  11. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  12. Containing method for spent fuel and spent fuel containing vessel

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi; Hanada, Yoshine.

    1996-01-01

    Upon containing spent fuels, a metal vessel main body and a support spacer having fuel containing holes are provided. The support spacer is disposed in the inside of the metal vessel main body, and spent fuel assemblies are loaded in the fuel containing holes. Then, a lid is welded at the opening of the metal vessel main body to provide a sealing state. In this state, heat released from the spent fuel assemblies is transferred to the wall of the metal vessel main body via the support spacer. Since the support spacer has a greater heat conductivity than gases, heat of the spent fuel assemblies tends to be released to the outside, thereby capable of removing heat of the spent fuel assemblies effectively. In addition, since the surfaces of the spent fuel assemblies are in contact with the inner surface of the fuel containing holes of the support spacer, impact-resistance and earthquake-resistance are ensured, and radiation from the spent fuel assemblies is decayed by passing through the layer of the support spacer. (T.M.)

  13. Finding a site to store spent fuel in the Pacific Basin

    International Nuclear Information System (INIS)

    Selvaduray, G.S.; Goldstein, M.K.; Anderson, R.N.

    1979-01-01

    How can one decide on a site to store spent LWR fuel, after the Presidential embargo on reprocessing. Palmyra Island is identified as the best site for the nations bordering the Pacific to store spent fuel. The quantitative methods used to reach this decision are outlined. (author)

  14. Experience with failed or damaged spent fuel and its impacts on handling

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1989-12-01

    Spent fuel management planning needs to include consideration of failed or damaged spent light-water reactor (LWR) fuel. Described in this paper, which was prepared under the Commercial Spent Fuel Management (CSFM) Program that is sponsored by the US Department of Energy (DOE), are the following: the importance of fuel integrity and the behavior of failed fuel, the quantity and burnup of failed or damaged fuel in storage, types of defects, difficulties in evaluating data on failed or damaged fuel, experience with wet storage, experience with dry storage, handling of failed or damaged fuel, transporting of fuel, experience with higher burnup fuel, and conclusions. 15 refs

  15. Swedish spent fuel management systems, facilities and operating experiences

    International Nuclear Information System (INIS)

    Vogt, J.

    1998-01-01

    About 50% of the electricity in Sweden is generated by means of nuclear power from 12 LWR reactors located at four sites and with a total capacity of 10,000 MW. The four utilities have jointly created SKB, the Swedish Nuclear Fuel and Waste Management Company, which has been given the mandate to manage the spent fuel and radioactive waste from its origin at the reactors to the final disposal. SKB has developed a system for the safe handling of all kinds of radioactive waste from the Swedish nuclear power plants. The keystones now in operation of this system are a transport system, a central interim storage facility for spent nuclear fuel (CLAB), a final repository for short-lived, low and intermediate level waste (SFR). The remaining, system components being planned are an encapsulation plant for spent nuclear fuel and a deep repository for encapsulated spent fuel and other long-lived radioactive wastes. (author)

  16. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Mineo, H.; Nomura, Y.; Sakamoto, K.

    1998-01-01

    In Japan 52 commercial nuclear power units are now operated, and the total power generation capacity is about 45 GWe. The cumulative amount of spent fuel arising is about 13,500 tU as of March 1997. Spent fuel is reprocessed, and recovered nuclear materials are to be recycled in LWRs and FBRs. In February 1997 short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, backend measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away from reactor sites, considering the increasing amount of spent fuel arising. Research and development on spent fuel storage has been carried out, particularly on dry storage technology. Fundamental studies are also conducted to implement the burnup credit into the criticality safety design of storage and transportation casks. Rokkasho reprocessing plant is being constructed towards its commencement in 2003, and Pu utilization in LWRs will be started in 1999. Research and development of future recycling technology are also continued for the establishment of nuclear fuel cycle based on FBRs and LWRs. (author)

  17. Development of LWR fuel performance code FEMAXI-6

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2006-01-01

    LWR fuel performance code: FEMAXI-6 (Finite Element Method in AXIs-symmetric system) is a representative fuel analysis code in Japan. Development history, background, design idea, features of model, and future are stated. Characteristic performance of LWR fuel and analysis code, what is model, development history of FEMAXI, use of FEMAXI code, fuel model, and a special feature of FEMAXI model is described. As examples of analysis, PCMI (Pellet-Clad Mechanical Interaction), fission gas release, gap bonding, and fission gas bubble swelling are reported. Thermal analysis and dynamic analysis system of FEMAXI-6, function block at one time step of FEMAXI-6, analytical example of PCMI in the output increase test by FEMAXI-III, analysis of fission gas release in Halden reactor by FEMAXI-V, comparison of the center temperature of fuel in Halden reactor, and analysis of change of diameter of fuel rod in high burn up BWR fuel are shown. (S.Y.)

  18. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plants for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  19. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de.

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the Government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plant for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  20. Spent fuel management overview: a global perspective

    International Nuclear Information System (INIS)

    Bonne, A.; Crijns, M.J.; Dyck, P.H.; Fukuda, K.; Mourogov, V.M.

    1999-01-01

    The paper defines the main spent fuel management strategies and options, highlights the challenges for spent fuel storage and gives an overview of the regional balances of spent fuel storage capacity and spent fuel arising. The relevant IAEA activities in the area of spent fuel management are summarised. (author)

  1. Modular approach to LWR in-core fuel management

    International Nuclear Information System (INIS)

    Urli, N.; Pevec, D.; Coffou, E.; Petrovic, B.

    1980-01-01

    The most important methods in the LWR in-core fuel management are reviewed. A modular approach and optimization by use of infinite multiplication factor and power form-factor are favoured. A computer program for rotation of fuel assemblies at reloads has been developed which improves further fuel economy and reliability of nuclear power plants. The program has been tested on the PWR core and showed to decrease the power form-factors and flatten the radial power distribution. (author)

  2. Spent fuel treatment in Japan

    International Nuclear Information System (INIS)

    Takahashi, K.

    1999-01-01

    In Japan, 52 nuclear power reactors are operating with a total power generation capacity of 45 GWe. The cumulative amount of spent fuel arising, as of March 1998, is about 14,700 W. Spent fuel is reprocessed and recovered nuclear materials are to be recycled in LWRs and FBRs. Pu utilization in LWRs will commence in 1999. In January 1997, short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of the reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, back-end measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away-from-reactor sites, considering the increasing amount of spent fuel arising. Valuable experience was been accumulated at the Tokai Reprocessing Plant (TRP), from the start of hot operation in 1977 up to now. The role of the TRP will be changed from an operation-oriented to a more R and D oriented facility, when PNC is reorganized into the new organization JNC. The Rokkasho reprocessing plant is under construction and is expected to commence operation in 2003. R and D of future recycling technologies is also continued for the establishment of a nuclear fuel cycle based on FBRs and LWRs. (author)

  3. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  4. Safety criteria related to microheterogeneities in LWR mixed oxide fuels

    International Nuclear Information System (INIS)

    Renard, A.; Mostin, N.

    1978-01-01

    The main safety aspets of PuO 2 microheterogeneities in the pellets of LWR mixed oxide fuels are reviewed. Points of interest are studied, especially the transient behaviour in accidental conditions and criteria are deduced for use in the specification and quality control of the fabricated product. (author)

  5. Dry spent fuel storage licensing

    International Nuclear Information System (INIS)

    Sturz, F.C.

    1995-01-01

    In the US, at-reactor-site dry spent fuel storage in independent spent fuel storage installations (ISFSI) has become the principal option for utilities needing storage capacity outside of the reactor spent fuel pools. Delays in the geologic repository operational date at or beyond 2010, and the increasing uncertainty of the US Department of Energy's (DOE) being able to site and license a Monitored Retrievable Storage (MRS) facility by 1998 make at-reactor-site dry storage of spent nuclear fuel increasingly desirable to utilities and DOE to meet the need for additional spent fuel storage capacity until disposal, in a repository, is available. The past year has been another busy year for dry spent fuel storage licensing. The licensing staff has been reviewing 7 applications and 12 amendment requests, as well as participating in inspection-related activities. The authors have licensed, on a site-specific basis, a variety of dry technologies (cask, module, and vault). By using certified designs, site-specific licensing is no longer required. Another new cask has been certified. They have received one new application for cask certification and two amendments to a certified cask design. As they stand on the brink of receiving multiple applications from DOE for the MPC, they are preparing to meet the needs of this national program. With the range of technical and licensing options available to utilities, the authors believe that utilities can meet their need for additional spent fuel storage capacity for essentially all reactor sites through the next decade

  6. Thermal conductivity of heterogeneous LWR MOX fuels

    Science.gov (United States)

    Staicu, D.; Barker, M.

    2013-11-01

    It is generally observed that the thermal conductivity of LWR MOX fuel is lower than that of pure UO2. For MOX, the degradation is usually only interpreted as an effect of the substitution of U atoms by Pu. This hypothesis is however in contradiction with the observations of Duriez and Philiponneau showing that the thermal conductivity of MOX is independent of the Pu content in the ranges 3-15 and 15-30 wt.% PuO2 respectively. Attributing this degradation to Pu only implies that stoichiometric heterogeneous MOX can be obtained, while we show that any heterogeneity in the plutonium distribution in the sample introduces a variation in the local stoichiometry which in turn has a strong impact on the thermal conductivity. A model quantifying this effect is obtained and a new set of experimental results for homogeneous and heterogeneous MOX fuels is presented and used to validate the proposed model. In irradiated fuels, this effect is predicted to disappear early during irradiation. The 3, 6 and 10 wt.% Pu samples have a similar thermal conductivity. Comparison of the results for this homogeneous microstructure with MIMAS (heterogeneous) fuel of the same composition showed no difference for the Pu contents of 3, 5.9, 6, 7.87 and 10 wt.%. A small increase of the thermal conductivity was obtained for 15 wt.% Pu. This increase is of about 6% when compared to the average of the values obtained for 3, 6 and 10 wt.% Pu. For comparison purposes, Duriez also measured the thermal conductivity of FBR MOX with 21.4 wt.% Pu with O/M = 1.982 and a density close to 95% TD and found a value in good agreement with the estimation obtained using the formula of Philipponneau [8] for FBR MOX, and significantly lower than his results corresponding to the range 3-15 wt.% Pu. This difference in thermal conductivity is of about 20%, i.e. higher than the measurement uncertainties.Thus, a significant difference was observed between FBR and PWR MOX fuels, but was not explained. This difference

  7. Spent fuel element storage facility

    International Nuclear Information System (INIS)

    Ukaji, Hideo; Yamashita, Rikuo.

    1981-01-01

    Purpose: To always keep water level of a spent fuel cask pit equal with water level of spent fuel storage pool by means of syphon principle. Constitution: The pool water of a spent fuel storage pool is airtightly communicated through a pipe with the pool water of a spent fuel cask, and a gate is provided between the pool and the cask. Since cask is conveyed into the cask pit as the gate close while conveying, the pool water level is raised an amount corresponding to the volume of the cask, and water flow through scattering pipe and the communication pipe to the storage pool. When the fuel is conveyed out of the cask, the water level is lowered in the amount corresponding to the volume in the cask pit, and the water in the pool flow through the communication pipe to the cask pit. (Sekiya, K.)

  8. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Khan, A.; Pattantyus, P.

    1999-01-01

    The current status of the Canadian spent fuel storage is presented. This includes wet and dry interim storage. Extension of wet interim storage facilities is nor planned, as dry technologies have found wide acceptance. The Canadian nuclear program is sustained by commercial Ontario Hydro CANDU type reactors, since 1971, representing 13600 MW(e) of installed capacity, able to produce 9200 spent fuel bundles (1800 tU) every year, and Hydro Quebec and New Brunswick CANDU reactors each producing 685 MW(e) and about 100 tU of spent fuel annually. The implementation of various interim (wt and dry) storage technologies resulted in simple, dense and low cost systems. Economical factors determined that the open cycle option be adopted for the CANDU type reactors rather that recycling the spent fuel. Research and development activities for immobilization and final disposal of nuclear waste are being undertaken in the Canadian Nuclear Fuel Waste Management Program

  9. Assessment of spent fuel cooling

    International Nuclear Information System (INIS)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F.

    1997-01-01

    The paper presents the methodology, the findings, and the conclusions of a study that was done by the Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) on loss of spent fuel pool cooling. The study involved an examination of spent fuel pool designs, operating experience, operating practices, and procedures. AEOD's work was augmented in the area of statistics and probabilistic risk assessment by experts from the Idaho Nuclear Engineering Laboratory. Operating experience was integrated into a probabilistic risk assessment to gain insight on the risks from spent fuel pools

  10. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  11. Method of decladding spent fuel

    International Nuclear Information System (INIS)

    Fukutome, Kazuyuki; Kitagawa, Kazuo.

    1988-01-01

    Purpose: To enable to safety and easy decladding of nuclear fuels thereby reduce the processing cost. Constitution: Upon dismantling of a spent fuel rod, the fuel rod is heated at least to such a temperature that the ductility of a fuel can is recovered, then transported by using seizing rollers, by which the fuel rod is pressurized from the outer circumference to break the nuclear fuels at the inside thereof. Then, the destructed fuels are recovered from both ends of the fuel can. With such a constitution, since the ductility of the fuel can is recovered by heating, when the fuel rod is passed through the rollers in this state, the fuel can is deformed to destroy the nuclear fuels at the inside thereof. Since the nuclear fuels are destroyed into small pieces, they can be taken out easily from both ends of the fuel can. (Kawakami, Y.)

  12. Radionuclide release from research reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, H., E-mail: h.curtius@fz-juelich.de [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany); Kaiser, G.; Mueller, E.; Bosbach, D. [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany)

    2011-09-01

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO{sub 2} fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in {sup 235}U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO{sub 2}-fuel (LWR fuel, enrichment in {sup 235}U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Juelich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl{sub 2}-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAl{sub x}-Al and U{sub 3}Si{sub 2}-Al) was studied in 400 mL MgCl{sub 2}-rich salt brine in the presence of Fe{sup 2+} under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH){sub 3}(s) and Eu(OH){sub 3}(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu

  13. Spent fuel management in Spain

    International Nuclear Information System (INIS)

    Gonzalez, J.L.

    2002-01-01

    The spent fuel management strategy in Spain is presented. The strategy includes temporary solutions and plans for final disposal. The need for R and D including partitioning and transmutation, as well as the financial constraints are also addressed. (author)

  14. Intermodal transportation of spent fuel

    International Nuclear Information System (INIS)

    Elder, H.K.

    1983-09-01

    Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate

  15. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  16. Transportation of spent MTR fuels

    International Nuclear Information System (INIS)

    Raisonnier, D.

    1997-01-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs

  17. Transportation of spent MTR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Raisonnier, D.

    1997-08-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs.

  18. HFIR spent fuel management alternatives

    International Nuclear Information System (INIS)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-01-01

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere

  19. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B S; Park, Y S; Oh, S C; Kim, S H; Cho, M W; Hong, D H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  20. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H.

    1997-12-01

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  1. Methods for expanding the capacity of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    At the beginning of 1989 more than 55,000 metric tonnes of heavy metal (MTHM) of spent Light Water Reactor (LWR) and Heavy Water Reactor (HWR) fuel had been discharged worldwide from nuclear power plants. Only a small fraction of this fuel has been reprocessed. The majority of the spent fuel assemblies are currently held at-reactor (AR) or away-from-reactor (AFR) in storage awaiting either chemical processing or final disposal depending on the fuel concept chosen by individual countries. Studies made by NEA and IAEA have projected that annual spent fuel arising will reach about 10,000 t HM in the year 2000 and cumulative arising will be more than 200,000 t HM. Taking into account the large quantity of spent fuel discharged from NPP and that the first demonstrations of the direct disposal of spent fuel or HLW are expected only after the year 2020, long-term storage will be the primary option for management of spent fuel until well into the next century. There are several options to expand storage capacity: (1) to construct new away-from-reactor storage facilities, (2) to transport spent fuel from a full at-reactor pool to another site for storage in a pool that has sufficient space to accommodate it, (3) to expand the capacity of existing AR pools by using compact racks, double-tierce, rod consolidation and by increasing the dimensions of existing pools. The purpose of the meeting was: to exchange new information on the international level on the subject connected with the expansion of storage capacities for spent fuel; to elaborate the state-of-the-art of this problem; to define the most important areas for future activity; on the basis of the above information to give recommendations to potential users for selection and application of the most suitable methods for expanding spent fuel facilities taking into account the relevant country's conditions. Refs, figs and tabs

  2. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  3. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  4. Irradiation effects on thermal properties of LWR hydride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt, E-mail: terrani@berkeley.edu [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Balooch, Mehdi [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Carpenter, David; Kohse, Gordon [Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Keiser, Dennis; Meyer, Mitchell [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Olander, Donald [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States)

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH{sub 1.6}) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  5. Intermodal transfer of spent fuel

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Weiner, R.F.

    1991-01-01

    As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handier exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. A study of the movement of spent fuel casks through ports, including the loading and unloading of containers from cargo vessels, afforded an opportunity to estimate the radiation doses to those individuals handling the spent fuels with doses to the public along subsequent transportation routes of the fuel. A number of states require redundant inspections and for escorts over long distances on highways; thus handlers, inspectors, escort personnel, and others who are not normally classified as radiation workers may sustain doses high enough to warrant concern about occupational safety. This paper addresses the question of radiation safety for these workers. Data were obtained during, observation of the offloading of reactor spent fuel (research reactor spent fuel, in this instance) which included estimates of exposure times and distances for handlers, inspectors and other workers during offloading and overnight storage. Exposure times and distance were also for other workers, including crane operators, scale operators, security personnel and truck drivers. RADTRAN calculational models and parameter values then facilitated estimation of the dose to workers during incident-free ship-to-truck transfer of spent fuel

  6. SPES, Fuel Cycle Optimization for LWR

    International Nuclear Information System (INIS)

    1973-01-01

    1 - Nature of physical problem solved: Determination of optimal fuel cycle at equilibrium for a light water reactor taking into account batch size, fuel enrichment, de-rating, shutdown time, cost of replacement energy. 2 - Method of solution: Iterative method

  7. Spent fuel storage capacities. An update of DOE/RL-84-1

    International Nuclear Information System (INIS)

    1985-10-01

    Spent fuel storage capacities at some commercial light water reactors (LWRs) are inadequate to handle projected spent fuel discharges. This report presents estimates of potential near-term requirements for additional LWR spent fuel storage capacity, based on information supplied by utilities operating commercial nuclear power plants. These estimates provide information needed for planning the Department of Energy's (DOE) activities to be carried out under the DOE's Commercial Spent Fuel Management (CSFM) Program, in conjunction with the requirements of the Nuclear Waste Policy Act of 1982. The estimates in this report cover the period from the present through the year 2000. Although the DOE objective is to begin accepting spent fuel for final disposal in 1998, types of fuel and the receipt rates to be shipped are not yet known. Hence, this report makes no assumption regarding such fuel shipments. The resport also assesses the possible impacts of increased fuel exposure and spent fuel transhipment on the requirements for additional storage capacity

  8. Transport device of spent fuel

    International Nuclear Information System (INIS)

    Watanabe, Takashi.

    1976-01-01

    Object: To provide a transport device of spent fuel particularly used in a fast breeder, which can enhance accessibility to travelling mechanism portions and exchangeability thereof to facilitate maintenance in the event of failure. Structure: On a travelling floor, which has a function to shield radioactive rays, extending in a direction of transporting spent fuel and being formed with a break passing through in a direction wall thickness, a travelling body is moved along the break. The travelling body has a support rod member mounted thereon, and the support rod member is moved within the break, the support rod member having a fuel support pocket suspended therefrom. (Furukawa, Y.)

  9. Spent fuel storage requirements, 1988

    International Nuclear Information System (INIS)

    1988-10-01

    Historical inventories of spent fuel and Department of Energy (DOE) estimates of future discharges from US commercial nuclear reactors are presented for the next 20 years, through the year 2007. The eventual needs for additional spent fuel storage capacity are estimated. These estimates are based on the maximum capacities within current and planned at-reactor facilities and on any planned transshipments of fuel to other reactors or facilities. Historical data through December 1987 and projected discharges through the end of reactor life are used in this analysis. The source data was supplied by the utilities to DOE through the 1988 RW-859 data survey and by DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 12 refs., 3 figs., 28 tabs

  10. Development of top nozzle for Korean standard LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. K.; Kim, I. K.; Choi, K. S.; Kim, Y. H.; Lee, J. N.; Kim, H. K. [KNFC, Taejon (Korea, Republic of)

    2001-10-01

    Performance evaluation was executed for each component and its assembly for the deduced Top Nozzles to develop the new Top Nozzle for LWR. This new Top Nozzle is composed of the optimum components among the derived Top Nozzles that have been evaluated in the viewpoint of structural integrity, simpleness of dismantle and assembly, manufacturability etc. In this study, the developed Top Nozzle satisfied all the related design criteria. In special, it makes fuel repair time reduced by assembling and disassembling itself as one body, and improves Fuel Assembly holddown ability by revising the design parameters of its spring and the structural integrity through the betterment of its geometrical shpae of Flange and Holddown Plate as compared with the existing LWR Top Nozzles.

  11. TMI-2 spent fuel shipping

    International Nuclear Information System (INIS)

    Quinn, G.J.; Burton, H.M.

    1985-01-01

    TMI-2 failed fuel will be shipped to the Idaho National Engineering Laboratory for use in the DOE Core Examination Program. The fuel debris will be loaded into three types of canisters during defueling and dry loaded into a spent fuel shipping cask. The cask design accommodates seven canisters per cask and has two separate containment vessels with ''leaktight'' seals. Shipments are expectd to begin in early 1986

  12. Container for spent fuel assembly

    International Nuclear Information System (INIS)

    Sawai, Takeshi.

    1996-01-01

    The container of the present invention comprises a container main body having a body portion which can contain spent fuel assemblies and a lid, and heat pipes having an evaporation portion disposed along the outer surface of the spent fuel assemblies to be contained and a condensation portion exposed to the outside of the container main body. Further, the heat pipe is formed spirally at the evaporation portions so as to surround the outer circumference of the spent fuel assemblies, branched into a plurality of portions at the condensation portion, each of the branched portion of the condensation portion being exposed to the outside of the container main body, and is tightly in contact with the periphery of the slit portions disposed to the container main body. Then, since released after heat is transferred to the outside of the container main body from the evaporation portion of the heat pipe along the outer surface of the spent fuel assemblies by way of the condensation portion of the heat pipes exposed to the outside of the container main body, the efficiency of the heat transfer is extremely improved to enhance the effect of removing heat of spent fuel assemblies. Further, cooling effect is enhanced by the spiral form of the evaporation portion and the branched condensation portion. (N.H.)

  13. Fast reactor core design studies to cope with TRU fuel composition changes in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    As part of the Fast Reactor Cycle Technology Development Project (FaCT Project), sodium-cooled fast reactor core design efforts have been made to cope with the TRU fuel composition changes expected during LWR-to-FBR transition period, in which a various kind of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and a way of recycling them. A 750 MWe mixed-oxide fuel core is firstly defined as a FaCT medium-size reference core and its neutronics characteristics are determined. The core is a high internal conversion type and has an average burnup of 150 GWD/T. The reference TRU fuel composition is assumed to come from the FBR equilibrium state. Compared to the LWR-to-FBR transition period, the TRU fuels in the FBR equilibrium period are multi-recycled through fast reactors and have a different composition. An available TRU fuel composition is determined by fast reactor spent fuel multi-recycling scenarios. Then the FaCT core corresponding to the TRU fuel with different compositions is set according to the TRU fuel composition changes in LWR-to-FBR transition period, and the key core neutronics characteristics are assessed. It is shown that among the core neutronics characteristics, the burnup reactivity and the safety parameters such as sodium void reactivity and Doppler coefficient are significantly influenced by the TRU fuel composition changes. As a result, a general characteristic in the FaCT core design to cope with TRU fuel composition changes is grasped and the design envelopes are identified in terms of the burnup reactivity and the safety parameters. (author)

  14. Considerations for a national program on spent fuel management

    International Nuclear Information System (INIS)

    Lopez-Perez, B.; Melches-Serrano, C.

    1980-01-01

    The spent fuel discharged from the two LWR's that are in operation (Zorita, 160 MW PWR, and Santa Maria de Garona, 460 MW BWR) is being reprocessed under contracts with BNFL; these contracts will expire in the next few years. The fuel discharged from Vandelos (50 MW GCR) is being reprocessed by Cogema under a long-term contract. No new reprocessing contracts for LWR's in operation, under construction, or planned have been signed or are being considered for the near future. The plutonium and the residual uranium contained in LWR spent fuel are considered important potential energy resources. They are especially valuable for countries such as Spain, which is short of energy resources, and they might be used in the future in fast breeder or thermal reactors. This is the reason that, until reprocessing is justified and appropriate solutions to make reprocessing available are developed, Spain has decided to build the appropriate capacity for the temporary storage of spent fuel. The capacity is being achieved, on short term, by the extension of AR storage capacity. It is being achieved, at medium or longer term, by the construction of centralized AFR facilities to serve all Spanish nuclear power plants. Spanish utilities are undertaking the expansion of reactor storage capacities, using densified racks, to increment capacity to at least 8 to 10 reloads, in addition to full core discharge capacity. Spain has the time and the financial and technical resources to implement a national solution for spent fuel storage. Financial strategy, technology choice, and licensing considerations are under examination in order to make a decision for medium- and long-term storage alternatives

  15. Spent fuel storage pool

    International Nuclear Information System (INIS)

    Murakami, Naoshi.

    1996-01-01

    Fences are disposed to a fuel exchange floor surrounding the upper surface of a fuel pool for preventing overflow of pool water. The fences comprise a plurality of flat boards arranged in parallel with each other in the longitudinal direction while being vertically inclined, and slits are disposed between the boards for looking down the pool. Further, the fences comprise wide boards and are constituted so as to be laid horizontally on the fuel exchange floor in a normal state and uprisen by means of the signals from an earthquake sensing device. Even if pool water is overflow from the fuel pool by the vibrations occurred upon earthquake and flown out to the floor of the fuel exchange floor, the overflow from the fuel exchange floor is prevented by the fences. An operator who monitors the fuel pool can observe the inside of the fuel pool through the slits formed to the fences during normal operation. The fences act as resistance against overflowing water upon occurrence of an earthquake thereby capable of reducing the overflowing amount of water due to the vibrations of pool water. The effect of preventing overflowing water can be enhanced. (N.H.)

  16. AFCI : Co-extraction impacts on LWR and fast reactor fuel cycles

    International Nuclear Information System (INIS)

    Taiwo, T. A.; Szakalay, F. J.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2007-01-01

    A systematic investigation of the impact of the co-extraction COEXTM process on reactor performance has been performed. The proliferation implication of the process was also evaluated using the critical mass, radioactivity, decay heat and neutron and gamma source rates and gamma doses as indicators. The use of LWR-spent-uranium-based MOX fuel results in a higher initial plutonium content requirement in an LWR MOX core than if natural uranium based MOX fuel is used (by about 1%); the plutonium for both cases is derived from the spent LWR spent fuel. More transuranics are consequently discharged in the spent fuel of the MOX core. The presence of U-236 in the initial fuel was also found to result in higher content of Np-237 in the spent MOX fuel and less consumption of Pu-238 and Am-241 in the MOX core. The higher quantities of Np-237 (factor of 5), Pu-238 (20%) and Am-241 (14%) decrease the effective repository utilization, relative to the use of natural uranium in the PWR MOX core. Additionally, the minor actinides continue to accumulate in the fuel cycle, even if the U-Pu co-extraction products are continuously recycled in the PWR cores, and thus a solution is required for the minor actinides. The utilization of plutonium derived from LWR spent fuel versus weapons-grade plutonium for the startup core of a 1,000 MWT advanced burner fast reactor (ABR) increases the TRU content by about 4%. Differences are negligible for the equilibrium recycle core. The impact of using reactor spent uranium instead of depleted uranium was found to be relatively smaller in the fast reactor (TRU content difference less than 0.4%). The critical masses of the co-extraction products were found to be higher than that of weapons-grade plutonium and the decay heat and radiation sources of the materials (products) were also found to be generally higher than that of weapons-grade plutonium (WG-Pu) in the transuranics content range of 0.1 to 1.0 in the heavy-metal. The magnitude of the

  17. Spent fuel management in Spain

    International Nuclear Information System (INIS)

    Gago, J.A.; Gravalos, J.M.

