WorldWideScience

Sample records for lwir 1024x1024 pixel

  1. Application Of A 1024X1024 Pixel Digital Image Store, With Pulsed Progressive Readout Camera, For Gastro-Intestinal Radiology

    Science.gov (United States)

    Edmonds, E. W.; Rowlands, J. A.; Hynes, D. M.; Toth, B. D.; Porter, A. J.

    1986-06-01

    We discuss the applicability of intensified x-ray television systems for general digital radiography and the requirements necessary for physician acceptance. Television systems for videofluorography when limited to conventional fluoroscopic exposure rates (25uR/s to x-ray intensifier), with particular application to the gastro-intestinal system, all suffer from three problems which tend to degrade the image: (a) lack of resolution, (b) noise, and (c) patient movement. The system to be described in this paper addresses each of these problems. Resolution is that provided by the use of a 1024 x 1024 pixel frame store combined with a 1024 line video camera and a 10"/6" x-ray image intensifier. Problems of noise and sensitivity to patient movement are overcome by using a short but intense burst of radiation to produce the latent image, which is then read off the video camera in a progressive fashion and placed in the digital store. Hard copy is produced from a high resolution multiformat camera, or a high resolution digital laser camera. It is intended that this PPR system will replace the 100mm spot film camera in present use, and will provide information in digital form for further processing and eventual digital archiving.

  2. High Quantum Efficiency 1024x1024 Longwave Infrared SLS FPA and Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a high quantum efficiency (QE) 1024x1024 longwave infrared focal plane array (LWIR FPA) and CAMERA with ~ 12 micron cutoff wavelength made from...

  3. High-performance 1024x1024 MWIR/LWIR Dual-band InAs/GaSb Type-II Superlattice-based Camera System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High performance LWIR detectors are highly needed. In order to image from long distance, it is important that imagers have high sensitivity, high resolution, and...

  4. Preliminary Clinical Studies Using A Self Scanning Lineak Diode Array To Obtain 1024 X 1024 Digital Radiographs

    Science.gov (United States)

    Sashin, Donald; Slasky, B. Simon; Sternglass, Ernest J.; Bron, Klaus M.; Herron, John M.; Kennedy, William H.; Boyer, Joseph W.; Girdany, Bertram R.; Simpson, Raymond W.; Horton, Joseph A.

    1984-08-01

    A digital radiography system using self scanning linear diode arrays is being developed for improved diagnosis at reduced radiation dose. Our technique is based on the use of solid state sensors with 1024 diodes per inch and with very high dynamic range. The slit geometry of our method results in image improvement and dose reduction by efficiently rejecting scattered x-rays in the patient. In our present configuration the images have a field of view of six inches by six inches or 6 inches by 12 inches and are digitized to 1024 x 1024 pixels with 12 bits. This digital system differs from the conventional digital radiography in that no image intensifier TV fluoroscopy chain is required. Preliminary clinical studies have demonstrated the high detail of our system at low radiation levels. In dog studies the system has clearly visualized very small coronary arteries following aortic root injection of contrast material. Even with intravenous injections some of the coronary arteries could be seen.

  5. TEQUILA: NIR camera/spectrograph based on a Rockwell 1024x1024 HgCdTe FPA

    Science.gov (United States)

    Ruiz, Elfego; Sohn, Erika; Cruz-Gonzales, Irene; Salas, Luis; Parraga, Antonio; Perez, Manuel; Torres, Roberto; Cobos Duenas, Francisco J.; Gonzalez, Gaston; Langarica, Rosalia; Tejada, Carlos; Sanchez, Beatriz; Iriarte, Arturo; Valdez, J.; Gutierrez, Leonel; Lazo, Francisco; Angeles, Fernando

    1998-08-01

    We describe the configuration and operation modes of the IR camera/spectrograph: TEQUILA based on a 1024 X 1024 HgCdTe FPA. The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN(subscript 2) dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An opto-mechanical assembly cooled to -30 degrees that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provision to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8m Mexican IR-Optical Telescope.

  6. Dead pixel replacement in LWIR microgrid polarimeters.

    Science.gov (United States)

    Ratliff, Bradley M; Tyo, J Scott; Boger, James K; Black, Wiley T; Bowers, David L; Fetrow, Matthew P

    2007-06-11

    LWIR imaging arrays are often affected by nonresponsive pixels, or "dead pixels." These dead pixels can severely degrade the quality of imagery and often have to be replaced before subsequent image processing and display of the imagery data. For LWIR arrays that are integrated with arrays of micropolarizers, the problem of dead pixels is amplified. Conventional dead pixel replacement (DPR) strategies cannot be employed since neighboring pixels are of different polarizations. In this paper we present two DPR schemes. The first is a modified nearest-neighbor replacement method. The second is a method based on redundancy in the polarization measurements.We find that the redundancy-based DPR scheme provides an order-of-magnitude better performance for typical LWIR polarimetric data.

  7. Objects cloaking in LWIR region by using a high efficiency infrared pixel

    Directory of Open Access Journals (Sweden)

    Arab

    2016-12-01

    Full Text Available This article, introduces a new pixel which can emit infrared wavelengths from its surface and can be used for the purpose of cloaking objects from thermal cameras. This pixel can simulate the temperatures between 0 and 100ºC emited from an infrared radiation in LWIR (8-12 micrometres region. Nanocomposite material is used in the pixel structure and this has increased its capacities like ZT factor %40-50 better than the commercial material like Bi2Te3. Technical aspects of the pixel such as the emission wavelengths, rate of temperature changing, thermal contrast, ZT factor and so on are discussed in this paper and were determined by using thermography, non-contact thermometry, radiometry, four probe ac method and temperature differential

  8. Implementation of pixel level digital TDI for scanning type LWIR FPAs

    Science.gov (United States)

    Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Afridi, Sohaib; Shafique, Atia; Gurbuz, Yasar

    2014-07-01

    Implementation of a CMOS digital readout integrated circuit (DROIC) based on pixel level digital time delay integration (TDI) for scanning type LWIR focal plane arrays (FPAs) is presented. TDI is implemented on 8 pixels with over sampling rate of 3. Analog signal integrated on integration capacitor is converted to digital domain in pixel, and digital data is transferred to TDI summation counters, where contributions of 8 pixels are added. Output data is 16 bit, where 8 bits are allocated for most significant bits and 8 bits for least significant bits. Control block of the ROIC, which is responsible of generating timing diagram for switches controlling the pixels and summation counters, is realized with VerilogHDL. Summation counters and parallel-to-serial converter to convert 16 bit parallel output data to single bit output are also realized with Verilog HDL. Synthesized verilog netlists are placed&routed and combined with analog under-pixel part of the design. Quantization noise of analog-to-digital conversion is less than 500e-. Since analog signal is converted to digital domain in-pixel, inaccuracies due to analog signal routing over large chip area is eliminated. ROIC is fabricated with 0.18μm CMOS process and chip area is 10mm2. Post-layout simulation results of the implemented design are presented. ROIC is programmable through serial or parallel interface. Input referred noise of ROIC is less than 750 rms electron, while power consumption is less than 30mW. ROIC is designed to perform in cryogenic temperatures.

  9. Design of 90×8 ROIC with pixel level digital TDI implementation for scanning type LWIR FPAs

    Science.gov (United States)

    Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Gurbuz, Yasar

    2013-06-01

    Design of a 90×8 CMOS readout integrated circuit (ROIC) based on pixel level digital time delay integration (TDI) for scanning type LWIR focal plane arrays (FPAs) is presented. TDI is implemented on 8 pixels which improves the SNR of the system with a factor of √8. Oversampling rate of 3 improves the spatial resolution of the system. TDI operation is realized with a novel under-pixel analog-to-digital converter, which improves the noise performance of ROIC with a lower quantization noise. Since analog signal is converted to digital domain in-pixel, non-uniformities and inaccuracies due to analog signal routing over large chip area is eliminated. Contributions of each pixel for proper TDI operation are added in summation counters, no op-amps are used for summation, hence power consumption of ROIC is lower than its analog counterparts. Due to lack of multiple capacitors or summation amplifiers, ROIC occupies smaller chip area compared to its analog counterparts. ROIC is also superior to its digital counterparts due to novel digital TDI implementation in terms of power consumption, noise and chip area. ROIC supports bi-directional scan, multiple gain settings, bypass operation, automatic gain adjustment, pixel select/deselect, and is programmable through serial or parallel interface. Input referred noise of ROIC is less than 750 rms electrons, while power consumption is less than 20mW. ROIC is designed to perform both in room and cryogenic temperatures.

  10. Detection of Unexploded Ordnance Using Airborne LWIR Emissivity Signatures

    Science.gov (United States)

    2015-11-25

    pixels [7]. A LWIR emissivity library was built using the FSR laboratory spectra and re-sampled to the LWIR Hypercam wavelengths (850 to 1225... SVD ) [10], which results in a descending ordering of the basis vectors. 3. RESULTS Figure 2 shows detection results for: (a) painted projectiles, (b

  11. Uncooled LWIR imaging: applications and market analysis

    Science.gov (United States)

    Takasawa, Satomi

    2015-05-01

    The evolution of infrared (IR) imaging sensor technology for defense market has played an important role in developing commercial market, as dual use of the technology has expanded. In particular, technologies of both reduction in pixel pitch and vacuum package have drastically evolved in the area of uncooled Long-Wave IR (LWIR; 8-14 μm wavelength region) imaging sensor, increasing opportunity to create new applications. From the macroscopic point of view, the uncooled LWIR imaging market is divided into two areas. One is a high-end market where uncooled LWIR imaging sensor with sensitivity as close to that of cooled one as possible is required, while the other is a low-end market which is promoted by miniaturization and reduction in price. Especially, in the latter case, approaches towards consumer market have recently appeared, such as applications of uncooled LWIR imaging sensors to night visions for automobiles and smart phones. The appearance of such a kind of commodity surely changes existing business models. Further technological innovation is necessary for creating consumer market, and there will be a room for other companies treating components and materials such as lens materials and getter materials and so on to enter into the consumer market.

  12. An analysis of fusion algorithms for LWIR and visual images

    CSIR Research Space (South Africa)

    De Villiers, J

    2013-12-01

    Full Text Available fusion, he modified the red channel of the input image with the corre- sponding pixel value from the LWIR image. Li et. al. [6] used a similar channel-based fusion method to Zheng, however they also changed the colour space of the image to Y CBCR... and weighted those values using the LWIR value and then modified the fused image to look similar to a separate sample image. This work uses pixel-level fusion, since the fastest possible fusion method was required. Since the input visual images are colour each...

  13. High Performance Dual Band Photodetector Arrays for MWIR/LWIR Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Phase II program seeks to create dual-band pixel-collocated MWIR/LWIR photodetector arrays based on III-V semiconductor materials in a Type-II...

  14. ASTROCAM: An Offner Re-imaging 1024 x 1024 InSb Camera for Near-Infrared Astrometry on the USNO 1.55-m Telescope

    Science.gov (United States)

    2003-01-01

    on its mount can then be adjusted interferometrically using a point source generated by a laser unequal path interferometer ( LUPI ) at the position of a...This alignment process greatly facilitated the final LUPI interferometric adjustment of the mirror separation performed using retroreflection by a

  15. Development of a Random Field Model for Gas Plume Detection in Multiple LWIR Images.

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, Patrick G.

    2008-09-30

    This report develops a random field model that describes gas plumes in LWIR remote sensing images. The random field model serves as a prior distribution that can be combined with LWIR data to produce a posterior that determines the probability that a gas plume exists in the scene and also maps the most probable location of any plume. The random field model is intended to work with a single pixel regression estimator--a regression model that estimates gas concentration on an individual pixel basis.

  16. MidIR and LWIR polarimetric sensor comparison study

    Science.gov (United States)

    Gurton, Kristan; Felton, Melvin; Mack, Robert; LeMaster, Daniel; Farlow, Craig; Kudenov, Michael; Pezzaniti, Larry

    2010-04-01

    We present a comparative study involving five distinctly different polarimetric imaging platforms that are designed to record calibrated Stokes images (and associated polarimetric products) in either the MidIR or LWIR spectral regions. The data set used in this study was recorded during April 14-18, 2008, at the Russell Tower Measurement Facility, Redstone Arsenal, Huntsville, AL. Four of the five camera systems were designed to operate in the LWIR (approx. 8-12μm), and used either cooled mercury cadmium telluride (MCT) focal-plane-arrays (FPA), or a near-room temperature microbolometer. The lone MidIR polarimetric sensor was based on a liquid nitrogen (LN2) cooled indium antimonide (InSb) FPA, resulting in an approximate wavelength response of 3-5μm. The selection of cameras was comprised of the following optical designs: a LWIR "super-pixel," or division-of-focal plane (DoFP) sensor; two LWIR spinning-achromatic-retarder (SAR) based sensors; one LWIR division-of-amplitude (DoAM) sensor; and one MidIR division-of-aperture (DoA) sensor. Cross-sensor comparisons were conducted by examining calibrated Stokes images (e.g., S0, S1, S2, and degree-of-linear polarization (DOLP)) recorded by each sensor for a given target at approximately the same test periods to ensure that data sets were recorded under similar atmospheric conditions. Target detections are applied to the image set for each polarimetric sensor for further comparison, i.e., conventional receiver operating characteristic (ROC) curve analysis and an effective contrast ratio are considered.

  17. LWIR pupil imaging and longer-term calibration stability

    Science.gov (United States)

    LeVan, Paul D.; Sakoglu, Ünal

    2016-09-01

    A previous paper described LWIR pupil imaging, and an improved understanding of the behavior of this type of sensor for which the high-sensitivity focal plane array (FPA) operated at higher flux levels includes a reversal in signal integration polarity. We have since considered a candidate methodology for efficient, long-term calibration stability that exploits the following two properties of pupil imaging: (1) a fixed pupil position on the FPA, and (2) signal levels from the scene imposed on significant but fixed LWIR background levels. These two properties serve to keep each pixel operating over a limited dynamic range that corresponds to its location in the pupil and to the signal levels generated at this location by the lower and upper calibration flux levels. Exploiting this property for which each pixel of the Pupil Imager operates over its limited dynamic range, the signal polarity reversal between low and high flux pixels, which occurs for a circular region of pixels near the upper edges of the pupil illumination profile, can be rectified to unipolar integration with a two-level non-uniformity correction (NUC). Images corrected real-time with standard non-uniformity correction (NUC) techniques, are still subject to longer-term drifts in pixel offsets between recalibrations. Long-term calibration stability might then be achieved using either a scene-based non-uniformity correction approach, or with periodic repointing for off-source background estimation and subtraction. Either approach requires dithering of the field of view, by sub-pixel amounts for the first method, or by large off-source motions outside the 0.38 milliradian FOV for the latter method. We report on the results of investigations along both these lines.

  18. Design of a radiation hard silicon pixel sensor for X-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Schwandt, Joern

    2014-06-15

    At DESY Hamburg the European X-ray Free-Electron Laser (EuXFEL) is presently under construction. The EuXFEL has unique properties with respect to X-ray energy, instantaneous intensity, pulse length, coherence and number of pulses/sec. These properties of the EuXFEL pose very demanding requirements for imaging detectors. One of the detector systems which is currently under development to meet these challenges is the Adaptive Gain Integrating Pixel Detector, AGIPD. It is a hybrid pixel-detector system with 1024 x 1024 p{sup +} pixels of dimensions 200 μm x 200 μm, made of 16 p{sup +}nn{sup +}- silicon sensors, each with 10.52 cm x 2.56 cm sensitive area and 500 μm thickness. The particular requirements for the AGIPD are a separation between noise and single photons down to energies of 5 keV, more than 10{sup 4} photons per pixel for a pulse duration of less than 100 fs, negligible pile-up at the EuXFEL repetition rate of 4.5 MHz, operation for X-ray doses up to 1 GGy, good efficiency for X-rays with energies between 5 and 20 keV, and minimal inactive regions at the edges. The main challenge in the sensor design is the required radiation tolerance and high operational voltage, which is required to reduce the so-called plasma effect. This requires a specially optimized sensor. The X-ray radiation damage results in a build-up of oxide charges and interface traps which lead to a reduction of the breakdown voltage, increased leakage current, increased interpixel capacitances and charge losses. Extensive TCAD simulations have been performed to understand the impact of X-ray radiation damage on the detector performance and optimize the sensor design. To take radiation damage into account in the simulation, radiation damage parameters have been determined on MOS capacitors and gate-controlled diodes as function of dose. The optimized sensor design was fabricated by SINTEF. Irradiation tests on test structures and sensors show that the sensor design is radiation hard and

  19. Type II superlattice technology for LWIR detectors

    Science.gov (United States)

    Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.

    2016-05-01

    SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.

  20. Radiation calibration for LWIR Hyperspectral Imager Spectrometer

    Science.gov (United States)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2014-11-01

    The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.

  1. High spatial resolution LWIR hyperspectral sensor

    Science.gov (United States)

    Roberts, Carson B.; Bodkin, Andrew; Daly, James T.; Meola, Joseph

    2015-06-01

    Presented is a new hyperspectral imager design based on multiple slit scanning. This represents an innovation in the classic trade-off between speed and resolution. This LWIR design has been able to produce data-cubes at 3 times the rate of conventional single slit scan devices. The instrument has a built-in radiometric and spectral calibrator.

  2. LWIR Microgrid Polarimeter for Remote Sensing Studies

    Science.gov (United States)

    2010-02-28

    Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo

  3. VizieR Online Data Catalog: V1044 Her VR differential photometry (Lu+, 2016)

    Science.gov (United States)

    Lu, H.; Zhang, L.; Han, X. L.; Pi, Q.; Wang, D.

    2016-11-01

    V1044 Her was observed in the VR bands on May 22, 23 and 24, 2015 using the 60-cm reflecting telescope at Xinglong Station of the National Astronomical Observatories of China (NAOC). This telescope was equipped with a 1024x1024 pixel CCD and the standard Johnson UBVRI filters. (1 data file).

  4. Large-format and multispectral QWIP infrared focal plane arrays

    Science.gov (United States)

    Goldberg, Arnold C.; Choi, Kwong-Kit; Jhabvala, Murzy; La, Anh; Uppal, Parvez N.; Winn, Michael L.

    2003-09-01

    The next generation of infrared (IR) focal plane arrays (FPAs) will need to be a significant improvement in capability over those used in present-day second generation FLIRs. The Army's Future Combat System requires that the range for target identification be greater than the range of detection for an opposing sensor. To accomplish this mission, the number of pixels on the target must be considerably larger than that possible with 2nd generation FLIR. Therefore, the 3rd generation FLIR will need to be a large format staring FPA with more than 1000 pixels on each side. In addition, a multi-spectral capability will be required to allow operability in challenging ambient environments, discriminate targets from decoys, and to take advantage of the smaller diffraction blur in the MWIR for enhanced image resolution. We report on laboratory measurements of a large format (1024 x 1024 pixels) single-color LWIR IR FPA made using the corrugated quantum well infrared photodetector (QWIP) structure by the ARL/NASA team. The pixel pitch is 18 μm and the spectral response peaks at 8.8 μm with a 9.2 μm cutoff. We report on recent results using a MWIR/LWIR QWIP FPA to image the boost phase of a launch vehicle for missile defense applications and a LWIR/LWIR FPA designed specifically for detecting the disturbed soil associated with buried land mines. Finally, we report on the fabrication of a new read-out integrated circuit (ROIC) specifically designed for multi-spectral operation.

  5. Imaging polarimetry in the LWIR with microgrid polarimeters

    Directory of Open Access Journals (Sweden)

    Tyo J.S.

    2010-06-01

    Full Text Available Microgrid polarimeters have emerged over the past decade as a viable tool for performing real-time, highly accurate polarimetric imagery. A microgrid polarimeter operates by integrating a focal plane array (FPA with an array of micropolarizing optics. Mircrogrids have the advantage of being relatively compact, rugged, and inherently spatiotemporally aligned. However, they have the single disadvantage that the various polarization measurements that go into estimating the Stokes parameters at a particular pixel are actually coming from separate locations in the field. Hence, a microgrid polarimeter performs best where there is no image information, obviating the need for an imaging polarimeter! Recently we have been working with a LWIR microgrid polarimeter at the College of Optical Sciences. Our instrument is a DRS Sensors & Targeting Systems 640 x 480 HgCdTe FPA with linear polarizers at 0°, 45°, 90°, and 135° [1]. In this paper we will review our recent results that derive methods for artifact-free reconstruction of band limited imagery.

  6. Modified algorithm for mineral identification in LWIR hyperspectral imagery

    Science.gov (United States)

    Yousefi, Bardia; Sojasi, Saeed; Liaigre, Kévin; Ibarra Castanedo, Clemente; Beaudoin, Georges; Huot, François; Maldague, Xavier P. V.; Chamberland, Martin

    2017-05-01

    The applications of hyperspectral infrared imagery in the different fields of research are significant and growing. It is mainly used in remote sensing for target detection, vegetation detection, urban area categorization, astronomy and geological applications. The geological applications of this technology mainly consist in mineral identification using in airborne or satellite imagery. We address a quantitative and qualitative assessment of mineral identification in the laboratory conditions. We strive to identify nine different mineral grains (Biotite, Diopside, Epidote, Goethite, Kyanite, Scheelite, Smithsonite, Tourmaline, Quartz). A hyperspectral camera in the Long Wave Infrared (LWIR, 7.7-11.8 ) with a LW-macro lens providing a spatial resolution of 100 μm, an infragold plate, and a heating source are the instruments used in the experiment. The proposed algorithm clusters all the pixel-spectra in different categories. Then the best representatives of each cluster are chosen and compared with the ASTER spectral library of JPL/NASA through spectral comparison techniques, such as Spectral angle mapper (SAM) and Normalized Cross Correlation (NCC). The results of the algorithm indicate significant computational efficiency (more than 20 times faster) as compared to previous algorithms and have shown a promising performance for mineral identification.

  7. Implementation of TDI based digital pixel ROIC with 15μm pixel pitch

    Science.gov (United States)

    Ceylan, Omer; Shafique, Atia; Burak, A.; Caliskan, Can; Abbasi, Shahbaz; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    A 15um pixel pitch digital pixel for LWIR time delay integration (TDI) applications is implemented which occupies one fourth of pixel area compared to previous digital TDI implementation. TDI is implemented on 8 pixels with oversampling rate of 2. ROIC provides 16 bits output with 8 bits of MSB and 8 bits of LSB. Pixel can store 75 M electrons with a quantization noise of 500 electrons. Digital pixel TDI implementation is advantageous over analog counterparts considering power consumption, chip area and signal-to-noise ratio. Digital pixel TDI ROIC is fabricated with 0.18um CMOS process. In digital pixel TDI implementation photocurrent is integrated on a capacitor in pixel and converted to digital data in pixel. This digital data triggers the summation counters which implements TDI addition. After all pixels in a row contribute, the summed data is divided to the number of TDI pixels(N) to have the actual output which is square root of N improved version of a single pixel output in terms of signal-to-noise-ratio (SNR).

  8. State of the art of AIM LWIR and VLWIR MCT 2D focal plane detector arrays for higher operating temperatures

    Science.gov (United States)

    Figgemeier, H.; Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.

    2016-05-01

    In this paper AIM presents its latest results on both n-on-p and p-on-n low dark current planar MCT photodiode technology LWIR and VLWIR two-dimensional focal plane detector arrays with a cut-off wavelength >11μm at 80K and a 640x512 pixel format at a 20μm pitch. Thermal dark currents significantly reduced as compared to `Tennant's Rule 07' at a yet good detection efficiency >60% as well as results from NETD and photo response performance characterization are presented. The demonstrated detector performance paces the way for a new generation of higher operating temperature LWIR MCT FPAs with a <30mK NETD up to a 110K detector operating temperature and with good operability.

  9. Classifying objects in LWIR imagery via CNNs

    Science.gov (United States)

    Rodger, Iain; Connor, Barry; Robertson, Neil M.

    2016-10-01

    The aim of the presented work is to demonstrate enhanced target recognition and improved false alarm rates for a mid to long range detection system, utilising a Long Wave Infrared (LWIR) sensor. By exploiting high quality thermal image data and recent techniques in machine learning, the system can provide automatic target recognition capabilities. A Convolutional Neural Network (CNN) is trained and the classifier achieves an overall accuracy of > 95% for 6 object classes related to land defence. While the highly accurate CNN struggles to recognise long range target classes, due to low signal quality, robust target discrimination is achieved for challenging candidates. The overall performance of the methodology presented is assessed using human ground truth information, generating classifier evaluation metrics for thermal image sequences.

  10. 2-Cam LWIR imaging Stokes polarimeter

    Science.gov (United States)

    Kudenov, Michael W.; Dereniak, Eustace L.; Pezzaniti, Larry; Gerhart, Grant R.

    2008-04-01

    A 2-Cam micro-bolometer imaging polarimeter operating in the LWIR is presented. The system is capable of snapshot imaging Stokes polarimetry in any one channel (S I, S II, or S 3) by taking two simultaneous measurements of a scene. For measurements of S I or S II, the instrument relies on a specially optimized wire-grid beam-splitter. For measurements of S 3, a form birefringent quarter-wave retarder is inserted into the optical path. Specifics associated with the design of the wire-grid beam-splitter and the form birefringent quarter-wave retarder will be overviewed, with inclusion of RCWA simulations. Calibration and simulation procedures, as well as calibration targets, will be highlighted, and initial data from the instrument are presented.

  11. Pixel Experiments

    DEFF Research Database (Denmark)

    Petersen, Kjell Yngve; Søndergaard, Karin; Augustesen, Christina

    2015-01-01

    Pixel Experiments The term pixel is traditionally defined as any of the minute elements that together constitute a larger context or image. A pixel has its own form and is the smallest unit seen within a larger structure. In working with the potentials of LED technology in architectural lighting...... design it became relevant to investigate the use of LEDs as the physical equivalent of a pixel as a design approach. In this book our interest has been in identifying how the qualities of LEDs can be used in lighting applications. With experiences in the planning and implementation of architectural...... elucidate and exemplify already well-known problems in relation to the experience of vertical and horizontal lighting. Pixel Experiments exist as a synergy between speculative test setups and lighting design in practice. This book is one of four books that is published in connection with the research...

  12. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  13. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    Science.gov (United States)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  14. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  15. Architectural Analysis of a LLNL LWIR Sensor System

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Essex J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Curry, Jim R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LaFortune, Kai N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, Alicia M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-26

    The architecture of an LLNL airborne imaging and detection system is considered in this report. The purpose of the system is to find the location of substances of interest by detecting their chemical signatures using a long-wave infrared (LWIR) imager with geo-registration capability. The detection system consists of an LWIR imaging spectrometer as well as a network of computer hardware and analysis software for analyzing the images for the features of interest. The system has been in the operations phase now for well over a year, and as such, there is enough use data and feedback from the primary beneficiary to assess the current successes and shortcomings of the LWIR system architecture. LWIR system has been successful in providing reliable data collection and the delivery of a report with results. The weakness of the architecture has been identified in two areas: with the network of computer hardware and software and with the feedback of the state of the system health. Regarding the former, the system computers and software that carry out the data acquisition are too complicated for routine operations and maintenance. With respect to the latter, the primary beneficiary of the instrument’s data does not have enough metrics to use to filter the large quantity of data to determine its utility. In addition to the needs in these two areas, a latent need of one of the stakeholders is identified. This report documents the strengths and weaknesses, as well as proposes a solution for enhancing the architecture that simultaneously addresses the two areas of weakness and leverages them to meet the newly identified latent need.

  16. Spacecraft Line-of-Sight Stabilization Using LWIR Earth Signature

    Science.gov (United States)

    Quadrelli, Marco B.; Piazzolla, Sabino

    2012-01-01

    The objective of this study is to investigate the potential of using the bright and near-uniform Earth infrared (or wavelength infrared, LWIR) signature as a stable reference for accurate (micro-rad or less) inertial pointing and tracking on-board an space vehicle, including the determination of the fundamental limits of applicability of the proposed method for space missions. We demonstrate sub-micro radian level pointing accuracy under a representative set of disturbances experienced by the spacecraft in orbit.

  17. Mathematical Basis of Knowledge Discovery and Autonomous Intelligent Architectures - Eye-Tracking and Head-Mounted Display/Tracking Computer System for the Remote Control of Robots and Manipulators

    Science.gov (United States)

    2005-12-14

    etc; - Simulators of real time control process (nuclear station, aviation , and others); - Remote control of camera-head (Web-cameras, security ets...capabilities for man-operator using HTS & HTS+. Compare with the traditional HTS for aviation purposes, for the robot telecontrol it is essential to...a rate should not be worse than 1024x1024 pixels. The experiments showed that estimating thresholds of stereopsis with high accuracy requires

  18. LWIR polarimetry for enhanced facial recognition in thermal imagery

    Science.gov (United States)

    Gurton, Kristan P.; Yuffa, Alex J.; Videen, Gorden

    2014-05-01

    We present a series of long-wave-infrared (LWIR) polarimetric-based thermal images of facial profiles in which polarization-state information of the image forming radiance is retained and displayed. The resultant polarimetric images show enhanced facial features, additional texture, and details that are not present in the corresponding conventional thermal imagery. It has been generally thought that conventional thermal imagery (MidiR or LWIR) could not produce the detailed spatial information required for reliable human identification due to the so-called "ghosting" effect often seen in thermal imagery of human subjects. By using polarimetric information, we are able to extract subtle surface features of the human face, thus improving subject identification. The considered polarimetric image sets include the conventional thermal intensity image, S0 , the two Stokes images, S1 and S2, and a Stokes image product called the degree-of-linear-polarization (DoLP) image. Finally, Stokes imagery is combined with Fresnel relations to extract additional 3D surface information.

  19. 3D-FFT for Signature Detection in LWIR Images

    Energy Technology Data Exchange (ETDEWEB)

    Medvick, Patricia A.; Lind, Michael A.; Mackey, Patrick S.; Nuffer, Lisa L.; Foote, Harlan P.

    2007-11-20

    Improvements in analysis detection exploitation are possible by applying whitened matched filtering within the Fourier domain to hyperspectral data cubes. We describe an implementation of a Three Dimensional Fast Fourier Transform Whitened Matched Filter (3DFFTMF) approach and, using several example sets of Long Wave Infra Red (LWIR) data cubes, compare the results with those from standard Whitened Matched Filter (WMF) techniques. Since the variability in shape of gaseous plumes precludes the use of spatial conformation in the matched filtering, the 3DFFTMF results were similar to those of two other WMF methods. Including a spatial low-pass filter within the Fourier space can improve signal to noise ratios and therefore improve detection limit by facilitating the mitigation of high frequency clutter. The improvement only occurs if the low-pass filter diameter is smaller than the plume diameter.

  20. Solid state temperature-dependent NUC (non-uniformity correction) in uncooled LWIR (long-wave infrared) imaging system

    Science.gov (United States)

    Cao, Yanpeng; Tisse, Christel-Loic

    2013-06-01

    In uncooled LWIR microbolometer imaging systems, temperature fluctuations of FPA (Focal Plane Array) as well as lens and mechanical components placed along the optical path result in thermal drift and spatial non-uniformity. These non-idealities generate undesirable FPN (Fixed-Pattern-Noise) that is difficult to remove using traditional, individual shutterless and TEC-less (Thermo-Electric Cooling) techniques. In this paper we introduce a novel single-image based processing approach that marries the benefits of both statistical scene-based and calibration-based NUC algorithms, without relying neither on extra temperature reference nor accurate motion estimation, to compensate the resulting temperature-dependent non-uniformities. Our method includes two subsequent image processing steps. Firstly, an empirical behavioral model is derived by calibrations to characterize the spatio-temporal response of the microbolometric FPA to environmental and scene temperature fluctuations. Secondly, we experimentally establish that the FPN component caused by the optics creates a spatio-temporally continuous, low frequency, low-magnitude variation of the image intensity. We propose to make use of this property and learn a prior on the spatial distribution of natural image gradients to infer the correction function for the entire image. The performance and robustness of the proposed temperature-adaptive NUC method are demonstrated by showing results obtained from a 640×512 pixels uncooled LWIR microbolometer imaging system operating over a broad range of temperature and with rapid environmental temperature changes (i.e. from -5°C to 65°C within 10 minutes).

  1. Deep transfer learning for automatic target classification: MWIR to LWIR

    Science.gov (United States)

    Ding, Zhengming; Nasrabadi, Nasser; Fu, Yun

    2016-05-01

    Publisher's Note: This paper, originally published on 5/12/2016, was replaced with a corrected/revised version on 5/18/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. When dealing with sparse or no labeled data in the target domain, transfer learning shows its appealing performance by borrowing the supervised knowledge from external domains. Recently deep structure learning has been exploited in transfer learning due to its attractive power in extracting effective knowledge through multi-layer strategy, so that deep transfer learning is promising to address the cross-domain mismatch. In general, cross-domain disparity can be resulted from the difference between source and target distributions or different modalities, e.g., Midwave IR (MWIR) and Longwave IR (LWIR). In this paper, we propose a Weighted Deep Transfer Learning framework for automatic target classification through a task-driven fashion. Specifically, deep features and classifier parameters are obtained simultaneously for optimal classification performance. In this way, the proposed deep structures can extract more effective features with the guidance of the classifier performance; on the other hand, the classifier performance is further improved since it is optimized on more discriminative features. Furthermore, we build a weighted scheme to couple source and target output by assigning pseudo labels to target data, therefore we can transfer knowledge from source (i.e., MWIR) to target (i.e., LWIR). Experimental results on real databases demonstrate the superiority of the proposed algorithm by comparing with others.

  2. Low-Cost, Silicon Carbide Replication Technique for LWIR Mirror Fabrication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG proposes an innovative optical manufacturing approach that will enable the low-cost fabrication of lightweighted, Long Wave Infrared (LWIR) Silicon Carbide (SiC)...

  3. Surface Leakage Suppression in LWIR Type-II Superlattice Photodetectors Using Electrical Gating Technique Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High performance LWIR detectors are highly needed. In order to image from long distance, it is important that imagers have high sensitivity, high resolution, and...

  4. Gimbal Integration to Small Format, Airborne, MWIR and LWIR Imaging Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is for enhanced sensor performance and high resolution imaging for Long Wave InfraRed (LWIR) and Medium Wave IR (MWIR) camera systems used in...

  5. Comparison of the inversion periods for MidIR and LWIR polarimetric and conventional thermal imagery

    Science.gov (United States)

    Felton, M.; Gurton, K. P.; Pezzaniti, J. L.; Chenault, D. B.; Roth, L. E.

    2010-04-01

    We report the results of a diurnal study in which radiometrically calibrated polarimetric and conventional thermal imagery are recorded in the MidIR and LWIR to identify and compare the respective time periods in which minimum target contrast is achieved. The MidIR polarimetric sensor is based on a division-of-aperture approach and has a 640x512 InSb focal-plane array, while the LWIR polarimetric sensor uses a spinning achromatic retarder to perform the polarimetric filtering and has a 324x256 microbolometer focal-plane array. The images used in this study include the S0 and S1 Stokes images of a scene containing a military vehicle and the natural background. In addition, relevant meteorological parameters measured during the test period include air temperature, ambient loading in the LWIR, relative humidity, cloud cover, height, and density. The data shows that the chief factors affecting polarimetric contrast in both wavebands are the amount of thermal emission from the objects in the scene and the abundance of MidIR and LWIR sources in the optical background. In particular, it has been observed that the MidIR polarimetric contrast was positively correlated to the presence of MidIR sources in the optical background, while the LWIR polarimetric contrast was negatively correlated to the presence of LWIR sources in the optical background.

  6. Performance of 12- μm- to 15- μm-Pitch MWIR and LWIR HgCdTe FPAs at Elevated Temperatures

    Science.gov (United States)

    Strong, Roger L.; Kinch, Michael A.; Armstrong, John M.

    2013-11-01

    Infrared (IR) focal-plane arrays (FPAs) with higher operating temperatures and smaller pitches enable reduced size, weight, and power in infrared systems. We have characterized a large number of medium- and long-wavelength IR (MWIR and LWIR) FPAs as a function of temperature and cutoff wavelength to determine the impact of these parameters on their performance. The 77-K cutoff wavelength range for the MWIR arrays was 5.0 μm to 5.6 μm, and 8.6 μm to 11.3 μm for the LWIR. The dark currents in DRS's high-density vertically integrated photodiode (HDVIP)® FPAs (based on a front-side- illuminated, via-interconnected, cylindrical-geometry N+/N/P architecture) are dominated by Auger-7 recombination from 120 K to 200 K for the MWIR and 70 K to 100 K for the LWIR. In these temperature ranges the FPA operability is generally limited not by dark current defects but by noise defects. Pixels with high 1/ f noise should produce a tail in the root-mean-square (rms) noise distribution. We have found that the skewness of the rms noise distribution is the simplest measure of an array's 1/ f noise, and that the rms noise skewness typically shows little variation over these temperature ranges. The temperature dependence of the defect counts in normal arrays (wet etched prior to CdTe interdiffusion) increases as n i, while nonstandard arrays (ion milled or plasma etched prior to CdTe interdiffusion) can have high 1/ f noise and defect counts that vary as n {i/2}. Our models indicate that, if the dominant dark current is due to diffusion, then the 1/ f noise varies as n {i/2}, whereas if depletion current dominates, then the 1/ f noise varies as n i. Systemic 1/ f noise is not an issue for DRS's standard MWIR FPAs at 110 K to 160 K, or for standard LWIR FPAs at 77 K to 100 K.

  7. ATLAS IBL Pixel Upgrade

    CERN Document Server

    La Rosa, A

    2011-01-01

    The upgrade for ATLAS detector will undergo different phase towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on pixel module is presented in this paper

  8. The roadmap for low price- high performance IR detector based on LWIR to NIR light up-conversion approach

    Science.gov (United States)

    Kipper, R.; Arbel, D.; Baskin, E.; Fayer, A.; Epstein, A.; Shuall, N.; Saguy, A.; Veksler, D.; Spektor, B.; Ben-Aharon, D.; Garber, V.

    2009-05-01

    The introduction of an uncooled microbolometer image sensor about a decade ago enabled cost reduction of IR cameras. As a result, the available markets grew both in military and civilian applications. Since then, the price of microbolometer was gradually reduced due to introduction of devices with smaller pixel, maturity of the technology and quantity growth. However, the requirement for a vacuum package still limits the price of microbolometer based cameras to several thousands of dollars. Sirica's novel wavelength conversion technology aims at breaking this paradigm by being uncooled and vacuumless, lowering IR camera prices by an order of magnitude, opening the way to new mass markets. Sirica's proprietary IR-to-Visible/NIR conversion layer allows for low-cost high performance LWIR detector with no requirement for cooling and vacuum packaging. In the last years, the development efforts focused on development of the conversion media. Recently, a parallel effort for the integration of the conversion layer together with other detector components has started. Packaging of detector components, such as conversion layer, pumping light source, dichroic filter, and their coupling with silicon CMOS image sensor have great importance from a price-performance point of view. According to the company's business-development roadmap, the detector prototype should be available during the first quarter of 2010.

  9. Wide Field Camera 3: A Powerful New Imager for the Hubble Space Telescope

    Science.gov (United States)

    Kimble, Randy

    2008-01-01

    Wide Field Camera 3 (WFC3) is a powerful UV/visible/near-infrared camera in development for installation into the Hubble Space Telescope during upcoming Servicing Mission 4. WFC3 provides two imaging channels. The UVIS channel incorporates a 4096 x 4096 pixel CCD focal plane with sensitivity from 200 to 1000 nm. The IR channel features a 1024 x 1024 pixel HgCdTe focal plane covering 850 to 1700 nm. We report here on the design of the instrument, the performance of its flight detectors, results of the ground test and calibration program, and the plans for the Servicing Mission installation and checkout.

  10. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  11. LWIR hyperspectral change detection for target acquisition and situation awareness in urban areas

    NARCIS (Netherlands)

    Dekker, R.J.; Schwering, P.B.W.; Benoist, K.W.; Pignatti, S.; Santini, F.; Friman, O.

    2013-01-01

    This paper studies change detection of LWIR (Long Wave Infrared) hyperspectral imagery. Goal is to improve target acquisition and situation awareness in urban areas with respect to conventional techniques. Hyperspectral and conventional broadband high-spatial-resolution data were collected during th

  12. Novel concept of TDI readout circuit for LWIR detector

    Science.gov (United States)

    Kim, Byunghyuck; Yoon, Nanyoung; Lee, Hee Chul; Kim, Choong-Ki

    2000-07-01

    Noise property is the prime consideration in readout circuit design. The output noise caused by the photon noise, which dominates total noise in BLIP detectors, is limited by the integration time that an element looks at a specific point in the scene. Large integration time leads to a low noise performance. Time-delay integration (TDI) is used to effectively increase the integration time and reduce the photon noise. However, it increases the number of dead pixels and requires large integration capacitors and low noise output stage of the readout circuit. In this paper, to solve these problems, we propose a new concept of readout circuit, which performs background suppression, cell-to-cell background current non-uniformity compensation, and dead pixel correction using memory, ADC, DAC, and current copier cell. In simulation results, comparing with the conventional TDI readout circuit, the integration capacitor size can be reduced to 1/5 and trans-impedance gain can be increased by five times. Therefore, the new TDI readout circuit does not require large area and low noise output stage. And the error of skimming current is less than 2%, and the fixed pattern noise induced by cell-to-cell background current variation is reduced to less than 1%.

  13. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  14. A 640×512-20μm dual-polarity ROIC for MWIR and LWIR hybrid FPAs

    Science.gov (United States)

    Eminoglu, Selim; Incedere, O. Samet; Bayhan, Nusret; Isikhan, Murat; Soyer, S. T.; Ustundag, C. M. B.; Kocak, Serhat; Turan, Ozge; Eksi, Umut; Akin, Tayfun

    2016-05-01

    This paper reports the development of a new dual-polarity Direct-Injection (DI) Readout Integrated Circuit (ROIC), called MT6420DDA, designed to support back-to-back connected photodiodes with a single contact per pixel using dual pixel input circuitries suitable for both p-on-n and n-on-p type detectors. The ROIC has a format of 640 × 512 (VGA) and a pixel pitch of 20μm, and can be used to build dual-color or dual-band FPAs working in the MWIR and/or LWIR bands. The ROIC supports snapshot operation with Integrate-then-Read (ITR) and Integrate-while-Read modes (IWR). MT6420DDA has a system-on-chip architecture, with programmable biasing, timing, and configuration. The ROIC supports 2, 4, and 8-output modes at pixel output rates up to 12.5 MHz per output. It runs on 3.3 V analog and 1.8 V digital supplies, and dissipates less than 135 mW in the 4-output mode at 10 MHz. The ROIC has separate programmable full well capacitance values of 1.5 Me-, 3.0 Me-, and 6.0 Me- for both polarities in the high-gain (HG), mid-gain (MG), and low-gain (LG) modes. The ROIC supports two type of polarity switching modes as PSBF (Polarity Switching between Frames) and PSWF (Polarity Switching within Frames). In the PSBF modes, an alternating input polarity is used for each detector type for each frame during each integration period, possibly with different full-well and integration time settings. In the PSWF mode, both type of pixels are exposed almost simultaneously, where detector current is integrated in a time multiplexed manner using the two separate integration capacitors of the pixel input circuitry. The PSBF mode is simple, but the time stamp for each image frame is different. The PSWF mode is complex, but results in a pseudo simultaneous registration of images for each color or spectral band. The ROIC has been developed for cryogenic operation down to 65K with an input referred noise level of less than 470 e- rms in the low-gain (LG) mode at 77K. The MT6420DDA ROIC has been

  15. Mineral Classification of Land Surface Using Multispectral LWIR and Hyperspectral SWIR Remote-Sensing Data. A Case Study over the Sokolov Lignite Open-Pit Mines, the Czech Republic

    Directory of Open Access Journals (Sweden)

    Gila Notesco

    2014-07-01

    Full Text Available Remote-sensing techniques offer an efficient alternative for mapping mining environments and assessing the impacts of mining activities. Airborne multispectral data in the thermal region and hyperspectral data in the optical region, acquired with the Airborne Hyperspectral Scanner (AHS sensor over the Sokolov lignite open-pit mines in the Czech Republic, were analyzed. The emissivity spectrum was calculated for each vegetation-free land pixel in the longwave infrared (LWIR-region image using the surface-emitted radiation, and the reflectance spectrum was derived from the visible, near-infrared and shortwave-infrared (VNIR–SWIR-region image using the solar radiation reflected from the surface, after applying atmospheric correction. The combination of calculated emissivity, with the ability to detect quartz, and SWIR reflectance spectra, detecting phyllosilicates and kaolinite in particular, enabled estimating the content of the dominant minerals in the exposed surface. The difference between the emissivity values at λ = 9.68 µm and 8.77 µm was found to be a useful index for estimating the relative amount of quartz in each land pixel in the LWIR image. The absorption depth at around 2.2 µm in the reflectance spectra was used to estimate the relative amount of kaolinite in each land pixel in the SWIR image. The resulting maps of the spatial distribution of quartz and kaolinite were found to be in accordance with the geological nature and origin of the exposed surfaces and demonstrated the benefit of using data from both thermal and optical spectral regions to map the abundance of the major minerals around the mines.

  16. A compact LWIR Fourier transform imaging spectrometer employing a variable gap Fabry-Perot interferometer

    Science.gov (United States)

    Zhang, Fang; Gao, Jiaobo; Liu, Fang; Zhao, Yujie; Zheng, Yawei; Zhang, Lei

    2016-10-01

    With unique working principle and spectral characteristic, the long wave infrared (LWIR) interferometric spectral imaging is a popular technology with wide application in many fields. In order to miniaturize and light the instrument, a new method of LWIR spectral imaging system based on a variable gap Fabry-Perot (FP) interferometer is researched. With the system working principle analyzed, theoretically, it is researched that how to make certain the primary parameter, such as, the reflectivity of the two interferometric cavity surfaces and the wedge angle of interferometric cavity. A prototype is developed and good experimental results of blackbody and polypropylene film are obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.

  17. Variation in MidIR and LWIR polarimetric imagery due to diurnal and meteorological impacts

    Science.gov (United States)

    Gurton, Kristan P.; Felton, Melvin

    2008-04-01

    We present radiometric and polarimetric calibrated imagery recorded in both the mid-wave IR (MidIR) and long wave IR (LWIR) as a function diurnal variation over several multiday periods. We compare differences in polarimetric and conventional thermal imagry for both IR atmospheric transmission windows, i.e., 3-5μm and 8-12 μm regions. Meteorological parameters measured during the study include temperature, relative-humidity, wind-speed/direction, precipitation, and ambient atmospheric IR loading. The two camera systems used in the study differed significantly in design. The LWIR polarimetric sensor utilizes a spinning achromatic retarder and is best suited for static scenes, while the MidIR system is based on a division-of-aperture design and is capable of recording polarimetric imagery of targets that are rapidly moving. Examples of both S0 (conventional thermal) and degree-of-linear polarization (DOLP) imagery are presented and compared.

  18. Moving beyond flat earth: dense 3D scene reconstruction from a single FL-LWIR camera

    Science.gov (United States)

    Stone, K.; Keller, J. M.; Anderson, D. T.

    2013-06-01

    In previous work an automatic detection system for locating buried explosive hazards in forward-looking longwave infrared (FL-LWIR) and forward-looking ground penetrating radar (FL-GPR) data was presented. This system consists of an ensemble of trainable size-contrast filters prescreener coupled with a secondary classification step which extracts cell-structured image space features, such as local binary patterns (LBP), histogram of oriented gradients (HOG), and edge histogram descriptors (EHD), from multiple looks and classifies the resulting feature vectors using a support vector machine. Previously, this system performed image space to UTM coordinate mapping under a flat earth assumption. This limited its applicability to flat terrain and short standoff distances. This paper demonstrates a technique for dense 3D scene reconstruction from a single vehicle mounted FL-LWIR camera. This technique utilizes multiple views and standard stereo vision algorithms such as polar rectification and optimal correction. Results for the detection algorithm using this 3D scene reconstruction approach on data from recent collections at an arid US Army test site are presented. These results are compared to those obtained under the flat earth assumption, with special focus on rougher terrain and longer standoff distance than in previous experiments. The most recent collection also allowed comparison between uncooled and cooled FL-LWIR cameras for buried explosive hazard detection.

  19. Characterization of Pixel Sensors

    CERN Document Server

    Oliveira, Felipe Ferraz

    2017-01-01

    It was commissioned at CERN ATLAS pixel group a fluorescence setup for characterization of pixel sensors. The idea is to measure the energies of different targets to calibrate your sensor. It was measured four matrices (80, 95, 98 and 106) of the Investigator1 sensor with different deep PW using copper, iron and titanium as target materials. The matrix 80 has a higher gain (0.065 ± 0.002) and matrix 106 has a better energy resolution (0.05 ± 0.04). The noise of the setup is around 3.6 mV .