    1996-01-01

    There are presently nine Light Water Reactors in operation, representing around a 34% of the overall electricity production. In the early years, a small amount of spent fuel was sent to be reprocessed, although this policy was cancelled in favor of the open cycle option. A state owned company, ENRESA, was created in 1984, which was given the mandate to manage all kinds of radioactive wastes generated in the country. Under the present scenario, a rough overall amount of 7000 tU of spent fuel will be produced during the lifetime of the plants, which will go into final disposal. (author)

  18. Corrosion Tests of LWR Fuels - Nuclide Release

    International Nuclear Information System (INIS)

    P.A. Finn; Y. Tsai; J.C. Cunnane

    2001-01-01

    Two BWR fuels [64 and 71 (MWd)/kgU], one of which contained 2% Gd, and two PWR fuels [30 and 45 (MWd)/kgU], are tested by dripping groundwater on the fuels under oxidizing and hydrologically unsaturated conditions for times ranging from 2.4 to 8.2 yr at 90 C. The 99 Tc, 129 I, 137 Cs, 97 Mo, and 90 Sr releases are presented to show the effects of long reaction times and of gadolinium on nuclide release. This investigation showed that the five nuclides at long reaction times have similar fractional release rates and that the presence of 2% Gd reduced the 99 Tc cumulative release fraction by about an order of magnitude over that of a fuel with a similar burnup

  19. Reliabilityy and operating margins of LWR fuels

    International Nuclear Information System (INIS)

    Strasser, A.A.; Lindquist, K.O.

    1977-01-01

    The margins to fuel thermal operating limits under normal and accident conditions are key to plant operating flexibility and impact on availability and capacity factor. Fuel performance problems that do not result in clad breach, can reduce these margins. However, most have or can be solved with design changes. Regulatory changes have been major factors in eroding these margins. Various methods for regaining the margins are discussed

  20. Fuel elements for LWR power plants

    International Nuclear Information System (INIS)

    Roepenack, H.

    1977-01-01

    About five times more expensive than the fabrication of a fuel element is the enriched uranium contained therein; soon the monthly interest charges for the uranium value of a fuel element reload will account for five percent of the fabrication costs, and much more expensive than all this together can it be if reactor operation has to be interrupted because of damaged elements. Thus, quality assurance comes first. (orig.) [de

  1. Evaluation of LWR fuel rod behavior under operational transient conditions

    International Nuclear Information System (INIS)

    Nakamura, M.; Hiramoto, K.; Maru, A.

    1984-01-01

    To evaluate the effects of fission gas flow and diffusion in the fuel-cladding gap on fuel rod thermal and mechanical behaviors in light water reactor (LWR) fuel rods under operational transient conditions, computer sub-programs which can calculate the gas flow and diffusion have been developed and integrated into the LWR fuel rod performance code BEAF. This integrated code also calculates transient temperature distribution in the fuel-pellet and cladding. The integrated code was applied to an analysis of Inter Ramp Project data, which showed that by taking into account the gas flow and diffusion effects, the calculated cladding damage indices predicted for the failed rods in the ramp test were consistent with iodine-SCC (Stress Corrosion Cracking) failure conditions which were obtained from out-of-reactor pressurized tube experiments with irradiated Zircaloy claddings. This consistency was not seen if the gas flow and diffusion effects were neglected. Evaluation were also made for the BWR 8x8 RJ fuel rod temperatures under power ramp conditions. (orig.)

  2. Validating the BISON fuel performance code to integral LWR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Gamble, K.A., E-mail: Kyle.Gamble@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Pastore, G., E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Gardner, R.J., E-mail: Russell.Gardner@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Liu, W., E-mail: Wenfeng.Liu@anatech.com [ANATECH Corporation, 5435 Oberlin Dr., San Diego, CA 92121 (United States); Mai, A., E-mail: Anh.Mai@anatech.com [ANATECH Corporation, 5435 Oberlin Dr., San Diego, CA 92121 (United States)

    2016-05-15

    Highlights: • The BISON multidimensional fuel performance code is being validated to integral LWR experiments. • Code and solution verification are necessary prerequisites to validation. • Fuel centerline temperature comparisons through all phases of fuel life are very reasonable. • Accuracy in predicting fission gas release is consistent with state-of-the-art modeling and the involved uncertainties. • Rod diameter comparisons are not satisfactory and further investigation is underway. - Abstract: BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON's computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to date for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Results demonstrate that (1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, (2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and (3) comparison

  3. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  4. Evaluation and optimization of LWR fuel cycles

    International Nuclear Information System (INIS)

    Akbas, T.; Zabunoglu, O.; Tombakoglu, M.

    2001-01-01

    There are several options in the back-end of the nuclear fuel cycle. Discharge burn-up, length of interim storage period, choice of direct disposal or recycling and method of reprocessing in case of recycling affect the options and determine/define the fuel cycle scenarios. These options have been evaluated in viewpoint of some tangible (fuel cycle cost, natural uranium requirement, decay heat of high level waste, radiological ingestion and inhalation hazards) and intangible factors (technological feasibility, nonproliferation aspect, etc.). Neutronic parameters are calculated using versatile fuel depletion code ORIGEN2.1. A program is developed for calculation of cost related parameters. Analytical hierarchy process is used to transform the intangible factors into the tangible ones. Then all these tangible and intangible factors are incorporated into a form that is suitable for goal programming, which is a linear optimization technique and used to determine the optimal option among alternatives. According to the specified objective function and constraints, the optimal fuel cycle scenario is determined using GPSYS (a linear programming software) as a goal programming tool. In addition, a sensitivity analysis is performed for some selected important parameters

  5. A classification scheme for LWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.S.; Williamson, D.A.; Notz, K.J.

    1988-11-01

    With over 100 light water nuclear reactors operating nationwide, representing designs by four primary vendors, and with reload fuel manufactured by these vendors and additional suppliers, a wide variety of fuel assembly types are in existence. At Oak Ridge National Laboratory, both the Systems Integration Program and the Characteristics Data Base project required a classification scheme for these fuels. This scheme can be applied to other areas and is expected to be of value to many Office of Civilian Radioactive Waste Management programs. To develop the classification scheme, extensive information on the fuel assemblies that have been and are being manufactured by the various nuclear fuel vendors was compiled, reviewed, and evaluated. It was determined that it is possible to characterize assemblies in a systematic manner, using a combination of physical factors. A two-stage scheme was developed consisting of 79 assembly types, which are grouped into 22 assembly classes. The assembly classes are determined by the general design of the reactor cores in which the assemblies are, or were, used. The general BWR and PWR classes are divided differently but both are based on reactor core configuration. 2 refs., 15 tabs.

  6. A classification scheme for LWR fuel assemblies

    International Nuclear Information System (INIS)

    Moore, R.S.; Williamson, D.A.; Notz, K.J.

    1988-11-01

    With over 100 light water nuclear reactors operating nationwide, representing designs by four primary vendors, and with reload fuel manufactured by these vendors and additional suppliers, a wide variety of fuel assembly types are in existence. At Oak Ridge National Laboratory, both the Systems Integration Program and the Characteristics Data Base project required a classification scheme for these fuels. This scheme can be applied to other areas and is expected to be of value to many Office of Civilian Radioactive Waste Management programs. To develop the classification scheme, extensive information on the fuel assemblies that have been and are being manufactured by the various nuclear fuel vendors was compiled, reviewed, and evaluated. It was determined that it is possible to characterize assemblies in a systematic manner, using a combination of physical factors. A two-stage scheme was developed consisting of 79 assembly types, which are grouped into 22 assembly classes. The assembly classes are determined by the general design of the reactor cores in which the assemblies are, or were, used. The general BWR and PWR classes are divided differently but both are based on reactor core configuration. 2 refs., 15 tabs

  7. Analysis of the impact of retrievable spent fuel storage

    International Nuclear Information System (INIS)

    Merrill, E.T.; White, M.K.; Fleischman, R.M.

    1978-03-01

    The impact of retrievably storing spent fuel is measurable in terms of the contribution the stored spent fuel makes to implementing the fuel management option selected. For the case of a decision to recycle LWR fuel in LWRs, a useful indicator of impact is the ratio of energy production with varying degrees of spent fuel retrievability to that achievable with total spent fuel retrievability. For a decision made in the year 2000, this ratio varies from 0.81 (10 yr storage in reactor basins) to 0.97 (retrievable storage for 25 years after fuel discharge). An earlier decision to recycle in LWRs results in both of these ratios being nearer to 1.0. If a decision is reached to implement a breeder reactor economy, the chosen comparison is the installed breeder capacity achievable with varying degrees of spent fuel retrievability. If a decision to build breeder reactors is reached in the year 2000, the maximum possible installed breeder capacity in 2040 varies from 490 GWe (10 yr storage in reactor basins) to 660 GWe (all fuel retrievably stored). If all fuel is retrievably stored 25 years, 635 GWe of breeder capacity is achievable by 2040. For an earlier decision date, such as 1985, the maximum possible installed breeder capacity in 2040 ranges from 740 GWe (no retrievable storage) to 800 GWe (all fuel retrievably stored). As long as a decision to reprocess is reached before 2000, most of the potential benefit of retrievable storage may be realized by implementing retrievable storage after such a decision is made. Neither providing retrievable spent fuel storage prior to a decision to reprocess, nor designing such storage for more than 25 years of retrievability appear to offer significant incremental benefit

  8. Spent fuel management in Canada

    International Nuclear Information System (INIS)

    Pattantyus, P.

    1998-01-01

    The current status of the Canadian Spent Fuel Management is described. This includes wet and dry interim storage, transportation issues and future plans regarding final disposal based on deep underground emplacement in stable granite rock. Extension of wet interim storage facilities is not planned, as dry storage technologies have found wide acceptance. (author)

  9. Worldwide spent fuel transportation logistics

    International Nuclear Information System (INIS)

    Best, R.E.; Garrison, R.F.

    1978-01-01

    This paper presents an overview of the worldwide transportation requirements for spent fuel. Included are estimates of numbers and types of shipments by mode and cask type for 1985 and the year 2000. In addition, projected capital and transportation costs are presented. For the year 1977 and prior years inclusive, there is a cumulative worldwide requirement for approximately 300 MTU of spent fuel storage at away-from-reactor (AFR) facilities. The cumulative requirements for years through 1985 are projected to be nearly 10,000 MTU, and for the years through 2000 the requirements are conservatively expected to exceed 60,000 MTU. These AFR requirements may be related directly to spent fuel transportation requirements. In total nearly 77,000 total cask shipments of spent fuel will be required between 1977 and 2000. These shipments will include truck, rail, and intermodal moves with many ocean and coastal water shipments. A limited number of shipments by air may also occur. The US fraction of these is expected to include 39,000 truck shipments and 14,000 rail shipments. European shipments to regional facilities are expected to be primarily by rail or water mode and are projected to account for 16,000 moves. Pacific basin shipments will account for 4500 moves. The remaining are from other regions. Over 400 casks will be needed to meet the transportation demands. Capital investment is expected to reach $800,000,000 in 1977 dollars. Cumulative transport costs will be a staggering $4.4 billion dollars

  10. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation: Appendix 2E, Physical descriptions of LWR nonfuel assembly hardware, Appendix 2F, User's guide to the LWR nonfuel assembly data base

    International Nuclear Information System (INIS)

    1987-12-01

    This appendix includes a two to three page Physical Description report for each Non-fuel Assembly (NFA) Hardware item identified from the current data. Information was obtained via subcontracts with these NFA hardware vendors: Babcock and Wildox, Combustion Engineering and Westinghouse. Data for some NFA hardware are not available. For such hardware, the information shown in this report was obtained from the open literature. Efforts to obtain additional information are continuing. NFA hardware can be grouped into six categories: BWR Channels, Control Elements, Guide Tube Plugs/Orifice Rods, Instrumentation, Neutron Poisons, and Neutron Sources. This appendix lists Physical Description reports alphabetically by vendor within each category. Individual Physical Description reports can be generated interactively through the menu-driven LWR Non-Fuel Assembly Hardware Data Base system. These reports can be viewed on the screen, directed to a printer, or saved in a text file for later use. Special reports and compilations of specific data items can be produced on request

  11. Conceptual study of the future nuclear fuel cycle system for the extended LWR age

    International Nuclear Information System (INIS)

    Fujine, Sachio; Takano, Hideki; Sato, Osamu; Tone, Tatsuzo; Yamada, Takashi; Kurosawa, Katsutoshi.

    1993-08-01

    A large scale integrated fuel cycle facility (IFCF) is assumed for the future nuclear fuel cycle in the extended LWR age. Spent MOX fuels are reprocessed mixed with UOX in a centralized reprocessing plant. The reprocessing plant separates long-lived nuclides as well as Pu. Nitric acid solutions of those products are fed directly to MOX fabrication process which is incorporated with reprocessing. MOX pellets are made by sphere-cal process. Two process concepts are made as advanced reprocessing incorporated with partitioning (ARP) which has the function of long-lived nuclides recovery. One is a simplified Purex combined with partitioning. Extractable long-lived nuclides, 237 Np and 99 Tc, are assumed to be recovered in main flow stream of the improved Purex process. The other process concept is made aiming at recovering all TRU nuclides in reprocessing to meet with TRU recycle requirement in the long future. A concept of the future fuel cycle system is made by combining integrated fuel cycle facility and very high burnup LWRs (VHBR). The reactor concept of VHBRs has been proposed to improve Pu recycle economy in the future. Highly enriched MOX fuel are loaded in the full core of reactor in order to increase reactivity for the burnup. Fuel cycle indices such as Pu isotopic composition change, spent fuel integration, nuclide transmutation effect are estimated by simulating the Pu recycling in the system of VHBR and ARP. It is concluded that Pu enrichment of MOX fuel can be kept less than 20 % through multi-recycle. Reprocessing MOX fuels with UOX shows a favorable effect for keeping Pu reactivity high enough for VHBR. Integration of spent MOX fuel can be reduced by Pu recycle. Transmutation of Np is feasible by containing Np into MOX fuel. (author)

  12. Overview of spent fuel management and problems

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Ernst, P.C.

    1998-01-01

    Results compiled in the research reactor spent fuel database are used to assess the status of research reactor spent fuel worldwide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialized and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. Some projections of spent fuel inventories to the year 2006 are presented and discussed. (author)

  13. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  14. Bottom nozzle of a LWR fuel assembly

    International Nuclear Information System (INIS)

    Leroux, J.C.

    1991-01-01

    The bottom nozzle consists of a transverse element in form of box having a bending resistant grid structure which has an outer peripheral frame of cross-section corresponding to that of the fuel assembly and which has walls defining large cells. The transverse element has a retainer plate with a regular array of openings. The retainer plate is fixed above and parallel to the grid structure with a spacing in order to form, between the grid structure and the retainer plate a free space for tranquil flow of cooling water and for debris collection [fr

  15. Spent fuel storage rack

    International Nuclear Information System (INIS)

    Morikawa, Matsuo; Uchiyama, Yuichi.

    1983-01-01

    Purpose: To improve the safety and facilitate the design by limiting the relative displacement in a storage rack. Constitution: The outer wall of a storage rack disposed in water within a fuel pool, the pool wall opposing to the storage rack and the structure between the opposing storages racks are made as a space for confining the pool water or a structure formed with a slight gap, for example, a combination of a recessed structure and a protruded structure. In such a constitution, a space for confirming the pool water is established and the pool water thus confined forms a flow resistance when the storage rack vibrates upon earthquakes, serves as a damper and significantly reduces the responsivity. Furthermore, the relative displacement in the storage rack is limited to inhibit excess earthquake forces to exert on setting bolts and rack clamping bolts of the storage rack. (Sekiya, K.)

  16. Methodology for determining criteria for storing spent fuel in air

    International Nuclear Information System (INIS)

    Reid, C.R.; Gilbert, E.R.

    1986-11-01

    Dry storage in an air atmosphere is a method being considered for spent light water reactor (LWR) fuel as an alternative to storage in an inert gas environment. However, methods to predict fuel integrity based on oxidation behavior of the fuel first must be evaluated. The linear cumulative damage method has been proposed as a technique for defining storage criteria. Analysis of limited nonconstant temperature data on nonirradiated fuel samples indicates that this approach yields conservative results for a strictly decreasing-temperature history. On the other hand, the description of damage accumulation in terms of remaining life concepts provides a more general framework for making predictions of failure. Accordingly, a methodology for adapting remaining life concepts to UO 2 oxidation has been developed at Pacific Northwest Laboratory. Both the linear cumulative damage and the remaining life methods were used to predict oxidation results for spent fuel in which the temperature was decreased with time to simulate the temperature history in a dry storage cask. The numerical input to the methods was based on oxidation data generated with nonirradiated UO 2 pellets. The calculated maximum allowable storage temperatures are strongly dependent on the temperature-time profile and emphasize the conservatism inherent in the linear cumulative damage model. Additional nonconstant temperature data for spent fuel are needed to both validate the proposed methods and to predict temperatures applicable to actual spent fuel storage

  17. Proceedings of the 2007 LWR Fuel Performance Meeting / TopFuel 2007 'Zero by 2010'

    International Nuclear Information System (INIS)

    2007-01-01

    ANS, ENS, AESJ and KNS are jointly organizing the 2007 International LWR Fuel Performance Meeting following the successful ENS TopFuel meeting held during 22-26 October, 2006 in Salamaca, Spain. Merging three premier nuclear fuel design and performance meetings: the ANS LWR Fuel Performance Meeting, the ENS TopFuel and Asian Water Reactor Fuel Performance Meeting (WRFPM) created this international meeting. The meeting will be held annually on a tri-annual rotational basis in USA, Asia, and Europe. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as performance experience in commercial and test reactors. The meeting excludes front end and back end fuel issues, however, it covers all front and/or back issues that impact fuel designs and performance

  18. Spent fuel storage requirements. An update of DOE/RL-85-2

    International Nuclear Information System (INIS)

    1986-10-01

    Utility projections of spent fuel storage capacities indicate that some commercial light water reactors (LWRs) have inadequate capacity to handle projected spent fuel discharges. This report presents estimates of potential near-term requirements for additional LWR spent fuel storage capacity, based on information supplied by utilities operating commercial nuclear power plants. These estimates provide information needed for planning the Department of Energy's (DOE) activities to be carried out under the DOE's Commercial Spent Fuel Management (CSFM) Program, in conjunction with the requirements of the Nuclear Waste Policy Act of 1982. This report is the latest in a series published by the DOE on LWR spent fuel storage requirements. The estimates in this report cover the period from the present through the year 2000. Although the DOE objective is to begin accepting spent fuel for final disposal in 1998, types of fuel and the receipt rates to be shipped are not yet known. Hence, this report makes no assumption regarding such fuel shipments. The report also assesses the possible impacts of increased fuel exposure and spent fuel transshipment on the requirements for additional storage capacity

  19. Spent fuel storage criticality safety

    Energy Technology Data Exchange (ETDEWEB)

    Amin, E M; Elmessiry, A M [National center of nuclear safety and radiation control atomic energy authority, (Egypt)

    1995-10-01

    The safety aspects of the spent fuel storage pool of the Egyptian test and research reactor one (ET-R R-1) has to be assessed as part of a general overall safety evaluation to be included in a safety analysis report (SAR) for this reactor. The present work treats the criticality safety of the spent fuel storage pool. Conservative calculations based on using fresh fuel has been performed, as well as less conservative using burned fuel. The calculations include cross library generation for burned and fresh fuel for the ET-R R-1 fuel type. The WIMS-D 4 code has been used in library generation and burn up calculation the critically calculations are performed using the one dimensional transport code (ANISN) and the two dimensional diffusion code (DIXY2). The possibility of increasing the storage efficiency either by insertion of absorber sheets of soluble boron salts or by reduction of fuel rod separation has been studied. 8 figs., 2 tabs.

  20. Spent fuel storage criticality safety

    International Nuclear Information System (INIS)

    Amin, E.M.; Elmessiry, A.M.

    1995-01-01

    The safety aspects of the spent fuel storage pool of the Egyptian test and research reactor one (ET-R R-1) has to be assessed as part of a general overall safety evaluation to be included in a safety analysis report (SAR) for this reactor. The present work treats the criticality safety of the spent fuel storage pool. Conservative calculations based on using fresh fuel has been performed, as well as less conservative using burned fuel. The calculations include cross library generation for burned and fresh fuel for the ET-R R-1 fuel type. The WIMS-D 4 code has been used in library generation and burn up calculation the critically calculations are performed using the one dimensional transport code (ANISN) and the two dimensional diffusion code (DIXY2). The possibility of increasing the storage efficiency either by insertion of absorber sheets of soluble boron salts or by reduction of fuel rod separation has been studied. 8 figs., 2 tabs

  1. Pyroprocessing oxide spent nuclear fuels for efficient disposal

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Pierce, R.D.; Mulcahey, T.P.

    1994-01-01

    Pyrochemical processing as a means for conditioning spent nuclear fuels for disposal offers significant advantages over the direct disposal option. The advantages include reduction in high-level waste volume; conversion of most of the high-level waste to a low-level waste in which nearly all the transuranics (TRU) have been removed; and incorporation of the TRUs into a stable, highly radioactive waste form suitable for interim storage, ultimate destruction, or repository disposal. The lithium process has been under development at Argonne National Laboratory for use in pyrochemical conditioning of spent fuel for disposal. All of the process steps have been demonstrated in small-scale (0.5-kg simulated spent fuel) experiments. Engineering-scale (20-kg simulated spent fuel) demonstration of the process is underway, and small-scale experiments have been conducted with actual spent fuel from a light water reactor (LWR). The lithium process is simple, operates at relatively low temperatures, and can achieve high decontamination factors for the TRU elements. Ordinary materials, such as carbon steel, can be used for process containment

  2. Collective processing device for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiroaki; Taniguchi, Noboru.

    1996-01-01

    The device of the present invention comprises a sealing vessel, a transporting device for transporting spent fuels to the sealing vessel, a laser beam cutting device for cutting the transported spent fuels, a dissolving device for dissolving the cut spent fuels, and a recovering device for recovering radioactive materials from the spent fuels during processing. Reprocessing treatments comprising each processing of dismantling, shearing and dissolving are conducted in the sealing vessel can ensure a sealing barrier for the radioactive materials (fissionable products and heavy nuclides). Then, since spent fuels can be processed in a state of assemblies, and the spent fuels are easily placed in the sealing vessel, operation efficiency is improved, as well as operation cost is saved. Further, since the spent fuels can be cut by a remote laser beam operation, there can be prevented operator's exposure due to radioactive materials released from the spent fuels during cutting operation. (T.M.)

  3. Measurement and characterization of fission products released from LWR fuel

    International Nuclear Information System (INIS)

    Osborne, M.F.; Collins, J.L.; Lorenz, R.A.; Norwood, K.S.; Strain, R.V.

    1984-01-01

    Samples of commercial LWR fuel have been heated under simulated accident conditions to determine the extent and the chemical forms of fission product release. This project was sponsored by the USNRC under a broad program of reactor safety studies. Of the five tests discussed, the fractional releases of Kr, I, and Cs varied from approx. 2% at 1400 0 C to >50% at 2000 0 C; much smaller fractions of Ru, Ag, Sb, and Te were measured in some tests. The major chemical forms in the effluent appeared to include CsI, CsOH, Sb, Te, and Ag

  4. Measurement and characterization of fission products released from LWR fuel

    International Nuclear Information System (INIS)

    Osborne, M.F.; Collins, J.L.; Lorenz, R.A.; Norwood, K.S.; Strain, R.V.

    1984-01-01

    Samples of commercial LWR fuel have been heated under simulated accident conditions to determine the extent and the chemical forms of fission product release. Of the five tests discussed, the fractional releases of Kr, I, and Cs varied from proportional 2% at 1400 0 C to >50% at 2000 0 C; much smaller fractions of Ru, Ag, Sb, and Te were measured in some tests. The major chemical forms in the effluent appeared to include CsI, CsOH, Sb, Te, and Ag. (orig./HP)

  5. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  6. Spent nuclear fuel in Bulgaria

    International Nuclear Information System (INIS)

    Peev, P.; Kalimanov, N.

    1999-01-01

    The development of the nuclear energy sector in Bulgaria is characterized by two major stages. The first stage consisted of providing a scientific basis for the programme for development of the nuclear energy sector in the country and was completed with the construction of an experimental water-water reactor. At present, spent nuclear fuel from this reactor is placed in a water filled storage facility and will be transported back to Russia. The second stage consisted of the construction of the 6 NPP units at the Kozloduy site. The spent nuclear fuel from the six units is stored in at reactor pools and in an additional on-site storage facility which is nearly full. In order to engage the government of the country with the on-site storage problems, the new management of the National Electric Company elaborated a policy on nuclear fuel cycle and radioactive waste management. The underlying policy is de facto the selection of the 'deferred decision' option for its spent fuel management. (author)

  7. Dry storage assessment of LWR fuel in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Goll, W [AREVA NP GmbH (Germany)

    2012-07-01

    Germany's revised energy act, dated 2002, prohibits the shipment of spent nuclear fuel to reprocessing plants and restricts its disposal to a final repository. To comply with this law and to ensure further nuclear plant operation, the reactor operators had to construct on-site facilities for dry cask storage, to keep spent fuel assemblies for 40 years until a final repository is available. Twelve facilities went into operation during the last years. The amount of spent fuel in store is continuously increasing and has reached a level of about 1700 t HM by end of 2007. The central sites Ahaus and Gorleben remain in operation but shall be used for special purposes in future. The objectives are: Review of main features of facilities with an emphasis on associated monitoring; Review of degradation mechanisms in the context of fuel types and design (PWR, BWR, UO2, MOX) relative to fuel burn-up, structural materials and long term behaviour.

  8. LIFE vs. LWR: End of the Fuel Cycle

    International Nuclear Information System (INIS)

    Farmer, J.C.; Blink, J.A.; Shaw, H.F.

    2008-01-01

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources (International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of

  9. Modular dry storage of spent fuel

    International Nuclear Information System (INIS)

    Baxter, J.W.

    1982-01-01

    Long term uncertainties in US spent fuel reprocessing and storage policies and programs are forcing the electric utilities to consider means of storing spent fuel at the reactor site in increasing quantitities and for protracted periods. Utilities have taken initial steps in increasing storage capacity. Existing wet storage pools have in many cases been reracked to optimize their capacity for storing spent fuel assemblies

  10. Spent fuel storage process equipment development

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Lee, Jae Sol; Yoo, Jae Hyung

    1990-02-01

    Nuclear energy which is a major energy source of national energy supply entails spent fuels. Spent fuels which are high level radioactive meterials, are tricky to manage and need high technology. The objectives of this study are to establish and develop key elements of spent fuel management technologies: handling equipment and maintenance, process automation technology, colling system, and cleanup system. (author)

  11. Development of advanced LWR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H. [and others

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out.

  12. Development of advanced LWR fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H.

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out

  13. New Developments in Actinides Burning with Symbiotic LWR-HTR-GCFR Fuel Cycles

    International Nuclear Information System (INIS)

    Bomboni, Eleonora

    2008-01-01

    The long-term radiotoxicity of the final waste is currently the main drawback of nuclear power production. Particularly, isotopes of Neptunium and Plutonium along with some long-lived fission products are dangerous for more than 100000 years. 96% of spent Light Water Reactor (LWR) fuel consists of actinides, hence it is able to produce a lot of energy by fission if recycled. Goals of Generation IV Initiative are reduction of long-term radiotoxicity of waste to be stored in geological repositories, a better exploitation of nuclear fuel resources and proliferation resistance. Actually, all these issues are intrinsically connected with each other. It is quite clear that these goals can be achieved only by combining different concepts of Gen. IV nuclear cores in a 'symbiotic' way. Light-Water Reactor - (Very) High Temperature Reactor ((V)HTR) - Fast Reactor (FR) symbiotic cycles have good capabilities from the viewpoints mentioned above. Particularly, HTR fuelled by Plutonium oxide is able to reach an ultra-high burn-up and to burn Neptunium and Plutonium effectively. In contrast, not negligible amounts of Americium and Curium build up in this core, although the total mass of Heavy Metals (HM) is reduced. Americium and Curium are characterised by an high radiological hazard as well. Nevertheless, at least Plutonium from HTR (rich in non-fissile nuclides) and, if appropriate, Americium can be used as fuel for Fast Reactors. If necessary, dedicated assemblies for Minor Actinides (MA) burning can be inserted in Fast Reactors cores. This presentation focuses on combining HTR and Gas Cooled Fast Reactor (GCFR) concepts, fuelled by spent LWR fuel and depleted uranium if need be, to obtain a net reduction of total mass and radiotoxicity of final waste. The intrinsic proliferation resistance of this cycle is highlighted as well. Additionally, some hints about possible Curium management strategies are supplied. Besides, a preliminary assessment of different chemical forms of

  14. Spent fuel receipt scenarios study

    International Nuclear Information System (INIS)

    Ballou, L.B.; Montan, D.N.; Revelli, M.A.