  20. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  1. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  2. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  3. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  4. Alpine Pixel Detector Layout

    CERN Document Server

    Delebecque, P; The ATLAS collaboration; Geffroy, N; Massol, N; Rambure, T; Todorov, T

    2013-01-01

    A description of an optimized layout of pixel sensors based on a stave that combines both barrel and endcap module orientations. The mechanical stiffness of the structure is provided by carbon fiber shells spaced by carbon foam. The cooling of the modules is provided by two-phase $CO_{2}$ flowing in a thin titanium pipe glued inside the carbon fiber foam. The electrical services of all modules are provided by a single stave flex. This layout eliminates the need for separate barrel and endcap detector structures, and therefore the barrel services material in front of the endcap. The transition from barrel to endcap module orientation is optimized separately for each layer in order to minimize the active pixel area and the traversed material. The sparse module spacing in the endcap part of the stave allows for multiple fixation points, and for a stiff overall structure composed only of staves interconnected by stiff disks.

  5. QCL as a game changer in MWIR and LWIR military and homeland security applications

    Science.gov (United States)

    Patel, C. Kumar N.; Lyakh, Arkadiy; Maulini, Richard; Tsekoun, Alexei; Tadjikov, Boris

    2012-06-01

    QCLs represent an important advance in MWIR and LWIR laser technology. With the demonstration of CW/RT QCLs, large number applications for QCLs have opened up, some of which represent replacement of currently used laser sources such as OPOs and OPSELs, and others being new uses which were not possible using earlier MWIR/LWIR laser sources, namely OPOs, OPSELs and CO2 lasers. Pranalytica has made significant advances in CW/RT power and WPE of QCLs and through its invention of a new QCL structure design, the non-resonant extraction, has demonstrated single emitter power of >4.7 W and WPE of >17% in the 4.4μm-5.0μm region. Pranalytica has also been commercially supplying the highest power MWIR QCLs with high WPEs. The NRE design concept now has been extended to the shorter wavelengths (3.8μm-4.2μm) with multiwatt power outputs and to longer wavelengths (7μm-10μm) with >1 W output powers. The high WPE of the QCLs permits RT operation of QCLs without using TECs in quasi-CW mode where multiwatt average powers are obtained even in ambient T>70°C. The QCW uncooled operation is particularly attractive for handheld, battery-operated applications where electrical power is limited. This paper describes the advances in QCL technology and applications of the high power MWIR and LWIR QCLs for defense applications, including protection of aircraft from MANPADS, standoff detection of IEDs, insitu detection of CWAs and explosives, infrared IFF beacons and target designators. We see that the SWaP advantages of QCLs are game changers.

  6. SWIR, VIS and LWIR observer performance against handheld objects: a comparison

    Science.gov (United States)

    Adomeit, Uwe

    2016-10-01

    The short wave infrared spectral range caused interest to be used in day and night time military and security applications in the last years. This necessitates performance assessment of SWIR imaging equipment in comparison to the one operating in the visual (VIS) and thermal infrared (LWIR) spectral range. In the military context (nominal) range is the main performance criteria. Discriminating friend from foe is one of the main tasks in today's asymmetric scenarios and so personnel, human activities and handheld objects are used as targets to estimate ranges. The later was also used for an experiment at Fraunhofer IOSB to get a first impression how the SWIR performs compared to VIS and LWIR. A human consecutively carrying one of nine different civil or military objects was recorded from five different ranges in the three spectral ranges. For the visual spectral range a 3-chip color-camera was used, the SWIR range was covered by an InGaAs-camera and the LWIR by an uncooled bolometer. It was ascertained that the nominal spatial resolution of the three cameras was in the same magnitude in order to enable an unbiased assessment. Daytime conditions were selected for data acquisition to separate the observer performance from illumination conditions and to some extend also camera performance. From the recorded data, a perception experiment was prepared. It was conducted as a nine-alternative forced choice, unlimited observation time test with 15 observers participating. Before the experiment, the observers were trained on close range target data. Outcome of the experiment was the average probability of identification versus range between camera and target. The comparison of the range performance achieved in the three spectral bands gave a mixed result. On one hand a ranking VIS / SWIR / LWIR in decreasing order can be seen in the data, but on the other hand only the difference between VIS and the other bands is statistically significant. Additionally it was not possible

  7. Pixelated neutron image plates

    Science.gov (United States)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  8. The Kepler Pixel Response Function

    CERN Document Server

    Bryson, Stephen T; Jenkins, Jon M; Chandrasekaran, Hema; Klaus, Todd; Caldwell, Douglas A; Gilliland, Ronald L; Haas, Michael R; Dotson, Jessie L; Koch, David G; Borucki, William J

    2010-01-01

    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurement...

  9. ATLAS-IBL Pixel Upgrade

    CERN Document Server

    LaRosa, A; The ATLAS collaboration

    2010-01-01

    The upgrade for the ATLAS detector will undergo different phase towards Super-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (SLHC Phase I). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.2 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reduction of the pixel size and of the material budget. Three different promising sensor technologies (Planar-Si, 3D-Si and Diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on pixel module studies, irradiation and beam test plans will be presented.

  10. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  11. Photodetector development at Fraunhofer IAF: From LWIR to SWIR operating from cryogenic close to room temperature

    Science.gov (United States)

    Daumer, V.; Gramich, V.; Müller, R.; Schmidt, J.; Rutz, F.; Stadelmann, T.; Wörl, A.; Rehm, R.

    2017-02-01

    Photodetectors in the non-visible region of the electromagnetic spectrum are essential for security, defense and space science as well as industrial and scientific applications. The research activities at Fraunhofer IAF cover a broad range in the infrared (IR) regime. Whereas short-wavelength IR (SWIR, <1.7 μm) detectors are realized by InGaAs/InP structures, InAs/GaSb type-II superlattice (T2SL) infrared detectors are developed for the spectral bands from mid- (MWIR, 3-5 μm) to long-wavelength IR (LWIR, 8-12 μm). We report on the extension of the superlattice empirical pseudopotential method (SEPM) to 300 K for the design of LWIR heterostructures for operation near room temperature. Recently, we have also adapted heterostructure concepts to our well established bi-spectral T2SL MWIR detector resulting in a dark current density below 2 × 10-9 A/cm2 for a cut-off wavelength close to 5 μm. Finally, we present first results obtained with a gated viewing system based on our InGaAs/InAlAs/InP avalanche photodiode arrays.

  12. Minority carrier lifetimes in different doped LWIR HgCdTe grown by LPE

    Science.gov (United States)

    Qiu, GuangYin; Wei, YanFeng; Sun, QuanZhi; Yang, JianRong

    2012-10-01

    The carrier lifetimes of different types of p-type doped HgCdTe(x~0.23) long wavelength infrared (LWIR) epilayers were measured which were Hg-vacancy, Au and arsenic doped ones prepared by Te-rich Liquid-phase epitaxy (LPE). By comparing the lifetimes of Hg-vacancy and extrinsic doped HgCdTe, we focus on three primary mechanisms limiting the lifetimes in these different p-type HgCdTe samples: radiative recombination, Auger recombination and Schokley-Read- Hall (SRH) Recombination. The recombination mechanism in p-type HgCdTe is the SRH recombination at low temperatures and Auger and radiative recombination at high temperature. It is found that the lifetime of As-doped and Au-doped HgCdTe is far longer than that of Hg-vacancy-doped sample which is caused by the deep energy level of the Hg-vacancy acceptor that is considered as a recombination center in HgCdTe. Also we found lifetime in those p-type doped HgCdTe LWIR epilayers is limited by SRH by comparing the experimental lifetimes with the calculated data. Impurity doping was found to have a main effect on minority carrier lifetime.

  13. Improving the detection task performance of a LWIR imaging system through the use of wavefront coding

    Science.gov (United States)

    Gross, Kevin A.; Kubala, Kenny

    2007-04-01

    In a traditional optical system the imaging performance is maximized at a single point in the operational space. This characteristic leads to maximizing the probability of detection if the object is on axis, at the designed conjugate, with the designed operational temperature and if the system components are manufactured without error in form and alignment. Due to the many factors that influence the system's image quality the probability of detection will decrease away from this peak value. An infrared imaging system is presented that statistically creates a higher probability of detection over the complete operational space for the Hotelling observer. The system is enabled through the use of wavefront coding, a computational imaging technology in which optics, mechanics, detection and signal processing are combined to enable LWIR imaging systems to be realized with detection task performance that is difficult or impossible to obtain in the optical domain alone. The basic principles of statistical decision theory will be presented along with a specific example of how wavefront coding technology can enable improved performance and reduced sensitivity to some of the fundamental constraints inherent in LWIR systems.

  14. Standoff chemical D and Id with extended LWIR hyperspectral imaging spectroradiometer

    Science.gov (United States)

    Prel, Florent; Moreau, Louis; Lavoie, Hugo; Bouffard, François; Thériault, Jean-Marc; Vallieres, Christian; Roy, Claude; Dubé, Denis

    2013-05-01

    Standoff detection and identification (D and Id) of unknown volatile chemicals such as chemical pollutants and consequences of industrial incidents has been increasingly desired for first responders and for environmental monitoring. On site gas detection sensors are commercially available and several of them can even detect more than one chemical species, however only few of them have the capabilities of detecting a wide variety of gases at long and safe distances. The ABB Hyperspectral Imaging Spectroradiometer (MR-i), configured for gas detection detects and identifies a wide variety of chemical species including toxic industrial chemicals (TICs) and surrogates several kilometers away from the sensor. This configuration is called iCATSI for improved Compact Atmospheric Sounding Interferometer. iCATSI is a standoff passive system. The modularity of the MR-i platform allows optimization of the detection configuration with a 256 x 256 Focal Plane Array imager or a line scanning imager both covering the long wave IR atmospheric window up to 14 μm. The uniqueness of its extended LWIR cut off enables to detect more chemicals as well as provide higher probability of detection than usual LWIR sensors.

  15. The ALICE pixel detector

    CERN Document Server

    Mercado Perez, J

    2002-01-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well. (3 refs).

  16. Pixelated gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Dolinsky, Sergei Ivanovich; Yanoff, Brian David; Guida, Renato; Ivan, Adrian

    2016-12-27

    A pixelated gamma detector includes a scintillator column assembly having scintillator crystals and optical transparent elements alternating along a longitudinal axis, a collimator assembly having longitudinal walls separated by collimator septum, the collimator septum spaced apart to form collimator channels, the scintillator column assembly positioned adjacent to the collimator assembly so that the respective ones of the scintillator crystal are positioned adjacent to respective ones of the collimator channels, the respective ones of the optical transparent element are positioned adjacent to respective ones of the collimator septum, and a first photosensor and a second photosensor, the first and the second photosensor each connected to an opposing end of the scintillator column assembly. A system and a method for inspecting and/or detecting defects in an interior of an object are also disclosed.

  17. Design investigation of a cost-effective dual-band (MWIR/LWIR) and a wide band optically athermalized application

    Science.gov (United States)

    Ding, Fujian; Washer, Joe; Morgen, Daniel

    2016-10-01

    Dual-band and wide-band lenses covering both the MWIR and LWIR spectral bands are increasingly needed as dualband MWIR/LWIR detectors have become prevalent and broadband applications have expanded. Currently in dual-band /wide-band applications, the use of more than three elements per lens group and the use of chalcogenide glass is common. This results in expensive systems. Also, many chalcogenides are available only in small diameters, which is a problem for large aperture broadband lenses. In this paper an investigation of cost-effective designs for dual-band MWIR/LWIR lens using only widely available IR materials, specifically Ge, ZnSe and ZnS were performed. An athermalized dual-band MWIR/LWIR using these three materials is presented. The performance analysis of this lens shows that this design form with these three common IR materials works well in certain applications. The required large size blanks of these materials can be easily obtained. Traditional chromatic aberration correction without diffraction for either wide-band or dual-band application was employed. In addition, the methods of harmonic diffraction for dual-band applications, especially with one narrow band, were used for two different presented designs.

  18. Advanced LWIR hyperspectral sensor for on-the-move proximal detection of liquid/solid contaminants on surfaces

    Science.gov (United States)

    Giblin, Jay P.; Dixon, John; Dupuis, Julia R.; Cosofret, Bogdan R.; Marinelli, William J.

    2017-05-01

    Sensor technologies capable of detecting low vapor pressure liquid surface contaminants, as well as solids, in a noncontact fashion while on-the-move continues to be an important need for the U.S. Army. In this paper, we discuss the development of a long-wave infrared (LWIR, 8-10.5 μm) spatial heterodyne spectrometer coupled with an LWIR illuminator and an automated detection algorithm for detection of surface contaminants from a moving vehicle. The system is designed to detect surface contaminants by repetitively collecting LWIR reflectance spectra of the ground. Detection and identification of surface contaminants is based on spectral correlation of the measured LWIR ground reflectance spectra with high fidelity library spectra and the system's cumulative binary detection response from the sampled ground. We present the concepts of the detection algorithm through a discussion of the system signal model. In addition, we present reflectance spectra of surfaces contaminated with a liquid CWA simulant, triethyl phosphate (TEP), and a solid simulant, acetaminophen acquired while the sensor was stationary and on-the-move. Surfaces included CARC painted steel, asphalt, concrete, and sand. The data collected was analyzed to determine the probability of detecting 800 μm diameter contaminant particles at a 0.5 g/m2 areal density with the SHSCAD traversing a surface.

  19. Planar Pixelations and Image Recognition

    CERN Document Server

    Rowekamp, Brandon

    2011-01-01

    Any subset of the plane can be approximated by a set of square pixels. This transition from a shape to its pixelation is rather brutal since it destroys geometric and topological information about the shape. Using a technique inspired by Morse Theory, we algorithmically produce a PL approximation of the original shape using only information from its pixelation. This approximation converges to the original shape in a very strong sense: as the size of the pixels goes to zero we can recover important geometric and topological invariants of the original shape such as Betti numbers, area, perimeter and curvature measures.

  20. Diamond pixel modules

    CERN Document Server

    Gan, K K; Robichaud, A; Potenza, R; Kuleshov, S; Kagan, H; Kass, R; Wermes, N; Dulinski, W; Eremin, V; Smith, S; Sopko, B; Olivero, P; Gorisek, A; Chren, D; Kramberger, G; Schnetzer, S; Weilhammer, P; Martemyanov, A; Hugging, F; Pernegger, H; Lagomarsino, S; Manfredotti, C; Mishina, M; Trischuk, W; Dobos, D; Cindro, V; Belyaev, V; Duris, J; Claus, G; Wallny, R; Furgeri, A; Tuve, C; Goldstein, J; Sciortino, S; Sutera, C; Asner, D; Mikuz, M; Lo Giudice, A; Velthuis, J; Hits, D; Griesmayer, E; Oakham, G; Frais-Kolbl, H; Bellini, V; D'Alessandro, R; Cristinziani, M; Barbero, M; Schaffner, D; Costa, S; Goffe, M; La Rosa, A; Bruzzi, M; Schreiner, T; de Boer, W; Parrini, G; Roe, S; Randrianarivony, K; Dolenc, I; Moss, J; Brom, J M; Golubev, A; Mathes, M; Eusebi, R; Grigoriev, E; Tsung, J W; Mueller, S; Mandic, I; Stone, R; Menichelli, D

    2011-01-01

    With the commissioning of the LHC in 2010 and upgrades expected in 2015, ATLAS and CMS are planning to upgrade their innermost tracking layers with radiation hard technologies. Chemical Vapor Deposition diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle, CDF and all LHC experiments. This material is now being considered as a sensor material for use very close to the interaction region where the most extreme radiation conditions exist Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences expected at the super-LHC. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10(16) protons/cm(2) illustrating that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve. We also present beam test results of irradiated complete diamond pixel m...

  1. Total electron count variability and stratospheric ozone effects on solar backscatter and LWIR emissions

    Science.gov (United States)

    Ross, John S.; Fiorino, Steven T.

    2017-05-01

    The development of an accurate ionospheric Total Electron Count (TEC) model is of critical importance to high frequency (HF) radio propagation and satellite communications. However, the TEC is highly variable and is continually influenced by geomagnetic storms, extreme UV radiation, and planetary waves. Being able to capture this variability is essential to improve current TEC models. The growing body of data involving ionospheric fluctuations and stratospheric variations has revealed a correlation. In particular, there is a marked and persistent association between increases in stratospheric ozone and variability of the TEC. The spectral properties of ozone show that it is a greenhouse gas that alters long wave emissions from Earth and interacts with the UV spectrum coming from the sun. This study uses the Laser Environment Effects Definition and Reference (LEEDR) radiative transfer and atmospheric characterization code to model the effects of changes in stratospheric ozone on solar backscatter and longwave (LWIR) terrestrial emissions and infer TEC and TEC variability.

  2. Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes

    Science.gov (United States)

    Madejczyk, Pawel; Gawron, Waldemar; Martyniuk, Piotr; Keblowski, Artur; Pusz, Wioletta; Pawluczyk, Jaroslaw; Kopytko, Malgorzata; Rutkowski, Jaroslaw; Rogalski, Antoni; Piotrowski, Jozef

    2017-03-01

    The authors report on energy gap engineering solutions to improve the high-temperature performance of long-wave infrared (LWIR) HgCdTe photodiodes. Metalorganic chemical vapour deposition (MOCVD) technology with a wide range of composition and donor/acceptor doping and without ex-situ post grown annealing seems to be an excellent tool for HgCdTe heterostructure epitaxial growth. The heterojunction HgCdTe photovoltaic device based on epitaxial graded gap structures integrated with Auger-suppression is a magnificent solution for high operating temperature (HOT) infrared detectors. The thickness, composition and doping of HgCdTe heterostructure were optimized with respect to photoelectrical parameters like dark current, the responsivity and the response time. In this paper we focus on graded interface abruptness in the progressive optimization.

  3. Long range robust multi-terawatt MWIR and LWIR atmospheric light bullets

    Science.gov (United States)

    Moloney, Jerome V.; Schuh, Kolja; Panagiotopoulos, Paris; Kolesik, M.; Koch, S. W.

    2017-05-01

    There is a strong push worldwide to develop multi-Joule femtosecond duration laser pulses at wavelengths around 3.5-4 and 9-11μm within important atmospheric transmission windows. We have shown that pulses with a 4 μm central wavelength are capable of delivering multi-TW powers at km range. This is in stark contrast to pulses at near-IR wavelengths which break up into hundreds of filaments with each carrying around 5 GW of power per filament over meter distances. We will show that nonlinear envelope propagators fail to capture the true physics. Instead a new optical carrier shock singularity emerges that can act to limit peak intensities below the ionization threshold leading to low loss long range propagation. At LWIR wavelengths many-body correlations of weakly-ionized electrons further suppress the Kerr focusing nonlinearity around 10μm and enable whole beam self-trapping without filaments.

  4. VizieR Online Data Catalog: 17 Seyfert 1 galaxies light curves (Koshida+, 2014)

    Science.gov (United States)

    Koshida, S.; Minezaki, T.; Yoshii, Y.; Kobayashi, Y.; Sakata, Y.; Sugawara, S.; Enya, K.; Suganuma, M.; Tomita, H.; Aoki, T.; Peterson, B. A.

    2017-07-01

    Monitoring observations were conducted by using the multicolor imaging photometer (MIP) mounted on the MAGNUM telescope (Kobayashi et al. 1998SPIE.3352..120K, 1998SPIE.3354..769K). The MIP has a field of view of 1.5x1.5 arcmin2; it is capable of simultaneously obtaining images in optical (U, B, V, R, and I) and near-infrared (J, H, and K) bands by splitting the incident beam into two different detectors including an SITe CCD (1024x1024 pixels, 0.277 arcsec/pixel) and an SBRC InSb array (256x256 pixels, 0.346 arcsec/pixel). Monitoring observations with the MAGNUM telescope began in 2001-2003, although that for NGC 3516 and NGC 4593 began in 2005. We present the data obtained through 2006-2007 to include monitoring spans of three to seven yr. (2 data files).

  5. From Pixels to Planets

    Science.gov (United States)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  6. Bump bonding of pixel systems

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, M. E-mail: manuel.lozano@cnm.es; Cabruja, E.; Collado, A.; Santander, J.; Ullan, M

    2001-11-01

    A pixel detector consists of an array of radiation sensing elements which is connected to an electronic read-out unit. Many different ways of making this connection between these two different devices are currently being used or considered to be used in the next future. Bonding techniques such as flip chip technology can present real advantages because they allow very fine pitch and a high number of I/Os. This paper presents a review of the different flip chip technologies available and their suitability for manufacturing pixel detectors. The particular problems concerning testing of pixel detectors and thermal issues related to them are pointed out.

  7. Bump bonding of pixel systems

    CERN Document Server

    Lozano, M; Collado, A; Santander, J; Ullán, M

    2001-01-01

    A pixel detector consists of an array of radiation sensing elements which is connected to an electronic read-out unit. Many different ways of making this connection between these two different devices are currently being used or considered to be used in the next future. Bonding techniques such as flip chip technology can present real advantages because they allow very fine pitch and a high number of I/Os. This paper presents a review of the different flip chip technologies available and their suitability for manufacturing pixel detectors. The particular problems concerning testing of pixel detectors and thermal issues related to them are pointed out.

  8. CMS Barrel Pixel Detector Overview

    CERN Document Server

    Kästli, H C; Erdmann, W; Gabathuler, K; Hörmann, C; Horisberger, Roland Paul; König, S; Kotlinski, D; Meier, B; Robmann, P; Rohe, T; Streuli, S

    2007-01-01

    The pixel detector is the innermost tracking device of the CMS experiment at the LHC. It is built from two independent sub devices, the pixel barrel and the end disks. The barrel consists of three concentric layers around the beam pipe with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview of the pixel barrel detector, its mechanical support structure, electronics components, services and its expected performance.

  9. Measured comparison of the inversion periods for polarimetric and conventional thermal long-wave IR (LWIR) imagery

    Science.gov (United States)

    Felton, M.; Gurton, K. P.; Roth, L. E.; Pezzaniti, J. L.; Chenault, D. B.

    2009-08-01

    We report the results of a multi-day diurnal study in which radiometrically calibrated polarimetric and conventional thermal imagery is recorded in the LWIR to identify/compare the respective time periods in which minimum target contrast is achieved, e.g., thermal inversion periods are typically experienced during dusk and dawn. Imagery is recorded with a polarimetric IR sensor employing a 324x256 microbolometer array using a spinning achromatic retarder to perform the polarimetric filtering. The images used in this study include the S0, normalized S1, and normalized S2 Stokes images and the degree of linear polarization (DOLP) images of a scene containing military vehicles and the natural background. In addition, relevant meteorological parameters measured during the test period include air temperature, ambient loading in the LWIR, relative humidity, and cloud cover, height and density. The data shows that the chief factors affecting polarimetric contrast are the amount of thermal emission from the objects in the scene and the abundance of LWIR sources in the optical background. In addition, we found that contrast between targets and background within polarimetric images often remains relatively high during periods of low thermal contrast.

  10. VIS-NIR, SWIR and LWIR Imagery for Estimation of Ground Bearing Capacity

    Science.gov (United States)

    Fernández, Roemi; Montes, Héctor; Salinas, Carlota

    2015-01-01

    Ground bearing capacity has become a relevant concept for site-specific management that aims to protect soil from the compaction and the rutting produced by the indiscriminate use of agricultural and forestry machines. Nevertheless, commonly known techniques for its estimation are cumbersome and time-consuming. In order to alleviate these difficulties, this paper introduces an innovative sensory system based on Visible-Near InfraRed (VIS-NIR), Short-Wave InfraRed (SWIR) and Long-Wave InfraRed (LWIR) imagery and a sequential algorithm that combines a registration procedure, a multi-class SVM classifier, a K-means clustering and a linear regression for estimating the ground bearing capacity. To evaluate the feasibility and capabilities of the presented approach, several experimental tests were carried out in a sandy-loam terrain. The proposed solution offers notable benefits such as its non-invasiveness to the soil, its spatial coverage without the need for exhaustive manual measurements and its real time operation. Therefore, it can be very useful in decision making processes that tend to reduce ground damage during agricultural and forestry operations. PMID:26083227

  11. FSR: a field portable spectral reflectometer to measure ground from NIR to LWIR

    Science.gov (United States)

    Moreau, Louis; Bourque, Hugo; Ouellet, Réal; Prel, Florent; Roy, Claude; Vallieres, Christian; Thériault, Guillaume

    2011-11-01

    ABB Bomem has recently designed a field-deployable reflectometer. The Full Spectrum Reflectometer (FSR) measures the diffuse reflectance of surfaces in the 0.7 μm to 13.5 μm spectral range. The spectral resolution is adjustable from 32 to 4 cm-1. The instrument is portable, battery-operated and designed for field usage in a single, lightweight and ruggedized package. In its simplest mode, the instrument is automated and can be operated by non-specialist personnel with minimal training. The FSR has a laboratory mode to measure targets brought to the instrument in a sampling cup and a field mode with automated measurement sequence. To facilitate the measurement of various ground surfaces, the instrument is packaged in a three-point mount for easy target access and stability. One of the mount is the sampling port. The instrument has its own built-in NIR and LWIR infrared sources to illuminate the ground area to be measured. The instrument includes two built-in references for calibration: a Spectralon diffuser and an Infragold diffuser. The first units were commissioned to build a spectral database of surfaces in various conditions (humidity, temperature, texture, mixing, etc.) and in the presence of interfering chemicals (oils, solvents, etc.) but the instrument can also serve other purposes such as the identification of unknown materials.

  12. Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data

    Science.gov (United States)

    Ratliff, Bradley M.; LeMaster, Daniel A.; Mack, Robert T.; Villeneuve, Pierre V.; Weinheimer, Jeffrey J.; Middendorf, John R.

    2011-10-01

    The LWIR microgrid Polarized InfraRed Advanced Tactical Experiment (PIRATE) sensor was used to image several types of RC model aircraft at varying ranges and speeds under different background conditions. The data were calibrated and preprocessed using recently developed microgrid processing algorithms prior to estimation of the thermal (s0) and polarimetric (s1 and s2) Stokes vector images. The data were then analyzed to assess the utility of polarimetric information when the thermal s0 data is augmented with s1 and s2 information for several model aircraft detection and tracking scenarios. Multi-variate analysis tools were applied in conjunction with multi-hypothesis detection schemes to assess detection performance of the aircraft under different background clutter conditions. We find that polarization is able to improve detection performance when compared with the corresponding thermal data in nearly all cases. A tracking algorithm was applied to a sequence of s0 and corresponding degree of linear polarization (DoLP) images. An initial assessment was performed to determine whether polarization information can provide additional utility in these tracking scenarios.

  13. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL

    Science.gov (United States)

    Delaunay, Pierre-Yves; Nosho, Brett Z.; Gurga, Alexander R.; Terterian, Sevag; Rajavel, Rajesh D.

    2017-02-01

    Recent advances in superlattice-based infrared detectors have rendered this material system a solid alternative to HgCdTe for dual-band sensing applications. In particular, superlattices are attractive from a manufacturing perspective as the epitaxial wafers can be grown with a high degree of lateral uniformity, low macroscopic defect densities (processed over the last two years. To assess the FPA performance, noise equivalent temperature difference (NETD) measurements were conducted at 80K, f/4.21 and using a blackbody range of 22°C to 32°C. For the MWIR band, the NETD was 27.44 mK with a 3x median NETD operability of 99.40%. For the LWIR band, the median NETD was 27.62 mK with a 3x median operability of 99.09%. Over the course of the VISTA program, HRL fabricated over 30 FPAs with similar NETDs and operabilities in excess of 99% for both bands, demonstrating the manufacturability and high uniformity of III-V superlattices. We will also present additional characterization results including blinkers, spatial stability, modulation transfer function and thermal cycles reliability.

  14. New target acquisition task for contemporary operating environments: personnel in MWIR, LWIR, and SWIR

    Science.gov (United States)

    Boettcher, Evelyn J.; Leonard, Kevin R.; Hodgkin, Van A.; Thompson, Roger; Miller, Brian; Hixson, Jon; Johnson, Sara; Godbolt, Tehran; Acton, David D.

    2010-04-01

    Operating environments that US Soldiers and Marines are in have changed, along with the types of tasks that they are required to perform. In addition, the potential imaging sensor options available have increased. These changes make it necessary to examine how these new tasks are affected by waveband and time of day. US Army Research, Development and Engineering Command, Communications Electronics Research Development and Engineering Center, Night Vision and Electronic Sensor Directorate (NVESD), investigated one such task for several wavebands (MWIR, LWIR, Visible, and SWIR) and during both day and night. This task involved identification of nine different personnel targets: US Soldier, US Marine, Eastern-European/Asian Soldier, Urban Insurgent, Rural Insurgent, Hostile Militia, Indigenous Inhabitant, Contract Laborer, and Reporter. These nine distinct targets were made up from three tactically significant categories: Friendly Force, Combatant and Neutral/Non-Combatant. A ten second video was taken of an actor dressed as one of these targets. The actors walk a square pattern, enabling all aspects to be seen in each video clip. Target characteristics were measured and characteristic dimension, target contrast tabulated. A nine-alternative, forced-choice human perception test was performed at NVESD. This test allowed NVESD to quantify the ability of observers to discriminate between personnel targets for each waveband and time of day. The task difficulty criterion, V50, was also calculated allowing for future modeling using the NVESD sensor performance model.

  15. VIS-NIR, SWIR and LWIR Imagery for Estimation of Ground Bearing Capacity

    Directory of Open Access Journals (Sweden)

    Roemi Fernández

    2015-06-01

    Full Text Available Ground bearing capacity has become a relevant concept for site-specific management that aims to protect soil from the compaction and the rutting produced by the indiscriminate use of agricultural and forestry machines. Nevertheless, commonly known techniques for its estimation are cumbersome and time-consuming. In order to alleviate these difficulties, this paper introduces an innovative sensory system based on Visible-Near InfraRed (VIS-NIR, Short-Wave InfraRed (SWIR and Long-Wave InfraRed (LWIR imagery and a sequential algorithm that combines a registration procedure, a multi-class SVM classifier, a K-means clustering and a linear regression for estimating the ground bearing capacity. To evaluate the feasibility and capabilities of the presented approach, several experimental tests were carried out in a sandy-loam terrain. The proposed solution offers notable benefits such as its non-invasiveness to the soil, its spatial coverage without the need for exhaustive manual measurements and its real time operation. Therefore, it can be very useful in decision making processes that tend to reduce ground damage during agricultural and forestry operations.

  16. Internal and external stray radiation suppression for LWIR catadioptric telescope using non-sequential ray tracing

    Science.gov (United States)

    Zhu, Yang; Zhang, Xin; Liu, Tao; Wu, Yanxiong; Shi, Guangwei; Wang, Lingjie

    2015-07-01

    A long wave infrared imaging system operated for space exploration of faint target is highly sensitive to stray radiation. We present an integrative suppression process of internal and external stray radiation. A compact and re-imaging LWIR catadioptric telescope is designed as practical example and internal and external stray radiation is analyzed for this telescope. The detector is cryogenically cooled with 100% cold shield efficiency of Lyot stop. A non-sequential ray tracing technique is applied to investigate how the stray radiation propagates inside optical system. The simulation and optimization during initial design stage are proceeded to avoid subversive defect that the stray radiation disturbs the target single. The quantitative analysis of stray radiation irradiance emitted by lenses and structures inside is presented in detail. The optical elements, which operate at room-temperature due to the limitation of weight and size, turn to be the significant stray radiation sources. We propose a method combined infrared material selection and optical form optimization to reduce the internal stray radiation of lens. We design and optimize mechanical structures to achieve a further attenuation of internal stray radiation power. The point source transmittance (PST) is calculated to assess the external radiation which comes from the source out of view field. The ghost of bright target due to residual reflection of optical coatings is simulated. The results show that the performance of stray radiation suppression is dramatically improved by iterative optimization and modification of optomechanical configurations.

  17. WFC3 Pixel Area Maps

    Science.gov (United States)

    Kalirai, J. S.; Cox, C.; Dressel, L.; Fruchter, A.; Hack, W.; Kozhurina-Platais, V.; Mack, J.

    2010-04-01

    We present the pixel area maps (PAMs) for the WFC3/UVIS and WFC3/IR detectors, and discuss the normalization of these images. HST processed flt images suffer from geometric distortion and therefore have pixel areas that vary on the sky. The counts (electrons) measured for a source on these images depends on the position of the source on the detector, an effect that is implicitly corrected when these images are multidrizzled into drz files. The flt images can be multiplied by the PAMs to yield correct and uniform counts for a given source irrespective of its location on the image. To ensure consistency between the count rate measured for sources in drz images and near the center of flt images, we set the normalization of the PAMs to unity at a reference pixel near the center of the UVIS mosaic and IR detector, and set the SCALE in the IDCTAB equal to the square root of the area of this reference pixel. The implications of this choice for photometric measurements are discussed.

  18. VNR CMS Pixel detector replacement

    CERN Document Server

    2017-01-01

    Joel Butler, spokesperson of the CMS collaboration explains how a team from many different partner institutes installed a new detector in CMS. This detector is the silicon pixel detector and they’ve been working on it for about five years, to replace one of our existing detectors. This detectors measures particles closer to the beam than any of the other components of this huge detector behind me. It gives us the most precise picture of tracks as they come out of the collisions and expand and travel through the detector. This particular device has twice as many pixels, 120 million, as opposed to about 68 million in the old detector and it can take data faster and pump it out to the analysis more quickly. 00’53’’ Images of the descent, insertion and installation of first piece of the Pixel detector on Tue Feb 28. Images of the descent, insertion and installation of second piece of the Pixel and the two cylinders being joined.

  19. Counter Unmanned Aerial Systems Testing: Evaluation of VIS SWIR MWIR and LWIR passive imagers.

    Energy Technology Data Exchange (ETDEWEB)

    Birch, Gabriel Carlisle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Woo, Bryana Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report contains analysis of unmanned aerial systems as imaged by visible, short-wave infrared, mid-wave infrared, and long-wave infrared passive devices. Testing was conducted at the Nevada National Security Site (NNSS) during the week of August 15, 2016. Target images in all spectral bands are shown and contrast versus background is reported. Calculations are performed to determine estimated pixels-on-target for detection and assessment levels, and the number of pixels needed to cover a hemisphere for detection or assessment at defined distances. Background clutter challenges are qualitatively discussed for different spectral bands, and low contrast scenarios are highlighted for long-wave infrared imagers.

  20. Implementation of electronic crosstalk correction for terra MODIS PV LWIR bands

    Science.gov (United States)

    Geng, Xu; Madhavan, Sriharsha; Chen, Na; Xiong, Xiaoxiong

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the fleet of NASA's Earth Observing Systems (EOS) in space. Terra MODIS has completed 15 years of operation far exceeding its design lifetime of 6 years. The MODIS Level 1B (L1B) processing is the first in the process chain for deriving various higher level science products. These products are used mainly in understanding the geophysical changes occurring in the Earth's land, ocean, and atmosphere. The L1B code is designed to carefully calibrate the responses of all the detectors of the 36 spectral bands of MODIS and provide accurate L1B radiances (also reflectances in the case of Reflective Solar Bands). To fulfill this purpose, Look Up Tables (LUTs), that contain calibration coefficients derived from both on-board calibrators and Earth-view characterized responses, are used in the L1B processing. In this paper, we present the implementation mechanism of the electronic crosstalk correction in the Photo Voltaic (PV) Long Wave InfraRed (LWIR) bands (Bands 27-30). The crosstalk correction involves two vital components. First, a crosstalk correction modular is implemented in the L1B code to correct the on-board Blackbody and Earth-View (EV) digital number (dn) responses using a linear correction model. Second, the correction coefficients, derived from the EV observations, are supplied in the form of LUTs. Further, the LUTs contain time stamps reflecting to the change in the coefficients assessed using the Noise Equivalent difference Temperature (NEdT) trending. With the algorithms applied in the MODIS L1B processing it is demonstrated that these corrections indeed restore the radiometric balance for each of the affected bands and substantially reduce the striping noise in the processed images.

  1. Status of the ATLAS pixel detector

    CERN Document Server

    Saavedra Aldo, F

    2005-01-01

    The ATLAS pixel detector is currently being constructed and will be installed in 2006 to be ready for commissioning at the Large Hadron Collider. The complete pixel detector is composed of three concentric barrels and six disks that are populated by 1744 ATLAS Pixel modules. The main components of the pixel module are the readout electronics and the silicon sensor whose active region is instrumented with rectangular pixels. The module has been designed to be able to survive 10 years of operation within the ATLAS detector. A brief description of the pixel detector will be presented with results and problems encountered during the production stage.

  2. MWIR/LWIR filter based on Liquid-Crystal Fabry-Perot structure for tunable spectral imaging detection

    Science.gov (United States)

    Zhang, Huaidong; Muhammad, Afzal; Luo, Jun; Tong, Qing; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-03-01

    An electrically tunable medium-wave infrared (MWIR)/long-wave infrared (LWIR) filter based on the key structure of Liquid-Crystal (LC) Fabry-Perot (FP), which works in the wavelength range from 2.5 μm to 12 μm, is designed and fabricated successfully in this paper. According to the optical interference principle of the FP cavity and electrically controlled birefringence of nematic LC molecules, the particular functions including spectral selection and spectral staring and spectral adjustment, can be realized by the developed MWIR/LWIR filter driven and controlled electrically. As to the LC-FP filter, both planar reflective mirrors are shaped by depositing a layer of aluminum (Al) film (∼60 nm) over one side of double-side polished Zinc Selenide (ZnSe) wafer (∼1 mm), and then polyimide (PI) layer with the thickness of ∼100 nm is coated directly on Al film. With typical sandwich architecture, the depth of the cavity with nematic LC molecules sealed in is ∼7.5 μm. To make sure the LC molecules parallel aligned and twist regularly under voltage driving signal applied on Al film, which also acts as electrode, the V-grooves are formed in PI layer with the depth of ∼90 nm and the width of ∼350 nm at average by strong rubbing. The typical transmission spectrum in MWIR&LWIR wavelength range and several spectral images in MWIR wavelength range based on the fabricated LC-FP filter, have been obtained through applying a voltage driving-signal with different root-means-square (RMS) value over the electrodes of LC-FP filter in the selected voltage range from 0VRMS to 19.8VRMS. The testing result demonstrates a prospect of realization smart spectral imaging and further integrating the LC-FP filter with infrared focal plane arrays (FPAs) to achieve the purpose infrared multispectral imaging. The developed MWIR&LWIR LC-FP filters show some obvious advantages such as wide working wavelength range, electrically tunable spectral selection, ultra-compact, low cost, being

  3. A comparison of image features for registering LWIR and visual images

    CSIR Research Space (South Africa)

    Cronje, J

    2012-11-01

    Full Text Available and SIFT — and fast algorithms, BRISK and BFROST. To evaluate the feature-descriptors a ground truth was created by determining the intrinsic and extrinsic camera calibration parameters for the cameras and using this to photogrammetrically relate pixel...

  4. Effect of Pixel's Spatial Characteristics on Recognition of Isolated Pixelized Chinese Character.

    Science.gov (United States)

    Yang, Kun; Liu, Shuang; Wang, Hong; Liu, Wei; Wu, Yaowei

    2015-01-01

    The influence of pixel's spatial characteristics on recognition of isolated Chinese character was investigated using simulated prosthestic vision. The accuracy of Chinese character recognition with 4 kinds of pixel number (6*6, 8*8, 10*10, and 12*12 pixel array) and 3 kinds of pixel shape (Square, Dot and Gaussian) and different pixel spacing were tested through head-mounted display (HMD). A captured image of Chinese characters in font style of Hei were pixelized with Square, Dot and Gaussian pixel. Results showed that pixel number was the most important factor which could affect the recognition of isolated pixelized Chinese Chartars and the accuracy of recognition increased with the addition of pixel number. 10*10 pixel array could provide enough information for people to recognize an isolated Chinese character. At low resolution (6*6 and 8*8 pixel array), there were little difference of recognition accuracy between different pixel shape and different pixel spacing. While as for high resolution (10*10 and 12*12 pixel array), the fluctuation of pixel shape and pixel spacing could not affect the performance of recognition of isolated pixelized Chinese Character.

  5. The ATLAS Silicon Pixel Sensors

    CERN Document Server

    Alam, M S; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Andreazza, A; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Musico, P; Osculati, B; Parodi, F; Rossi, L; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Aleppo, M; Caccia, M; Ragusa, F; Troncon, C; Lutz, Gerhard; Richter, R H; Rohe, T; Brandl, A; Gorfine, G; Hoeferkamp, M; Seidel, SC; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; D'Auria, S; del Papa, C; Charles, E; Fasching, D; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been developed. The design of the sensors is guided by the need to operate them in the severe LHC radiation environment at up to several hundred volts while maintaining a good signal-to-noise ratio, small cell size, and minimal multiple scattering. The ability to be operated under full bias for electrical characterization prior to the attachment of the readout integrated circuit electronics is also desired.

  6. SAR Image Complex Pixel Representations

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.

  7. CMOS digital pixel sensors: technology and applications

    Science.gov (United States)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  8. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor)

    2013-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  9. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    Science.gov (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  10. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  11. CMS has a heart of pixels

    CERN Multimedia

    2003-01-01

    In the immediate vicinity of the collision point, CMS will be equipped with pixel detectors consisting of no fewer than 50 million pixels measuring 150 microns along each side. Each of the pixels, which receive the signal, is connected to its own electronic circuit by a tiny sphere (seen here in the electron microscope image) measuring 15 to 20 microns in diameter.

  12. Making a trillion pixels dance

    Science.gov (United States)

    Singh, Vivek; Hu, Bin; Toh, Kenny; Bollepalli, Srinivas; Wagner, Stephan; Borodovsky, Yan

    2008-03-01

    In June 2007, Intel announced a new pixelated mask technology. This technology was created to address the problem caused by the growing gap between the lithography wavelength and the feature sizes patterned with it. As this gap has increased, the quality of the image has deteriorated. About a decade ago, Optical Proximity Correction (OPC) was introduced to bridge this gap, but as this gap continued to increase, one could not rely on the same basic set of techniques to maintain image quality. The computational lithography group at Intel sought to alleviate this problem by experimenting with additional degrees of freedom within the mask. This paper describes the resulting pixelated mask technology, and some of the computational methods used to create it. The first key element of this technology is a thick mask model. We realized very early in the development that, unlike traditional OPC methods, the pixelated mask would require a very accurate thick mask model. Whereas in the traditional methods, one can use the relatively coarse approximations such as the boundary layer method, use of such techniques resulted not just in incorrect sizing of parts of the pattern, but in whole features missing. We built on top of previously published domain decomposition methods, and incorporated limitations of the mask manufacturing process, to create an accurate thick mask model. Several additional computational techniques were invoked to substantially increase the speed of this method to a point that it was feasible for full chip tapeout. A second key element of the computational scheme was the comprehension of mask manufacturability, including the vital issue of the number of colors in the mask. While it is obvious that use of three or more colors will give the best image, one has to be practical about projecting mask manufacturing capabilities for such a complex mask. To circumvent this serious issue, we eventually settled on a two color mask - comprising plain glass and etched

  13. Development of SOI pixel detector in Cracow

    CERN Document Server

    Bugiel, Szymon; Glab, Sebastian; Idzik, Marek; Moron, Jakub; Kapusta, Piotr Julian; Kucewicz, Wojciech; Turala, Michal

    2015-01-01

    This paper presents the design of a new monolithic Silicon-On-Insulator pixel sensor in $200~nm$ SOI CMOS technology. The main application of the proposed pixel detector is the spectroscopy, but it can also be used for the minimum ionizing particle (MIP) tracking in particle physics experiments. For this reason few different versions of pixel cells are developed: a source-follower based pixel for tracking, a low noise pixel with preamplifier for spectroscopy, and a self-triggering pixel for time and amplitude measurements. In addition the design of a Successive Approximation Register Analog-to-Digital Converter (SAR ADC) is also presented. A 10-bit SAR ADC is developed for spectroscopic measurements and a lower resolution 6-bit SAR ADC is integrated in the pixel matrix as a column ADC, for tracking applications.

  14. Development and characterisation of a visible light photon counting imaging detector system

    CERN Document Server

    Barnstedt, J

    2002-01-01

    We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...

  15. Concrete Slump Classification using GLCM Feature Extraction

    Science.gov (United States)

    Andayani, Relly; Madenda, Syarifudin

    2016-05-01

    Digital image processing technologies have been widely applies in analyzing concrete structure because the accuracy and real time result. The aim of this study is to classify concrete slump by using image processing technique. For this purpose, concrete mix design of 30 MPa compression strength designed with slump of 0-10 mm, 10-30 mm, 30-60 mm, and 60-180 mm were analysed. Image acquired by Nikon Camera D-7000 using high resolution was set up. In the first step RGB converted to greyimage than cropped to 1024 x 1024 pixel. With open-source program, cropped images to be analysed to extract GLCM feature. The result shows for the higher slump contrast getting lower, but higher correlation, energy, and homogeneity.

  16. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    Science.gov (United States)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  17. PANIC: A Near-infrared Camera for the Magellan Telescopes

    CERN Document Server

    Martini, P; Murphy, D C; Birk, C; Shectman, S A; Grunnels, S M; Koch, E

    2004-01-01

    PANIC (Persson's Auxiliary Nasmyth Infrared Camera) is a near-infrared camera designed to operate at any one of the f/11 folded ports of the 6.5m Magellan telescopes at Las Campanas Observatory, Chile. The instrument is built around a simple, all-refractive design that reimages the Magellan focal plane to a plate scale of 0.125'' pixel^{-1} onto a Rockwell 1024x1024 HgCdTe detector. The design goals for PANIC included excellent image quality to sample the superb seeing measured with the Magellan telescopes, high throughput, a relatively short construction time, and low cost. PANIC has now been in regular operation for over one year and has proved to be highly reliable and produce excellent images. The best recorded image quality has been ~0.2'' FWHM.

  18. The ALICE pixel detector upgrade

    Science.gov (United States)

    Reidt, F.

    2016-12-01

    The ALICE experiment at the CERN LHC is designed to study the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma, using proton-proton, proton-nucleus and nucleus-nucleus collisions. The ALICE collaboration is preparing a major upgrade of the experimental apparatus to be installed during the second long LHC shutdown in the years 2019-2020. A key element of the ALICE upgrade is the new, ultra-light, high-resolution Inner Tracking System. With respect to the current detector, the new Inner Tracking System will significantly enhance the pointing resolution, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a Monolithic Active Pixel Sensor with a pixel pitch of about 30×30 μm2. A key feature of the new Inner Tracking System, which is optimised for high tracking accuracy at low transverse momenta, is the very low mass of the three innermost layers, which feature a material budget of 0.3% X0 per layer. This contribution presents the design goals and layout of the upgraded ALICE Inner Tracking System, summarises the R&D activities focussing on the technical implementation of the main detector components, and the projected detector performance.

  19. Serial powering of pixel modules

    CERN Document Server

    Stockmanns, Tobias; Hügging, Fabian Georg; Peric, I; Runólfsson, O; Wermes, Norbert

    2003-01-01

    Modern pixel detectors for the next generation of high-energy collider experiments like LHC use readout electronics in deep sub- micron technology. Chips in this technology need a low supply voltage of 2-2.5 V alongside high current consumption to achieve the desired performance. The high supply current leads to significant voltage drops in the long and low mass supply cables so that voltage fluctuations at the chips are induced, when the supply current changes. This problem scales with the number of modules when connected in parallel to the power supplies. An alternative powering scheme connects several modules in series resulting in a higher supply voltage but a lower current consumption of the chain and therefore a much lower voltage drop in the cables. In addition the amount of cables needed to supply the detector is vastly reduced. The concept and features of serial powering are presented and studies of the implementation of this technology as an alternative for the ATLAS pixel detector are shown. In par...

  20. Proceedings of PIXEL98 -- International pixel detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.; Kwan, S. [eds.

    1998-08-01

    Experiments around the globe face new challenges of more precision in the face of higher interaction rates, greater track densities, and higher radiation doses, as they look for rarer and rarer processes, leading many to incorporate pixelated solid-state detectors into their plans. The highest-readout rate devices require new technologies for implementation. This workshop reviewed recent, significant progress in meeting these technical challenges. Participants presented many new results; many of them from the weeks--even days--just before the workshop. Brand new at this workshop were results on cryogenic operation of radiation-damaged silicon detectors (dubbed the Lazarus effect). Other new work included a diamond sensor with 280-micron collection distance; new results on breakdown in p-type silicon detectors; testing of the latest versions of read-out chip and interconnection designs; and the radiation hardness of deep-submicron processes.

  1. Serial Pixel Analog-to-Digital Converter

    Energy Technology Data Exchange (ETDEWEB)

    Larson, E D

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and “one-hot” counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  2. A comparison of image features for registering LWIR and visual images

    CSIR Research Space (South Africa)

    Cronje, J

    2012-11-01

    Full Text Available from point a directed towards point b expressed in terms of its projections on orthogonal coordinate system c?s axes. Vbac is used when the magnitude of the vector is unknown or unimportant. Tbac represents the translation or displacement of point b...)pix wB (PBv I u iv )pix hB 3 5 ; UPiBB = VPiBB kVPiBBk ; UPiBR = RBRUPiBB (2) where: Idi = the image coordinate of pixel i, fundistortB = the predetermined lens undistortion characterization function [14] for camera B, (PBh ; P B v...