    1990-09-01

    This study reports on the results of an assignment from the DOE Office of Civilian Radioactive Waste Management to evaluate of the effects of different scenarios for receipt of spent fuel on the potential performance of the waste packages in the proposed Yucca Mountain high-level waste repository. The initial evaluations were performed and an interim letter report was prepared during the fall of 1988. Subsequently, the scope of work was expanded and additional analyses were conducted in 1989. This report combines the results of the two phases of the activity. This study is a part of a broader effort to investigate the options available to the DOE and the nuclear utilities for selection of spent fuel for acceptance into the Federal Waste Management System for disposal. Each major element of the system has evaluated the effects of various options on its own operations, with the objective of providing the basis for performing system-wide trade-offs and determining an optimum acceptance scenario. Therefore, this study considers different scenarios for receipt of spent fuel by the repository only from the narrow perspective of their effect on the very-near-field temperatures in the repository following permanent closure. This report is organized into three main sections. The balance of this section is devoted to a statement of the study objective, a summary of the assumptions. The second section of the report contains a discussion of the major elements of the study. The third section summarizes the results of the study and draws some conclusions from them. The appendices include copies of the waste acceptance schedule and the existing and projected spent fuel inventory that were used in the study. 10 refs., 27 figs

  15. HTGR spent fuel storage study

    International Nuclear Information System (INIS)

    Burgoyne, R.M.; Holder, N.D.

    1979-04-01

    This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification

  16. Spent nuclear fuel sampling strategy

    International Nuclear Information System (INIS)

    Bergmann, D.W.

    1995-01-01

    This report proposes a strategy for sampling the spent nuclear fuel (SNF) stored in the 105-K Basins (105-K East and 105-K West). This strategy will support decisions concerning the path forward SNF disposition efforts in the following areas: (1) SNF isolation activities such as repackaging/overpacking to a newly constructed staging facility; (2) conditioning processes for fuel stabilization; and (3) interim storage options. This strategy was developed without following the Data Quality Objective (DQO) methodology. It is, however, intended to augment the SNF project DQOS. The SNF sampling is derived by evaluating the current storage condition of the SNF and the factors that effected SNF corrosion/degradation

  17. Spent fuel canister docking station

    International Nuclear Information System (INIS)

    Suikki, M.

    2006-01-01

    The working report for the spent fuel canister docking station presents a design for the operation and structure of the docking equipment located in the fuel handling cell for the spent fuel in the encapsulation plant. The report contains a description of the basic requirements for the docking station equipment and their implementation, the operation of the equipment, maintenance and a cost estimate. In the designing of the equipment all the problems related with the operation have been solved at the level of principle, nevertheless, detailed designing and the selection of final components have not yet been carried out. In case of defects and failures, solutions have been considered for postulated problems, and furthermore, the entire equipment was gone through by the means of systematic risk analysis (PFMEA). During the docking station designing we came across with needs to influence the structure of the actual disposal canister for spent nuclear fuel, too. Proposed changes for the structure of the steel lid fastening screw were included in the report. The report also contains a description of installation with the fuel handling cell structures. The purpose of the docking station for the fuel handling cell is to position and to seal the disposal canister for spent nuclear fuel into a penetration located on the cell floor and to provide suitable means for executing the loading of the disposal canister and the changing of atmosphere. The designed docking station consists of a docking ring, a covering hatch, a protective cone and an atmosphere-changing cap as well as the vacuum technology pertaining to the changing of atmosphere and the inert gas system. As far as the solutions are concerned, we have arrived at rather simple structures and most of the actuators of the system are situated outside of the actual fuel handling cell. When necessary, the equipment can also be used for the dismantling of a faulty disposal canister, cut from its upper end by machining. The

  18. Spent fuel storage requirements 1987

    International Nuclear Information System (INIS)

    1987-09-01

    Historical inventories of spent fuel and utility estimates of future discharges from US commercial nuclear reactors are presented through the year 2005. The ultimate needs for additional storage capacity are estimated. These estimtes are based on the maximum capacities within current and planned at-reactor facilities and on any planned transshipments of fuel to other reactors or facilities. Historical data through December, 1986, and projected discharges through the end of reactor life are used in this analysis. The source data was supplied by the utilities to the DOE Energy Information Administration (EIA) through the 1987 RW-859 data survey. 14 refs., 4 figs., 9 tabs

  19. Spent Fuel Working Group Report

    International Nuclear Information System (INIS)

    O'Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary's initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group's Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities

  20. Spent nuclear fuel storage vessel

    International Nuclear Information System (INIS)

    Watanabe, Yoshio; Kashiwagi, Eisuke; Sekikawa, Tsutomu.

    1997-01-01

    Containing tubes for containing spent nuclear fuels are arranged vertically in a chamber. Heat releasing fins are disposed horizontal to the outer circumference of the containing tubes for rectifying cooling air and promoting cooling of the containing tubes. Louvers and evaporation sides of heat pipes are disposed at a predetermined distance in the chamber. Cooling air flows from an air introduction port to the inside of the chamber and takes heat from the containing tubes incorporated with heat generating spent nuclear fuels, rising its temperature and flows off to an air exhaustion exit. The direction for the rectification plate of the louver is downward from a horizontal position while facing to the air exhaustion port. Since the evaporation sides of the heat pipes are disposed in the inside of the chamber and the condensation side of the heat pipes is disposed to the outside of the chamber, the thermal energy can be recovered from the containing tubes incorporated with spent nuclear fuels and utilized. (I.N.)

  1. Sealed can of spent fuel

    International Nuclear Information System (INIS)

    Suzuki, Yasuyuki.

    1976-01-01

    Object: To provide a seal plug cover with a gripping portion fitted to a canning machine and a gripping portion fitted to a gripper of the same configuration as a fuel body for handling the fuel body so as to facilitate the handling work. Structure: A sealed can comprises a vessel and a seal plug cover, said cover being substantially in the form of a bottomed cylinder, which is slipped on the vessel and air-tightly secured by a fastening bolt between it and a flange. The spent fuel body is received into the vessel together with coolant during the step of canning operation. Said seal plug cover has two gripping portions, one for opening and closing the plug cover of the canning machine as an exclusive use member, the other being in the form of a hook-shaped peripheral groove, whereby the gripping portions may be effectively used using the same gripper when the spent fuel body is transported while being received in the sealed can or when the fuel body is removed from the sealed can. (Kawakami, Y.)

  2. Spent fuel critical masses and supportive measurements

    International Nuclear Information System (INIS)

    Toffer, H.; Wells, A.H.

    1987-01-01

    Critical masses for spent fuel are larger than for green fuel and therefore use of the increased masses could result in improved handling, storage, and transport of such materials. To apply spent fuel critical masses requires an assessment of fuel exposure and the corresponding isotopic compositions. The paper discusses several approaches at the Hanford N Reactor in establishing fuel exposure, including a direct measurement of spent to green fuel critical masses. The benefits derived from the use of spent fuel critical masses are illustrated for cask designs at the Nuclear Assurance Corporation. (author)

  3. Near surface spent fuel storage: environmental issues

    International Nuclear Information System (INIS)

    Nelson, I.C.; Shipler, D.B.; McKee, R.W.; Glenn, R.D.

    1979-01-01

    Interim storage of spent fuel appears inevitable because of the lack of reprocessing plants and spent fuel repositories. This paper examines the environmental issues potentially associated with management of spent fuel before disposal or reprocessing in a reference scenario. The radiological impacts of spent fuel storage are limited to low-level releases of noble gases and iodine. Water needed for water basin storage of spent fuel and transportation accidents are considered; the need to minimize the distance travelled is pointed out. Resource commitments for construction of the storage facilities are analyzed

  4. Surveillance instrumentation for spent-fuel safeguards

    International Nuclear Information System (INIS)

    McKenzie, J.M.; Holmes, J.P.; Gillman, L.K.; Schmitz, J.A.; McDaniel, P.J.

    1978-01-01

    The movement, in a facility, of spent reactor fuel may be tracked using simple instrumentation together with a real time unfolding algorithm. Experimental measurements, from multiple radiation monitors and crane weight and position monitors, were obtained during spent fuel movements at the G.E. Morris Spent-Fuel Storage Facility. These data and a preliminary version of an unfolding algorithm were used to estimate the position of the centroid and the magnitude of the spent fuel radiation source. Spatial location was estimated to +-1.5 m and source magnitude to +-10% of their true values. Application of this surveillance instrumentation to spent-fuel safeguards is discussed

  5. Feasibility study on the development of advanced LWR fuel technology

    International Nuclear Information System (INIS)

    Jung, Youn Ho; Sohn, D. S.; Jeong, Y. H.; Song, K. W.; Song, K. N.; Chun, T. H.; Bang, J. G.; Bae, K. K.; Kim, D. H. and others.

    1997-07-01

    Worldwide R and D trends related to core technology of LWR fuels and status of patents have been surveyed for the feasibility study. In addition, various fuel cycle schemes have been studied to establish the target performance parameters. For the development of cladding material, establishment of long-term research plan for alloy development and optimization of melting process and manufacturing technology were conducted. A work which could characterize the effect of sintering additives on the microstructure of UO 2 pellet has been experimentally undertaken, and major sintering variables and their ranges have been found in the sintering process of UO 2 -Gd 2 O 3 burnable absorber pellet. The analysis of state of the art technology related to flow mixing device for spacer grid and debris filtering device for bottom nozzle and the investigation of the physical phenomena related to CHF enhancement and the establishment of the data base for thermal-hydraulic performance tests has been done in this study. In addition, survey on the documents of the up-to-date PWR fuel assemblies developed by foreign vendors have been carried out to understand their R and D trends and establish the direction of R and D for these structural components. And, to set the performance target of the new fuel, to be developed, fuel burnup and economy under the extended fuel cycle length scheme were estimated. A preliminary study on the failure mechanism of CANDU fuel, key technology and advanced coating has been performed. (author). 190 refs., 31 tabs., 129 figs

  6. Development of a Reliable Fuel Depletion Methodology for the HTR-10 Spent Fuel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kiwhan [Los Alamos National Laboratory; Beddingfield, David H. [Los Alamos National Laboratory; Geist, William H. [Los Alamos National Laboratory; Lee, Sang-Yoon [unaffiliated

    2012-07-03

    A technical working group formed in 2007 between NNSA and CAEA to develop a reliable fuel depletion method for HTR-10 based on MCNPX and to analyze the isotopic inventory and radiation source terms of the HTR-10 spent fuel. Conclusions of this presentation are: (1) Established a fuel depletion methodology and demonstrated its safeguards application; (2) Proliferation resistant at high discharge burnup ({approx}80 GWD/MtHM) - Unfavorable isotopics, high number of pebbles needed, harder to reprocess pebbles; (3) SF should remain under safeguards comparable to that of LWR; and (4) Diversion scenarios not considered, but can be performed.

  7. Probability of spent fuel transportation accidents

    International Nuclear Information System (INIS)

    McClure, J.D.

    1981-07-01

    The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10 -7 spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10 -9 /mile

  8. Fuel self-sufficient and low proliferation risk multi-recycling of spent fuel

    International Nuclear Information System (INIS)

    Cho, N. Z.; Hong, S. G.; Kim, T. H.; Greenspan, E.; Kastenberg, W. E.

    1998-01-01

    A preliminary feasibility study has been performed in search of promising nuclear energy systems which could make efficient use of the spent fuel from LWRs and be proliferation resistant. The energy considered consist of a dry process and a fuel-self-sufficient reactor which are synergistic. D 2 O, H 2 O and Pb (or Pb-Bi) are considered for the coolant. The most promising identified consists of Pb-cooled reactors with either an AIROX or an IFR-like reprocessing. H 2 O- (possibly mixed with D 2 O) cooled reactors can be designed to be fuel-self-sufficient and multi-recycle LWR spent fuel, provided they are accelerator driven. Moderator-free, D 2 O-cooled critical reactors can multi-recycle Th- 233 U fuel using IFR-type reprocessing; they are significantly more attractive than their thermal counterparts. H 2 O- (possibly mixed with D 2 O) cooled, accelerator-driven reactors appear attractive for converting Th into denatured 233 U using LWR spent fuel and the IFR process. The CANDU reactor technology appears highly synergistic with accelerator-driven systems. (author). 25 refs., 3 tabs., 6 figs

  9. Behavior of LWR fuel elements under accident conditions

    International Nuclear Information System (INIS)

    Albrecht, H.; Bocek, M.; Erbacher, F.; Fiege, A.; Fischer, M.; Hagen, S.; Hofmann, P.; Holleck, H.; Karb, E.; Leistikow, S.; Melang, S.; Ondracek, G.; Thuemmler, F.; Wiehr, K.

    1977-01-01

    In the frame of the German reactor safety research program, the Kernforschungszentrum Karlsruhe is carrying out a comprehensive program on the behavior of LWR fuel elements under a variety of power cooling mismatch conditions in particular during loss-of-coolant accidents. The major objectives are to establish a detailed quantitative understanding of fuel rod failures mechanisms and their thresholds, to evaluate the safety margins of power reactor cores under accident conditions and to investigate the feedback of fuel rod failures on the efficiency of emergency core cooling systems. This detailed quantitative understanding is achieved through extensive basic and integral experiments and is incorporated in a fuel behavior code. On the basis of these results the design of power reactor fuel elements and of safety devices can be further improved. The results of investigations on the inelastic deformation (ballooning) behavior of Zircaloy 4 cladding at LOCA temperatures in oxidizing atmosphere are presented. Depending upon strain rate and temperature superplastic deformation behavior was observed. In the equation of state of Zry 4 the strain rate sensitivity index depends strongly upon strain and in the superplastic region upon sample anisotropy. Oxidation kinetics experiments with Zry-tubes at 900-1300 0 C showed that the Baker-Just correlation describes the reality quite conservative. Therefore a reduction of the amount of Zry oxidation can be assumed in the course of a LOCA. The external oxidation of Zry-cladding by steam as well as internal oxidation by the oxygen in oxide fuel and fission products (Cs, I, Te) have an influence on the strain and rupture behavior of Zry-cladding at LOCA temperatures. In out-of-pile and inpile experiments the mechanical and thermal behavior of fuel rods during the blowdown, the heatup and the reflood phases of a LOCA are investigated under representative and controlled thermohydraulic conditions. The task of the inpile experiments is

  10. Spent fuel storage requirements. An update of DOE/RL-83-1

    International Nuclear Information System (INIS)

    1984-05-01

    Spent fuel storage capacities at some commercial light water reactors (LWRs) are inadequate to handle projected spent fuel discharges. This report presents estimates of potential near-term requirements for additional LWR spent fuel storage capacity, based on information voluntarily supplied by utilities operating commercial nuclear power plants. These estimates provide information needed for planning the Department of Energy's (DOE) Federal Interim Storage (FIS) Program and the spent fuel research, development, and demonstration (RD and D) activities to be carried out under the DOE's Commercial Spent Fuel Management (CSFM) Program, in conjunction with the requirements of the Nuclear Waste Policy Act of 1982. This report is the latest in a series published by the DOE on LWR spent fuel storage requirements. Since the planning needs of the CSFM program focus on the near-term management of spent fuel inventories from commercial nuclear power reactors, the estimates in this report cover the ten-year period from the present through 1983. The report also assesses the possible impacts of using various concepts to reduce the requirements for additional storage capacity

  11. A review on future trends of LWR fuel cycle costs

    International Nuclear Information System (INIS)

    Tamiya, S.; Otomo, T.; Meguro, T.

    1977-01-01

    In the cost estimations in the past, the main components of fuel cycle were mining and milling, uranium enrichment and fuel fabrication, and reprocessing charge deemed to be recovered by plutonium credit. Since the oil crisis, every component of fuel cycle cost has gone up in recent years as well as the construction cost of a power station. Recent analysis shows that the costs in the back end of fuel cycle are much higher than those anticipated several years ago, although their contribution to the electricity generating cost by nuclear would be small. The situation of the back end of the fuel cycle has been quite changed in recent years, and there are still many uncertainties in this field, that is, regulatory requirements for reprocessing plant such as safety, safeguards, environmental protection and high level waste management. So, it makes it more difficult to estimate the investment in this sector of fuel cycle, therefore, to estimate the cost of this sector. The institutional problems must be cleared in relation to the ultimate disposal of high level waste, too. Co-location of some parts of fuel cycle facilities may also affect on the fuel cycle costs. In this paper a review is made of the future trend of nuclear fuel cycle cost of LWR based on the recent analysis. Those factors which affect the fuel cycle costs are also discussed. In order to reduce the uncertainties of the cost estimations as soon as possible, the necessity is emphasized to discuss internationally such items as the treatment and disposal of high level radioactive wastes, siting issues of a reprocessing plant, physical protection of plutonium and the effects of plutonium on the environment

  12. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  13. Validating criticality calculations for spent fuel with 252Cf-source-driven noise measurements

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Krass, A.W.; Valentine, T.E.

    1992-01-01

    The 252 Cf-Source-driven noise analysis method can be used for measuring the subcritical neutron multiplication factor k of arrays of spent light water reactor (LWR) fuel. This type of measurement provides a parameter that is directly related to the criticality state of arrays of LWR fuel. Measurements of this parameter can verify the criticality safety margins of spent LWR fuel configurations and thus could be a means of obtaining the information to justify burnup credit for spent LWR transportation/storage casks. The practicality of a measurement depends on the ability to install the hardware required to perform the measurement. Source chambers containing the 252 Cf at the required source intensity for this application have been constructed and have operated successfully for ∼10 years and can be fabricated to fit into control rod guide tubes of PWR fuel elements. Fission counters especially developed for spent-fuel measurements are available that would allow measurements of a special 3 x 3 spent fuel array and a typical burnup credit rail cask with spent fuel in unborated water. Adding a moderator around these fission counters would allow measurements with the typical burnup credit rail cask with borated water and the special 3 x 3 array with borated water. The recent work of Ficaro on modifying the KENO Va code to calculate by the Monte Carlo method the time sequences of pulses at two detectors near a fissile assembly from the fission chain multiplication process, initiated by a 252 Cf source in the assembly allows a direct computer calculation of the noise analysis data from this measurement method

  14. Spent fuel management in France: Programme status

    International Nuclear Information System (INIS)

    Chaudat, J.P.

    1990-01-01

    France's programme is best characterized as a closed fuel cycle including reprocessing, Plutonium recycling in PWR and use of breeder reactors. The current installed nuclear capacity is 52.5 GWe from 55 units. The spent fuel management scheme chosen is reprocessing. This paper describes the national programme, spent nuclear fuel storage, reprocessing and contracts for reprocessing of spent fuel from various countries. (author). 5 figs, 2 tabs

  15. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  16. Dry storage of spent fuel

    International Nuclear Information System (INIS)

    Jeffrey, R.

    1993-01-01

    Scottish Nuclear's plans to build and operate dry storage facilities at each of its two nuclear power station sites in Scotland are explained. An outline of where waste materials arise as part of the operation and decommissioning of nuclear power stations, the volumes for each category of high-, intermediate-and low-level wastes and the costs involved are given. The present procedure for the spent fuels from Hunterston-B and Torness stations is described and Scottish Nuclear's aims of driving output up and costs down are studied. (UK)

  17. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  18. Spent fuel's behavior under dynamic drip tests

    International Nuclear Information System (INIS)

    Finn, P.A.; Buck, E.C.; Hoh, J.C.; Bates, J.K.

    1995-01-01

    In the potential repository at Yucca Mountain, failure of the waste package container and the cladding of the spent nuclear fuel would expose the fuel to water under oxidizing conditions. To simulate the release behavior of radionuclides from spent fuel, dynamic drip and vapor tests with spent nuclear fuel have been ongoing for 2.5 years. Rapid alteration of the spent fuel has been noted with concurrent release of radionuclides. Colloidal species containing americium and plutonium have been found in the leachate. This observation suggests that colloidal transport of radionuclides should be included in the performance assessment of a potential repository

  19. Spent fuel. Dissolution and oxidation

    International Nuclear Information System (INIS)

    Grambow, B.

    1989-03-01

    Data from studies of the low temperature air oxidation of spent fuel were retrieved in order to provide a basis for comparison between the mechanism of oxidation in air and corrosion in water. U 3 O 7 is formed by diffusion of oxygen into the UO 2 lattice. A diffusion coefficient of oxygen in the fuel matric was calculated for 25 degree C to be in the range of 10 -23 to 10 -25 m 2 /s. The initial rates of U release from spent fuel and from UO 2 appear to be similar. The lowest rates (at 25 degree c >10 -4 g/(m 2 d)) were observed under reducing conditions. Under oxidizing conditions the rates depend mainly of the nature and concentraion of the oxidant and/or on corbonate. In contact with air, typical initial rates at room temperature were in the range between 0.001 and 0.1 g/(m 2 d). A study of apparent U solubility under oxidizing conditions was performed and it was suggested that the controlling factor is the redox potential at the UO 2 surface rather than the E h of the bulk solution. Electrochemical arguments were used to predict that at saturation, the surface potential will eventually reach a value given by the boundaries at either the U 3 O 7 /U 3 O 8 or the U 3 O 7 /schoepite stability field, and a comparison with spent fuel leach data showed that the solution concentration of uranium is close to the calculated U solubility at the U 3 O 7 /U 3 O 8 boundary. The difference in the cumulative Sr and U release was calculated from data from Studsvik laboratory. The results reveal that the rate of Sr release decreases with the square root of time under U-saturated conditions. This time dependence may be rationalized either by grain boundary diffusion or by diffusion into the fuel matrix. Hence, there seems to be a possibility of an agreement between the Sr release data, structural information and data for oxygen diffusion in UO 2 . (G.B.)

  20. Quality assurance in the course of fabrication of LWR fuel

    International Nuclear Information System (INIS)

    Dressler, G.; Perry, J.A.

    1982-01-01

    A high quality level of LWR fuel elements can only be assured by a system of Quality Assurance measures purposefully designed, balanced, and appropriately applied. This includes application of and the appropriate balance between both system and product oriented measures. A prerequisite to the establishment of these measures is a precise analysis of the various influences of the individual process steps on the quality characteristics of the starting materials, semi-finished and finished products. In addition, these characteristics require classification criteria relative to their significance. The described classification is used to establish sampling plans and to disposition non-conformances. The EXXON Nuclear Quality Assurance system which is based on these principles is described and illustrated with some examples. (orig.)

  1. Status of the treatment of irradiated LWR fuel

    International Nuclear Information System (INIS)

    1985-03-01

    This survey report provides a broad background of information on technology established in spent fuel treatment plants now in operation where the uranium and plutonium are separated from the fission products and main features of the next generation of treatment plants. The programmes in the various countries are discussed. A number of papers were included in the references

  2. Intermodal transfer of spent fuel

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Weiner, R.F.

    1993-01-01

    This paper discusses RADTRAN calculational models and parameter values for describing dose to workers during incident-free ship-to-truck transfer of spent fuel. Data obtained during observation of the offloading of research reactor spent fuel at Newport News Terminal in the Port of Hampton Roads, Virginia, are described. These data include estimates of exposure times and distances for handlers, inspectors, and other workers during offloading and overnight storage. Other workers include crane operators, scale operators, security personnel, and truck drivers. The data are compared to the default data in RADTRAN 4, and the latter are found to be conservative. The casks were loaded under IAEA supervision at their point of origin, and three separate radiological inspections of each cask were performed at the entry to the port (Hampton Roads) by the U.S. Coast Guard, the state of Virginia, and the shipping firm. As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handler exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. (author)

  3. A central spent fuel storage in Sweden

    International Nuclear Information System (INIS)

    Gustafsson, B.; Hagberth, R.

    1978-01-01

    A planned central spent fuel storage facility in Sweden is described. The nuclear power program and quantities of spent fuel generated in Sweden is discussed. A general description of the facility is given with emphasis on the lay-out of the buildings, transport casks and fuel handling. Finally a possible design of a Swedish transportation system is discussed. (author)

  4. Feasibility study on the development of advanced LWR fuel technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Ho; Sohn, D. S.; Jeong, Y. H.; Song, K. W.; Song, K. N.; Chun, T. H.; Bang, J. G.; Bae, K. K.; Kim, D. H. and others

    1997-07-01

    Worldwide R and D trends related to core technology of LWR fuels and status of patents have been surveyed for the feasibility study. In addition, various fuel cycle schemes have been studied to establish the target performance parameters. For the development of cladding material, establishment of long-term research plan for alloy development and optimization of melting process and manufacturing technology were conducted. A work which could characterize the effect of sintering additives on the microstructure of UO{sub 2} pellet has been experimentally undertaken, and major sintering variables and their ranges have been found in the sintering process of UO{sub 2}-Gd{sub 2}O{sub 3} burnable absorber pellet. The analysis of state of the art technology related to flow mixing device for spacer grid and debris filtering device for bottom nozzle and the investigation of the physical phenomena related to CHF enhancement and the establishment of the data base for thermal-hydraulic performance tests has been done in this study. In addition, survey on the documents of the up-to-date PWR fuel assemblies developed by foreign vendors have been carried out to understand their R and D trends and establish the direction of R and D for these structural components. And, to set the performance target of the new fuel, to be developed, fuel burnup and economy under the extended fuel cycle length scheme were estimated. A preliminary study on the failure mechanism of CANDU fuel, key technology and advanced coating has been performed. (author). 190 refs., 31 tabs., 129 figs.

  5. The burnup dependence of light water reactor spent fuel oxidation

    International Nuclear Information System (INIS)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO 2 is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO 2 to higher oxides. The oxidation of UO 2 has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO 2 oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO 2 to UO 2.4 was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO 2.4 to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO 2 oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO 2 and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5)

  6. Overview on spent fuel management strategies

    International Nuclear Information System (INIS)

    Dyck, P.

    2002-01-01

    This paper presents an overview on spent fuel management strategies which range from reprocessing to interim storage in a centralised facility followed by final disposal in a repository. In either case, more spent fuel storage capacity (wet or dry, at-reactor or away-from-reactor, national or regional) is required as spent fuel is continuously accumulated while most countries prefer to defer their decision to choose between these two strategies. (author)

  7. Spent fuels transportation coming from Australia

    International Nuclear Information System (INIS)

    2002-01-01

    Maritime transportation of spent fuels from Australia to France fits into the contract between COGEMA and ANSTO, signed in 1999. This document proposes nine information cards in this domain: HIFAR a key tool of the nuclear, scientific and technological australian program; a presentation of the ANSTO Australian Nuclear Science and Technology Organization; the HIFAR spent fuel management problem; the COGEMA expertise in favor of the research reactor spent fuel; the spent fuel reprocessing at La Hague; the transports management; the transport safety (2 cards); the regulatory framework of the transports. (A.L.B.)

  8. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  9. Estimates of relative areas for the disposal in bedded salt of LWR wastes from alternative fuel cycles

    International Nuclear Information System (INIS)

    Lincoln, R.C.; Larson, D.W.; Sisson, C.E.

    1978-01-01

    The relative mine-level areas (land use requirements) which would be required for the disposal of light-water reactor (LWR) radioactive wastes in a hypothetical bedded-salt formation have been estimated. Five waste types from alternative fuel cycles have been considered. The relative thermal response of each of five different site conditions to each waste type has been determined. The fuel cycles considered are the once-through (no recycle), the uranium-only recycle, and the uranium and plutonium recycle. The waste types which were considered include (1) unreprocessed spent reactor fuel, (2) solidified waste derived from reprocessing uranium oxide fuel, (3) plutonium recovered from reprocessing spent reactor fuel and doped with 1.5% of the accompanying waste from reprocessing uranium oxide fuel, (4) waste derived from reprocessing mixed uranium/plutonium oxide fuel in the third recycle, and (5) unreprocessed spent fuel after three recycles of mixed uranium/plutonium oxide fuels. The relative waste-disposal areas were determined from a calculated value of maximum thermal energy (MTE) content of the geologic formations. Results are presented for each geologic site condition in terms of area ratios. Disposal area requirements for each waste type are expressed as ratios relative to the smallest area requirement (for waste type No. 2 above). For the reference geologic site condition, the estimated mine-level disposal area ratios are 4.9 for waste type No. 1, 4.3 for No. 3, 2.6 for No. 4, and 11 for No. 5

  10. Reprocessing method for spent fuel

    International Nuclear Information System (INIS)

    Fujie, Makoto; Shoji, Yuichi; Kobayashi, Tsuguyuki.

    1997-01-01

    After reducing oxides of uranium (U), plutonium (Pu) and miner actinides in spent fuels by magnesium (Mg) in a molten salt, rear earth element oxides and salts of alkali metals and alkaline earth metals contained in the molten salt phase are separated and removed. Further, the Mg phase containing the reduced metals is evaporated to separate and remove Mg, thereby recovering U, Pu and minor actinides. In a lithium (Li) process, Li 2 O also generated in the reduction step is regenerated to Li simultaneously, and the reduction is conducted while suppressing the Li 2 O concentration in the molten salt low. This can improve the reduction rate of oxides of U, Pu and minor actinides compared with conventional cases. Since Li 2 O is regenerated into Li in the reduction step of the Li process, deposited Li 2 O is not carried to an electrolysis purification step, and recovering rate of U, Pu and minor actinides is not lowered. (T.M.)

  11. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  12. Development of spent fuel dry storage technology

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Kunishima, Shigeru

    2000-01-01

    The spent fuels are the recycle fuel resources, and it is very important to store the spent fuels in safety. There are two types of the spent fuel interim storage system. One is wet storage system and another is dry storage system. In this study, the dry storage technology, dual purpose metal cask storage and canister storage, has been developed. For the dual purpose metal cask storage, boronated aluminum basket cell, rational cask body shape and shaping process have been developed, and new type dual purpose metal cask has been designed. For the canister storage, new type concrete cask and high density vault storage technology have been developed. The results of this study will be useful for the spent fuel interim storage. Safety and economical spent fuel interim storage will be realized in the near future. (author)

  13. Spent fuel management newsletter. No. 2

    International Nuclear Information System (INIS)

    1993-04-01

    This issue of the newsletter consists of two parts. The first part describes the IAEA Secretariat activities - work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes. The second part contains country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage and treatment of spent fuel

  14. Spent fuel management newsletter. No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-04-01

    This issue of the newsletter consists of two parts. The first part describes the IAEA Secretariat activities - work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes. The second part contains country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage and treatment of spent fuel.

  15. Qualification of the neutronic evolution of LWR fuels in MELUSINE

    International Nuclear Information System (INIS)

    Beretz, D.; Garcin, J.; Ducros, G.; Vanhumbeeck, D.; Chaucheprat, P.

    1984-09-01

    MELUSINE, a swimming pool type reactor, in Grenoble, for research and technological irradiations is well fitted to the neutronic evolution qualification of the LWR fuel. Thus, with an adjustment of the lattice pitch, representative neutron spectrum locations are available. The re-leading management and the regulation mode flexibility of MELUSINE lead to reproductible neutronic parameters configurations without restricting the reactor to this purpose only. Under these conditions, simple calculations can be carried out for interpretation, without taking into account the whole core. An instrumentation by Self Power Neutron Detectors (collectrons) gives on-line information on the fluxes at the periphery of the device. When required by the neutronicians, experimental pins can be unloaded during the irradiation process and scanned on a gammametry bench immersed in the reactor-pool itself, before their isotopic composition analysis. Thus, within the framework of neutronic evolution qualification, are studied fuel pins for advanced assemblies for the light water reactors or their derivatives, with large advantages over irradiations in power reactors [fr

  16. Remote technology applications in spent fuel management

    International Nuclear Information System (INIS)

    2005-03-01

    Spent fuel management has become a prospective area for application of remote technology in recent years with a steadily growing inventory of spent fuel arising from nuclear power production. A remark that could be made from the review of technical information collected from the IAEA meetings was that remote technology in spent fuel management has matured well through the past decades of industrial experiences. Various remote technologies have been developed and applied in the past for facility operation and maintenance work in spent fuel examination, storage, transportation, reprocessing and radioactive waste treatment, among others, with significant accomplishments in dose reduction to workers, enhancement of reliability, etc. While some developmental activities are continuing for more advanced applications, industrial practices have made use of simple and robust designs for most of the remote systems technology applications to spent fuel management. In the current state of affairs, equipment and services in remote technology are available in the market for applications to most of the projects in spent fuel management. It can be concluded that the issue of critical importance in remote systems engineering is to make an optimal selection of technology and equipment that would best satisfy the as low as reasonably achievable (ALARA) requirements in terms of relevant criteria like dose reduction, reliability, costs, etc. In fact, good selection methodology is the key to efficient implementation of remote systems applications in the modern globalized market. This TECDOC gives a review of the current status of remote technology applications for spent fuel management, based on country reports from some Member States presented at the consultancy meetings, of which updated reports are attached in the annex. The scope of the review covers the series of spent fuel handling operations involved in spent fuel management, from discharge from reactor to reprocessing or

  17. Research reactor spent fuel in Ukraine

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    This paper describes the research reactors in Ukraine, their spent fuel facilities and spent fuel management problems. Nuclear sciences, technology and industry are highly developed in Ukraine. There are 5 NPPs in the country with 14 operating reactors which have total power capacity of 12,800 MW

  18. Costing of spent nuclear fuel storage

    International Nuclear Information System (INIS)

    2009-01-01

    This report deals with economic analysis and cost estimation, based on exploration of relevant issues, including a survey of analytical tools for assessment and updated information on the market and financial issues associated with spent fuel storage. The development of new storage technologies and changes in some of the circumstances affecting the costs of spent fuel storage are also incorporated. This report aims to provide comprehensive information on spent fuel storage costs to engineers and nuclear professionals as well as other stakeholders in the nuclear industry. This report is meant to provide informative guidance on economic aspects involved in selecting a spent fuel storage system, including basic methods of analysis and cost data for project evaluation and comparison of storage options, together with financial and business aspects associated with spent fuel storage. After the review of technical options for spent fuel storage in Section 2, cost categories and components involved in the lifecycle of a storage facility are identified in Section 3 and factors affecting costs of spent fuel storage are then reviewed in the Section 4. Methods for cost estimation and analysis are introduced in Section 5, and other financial and business aspects associated with spent fuel storage are discussed in Section 6.

  19. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    LEROY, P.G.

    2000-01-01

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  20. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  1. Spent fuel characterization for the commercial waste and spent fuel packaging program

    International Nuclear Information System (INIS)

    Fish, R.L.; Davis, R.B.; Pasupathi, V.; Klingensmith, R.W.

    1980-03-01

    This document presents the rationale for spent fuel characterization and provides a detailed description of the characterization examinations. Pretest characterization examinations provide quantitative and qualitative descriptions of spent fuel assemblies and rods in their irradiated conditions prior to disposal testing. This information is essential in evaluating any subsequent changes that occur during disposal demonstration and laboratory tests. Interim examinations and post-test characterization will be used to identify fuel rod degradation mechanisms and quantify degradation kinetics. The nature and behavior of the spent fuel degradation will be defined in terms of mathematical rate equations from these and laboratory tests and incorporated into a spent fuel performance prediction model. Thus, spent fuel characterization is an essential activity in the development of a performance model to be used in evaluating the ability of spent fuel to meet specific waste acceptance criteria and in evaluating incentives for modification of the spent fuel assemblies for long-term disposal purposes

  2. Spent fuel management in India

    International Nuclear Information System (INIS)

    Balu, K.

    1998-01-01

    From Indian point of view, the spent fuel management by the reprocessing and plutonium recycle option is considered to be a superior and an inevitable option. The nuclear energy programme in Indian envisages three stages of implementation involving installation of thermal reactors in the first phase followed by recycling of plutonium from reprocessed fuel in fast breeder reactors and in the third phase utilization of its large thorium reserves in reactor system based on U-233-Th cycle. The Indian programme for Waste Management envisages disposal of low and intermediate level radioactive waste in near surface disposal facilities and deep geological disposal for high level and alpha bearing wastes. A Waste Immobilization Plant (WHIP), employing metallic melter for HLW vitrification is operational at Tarapur. Two more WIPs are being set up at Kalpakkam and Tarapur. A Solid waste Storage Surveillance Facility (SSSF) is also set up for interim storage of vitrified HLW. Site investigations are in progress for selecting site for ultimate disposal in igneous rock formations. R and D works is taken up on partitioning of HLW. Solvent extraction and extraction chromatographic studies are in progress. Presently emphasis is on separation of heat generating short lived nuclides like strontium and alpha emitters. (author)

  3. Feasibility assessment of the once-through thorium fuel cycle for the PTVM LWR concept

    International Nuclear Information System (INIS)

    Rachamin, R.; Fridman, E.; Galperin, A.

    2015-01-01

    Highlights: • The PTVM LWR is an innovation reactor concept operating in a “breed & burn” mode. • An advanced once-through thorium fuel cycle for the PTVM LWR concept is proposed. • The PTVM LWR concept makes use of a seed-blanket geometry. • A novel fuel management scheme based on two separate fuel flow routes is analyzed. • The analysis indicates a potential for utilizing the fuel in an efficient manner. - Abstract: This paper investigates the feasibility of a once-through thorium fuel cycle for the novel reactor-design concept named the pressure tube light water reactor with variable moderator control (PTVM LWR). The PTVM LWR operates in a “breed & burn” mode, which makes it an attractive system for utilizing thorium fuel in a once-through mode. The “breed & burn” mode can emphasize the in situ generation as well as incineration of 233 U, which are the basic foundations of the once-through thorium fuel cycle. The PTVM LWR concept makes use of a seed–blanket geometry, whereby the core is divided into separated regions of thorium-based fuel channel assemblies (blanket) and low-enriched uranium (LEU) based fuel channel assemblies (seed). A novel fuel in-core management scheme based on two separate fuel flow routes (i.e., seed route and blanket route) is proposed and analyzed. Neutronic performance analysis indicates that the proposed novel fuel in-core management scheme has the potential to utilize both LEU- and thorium-based fuel in an efficient manner. The once-through thorium cycle, presented and discussed in this paper, provide interesting research leads and can serve as a bridge between current LEU-based fuel cycles and a thorium fuel cycle based on recycling of 233 U

  4. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  5. SAVIT: a dymanic model to predict vibratory motion within a spent fuel shipping cask; rail car system

    International Nuclear Information System (INIS)

    Fields, S.R.

    1978-03-01

    A dynamic model of a spent fuel shipping cask-rail car system has been developed to provide estimates of the vibratory motion of LWR spent fuel assemblies during transport and to estimate the effects of this motion on the condition of the assemblies when they arrive at receiving and storage facilities. Results of preliminary test computations are presented to illustrate the capabilities of the model

  6. Spent nuclear fuel disposal liability insurance

    International Nuclear Information System (INIS)

    Martin, D.W.

    1984-01-01

    This thesis examines the social efficiency of nuclear power when the risks of accidental releases of spent fuel radionuclides from a spent fuel disposal facility are considered. The analysis consists of two major parts. First, a theoretical economic model of the use of nuclear power including the risks associated with releases of radionuclides from a disposal facility is developed. Second, the costs of nuclear power, including the risks associated with a radionuclide release, are empirically compared to the costs of fossil fuel-fired generation of electricity. Under the provisions of the Nuclear Waste Policy Act of 1982, the federally owned and operated spent nuclear fuel disposal facility is not required to maintain a reserve fund to cover damages from an accidental radionuclide release. Thus, the risks of a harmful radionuclide release are not included in the spent nuclear fuel disposal fee charged to the electric utilities. Since the electric utilities do not pay the full, social costs of spent fuel disposal, they use nuclear fuel in excess of the social optimum. An insurance mechanism is proposed to internalize the risks associated with spent fueled disposal. Under this proposal, the Federal government is required to insure the disposal facility against any liabilities arising from accidental releases of spent fuel radionuclides

  7. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  8. The Canadian research reactor spent fuel situation

    International Nuclear Information System (INIS)

    Ernst, P.C.

    1996-01-01

    This paper summarizes the present research reactor spent fuel situation in Canada. The research reactors currently operating are listed along with the types of fuel that they utilize. Other shut down research reactors contributing to the storage volume are included for completeness. The spent fuel storage facilities associated with these reactors and the methods used to determine criticality safety are described. Finally the current inventory of spent fuel and where it is stored is presented along with concerns for future storage. (author). 3 figs

  9. Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

  10. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  11. ATR Spent Fuel Options Study

    International Nuclear Information System (INIS)

    Connolly, Michael James; Bean, Thomas E.; Brower, Jeffrey O.; Luke, Dale E.; Patterson, M. W.; Robb, Alan K.; Sindelar, Robert; Smith, Rebecca E.; Tonc, Vincent F.; Tripp, Julia L.; Winston, Philip L.

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center's (INTEC's) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  12. ATR Spent Fuel Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Michael James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bean, Thomas E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brower, Jeffrey O. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luke, Dale E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patterson, M. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, Alan K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sindelar, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonc, Vincent F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tripp, Julia L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center’s (INTEC’s) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  13. Storage of water reactor spent fuel in water pools. Survey of world experience

    International Nuclear Information System (INIS)

    1982-01-01

    Following discharge from a nuclear reactor, spent fuel has to be stored in water pools at the reactor site to allow for radioactive decay and cooling. After this initial storage period, the future treatment of spent fuel depends on the fuel cycle concept chosen. Spent fuel can either be treated by chemical processing or conditioning for final disposal at the relevant fuel cycle facilities, or be held in interim storage - at the reactor site or at a central storage facility. Recent forecasts predict that, by the year 2000, more than 150,000 tonnes of heavy metal from spent LWR fuel will have been accumulated. Because of postponed commitments regarding spent fuel treatment, a significant amount of spent fuel will still be held in storage at that time. Although very positive experience with wet storage has been gained over the past 40 years, making wet storage a proven technology, it appears desirable to summarize all available data for the benefit of designers, storage pool operators, licensing agenices and the general public. Such data will be essential for assessing the viability of extended water pool storage of spent nuclear fuel. In 1979, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD jointly issued a questionnaire dealing with all aspects of water pool storage. This report summarizes the information received from storage pool operators

  14. Electrochemical processing of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions.

  15. Electrochemical processing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R.

    2008-01-01

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions

  16. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  17. German Approach to Spent Fuel Management

    International Nuclear Information System (INIS)

    Jussofie, A.; Graf, R.; Filbert, W.

    2010-01-01

    The management of spent fuel was based on two powerful columns until 30 June 2005, i. e. reprocessing and direct disposal. After this date any delivery of spent fuel to reprocessing plants was prohibited so that the direct disposal of unreprocessed spent fuel is the only available option in Germany today. The main steps of the current concept are: (i) Intermediate storage of spent fuel, which is the only step in practice. After the first cooling period in spent fuel storage pools it continues into cask-receiving dry storage facilities. Identification of casks, 'freezing' of inventories in terms of continuity of knowledge, monitoring the access to spent fuel, verifying nuclear material movements in terms of cask transfers and ensurance against diversion of nuclear material belong to the fundamental safeguards goals which have been achieved in the intermediate storage facilities by containment and surveillance techniques in unattended mode. (ii) Conditioning of spent fuel assemblies by separating the fuel rods from structural elements. Since the pilot conditioning facility in Gorleben has not yet come into operation, the underlying safeguards approach which focuses on safeguarding the key measurement points - the spent fuel related way in and out of the facility - has not been applied yet. (iii) Disposal in deep geological formations, but no decision has been made so far neither regarding the location of a geological repository nor regarding the safeguards approach for the disposal concept of spent fuel. The situation was complicated by a moratorium which suspended the underground exploration of the Gorleben salt dome as potential geological repository for spent fuel. The moratorium expires in October 2010. Nevertheless, considerable progress has been made in the development of disposal concepts. According to the basic, so-called POLLUX (registered) -concept spent fuel assemblies are to be conditioned after dry storage and reloaded into the POLLUX (registered) -cask

  18. Spent Fuel Management Newsletter. No. 1

    International Nuclear Information System (INIS)

    1990-03-01

    This Newsletter has been prepared in accordance with the recommendations of the International Regular Advisory Group on Spent Fuel Management and the Agency's programme (GC XXXII/837, Table 76, item 14). The main purpose of the Newsletter is to provide Member States with new information about the state-of-the-art in one of the most important parts of the nuclear fuel cycle - Spent Fuel Management. The contents of this publication consists of two parts: (1) IAEA Secretariat contribution -work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes, etc. (2) Country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage, treatment of spent fuel, some aspects of uranium and plutonium recycling, etc. The IAEA expects to publish the Newsletter once every two years between the publications of the Regular Advisory Group on Spent Fuel Management. Figs and tabs

  19. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  20. Modeling the highway transportation of spent fuel

    International Nuclear Information System (INIS)

    Harrison, I.G.

    1986-01-01

    There will be a substantial increase in the number of spent fuel shipments on the nation's highway system in the next thirty years. Most of the spent fuel will be moving from reactors to a spent fuel repository. This study develops two models that evaluate the risk and cost of moving the spent fuel. The Minimum Total Transport Risk Model (MTTRM) seeks an efficient solution for this problem by finding the minimum risk path through the network and sending all the spent fuel shipments over this one path. The Equilibrium Transport Risk Model (ETRM) finds an equitable solution by distributing the shipments over a number of paths in the network. This model decreases the risk along individual paths, but increases society's risk because the spent fuel shipments are traveling over more links in the network. The study finds that there is a trade off between path risk and societal risk. As path risk declines, societal risk rises. The cost of shipping also increases as the number of paths expand. The cost and risk of shipping spent fuel from ten reactors to four potential repository sites are evaluated using the MTTRM. The temporary monitored retrievable storage (MRS) facility in Tennessee is found to be the minimum cost and minimum risk solution. When direct shipment to the permanent sites is considered, Deaf Smith, Texas is the least cost and least incident free transport risk location. Yucca Mountain, Nevada is the least risk location when the focus is placed on the potential consequences of an accident

  1. ORIGEN2 libraries based on JENDL-3.2 for LWR-MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Katakura, Jun-ichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Onoue, Masaaki; Matsumoto, Hideki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Sasahara, Akihiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2000-11-01

    A set of ORIGEN2 libraries for LWR MOX fuels was developed based on JENDL-3.2. The libraries were compiled with SWAT using the specification of MOX fuels that will be used in nuclear power reactors in Japan. The verification of the libraries were performed by the analyses of post irradiation examinations for the fuels from European PWR. By the analysis of PIE data from PWR in United States, the comparison was made between calculation and experimental results in the case of that parameters for making the libraries are different from irradiation conditions. These new libraries for LWR MOX fuels are packaged in ORLIBJ32, the libraries released in 1999. (author)

  2. Spent fuel transport in fuel cycle

    International Nuclear Information System (INIS)

    Labrousse, M.

    1977-01-01

    The transport of radioactive substances is a minor part of the fuel cycle because the quantities of matter involved are very small. However the length and complexity of the cycle, the weight of the packing, the respective distances between stations, enrichment plants and reprocessing plants are such that the problem is not negligible. In addition these transports have considerable psychological importance. The most interesting is spent fuel transport which requires exceptionally efficient packaging, especially where thermal and mechanical resistance are concerned. To meet the safety criteria necessary for the protection of both public and users it was decided to use the maximum capacity consistent with rail transport and to avoid coolant fluids under pressure. Since no single type of packing is suitable for all existing stations an effort has been made to standardise handling accessories, and future trands are towards maximum automation. A discussion on the various technical solutions available for the construction of these packing systems is followed by a description of those used for the two types of packaging ordered by COGEMA [fr

  3. A proposal for an international program to develop dry recycle of spent nuclear fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    1999-01-01

    The dry oxidation-reduction process (called OREOX for Oxidation Reduction of Oxide Fuel) being developed by Korea and Canada, in cooperation with IAEA and the US State Department, is limited to recycle of spent LWR fuel into CANDU reactors (DUPIC). When first conceived and demonstrated via irradiation of test elements by Atomics International in 1965, (the process was called AIROX at that time) a wider range of applications was intended, including recycle of spent LWR fuel into LWRs. Studies sponsored by DOE's Idaho Office in 1992 confirmed the applicability of this technology to regions containing LWR's only, and described the potential advantages of such recycle from an environmental, waste management and economic point of view, as compared to the direct disposal option. Recent analyses conducted by the author indicates that such dry recycle may be one of the few acceptable paths remaining for resolution of the US spent fuel storage dilemma that remains consistent with US non-proliferation policy. It is proposed that a new US program be established to develop AIROX dry recycle for use in the US, and this become part of an international cooperative program, including the current Canadian - Korean program, and possibly including participation of other countries wishing to pursue alternatives to the once through cycle, and wet reprocessing. With shared funding of major project elements, such international cooperation would accelerate the demonstration and commercial deployment of dry recycle technology, as compared to separate and independent programs in each country. (author)

  4. Uranium chloride extraction of transuranium elements from LWR fuel

    International Nuclear Information System (INIS)

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure

  5. Magnesium transport extraction of transuranium elements from LWR fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.; Pierce, R.D.

    1992-01-01

    This patent describes a process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuel containing rare earth and noble metal fission products as well as fission products of alkali metals, alkaline earth metals and iodine. It comprises reducing the oxide fuel with Ca metal in the presence of Ca halide; separating the Ca halide with the CaO and the fission products contained therein from the U-Fe alloy and the metal values dissolved therein and electrolytically contacting the calcium salts with a carbon electrode; contacting the liquid U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel with liquid Mg metal, thereafter separating the liquid Mg and the metals dissolved therein from the U-Fe alloy and the metal dissolved therein, distilling the Mg from the transuranium actinide and rare earth metals, recontacting the U-Fe alloy with liquid Mg metal a sufficient number of times until not less than about 99% by weight of the transuranium actinide values have been removed from the U-Fe alloy

  6. Spent fuel management of NPPs in Argentina

    International Nuclear Information System (INIS)

    Alvarez, D.E.; Lee Gonzalez, H.M.

    2010-01-01

    There are two Nuclear Power Plants in operation in Argentina: 'Atucha I' (unique PHWR design) in operation since 1974, and 'Embalse' (typical Candu reactor) which started operation in 1984. Both NPPs are operated by 'Nucleoelectrica Argentina S.A' which is responsible for the management and interim storage of spent fuel till the end of the operative life of the plants. A third NPP, 'Atucha II' is under construction, with a similar design of Atucha I. The legislative framework establishes that after final shutdown of a NPP the spent fuel will be transferred to the 'National Atomic Energy Commission', which is also responsible for the decommissioning of the Plants. In Atucha I, the spent fuel is stored underwater, until another option is implemented meanwhile in Embalse the spent fuel is stored during six years in pools and then it is moved to a dry storage. A decision about the fuel cycle back-end strategy will be taken before year 2030. (authors)

  7. International experience in conditioning spent fuel elements

    International Nuclear Information System (INIS)

    Ashton, P.

    1991-04-01

    The purpose of this report is to compile and present in a clear form international experience (USA, Canada, Sweden, FRG, UK, Japan, Switzerland) gained to date in conditioning spent fuel elements. The term conditioning is here taken to mean the handling and packaging of spent fuel elements for short- or long-term storage or final disposal. Plants of a varying nature fall within this scope, both in terms of the type of fuel element treated and the plant purpose eg. experimental or production plant. Emphasis is given to plants which bear some similarity to the concept developed in Germany for direct disposal of spent fuel elements. Worldwide, however, relatively few conditioning plants are in existence or have been conceived. Hence additional plants have been included where aspects of the experience gained are also of relevance eg. plants developed for the consolidation of spent fuel elements. (orig./HP) [de

  8. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  9. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  10. A Specific Long-Term Plan for Management of U.S. Nuclear Spent Fuel

    International Nuclear Information System (INIS)

    Levy, Salomon

    2006-01-01

    A specific plan consisting of six different steps is proposed to accelerate and improve the long-term management of U.S. Light Water Reactor (LWR) spent nuclear fuel. The first step is to construct additional, centralized, engineered (dry cask) spent fuel facilities to have a backup solution to Yucca Mountain (YM) delays or lack of capacity. The second step is to restart the development of the Integral Fast Reactor (IFR), in a burner mode, because of its inherent safety characteristics and its extensive past development in contrast to Acceleration Driven Systems (ADS). The IFR and an improved non-proliferation version of its pyro-processing technology can burn the plutonium (Pu) and minor actinides (MA) obtained by reprocessing LWR spent fuel. The remaining IFR and LWR fission products will be treated for storage at YM. The radiotoxicity of that high level waste (HLW) will fall below that of natural uranium in less than one thousand years. Due to anticipated increased capital, maintenance, and research costs for IFR, the third step is to reduce the required number of IFRs and their potential delays by implementing multiple recycles of Pu and Neptunium (Np) MA in LWR. That strategy is to use an advanced separation process, UREX+, and the MIX Pu option where the role and degradation of Pu is limited by uranium enrichment. UREX+ will decrease proliferation risks by avoiding Pu separation while the MIX fuel will lead to an equilibrium fuel recycle mode in LWR which will reduce U. S. Pu inventory and deliver much smaller volumes of less radioactive HLW to YM. In both steps two and three, Research and Development (R and D) is to emphasize the demonstration of multiple fuel reprocessing and fabrication, while improving HLW treatment, increasing proliferation resistance, and reducing losses of fissile material. The fourth step is to license and construct YM because it is needed for the disposal of defense wastes and the HLW to be generated under the proposed plan. The

  11. Casette for storage of spent fuel assemblies

    International Nuclear Information System (INIS)

    Ericsson, S.

    1992-01-01

    Describes a design of a casette for spent fuel storage in a fuelstorage pool. The new design, based on flexible spacers, allows the fuel assemblies to be packed more compact and the fuel storage pool used in a more economic way

  12. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    International Nuclear Information System (INIS)

    Sample, C.R.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL

  13. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  14. Regulatory status of burnup credit for storage and transport of spent fuel in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Schweer, H.H.; Johann, H.G.

    2001-01-01

    This paper describes the regulatory status of burnup credit applications to pond storage and dry-cask transport and storage of spent fuel in Germany. Burnup credit for wet storage of LWR fuel at nuclear power plants has to comply with the newly developed safety standard DIN 25471. This standard establishes the safety requirements for burnup credit criticality safety analysis of LWR fuel storage ponds and gives guidance on meeting these requirements. Licensing evaluations of dry transport systems are based on the application of the IAEA Safety Standards Series No.ST-1. However, because of the fact that burnup credit for dry-cask transport becomes more and more inevitable due to increasing initial enrichment of the fuel, and because of the increasing importance of dry-cask storage in Germany, the necessity of giving regulatory guidance on applying burnup credit to dry-cask transport and storage is seen. (author)

  15. Spent fuel dry storage in Hungary

    International Nuclear Information System (INIS)

    Buday, G.; Szabo, B.; Oerdoegh, M.; Takats, F.

    1999-01-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. Since 1989, approximately 40-50% of the total annual electricity generation of the country has been supplied by this plant. The fresh fuel is imported from Russia. Most of the spent fuel assemblies have been shipped back to Russia. Difficulties with spent fuel transportation to Russia have begun in 1992. Since that time, some of the shipments were delayed, some of them were completely cancelled, thus creating a backlog of spent fuel filling all storage positions of the plant. To provide assurance of the continued operation, Paks NPPs management decided to implement an independent spent fuel storage facility and chose GEC-Althom's MVDS design. The construction of the facility started in February 1995 and the first spent fuel assembly was placed in the store in September 1997. The paper gives an overview of the situation, describing the conditions leading to the construction of the dry storage facility at Paks and its implementation. Finally, some information is given about the new Public Agency for Radioactive Waste Management established this year and responsible for managing the issues related to spent fuel management. (author)

  16. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  17. Assessment of LMFBR spent fuel shipping cask concepts for the CRBRP and the US conceptual design study

    International Nuclear Information System (INIS)

    Pope, R.B.; Ortman, J.M.; Eakes, R.G.; Leisher, W.B.; Dupree, S.A.

    1980-01-01

    Study of conceptual shipping systems for CRBRP and CDS spent fuel has shown that systems significantly different from those used for LWR spent fuel will be required. In the conceptual design, liquid sodium was assumed to be the coolant in canisters containing the spent fuel assemblies, and multiple levels of containment were provided by canisters, an inner cask lid and an outer cask lid. Cask cooling at the reactor site during loading, and cooldown at the receiving site prior to unloading are significant but tractable problems

  18. Spent fuel interim management: 1995 update

    International Nuclear Information System (INIS)

    Anderson, C.K.

    1995-01-01

    The problems of interim away-from-reactor spent fuel storage and storage in spent fuel pools at the reactor site are discussed. An overview of the state-of-the-art in the USA, Europe, and Japan is presented. The technical facilities for away-from-reactor storage are briefly described, including wet storage pools, interactive concrete systems, metallic containers, and passive concrete systems. Reprocessing technologies are mostly at the design stage only. It is predicted that during the 20 years to come, about 50 000 tonnes of spent fuel will be stored at reactor sites regardless of the advance of spent fuel reprocessing or interim storage projects. (J.B.). 4 tabs., 2 figs

  19. TRIGA Mark II Ljubljana - spent fuel transportation

    International Nuclear Information System (INIS)

    Ravnik, M.; Dimic, V.

    2008-01-01

    The most important activity in 1999 was shipment of the spent fuel elements back to the United States for final disposal. This activity started already in 1998 with some governmental support. In July 1999 all spent fuel elements (219 pieces) from the TRIGA research reactor in Ljubljana were shipped back to the United Stated by the ship from the port Koper in Slovenia. At the same time shipment of the spent fuel from the research reactor in Pitesti, Romania, and the research reactor in Rome, Italy, was conducted. During the loading the radiation exposure to the workers was rather low. The loading and shipment of the spent nuclear fuel went very smoothly and according the accepted time table. During the last two years the TRIGA research reactor in Ljubljana has been in operation about 1100 hours per year and without any undesired shut-down. (authors)

  20. Spent fuel storage requirements 1993--2040

    International Nuclear Information System (INIS)

    1994-09-01

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges

  1. Choosing a spent fuel interim storage system

    International Nuclear Information System (INIS)

    Roland, V.; Hunter, I.