  3. ATLAS Pixel Opto-Electronics

    CERN Document Server

    Arms, K E; Gan, K K; Holder, M; Jackson, P; Johnson, M; Kagan, H; Kass, R; Rahimi, A M; Roggenbuck, A; Rush, C; Schade, P; Smith, S; Ter-Antonian, R; Ziolkowski, M; Zoeller, M M

    2005-01-01

    We have developed two radiation-hard ASICs for optical data transmission in the ATLAS pixel detector at the LHC at CERN: a driver chip for a Vertical Cavity Surface Emitting Laser (VCSEL) diode for 80 Mbit/s data transmission from the detector, and a Bi-Phase Mark decoder chip to recover the control data and 40 MHz clock received optically by a PIN diode. We have successfully implemented both ASICs in 0.25 micron CMOS technology using enclosed layout transistors and guard rings for increased radiation hardness. We present results of the performance of these chips, including irradiation with 24 GeV protons up to 61 Mrad (2.3 x 10e15 p/cm^2).

  4. Pixel readout chip for the ATLAS experiment

    CERN Document Server

    Ackers, M; Blanquart, L; Bonzom, V; Comes, G; Fischer, P; Keil, M; Kühl, T; Meuser, S; Delpierre, P A; Treis, J; Raith, B A; Wermes, N

    1999-01-01

    Pixel detectors with a high granularity and a very large number of sensitive elements (cells) are a very recent development used for high precision particle detection. At the Large Hadron Collider LHC at CERN (Geneva) a pixel detector with 1.4*10/sup 8/ individual pixel cells is developed for the ATLAS detector. The concept is a hybrid detector. Consisting of a pixel sensor connected to a pixel electronics chip by bump and flip chip technology in one-to-one cell correspondence. The development and prototype results of the pixel front end chip are presented together with the physical and technical requirements to be met at LHC. Lab measurements are reported. (6 refs).

  5. Penrose Pixels for Super-Resolution.

    Science.gov (United States)

    Ben-Ezra, M; Lin, Zhouchen; Wilburn, Bennett; Zhang, Wei

    2011-07-01

    We present a novel approach to reconstruction-based super-resolution that uses aperiodic pixel tilings, such as a Penrose tiling or a biological retina, for improved performance. To this aim, we develop a new variant of the well-known error back projection super-resolution algorithm that makes use of the exact detector model in its back projection operator for better accuracy. Pixels in our model can vary in shape and size, and there may be gaps between adjacent pixels. The algorithm applies equally well to periodic or aperiodic pixel tilings. We present analysis and extensive tests using synthetic and real images to show that our approach using aperiodic layouts substantially outperforms existing reconstruction-based algorithms for regular pixel arrays. We close with a discussion of the feasibility of manufacturing CMOS or CCD chips with pixels arranged in Penrose tilings.

  6. Advanced pixel architectures for scientific image sensors

    CERN Document Server

    Coath, R; Godbeer, A; Wilson, M; Turchetta, R

    2009-01-01

    We present recent developments from two projects targeting advanced pixel architectures for scientific applications. Results are reported from FORTIS, a sensor demonstrating variants on a 4T pixel architecture. The variants include differences in pixel and diode size, the in-pixel source follower transistor size and the capacitance of the readout node to optimise for low noise and sensitivity to small amounts of charge. Results are also reported from TPAC, a complex pixel architecture with ~160 transistors per pixel. Both sensors were manufactured in the 0.18μm INMAPS process, which includes a special deep p-well layer and fabrication on a high resistivity epitaxial layer for improved charge collection efficiency.

  7. Further developments of 8μm pitch MCT pixels at Finmeccanica (formerly Selex ES)

    Science.gov (United States)

    Jeckells, David; McEwen, R. Kennedy; Bains, Sudesh; Herbert, Martin

    2016-05-01

    Finmeccanica (formerly Selex ES) introduced high performance mercury cadmium telluride (MCT) infrared detectors on an 8μm pitch in 2015 with their SuperHawk device which builds on standard production processes already used for the manufacture of 24μm, 20μm, 16μm and 12μm pitch devices. The flexibility of the proprietary Finmeccanica designed diode structure, used in conjunction with the mature production Metal Organic Vapour Phase Epitaxy (MOVPE) MCT growth process at Finmeccanica, enables fine control of diode electrical and optical structure including free choice of cut-off wavelength. The mesa pixel design inherently provides major system performance benefits by reducing blurring mechanisms, including optical scattering, inter-pixel cross-talk and carrier diffusion, to negligible levels. The SuperHawk detector has demonstrated unrivalled MTF and NETD performance, even when operating at temperatures in excess of 120K. The SuperHawk Integrated Detector Cooler Assembly (IDCA) benefits from recent dewar developments at Finmeccanica, which have improved thermal efficiencies while maintaining mechanical integrity over a wide range of applications, enabling use of smaller cryo-coolers to reduce system SWAP-C. Performance and qualification results are presented together with example imagery. SuperHawk provides an easy high resolution upgrade for systems currently based on standard definition 16μm and 15μm infrared detector formats. The paper also addresses further work to increase the operating temperature of the established 8μm process, exploiting High Operating Temperature (HOT) MCT at Finmeccanica, as well as options for LWIR variants of the SuperHawk device.

  8. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  9. Land Cover Heterogeneity Effects on Sub-Pixel and Per-Pixel Classifications

    Directory of Open Access Journals (Sweden)

    Trung V. Tran

    2014-04-01

    Full Text Available Per-pixel and sub-pixel are two common classification methods in land cover studies. The characteristics of a landscape, particularly the land cover itself, can affect the accuracies of both methods. The objectives of this study were to: (1 compare the performance of sub-pixel vs. per-pixel classification methods for a broad heterogeneous region; and (2 analyze the impact of land cover heterogeneity (i.e., the number of land cover classes per pixel on both classification methods. The results demonstrated that the accuracy of both per-pixel and sub-pixel classification methods were generally reduced by increasing land cover heterogeneity. Urban areas, for example, were found to have the lowest accuracy for the per-pixel method, because they had the highest heterogeneity. Conversely, rural areas dominated by cropland and grassland had low heterogeneity and high accuracy. When a sub-pixel method was used, the producer’s accuracy for artificial surfaces was increased by more than 20%. For all other land cover classes, sub-pixel and per-pixel classification methods performed similarly. Thus, the sub-pixel classification was only advantageous for heterogeneous urban landscapes. Both creators and users of land cover datasets should be aware of the inherent landscape heterogeneity and its potential effect on map accuracy.

  10. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The bump-bonded silicon pixel detector, developed at CERN by the EP-MIC group, is shown here in its ceramic carrier. Both represent the ISPA-tube anode. The chip features between 1024 (called OMEGA-1) and 8196 (ALICE-1) active pixels.

  11. Research on Ground-Based LWIR Hyperspectral Research on Ground-Based LWIR Hyperspectral Imaging Remote Gas Detection Imaging Remote Gas Detection%地面长波红外高光谱成像气体探测研究

    Institute of Scientific and Technical Information of China (English)

    郑为建; 雷正刚; 余春超; 杨智雄; 王海洋; 付艳鹏; 李训牛; 廖宁放; 苏君红

    2016-01-01

    The new progress of ground-based long-wave infrared remote sensing is presented ,which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details .The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer ,using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector .The LWIR hyperspectral ima-ging is achieved by the process of collection ,reorganization ,correction ,apodization ,FFT etc .from data cube .Noise equivalent spectral radiance (NESR) ,which is the sensitivity index of CHIPED-1 LWIR hyper-spectral imaging prototype ,can reach 5.6 × 10-8 W · (cm-1 · sr · cm2 )-1 at single sampling .The data is the same as commercial temporal modulation hyperspectral imaging spectrometer .It can prove the advantage of this technique . This technique still has space to be improved . For instance , spectral response range of CHIPED-1 LWIR hyperspectral imaging prototype can reach 11.5μm by testing the transmission curve of pol-ypropylene film .In this article ,choosing the results of outdoor high-rise and diethyl ether gas experiment as an example ,the authors research on the detecting method of 2D distribution chemical gas VOC by infrared hyper-spectral imaging .There is no observed diethyl ether gas from the infrared spectral slice of the same wave num-ber in complicated background and low concentration .By doing the difference spectrum ,the authors can see the space distribution of diethyl ether gas clearly . Hyperspectral imaging is used in the field of organic gas VOC infrared detection .Relative to wide band infrared imaging ,it has some advantages .Such as ,it has high sensitivity ,the strong anti-interference ability ,identify the variety ,and so on . Abstract The new progress of ground-based long-wave infrared remote sensing is presented ,which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details

  12. Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM

    Science.gov (United States)

    Gassmann, Kai Uwe; Eich, Detlef; Fick, Wolfgang; Figgemeier, Heinrich; Hanna, Stefan; Thöt, Richard

    2015-10-01

    For nearly 40 years AIM develops, manufactures and delivers photo-voltaic and photo-conductive infrared sensors and associated cryogenic coolers which are mainly used for military applications like pilotage, weapon sights, UAVs or vehicle platforms. In 2005 AIM started to provide the competences also for space applications like IR detector units for the SLSTR instrument on board of the Sentinel 3 satellite, the hyperspectral SWIR Imager for EnMAP or pushbroom detectors for high resolution Earth observation satellites. Meanwhile AIM delivered more than 25 Flight Models for several customers. The first European pulse-tube cooler ever operating on-board of a satellite is made by AIM. AIM homes the required infrared core capabilities such as design and manufacturing of focal plane assemblies, detector housing technologies, development and manufacturing of cryocoolers and also data processing for thermal IR cameras under one roof which enables high flexibility to react to customer needs and assures economical solutions. Cryogenically cooled Hg(1-x)CdxTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices and fast response times, hence outperforming micro-bolometer arrays. However, achieving an excellent MCT detector performance at long (LWIR) and very long (VLWIR) infrared wavelengths is challenging due to the exponential increase in the thermally generated photodiode dark current with increasing cut-off wavelength and / or operating temperature. Dark current is a critical design driver, especially for LWIR / VLWIR multi-spectral imagers with moderate signal levels or hyper-spectral Fourier spectrometers operating deep into the VLWIR spectral region. Consequently, low dark current (LDC) technologies are the

  13. Sub-pixel mapping of water boundaries using pixel swapping algorithm (case study: Tagliamento River, Italy)

    Science.gov (United States)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2015-10-01

    Taking the advantages of remotely sensed data for mapping and monitoring of water boundaries is of particular importance in many different management and conservation activities. Imagery data are classified using automatic techniques to produce maps entering the water bodies' analysis chain in several and different points. Very commonly, medium or coarse spatial resolution imagery is used in studies of large water bodies. Data of this kind is affected by the presence of mixed pixels leading to very outstanding problems, in particular when dealing with boundary pixels. A considerable amount of uncertainty inescapably occurs when conventional hard classifiers (e.g., maximum likelihood) are applied on mixed pixels. In this study, Linear Spectral Mixture Model (LSMM) is used to estimate the proportion of water in boundary pixels. Firstly by applying an unsupervised clustering, the water body is identified approximately and a buffer area considered ensuring the selection of entire boundary pixels. Then LSMM is applied on this buffer region to estimate the fractional maps. However, resultant output of LSMM does not provide a sub-pixel map corresponding to water abundances. To tackle with this problem, Pixel Swapping (PS) algorithm is used to allocate sub-pixels within mixed pixels in such a way to maximize the spatial proximity of sub-pixels and pixels in the neighborhood. The water area of two segments of Tagliamento River (Italy) are mapped in sub-pixel resolution (10m) using a 30m Landsat image. To evaluate the proficiency of the proposed approach for sub-pixel boundary mapping, the image is also classified using a conventional hard classifier. A high resolution image of the same area is also classified and used as a reference for accuracy assessment. According to the results, sub-pixel map shows in average about 8 percent higher overall accuracy than hard classification and fits very well in the boundaries with the reference map.

  14. It's not the pixel count, you fool

    Science.gov (United States)

    Kriss, Michael A.

    2012-01-01

    The first thing a "marketing guy" asks the digital camera engineer is "how many pixels does it have, for we need as many mega pixels as possible since the other guys are killing us with their "umpteen" mega pixel pocket sized digital cameras. And so it goes until the pixels get smaller and smaller in order to inflate the pixel count in the never-ending pixel-wars. These small pixels just are not very good. The truth of the matter is that the most important feature of digital cameras in the last five years is the automatic motion control to stabilize the image on the sensor along with some very sophisticated image processing. All the rest has been hype and some "cool" design. What is the future for digital imaging and what will drive growth of camera sales (not counting the cell phone cameras which totally dominate the market in terms of camera sales) and more importantly after sales profits? Well sit in on the Dark Side of Color and find out what is being done to increase the after sales profits and don't be surprised if has been done long ago in some basement lab of a photographic company and of course, before its time.

  15. Upgrades of the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F; The ATLAS collaboration

    2013-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector (Phase 1) consists in the construction of a new pixel layer, which will be installed during the 1st long shutdown of the LHC machine (LS1) in 2013/14. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. The pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. For Phase 2 upgrade of LHC a complete new 4-layer pixel system is planned as part of a new all silicon Inner Detector. The increase in luminosity to about $5\\cdot 10^{34}$cm$^{-2}$s$^{-1}$ together with a total expected lifetime of ab...

  16. Experimental verification of the minimum number of diffractive zones for effective chromatic correction in the LWIR

    Science.gov (United States)

    Ramsey, J. L.; Walsh, K. F.; Smith, M.; Deegan, J.

    2016-05-01

    With the move to smaller pixel sizes in the longwave IR region there has been a push for shorter focal length lenses that are smaller, cheaper and lighter and that resolve lower spatial frequencies. As a result lenses must have better correction for both chromatic and monochromatic aberrations. This leads to the increased use of aspheres and diffractive optical elements (kinoforms). With recent developments in the molding of chalcogenide materials these aspheres and kinoforms are more cost effective to manufacture. Without kinoforms the axial color can be on the order of 15 μm which degrades the performance of the lens at the Nyquist frequency. The kinoforms are now on smaller elements and are correcting chromatic aberration which is on the order of the design wavelength. This leads to kinoform structures that do not require large phase changes and therefore have 1.5 to just over 2 zones. The question becomes how many zones are required to correct small amounts of chromatic aberration in the system and are they functioning as predicted by the lens design software? We investigate both the design performance and the as-built performance of two designs that incorporate kinoforms for the correction of axial chromatic aberration.

  17. Detection and tracking of gas plumes in LWIR hyperspectral video sequence data

    Science.gov (United States)

    Gerhart, Torin; Sunu, Justin; Lieu, Lauren; Merkurjev, Ekaterina; Chang, Jen-Mei; Gilles, Jérôme; Bertozzi, Andrea L.

    2013-05-01

    Automated detection of chemical plumes presents a segmentation challenge. The segmentation problem for gas plumes is difficult due to the diffusive nature of the cloud. The advantage of considering hyperspectral images in the gas plume detection problem over the conventional RGB imagery is the presence of non-visual data, allowing for a richer representation of information. In this paper we present an effective method of visualizing hyperspectral video sequences containing chemical plumes and investigate the effectiveness of segmentation techniques on these post-processed videos. Our approach uses a combination of dimension reduction and histogram equalization to prepare the hyperspectral videos for segmentation. First, Principal Components Analysis (PCA) is used to reduce the dimension of the entire video sequence. This is done by projecting each pixel onto the first few Principal Components resulting in a type of spectral filter. Next, a Midway method for histogram equalization is used. These methods redistribute the intensity values in order to reduce icker between frames. This properly prepares these high-dimensional video sequences for more traditional segmentation techniques. We compare the ability of various clustering techniques to properly segment the chemical plume. These include K-means, spectral clustering, and the Ginzburg-Landau functional.

  18. Reduced isothermal feature set for long wave infrared (LWIR) face recognition

    Science.gov (United States)

    Donoso, Ramiro; San Martín, Cesar; Hermosilla, Gabriel

    2017-06-01

    In this paper, we introduce a new concept in the thermal face recognition area: isothermal features. This consists of a feature vector built from a thermal signature that depends on the emission of the skin of the person and its temperature. A thermal signature is the appearance of the face to infrared sensors and is unique to each person. The infrared face is decomposed into isothermal regions that present the thermal features of the face. Each isothermal region is modeled as circles within a center representing the pixel of the image, and the feature vector is composed of a maximum radius of the circles at the isothermal region. This feature vector corresponds to the thermal signature of a person. The face recognition process is built using a modification of the Expectation Maximization (EM) algorithm in conjunction with a proposed probabilistic index to the classification process. Results obtained using an infrared database are compared with typical state-of-the-art techniques showing better performance, especially in uncontrolled acquisition conditions scenarios.

  19. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  20. LISe pixel detector for neutron imaging

    Science.gov (United States)

    Herrera, Elan; Hamm, Daniel; Wiggins, Brenden; Milburn, Rob; Burger, Arnold; Bilheux, Hassina; Santodonato, Louis; Chvala, Ondrej; Stowe, Ashley; Lukosi, Eric

    2016-10-01

    Semiconducting lithium indium diselenide, 6LiInSe2 or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of 6Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 μm pitch on a 5×5×0.56 mm3 LISe substrate. An experimentally verified spatial resolution of 300 μm was observed utilizing a super-sampling technique.

  1. Pixel detectors from fundamentals to applications

    CERN Document Server

    Rossi, Leonardo; Rohe, Tilman; Wermes, Norbert

    2006-01-01

    Pixel detectors are a particularly important class of particle and radiation detection devices. They have an extremely broad spectrum of applications, ranging from high-energy physics to the photo cameras of everyday life. This book is a general purpose introduction into the fundamental principles of pixel detector technology and semiconductor-based hybrid pixel devices. Although these devices were developed for high-energy ionizing particles and radiation beyond visible light, they are finding new applications in many other areas. This book will therefore benefit all scientists and engineers working in any laboratory involved in developing or using particle detection.

  2. Anode readout for pixellated CZT detectors

    Science.gov (United States)

    Narita, Tomohiko; Grindlay, Jonathan E.; Hong, Jaesub; Niestemski, Francis C.

    2004-02-01

    Determination of the photon interaction depth offers numerous advantages for an astronomical hard X-ray telescope. The interaction depth is typically derived from two signals: anode and cathode, or collecting and non-collecting electrodes. We present some preliminary results from our depth sensing detectors using only the anode pixel signals. By examining several anode pixel signals simultaneously, we find that we can estimate the interaction depth, and get sub-pixel 2-D position resolution. We discuss our findings and the requirements for future ASIC development.

  3. Small pixel pitch MCT IR-modules

    Science.gov (United States)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.

    2016-05-01

    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  4. Adopt a Pixel Photographs: 2013-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The photographs in the Adopt a Pixel collection were provided by volunteers with a digital camera, a Global Positioning System (GPS), and a compass or a smart mobile...

  5. Adopt a Pixel Photographs: 2013-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The photographs in the Adopt a Pixel collection were provided by volunteers with a digital camera, a Global Positioning System (GPS), and a compass or a smart mobile...

  6. Adopt a Pixel Photographs: 2013-Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The photographs in the Adopt a Pixel collection were provided by volunteers with a digital camera, a Global Positioning System (GPS), and a compass or a smart...

  7. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  8. Focal plane array with modular pixel array components for scalability

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  9. Region based elimination of noise pixels towards optimized classifier models for skin pixel detection

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2015-03-01

    Full Text Available The extraction of the skin pixels in a human image and rejection of non-skin pixels is called the skin segmentation. Skin pixel detection is the process of extracting the skin pixels in a human image which is typically used as a pre-processing step to extract the face regions from human image. In past, there are several computer vision approaches and techniques have been developed for skin pixel detection. In the process of skin detection, given pixels are been transformed into an appropriate color space such as RGB, HSV etc. And then skin classifier model have been applied to label the pixel into skin or non-skin regions. Here in this research a “Region based elimination of noise pixels and performance analysis of classifier models for skin pixel detection applied on human images” would be performed which involve the process of image representation in color models, elimination of non-skin pixels in the image, and then pre-processing and cleansing of the collected data, feature selection of the human image and then building the model for classifier. In this research and implementation of skin pixels classifier models are proposed with their comparative performance analysis. The definition of the feature vector is simply the selection of skin pixels from the human image or stack of human images. The performance is evaluated by comparing and analysing skin colour segmentation algorithms. During the course of research implementation, efforts are iterative which help in selection of optimized skin classifier based on the machine learning algorithms and their performance analysis.

  10. First operation of a pixel imaging matrix based on DEPFET pixels

    CERN Document Server

    Fischer, P; Klein, P; Löcker, M; Lutz, Gerhard; Neeser, W; Strüder, L; Wermes, N

    2000-01-01

    In the DEPFET pixel concept the detected incident radiation is directly sensed and amplified by a JFET integrated in every pixel cell. While the DEPFET detector principle has already been demonstrated previously on single pixel structures, we present here the first successful operation of a large $32 \\times 32$ DEPFET pixel matrix as an imaging device. The matrix has been exposed to 60 keV gamma rays of a $^{241}$Am source and has been scanned using an IR laser. The principle of operation as well as the charge collection in the structure and possible improvements are discussed.

  11. Spatial clustering of pixels of a multispectral image

    Energy Technology Data Exchange (ETDEWEB)

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  12. Spatial clustering of pixels of a multispectral image

    Science.gov (United States)

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  13. A per-pixel Log2ADC for high dynamic range, 1000FPS digital focal plane arrays (DFPA)

    Science.gov (United States)

    Petilli, Eugene

    2016-09-01

    Intrinsix has developed a Digital Focal Plane Array (DFPA) architecture based on a novel piecewise linear Log2 ADC (LADC) with "lossless" analog compression which enables ultra-high dynamic range ROICs that use less power than other extended dynamic range technologies. The LADC provides dynamic range of 126dB with a constant 75dB SNR over the entire frame. The companding 13bit mantissa, 3bit radix per pixel LADCs compress the 21bit signals into efficient 16 bit data words. The Read Out IC (ROIC) is compatible with most IR and LWIR detectors including two-color SLS (photodiode) and uBolometers. The DFPA architecture leverages two (staggered frame prime and redundant) MIPI CSI-3 interfaces to achieve full HD DFPA at 1000 frames/sec; an equivalent uncompressed data rate of 100Gb/sec. The LADC uses direct injection into a moderate sized integrating capacitor and several comparators create a stream of multi-bit data values. These values are accumulated in an SRAM based log2ALU and the radix of the ALU is combined with the data to generate a feedback current to the integrating capacitor, closing the delta loop. The integration time and a single pole low pass IIR filter are configurable using control signals to the log2ALU. The feedback current is at least partially generated using PWM for high linearity.

  14. A logarithmic low dark current CMOS pixel

    Science.gov (United States)

    Brunetti, Alessandro Michel; Choubey, Bhaskar

    2016-04-01

    High dynamic range pixels are required in a number of automotive and scientific applications. CMOS pixels provide different approaches to achieve this. However, these suffer from poor performance under low light conditions due to inherently high leakage current that is present in CMOS processes, also known as dark current. The typical approach to reduce this dark current involves process modifications. Nevertheless, energy considerations suggest that the leakage current will be close to zero at a close to zero voltage on the photodiode. Hence, the reduction in dark current can be achieved by forcing a zero voltage across the photodiode. In this paper, a novel logarithmic CMOS pixel design capable of reducing dark current without any process modifications is proposed. This pixel is also able to produce a wide dynamic range response. This circuit utilizes two current mirrors to force the in-pixel photodiode at a close to zero voltage. Additionally, a bias voltage is used to reduce a higher order effect known as Drain Induced Barrier Lowering (DIBL). In fact, the contribution of this effect can be compensated by increasing the body effect. In this paper, we studied the consequences of a negative bias voltage applied to the body of the current mirror pair to compensate for the DIBL effect thereby achieving a very small voltage drop on the photodiode and consequently, a higher sensitivity in low light conditions.

  15. Radiation Tolerance of CMOS Monolithic Active Pixel Sensors with Self-Biased Pixels

    CERN Document Server

    Deveaux, M; Besson, A; Claus, G; Colledani, C; Dorokhov, M; Dritsa, C; Dulinski, W; Fröhlich, I; Goffe, M; Grandjean, D; Heini, S; Himmi, A; Hu, C; Jaaskelainen, K; Müntz, C; Shabetai, A; Stroth, J; Szelezniak, M; Valin, I; Winter, M

    2009-01-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias pixel. Moreover, we discuss radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad

  16. Development of CMOS Pixel Sensors with digital pixel dedicated to future particle physics experiments

    Science.gov (United States)

    Zhao, W.; Wang, T.; Pham, H.; Hu-Guo, C.; Dorokhov, A.; Hu, Y.