    2001-01-01

    The Transnucleaire Group has developed different modular solutions to address spent fuel interim storage needs of NPP. These solutions, that are present in Europe, USA and Asia are metal casks (dual purpose or storage only) of the TN 24 family and the NUHOMS canister based system. It is not always simple for an operator to sort out relevant choice criteria. After explaining the basic designs involved on the examples of the TN 120 WWER dual purpose cask and the NUHOMS 56 WWER for WWER 440 spent fuel, we shall discuss the criteria that govern the choice of a given spent fuel interim storage system from the stand point of the operator. In conclusion, choosing and implementing an interim storage system is a complex process, whose implications can be far reaching for the long-term success of a spent fuel management policy. (author)

  2. Low temperature spent fuel oxidation under tuff repository conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project is studying the suitability of tuffaceous rocks at Yucca Mountain, Nye County, Nevada, for high level waste disposal. The oxidation state of LWR spent fuel in a tuff repository may be a significant factor in determining its ability to inhibit radionuclide migration. Long term exposure at low temperatures to the moist air expected in a tuff repository is expected to increase the oxidation state of the fuel. A program is underway to determine the spent fuel oxidation mechanisms which might be active in a tuff repository. Initial work involves a series of TGA experiments to determine the effectiveness of the technique and to obtain preliminary oxidation data. Tests were run at 200 0 C and 225 0 C for as long as 720 hours. Grain boundary diffusion appears to open up a greater surface area for oxidation prior to onset of bulk diffusion. Temperature strongly influences the oxidation rates. The effect of moisture is small but readily measurable. 25 refs., 7 figs., 4 tabs

  3. Predicting spent fuel oxidation states in a tuff repository

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1987-01-01

    Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the tuffaceous rocks at Yucca Mountain as a waste repository for spent fuel disposal. The oxidation state of the LWR spent fuel in the moist air environment of a tuff repository could be a significant factor in determining its leaching and dissolution characteristics. Predictions as to which oxidation states would be present are important in analyzing such a repository and thus the present study was undertaken. A set of TGA (thermogravimetric analysis) tests were conducted on well-controlled samples of irradiated PWR fuel with time and temperature as the only variables. The tests were conducted between 140 and 225 0 C for a duration up to 2200 hours. The weight gain curves were analyzed in terms of diffusion through a layer of U 3 O 7 , diffusion into the grains to form a solid solution, a simplified empirical representation of a combination of grain boundary diffusion and bulk grain oxidation. Reaction rate constants were determined in each case, but analysis of these data could not establish a definitive mechanism. 21 refs., 10 figs., 3 tabs

  4. Probable leaching mechanisms for spent fuel

    International Nuclear Information System (INIS)

    Wang, R.; Katayama, Y.B.

    1981-01-01

    At the Pacific Northwest Laboratory, researchers in the Waste/Rock Interaction Technology Program are studying spent fuel as a possible waste form for the Office of Nuclear Waste Isolation. This paper presents probable leaching mechanisms for spent fuel and discusses current progress in identifying and understanding the leaching process. During the past year, experiments were begun to study the complex leaching mechanism of spent fuel. The initial work in this investigation was done with UO 2 , which provided the most information possible on the behavior of the spent-fuel matrix without encountering the very high radiation levels associated with spent fuel. Both single-crystal and polycrystalline UO 2 samples were used for this study, and techniques applicable to remote experimentation in a hot cell are being developed. The effects of radiation are being studied in terms of radiolysis of water and surface activation of the UO 2 . Dissolution behavior and kinetics of UO 2 were also investigated by electrochemical measurement techniques. These data will be correlated with those acquired when spent fuel is tested in a hot cell. Oxidation effects represent a major area of concern in evaluating the stability of spent fuel. Dissolution of UO 2 is greatly increased in an oxidizing solution because the dissolution is then controlled by the formation of hexavalent uranium. In solutions containing very low oxygen levels (i.e., reducing solutions), oxidation-induced dissolution may be possible via a previously oxidized surface, through exposure to air during storage, or by local oxidants such as O 2 and H 2 O 2 produced from radiolysis of water and radiation-activated UO 2 surfaces. The effects of oxidation not only increase the dissolution rate, but could lead to the disintegration of spent fuel into fine fragments

  5. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  6. Feasibility of subcriticality and NDA measurements for spent fuel by frequency analysis techniques with 252Cf

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Valentine, T.E.; Mattingly, J.K.

    1996-01-01

    The 252 Cf-source-driven frequency analysis method can be used for measuring the subcritical neutron multiplication factor of arrays of LWR fuel and as little as a single PWR fuel assembly. These measurements can be used to verify the criticality safety margins of spent LWR fuel configurations and thus could be a means of obtaining the information to justify burnup credit for spent LWR transportation/storage casks. In addition, the data can be used to validate calculational methods for criticality safety. These measurements provide parameters that have a higher sensitivity to changes in fissile mass than neutron multiplication factor and thus serve as a better test of calculational methods. The analysis have also shown that measurement of the cross power spectral density (CPSD) between detectors on one side of a single fuel assembly and an internal or external 252 Cf source driving the fission chain multiplication process can be used for nondestructive assay of fissile mass along the length of the assembly. This CPSD is a smooth function of fissile mass and does not depend on the varying inherent source in the fuel assembly and thus is ideal for fissile mass assay

  7. Pyrochemical processing of DOE spent nuclear fuel

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1995-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or open-quotes pyroprocessing,close quotes provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  8. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Park, Seong Won; Shin, Y. J.; Cho, S. H.

    2004-03-01

    The research on spent fuel management focuses on the maximization of the disposal efficiency by a volume reduction, the improvement of the environmental friendliness by the partitioning and transmutation of the long lived nuclides, and the recycling of the spent fuel for an efficient utilization of the uranium source. In the second phase which started in 2001, the performance test of the advanced spent fuel management process consisting of voloxidation, reduction of spent fuel and the lithium recovery process has been completed successfully on a laboratory scale. The world-premier spent fuel reduction hot test of a 5 kgHM/batch has been performed successfully by joint research with Russia and the valuable data on the actinides and FPs material balance and the characteristics of the metal product were obtained with experience to help design an engineering scale reduction system. The electrolytic reduction technology which integrates uranium oxide reduction in a molten LiCl-Li 2 O system and Li 2 O electrolysis is developed and a unique reaction system is also devised. Design data such as the treatment capacity, current density and mass transfer behavior obtained from the performance test of a 5 kgU/batch electrolytic reduction system pave the way for the third phase of the hot cell demonstration of the advanced spent fuel management technology

  9. Radioactive characteristics of spent fuels and reprocessing products in thorium fueled alternative cycles

    International Nuclear Information System (INIS)

    Maeda, Mitsuru

    1978-09-01

    In order to provide one fundamental material for the evaluation of Th cycle, compositions of the spent fuels were calculated with the ORIGEN code on following fuel cycles: (1) PWR fueled with Th- enriched U, (2) PWR fueled with Th-denatured U, (3) CANDU fueled with Th-enriched U and (4) HTGR fueled with Th-enriched U. Using these data, product specifications on radioactivity for their reprocessing were calculated, based on a criterion that radioactivities due to foreign elements do not exceed those inherent in nuclear fuel elements, due to 232 U in bred U or 228 Th in recovered Th, respectively. Conclusions are as the following: (1) Because of very high contents of 232 U and 228 Th in the Th cycle fuels from water moderated reactors, especially from PWR, required decontamination factors for their reprocessing will be smaller by a factor of 10 3 to 10 4 , compared with those from U-Pu fueled LWR cycle. (2) These less stringent product specifications on the radioactivity of bred U and recovered Th will justify introduction of some low decontaminating process, with additional advantage of increased proliferation resistance. (3) Decontamination factors required for HTGR fuel will be 10 to 30 times higher than for the other fuels, because of less 232 U and 228 Th generation, and higher burn-up in the fuel. (author)

  10. Final environmental statement: US Spent Fuel Policy. Storage of foreign spent power reactor fuel

    International Nuclear Information System (INIS)

    1980-05-01

    In October 1977, the Department of Energy (DOE) announced a Spent Fuel Storage Policy for nuclear power reactors. Under this policy, as approved by the President, US utilities will be given the opportunity to deliver spent fuel to US Government custody in exchange for payment of a fee. The US Government will also be prepared to accept a limited amount of spent fuel from foreign sources when such action would contribute to meeting nonproliferation goals. Under the new policy, spent fuel transferred to the US Government will be delivered - at user expense - to a US Government-approved site. Foreign spent fuel would be stored in Interim Spent Fuel Storage (ISFS) facilities with domestic fuel. This volume of the environmental impact statement includes effects associated with implementing or not implementing the Spent Fuel Storage Policy for the foreign fuels. The analyses show that there are no substantial radiological health impacts whether the policy is implemented or not. In no case considered does the population dose commitment exceed 0.000006% of the world population dose commitment from natural radiation sources over the period analyzed. Full implementation of the US offer to accept a limited amount of foreign spent fuel for storage provides the greatest benefits for US nonproliferation policy. Acceptance of lesser quantities of foreign spent fuel in the US or less US support of foreign spent fuel storage abroad provides some nonproliferation benefits, but at a significantly lower level than full implementation of the offer. Not implementing the policy in regard to foreign spent fuel will be least productive in the context of US nonproliferation objectives. The remainder of the summary provides a brief description of the options that are evaluated, the facilities involved in these options, and the environmental impacts, including nonproliferation considerations, associated with each option

  11. A comparative study on recycling spent fuels in gas-cooled fast reactors

    International Nuclear Information System (INIS)

    Choi, Hangbok; Baxter, Alan

    2010-01-01

    This study evaluates advanced Gas-cooled Fast Reactor (GFR) fuel cycle scenarios which are based on recycling spent nuclear fuel for the sustainability of nuclear energy. A 600 MWth GFR was used for the fuel cycle analysis, and the equilibrium core was searched with different fuel-to-matrix volume ratios such as 70/30 and 60/40. Two fuel cycle scenarios, i.e., a one-tier case combining a Light Water Reactor (LWR) and a GFR, and a two-tier case using an LWR, a Very High Temperature Reactor (VHTR), and a GFR, were evaluated for mass flow and fuel cycle cost, and the results were compared to those of LWR once-through fuel cycle. The mass flow calculations showed that the natural uranium consumption can be reduced by more than 57% and 27% for the one-tier and two-tier cycles, respectively, when compared to the once-through fuel cycle. The transuranics (TRU) which pose a long-term problem in a high-level waste repository, can be significantly reduced in the multiple recycle operation of these options, resulting in more than 110 and 220 times reduction of TRU inventory to be geologically disposed for the one-tier and two-tier fuel cycles, respectively. The fuel cycle costs were estimated to be 9.4 and 8.6 USD/MWh for the one-tier fuel cycle when the GFR fuel-to-matrix volume ratio was 70/30 and 60/40, respectively. However the fuel cycle cost is reduced to 7.3 and 7.1 USD/MWh for the two-tier fuel cycle, which is even smaller than that of the once-through fuel cycle. In conclusion the GFR can provide alternative fuel cycle options to the once-through and other fast reactor fuel cycle options, by increasing the natural uranium utilization and reducing the fuel cycle cost.

  12. Experimental Assessment of a New Passive Neutron Multiplication Counter for Partial Defect Verification of LWR Fuel Assemblies

    International Nuclear Information System (INIS)

    LaFleur, A.; Menlove, H.; Park, S.-H.; Lee, S. K.; Oh, J.-M.; Kim, H.-D.

    2015-01-01

    The development of non-destructive assay (NDA) capabilities to improve partial defect verification of spent fuel assemblies is needed to improve the timely detection of the diversion of significant quantities of fissile material. This NDA capability is important to the implementation of integrated safeguards for spent fuel verification by the International Atomic Energy Agency (IAEA) and would improve deterrence of possible diversions by increasing the risk of early detection. A new NDA technique called Passive Neutron Multiplication Counter (PNMC) is currently being developed at Los Alamos National Laboratory (LANL) to improve safeguards measurements of LightWater Reactor (LWR) fuel assemblies. The PNMC uses the ratio of the fast-neutron emission rate to the thermalneutron emission rate to quantify the neutron multiplication of the item. The fast neutrons versus thermal neutrons are measured using fission chambers (FC) that have differential shielding to isolate fast and thermal energies. The fast-neutron emission rate is directly proportional to the neutron multiplication in the spent fuel assembly; whereas, the thermalneutron leakage is suppressed by the fissile material absorption in the assembly. These FCs are already implemented in the basic Self-Interrogation Neutron Resonance Densitometry (SINRD) detector package. Experimental measurements of fresh and spent PWR fuel assemblies were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using a hybrid PNMC and SINRD detector. The results from these measurements provides valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. (author)

  13. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  14. Burnup credit demands for spent fuel management in Ukraine

    International Nuclear Information System (INIS)

    Medun, V.

    2001-01-01

    In fact, till now, burnup credit has not be applied in Ukrainian nuclear power for spent fuel management systems (storage and transport). However, application of advanced fuel at VVER reactors, arising spent fuel amounts, represent burnup credit as an important resource to decrease spent fuel management costs. The paper describes spent fuel management status in Ukraine from viewpoint of subcriticality assurance under spent fuel storage and transport. It also considers: 1. Regulation basis concerning subcriticality assurance, 2. Basic spent fuel and transport casks characteristics, 3. Possibilities and demands for burnup credit application at spent fuel management systems in Ukraine. (author)

  15. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  16. Spent fuel storage and transportation - ANSTO experience

    International Nuclear Information System (INIS)

    Irwin, Tony

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has operated the 10 MW DIDO class High Flux Materials Test Reactor (HIFAR) since 1958. Refuelling the reactor produces about 38 spent fuel elements each year. Australia has no power reactors and only one operating research reactor so that a reprocessing plant in Australia is not an economic proposition. The HEU fuel for HIFAR is manufactured at Dounreay using UK or US origin enriched uranium. Spent fuel was originally sent to Dounreay, UK for reprocessing but this plant was shutdown in 1998. ANSTO participates in the US Foreign Research Reactor Spent Fuel Return program and also has a contract with COGEMA for the reprocessing of non-US origin fuel

  17. Fact sheet on spent fuel management

    International Nuclear Information System (INIS)

    2006-01-01

    The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs. The proceedings of the 2003 IAEA conference on storage of spent fuel from power reactors has been ranked in the top twenty most accessed IAEA publications. These proceedings are available for free downloads at http://www-pub.iaea.org/MTCD/publications/PubDetails.asp?pubId=6924]. The IAEA organized and held a 2004 meeting focused on long term spent fuel storage provisions in Central and Eastern Europe, using technical cooperation funds to support participation by these Member States. Over ninety percent of the participants in this meeting rated its value as good or excellent, with participants noting that the IAEA is having a positive effect in stimulating communication, cooperation, and information dissemination on this important topic. The IAEA was advised in 2004 that results from a recent coordinated research project (IAEA-TECDOC-1343) were used by one Member State to justify higher clad temperatures for spent fuel in dry storage, leading to more efficient storage and reduced costs. Long term

  18. Initial results from dissolution rate testing of N-Reactor spent fuel over a range of potential geologic repository aqueous conditions

    International Nuclear Information System (INIS)

    Gray, W.J.; Einziger, R.E.

    1998-04-01

    Hanford N-Reactor spent nuclear fuel (HSNF) may ultimately be placed in a geologic repository for permanent disposal. To determine whether the engineered barrier system that will be designed for emplacement of light-water-reactor (LWR) spent fuel will also suffice for HSNF, aqueous dissolution rate measurements were conducted on the HSNF. The purpose of these tests was to determine whether HSNF dissolves faster or slower than LWR spent fuel under some limited repository-relevant water chemistry conditions. The tests were conducted using a flowthrough method that allows the dissolution rate of the uranium matrix to be measured without interference by secondary precipitation reactions that would confuse interpretation of the results. Similar tests had been conducted earlier with LWR spent fuel, thereby allowing direct comparisons. Two distinct corrosion modes were observed during the course of these 12 tests. The first, Stage 1, involved no visible corrosion of the test specimen and produced no undissolved corrosion products. The second, Stage 2, resulted in both visible corrosion of the test specimen and left behind undissolved corrosion products. During Stage 1, the rate of dissolution could be readily determined because the dissolved uranium and associated fission products remained in solution where they could be quantitatively analyzed. The measured rates were much faster than has been observed for LWR spent fuel under all conditions tested to date when normalized to the exposed test specimen surface areas. Application of these results to repository conditions, however, requires some comparison of the physical conditions of the different fuels. The surface area of LWR fuel that could potentially be exposed to repository groundwater is estimated to be approximately 100 times greater than HSNF. Therefore, when compared on the basis of mass, which is more relevant to repository conditions, the HSNF and LWR spent fuel dissolve at similar rates

  19. Spent fuel dissolution rates as a function of burnup and water chemistry

    International Nuclear Information System (INIS)

    Gray, W.J.

    1998-06-01

    To help provide a source term for performance-assessment calculations, dissolution studies on light-water-reactor (LWR) spent fuel have been conducted over the past few years at Pacific Northwest National Laboratory in support of the Yucca Mountain Site Characterization Project. This report describes that work for fiscal years 1996 through mid-1998 and includes summaries of some results from previous years for completeness. The following conclusions were based on the results of various flowthrough dissolution rate tests and on tests designed to measure the inventories of 129 I located within the fuel/cladding gap region of different spent fuels: (1) Spent fuels with burnups in the range 30 to 50 MWd/kgM all dissolved at about the same rate over the conditions tested. To help determine whether the lack of burnup dependence extends to higher and lower values, tests are in progress or planned for spent fuels with burnups of 13 and ∼ 65 MWd/kgM. (2) Oxidation of spent fuel up to the U 4 O 9+x stage does not have a large effect on intrinsic dissolution rates. However, this degree of oxidation could increase the dissolution rates of relatively intact fuel by opening the grain boundaries, thereby increasing the effective surface area that is available for contact by water. From a disposal viewpoint, this is a potentially more important consideration than the effect on intrinsic rates. (3) The gap inventories of 129 I were found to be smaller than the fission gas release (FGR) for the same fuel rod with the exception of the rod with the highest FGR. Several additional fuels would have to be tested to determine whether a generalized relationship exists between FGR and 129 I gap inventory for US LWR fuels

  20. Features and safety aspects of spent fuel storage facility, Tarapur

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Tarapur is designed to store spent fuel arising from PHWRs in different parts of the country. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Tarapur was hot commissioned after regulatory clearances

  1. Criticality reference benchmark calculations for burnup credit using spent fuel isotopics

    International Nuclear Information System (INIS)

    Bowman, S.M.

    1991-04-01

    To date, criticality analyses performed in support of the certification of spent fuel casks in the United States do not take credit for the reactivity reduction that results from burnup. By taking credit for the fuel burnup, commonly referred to as ''burnup credit,'' the fuel loading capacity of these casks can be increased. One of the difficulties in implementing burnup credit in criticality analyses is that there have been no critical experiments performed with spent fuel which can be used for computer code validation. In lieu of that, a reference problem set of fresh fuel critical experiments which model various conditions typical of light water reactor (LWR) transportation and storage casks has been identified and used in the validation of SCALE-4. This report documents the use of this same problem set to perform spent fuel criticality benchmark calculations by replacing the actual fresh fuel isotopics from the experiments with six different sets of calculated spent fuel isotopics. The SCALE-4 modules SAS2H and CSAS4 were used to perform the analyses. These calculations do not model actual critical experiments. The calculated k-effectives are not supposed to equal unity and will vary depending on the initial enrichment and burnup of the calculated spent fuel isotopics. 12 refs., 11 tabs

  2. Neutron intensity of fast reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Misao; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Neutron intensity of spent fuel of the JOYO Mk-II core with a burnup of 62,500 MWd/t and cooling time of 5.2 years was measured at the spent fuel storage pond. The measured data were compared with the calculated values based on the JOYO core management code system `MAGI`, and the average C/E approximately 1.2 was obtained. It was found that the axial neutron intensity didn`t simply follow the burnup distribution, and the neutron intensity was locally increased at the bottom end of the fuel region due to an accumulation of {sup 244}Cm. (author)

  3. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  4. Integrated spent nuclear fuel database system

    International Nuclear Information System (INIS)

    Henline, S.P.; Klingler, K.G.; Schierman, B.H.

    1994-01-01

    The Distributed Information Systems software Unit at the Idaho National Engineering Laboratory has designed and developed an Integrated Spent Nuclear Fuel Database System (ISNFDS), which maintains a computerized inventory of all US Department of Energy (DOE) spent nuclear fuel (SNF). Commercial SNF is not included in the ISNFDS unless it is owned or stored by DOE. The ISNFDS is an integrated, single data source containing accurate, traceable, and consistent data and provides extensive data for each fuel, extensive facility data for every facility, and numerous data reports and queries

  5. Spent fuel storage practices and perspectives for WWER fuel in Eastern Europe

    International Nuclear Information System (INIS)

    Takats, F.

    1999-01-01

    In this lecture the general issues and options in spent fuel management and storage are reviewed. Quantities of spent fuel world-wide and spent fuel amounts in storage as well as spent fuel capacities are presented. Selected examples of typical spent fuel storage facilities are discussed. The storage technologies applied for WWER fuel is presented. Description of other relevant storage technologies is included

  6. Spent fuel storage requirements 1989--2020

    International Nuclear Information System (INIS)

    1989-10-01

    Historical inventories of spent fuel are combined with Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the US to provide estimates of spent fuel storage requirements over the next 32 years, through the year 2020. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Historical data through December 1988 are derived from the 1989 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 14 refs., 3 figs., 28 tabs

  7. Spent fuel storage requirements, 1991--2040

    International Nuclear Information System (INIS)

    1991-12-01

    Historical inventories of spent fuel are combined with US Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements over the next 50 years, through the year 2040. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. Historical data through December 1990 are derived from the 1991 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges

  8. Spent fuel storage requirements, 1990--2040

    International Nuclear Information System (INIS)

    Walling, R.; Bierschbach, M.

    1990-11-01

    Historical inventories of spent fuel are combined with US Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements over the next 51 years, through the year 2040. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. Historical data through December 1989 are derived from the 1990 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 15 refs., 3 figs., 11 tabs

  9. Storage method for spent fuel assembly

    International Nuclear Information System (INIS)

    Tajiri, Hiroshi.

    1992-01-01

    In the present invention, spent fuel assemblies are arranged at a dense pitch in a storage rack by suppressing the reactivity of the assemblies, to increase storage capacity for the spent fuel assemblies. That is, neutron absorbers are filled in the cladding tube of an absorbing rod, and the diameter thereof is substantially equal with that of a fuel rod. A great amount of the absorbing rods are arranged at the outer circumference of the fuel assembly. Then, they are fixed integrally to the fuel assembly and stored in a storage rack. In this case, the storage rack may be constituted only with angle materials which are inexpensive and installed simply. With such a constitution, in the fuel assembly having absorbing rods wound therearound, neutrons are absorbed by absorbing rods and the reactivity is lowered. Accordingly, the assembly arrangement pitch in the storage rack can be made dense. As a result, the storage capacity for the assemblies is increased. (I.S.)

  10. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 1. Summary: alternatives for the back of the LWR fuel cycle types and properties of LWR fuel cycle wastes projections of waste quantities; selected glossary

    International Nuclear Information System (INIS)

    1976-05-01

    Volume I of the five-volume report contains executive and technical summaries of the entire report, background information of the LWR fuel cycle alternatives, descriptions of waste types, and projections of waste quantities. Overview characterizations of alternative LWR fuel cycle modes are also included

  11. Corrosion of spent Advanced Test Reactor fuel

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Croson, M.L.

    1994-01-01

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented

  12. Hanford spent fuel inventory baseline

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1994-01-01

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors

  13. Storing the world's spent nuclear fuel

    International Nuclear Information System (INIS)

    Barkenbus, J.N.; Weinberg, A.M.; Alonso, M.

    1985-01-01

    Given the world's prodigious future energy requirements and the inevitable depletion of oil and gas, it would be foolhardy consciously to seek limitations on the growth of nuclear power. Indeed, the authors continue to believe that the global nuclear power enterprise, as measured by installed reactor capacity, can become much larger in the future without increasing proliferation risks. To accomplish this objective will require renewed dedication to the non-proliferation regime, and it will require some new initiatives. Foremost among these would be the establishment of a spent fuel take-back service, in which one or a few states would retrieve spent nuclear fuel from nations generating it. The centralized retrieval of spent fuel would remove accessible plutonium from the control of national leaders in non-nuclear-weapons states, thereby eliminating the temptation to use this material for weapons. The Soviets already implement a retrieval policy with the spent fuel generated by East European allies. The authors believe that it is time for the US to reopen the issue of spent-fuel retrieval, and thus to strengthen its non-proliferation policies and the nonproliferation regime in general. 7 references

  14. Prospect of spent fuel reprocessing and back-end cycling in China in 1990's

    International Nuclear Information System (INIS)

    Ke Youzhi; Wang Rengtao

    1987-01-01

    According to the CHinese Program of nuclear energy in 1990's, the amount of spent fuel by the year 2000 is estimated in this paper. Reprocessing is considered as an important link in the back-end fuel cycle. A pilot plant is scheduled for hot start up in 1996. The main goal of the study is LWR spent fuel reprocessing. We will use the experience gained from reprocessing of production reactor fuel and last research results. The advanced foreign technigue and experience will be introduced. The study emphasizes on the test of technology, equipments, instrumentation and automation, development of remote maintenance and decontamination. China will start to demonstrate the way for fuel cycle. (author)

  15. Spent Nuclear Fuel (SNF) Removal Campaign Plan

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The overall operation of the Spent Nuclear Fuel Project will include fuel removal, sludge removal, debris removal, and deactivation transition activities. Figure 1-1 provides an overview of the current baseline operating schedule for project sub-systems, indicating that a majority of fuel removal activities are performed over an approximately three-and-one-half year time period. The purpose of this document is to describe the strategy for operating the fuel removal process systems. The campaign plan scope includes: (1) identifying a fuel selection sequence during fuel removal activities, (2) identifying MCOs that are subjected to extra testing (process validation) and monitoring, and (3) discussion of initial MCO loading and monitoring in the Canister Storage Building (CSB). The campaign plan is intended to integrate fuel selection requirements for handling special groups of fuel within the basin (e.g., single pass reactor fuel), process validation activities identified for process systems, and monitoring activities during storage

  16. Status and prospects for spent fuel management in France

    International Nuclear Information System (INIS)

    Portal, R.; L'Epine, P. de

    1996-01-01

    The spent fuel arisings and storage capacities, the interface between fuel storage and transportation activities, the spent fuel storage technology, the reprocessing and recycling industrial activities in France are described in the paper. (author). 6 figs, 8 tabs

  17. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, Y. H.

    2001-03-01

    Since the amount of the spent fuel rapidly increases, the current R and D activities are focused on the technology development related with the storage and utilization of the spent fuel. In this research, to provide such a technology, the mechanical head-end process has been developed. In detail, the swing and shock-free crane and the RCGLUD(Remote Cask Grappling and Lid Unbolting Device) were developed for the safe transportation of the spent fuel assembly, the LLW drum and the transportation cask. Also, the disassembly devices required for the head-end process were developed. This process consists of an assembly downender, a rod extractor, a rod cutter, a fuel decladding device, a skeleton compactor, a force-rectifiable manipulator for the abnormal spent fuel disassembly, and the gantry type telescopic transporter, etc. To provide reliability and safety of these devices, the 3 dimensional graphic design system is developed. In this system, the mechanical devices are modelled and their operation is simulated in the virtual environment using the graphic simulation tools. So that the performance and the operational mal-function can be investigated prior to the fabrication of the devices. All the devices are tested and verified by using the fuel prototype at the mockup facility

  18. Spent fuel management: Current status and prospects

    International Nuclear Information System (INIS)

    1988-12-01

    The main objective of the Advisory Group on Spent Fuel Management is to review the world-wide situation in Spent Fuel Management, to define the most important directions of national efforts and international cooperation in this area, to exchange information on the present status and progress in performing the back-end of Nuclear Fuel Cycle and to elaborate the general recommendations for future Agency programmes in the field of spent fuel management. This report which is a result of the third IAEA Advisory Group Meeting (the first and second were held in 1984 and 1986) is intended to provide the reader with an overview of the status of spent fuel management programmes in a number of leading countries, with a description of the past and present IAEA activities in this field of Nuclear Fuel Cycle and with the Agency's plans for the next years, based on the proposals and recommendations of Member States. A separate abstract was prepared for each of 14 papers presented at the advisory group meeting. Refs, figs and tabs

  19. Radioactivity of spent TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P. [Reactor Department, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive.

  20. Radioactivity of spent TRIGA fuel

    International Nuclear Information System (INIS)

    Usang, M. D.; Nabil, A. R. A.; Alfred, S. L.; Hamzah, N. S.; Abi, M. J. B.; Rawi, M. Z. M.; Abu, M. P.

    2015-01-01

    Some of the oldest TRIGA fuel in the Malaysian Reaktor TRIGA PUSPATI (RTP) is approaching the limit of its end of life with burn-up of around 20%. Hence it is prudent for us to start planning on the replacement of the fuel in the reactor and other derivative activities associated with it. In this regard, we need to understand all of the risk associated with such operation and one of them is to predict the radioactivity of the fuel, so as to estimate the safety of our working conditions. The radioactivity of several fuels are measured and compared with simulation results to confirm the burnup levels of the selected fuels. The radioactivity measurement are conducted inside the water tank to reduce the risk of exposure and in this case the detector wrapped in plastics are lowered under water. In nuclear power plant, the general practice was to continuously burn the fuel. In research reactor, most operations are based on the immediate needs of the reactor and our RTP for example operate periodically. By integrating the burnup contribution for each core configuration, we simplify the simulation of burn up for each core configuration. Our results for two (2) fuel however indicates that the dose from simulation underestimate the actual dose from our measurements. Several postulates are investigated but the underlying reason remain inconclusive

  1. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  2. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  3. Status of spent fuel shipping cask development

    International Nuclear Information System (INIS)

    Hall, I.K.; Hinschberger, S.T.

    1989-01-01

    This paper discusses how several new-generation shopping cask systems are being developed for safe and economical transport of commercial spent nuclear fuel and other radioactive wastes for the generating sites to a federal geologic repository or monitored retrievable storage (MRS) facility. Primary objectives of the from-reactor spent fuel cask development work are: to increase cask payloads by taking advantage of the increased at-reactor storage time under the current spent fuel management scenario, to facilitate more efficient cask handling operations with reduced occupational radiation exposure, and to promote standardization of the physical interfaces between casks and the shipping and receiving facilities. Increased cask payloads will significantly reduce the numbers of shipments, with corresponding reductions in transportation costs and risks to transportation workers, cask handling personnel, and the general public

  4. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  5. Geomechanics of the Spent Fuel Test: Climax

    International Nuclear Information System (INIS)

    Wilder, D.G.; Yow, J.L. Jr.

    1987-07-01

    Three years of geomechanical measurements were made at the Spent Fuel Test-Climax (SFT-C) 1400 feet underground in fractured granitic rock. Heating of the rock mass resulted from emplacement of spent fuel as well as the heating by electrical heaters. Cooldown of the rock occurred after the spent fuel was removed and the heaters were turned off. The measurements program examines both gross and localized responses of the rock mass to thermal loading, to evaluate the thermomechanical response of sheared and fractured rock with that of relatively unfractured rock, to compare the magnitudes of displacements during mining with those induced by extensive heating of the rock mass, and to check assumptions regarding symmetry and damaged zones made in numerical modeling of the SFT-C. 28 refs., 113 figs., 10 tabs

  6. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a laser system and have used it with a simulated BWR assembly. The reflected signal from the zircaloy rods depends on the position of the assembly, but in all cases is easily discernable from the reference scan of background with no assembly

  7. Laser surveillance system for spent fuel

    International Nuclear Information System (INIS)

    Fiarman, S.; Zucker, M.S.; Bieber, A.M. Jr.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools (SFSP's) will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a full size laser system operating in air and have used an array of 6 zircaloy BWR tubes to simulate an assembly. The reflective signal from the zircaloy rods is a strong function of position of the assembly, but in all cases is easily discernable from the reference scan of the background with no assembly. A design for a SFSP laser surveillance system incorporating laser ranging is discussed. 10 figures

  8. Spent fuel container alignment device and method

    Science.gov (United States)

    Jones, Stewart D.; Chapek, George V.

    1996-01-01

    An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.

  9. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    International Nuclear Information System (INIS)

    Oh, Jinho

    2013-01-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe

  10. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe.

  11. Spent fuel management in South Africa

    International Nuclear Information System (INIS)

    Bredell, P.J.; Stott, A.K.

    1998-01-01

    Eskom, the South African utility, operates one of the largest electricity networks in the world. However, only 6% of the South African generating capacity is nuclear; the remainder is coal fired and hydroelectric. The nuclear component consists of the Koeberg Nuclear Power Plant, comprising two French supplied PWRs of 920 MWe each, situated approximately 45 kilometres from cape Town. Construction started in 1976 and the two reactors reached criticality in 1984 and 1985 respectively. South Africa also has an Oak Ridge type research reactor, called SAFARI, operated by the South African Atomic Energy Corporation (AEC) at their Pelindaba site near Pretoria. This research reactor was commissioned in 1965, and has been in operation ever since. South Africa has a National Radioactive Waste Disposal facility called Vaalputs, some 600 km north of Cape Town. The facility, operated by AEC, is presently licensed only for the disposal of low and intermediate radioactive level wastes. Vaalputs offers unique features as a potential interim spent fuel storage and final disposal site, such as favorable geology (granite), low seismicity, low population density, remoteness from industrial centres and and conditions. Therefore, this site has been investigated by the AEC as a potential interim spent fuel storage site, but has not yet been licensed for this purpose. Hence, all spent fuel is currently stored on the two sites at Koeberg and Pelindaba respectively. The spent fuel storage pools at Koeberg have recently been enlarged to accommodate the lifetime spent fuel arisings of the plant. Since late 1997, the Safari spent fuel is stored in a pipe storage facility, constructed away from the reactor on the Pelindaba site. (author)

  12. Development and engineering plan for graphite spent fuels conditioning program

    International Nuclear Information System (INIS)

    Bendixsen, C.L.; Fillmore, D.L.; Kirkham, R.J.; Lord, D.L.; Phillips, M.B.; Pinto, A.P.; Staiger, M.D.

    1993-09-01

    Irradiated (or spent) graphite fuel stored at the Idaho Chemical Processing Plant (ICPP) includes Fort St. Vrain (FSV) reactor and Peach Bottom reactor spent fuels. Conditioning and disposal of spent graphite fuels presently includes three broad alternatives: (1) direct disposal with minimum fuel packaging or conditioning, (2) mechanical disassembly of spent fuel into high-level waste and low-level waste portions to minimize geologic repository requirements, and (3) waste-volume reduction via burning of bulk graphite and other spent fuel chemical processing of the spent fuel. A multi-year program for the engineering development and demonstration of conditioning processes is described. Program costs, schedules, and facility requirements are estimated

  13. Fission product release from high gap-inventory LWR fuel under LOCA conditions

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Collins, J.L.; Osborne, M.F.; Malinauskas, A.P.

    1980-01-01

    Fission product release tests were performed with light water reactor (LWR) fuel rod segments containing large amounts of cesium and iodine in the pellet-to-cladding gap space in order to check the validity of the previously published Source Term Model for this type of fuel. The model describes the release of fission product cesium and iodine from LWR fuel rods for controlled loss-of-coolant accident (LOCA) transients in the temperature range 500 to 1200 0 C. The basis for the model was test data obtained with simulated fuel rods and commercial fuel irradiated to high burnup but containing relatively small amounts of cesium and iodine in the pellet-to-cladding gap space

  14. Acceptance of spent fuel of varying characteristics

    International Nuclear Information System (INIS)

    Short, S.M.

    1990-03-01

    This paper is a preliminary overview of a study with the primary objective of establishing a set of acceptance selection criteria and corresponding spent fuel characteristics to be incorporated as a component of requirements for the Federal Waste Management System (FWMS). A number of alternative acceptance allocations and selection rules were analyzed to determine the operational sensitivity of each element of the FWMS to the resultant spent fuel characteristics. Preliminary recommendations of the study include three different sets of selection rules to be included in the FWMS design basis. 2 refs., 4 figs., 4 tabs

  15. Array Detector Modules for Spent Fuel Verification

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey

    2018-05-07

    Brookhaven National Laboratory (BNL) proposes to evaluate the arrays of position-sensitive virtual Frisch-grid (VFG) detectors for passive gamma-ray emission tomography (ET) to verify the spent fuel in storage casks before storing them in geo-repositories. Our primary objective is to conduct a preliminary analysis of the arrays capabilities and to perform field measurements to validate the effectiveness of the proposed array modules. The outcome of this proposal will consist of baseline designs for the future ET system which can ultimately be used together with neutrons detectors. This will demonstrate the usage of this technology in spent fuel storage casks.

  16. Transporting spent nuclear fuel: an overview

    International Nuclear Information System (INIS)

    1986-03-01

    Although high-level radioactive waste from both commercial and defense activities will be shipped to the repository, this booklet focuses on various aspects of transporting commercial spent fuel, which accounts for the majority of the material to be shipped. The booklet is intended to give the reader a basic understanding of the following: the reasons for transportation of spent nuclear fuel, the methods by which it is shipped, the safety and security precautions taken for its transportation, emergency response procedures in the event of an accident, and the DOE program to develop a system uniquely appropriate to NWPA transportation requirements

  17. Significance of campaigned spent fuel shipments

    International Nuclear Information System (INIS)

    Doman, J.W.; Tehan, T.E.

    1993-01-01

    Operational experience associated with spent fuel or irradiated hardware shipments to or from the General Electric Morris Facility is presented. The following specific areas are addressed: Problems and difficulties associated with meeting security and safeguard requirements of 10 CFR Part 73; problems associated with routing via railroad; problems associated with scheduling and impact on affected parties when a shipment is delayed or cancelled; and impact on training when shipments spread over many years. The lessons learned from these experiences indicate that spent fuel shipments are best conducted in dedicated open-quotes campaignsclose quotes that concentrate as much consecutive shipping activity as possible into one continuous time frame

  18. Effects of actinide compositional variability in the US spent fuel inventory on partitioning-transmutation systems

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michaels, G.E.; Hanson, B.D.

    1992-01-01

    Partitioning and transmutation (P-T) is an advanced waste management concept by which certain undesirable nuclides in spent fuel are first isolated (partitioned) and later destroyed (transmuted) in a nuclear reactor or other transmutation device. There are wide variabilities in the nuclide composition of spent fuel. This implies that there will also be wide variabilities in the transmutation device feed. As a waste management system, P-T must be able to accept (all) spent fuel. Variability of nuclide composition (i.e., the feed material for transmutation devices) may be important because virtually all transmutation systems propose to configure transuranic (TRU) nuclides recovered from discharged lightwater reactor (LWR) spent fuel in critical or near-critical cores. To date, all transmutation system core analyses assume invariant nuclide concentrations for startup and recycle cores. Using the US Department of Energy's (DOE's) Characteristics Data Base (CDB) and the ORIGEN2 computer code, the current and projected spent fuel discharges until the year 2016 have been categorized according to combinations of fuel burnup, initial enrichment, fuel age (cooling time) and reactor type (boiling-water or pressurized-water reactors). The variability of the infinite multiplication factor (k ∞ ) is calculated for both fast (ALMR) and thermal (accelerator-based) transmuter systems

  19. Spent fuel disposal problem in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Milanov, M; Stefanova, I [Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika

    1994-12-31

    The internationally agreed basic safety principles and criteria for spent fuel (SF) and high level waste (HLW) disposal are outlined. In the framework of these principles the specific problems of Bulgaria described in the `National Concept for Radioactive Waste Management and Disposal in Republic of Bulgaria` are discussed. The possible alternatives for spent fuel management are: (1) sending the spent fuel for disposal in other country; (2) once-through cycle and (3) closed fuel cycle. A mixed solution of the problem is implemented in Bulgaria. According to the agreement between Bulgaria and former Soviet Union a part of the spent fuel has been returned to Russia. The once-through and closed-fuel cycle are also considered. The projected cumulated amount of spent fuel is estimated for two cases: (1) the six units of Kozloduy NPP are in operation till the end of their lifetime (3300 tHM) and (2) low estimate (2700 tHM) - only units 5 and 6 are operated till the end of their lifetime. The reprocessing of the total amount of 3300 tHM will lead to the production of about 370 m{sup 3} vitrified high level wastes. Together with the HLW about 1850 m{sup 3} cladding hulls and 7800 m{sup 3} intermediate-level wastes will be generated, which should be disposed off in deep geological repository. The total production of radioactive waste in once-through cycle is 181 000 m{sup 3}, and in closed cycle - 190 000 m{sup 3}. Geological investigations are performed resulting in categorization of the territory of the country based on geological, geotechnical and hydrogeological conditions. This will facilitate the choice of the most suitable location for deep geological repository. 7 figs., 11 refs.

  20. Spent fuel surveillance and monitoring methods

    International Nuclear Information System (INIS)

    1988-05-01

    The Technical Committee Meeting on ''Spent Fuel Surveillance and Monitoring Methods'' (27-30 October 1987) has been organized in accordance with recommendations of the International Standing Advisory Group on Spent Fuel Management during its second meeting in 1986. The aim of the meeting was to discuss the above questions with emphasis on current design and operation criteria, safety principles and licensing requirements and procedures in order to prevent: inadvertent criticality, undue radiation exposure, unacceptable release of radioactivity as well as control for loss of storage pool water, crud impact, water chemistry, distribution and behaviour of particulates in cooling water, oxidation of intact and failed fuel rods as a function of temperature and burnup; distribution of radiation and temperature through dry cask wall, monitoring of leakages from pools and gas escapes from dry storage facilities, periodical integrity tests of the containment barriers, responsibilities of organizations for the required operation, structure, staff and subordination, etc. The presentations of the Meeting were divided into two sessions: Spent fuel surveillance programmes and practice in Member States (4 papers); Experimental methods developed in support of spent fuel surveillance programmes (5 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  1. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, S. H.

    2004-02-01

    In this research, the remote handling technology is developed for the advanced spent fuel conditioning process which gives a possible solution to deal with the rapidly increasing spent fuels. In detail, a fuel rod slitting device is developed for the decladding of the spent fuel. A series of experiments has been performed to find out the optimal condition of the spent fuel voloxidation which converts the UO 2 pellet into U 3 O 8 powder. The design requirements of the ACP equipment for hot test is established by analysing the modular requirement, radiation hardening and thermal protection of the process equipment, etc. The prototype of the servo manipulator is developed. The manipulator has an excellent performance in terms of the payload to weight ratio that is 30 % higher than that of existing manipulators. To provide reliability and safety of the ACP, the 3 dimensional graphic simulator is developed. Using the simulator the remote handling operation is simulated and as a result, the optimal layout of ACP is obtained. The supervisory control system is designed to control and monitor the several different unit processes. Also the failure monitoring system is developed to detect the possible accidents of the reduction reactor

  2. Spent Fuel Storage Operation - Lessons Learned

    International Nuclear Information System (INIS)

    2013-12-01

    Experience gained in planning, constructing, licensing, operating, managing and modifying spent fuel storage facilities in some Member States now exceeds 50 years. Continual improvement is only achieved through post-project review and ongoing evaluation of operations and processes. This publication is aimed at collating and sharing lessons learned. Hopefully, the information provided will assist Member States that already have a developed storage capability and also those considering development of a spent nuclear fuel storage capability in making informed decisions when managing their spent nuclear fuel. This publication is expected to complement the ongoing Coordinated Research Project on Spent Fuel Performance Assessment and Research (SPAR-III); the scope of which prioritizes facility operational practices in lieu of fuel and structural components behaviour over extended durations. The origins of the current publication stem from a consultants meeting held on 10-12 December 2007 in Vienna, with three participants from the IAEA, Slovenia and USA, where an initial questionnaire on spent fuel storage was formulated (Annex I). The resultant questionnaire was circulated to participants of a technical meeting, Spent Fuel Storage Operations - Lessons Learned. The technical meeting was held in Vienna on 13-16 October 2008, and sixteen participants from ten countries attended. A consultants meeting took place on 18-20 May 2009 in Vienna, with five participants from the IAEA, Slovenia, UK and USA. The participants reviewed the completed questionnaires and produced an initial draft of this publication. A third consultants meeting took place on 9-11 March 2010, which six participants from Canada, Hungary, IAEA, Slovenia and the USA attended. The meeting formulated a second questionnaire (Annex II) as a mechanism for gaining further input for this publication. A final consultants meeting was arranged on 20-22 June 2011 in Vienna. Six participants from Hungary, IAEA, Japan

  3. Electrometallurgical treatment of oxide spent fuels

    International Nuclear Information System (INIS)

    Karell, E. J.

    1999-01-01

    The Department of Energy (DOE) inventory of spent nuclear fuel contains a wide variety of oxide fuel types that may be unsuitable for direct repository disposal in their current form. The molten-salt electrometallurgical treatment technique developed by Argonne National Laboratory (ANL) has the potential to simplify preparing and qualifying these fuels for disposal by converting them into three uniform product streams: uranium metal, a metal waste form, and a ceramic waste form. This paper describes the major steps in the electrometallurgical treatment process for oxide fuels and provides the results of recent experiments performed to develop and scale up the process

  4. Spent fuel treatment at ANL-West

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Levinskas, D.

    1994-01-01

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Cycle Facility at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will employ a pyrochemical process that also has applications for treating most of the fuel types within the Department of Energy complex. The treatment equipment is in its last stage of readiness, and operations will begin in the Fall of 1994

  5. Storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Machado, O.J.; Moore, J.T.; Cooney, B.F.

    1989-01-01

    This patent describes a rack for storing nuclear fuel assemblies. The rack including a base, an array of side-by-side fuel-storage locations, each location being a hollow body of rectangular transverse cross section formed of metallic sheet means which is readily bent, each body having a volume therein dimensioned to receive a fuel assembly. The bodies being mounted on the base with each body secured to bodies adjacent each body along welded joints, each joint joining directly the respective contiguous corners of each body and of bodies adjacent to each body and being formed by a series of separate welds spaced longitudinally between the tops and bottoms of the secured bodies along each joint. The spacings of the separate welds being such that the response of the rack when it is subjected to the anticipated seismic acceleration of the rack, characteristic of the geographical regions where the rack is installed, is minimized

  6. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  7. Spent nuclear fuel shipping basket

    International Nuclear Information System (INIS)

    Wells, A.H.

    1990-01-01

    This patent describes a basket for a cask for transporting nuclear fuel elements. It comprises: sleeve members, each of the sleeve members having interior cross-section dimensions for receiving a nuclear fuel assembly such that the assembly is restrained from lateral movement within the sleeve member, apertured disk members, means for axially aligning the apertures in the disk members, and means for maintaining the disk members in fixed spaced relationship to form a disk assembly, comprising an array of disks, the aligned apertures of the disks being adapted to receive the sleeve members and maintain them in fixed spaced relationship

  8. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    International Nuclear Information System (INIS)

    Herrmann, S.D.; Li, S.X.

    2010-01-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl - 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  9. BR-100 spent fuel shipping cask development

    International Nuclear Information System (INIS)

    McGuinn, E.J.; Childress, P.C.

    1990-01-01

    Continued public acceptance of commercial nuclear power is contingent to a large degree on the US Department of Energy (DOE) establishing an integrated waste management system for spent nuclear fuel. As part of the from-reactor transportation segment of this system, the B ampersand W Fuel Company (BWFC) is under contract to the DOE to develop a spent-fuel cask that is compatible with both rail and barge modes of transportation. Innovative design approaches were the keys to achieving a cask design that maximizes payload capacity and cask performance. The result is the BR-100, a 100-ton rail/barge cask with a capacity of 21 PWR or 52 BWR ten-year cooled, intact fuel assemblies. 3 figs

  10. Robotic cleaning of a spent fuel pool

    International Nuclear Information System (INIS)

    Roman, H.T.; Marian, F.A.; Silverman, E.B.; Barkley, V.P.

    1987-01-01

    Spent fuel pools at nuclear power plants are not cleaned routinely, other than by purifying the water that they contain. Yet, debris can collect on the bottom of a pool and should be removed prior to fuel transfer. At Public Service Electric and Gas Company's Hope Creek Nuclear Power Plant, a submersible mobile robot - ARD Corporation's SCAVENGER - was used to clean the bottom of the spent fuel pool prior to initial fuel loading. The robotic device was operated remotely (as opposed to autonomously) with a simple forward/reverse control, and it cleaned 70-80% of the pool bottom. This paper reports that a simple cost-benefit analysis shows that the robotic device would be less expensive, on a per mission basis, than other cleaning alternatives, especially if it were used for other similar cleaning operations throughout the plant

  11. Spent nuclear fuel project product specification

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1998-01-01

    Product specifications are limits and controls established for each significant parameter that potentially affects safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for transport to dry storage. The product specifications in this document cover the spent fuel packaged in MultiCanister Overpacks (MCOs) to be transported throughout the SNF Project. The SNF includes N Reactor fuel and single-pass reactor fuel. The FRS removes the SNF from the storage canisters, cleans it, and places it into baskets. The MCO loading system places the baskets into MCO/Cask assembly packages. These packages are then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the MCO cask packages are transferred to the Canister Storage Building (CSB), where the MCOs are removed from the casks, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The key criteria necessary to achieve these goals are documented in this specification

  12. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Gal, I.

    1964-12-01

    This volume contains the following reports: Experimental facility for testing and development of pulsed columns and auxiliary devices; Chemical-technology study of the modified 'Purex' process; Chemical and radiometric control analyses; Chromatographic separation of rare earth elements on paper treated by di-n butylphosphate; Preliminary study of some organic nitrogen extracts significant in fuel reprocessing

  13. Spent nuclear fuel project integrated schedule plan

    International Nuclear Information System (INIS)

    Squires, K.G.

    1995-01-01

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel

  14. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  15. Development of advanced spent fuel management process. System analysis of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, S.G.; Kang, D.S.; Seo, C.S.; Lee, H.H.; Shin, Y.J.; Park, S.W.

    1999-03-01

    The system analysis of an advanced spent fuel management process to establish a non-proliferation model for the long-term spent fuel management is performed by comparing the several dry processes, such as a salt transport process, a lithium process, the IFR process developed in America, and DDP developed in Russia. In our system analysis, the non-proliferation concept is focused on the separation factor between uranium and plutonium and decontamination factors of products in each process, and the non-proliferation model for the long-term spent fuel management has finally been introduced. (Author). 29 refs., 17 tabs., 12 figs

  16. Safety-related investigations on power distribution in MOX fuel elements in LWR cores

    International Nuclear Information System (INIS)

    Kramer, E.; Langenbuch, S.

    1991-01-01

    For the concept of thermal recycling various fuel assembly designs have been developped during the last years. An overview is given describing the present status of MOX-fuel assembly design for PWR and BWR. The local power distribution within the MOX-fuel assembly and influences between neighbouring MOX- and Uranium fuel assemblies have been analyzed by own calculations. These investigations are limited to specific aspects of the spatial power distribution, which are related to the use of MOX-fuel assemblies within the reactor core of LWR. (orig.) [de

  17. Performance of artificially defected LWR fuel rods in an unlimited air dry storage atmosphere

    International Nuclear Information System (INIS)

    Einziger, R.E.; Knecht, R.L.; Cantley, D.A.; Cook, J.A.

    1983-09-01

    Thus far the tests are inconclusive as to whether breached LWR fuel can be stored at 230 0 C for long periods of time in air without fuel oxidation and dispersion. There is every indication, as expected, that there is no oxidation problem in an inert atmosphere. Only one of four defects exposed to unlimited air gave any indication of fuel oxidation. It has been suggested that this might be an incubation effect and continued operation would result in oxidation occurring at all four defects. As yet the destructive examination of the BWR rod has not been completed, so it is not possible to determine if cladding splitting was due to an anomoly in this test rod or something that can be expected in LWR rods in general. Thus far there is no indication of respirable particle dispersal even if fuel oxidation does occur

  18. Safeguardability of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. K. (Tien K.); Lee, S. Y. (Sang Yoon); Burr, Tom; Russo, P. A. (Phyllis A.); Menlove, Howard O.; Kim, H. D.; Ko, W. I. (Won Il); Park, S. W.; Park, H. S.

    2004-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology since 1977 for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. By using of this technology, a significant reduction of the volume and heat load of spent fuel is expected, which would lighten the burden of final disposal in terms of disposal size, safety and economics. In the framework of collaboration agreement to develop the safeguards system for the ACP, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and the KAERI since 2002. In this study, the safeguardability of the ACP technology was examined for the pilot-scale facility. The process and material flows were conceptually designed, and the uncertainties in material accounting were estimated with international target values.

  19. Spent fuel and waste inventories and projections

    International Nuclear Information System (INIS)

    Carter, W.L.; Finney, B.C.; Alexander, C.W.; Blomeke, J.O.; McNair, J.M.

    1980-08-01

    Current inventories of commercial spent fuels and both commercial and US Department of Energy radioactive wastes were compiled, based on judgments of the most reliable information available from Government sources and the open literature. Future waste generation rates and quantities to be accumulated over the remainder of this century are also presented, based on a present projection of US commercial nuclear power growth and expected defense-related activities. Spent fuel projections are based on the current DOE/EIA estimate of nuclear growth, which projects 180 GW(e) in the year 2000. It is recognized that the calculated spent fuel discharges are probably high in view of recent reactor cancellations; hence adjustments will be made in future updates of this report. Wastes considered, on a chapter-by-chapter basis, are: spent fuel, high-level wastes, transuranic wastes, low-level wastes, mill tailings (active sites), and remedial action wastes. The latter category includes mill tailings (inactive sites), surplus facilities, formerly utilized sites, and the Grand Junction Project. For each category, waste volume inventories and projections are given through the year 2000. The land usage requirements are given for storage/disposal of low-level and transuranic wastes, and for present inventories of mill tailings

  20. Regional spent fuel storage facility (RSFSF)

    International Nuclear Information System (INIS)

    Dyck, H.P.

    1999-01-01

    The paper gives an overview of the meetings held on the technology and safety aspects of regional spent fuel storage facilities. The questions of technique, economy and key public and political issues will be covered as well as the aspects to be considered for implementation of a regional facility. (author)

  1. Total quality in spent fuel pool reracking

    International Nuclear Information System (INIS)

    Cranston, J.S.; Bradbury, R.B.; Cacciapouti, R.J.

    1993-01-01

    The nuclear utility environment is one of strict cost control under prescriptive regulations and increasing public scrutiny. This paper presents the results of A Total Quality approach, by a dedicated team, that addresses the need for increased on-site spent fuel storage in this environment. Innovations to spent fuel pool reracking, driven by utilities' specific technical needs and shrinking budgets, have resulted in both product improvements and lower prices. A Total Quality approach to the entire turnkey project is taken, thereby creating synergism and process efficiency in each of the major phases of the project: design and analysis, licensing, fabrication, installation and disposal. Specific technical advances and the proven quality of the team members minimizes risk to the utility and its shareholders and provides a complete, cost effective service. Proper evaluation of spent fuel storage methods and vendors requires a full understanding of currently available customer driven initiatives that reduce cost while improving quality. In all phases of a spent fuel reracking project, from new rack design and analysis through old rack disposal, the integration of diverse experts, at all levels and throughout all phases of a reracking project, better serves utility needs. This Total Quality environment in conjunction with many technical improvements results in a higher quality product at a lower cost

  2. Spent-fuel-stabilizer screening studies

    International Nuclear Information System (INIS)

    Wynhoff, N.; Girault, S.E.; Fish, R.L.

    1980-11-01

    A broad range of potential stabilizer materials was identified and screened for packaging spent fuel assemblies for underground storage. The screening took into consideration the thermal gradient, stress, differential thermal expansion, nuclear criticality, radiation shielding, cost, and availability. Recommended stabilizer materials for further testing include silica, quartz, mullite, zircon, bentonite, graphite, gases, lead, Zn alloys, Cu alloys, etc

  3. Comparison of spent nuclear fuel management alternatives

    International Nuclear Information System (INIS)

    Beebe, C.L.; Caldwell, M.A.

    1996-01-01

    This paper reports the process an results of a trade study of spent nuclear fuel (SNF)management alternatives. The purpose of the trade study was to provide: (1) a summary of various SNF management alternatives, (2) an objective comparison of the various alternatives to facilitate the decision making process, and (3) documentation of trade study rational and the basis for decisions

  4. Operation of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide was prepared as part of the IAEA's programme on safety of spent fuel storage. This is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes key activities in the operation of spent fuel storage facilities. Section 3 lists the basic safety considerations for storage facility operation, the fundamental safety objectives being subcriticality, heat removal and radiation protection. Recommendations for organizing the management of a facility are contained in Section 4. Section 5 deals with aspects of training and qualification; Section 6 describes the phases of the commissioning of a spent fuel storage facility. Section 7 describes operational limits and conditions, while Section 8 deals with operating procedures and instructions. Section 9 deals with maintenance, testing, examination and inspection. Section 10 presents recommendations for radiation and environmental protection. Recommendations for the quality assurance (QA) system are presented in Section 11. Section 12 describes the aspects of safeguards and physical protection to be taken into account during operations; Section 13 gives guidance for decommissioning. 15 refs, 5 tabs

  5. Method for processing spent nuclear reactor fuel

    International Nuclear Information System (INIS)

    Levenson, M.; Zebroski, E.L.

    1981-01-01

    A method and apparatus are claimed for processing spent nuclear reactor fuel wherein plutonium is continuously contaminated with radioactive fission products and diluted with uranium. Plutonium of sufficient purity to fabricate nuclear weapons cannot be produced by the process or in the disclosed reprocessing plant. Diversion of plutonium is prevented by radiation hazards and ease of detection

  6. High density aseismic spent fuel storage racks

    International Nuclear Information System (INIS)

    Louvat, J.P.