    2014-02-01

    Two prototypes of CMOS pixel sensor with in-pixel analog to digital conversion have been developed in a 0.18 μm CIS process. The first design integrates a discriminator into each pixel within an area of 22 × 33 μm2 in order to meet the requirements of the ALICE inner tracking system (ALICE-ITS) upgrade. The second design features 3-bit charge encoding inside a 35 × 35 μm2 pixel which is motivated by the specifications of the outer layers of the ILD vertex detector (ILD-VXD). This work aims to validate the concept of in-pixel digitization which offers higher readout speed, lower power consumption and less dead zone compared with the column-level charge encoding.

  17. The pin pixel detector--neutron imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Rhodes, N J; Schooneveld, E M; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a neutron gas pixel detector intended for application in neutron diffraction studies is reported. Using standard electrical connector pins as point anodes, the detector is based on a commercial 100 pin connector block. A prototype detector of aperture 25.4 mmx25.4 mm has been fabricated, giving a pixel size of 2.54 mm which matches well to the spatial resolution typically required in a neutron diffractometer. A 2-Dimensional resistive divide readout system has been adapted to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics. The timing properties of the device match well to the requirements of the ISIS-pulsed neutron source.

  18. Infrared single-pixel imaging utilising microscanning

    CERN Document Server

    Sun, Ming-Jie; Phillips, David B; Gibson, Graham M; Padgett, Miles J

    2015-01-01

    Since the invention of digital cameras there has been a concerted drive towards detector arrays with higher spatial resolution. Microscanning is a technique that provides a final higher resolution image by combining multiple images of a lower resolution. Each of these low resolution images is subject to a sub-pixel sized lateral displacement. In this work we apply the microscanning approach to an infrared single-pixel camera. For the same final resolution and measurement resource, we show that microscanning improves the signal-to-noise ratio (SNR) of reconstructed images by approximately 50%. In addition, this strategy also provides access to a stream of low-resolution 'preview' images throughout each high-resolution acquisition. Our work demonstrates an additional degree of flexibility in the trade-off between SNR and spatial resolution in single-pixel imaging techniques.

  19. Towards spark-proof gaseous pixel detectors

    Science.gov (United States)

    Tsigaridas, S.; Beuzekom, M. v.; Chan, H. W.; Graaf, H. v. d.; Hartjes, F.; Heijhoff, K.; Hessey, N. P.; Prodanovic, V.

    2016-11-01

    The micro-pattern gaseous pixel detector, is a promising technology for imaging and particle tracking applications. It is a combination of a gas layer acting as detection medium and a CMOS pixelated readout-chip. As a prevention against discharges we deposit a protection layer on the chip and then integrate on top a micromegas-like amplification structure. With this technology we are able to reconstruct 3D track segments of particles passing through the gas thanks to the functionality of the chip. We have turned a Timepix3 chip into a gaseous pixel detector and tested it at the SPS at Cern. The preliminary results are promising and within the expectations. However, the spark protection layer needs further improvement to make reliable detectors. For this reason, we have created a setup for spark-testing. We present the first results obtained from the lab-measurements along with preliminary results from the testbeam.

  20. Per-Pixel Lighting Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Inanici, Mehlika

    2005-08-01

    This report presents a framework for per-pixel analysis of the qualitative and quantitative aspects of luminous environments. Recognizing the need for better lighting analysis capabilities and appreciating the new measurement abilities developed within the LBNL Lighting Measurement and Simulation Toolbox, ''Per-pixel Lighting Data Analysis'' project demonstrates several techniques for analyzing luminance distribution patterns, luminance ratios, adaptation luminance and glare assessment. The techniques are the syntheses of the current practices in lighting design and the unique practices that can be done with per-pixel data availability. Demonstrated analysis techniques are applicable to both computer-generated and digitally captured images (physically-based renderings and High Dynamic Range photographs).

  1. Performance of active edge pixel sensors

    Science.gov (United States)

    Bomben, M.; Ducourthial, A.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; D'Eramo, L.; Giacomini, G.; Marchiori, G.; Zorzi, N.; Rummler, A.; Weingarten, J.

    2017-05-01

    To cope with the High Luminosity LHC harsh conditions, the ATLAS inner tracker has to be upgraded to meet requirements in terms of radiation hardness, pile up and geometrical acceptance. The active edge technology allows to reduce the insensitive area at the border of the sensor thanks to an ion etched trench which avoids the crystal damage produced by the standard mechanical dicing process. Thin planar n-on-p pixel sensors with active edge have been designed and produced by LPNHE and FBK foundry. Two detector module prototypes, consisting of pixel sensors connected to FE-I4B readout chips, have been tested with beams at CERN and DESY. In this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  2. Active Pixel Sensors: Are CCD's Dinosaurs?

    Science.gov (United States)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  3. VNIR, MWIR, and LWIR source assemblies for optical quality testing and spectro-radiometric calibration of earth observation satellites

    Science.gov (United States)

    Compain, Eric; Maquet, Philippe; Leblay, Pierrick; Gavaud, Eric; Marque, Julien; Glastre, Wilfried; Cortese, Maxime; Sugranes, Pierre; Gaillac, Stephanie; Potheau, Hervé

    2015-09-01

    This document presents several original OGSEs, Optical Ground Support Equipment, specifically designed and realized for the optical testing and calibration of earth observation satellites operating in a large spectral band from 0.4μm to 14.7μm. This work has been mainly supported by recent development dedicated to MTG, Meteosat Third Generation, the ESA next generation of meteorological satellites. The improved measurement capabilities of this new satellite generation has generated new challenging requirements for the associated optical test equipments. These improvements, based on design and component innovation will be illustrated for the MOTA, the GICS and the DEA OGSEs. MOTA and GICS are dedicated to the AIT, Assembly Integration and Test, of FCI, the Flexible Combined Imager of the imaging satellite MTG-I. DEA OGSE is dedicated to the AIT of the DEA, Detection Electronics Assembly, which is part of IRS instrument, an IR sounder part of MTG-S satellite. From an architectural point of view, the presented original designs enable to run many optical tests with a single system thanks to a limited configuration effort. Main measurement capabilities are optical quality testing (MTF based mainly on KEF measurement), Line of Sight (LoS) stability measurement, straylight analyses, VNIR-MWIR-LWIR focal plane array co-registration, and broadband large dynamic spectro-radiometric calibration. Depending on the AIT phase of the satellite, these source assemblies are operated at atmospheric pressure or under secondary vacuum. In operation, they are associated with an opto-mechanical projection system that enables to conjugate the image of the source assembly with the focal plane of the satellite instruments. These conjugation systems are usually based on high resolution, broadband collimator, and are optionally mounted on hexapod to address the entire field of instruments.

  4. Physics performance of the ATLAS pixel detector

    Science.gov (United States)

    Tsuno, S.

    2017-01-01

    In preparation for LHC Run-2 the ATLAS detector introduced a new pixel detector, the Insertable B-Layer (IBL). This detector is located between the beampipe and what was the innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level objects such a b-quark jet tagging. This in turn, leads to better physics results. This note summarizes the impact of the IBL detector on physics results, especially focusing on the analyses using b-quark jets throughout 2016 summer physics program.

  5. Commissioning of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  6. Physics performance of the ATLAS Pixel Detector

    CERN Document Server

    Tsuno, Soshi; The ATLAS collaboration

    2016-01-01

    One noticeable upgrade from Run-1 to Run-2 with ATLAS detector in proton-proton collisions at LHC is the introduction of the new pixel detector, IBL, located on the beam pipe as the extra innermost pixel layer. The tracking and vertex reconstruction are significantly improved and good performance is expected in high level object such a $b$-quark jet tagging, in turn, it leads the better physics results. This note summarizes what is the impact on the IBL detector to the physics results especially focusing on the analyses using the $b$-quark jets throughout 2016 summer physics program.

  7. Gaussian mixture models for measuring local change down-track in LWIR imagery for explosive hazard detection

    Science.gov (United States)

    Spain, Christopher J.; Anderson, Derek T.; Keller, James M.; Popescu, Mihail; Stone, Kevin E.

    2011-06-01

    Burying objects below the ground can potentially alter their thermal properties. Moreover, there is often soil disturbance associated with recently buried objects. An intensity video frame image generated by an infrared camera in the medium and long wavelengths often locally varies in the presence of buried explosive hazards. Our approach to automatically detecting these anomalies is to estimate a background model of the image sequence. Pixel values that do not conform to the background model may represent local changes in thermal or soil signature caused by buried objects. Herein, we present a Gaussian mixture model-based technique to estimate the statistical model of background pixel values. The background model is used to detect anomalous pixel values on the road while a vehicle is moving. Foreground pixel confidence values are projected into the UTM coordinate system and a UTM confidence map is built. Different operating levels are explored and the connected component algorithm is then used to extract islands that are subjected to size, shape and orientation filters. We are currently using this approach as a feature in a larger multi-algorithm fusion system. However, in this article we also present results for using this algorithm as a stand-alone detector algorithm in order to further explore its value in detecting buried explosive hazards.

  8. Pixels simultaneous detection probabilities and spatial resolution determination of pixelized detectors by means of correlation measurements

    CERN Document Server

    Grabskii, V

    2007-01-01

    A novel method to estimate the pixels simultaneous detection probability and the spatial resolution of pixelized detectors is proposed, which is based on the determination of the statistical correlations between detector neighbor pixels. The correlations are determined by means of noise variance measurement for a isolated pixels and the difference between neighbor pixels. The method is validated using images from the two different GE Senographe 2000D mammographic units. The pixelized detector has been irradiated using x-rays along its entire surface. It is shown that the pixel simultaneous detection probabilities can be estimated within accuracy 0.001 - 0.003, where the systematic error is estimated to be smaller than 0.005. The presampled two-dimensional point-spread function (PSF0) is determined using a single Gaussian and a sum of two Gaussian approximations. The obtained results for the presampled PSF0 show that the single Gaussian approximation is not appropriate, and the sum of two Gaussian approximatio...

  9. From Hybrid to CMOS Pixels ... a possibility for LHC's pixel future?

    CERN Document Server

    Wermes, Norbert

    2015-01-01

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R\\&D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R\\&D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers t...

  10. Planar pixel sensors in commercial CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the ATLAS experiment at the high luminosity LHC, an all-silicon tracker is foreseen to cope with the increased rate and radiation levels. Pixel and strip detectors will have to cover an area of up to 200m2. To produce modules in high number at reduced costs, new sensor and bonding technologies have to be investigated. Commercial CMOS technologies on high resistive substrates can provide significant advantages in this direction. They offer cost effective, large volume sensor production. In addition to this, production is done on 8'' wafers allowing wafer-to-wafer bonding to the electronics, an interconnection technology substantially cheaper than the bump bonding process used for hybrid pixel detectors at the LHC. Both active and passive n-in-p pixel sensor prototypes have been submitted in a 150 nm CMOS technology on a 2kΩ cm substrate. The passive sensor design will be used to characterize sensor properties and to investigate wafer-to-wafer bonding technologies. This first prototype is made of a matrix of 36 x 16 pixels of size compatible with the FE-I4 readout chip (i.e. 50 μm x 250 μm). Results from lab characterization of this first submission are shown together with TCAD simulations. Work towards a full size FE-I4 sensor for wafer-to-wafer bonding is discussed.

  11. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  12. What's A Pixel Particle Sensor Chip?

    CERN Multimedia

    2008-01-01

    ATLAS particle physics experiment aided with collaboration ON Semiconductor was recently honored by the European Council for Nuclear Research (CERN), with an Industrial Award recognizing the company's contribution in supplying complex "Pixel Particle Sensor" chips for use in CERN's ATLAS particle physics experiment.

  13. Dense Iterative Contextual Pixel Classification using Kriging

    DEFF Research Database (Denmark)

    Ganz, Melanie; Loog, Marco; Brandt, Sami

    2009-01-01

    have been proposed to this end, e.g., iterative contextual pixel classification, iterated conditional modes, and other approaches related to Markov random fields. A problem of these methods, however, is their computational complexity, especially when dealing with high-resolution images in which...

  14. CMS has a heart of pixels

    CERN Multimedia

    2003-01-01

    At the core of CMS, particles will come into contact with tiny detector components, known as pixels, which are almost invisible to the naked eye. With these elementary cells measuring a mere 150 microns (or about 1/10 of a millimetre) along each side, a real technological leap has been made.

  15. ATLAS Pixel Group - Photo Gallery from Irradiation

    CERN Multimedia

    2001-01-01

    Photos 1,2,3,4,5,6,7 - Photos taken before irradiation of Pixel Test Analog Chip and Pmbars (April 2000) Photos 8,9,10,11 - Irradiation of VDC chips (May 2000) Photos 12, 13 - Irradiation of Passive Components (June 2000) Photos 14,15, 16 - Irradiation of Marebo Chip (November 1999)

  16. Performance of active edge pixel sensors

    CERN Document Server

    Bomben, Marco; Bagolini, Alvise; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; D'Eramo, Louis; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola; Rummler, Andre; Weingarten, Jens

    2017-01-01

    this paper the performance of these modules are reported. In particular the lateral extension of the detection volume, beyond the pixel region, is investigated and the results show high hit efficiency also at the detector edge, even in presence of guard rings.

  17. Dynamic holography using pixelated light modulators.

    Science.gov (United States)

    Zwick, Susanne; Haist, Tobias; Warber, Michael; Osten, Wolfgang

    2010-09-01

    Dynamic holography using spatial light modulators is a very flexible technique that offers various new applications compared to static holography. We give an overview on the technical background of dynamic holography focusing on pixelated spatial light modulators and their technical restrictions, and we present a selection of the numerous applications of dynamic holography.

  18. Adaptive bad pixel correction algorithm for IRFPA based on PCNN

    Science.gov (United States)

    Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian

    2013-10-01

    Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.

  19. Design Methodology: ASICs with complex in-pixel processing for Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Fermilab

    2014-10-31

    The development of Application Specific Integrated Circuits (ASIC) for pixel detectors with complex in-pixel processing using Computer Aided Design (CAD) tools that are, themselves, mainly developed for the design of conventional digital circuits requires a specialized approach. Mixed signal pixels often require parasitically aware detailed analog front-ends and extremely compact digital back-ends with more than 1000 transistors in small areas below 100μm x 100μm. These pixels are tiled to create large arrays, which have the same clock distribution and data readout speed constraints as in, for example, micro-processors. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout.

  20. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fahim Farah, Fahim Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  1. PixelSNE: Visualizing Fast with Just Enough Precision via Pixel-Aligned Stochastic Neighbor Embedding

    OpenAIRE

    Kim, Minjeong; Choi, Minsuk; Lee, Sunwoong; Tang, Jian; Park, Haesun; Choo, Jaegul

    2016-01-01

    Embedding and visualizing large-scale high-dimensional data in a two-dimensional space is an important problem since such visualization can reveal deep insights out of complex data. Most of the existing embedding approaches, however, run on an excessively high precision, ignoring the fact that at the end, embedding outputs are converted into coarse-grained discrete pixel coordinates in a screen space. Motivated by such an observation and directly considering pixel coordinates in an embedding ...

  2. ACS/WFC Pixel Stability - Bringing the Pixels Back to the Science

    Science.gov (United States)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2016-06-01

    Electrical current that has been trapped within the lattice structure of a Charged Coupled Device (CCD) can be present through multiple exposures, which will have an adverse effect on its science performance. The traditional way to correct for this extra charge is to take an image with the camera shutter closed periodically throughout the lifetime of the instrument. These images, generally referred to as dark images, allow for the characterization of the extra charge that is trapped within the CCD at the time of observation. This extra current can then be subtracted out of science images to correct for the extra charge that was there at this time. Pixels that have a charge above a certain threshold of current are marked as “hot” and flagged in the data quality array. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra noise from this dark current can be taken into account. We present the results of a pixel history study that analyzes every pixel of ACS/WFC individually and allows pixels that were marked as bad to be brought back into the science image.

  3. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  4. Towards third generation pixel readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@lbl.gov; Mekkaoui, A.; Ganani, D.

    2013-12-11

    We present concepts and prototyping results towards a third generation pixel readout chip. We consider the 130 nm feature size FE-I4 chip, in production for the ATLAS IBL upgrade, to be a second generation chip. A third generation chip would have to go significantly further. A possible direction is to make the IC design generic so that different experiments can configure it to meet significantly different requirements, without the need for everybody to develop their own ASIC from the ground up. In terms of target technology, a demonstrator 500-pixel matrix containing analog front ends only (no complex functionality), was designed and fabricated in 65 nm CMOS and irradiated with protons in December 2011 and May 2012.

  5. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  6. Noise in a CMOS digital pixel sensor

    Institute of Scientific and Technical Information of China (English)

    Zhang Chi; Yao Suying; Xu Jiangtao

    2011-01-01

    Based on the study of noise performance in CMOS digital pixel sensor (DPS),a mathematical model of noise is established with the pulse-width-modulation (PWM) principle.Compared with traditional CMOS image sensors,the integration time is different and A/D conversion is implemented in each PWM DPS pixel.Then,the quantitative calculating formula of system noise is derived.It is found that dark current shot noise is the dominant noise source in low light region while photodiode shot noise becomes significantly important in the bright region.In this model,photodiode shot noise does not vary with luminance,but dark current shot noise does.According to increasing photodiode capacitance and the comparator's reference voltage or optimizing the mismatch in the comparator,the total noise can be reduced.These results serve as a guideline for the design of PWM DPS.

  7. ATLAS Pixel IBL: Stave Quality Assurance

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    For Run 2 of the LHC a fourth innermost Pixel Detector layer on a smaller radius beam pipe has been installed in the ATLAS Detector to add redundancy against radiation damage of the current Pixel Detector and to ensure a high quality tracking and b-tagging performance of the Inner Detector over the coming years until the High Luminosity Upgrade. State of the art components have been produced and assembled onto support structures known as staves over the last two years. In total, 20 staves have been built and qualified in a designated Quality Assurance setup at CERN of which 14 have been integrated onto the beam pipe. Results from the testing are presented.

  8. The Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Hans-Günther, E-mail: moser@mpp.mpg.de

    2016-09-21

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55–60) μm in the first layer and between 50 μm×(70–85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the ‘internal gate’ modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X{sub 0}). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO{sub 2} system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  9. Pixel Dynamics Analysis of Photospheric Spectral Data

    Science.gov (United States)

    2014-11-13

    corresponding Doppler blueshift (redshift) integrated over the pixel. Variations in the line width δλm may indicate variations in temperature or changes in...skewness of their absorption line redshift/ blueshift and asymmetry PFDs, as well as by the spatial average for each region. These three time-varying... blueshift PFD variance and skewness plots). These oscillations, associated with the AR regions exhibiting solar eruptions, occur with a period of ∼ 10

  10. Efficient segmentation by sparse pixel classification

    DEFF Research Database (Denmark)

    Dam, Erik B; Loog, Marco

    2008-01-01

    Segmentation methods based on pixel classification are powerful but often slow. We introduce two general algorithms, based on sparse classification, for optimizing the computation while still obtaining accurate segmentations. The computational costs of the algorithms are derived......, and they are demonstrated on real 3-D magnetic resonance imaging and 2-D radiograph data. We show that each algorithm is optimal for specific tasks, and that both algorithms allow a speedup of one or more orders of magnitude on typical segmentation tasks....

  11. The Belle II DEPFET pixel detector

    Science.gov (United States)

    Moser, Hans-Günther

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  12. Electrical Characteristics of Silicon Pixel Sensors

    CERN Document Server

    Gorelov, I; Hoeferkamp, M; Mata-Bruni, V; Santistevan, G; Seidel, S C; Ciocio, A; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Klaiber Lodewigs, Jonas M; Krasel, O; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Caso, Carlo; Cervetto, M; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Netchaeva, P; Osculati, B; Rossi, L; Charles, E; Fasching, D; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Andreazza, A; Caccia, M; Citterio, M; Lari, T; Meroni, C; Ragusa, F; Troncon, C; Vegni, G; Lutz, Gerhard; Richter, R H; Rohe, T; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; Cauz, D; Cobal-Grassmann, M; D'Auria, S; De Lotto, B; del Papa, C; Grassmann, H; Santi, L; Becks, K H; Lenzen, G; Linder, C

    2001-01-01

    Prototype sensors for the ATLAS silicon pixel detector have been electrically characterized. The current and voltage characteristics, charge collection efficiencies, and resolutions have been examined. Devices were fabricated on oxygenated and standard detector-grade silicon wafers. Results from prototypes which examine p-stop and standard and moderated p-spray isolation are presented for a variety of geometrical options. Some of the comparisons relate unirradiated sensors with those that have received fluences relevant to LHC operation.

  13. Production chain of CMS pixel modules

    CERN Document Server

    2006-01-01

    The pictures show the production chain of pixel modules for the CMS detector. Fig.1: overview of the assembly procedure. Fig.2: bump bonding with ReadOut Chip (ROC) connected to the sensor. Fig.3: glueing a raw module onto the baseplate strips. Fig.4: glueing of the High Density Interconnect (HDI) onto a raw module. Fig.5: pull test after heat reflow. Fig.6: wafer sensor processing, Indium evaporation.

  14. Photovoltaic retinal prosthesis with high pixel density

    Science.gov (United States)

    Mathieson, Keith; Loudin, James; Goetz, Georges; Huie, Philip; Wang, Lele; Kamins, Theodore I.; Galambos, Ludwig; Smith, Richard; Harris, James S.; Sher, Alexander; Palanker, Daniel

    2012-06-01

    Retinal degenerative diseases lead to blindness due to loss of the `image capturing' photoreceptors, while neurons in the `image-processing' inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating the surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems that deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation is produced in normal and degenerate rat retinas, with pulse durations of 0.5-4 ms, and threshold peak irradiances of 0.2-10 mW mm-2, two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 µm bipolar pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high pixel density.

  15. Radiation hardness studies of silicon pixel detectors

    CERN Document Server

    Lari, T

    2006-01-01

    At the LHC silicon vertex detectors will be exposed to hadron fluences of the order of . In order to study the effects of radiation damage on the performances of the ATLAS Pixel Vertex Detector, several full-size detector modules were irradiated to a fluence of and tested in a beam at CERN. After irradiation only a modest degradation of the detector performances is observed. At the operating ATLAS bias voltage of 600 V the average signal is still 80% of the pre-irradiation value, the spatial resolution is and the detection efficiency is 98.2%. The LHC luminosity upgrade will increase the radiation hardness requirements by a factor of 10 and will require the development of new ultra-radiation hard vertex detectors. A detailed simulation of silicon pixel detectors irradiated to very high fluence is presented and used to study the possibility to use silicon pixel detectors at the LHC after the luminosity upgrade. The charge collection properties and the detector response were computed for different silicon mater...

  16. Baryon Acoustic Oscillations reconstruction with pixels

    CERN Document Server

    Obuljen, Andrej; Castorina, Emanuele; Viel, Matteo

    2016-01-01

    Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present a new reconstruction method that consists in displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that our method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate our method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that our method is able to decrease ...

  17. ATLAS ITk and new pixel sensors technologies

    CERN Document Server

    Gaudiello, A

    2016-01-01

    During the 2023–2024 shutdown, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×10$^{34}$ cm$^{−2}$s$^{−1}$. This upgrade of the accelerator is called High-Luminosity LHC (HL-LHC). The ATLAS detector will be changed to meet the challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing, and an integrated luminosity of 3000 fb $^{−1}$ over ten years. The HL-LHC luminosity conditions are too extreme for the current silicon (pixel and strip) detectors and straw tube transition radiation tracker (TRT) of the current ATLAS tracking system. Therefore the ATLAS inner tracker is being completely rebuilt for data-taking and the new system is called Inner Tracker (ITk). During this upgrade the TRT will be removed in favor of an all-new all-silicon tracker composed only by strip and pixel detectors. An overview of new layouts in study will be reported and the new pixel sensor technologies in development will be explained.

  18. Readout Architecture for Hybrid Pixel Readout Chips

    CERN Document Server

    AUTHOR|(SzGeCERN)694170; Westerlund, Tomi; Wyllie, Ken

    The original contribution of this thesis to knowledge are novel digital readout architectures for hybrid pixel readout chips. The thesis presents asynchronous bus-based architecture, a data-node based column architecture and a network-based pixel matrix architecture for data transportation. It is shown that the data-node architecture achieves readout efficiency 99 % with half the output rate as a bus-based system. The network-based solution avoids ``broken'' columns due to some manufacturing errors, and it distributes internal data traffic more evenly across the pixel matrix than column-based architectures. An improvement of $>$ 10 % to the efficiency is achieved with uniform and non-uniform hit occupancies. Architectural design has been done using transaction level modeling ($TLM$) and sequential high-level design techniques for reducing the design and simulation time. It has been possible to simulate tens of column and full chip architectures using the high-level techniques. A decrease of $>$ 10 in run-time...

  19. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  20. Sky pixelization for the analysis of extended emission

    Science.gov (United States)

    Verkhodanov, O. V.; Doroshkevich, A. G.

    2013-08-01

    Spherical pixelization schemes are reviewed that allow analyzing extended emission and, in particular, the cosmic microwave background. Problems with implementing different schemes are considered. The nonhierarchical Gauss-Legendre sky pixelization (GLESP) approach is discussed in detail.

  1. A PFM based digital pixel with off-pixel residue measurement for 15μm pitch MWIR FPAs

    Science.gov (United States)

    Abbasi, Shahbaz; Shafique, Atia; Galioglu, Arman; Ceylan, Omer; Yazici, Melik; Gurbuz, Yasar

    2016-05-01

    Digital pixels based on pulse frequency modulation (PFM) employ counting techniques to achieve very high charge handling capability compared to their analog counterparts. Moreover, extended counting methods making use of leftover charge (residue) on the integration capacitor help improve the noise performance of these pixels. However, medium wave infrared (MWIR) focal plane arrays (FPAs) having smaller pixel pitch are constrained in terms of pixel area which makes it difficult to add extended counting circuitry to the pixel. Thus, this paper investigates the performance of digital pixels employing off-pixel residue measurement. A circuit prototype of such a pixel has been designed for 15μm pixel pitch and fabricated in 90nm CMOS. The prototype is composed of a pixel front-end based on a PFM loop. The frontend is a modified version of conventional design providing a means for buffering the signal that needs to be converted to a digital value by an off-pixel ADC. The pixel has an integration phase and a residue measurement phase. Measured integration performance of the pixel has been reported in this paper for various detector currents and integration times.

  2. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    Science.gov (United States)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  3. 4T CMOS Active Pixel Sensors under Ionizing Radiation

    NARCIS (Netherlands)

    Tan, J.

    2013-01-01

    This thesis investigates the ionizing radiation effects on 4T pixels and the elementary in-pixel test devices with regard to the electrical performance and the optical performance. In addition to an analysis of the macroscopic pixel parameter degradation, the radiation-induced degradation mechanisms

  4. LWIR Snapshot Imaging Polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Robert E Sampson

    2009-04-01

    This report describes the results of a phase 1 STTR to design a longwave infrared imaging polarimeter. The system design, expected performance and components needed to construct the imaging polarimeter are described. Expected performance is modeled and sytem specifications are presented.

  5. Uncooled Tunable LWIR Microbolometer

    Science.gov (United States)

    2010-05-05

    Table.1 Layer structure of the experimental devices in this study. (The optical constants of these materials have been taken from Palik [17...ch. 3, pp. 43-121. [16] H. A. Macleod, Thin Film Optical filters. 3rd ed. Inst of Physics Pub Inc, (2001). [17] E. Palik , Handbook of optical...Collins, Phys. Rev, vol. 101, p. 566, 1956. [65] E. D. Palik , Handbook of Optical Constants of Solids. Elsevier, 1998. [66] D. R. Lide, Ed., CRC

  6. ACS/WFC Pixel History, Bringing the Pixels Back to Science

    Science.gov (United States)

    Borncamp, David; Grogin, Norman; Bourque, Matthew; Ogaz, Sara

    2017-06-01

    Excess thermal energy within a Charged Coupled Device (CCD) results in excess electrical current that is trapped within the lattice structure of the electronics. This excess signal from the CCD itself can be present through multiple exposures, which will have an adverse effect on its science performance unless it is corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed. These images, generally referred to as ``dark'' images, allow for the measurement of thermal-electron contamination at each pixel of the CCD. This so-called ``dark current'' can then be subtracted from the science images by re-scaling to the science exposure times. Pixels that have signal above a certain value are traditionally marked as ``hot'' and flagged in the data quality array. Many users will discard these pixels as being bad. However, these pixels may not be bad in the sense that they cannot be reliably dark-subtracted; if these pixels are shown to be stable over a given anneal period, the charge can be properly subtracted and the extra Poisson noise from this dark current can be taken into account and put into the error arrays.

  7. Fabrication and Test of Pixelated CZT Detectors with Different Pixel Pitches and Thicknesses

    CERN Document Server

    Li, Q; Dowkontt, P; Martín, J; Beilicke, M; Jung, I; Groza, M; Bürger, A; De Geronimo, G; Krawczynski, H

    2008-01-01

    The main methods grown Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity are Modified Horizontal Bridgman (MHB) and High Pressure Bridgman (HPB) processes, respectively. In this contribution, the readout system based on two 32-channel NCI-ASICs for pixellated CZT detector arrays has been developed and tested. The CZT detectors supplied by Orbotech (MHB) and eV products (HPB) are tested by NCI-ASIC readout system. The CZT detectors have an array of 8x8 or 11x11 pixel anodes fabricated on the anode surface with the area up to 2 cm x2 cm and the thickness of CZT detectors ranges from 0.5 cm to 1 cm. Energy spectra resolution and electron mobility-lifetime products of 8x8 pixels CZT detector with different thicknesses have been investigated.

  8. Fast Sub-Pixel Motion Estimation Algorithm For H.264

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel fast sub-pixel search algorithm is proposed to accelerate sub-pixel search. Based on the features of predicted motion vector (PMV) and texture direction observed, the proposed method effectively filters out impossible points and thus decreases 11 searched points in average during the sub-pixel search stage. A threshold is also adopted to early terminate the sub-pixel search. Simulation results show that the proposed method can achieve up to 4.8 times faster than full sub-pixel motion search scheme (FSPS) with less than 0.025 dB PSNR losses and 2.2% bitlength increases.

  9. A study in GUI aesthetics for modern pixel art games.

    OpenAIRE

    Grahn, Emma

    2013-01-01

    The clarity and usability of the graphical user interface is very important for the enjoyment of a digital game. Pixel art is an art style with low resolution consisting of a precise placing of pixels, the smallest unit of colour that a screen can display. Pixel art has the potential of being cheap, easy to make and nostalgic, but it takes some skill to handle. However the great weakness of pixel art is displaying letters, and small details with clarity. So is there a place for pixel art in m...

  10. Dynamical pixel manipulation of metasurfaces (Conference Presentation)

    Science.gov (United States)

    Zhong, Jin-Qian

    2017-05-01

    Two-dimensional (2D) metamaterials or known as metasurfaces have attracted researchers' attention due to their capability to manipulate the amplitudes, phases and polarization states of incident electromagnetic waves by conferring extra phase different phase at different positions through a super cell that is composed of different oriented structures. In other words, metasurfaces can achieve beam steering and wave shaping by imparting local, gradient phase shift to the incoming waves. With these abilities, metasurfaces can be applied to applications such as ultrathin invisibility cloaks, metasurface holograms, planar lenses and a vortex generator. With the above mentioned advantages and applications of metasurfaces, yet, all the demonstrated metasurfaces possess a main insufficiency that once the metasurfaces are designed and fabricated, their optical properties are then fixed without any chance for further manipulation, which limits their versatility in practical applications. Moreover, although some researchers employed dynamically changeable materials to achieve an active metasurface, such manipulation can only change the overall performance such as an operating frequency instead of changing the provided phase on each pixel of a metasurface. To solve this issue, we employ liquid crystal integrated with a metasurface and the combination could be thus be dynamically tuned via electric bias on each pixel of liquid crystals. Through this setup, we can alter the polarization state of the incident electromagnetic wave dynamically and thus manipulate the extra phase provided by each pixel. In this combination, liquid crystal is employed to change the incident polarization from 0 to 360-degree and the metasurface is designed to achieve four different output signals including phase modulated linear- and circular-polarized light and amplitude-modulated linear- and circular-polarized light. Meanwhile, the metasurfaces could also control the transmission efficiency of the

  11. Optical Cloud Pixel Recovery via Machine Learning

    Directory of Open Access Journals (Sweden)

    Subrina Tahsin

    2017-05-01

    Full Text Available Remote sensing derived Normalized Difference Vegetation Index (NDVI is a widely used index to monitor vegetation and land use change. NDVI can be retrieved from publicly available data repositories of optical sensors such as Landsat, Moderate Resolution Imaging Spectro-radiometer (MODIS and several commercial satellites. Studies that are heavily dependent on optical sensors are subject to data loss due to cloud coverage. Specifically, cloud contamination is a hindrance to long-term environmental assessment when using information from satellite imagery retrieved from visible and infrared spectral ranges. Landsat has an ongoing high-resolution NDVI record starting from 1984. Unfortunately, this long time series NDVI data suffers from the cloud contamination issue. Though both simple and complex computational methods for data interpolation have been applied to recover cloudy data, all the techniques have limitations. In this paper, a novel Optical Cloud Pixel Recovery (OCPR method is proposed to repair cloudy pixels from the time-space-spectrum continuum using a Random Forest (RF trained and tested with multi-parameter hydrologic data. The RF-based OCPR model is compared with a linear regression model to demonstrate the capability of OCPR. A case study in Apalachicola Bay is presented to evaluate the performance of OCPR to repair cloudy NDVI reflectance. The RF-based OCPR method achieves a root mean squared error of 0.016 between predicted and observed NDVI reflectance values. The linear regression model achieves a root mean squared error of 0.126. Our findings suggest that the RF-based OCPR method is effective to repair cloudy pixels and provides continuous and quantitatively reliable imagery for long-term environmental analysis.

  12. ATLAS Tracker and Pixel Operational Experience

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00222525; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker, are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  13. CMB component separation in the pixel domain

    OpenAIRE

    Doroshkevich, A.; Verkhodanov, O.

    2010-01-01

    We show that the popular ILC approach is unstable in respect to the division of the sample of map pixels to the set of ``homogeneous'' subsamples. For suitable choice of such subsamples we can obtain the restored CMB signal with amplitudes ranged from zero to the amplitudes of the observed signal. We propose approach which allows us to obtain reasonable estimates of $C_\\ell$ at $\\ell\\leq 30$ and similar to WMAP $C_\\ell$ for larger $\\ell$. With this approach we reduce some anomalies of the WMA...

  14. ISPA (imaging silicon pixel array) experiment

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The ISPA tube is a position-sensitive photon detector. It belongs to the family of hybrid photon detectors (HPD), recently developed by CERN and INFN with leading photodetector firms. HPDs confront in a vacuum envelope a photocathode and a silicon detector. This can be a single diode or a pixelized detector. The electrons generated by the photocathode are efficiently detected by the silicon anode by applying a high-voltage difference between them. ISPA tube can be used in high-energy applications as well as bio-medical and imaging applications.

  15. Reading pixelized paragraphs of Chinese characters using simulated prosthetic vision.

    Science.gov (United States)

    Zhao, Ying; Lu, Yanyu; Zhao, Ji; Wang, Kaihu; Ren, Qiushi; Wu, Kaijie; Chai, Xinyu

    2011-07-29

    Visual prostheses offer a possibility of restoring useful reading ability to the blind. The psychophysics of simulating reading with a prosthesis using pixelized text has attracted attention recently. This study was an examination of the reading accuracy and efficiency of pixelized Chinese paragraphs after different parameters were altered. Forty native Chinese speakers with normal or corrected visual acuity (20/20) participated in four experiments. Reading accuracy and efficiency were measured after changing the character resolution, character size, pixel dropout percentage, number of gray levels, and luminance. A 5° × 5° character appeared to be the optimal size necessary for accurate pixelized reading. Reading accuracy close to 100% could be achieved with 10 × 10 pixels/character and ∼60% with a 6 × 6 pixel resolution. Pixel dropout adversely affected accuracy, and paragraphs with a 50% dropout were unreadable. Luminance had little effect; however, the number of gray levels significantly affected reading performance. Paragraph reading was at least 5% more accurate at each resolution than was the accuracy of Chinese character recognition. Character size and resolution, pixel dropout, and the number of gray levels clearly affected the reading performance of pixelized Chinese paragraphs. Compared with pixelized character recognition, pixelized Chinese paragraph reading achieved higher accuracy; thus, optimal Chinese reading performance may require prostheses with more electrodes (1000) than are required to read paragraphs in the Latin alphabet (500).

  16. Performance limits of a single photon counting pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Chmeissani, M.; Mikulec, B. E-mail: bettina.mikulec@cern.ch

    2001-03-11

    X-ray imaging using hybrid pixel detectors in single photon counting mode is a relatively recent and exciting development. The photon counting mode implies that each pixel has a threshold in energy above which a hit is recorded. Sharing of charge between adjacent pixels would therefore lead to a loss of registered hits and for medical imaging applications to a higher patient dose. This explains why the demand for high spatial resolution and consequently small pixel sizes (<100 {mu}m) motivates the Medipix2 collaboration to study the effects of charge sharing between pixels on system performance. Two different simulation codes are used to simulate the energy loss inside the detector and the charge transport towards the pixel electrodes. The largest contribution to the lateral spreading of charge comes from diffusion and can result in a considerable loss of detection efficiency in photon counting systems for small pixel sizes.

  17. A neighbor pixel communication filtering structure for Dynamic Vision Sensors

    Science.gov (United States)

    Xu, Yuan; Liu, Shiqi; Lu, Hehui; Zhang, Zilong

    2017-02-01

    For Dynamic Vision Sensors (DVS), thermal noise and junction leakage current induced Background Activity (BA) is the major cause of the deterioration of images quality. Inspired by the smoothing filtering principle of horizontal cells in vertebrate retina, A DVS pixel with Neighbor Pixel Communication (NPC) filtering structure is proposed to solve this issue. The NPC structure is designed to judge the validity of pixel's activity through the communication between its 4 adjacent pixels. The pixel's outputs will be suppressed if its activities are determined not real. The proposed pixel's area is 23.76×24.71μm2 and only 3ns output latency is introduced. In order to validate the effectiveness of the structure, a 5×5 pixel array has been implemented in SMIC 0.13μm CIS process. 3 test cases of array's behavioral model show that the NPC-DVS have an ability of filtering the BA.

  18. Pixel 2010: A résumé

    CERN Document Server

    Wermes, Norbert

    2011-01-01

    The Pixel 2010 conference focused on semiconductor pixel detectors for particle tracking/vertexing as well as for imaging, in particular for synchrotron light sources and XFELs. The big LHC hybrid pixel detectors have impressively started showing their capabilities. X-ray imaging detectors, also using the hybrid pixel technology, have greatly advanced the experimental possibilities for diffraction experiments. Monolithic or semi-monolithic devices like CMOS active pixels and DEPFET pixels have now reached a state such that complete vertex detectors for RHIC and superKEKB are being built with these technologies. Finally, new advances towards fully monolithic active pixel detectors, featuring full CMOS electronics merged with efficient signal charge collection, exploiting standard CMOS technologies, SOI and/or 3D integration, show the path for the future. This résumé attempts to extract the main statements of the results and developments presented at this conference.

  19. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density

    Energy Technology Data Exchange (ETDEWEB)

    Sadygov, Z. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Ahmadov, F. [National Nuclear Research Center, Baku (Azerbaijan); Khorev, S. [Zecotek Photonics Inc., Vancouver (Canada); Sadigov, A., E-mail: saazik@yandex.ru [National Nuclear Research Center, Baku (Azerbaijan); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Madatov, R.; Mehdiyeva, R. [Institute of Radiation Problems, Baku (Azerbaijan); Zerrouk, F. [Zecotek Photonics Inc., Vancouver (Canada)

    2016-07-11

    Presented is a new model describing development of the avalanche process in time, taking into account the dynamics of electric field within the depleted region of the diode and the effect of parasitic capacitance shunting individual quenching micro-resistors on device parameters. Simulations show that the effective capacitance of a single pixel, which defines the multiplication factor, is the sum of the pixel capacitance and a parasitic capacitance shunting its quenching micro-resistor. Conclusions obtained as a result of modeling open possibilities of improving the pixel gain in micropixel avalanche photodiodes with high pixel density (or low pixel capacitance).

  20. Achieving ultra-high temperatures with a resistive emitter array

    Science.gov (United States)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  1. Mars Science Laboratory Engineering Cameras

    Science.gov (United States)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  2. The ALICE Silicon Pixel Detector System

    CERN Document Server

    Fadmar Osmic, FO

    2006-01-01

    The European Organization for Particle Physics (CERN) in Geneva is currently constructing the Large Hadron Collider (LHC), which will allow the study of the subnuclear ranges of physics with an accuracy never achieved before. Within the LHC project, ALICE is to the study of strongly interacting matter at extreme densities and high temperatures. ALICE as many other modern High Energy Physics (HEP) experiments uses silicon pixel detectors for tracking close to the interaction point (IP). The ALICE Silicon Pixel Detector (SPD) will constitute the two innermost layers of ALICE, and will due to its high granularity provide precise tracking information. In heavy ion collisions, the track density could be as high as 80 tracks/cm2 in the first SPD layer. The SPD will provide tracking information at radii of 3.9 and 7.6 cm from the IP. It is a fundamental element for the study of the weak decays of the particles carrying heavy flavour, whose typical signature will be a secondary vertex separated from the primary verte...

  3. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754303

    2016-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e- Compact Linear Collider (CLIC). A single point resolution of 3μm for the vertex detector and 7μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2 % X0 per layer in the ver- tex detector and 1-2%X0 in the tracker. A fast time slicing of 10ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25x25μm2 and 55x55μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50μm-500μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  4. Silicon pixel R&D for CLIC

    Science.gov (United States)

    Munker, M.

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+ e‑ Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2% X0 per layer in the vertex detector and 1–2% X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25×25 μm2 and 55×55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm–500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  5. The Phase1 CMS Pixel detector upgrade

    CERN Document Server

    Tavolaro, Vittorio Raoul

    2016-01-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of $1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of $2 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO$_{2}$ cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detect...

  6. optical links for the atlas pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  7. Optical links for the ATLAS Pixel detector

    CERN Document Server

    Stucci, Stefania Antonia; The ATLAS collaboration

    2015-01-01

    Optical links are necessary to satisfy the high speed readout over long distances for advanced silicon detector systems. We report on the optical readout used in the newly installed central pixel layer (IBL) in the ATLAS experiment. The off detector readout employs commercial optical to analog converters, which were extensively tested for this application. Performance measurements during installation and commissioning will be shown. With the increasing instantaneous luminosity in the next years, the next layers outwards of IBL of the ATLAS Pixel detector (Layer 1 and Layer 2) will reach their bandwidth limits. A plan to increase the bandwidth by upgrading the off detector readout chain is put in place. The plan also involves new optical readout components, in particular the optical receivers, for which commercial units cannot be used and a new design has been made. The latter allows for a wider operational range in term of data frequency and light input power to match the on-detector sending units on the pres...

  8. The Phase II ATLAS ITk Pixel Upgrade

    CERN Document Server

    Terzo, Stefano; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the "ITk" (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and and ring-shaped supports in the endcap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m$^2$ , depending on the final layout choice, which is expected to take place in early 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel-endcap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as $|\\eta| < 4$. Supporting structures will be ...

  9. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to |eta| < 3.2 and two to |eta| < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions...

  10. Further applications for mosaic pixel FPA technology

    Science.gov (United States)

    Liddiard, Kevin C.

    2011-06-01

    In previous papers to this SPIE forum the development of novel technology for next generation PIR security sensors has been described. This technology combines the mosaic pixel FPA concept with low cost optics and purpose-designed readout electronics to provide a higher performance and affordable alternative to current PIR sensor technology, including an imaging capability. Progressive development has resulted in increased performance and transition from conventional microbolometer fabrication to manufacture on 8 or 12 inch CMOS/MEMS fabrication lines. A number of spin-off applications have been identified. In this paper two specific applications are highlighted: high performance imaging IRFPA design and forest fire detection. The former involves optional design for small pixel high performance imaging. The latter involves cheap expendable sensors which can detect approaching fire fronts and send alarms with positional data via mobile phone or satellite link. We also introduce to this SPIE forum the application of microbolometer IR sensor technology to IoT, the Internet of Things.

  11. The Pixels system: last but not late!

    CERN Multimedia

    Kevin Einsweiler

    The Pixel Detector for ATLAS is one of the smallest, but most challenging components of the experiment. It lives in the dangerous territory directly outside the beampipe, where the radiation environment is particularly fierce, and it must be roughly one million times more radiation-hard than its human designers. Starting at a radius of just 5cm from the interaction point where the proton beams collide, it occupies a volume of slightly more than one meter in length and a half meter in diameter. In this compact region, there are eighty million channels of electronics (most of the electronics channels in ATLAS!), each capable of measuring the charge deposited by a track in a silicon pixel measuring only 50 microns by 400 microns in size (a volume of 0.005 cubic millimeters). A total cooling capacity of 15 KWatts is available to keep it operating comfortably at -5C. This detector is built around, and provides the support for, the central beampipe of ATLAS. It is supported on carbon fiber rails inside of the Pix...

  12. Efficient single pixel imaging in Fourier space

    Science.gov (United States)

    Bian, Liheng; Suo, Jinli; Hu, Xuemei; Chen, Feng; Dai, Qionghai

    2016-08-01

    Single pixel imaging (SPI) is a novel technique capturing 2D images using a bucket detector with a high signal-to-noise ratio, wide spectrum range and low cost. Conventional SPI projects random illumination patterns to randomly and uniformly sample the entire scene’s information. Determined by Nyquist sampling theory, SPI needs either numerous projections or high computation cost to reconstruct the target scene, especially for high-resolution cases. To address this issue, we propose an efficient single pixel imaging technique (eSPI), which instead projects sinusoidal patterns for importance sampling of the target scene’s spatial spectrum in Fourier space. Specifically, utilizing the centrosymmetric conjugation and sparsity priors of natural images’ spatial spectra, eSPI sequentially projects two \\tfrac{π }{2}-phase-shifted sinusoidal patterns to obtain each Fourier coefficient in the most informative spatial frequency bands. eSPI can reduce requisite patterns by two orders of magnitude compared to conventional SPI, which helps a lot for fast and high-resolution SPI.

  13. Pixel-Tilecal-MDT Combined Test Beam

    CERN Multimedia

    B. Di Girolamo

    A test with many expectations When an additional week of running (from September 11th to 18th) was allocated for the test-beam, it was decided to give priority to a combined run with the participation of the Pixel, Tilecal and MDT sub-detectors. The integration of these three sub-detectors was possible as they all use the baseline (DAQ-1/EF based) DAQ for test beams (as reported in a previous e-news). The tests and the addition of a common trigger and busy were organized in a short timescale by experts from the three sub-detectors and DAQ/EF. The expectations were many; both looking for problems and finding solutions. The setup The setup, shown in the figure, consisted of the Pixel telescope normally used during the sub-detector tests, two Tilecal barrel modules, two Tilecal extended barrel modules, and six MDT barrel chambers. This fully occupied a length of some 30 meters in the H8 line of the SPS North Area. Each sub-detector used their own specialized front-end electronics. The data collected by modu...

  14. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  15. Multi-scale feature learning on pixels and super-pixels for seminal vesicles MRI segmentation

    Science.gov (United States)

    Gao, Qinquan; Asthana, Akshay; Tong, Tong; Rueckert, Daniel; Edwards, Philip "Eddie"

    2014-03-01

    We propose a learning-based approach to segment the seminal vesicles (SV) via random forest classifiers. The proposed discriminative approach relies on the decision forest using high-dimensional multi-scale context-aware spatial, textual and descriptor-based features at both pixel and super-pixel level. After affine transformation to a template space, the relevant high-dimensional multi-scale features are extracted and random forest classifiers are learned based on the masked region of the seminal vesicles from the most similar atlases. Using these classifiers, an intermediate probabilistic segmentation is obtained for the test images. Then, a graph-cut based refinement is applied to this intermediate probabilistic representation of each voxel to get the final segmentation. We apply this approach to segment the seminal vesicles from 30 MRI T2 training images of the prostate, which presents a particularly challenging segmentation task. The results show that the multi-scale approach and the augmentation of the pixel based features with the super-pixel based features enhances the discriminative power of the learnt classifier which leads to a better quality segmentation in some very difficult cases. The results are compared to the radiologist labeled ground truth using leave-one-out cross-validation. Overall, the Dice metric of 0:7249 and Hausdorff surface distance of 7:0803 mm are achieved for this difficult task.

  16. Pixel-level Analog-To-Digital Converters for Hybrid Pixel Detectors with energy sensitivity

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2000-01-01

    Single-photon counting hybrid pixel detectors have shown to be a valid alternative to other types of X-ray imaging devices due to their high sensitivity, low noise, linear behavior and wide dynamic range. One important advantage of these devices is the fact that detector and readout electronics are

  17. Design of pixel-level ADCs for energy-sensitive hybrid pixel detectors

    NARCIS (Netherlands)

    San Segundo Bello, David; Nauta, Bram; Visschers, Jan

    2000-01-01

    Single-photon counting hybrid pixel detectors have shown to be a valid alternative to other types of X-ray imaging devices due to their high sensitivity, low noise, linear behavior and wide dynamic range. One important advantage of these devices is the fact that detector and readout electronics are

  18. Serial pixel analog-to-digital converter (ADC)

    Science.gov (United States)

    Larson, Eric D.