    1985-05-01

    After the reasons of the development of high density aseismic spent fuel racks by FRAMATOME and LEMER, a description is presented, as also the codes, standards and regulations used to design this FRAMATOME storage rack. Tests have been carried out concerning criticality, irradiation of Cadminox, corrosion of the cell, and the seismic behaviour

  7. Spent nuclear fuel project product specification

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    1999-01-01

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project

  8. Past and future IAEA spent fuel management activities

    International Nuclear Information System (INIS)

    Grigoriev, A.

    1993-01-01

    The main objectives and strategies of the Agency's activities in the area of spent fuel management are to promote the exchange of information between Member States on technical, safety, environmental and economic aspects of spent fuel management technology, including storage, transport and treatment of spent fuel, and to provide assistance to Member States in the planning, implementation and operation of nuclear fuel cycle facilities. This paper give a list of the meetings held since the last issue of the Spent Fuel Management Newsletter

  9. NAC international dry spent fuel transfer technology

    International Nuclear Information System (INIS)

    Shelton, Thomas A.; Malone, James P.; Patterson, John R.

    1996-01-01

    Full text: For more than ten years NAC International (NAC) has designed, fabricated, tested and operated a variety of Dry Transfer Systems (DTS's) to transfer spent nuclear fuel from facilities with limited crane capabilities, limited accesses or limiting features to IAEA and USNRC licensed spent fuel transport casks or vice-versa. These DTS's have been operated in diverse environments in the United States and throughout the world and have proven to be a significant enhancement in transferring fuel between spent fuel pools, dry storage and hot cell facilities and spent fuel transport casks. Over the years, NAC has successfully and safely transferred more than two thousand fuel assemblies in DTS's. Our latest generation DTS incorporates years of extensive design and operating experience. It consists of a transfer cask with integrated fuel canister grapple, fuel canisters, and facility and cask adapters as well as a complement of related tools and equipment. The transfer cask is used to move irradiated HEU and LEU MTR fuel onsite in those instances where direct loading or unloading of the shipping cask is not possible due to dimensional, weight or other restrictions. The transfer cask is used to move canisters of fuel from the fuel storage location to the shipping cask. Adapters are employed to ensure proper interfacing of the transfer cask with fuel storage locations and shipping casks (NAC-LWT and NLI-1/2). Our existing fuel storage location adapter is designed for use with a storage pool; however, site or equipment specific adapters can easily be developed to allow interfacing with virtually any storage facility. Prior to movement of the first fuel canister in the transfer cask, the shipping cask is prepared for loading by proper set up of the base plate, shipping cask and shipping cask adapter. The fuel canisters are loaded with fuel and then retracted into the transfer cask via the fuel storage location adapter. The transfer cask is then moved to the shipping

  10. The psychosocial consequences of spent fuel disposal

    International Nuclear Information System (INIS)

    Paavola, J.; Eraenen, L.

    1999-03-01

    In this report the potential psychosocial consequences of spent fuel disposal to inhabitants of a community are assessed on the basis of earlier research. In studying the situation, different interpretations and meanings given to nuclear power are considered. First, spent fuel disposal is studied as fear-arousing and consequently stressful situation. Psychosomatic effects of stress and coping strategies used by an individual are presented. Stress as a collective phenomenon and coping mechanisms available for a community are also assessed. Stress reactions caused by natural disasters and technological disasters are compared. Consequences of nuclear power plant accidents are reviewed, e.g. research done on the accident at Three Mile Island power plant. Reasons for the disorganising effect on a community caused by a technological disaster are compared to the altruistic community often seen after natural disasters. The potential reactions that a spent fuel disposal plant can arouse in inhabitants are evaluated. Both short-term and long-term reactions are evaluated as well as reactions under normal functioning, after an incident and as a consequence of an accident. Finally an evaluation of how the decision-making system and citizens' opportunity to influence the decision-making affect the experience of threat is expressed. As a conclusion we see that spent fuel disposal can arouse fear and stress in people. However, the level of the stress is probably low. The stress is at strongest at the time of the starting of the spent fuel disposal plant. With time people get used to the presence of the plant and the threat experienced gets smaller. (orig.)

  11. US spent fuel research and experience

    Energy Technology Data Exchange (ETDEWEB)

    Machiels, A [EPRI and USDOE (United States)

    2012-07-01

    The structural performance of high-burnup spent fuel cladding during dry storage and transportation has been the subject of research and evaluation at EPRI for several years. The major issues addressed in this research program have included the following: Characterization and development of predictive models for damage mechanisms perceived to be potentially active during dry storage; Modeling and analysis of deformation processes during long-term dry storage; Development of cladding failure models and failure criteria, considering cladding material and physical conditions during dry storage and transportation; Failure analysis, considering end-of-dry-storage conditions, of spent fuel systems subjected to normal and accident conditions of transport, prescribed in Part 71 of Title 10 of the Code of Federal Regulations (10CFR71) While issues related to dry storage have largely been resolved, transportation issues have not, at least for spent fuel with discharge burnups greater than 45 GWd/MTU. A research program was launched in late 2002 following two NRC-industry meetings held on September 6, 2002 and October 23, 2002. The aim of the research program was to assess the performance of high-burnup spent fuel cladding under normal and accident conditions of transportation, as prescribed by 10CFR71, considering the physical characteristics and mechanical properties of cladding at the end of dry storage. The objective is to present a synthesis of the information that collectively forms a part of a technical basis intended to facilitate resolution of regulatory issues associated with the transportation of spent nuclear fuel characterized by discharge burnups greater than 45 GWd/MTU.

  12. Safety aspects of dry spent fuel storage and spent fuel management

    International Nuclear Information System (INIS)

    Botsch, W.; Smalian, S.; Hinterding, P.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    The storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Safety aspects like safe enclosure of radioactive materials, safe removal of decay heat, nuclear criticality safety and avoidance of unnecessary radiation exposure must be achieved throughout the storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. In Germany dual purpose casks for SF or HLW are used for safe transportation and interim storage. TUV and BAM, who work as independent experts for the competent authorities, present the storage licensing process including sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields (authors)

  13. Spent fuel assembly source term parameters

    International Nuclear Information System (INIS)

    Barrett, P.R.; Foadian, H.; Rashid, Y.R.; Seager, K.D.; Gianoulakis, S.E.

    1993-01-01

    Containment of cask contents by a transport cask is a function of the cask body, one or more closure lids, and various bolting hardware, and seals associated with the cavity closure and other containment penetrations. In addition, characteristics of cask contents that impede the ability of radionuclides to move from an origin to the external environment also provide containment. In essence, multiple release barriers exist in series in transport casks, and the magnitude of the releasable activity in the cask is considerably lower than the total activity of its contents. A source term approach accounts for the magnitude of the releasable activity available in the cask by assessing the degree of barrier resistance to release provided by material characteristics and inherent barriers that impede the release of radioactive contents. Standardized methodologies for defining the spent-fuel transport packages with specified regulations have recently been developed. An essential part of applying the source term methodology involves characterizing the response of the spent fuel under regulatory conditions of transport. Thermal and structural models of the cask and fuel are analyzed and used to predict fuel rod failure probabilities. Input to these analyses and failure evaluations cover a wide range of geometrical and material properties. An important issue in the development of these models is the sensitivity of the radioactive source term generated during transport to individual parameters such as temperature and fluence level. This paper provides a summary of sensitivity analyses concentrating on the structural response and failure predictions of the spent fuel assemblies

  14. Reracking to increase spent fuel storage capacity

    International Nuclear Information System (INIS)

    1980-05-01

    Many utilities have already increased their spent fuel pool storage capacity by replacing aluminum racks having storage densities as low as 0.2 MTU/ft 2 with stainless steel racks which can more than double storage densities. Use of boron-stainless steel racks or thin stainless steel cans containing reassembled fuel rods allows even higher fuel storage densities (up to approximately 1.25 MTU/ft 2 ). This report evaluates the economics of smaller storage gains that occur if pools, already converted to high density storage, are further reracked

  15. Subsurface storage of commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    Richards, L.M.; Szulinski, M.J.

    1979-01-01

    The Atlantic Richfield Company has developed the concept of storing spent fuel in dry caissons. Cooling is passive; safety and safeguard features appear promising. The capacity of a caisson to dissipate heat depends on site-specific soil characteristics and on the diameter of the caisson. It is estimated that approx. 2 kW can be dissipated in the length of one fuel element. Fuel elements can be stacked with little effect on temperature. A spacing of approx. 7.5 m (25 ft) between caissons appears rasonable. Business planning indicates a cost of approx. 0.2 mill/kWh for a 15-yr storage period. 12 figures, 4 tables

  16. Historical overview of domestic spent fuel shipments

    International Nuclear Information System (INIS)

    Pope, R.B.; Wankerl, M.W.; Armstrong, S.; Hamberger, C.; Schmid, S.

    1991-01-01

    The purpose of this paper is to provide available historical data on most commercial and research reactor spent fuel shipments that have been completed in the United States between 1964 and 1989. This information includes data on the sources of spent fuel that has been shipped, the types of shipping casks used, the number of fuel assemblies that have been shipped, and the number of shipments that have been made. The data are updated periodically to keep abreast of changes. Information on shipments is provided for planning purposes; to support program decisions of the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM); and to inform interested members of the public, federal, state, and local government, Indian tribes, and the transportation community. 5 refs., 7 figs., 2 tabs

  17. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Shin, Y. J.; Do, J. B.; You, G. S.; Seo, J. S.; Lee, H. G.

    1998-03-01

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  18. Corrosion surveillance in spent fuel storage pools

    International Nuclear Information System (INIS)

    Howell, J.P.

    1996-01-01

    In mid-1991, corrosion of aluminum-clad spent nuclear fuel was observed in the light-water filled basins at the Savannah River site. A corrosion surveillance program was initiated in the P, K, L-Reactor basins and in the Receiving Basin for Offsite Fuels (RBOF). This program verified the aggressive nature of the pitting corrosion and provided recommendations for changes in basin operations to permit extended longer term interim storage. The changes were implemented during 1994--1996 and have resulted in significantly improved basin water quality with conductivity in the 1--3 microS/cm range. Under these improved conditions, no new pitting has been observed over the last three years. This paper describes the corrosion surveillance program at SRS and what has been learned about the corrosion of aluminum-clad in spent fuel storage pools

  19. Impact analysis of spent fuel jacket assemblies

    International Nuclear Information System (INIS)

    Aramayo, G.A.

    1994-01-01

    As part of the analyses performed in support of the reracking of the High Flux Isotope Reactor pool, it became necessary to prove the structural integrity of the spent fuel jacket assemblies subjected to gravity drop that result from postulated accidents associated with the handling of these assemblies while submerged in the pool. The spent fuel jacket assemblies are an integral part of the reracking project, and serve to house fuel assemblies. The structure integrity of the jacket assemblies from loads that result from impact from a height of 10 feet onto specified targets has been performed analytically using the computer program LS-DYNA3D. Nine attitudes of the assembly at the time of impact have been considered. Results of the analyses show that there is no failure of the assemblies as a result of the impact scenarios considered

  20. The Spent Fuel Management in Finland and Modifications of Spent Fuel Storages

    International Nuclear Information System (INIS)

    Maaranen, Paeivi

    2014-01-01

    The objective of this presentation is to share the Finnish regulator's (STUK) experiences on regulatory oversight of the enlargement of a spent fuel interim storage. An overview of the current situation of spent fuel management in Finland will also be given. In addition, the planned modifications and requirements set for spent fuel storages due to the Fukushima accident are discussed. In Finland, there are four operating reactors, one under construction and two reactors that have a Council of State's Decision-in-Principle to proceed with the planning and licensing of a new reactor. In Olkiluoto, the two operating ASEA-Atom BWR units and the Areva EPR under construction have a shared interim storage for the spent fuel. The storage was designed and constructed in 1980's. The option for enlarging the storage was foreseen in the original design. Considering three operating units to produce their spent fuel and the final disposal to begin in 2022, extra space in the spent fuel storage is estimated to be needed in around 2014. The operator decided to double the number of the spent fuel pools of the storage and the construction began in 2010. The capacity of the enlarged spent fuel storage is considered to be sufficient for the three Olkiluoto units. The enlargement of the interim storage was included in Olkiluoto NPP 1 and 2 operating license. The licensing of the enlargement was conducted as a major plant modification. The operator needed the approval from STUK to conduct the enlargement. Prior to the construction of this modification, the operator was required to submit the similar documentation as needed for applying for the construction license of a nuclear facility. When conducting changes in an old nuclear facility, the new safety requirements have to be followed. The major challenge in the designing the enlargement of the spent fuel storage was to modify it to withstand a large airplane crash. The operator chose to cover the pools with protecting slabs and also to

  1. Studies on the fission products behavior during dissolution process of BWR spent fuel

    International Nuclear Information System (INIS)

    Sato, K.; Nakai, E.; Kobayashi, Y.

    1987-01-01

    In order to obtain basic data on fission products behavior in connection with the head end process of fuel reprocessing, especially to obtain better understanding on undissolved residues, small scale dissolution studies were performed by using BWR spent fuel rods which were irradiated as monitoring fuel rods under the monitoring program for LWR fuel assembly performance entitled PROVING TEST ON RELIABILITY OF FUEL ASSEMBLY . The Zircaloy-2 claddings and the fuel pellets were subjected individually to the following studies on 1) release of fission products during dissolution process, 2) characterization of undissolved residues, and 3) analysis of the claddings. This paper presents comprehensive descriptions of the fission products behavior during dissolution process, based on detailed and through PIE conducted by JNFS under the sponsorship of MITI (Ministry of International Trade and Industry)

  2. Transport experience of NH-25 spent fuel shipping cask for post irradiation examination

    International Nuclear Information System (INIS)

    Mori, Ryuji

    1982-01-01

    Since the Japan Atomic Energy Research Institute and Nippon Nuclear Fuel Development Co. hot laboratories are located far off from the port which can handle spent fuel shipping casks, it is necessary to use a trailer-mounted cask which can be transported by public roads, bridges and intersections for the transportation of spent fuel specimens to these hot laboratories. Model NH-25 shipping cask was designed, manufactured and oualification tested to meet Japanese regulations and was officially registered as a BM type cask. The NH-25 cask accomodates two BWR fuel assemblies, one PWR assembly or one ATR fuel assembly using interchangeable inner containers. The cask weight is 29.2 t. The cask has three concentric stainless steel shells. Gamma shielding is lead cast between the inner shell and the intermediate shell. Neutro n shielding consists of ethylene-glycol-aqueous solution layer formed between the intermediate shell and the outer shell. The NH-25 cask now has been in operation for 2.5 yr. It was used for the transportation of spent fuel assemblies from six LWR power plants to the port on shipping cask carrier ''Hinouramaru'' on the sea, as well as from the port to the hot laboratory on a trailer. The capability of safe handling and transporting of spent fuel assemblies has been well demonstrated. (author)

  3. Past experience and future needs for the use of burnup credit in LWR fuel storage

    International Nuclear Information System (INIS)

    Boyd, W.A.; Wrights, G.N.

    1987-01-01

    To achieve improved fuel economics and reduce the amount of fuel discharged annually, utilities are engaging in fuel management strategies that will achieve higher discharge burnups for their fuel assemblies. Although burnup credit methodologies have been developed and spent-fuel racks have been licensed, burnup credit fuel storage racks are not the answer for all utilities. Off-site and out-of-pool spent-fuel storage may be more appropriate. This is leading to the development of dry spent-fuel storage and shipping casks. Cask designs with spent-fuel storage capability between 20 and 32 assemblies are being developed by several vendors. The US Dept. of Energy is also funding work by VEPCO. Westinghouse is currently licensing its dry storage cask, developing a shipping cask for the domestic market, and is involved in a joint venture to develop a cask for the international market. Although methods of taking credit for fuel burnup in spent-fuel storage racks have been developed and licensed, use of these methods on dry spent-fuel storage and shipping casks can lead to new issues. These issues arise because the excess reactivity margin that is inherent in a burnup credit spent-fuel storage rack criticality analysis will not be available in a dry cask analysis

  4. Present status of JMTR spent fuel shipment

    International Nuclear Information System (INIS)

    Miyazawa, Masataka; Watanabe, Masao; Yokokawa, Makoto; Sato, Hiroshi; Ito, Haruhiko

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been consistently making the enrichment reduction of reactor fuels in cooperation with RERTR Program and FRR SNF Acceptance Program both conducted along with the U.S. Nuclear Non-Proliferation Policy and JMTR, 50 MW test reactor in Oarai Research Establishment, has achieved core conversion, from its initial 93% enriched UAl alloy to 45% enriched uranium-aluminide fuel, and then to the current 19.8% enriched uranium-silicide fuel. In order to return all of JMTR spent fuels, to be discharged from the reactor by May 12, 2006, to the U.S.A. by May 12, 2009, JAERI is planning the transportation schedule based on one shipment per year. The sixth shipment of spent fuels to U.S. was carried out as scheduled this year, where the total number of fuels shipped amounts to 651 elements. All of the UAl alloy elements have so far been shipped and now shipments of 45% enriched uranium-aluminide type fuels are in progress. Thus far the JMTR SFs have been transported on schedule. From 2003 onward are scheduled more then 850 elements to be shipped. In this paper, we describe our activities on the transportation in general and the schedule for the SFs shipments. (author)

  5. Nuclear fuel transport and particularly spent fuel transport

    International Nuclear Information System (INIS)

    Lenail, B.

    1986-01-01

    Nuclear material transport is an essential activity for COGEMA linking the different steps of the fuel cycle transport systems have to be safe and reliable. Spent fuel transport is more particularly examined in this paper because the development of reprocessing plant. Industrial, techmical and economical aspects are reviewed [fr

  6. Centralized disassembly and packaging of spent fuel in the DOE spent fuel management system

    International Nuclear Information System (INIS)

    Johnson, E.R.

    1986-01-01

    In October 1984, E.R. Johnson Associates, Inc. (JAI) initiated a study of the prospective use of a centralized facility for the disassembly and packaging of spent fuel to support the various elements of the US Dept. of Energy (DOE) spent fuel management system, including facilities for monitored retrievable storage (MRS) and repositories. It was DOE's original plan to receive spent fuel at each repository where it would be disassembled and packaged (overpacked) for disposal purposes. Subsequently, DOE considered the prospective use of MRS of spent fuel as an option for providing safe and reliable management of spent fuel. This study was designed to consider possible advantages of the use of centralized facilities for disassembly and packaging of spent fuel at whose location storage facilities could be added as required. The study was divided into three principal technical tasks that covered: (a) development of requirements and criteria for the central disassembly and packaging facility and associated systems. (2) Development of conceptual designs for the central disassembly and packaging facility and associated systems. (3) Estimation of capital and operating costs involved for all system facilities and determination of life cycle costs for various scenarios of operation - for comparison with the reference system

  7. Spent oxide fuel regeneration by crystallization in molybdate melts

    International Nuclear Information System (INIS)

    Ustinov, O.A.; Sukhanov, L.P.; Yakunin, S.A.

    2006-01-01

    Paper describes a procedure to regenerate spent oxide fuel by its crystallization in molybdate melts. Paper presents the process procedures to regenerate spent fuel of both fast and thermal neutron reactors. One analyzes the advantages of the elaborated procedure [ru

  8. Management and storage of spent fuel from CEA research reactors

    International Nuclear Information System (INIS)

    Merchie, F.

    1996-01-01

    CEA research reactors and their interim spent fuel storage facilities are described. Long-term solutions for spent fuel storage problems, involving wet storage at PEGASE or dry storage at CASCAD, are outlined in some detail. (author)

  9. Treatment of spent fuels from research reactors and reactor development programs in Germany

    International Nuclear Information System (INIS)

    Closs, K.D.

    1999-01-01

    Quite a great number of different types of spent fuel from research reactors and development programs exists in Germany. The general policy is to send back to the USA as long as possible fuel from MTRs and TRIGAs of USA origin. An option is reprocessing in Great Britain or France. This option is pursued as long as reprocessing and reuse of the recovered material is economically justifiable. For those fuels which cannot be returned to the USA or which will not be reprocessed, a domestic back-up solution of spent fuel management has been developed in Germany, compatible with the management of spent fuel from power reactors. It consists in dry storage in special casks and, later on, direct disposal. Preliminary results from experimental R and D investigations with research reactor fuel and experience from LWR fuel lead to the conclusion that the direct disposal option even for research reactor fuel or exotic fuel does not impose major technical difficulties for the German waste management and disposal concept. (author)

  10. Prospects of spent management in Spain

    International Nuclear Information System (INIS)

    Melches, C.; Ramirez, E.; Selgas, F.; Cabanilles, P.A.; Lopez Perez, B.; Uriarte, A.

    1978-01-01

    The purpose of this paper is to outline the forecast on spent fuel management in Spain, taking into account the international developments produced during the last years and specially on LWR fuels. This forecast is based on the following actions: increase of the storage capacity in the reactors: construction of an independent spent fuel storage installation (ISFSI) and a fuel reprocessing pilot plant. (author)

  11. New developments in dry spent fuel storage

    International Nuclear Information System (INIS)

    Bonnet, C.; Chevalier, Ph.

    2001-01-01

    As shown in various new examples, HABOG facility (Netherlands), CERNAVODA (Candu - Romania), KOZLODUY (WWER - Bulgaria), CHERNOBYL ( RMBK - Ukraine), MAYAK (Spent Fuel from submarine and Icebreakers - Russia), recent studies allow to confirm the flexibility and performances of the CASCAD system proposed by SGN, both in safety and operability, for the dry storage of main kinds of spent fuel. The main features are: A multiple containment barrier system: as required by international regulation, 2 independent barriers are provided (tight canister and storage pit); Passive cooling, while the Fuel Assemblies are stored in an inert atmosphere and under conditions of temperature preventing from degradation of rod cladding; Sub-criticality controlled by adequate arrangements in any conditions; Safe facility meeting ICPR 60 Requirements as well as all applicable regulations (including severe weather conditions and earthquake); Safe handling operations; Retrievability of the spent fuel either during storage period or at the end of planned storage period (100 years); Future Decommissioning of the facility facilitated through design optimisation; Construction and operating cost-effectiveness. (author)

  12. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Shin, Young Joon; Cho, S. H.; You, G. S.

    2001-04-01

    Currently, the economic advantage of any known approach to the back end fuel cycle of a nuclear power reactor has not been well established. Thus the long term storage of the spent fuel in a safe manner is one of the important issues to be resolved in countries where the nuclear power has a relatively heavy weight in power production of that country. At KAERI, as a solution to this particular issue midterm storage of the spent fuel, an alternative approach has been developed. This approach includes the decladding and pulverization process of the spent PWR fuel rod, the reducing process from the uranium oxide to a metallic uranium powder using Li metal in a LiCl salt, the continuous casting process of the reduced metal, and the recovery process of Li from mixed salts by the electrolysis. We conducted the laboratory scale tests of each processes for the technical feasibility and determination for the operational conditions for this approach. Also, we performed the theoretical safety analysis and conducted integral tests for the equipment integration through the Mock-up facility with non-radioactive samples. There were no major issues in the approach, however, material incompatibility of the alkaline metal and oxide in a salt at a high temperature and the reactor that contains the salt became a show stopper of the process. Also the difficulty of the clear separation of the salt with metals reduced from the oxide became a major issue

  13. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. S.; Yoon, J. S.; Hong, H. D. (and others)

    2007-02-15

    In this research, the remote handling technology was developed for the ACP application. The ACP gives a possible solution to reduce the rapidly cumulative amount of spent fuels generated from the nuclear power plants in Korea. The remote technologies developed in this work are a slitting device, a voloxidizer, a modified telescopic servo manipulator and a digital mock-up. A slitting device was developed to declad the spent fuel rod-cuts and collect the spent fuel UO{sub 2} pellets. A voloxidizer was developed to convert the spent fuel UO{sub 2} pellets obtained from the slitting process in to U{sub 3}O{sub 8} powder. Experiments were performed to test the capabilities and remote operation of the developed slitting device and voloxidizer by using simulated rod-cuts and fuel in the ACP hot cell. A telescopic servo manipulator was redesigned and manufactured improving the structure of the prototype. This servo manipulator was installed in the ACP hot cell, and the target module for maintenance of the process equipment was selected. The optimal procedures for remote operation were made through the maintenance tests by using the servo manipulator. The ACP digital mockup in a virtual environment was established to secure a reliability and safety of remote operation and maintenance. The simulation for the remote operation and maintenance was implemented and the operability was analyzed. A digital mockup about the preliminary conceptual design of an enginnering-scale ACP was established, and an analysis about a scale of facility and remote handling was accomplished. The real-time diagnostic technique was developed to detect the possible fault accidents of the slitting device. An assessment of radiation effect for various sensors was also conducted in the radiation environment.

  14. Development of on-site spent fuel transfer system designs

    International Nuclear Information System (INIS)

    Lambert, R.W.; Pennington, C.W.; Guerra, G.V.

    1993-01-01

    The Electric Power Research Institute (EPRI) of the United States has sponsored development of conceptual designs for accomplishing spent fuel transfer from spent fuel pools to casks and from one cask to another. Under an EPRI research contract, transnuclear has developed several concepts for spent fuel transfer systems. (J.P.N.)

  15. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  16. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    Energy Technology Data Exchange (ETDEWEB)

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  17. Remote technologies for handling spent fuel

    International Nuclear Information System (INIS)

    Ramakumar, M.S.

    1999-01-01

    The nuclear programme in India involves building and operating power and research reactors, production and use of isotopes, fabrication of reactor fuel, reprocessing of irradiated fuel, recovery of plutonium and uranium-233, fabrication of fuel containing plutonium-239, uranium-233, post-irradiation examination of fuel and hardware and handling solid and liquid radioactive wastes. Fuel that could be termed 'spent' in thermal reactors is a source for second generation fuel (plutonium and uranium-233). Therefore, it is only logical to extend remote techniques beyond handling fuel from thermal reactors to fuel from fast reactors, post-irradiation examination etc. Fabrication of fuel containing plutonium and uranium-233 poses challenges in view of restriction on human exposure to radiation. Hence, automation will serve as a step towards remotisation. Automated systems, both rigid and flexible (using robots) need to be developed and implemented. Accounting of fissile material handled by robots in local area networks with appropriate access codes will be possible. While dealing with all these activities, it is essential to pay attention to maintenance and repair of the facilities. Remote techniques are essential here. There are a number of commonalities in these requirements and so development of modularized subsystems, and integration of different configurations should receive attention. On a long-term basis, activities like decontamination, decommissioning of facilities and handling of waste generated have to be addressed. While robotized remote systems have to be designed for existing facilities, future designs of facilities should take into account total operation with robotic remote systems. (author)

  18. Labeling of the spent fuel waste package

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Chagari, A.K.

    1992-01-01

    This paper reports that the containers used to store spent fuel in an underground repository must meet federal guidelines that call for unique labels that identify the contents and processing history. Existing standards in the nuclear power industry and relevant ASME/ANSI codes have been reviewed for possible application to the spent-fuel container labeling. An Array of labeling techniques were found that include recommendations for: fonts, word spacing, color combinations, label materials and mounting methods, placement, and content. The use of bar code, optical character recognition, and RF labels were also studied to meet the requirement that the container labels be consistent with the methods used to maintain the repository records

  19. Cost analysis methodology of spent fuel storage

    International Nuclear Information System (INIS)

    1994-01-01

    The report deals with the cost analysis of interim spent fuel storage; however, it is not intended either to give a detailed cost analysis or to compare the costs of the different options. This report provides a methodology for calculating the costs of different options for interim storage of the spent fuel produced in the reactor cores. Different technical features and storage options (dry and wet, away from reactor and at reactor) are considered and the factors affecting all options defined. The major cost categories are analysed. Then the net present value of each option is calculated and the levelized cost determined. Finally, a sensitivity analysis is conducted taking into account the uncertainty in the different cost estimates. Examples of current storage practices in some countries are included in the Appendices, with description of the most relevant technical and economic aspects. 16 figs, 14 tabs

  20. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  1. Spent-fuel transport: available as needed

    International Nuclear Information System (INIS)

    Macklin, L.

    1976-01-01

    As a result of the general uncertainty as to when commercial reprocessing will actually take place in the United States (U.S.) and the long lead times now required before bringing a spent-fuel cask system in operation, it appears that serious problems can arise by 1979-1980 in cask capacity availability. Compounding the uncertainty with respect to cask capacity availability is the position taken by some of the U.S. railroad systems and some state and local governmental agencies in imposing restraints in the movement of spent fuel. By utility companies taking risk in committing to casks in advance of the actual requirement dates and by cask suppliers assuming the risks of licensing, costs, and delivery schedules, this potential bottleneck could be minimized

  2. Research reactor spent fuel management in Argentina

    International Nuclear Information System (INIS)

    Audero, M.A.; Bevilacqua, A.M.; Mehlich, A.M.; Novara, O.

    2002-01-01

    The research reactor spent fuel (RRSF) management strategy will be presented as well as the interim storage experience. Currently, low-enriched uranium RRSF is in wet interim storage either at reactor site or away from reactor site in a centralized storage facility. High-enriched uranium RRSF from the centralized storage facility has been sent to the USA in the framework of the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The strategy for the management of the RRSF could implement the encapsulation for interim dry storage. As an alternative to encapsulation for dry storage some conditioning processes are being studied which include decladding, isotopic dilution, oxidation and immobilization. The immobilized material will be suitable for final disposal. (author)

  3. Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project

    International Nuclear Information System (INIS)

    Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

    1998-01-01

    This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle

  4. Spent fuel transportation regulatory and institutional issues

    International Nuclear Information System (INIS)

    Lippek, H.E.

    1978-01-01

    The problems that could result from state and local governments and other groups with relation to regulations concerning the transportation of spent nuclear fuels are discussed. The powers of the individual states as spelled out in the Clean Air Act Amendments of 1977 are set forth in some detail. The possibility of transportation employees gaining a position to demand and receive more stringent protections from hazards of radiation is pointed out

  5. Towards a Swedish repository for spent fuel

    International Nuclear Information System (INIS)

    Ahlstroem, P.-E.

    1997-01-01

    Nuclear power is producing electricity for the benefit of society but is also leaving radioactive residues behind. It is our responsibility to handle these residues in a safe and proper manner. The development of a system for handling spent fuel from nuclear power plants has proceeded in steps. The same is true for the actual construction of facilities and will continue to be the case for the final repository for spent fuel and other types of long-lived wastes. The primary objective in constructing the repository will be to isolate and contain the radioactive waste. In case the isolation fails for some reason the multibarrier system should retain and retard the radionuclides that might come into contact with the groundwater. A repository is now planned to be built in two steps where the first step will include deposition of about 400 canisters with spent fuel. This first step should be finished in about 20 years from now and be followed by an extensive evaluation of the results from not only this particular step but also from the development of alternative routes before deciding on how to proceed. A special facility to encapsulate the spent fuel is also required. Such an encapsulation plant is proposed to be constructed as an extension of the existing interim storage CLAB. Finding a site for the repository is a critical issue in the implementation of any repository. The siting process started a few years ago and made some progress but is by no means yet completed. It will go on at least into the early part of the next decade. When the present nuclear power plants begin to be due for retirement there should also be some facilities in place to take permanent care of the long-lived radioactive residues. Progress in siting will be a prerequisite for success in our responsibility to make progress towards a safe permanent solution of the waste issue. (orig.)

  6. Management and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1987-05-01

    The programme consists of the long-term and short-term programme, the continued bedrock investigations, the underground research laboratory, the decision-making procedure in the site selection process and information questions during the site selection process. The National Board for Spent Nuclear Fuel hereby subunits both the SKB's R and D Programme 86 and the Board's statement concerning the programme. Decisions in the matter have been made by the Board's executive committee. (DG)

  7. Safety assessment for spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Practice has been prepared as part of the IAEA's programme on the safety assessment of interim spent fuel storage facilities which are not an integral part of an operating nuclear power plant. This report provides general guidance on the safety assessment process, discussing both deterministic and probabilistic assessment methods. It describes the safety assessment process for normal operation and anticipated operational occurrences and also related to accident conditions. 10 refs, 2 tabs

  8. Spent fuel packaging and its safety analysis

    International Nuclear Information System (INIS)

    Takada, Kimitaka; Nakaoki, Kozo; Tamamura, Tadao; Matsuda, Fumio; Fukudome, Kazuyuki

    1983-01-01

    An all stainless steel B(U) type packaging is proposed to transport spent fuels discharged from research reactors and other radioactive materials. The package is used dry and provided with surface fins to absorb drop shock and to dissipate decay heat. Safety was analyzed for structural, thermal, containment shielding and criticality factors, and the integrity of the package was confirmed with the MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, and KENO computer codes. (author)

  9. Storage racks for spent nuclear fuels

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Ukaji, Hideo; Okino, Yoshiyuki; Ishihara, Jo; Ikuta, Isao.

    1983-01-01

    Purpose: To facilitate the mounting of neutron absorbers made of amorphous alloys to fuel racks. Constitution: Neutron absorbers are mounted to a cylindrical member of a square cross section for containing to retain spent fuels only on paired opposing sides by means of machine screws or the likes. Then, such cylindrical members are disposed so that their sides attached with the neutron absorbers are not in adjacent with each other. In this way, mounting of the neutron absorbers over the entire surface of the cylindrical members is no more necessary thereby enabling to simplify the mounting work. (Ikeda, J.)

  10. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 4. Pacific basin spent fuel logistics system

    International Nuclear Information System (INIS)

    1978-06-01

    This report summarizes the conceptual framework for a Pacific Basin Spent Fuel Logistics System (PBSFLS); and preliminarily describes programatic steps that might be taken to implement such a system. The PBSFLS concept is described in terms of its technical and institutional components. The preferred PBSFLS concept embodies the rationale of emplacing a fuel cycle system which can adjust to the technical and institutional non-proliferation solutions as they are developed and accepted by nations. The concept is structured on the basis of initially implementing a regional spent fuel storage and transportation system which can technically and institutionally accommodate downstream needs for energy recovery and long-term waste management solutions

  11. Evaluation of conceptual flowsheets for incorporating Light Water Reactor (LWR) fuel materials in an advanced nuclear fuel cycle

    International Nuclear Information System (INIS)

    Bell, J.T.; Burch, W.D.; Collins, E.D.; Forsberg, C.W.; Prince, B.E.; Bond, W.D.; Campbell, D.O.; Delene, J.G.; Mailen, J.C.

    1990-08-01

    A preliminary study by a group of experts at ORNL has generated and evaluated a number of aqueous and non-aqueous flowsheets for recovering transuranium actinides from LWR fuel for use as fuel in an LMR and, at the same time, for transmutation of the wastes to less hazardous materials. The need for proliferation resistance was a consideration in the flowsheets. The current state of development of the flowsheets was evaluated and recommendations for additional study were made. 3 refs., 6 figs

  12. Considerations for the transportation of spent fuel

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1984-01-01

    In our society today the transportation of radioactive materials, and most particularly spent reactor fuel, is surrounded by considerable emotion and a wealth of information, good and bad. The transportation of these materials is viewed as unique and distinct from the transportation of other hazardous materials and as a particularly vulnerable component of the nuclear power activities of this nation. Added to this is the concept, widely held, that almost everyone is an expert on the transportation of radioactive materials. One significant contribution to this level of emotion is the notion that all roads (rail and highway), on which these goods will be transported, somehow traverse everyone's backyard. The issue of the transportation of spent fuel has thus become a political battleground. Perhaps this should not be surprising since it has all of the right characteristics for such politicization in that it is pervasive, emotional, and visible. In order that those involved in the discussion of this activity might be able to reach some rational conclusions, this paper offers some background information which might be useful to a broad range of individuals in developing their own perspectives. The intent is to address the safety of transporting spent fuel from a technical standpoint without the emotional content which is frequently a part of this argument

  13. Problems of the Spent Nuclear Fuel Storage

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    Approximately 99% of the radioactivity in waste, produced in the process of operating a nuclear power plant, is contained in spent nuclear fuel. Safe handling and storage of the spent nuclear fuel is an important factor of a nuclear plant safety. Today at Ignalina NPP the spent fuel is stored in special water pools, located in the same buildings as the reactors. The volume of the pools is limited, for unit one the pool will be fully loaded in 1998, for unit 2 - in 2000. The further operation of the plant will only be possible if new storage is constructed. In 1994 contract with German company GNB was signed for the supply of 20 containers of the CASTOR type. Containers were delivered in accordance with agreed schedule. In the end of 1995 a new tender for new storage options was announced in order to minimize the storage costs. A proposal from Canadian company AECL now is being considered as one of the most suitable and negotiations to sign the contract started. (author)

  14. Spent fuel performance in geologic repository environments

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1985-10-01

    The performance assessment of the waste package is a current area of study in the United States program to develop a geologic repository for nuclear waste isolation. The waste package is presently envisioned as the waste form and its surrounding containers and possibly a packing material composed of crushed host rock or mixtures of that rock with clays. This waste package is tied to performance criteria set forth in recent legislation. It is the goal of the Civilian Radioactive Waste Management Program to obtain the necessary information on the waste package, in several geologic environments, to show that the waste package provides reasonable assurance of meeting established performance criteria. This paper discusses the United States program directed toward managing high-level radioactive waste, with emphasis on the current effort to define the behavior of irradiated spent fuel in repository groundwaters. Current studies are directed toward understanding the rate and nature (such as valence state, colloid form if any, solid phase controlling solubility) of radionuclide release from the spent fuel. Due to the strong interactive effect of radiation, thermal fields, and waste package components on this release, current spent fuel studies are being conducted primarily in the presence of waste package components over a wide range of potential environments

  15. Spent-fuel transportation - a success story

    International Nuclear Information System (INIS)

    Gertz, C.P.; Schoonen, D.H.; Wakeman, B.H.

    1986-01-01

    Spent nuclear fuel research and development (R and D) demonstrations and associated transportation activities are being performed as a part of the storage cask performance testing programs at the Idaho National Engineering Laboratory (INEL). These spent-fuel programs support the Nuclear Waste Policy Act (NWPA) and US Department of Energy (DOE) objectives for cooperative demonstrations with the utilities, testing at federal sites, and alternatives for viable transportation systems. A cooperative demonstration program with the private sector to develop dry storage technologies that the US Nuclear Regulatory Commission (NRC) can generically approve is in place as well as cost-shared dry storage R and D program at a federal facility to collect the necessary licensing data. In addition to the accomplishments in the cask performance and testing demonstrations, the long-distance transportation of a large number of spent-fuel assemblies is considered a success story. The evaluation and implementation of applicable requirements, industry perspective, and extensive planning all contributed to this achievement

  16. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  17. Spent Nuclear Fuel Alternative Technology Risk Assessment

    International Nuclear Information System (INIS)

    Perella, V.F.

    1999-01-01

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment

  18. European experience with spent fuel transport

    International Nuclear Information System (INIS)

    Hunter, I.A.

    1995-01-01

    Nuclear Transport Ltd has transported 5000 tonnes of spent fuel from 35 reactors in 8 European countries since 1972. Transport management is governed by the Quality Plan for: transport administration, packaging and shipment procedures at the shipping plant, operations at the power plant, and packaging and shipment organization at the power plant. Selection of a suitable carrier device is made with regard to the shipping plant requirements, physical limitations of the reactor, fuel characteristics, and transport route constraints. The transport plan is set up taking into account exploitation of the casks, reactor shut-down requirements, fuel acceptance plans at the reprocessing plant, and cask maintenance periods. A transport cycle involving spent fuel shipment to La Hague or to Sellafield takes typically two or four weeks, respectively. Most transports through Europe are by rail. A special-design railway ferry boat serves transports to the United Kingdom. Both wet or dry casks are employed. Modern casks are designed for high burnups and for oxide fuels. (J.B.)

  19. Apparatus for lifting spent fuel assembly

    International Nuclear Information System (INIS)

    Hirasawa, Yoshinari; Sato, Isao; Yoneda, Yoshiyuki.

    1976-01-01

    Object: To increase the efficiency of cooling of a used fuel assembly being moved within a guide tube in the axial direction thereof by directly cooling the assembly with cooling gas fed into the guide tube, thus facilitating the handling of the spent fuel assembly. Structure: An end of a lock portion is inserted into the top portion of a spent fuel assembly, the assembly being hooked on the lock portion. The lock portion is provided on its outer periphery with a seal member and a centering member and at its tip with a pawl capable of being projected and retracted in the radial direction. Thus, when the lock portion is moved along the guide tube, the used fuel assembly can be moved along the guide tube by maintaining the concentric relation thereto. Meanwhile, when cooling gas is fed into the guide tube, it is blown into the used fuel assembly to directly cool the same. Thus, the cooling efficiency can be increased. (Moriyama, M.)

  20. Assesment On The Possibility To Modify Fabrication Equipment For Fabrication Of HWR And LWR Fuel Elements

    International Nuclear Information System (INIS)

    Tri-Yulianto

    1996-01-01

    Based on TOR BATAN for PELITA VI. On of BATAN program in the fuel element production technology section is the acquisition of the fuel element fabrication technology for research reactor as well as power reactor. The acquisition can be achieved using different strategies, e.g. by utilizing the facility owned for research and development of the technology desired or by transferring the technology directly from the source. With regards to the above, PEBN through its facility in BEBE has started the acquisition of the fuel element fabrication technology for power reactor by developing the existing equipment initially designed to fabricate HWR Cinere fuel element. The development, by way of modifying the equipment, is intended for the production of HWR (Candu) and LWR (PWR and BWR) fuel elements. To achieve above objective, at the early stage of activity, an assesment on the fabrication equipment for pelletizing, component production and assembly. The assesment was made by comparing the shape and the size of the existing fuel element with those used in the operating reactors such as Candu reactors, PWR and BWR. Equipment having the potential to be modified for the production of HWR fuel elements are as followed: For the pelletizing equipment, the punch and dies can be used of the pressing machine for making green pellet can be modified so that different sizes of punch and dies can be used, depending upon the size of the HWR and LWR pellets. The equipment for component production has good potential for modification to produce the HWR Candu fuel element, which has similar shape and size with those of the existing fuel element, while the possibility of producing the LWR fuel element component is small because only a limited number of the required component can be made with the existing equipment. The assembly equipment has similar situation whit that of the component production, that is, to assemble the HWR fuel element modification of few assembly units very probable

  1. Preliminary concepts: safeguards for spent light-water reactor fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Dietz, R.J.

    1979-06-01

    The technology available for safeguarding spent nuclear fuels from light-water power reactors is reviewed, and preliminary concepts for a spent-fuel safeguards system are presented. Essential elements of a spent-fuel safeguards system are infrequent on-site inspections, containment and surveillance systems to assure the integrity of stored fuel between inspections, and nondestructive measurements of the fuel assemblies. Key safeguards research and development activities necessary to implement such a system are identified. These activities include the development of tamper-indicating fuel-assembly identification systems and the design and development of nondestructive spent-fuel measurement systems

  2. Investigation of novel spent fuel verification system for safeguard application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source.

  3. Fabrication of the Spent Fuel Elements Rack on the ISFSF

    International Nuclear Information System (INIS)

    Slamet Wiranto; Sigit Purwanto; Safrul, H.

    2004-01-01

    The Interim Storage For Spent Fuel elements (ISFSF) was designed to be able to store the 33 spent fuel element racks with capacity of 1386 of normal spent fuel elements and 2 racks for 36 of defected ones. Until now, only 9 out of 33 racks of normal spent fuel elements and lout of 2 racks of defected fuel elements are available. Five of them have suffered from corrosion so that they are not fulfilled the requirements of the spent fuel elements storage anymore. Meanwhile, the spent fuel storage racks in the reactor are almost full. It means, the transfer of the spent fuel from reactor spent fuel storage to the ISFSF pool are compulsory needed. Therefore, it is necessary to provide the new ISFSF spent fuel storage rack with better material and fabrication method than the old one. In this design all materials consist of SS 316 L that are welded with the Argon TIG-welding. Right now there has been one new spent fuel storage rack fabricated with capacity of 42 normal spent fuel elements. (author)

  4. Investigation of novel spent fuel verification system for safeguard application

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung

    2016-01-01

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source

  5. LWR high burn-up operation and MOX introduction. Fuel cycle performance from the viewpoint of waste management

    International Nuclear Information System (INIS)

    Inagaki, Yaohiro; Iwasaki, Tomohiko; Niibori, Yuichi; Sato, Seichi; Ohe, Toshiaki; Kato, Kazuyuki; Torikai, Seishi; Nagasaki, Shinya; Kitayama, Kazumi

    2009-01-01

    From the viewpoint of waste management, a quantitative evaluation of LWR nuclear fuel cycle system performance was carried out, considering both higher burn-up operation of UO 2 fuel coupled with the introduction of MOX fuel. A major parameter to quantify this performance is the number of high-level waste (HLW) glass units generated per GWd (gigawatt-day based on reactor thermal power generation before electrical conversion). This parameter was evaluated for each system up to a maximum burn-up of 70GWd/THM (gigawatt-day per ton of heavy metal) assuming current conventional reprocessing and vitrification conditions where the waste loading of glass is restricted by the heat generation rate, the MoO 3 content, or the noble metal content. The results showed that higher burn-up operation has no significant influence on the number of glass units generated per GWd for UO 2 fuel, though the number of glass units per THM increases linearly with burn-up and is restricted by the heat generation rate. On the other hand, the introduction of MOX fuel causes the number of glass units per GWd to double owing to the increase in the heat generation rate. An extended cooling period of the spent fuel prior to reprocessing effectively reduces the heat generation rate for UO 2 fuel, while a separation of minor actinides (Np, Am, and Cm) from the high-level waste provides additional reduction for MOX fuel. However, neither of these leads to a substantial reduction in the number of glass units, since the MoO 3 content or the noble metal content restricts the number of glass units rather than the heat generation rate. These results suggest that both the MoO 3 content and the noble metal content provide the key to reducing the amount of waste glass that is generated, leading to an overall improvement in fuel cycle system performance. (author)

  6. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, P.C. [BNFL International Transport, Spent Fuel Services (United Kingdom); Dallongeville, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme.

  7. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    International Nuclear Information System (INIS)

    Purcell, P.C.; Dallongeville, M.

    2004-01-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme

  8. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  9. New development in nondestructive measurement and verification of irradiated LWR fuels

    International Nuclear Information System (INIS)

    Lee, D.M.; Phillips, J.R.; Halbig, J.K.; Hsue, S.T.; Lindquist, L.O.; Ortega, E.M.; Caine, J.C.; Swansen, J.; Kaieda, K.; Dermendjiev, E.

    1979-01-01

    Nondestructive techniques for characterizing irradiated LWR fuel assemblies are discussed. This includes detection systems that measure the axial activity profile, neutron yield and gamma yield. A multi-element profile monitor has been developed that offers a significant improvement in speed and complexity over existing mechanical scanning systems. New portable detectors and electronics, applicable to safeguard inspection, are presented and results of gamma-ray and neutron measurements at commercial reactor facilities are given

  10. Modelling of a LWR open fuel cycle using the message

    Energy Technology Data Exchange (ETDEWEB)

    Estanislau, Fidéllis B.G.L. e; Jonusan, Raoni A.S.; Costa, Antonella L.; Pereira, Claubia, E-mail: fidellis01@hotmail.com, E-mail: rjonusan@gmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The main goal of the national energy planning is the development of a short and long-term strategies based on a holistic evaluation of all available energy sources guiding trends and delimiting expansion alternatives in the energetic sector. For a better understanding of the future possibilities, energy systems analyses are indispensable and support in the decision making related to the long term strategy and energy planning. Due to the projections for increased energy consumption according to the Energy Decennial Plan (year 2015) and the need to reduce greenhouse gas emissions presented by Brazil in the UNFCCC (United Nations Framework Convention on Climate Change), alternative energy sources such as solar, wind, nuclear and biomass sources have played an important role in the world energy matrix. In this way, since the nuclear energy is an option for the national energy mix, the present work aims to use the modelling tool MESSAGE (Model for Energy Supply System Alternatives and Their General Environmental Impact) to analyze and evaluate a nuclear power plant in an energy system. This tool is an optimization model for medium and long-term energy planning taking into account conversion and distribution technologies, energy policies and scenarios to satisfy a determined demand and systems constraints. In this work, a reproduction of results considering an LWR (Light Water Reactor) open-cycle are presented using a model in the MESSAGE code. (author)

  11. Status and trends in spent fuel reprocessing

    International Nuclear Information System (INIS)

    2005-09-01

    The management of spent fuel arising from nuclear power production is a crucial issue for the sustainable development of nuclear energy. The IAEA has issued several publications in the past that provide technical information on the global status and trends in spent fuel reprocessing and associated topics, and one reason for this present publication is to provide an update of this information which has mostly focused on the conventional technology applied in the industry. However, the scope of this publication has been significantly expanded in an attempt to make it more comprehensive and by including a section on emerging technologies applicable to future innovative nuclear systems, as are being addressed in such international initiatives as INPRO, Gen IV and MICANET. In an effort to be informative, this publication attempts to provide a state-of-the-art review of these technologies, and to identify major issues associated with reprocessing as an option for spent fuel management. It does not, however, provide any detailed information on some of the related issues such as safety or safeguards, which are addressed in other relevant publications. This report provides an overview of the status of reprocessing technology and its future prospects in terms of various criteria in Section 2. Section 3 provides a review of emerging technologies which have been attracting the interest of Member States, especially in the international initiatives for future development of innovative nuclear systems. A historical review of IAEA activities associated with spent fuel reprocessing, traceable back to the mid-1970s, is provided in Section 4, and conclusions in Section 5. A list of references is provided at the end the main text for readers interested in further information on the related topics. Annex I summarizes the current status of reprocessing facilities around the world, including the civil operational statistics of Purex-based plants, progress with decommissioning and

  12. LWR mox fuel experience in Belgium and France with special emphasis on results obtained in BR3

    International Nuclear Information System (INIS)

    Bairiot, H.; Haas, D.; Lippens, M.; Motte, F.; Lebastard, G.; Marin, J.F.

    1986-09-01

    The course of the paper reflects two main topics: LWR MOX fuel experience in Belgium and France, summarizing the fabrication techniques, the references, the underlying MOX fuel technology and the current R and D programs for expanding the data base; behaviour of MOX fuel rods irradiated under steady state and transient operating conditions, focusing on MOX fuel technology features acquired through the irradiations performed in the BR3 PWR, supplemented by tests in the BR2 MTR. This paper focuses on the thermomechanical behaviour of LWR MOX fuel rods, which is intimately related to the fabrication technique and vice-versa. 22 refs

  13. Nuclear spent fuel management scenarios. Status and assessment report

    International Nuclear Information System (INIS)

    Dufek, J.; Arzhanov, V.; Gudowski, W.

    2006-06-01

    The strategy for management of spent nuclear fuel from the Swedish nuclear power programme is interim storage for cooling and decay for about 30 years followed by direct disposal of the fuel in a geologic repository. In various contexts it is of interest to compare this strategy with other strategies that might be available in the future as a result of ongoing research and development. In particular partitioning and transmutation is one such strategy that is subject to considerable R and D-efforts within the European Union and in other countries with large nuclear programmes. To facilitate such comparisons for the Swedish situation, with a planned phase out of the nuclear power programme, SKB has asked the team at Royal Inst. of Technology to describe and explore some scenarios that might be applied to the Swedish programme. The results of this study are presented in this report. The following scenarios were studied by the help of a specially developed computer programme: Phase out by 2025 with direct disposal. Burning plutonium and minor actinides as MOX in BWR. Burning plutonium and minor actinides as MOX in PWR. Burning plutonium and minor actinides in ADS. Combined LWR-MOX plus ADS. For the different scenarios nuclide inventories, waste amounts, costs, additional electricity production etc have been assessed. As a general conclusion it was found that BWR is more efficient for burning plutonium in MOX fuel than PWR. The difference is approximately 10%. Furthermore the BWR produces about 10% less americium inventory. An ADS reactor park can theoretically in an ideal case burn (transmute) 99% of the transuranium isotopes. The duration of such a scenario heavily depends on the interim time needed for cooling the spent fuel before reprocessing. Assuming 10 years for cooling of nuclear fuel from ADS, the duration will be at least 200 years under optimistic technical assumptions. The development and use of advanced pyro-processing with an interim cooling time of only

  14. Nuclear spent fuel management scenarios. Status and assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Dufek, J.; Arzhanov, V.; Gudowski, W. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2006-06-15

    The strategy for management of spent nuclear fuel from the Swedish nuclear power programme is interim storage for cooling and decay for about 30 years followed by direct disposal of the fuel in a geologic repository. In various contexts it is of interest to compare this strategy with other strategies that might be available in the future as a result of ongoing research and development. In particular partitioning and transmutation is one such strategy that is subject to considerable R and D-efforts within the European Union and in other countries with large nuclear programmes. To facilitate such comparisons for the Swedish situation, with a planned phase out of the nuclear power programme, SKB has asked the team at Royal Inst. of Technology to describe and explore some scenarios that might be applied to the Swedish programme. The results of this study are presented in this report. The following scenarios were studied by the help of a specially developed computer programme: Phase out by 2025 with direct disposal. Burning plutonium and minor actinides as MOX in BWR. Burning plutonium and minor actinides as MOX in PWR. Burning plutonium and minor actinides in ADS. Combined LWR-MOX plus ADS. For the different scenarios nuclide inventories, waste amounts, costs, additional electricity production etc have been assessed. As a general conclusion it was found that BWR is more efficient for burning plutonium in MOX fuel than PWR. The difference is approximately 10%. Furthermore the BWR produces about 10% less americium inventory. An ADS reactor park can theoretically in an ideal case burn (transmute) 99% of the transuranium isotopes. The duration of such a scenario heavily depends on the interim time needed for cooling the spent fuel before reprocessing. Assuming 10 years for cooling of nuclear fuel from ADS, the duration will be at least 200 years under optimistic technical assumptions. The development and use of advanced pyro-processing with an interim cooling time of only

  15. Factors affecting the differences in reactivity and dissolution rates between UO2 and spent nuclear fuel

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Tait, J.C.; Sunder, S.; Steward, S.; Russo, R.E.; Rudnicki, J.D.

    1996-08-01

    Strategies for the permanent disposal of spent nuclear fuel are being investigated by the U.S. Department of Energy at the Yucca Mountain site and by Atomic Energy of Canada Limited (AECL) in plutonic rock formations in the Canadian Shield. Uranium dioxide is the primary constituent of spent nuclear fuel and dissolution of the matrix is regarded as a necessary step for the release of radionuclides to repository groundwaters. In order to develop models to describe the dissolution of the U0 2 fuel matrix and subsequent release of radionuclides, it is necessary to understand both chemical and oxidative dissolution processes and how they can be affected by parameters such as groundwater composition, pH, temperature, surface area, radiolysis and redox potential. This report summarizes both published and on-going dissolution studies of U0 2 and both LWR and CANDU spent fuels being conducted at the Pacific Northwest Laboratory, Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory in the U.S. and at AECL's Whiteshell Laboratories in Canada. The studies include both dissolution tests and electrochemical experiments to measure uranium dissolution rates. The report focuses on identifying differences in reactivity towards aqueous dissolution between U0 2 and spent fuel samples as well as estimating bounding values for uranium dissolution rates. This review also outlines the basic tenets for the development of a dissolution model that is based on electrochemical principles. (author). 49 refs., 2 tabs., 11 figs

  16. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements.

  17. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  18. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  19. Main attributes influencing spent nuclear fuel management

    International Nuclear Information System (INIS)

    Andreescu, N.; Ohai, D.

    1997-01-01

    All activities regarding nuclear fuel, following its discharge from the NPP, constitute the spent fuel management and are grouped in two possible back end variants, namely reprocessing (including HLW vitrification and geological disposal) and direct disposal of spent fuel. In order to select the appropriate variant it is necessary to analyse the aggregate fulfillment of the imposed requirements, particularly of the derived attributes, defined as distinguishing characteristics of the factors used in the decision making process. The main identified attributes are the following: - environmental impact, - availability of suitable sites, - non-proliferation degree, -strategy of energy, - technological complexity and technical maturity, -possible further technical improvements, - size of nuclear programme, - total costs, - public acceptance, - peculiarity of CANDU fuel. The significance of the attributes in the Romanian case, taking into consideration the present situation, as a low scenario and a high scenario corresponding to an important development of the nuclear power, after the year 2010, is presented. According to their importance the ranking of attributes is proposed . Subsequently, the ranking could be used for adequate weighing of attributes in order to realize a multi-criteria analysis and a relevant comparison of back end variants. (authors)

  20. Spent fuel pool cleanup and stabilization

    International Nuclear Information System (INIS)

    Miller, R.L.

    1987-06-01

    Each of the plutonium production reactors at Hanford had a large water-filled spent fuel pool to provide interim storage of irradiated fuel while awaiting shipment to the separation facilities. After cessation of reactor operations the fuel was removed from the pools and the water levels were drawn down to a 5- to 10-foot depth. The pools were maintained with the water to provide shielding and radiological control. What appeared to be a straightforward project to process the water, remove the sediments from the basin, and stabilize the contamination on the floors and walls became a very complex and time consuming operation. The sediment characteristics varied from pool to pool, the ion exchange system required modification, areas of hard-pack sediments were discovered on the floors, special arrangements to handle and package high dose rate items for shipment were required, and contract problems ensued with the subcontractor. The original schedule to complete the project from preliminary engineering to final stabilization of the pools was 15 months. The actual time required was about 25 months. The original cost estimate to perform the work was $2,651,000. The actual cost of the project was $5,120,000, which included $150,000 for payment of claims to the subcontractor. This paper summarizes the experiences associated with the cleanup and radiological stabilization of the 100-B, -C, -D, and -DR spent fuel pools, and discusses a number of lessons learned items