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and "one-hot" counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  19. Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Science.gov (United States)

    Maneuski, D.; Bates, R.; Blue, A.; Buttar, C.; Doonan, K.; Eklund, L.; Gimenez, E. N.; Hynds, D.; Kachkanov, S.; Kalliopuska, J.; McMullen, T.; O'Shea, V.; Tartoni, N.; Plackett, R.; Vahanen, S.; Wraight, K.

    2015-03-01

    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects.

  20. Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors

    Science.gov (United States)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2016-09-01

    We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on- p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.

  1. How big is an OMI pixel?

    Science.gov (United States)

    de Graaf, Martin; Sihler, Holger; Tilstra, Lieuwe G.; Stammes, Piet

    2016-08-01

    The Ozone Monitoring Instrument (OMI) is a push-broom imaging spectrometer, observing solar radiation backscattered by the Earth's atmosphere and surface. The incoming radiation is detected using a static imaging CCD (charge-coupled device) detector array with no moving parts, as opposed to most of the previous satellite spectrometers, which used a moving mirror to scan the Earth in the across-track direction. The field of view (FoV) of detector pixels is the solid angle from which radiation is observed, averaged over the integration time of a measurement. The OMI FoV is not quadrangular, which is common for scanning instruments, but rather super-Gaussian shaped and overlapping with the FoV of neighbouring pixels. This has consequences for pixel-area-dependent applications, like cloud fraction products, and visualisation.The shapes and sizes of OMI FoVs were determined pre-flight by theoretical and experimental tests but never verified after launch. In this paper the OMI FoV is characterised using collocated MODerate resolution Imaging Spectroradiometer (MODIS) reflectance measurements. MODIS measurements have a much higher spatial resolution than OMI measurements and spectrally overlap at 469 nm. The OMI FoV was verified by finding the highest correlation between MODIS and OMI reflectances in cloud-free scenes, assuming a 2-D super-Gaussian function with varying size and shape to represent the OMI FoV. Our results show that the OMPIXCOR product 75FoV corner coordinates are accurate as the full width at half maximum (FWHM) of a super-Gaussian FoV model when this function is assumed. The softness of the function edges, modelled by the super-Gaussian exponents, is different in both directions and is view angle dependent.The optimal overlap function between OMI and MODIS reflectances is scene dependent and highly dependent on time differences between overpasses, especially with clouds in the scene. For partially clouded scenes, the optimal overlap function was

  2. Silicon buried channels for pixel detector cooling

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, M., E-mail: boscardi@fbk.eu [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Conci, P.; Crivellari, M.; Ronchin, S. [Fondazione Bruno Kessler Trento, Via Sommarive 18, I-38123 Trento (Italy); Bettarini, S. [Universitá di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy); Bosi, F. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa, L.go B. Pontecorvo 3, I-56127 Pisa (Italy)

    2013-08-01

    The support and cooling structures add important contributions to the thickness, in radiation length, of vertex detectors. In order to minimize the material budget of pixel sensors, we developed a new approach to integrate the cooling into the silicon devices. The microchannels are formed in silicon using isotropic SF{sub 6} plasma etching in a DRIE (deep reactive ion etcher) equipment. Due to their peculiar profiles, the channels can be sealed by a layer of a PECVD silicon oxide. We have realized on a silicon wafer microchannels with different geometries and hydraulic diameters. We describe the main fabrication steps of microchannels with focus on the channel definition. The experimental results are reported on the thermal characterization of several prototypes, using a mixture of glycol and water as a liquid coolant. The prototypes have shown high cooling efficiency and high-pressure breaking strength.

  3. Artificial Structural Color Pixels: A Review

    Science.gov (United States)

    Zhao, Yuqian; Zhao, Yong; Hu, Sheng; Lv, Jiangtao; Ying, Yu; Gervinskas, Gediminas; Si, Guangyuan

    2017-01-01

    Inspired by natural photonic structures (Morpho butterfly, for instance), researchers have demonstrated varying artificial color display devices using different designs. Photonic-crystal/plasmonic color filters have drawn increasing attention most recently. In this review article, we show the developing trend of artificial structural color pixels from photonic crystals to plasmonic nanostructures. Such devices normally utilize the distinctive optical features of photonic/plasmon resonance, resulting in high compatibility with current display and imaging technologies. Moreover, dynamical color filtering devices are highly desirable because tunable optical components are critical for developing new optical platforms which can be integrated or combined with other existing imaging and display techniques. Thus, extensive promising potential applications have been triggered and enabled including more abundant functionalities in integrated optics and nanophotonics. PMID:28805736

  4. CMB component separation in the pixel domain

    CERN Document Server

    Doroshkevich, A

    2010-01-01

    We show that the popular ILC approach is unstable in respect to the division of the sample of map pixels to the set of ``homogeneous'' subsamples. For suitable choice of such subsamples we can obtain the restored CMB signal with amplitudes ranged from zero to the amplitudes of the observed signal. We propose approach which allows us to obtain reasonable estimates of $C_\\ell$ at $\\ell\\leq 30$ and similar to WMAP $C_\\ell$ for larger $\\ell$. With this approach we reduce some anomalies of the WMAP results. In particular, our estimate of the quadrupole is well consistent to theoretical one, the effect of the ``axis of evil'' is suppressed and the symmetry of the north and south galactic hemispheres increases. This results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We propose also new simple approach which can improve WMAP estimates of high $\\ell$ power spectrum.

  5. Image Pixel Fusion for Human Face Recognition

    CERN Document Server

    Bhowmik, Mrinal Kanti; Nasipuri, Mita; Basu, Dipak Kumar; Kundu, Mahantapas

    2010-01-01

    In this paper we present a technique for fusion of optical and thermal face images based on image pixel fusion approach. Out of several factors, which affect face recognition performance in case of visual images, illumination changes are a significant factor that needs to be addressed. Thermal images are better in handling illumination conditions but not very consistent in capturing texture details of the faces. Other factors like sunglasses, beard, moustache etc also play active role in adding complicacies to the recognition process. Fusion of thermal and visual images is a solution to overcome the drawbacks present in the individual thermal and visual face images. Here fused images are projected into an eigenspace and the projected images are classified using a radial basis function (RBF) neural network and also by a multi-layer perceptron (MLP). In the experiments Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark for thermal and visual face images have been used. Compar...

  6. Operational Experience with the ALICE Pixel detector

    CERN Document Server

    Mastroserio, A.

    2017-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the Inner Tracking System of the ALICE experiment and it is the closest detector to the interaction point. As a vertex detector, it has the unique feature of generating a trigger signal that contributes to the L0 trigger of the ALICE experiment. The SPD started collecting data since the very first pp collisions at LHC in 2009 and since then it has taken part in all pp, Pb-Pb and p-Pb data taking campaigns. This contribution will present the main features of the SPD, the detector performance and the operational experience, including calibration and optimization activities from Run 1 to Run 2.

  7. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules.

    CERN Document Server

    Rubinskiy, Igor; The ATLAS collaboration

    2011-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.2 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reduction of the pixel size and of the material budget. Two different promising Silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pixel detector. An overview of the sensor technologies qualification with particular emphasis on irradiation and beam tests will be presented.

  8. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, I

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented.

  9. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase of the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pixel detector. An overview of the sensor technologies’ qualification with particular emphasis on irradiation and beam tests are presented.

  10. Super pixel-level dictionary learning for hyperspectral image classification

    Science.gov (United States)

    Zhao, Wei; Zhu, Wen; Liao, Bo; Fu, Xiangzheng

    2017-08-01

    This paper presents a superpixel-level dictionary learning model for hyperspectral data. The idea is to divide the hyperspectral image into a number of super-pixels by means of the super-pixel segmentation method. Each super-pixel is a spatial neighborhood called contextual group. That is, each pixel is represented using a linear combination of a few dictionary items learned from the train data, but since pixels inside a super-pixel are often consisting of the same materials, their linear combinations are constrained to use common items from the dictionary. To this end, the sparse coefficients of the context group have a common sparse pattern by using the joint sparse regularizer for dictionary learning. The sparse coefficients are then used for classification using linear support vector machines. The validity of the proposed method is experimentally verified on a real hyperspectral images.

  11. Steganography on quantum pixel images using Shannon entropy

    Science.gov (United States)

    Laurel, Carlos Ortega; Dong, Shi-Hai; Cruz-Irisson, M.

    2016-07-01

    This paper presents a steganographical algorithm based on least significant bit (LSB) from the most significant bit information (MSBI) and the equivalence of a bit pixel image to a quantum pixel image, which permits to make the information communicate secretly onto quantum pixel images for its secure transmission through insecure channels. This algorithm offers higher security since it exploits the Shannon entropy for an image.

  12. CMOS monolithic pixel sensors research and development at LBNL

    Indian Academy of Sciences (India)

    D Contarato; J-M Bussat; P Denes; L Griender; T Kim; T Stezeberger; H Weiman; M Battaglia; B Hooberman; L Tompkins

    2007-12-01

    This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS pixel sensors are also reported, and future plans and activities are discussed.

  13. Data encoding efficiency in pixel detector readout with charge information

    CERN Document Server

    Garcia-Sciveres, Maurice

    2016-01-01

    The minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the bits used for by the FE-I4 pixel readout chip of the ATLAS experiment.

  14. Data encoding efficiency in pixel detector readout with charge information

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, Maurice, E-mail: mgs@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Wang, Xinkang [University of Chicago, Chicago, IL (United States)

    2016-04-11

    The average minimum number of bits needed for lossless readout of a pixel detector is calculated, in the regime of interest for particle physics where only a small fraction of pixels have a non-zero value per frame. This permits a systematic comparison of the readout efficiency of different encoding implementations. The calculation is compared to the number of bits used by the FE-I4 pixel readout chip of the ATLAS experiment.

  15. Hit efficiency study of CMS prototype forward pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  16. The FE-I4 pixel readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@bl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arutinov, D.; Barbero, M. [University of Bonn, Bonn (Germany); Beccherle, R. [Istituto Nazionale di Fisica Nucleare Sezione di Genova, Genova (Italy); Dube, S.; Elledge, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Fleury, J. [Laboratoire de l' Accelerateur Lineaire, Orsay (France); Fougeron, D.; Gensolen, F. [Centre de Physique des Particules de Marseille, Marseille (France); Gnani, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gromov, V. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Hemperek, T.; Karagounis, M. [University of Bonn, Bonn (Germany); Kluit, R. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Kruth, A. [University of Bonn, Bonn (Germany); Mekkaoui, A. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Menouni, M. [Centre de Physique des Particules de Marseille, Marseille (France); Schipper, J.-D. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands)

    2011-04-21

    A new pixel readout integrated circuit denominated FE-I4 is being designed to meet the requirements of ATLAS experiment upgrades. It will be the largest readout IC produced to date for particle physics applications, filling the maximum allowed reticle area. This will significantly reduce the cost of future hybrid pixel detectors. In addition, FE-I4 will have smaller pixels and higher rate capability than the present generation of LHC pixel detectors. Design features are described along with simulation and test results, including low power and high rate readout architecture, mixed signal design strategy, and yield hardening.

  17. The Megapixel EBCCD: A high-resolution imaging tube sensitive to single photons

    Energy Technology Data Exchange (ETDEWEB)

    Buontempo, S.; Ereditato, A.; Frenkel, A.; Galeazzi, F.; Garufi, F.; Martellotti, G.; Penso, G. [Universita ' Federico II' and INFN Napoli (Italy); Chiodi, G.; Liberti, B. [Universita di Roma ' La Sapienza' and INFN Roma (Italy); Dalinenko, I.N.; Kossov, V.G.; Lasovsky, L.Y.; Malyarov, A.V.; Vishnevsky, G.I.; Zhuk, A. [Nat. Res. Inst. ' Electron' , St. Petersburg (Russian Federation); Ekimov, A.V.; Golovkin, S.V.; Govorun, V.N.; Medvedkov, A.M. [IHEP, Protvino (Russian Federation); Fabre, J.P. [CERN, Geneve (Switzerland); Fedorov, V.Y.; Kalashnikova, N.N. [Inst. of Electron Devices, Moscow (Russian Federation); Kozarenko, E.N.; Kreslo, I.E. [JINR, Dubna (Russian Federation); Wolff, T. [Westfaelische Wilhelms-Universitaet, Muenster (Germany)

    1998-08-21

    A hybrid image-intensifier tube, suitable for extremely low-light imaging, has been tested. This device is based on an Electron-Bombarded CCD chip (EBCCD) with 1024x1024 sensitive pixels. The tube, which has a photocathode diameter of 40 mm, is gateable and zoomable, with an image magnification varying from 0.62 to 1.3. The high gain (about 4000 collected electrons per photoelectron at the operational voltage of 15 kV) and the relatively low noise (180 electrons per pixel at 10 MHz pixel-readout frequency), allows single-photoelectron signals to be separated from noise with a signal-to-noise ratio greater than 10. By applying an appropriate threshold on the signal amplitude, the background can almost be eliminated, with a loss of few percent in single-photoelectron counting. High inner gain, low-noise, single-photoelectron sensitivity, and high spatial resolution make the EBCCD imaging tube a unique device, attractive for many applications in high-energy physics, astrophysics and biomedical diagnostics. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. MuSCAT: a multicolor simultaneous camera for studying atmospheres of transiting exoplanets

    CERN Document Server

    Narita, Norio; Kusakabe, Nobuhiko; Onitsuka, Masahiro; Ryu, Tsuguru; Yanagisawa, Kenshi; Izumiura, Hideyuki; Tamura, Motohide; Yamamuro, Tomoyasu

    2015-01-01

    We report a development of a multi-color simultaneous camera for the 188cm telescope at Okayama Astrophysical Observatory in Japan. The instrument, named MuSCAT, has a capability of 3-color simultaneous imaging in optical wavelength where CCDs are sensitive. MuSCAT is equipped with three 1024x1024 pixel CCDs, which can be controlled independently. The three CCDs detect lights in $g'_2$ (400--550 nm), $r'_2$ (550--700 nm), and $z_{s,2}$ (820--920 nm) bands using Astrodon Photometrics Generation 2 Sloan filters. The field of view of MuSCAT is 6.1x6.1 arcmin$^2$ with the pixel scale of 0.358 arcsec per pixel. The principal purpose of MuSCAT is to perform high precision multi-color transit photometry. For the purpose, MuSCAT has a capability of self autoguiding which enables to fix positions of stellar images within ~1 pix. We demonstrate relative photometric precisions of 0.101%, 0.074%, and 0.076% in $g'_2$, $r'_2$, and $z_{s,2}$ bands, respectively, for GJ436 (magnitudes in $g'$=11.81, $r'$=10.08, and $z'$=8.6...

  19. Coronagraphic Imager with Adaptive Optics (CIAO) for the Subaru 8.2m Telescope

    Science.gov (United States)

    Tamura, M.; Suto, H.; Murakawa, K.; Hayashi, S.; Kaifu, N.; Itoh, Y.; Fukagawa, M.; Oasa, Y.; Naoi, T.

    2001-05-01

    We describe a near-infrared coronagraphic camera built for use with the Subaru 8.2m telescope and its adaptive optics system. This instrument, CIAO, aims to obtain high-resolution (0.06 arcsec at 2 micron) images of faint objects in close vicinity of bright objects at near-infrared wavelengths. The coronagraphic optics are all cooled. Occulting masks whose diameter ranges from 0.1 to 3 arcsec and several types of Lyot stops are selectable. Standard broad-band imaging and a number of narow-band imaging are possible with or without coronagraph, with two pixel scales of 22 mas/pixel and 11 mas/pixel. Low resolution coronagraphic grism spectroscopy is also available. CIAO utilize one ALLADIN II (1024x1024 InSb) scince-grade array detector manufactured by Raytheon, covering the wavelengths from 1 to 5 micron. CIAO will be very useful for studies of companion brown dwarfs and extra-solar planets, circumstelar disks around both young stelar obejcts and main-sequence stars, jets and outflows from both young stars and evolved stars, circumnuclear regions around AGNs, and host galaxies of QSOs. We also present preliminary results from the first commissioning run with adaptive optics at the Subaru telescope.

  20. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    Science.gov (United States)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  1. Velocity Distribution Measurement Using Pixel-Pixel Cross Correlation of Electrical Tomography

    Institute of Scientific and Technical Information of China (English)

    DENGXiang; PENGLihui; YAODanya; ZHANGBaofen

    2004-01-01

    Electrical tomography (ET) provides a novel means of visualizing the internal behavior of twophase flow in industrial process. Using a dual-sensingplane Electrical resistance tomography (ERT) or Electrical capacitance tomography (ECT) system, the raw data of two different section images can be acquired synchronously and the two images reflecting the inner medium distribution respectively can also be reconstructed by using imaging algorithm. Further, the analysis of pixel-pixel cross correlation is able to be setup and the measurement of velocity distribution of two-phase flow could be achieved. The principle is described in the paper. The FFT algorithm for gray value computation and cross correlation function calculation is also introduced. Some experimental results of velocity distribution measurement using pixelpixel cross correlation in vertical slug flow are presented.

  2. Pixel detector modules performance for ATLAS IBL and future pixel detectors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355104; Pernegger, Heinz

    2015-11-06

    The ATLAS Detector is one of the four big particle physics experiments at CERN’s LHC. Its innermost tracking system consisted of the 3-Layer silicon Pixel Detector (~80M readout channels) in the first run (2010-2012). Over the past two years it was refurbished and equipped with new services as well as a new beam monitor. The major upgrade, however, was the Insertable B-Layer (IBL). It adds ~12M readout channels for improved vertexing, tracking robustness and b-tagging performance for the upcoming runs, before the high luminosity upgrade of the LHC will take place. This thesis covers two main aspects of Pixel detector performance studies: The main work was the planning, commissioning and operation of a test bench that meets the requirements of current pixel detector components. Each newly built ATLAS IBL stave was thoroughly tested, following a specifically developed procedure, and initially calibrated in that setup. A variety of production accompanying measurements as well as preliminary results after integ...

  3. Pixel Stability in HST Advanced Camera for Surveys Images

    Science.gov (United States)

    Borncamp, David; Grogin, Norman A.; Bourque, Matthew; Ogaz, Sara

    2017-06-01

    Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current that is propagated into individual pixels in an exposure. This excess signal from the CCD itself can be persistently existent through multiple exposures and can have an adverse effect on the detectors science performance unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed to map the location of these pixels. These images, generally referred to as “dark” images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This "dark current" can then be subtracted from the science images by re-scaling the dark to the science exposure times. Pixels that have signal above a certain threshold are traditionally marked as “hot” and flagged in the data quality array. Many users will discard these pixels as being bad because of this extra current. However, these pixels may not be "bad" in the traditional sense that they cannot be reliably dark-subtracted. If these pixels are shown to be stable over an anneal period, the charge can be properly subtracted and the extra Poisson noise from this hot pixel’s dark current can be taken into account. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously marked as bad to be brought back into the science image as a reliable pixel.

  4. Architectural modeling of pixel readout chips Velopix and Timepix3

    NARCIS (Netherlands)

    Poikela, T.; Plosila, J.; Westerlund, T.; Buytaert, J.; Campbell, M.; Llopart, X.; Plackett, R.; Wyllie, K.; van Beuzekom, M.; Gromov, V.; Kluit, R.; Zappon, F.; Zivkovic, V.; Brezina, C.; Desch, K.; Fang, X.; Kruth, A.

    2012-01-01

    We examine two digital architectures for front end pixel readout chips, Velopix and Timepix3. These readout chips are developed for tracking detectors in future high energy physics experiments. They must incorporate local intelligence in pixels for time-over-threshold measurement and sparse readout.

  5. Hybrid Pixel Detectors for gamma/X-ray imaging

    Science.gov (United States)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  6. Novel integrated CMOS pixel structures for vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kleinfelder, Stuart; Bieser, Fred; Chen, Yandong; Gareus, Robin; Matis, Howard S.; Oldenburg, Markus; Retiere, Fabrice; Ritter, Hans Georg; Wieman, Howard H.; Yamamoto, Eugene

    2003-10-29

    Novel CMOS active pixel structures for vertex detector applications have been designed and tested. The overriding goal of this work is to increase the signal to noise ratio of the sensors and readout circuits. A large-area native epitaxial silicon photogate was designed with the aim of increasing the charge collected per struck pixel and to reduce charge diffusion to neighboring pixels. The photogate then transfers the charge to a low capacitance readout node to maintain a high charge to voltage conversion gain. Two techniques for noise reduction are also presented. The first is a per-pixel kT/C noise reduction circuit that produces results similar to traditional correlated double sampling (CDS). It has the advantage of requiring only one read, as compared to two for CDS, and no external storage or subtraction is needed. The technique reduced input-referred temporal noise by a factor of 2.5, to 12.8 e{sup -}. Finally, a column-level active reset technique is explored that suppresses kT/C noise during pixel reset. In tests, noise was reduced by a factor of 7.6 times, to an estimated 5.1 e{sup -} input-referred noise. The technique also dramatically reduces fixed pattern (pedestal) noise, by up to a factor of 21 in our tests. The latter feature may possibly reduce pixel-by-pixel pedestal differences to levels low enough to permit sparse data scan without per-pixel offset corrections.

  7. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Benoit, Mathieu; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The innermost portion of the ITk will consist of a pixel detector with stave-like support structures in the most central region and ring-shaped supports in the endcap regions; there may also be novel inclined support structures in the barrel-endcap overlap regions. The new detector could have as much as 14 m2 of sensitive silicon. Support structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide. The ITk will be instrumented with new sensors and readout electronics to provide improved tracking performance compared to the current detector. All the module components must be performant enough and robust enough to cope with the expected high particle multiplicity and severe radiation background of the High-Luminosity LHC. Readout...

  8. CMB component separation in the pixel domain

    Science.gov (United States)

    Doroshkevich, A.; Verkhodanov, O.

    2011-02-01

    We show that the popular internal linear combination approach is unstable with respect to division of the observed map pixels to a set of “homogeneous” subsamples. For various choices of such subsamples we can obtain a restored CMB signal with amplitudes ranging from zero to the amplitude of the observed signal. We propose an approach which allows us to obtain corrected estimates of the CMB power spectrum Cℓ at ℓ≤30 and provides results similar to WMAP for larger ℓ. Using this approach, we eliminate some anomalies of the WMAP results. In particular, our estimate of the quadrupole is consistent with the theoretically expected one. The effect of the “axis of evil” is suppressed, and the symmetry of the north and south galactic hemispheres increases. These results can change estimates of quadrupole polarization and the redshift of reionization of the Universe. We also propose a new simple approach which can improve the WMAP estimates of the high ℓ power spectrum.

  9. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  10. Research on ionospheric tomography based on variable pixel height

    Science.gov (United States)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  11. Status of the CMS Phase I pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Spannagel, S., E-mail: simon.spannagel@desy.de

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  12. Development of radiation hardened pixel sensors for charged particle detection

    CERN Document Server

    Koziel, Michal

    2014-01-01

    CMOS Pixel Sensors are being developed since a few years to equip vertex detectors for future high-energy physics experiments with the crucial advantages of a low material budget and low production costs. The features simultaneously required are a short readout time, high granularity and high tolerance to radiation. This thesis mainly focuses on the radiation tolerance studies. To achieve the targeted readout time (tens of microseconds), the sensor pixel readout was organized in parallel columns restricting in addition the readout to pixels that had collected the signal charge. The pixels became then more complex, and consequently more sensitive to radiation. Different in-pixel architectures were studied and it was concluded that the tolerance to ionizing radiation was limited to 300 krad with the 0.35- m fabrication process currently used, while the targeted value was several Mrad. Improving this situation calls for implementation of the sensors in processes with a smaller feature size which naturally imp...

  13. DEPFET--a pixel device with integrated amplification

    CERN Document Server

    Neeser, W; Buchholz, P; Fischer, P; Holl, P; Kemmer, J; Klein, P; Koch, H; Löcker, M; Lutz, Gerhard; Matthäy, H; Strüder, L; Trimpl, M; Ulrici, J; Wermes, N

    2002-01-01

    In the DEPFET pixel concept, the absorbed radiation directly modulates the channel current of a p-JFET transistor being integrated into a fully depleted high ohmic silicon substrate in every pixel cell, offering very low noise operation at room temperature. Hence, DEPFET pixels open new possibilities in biomedical applications, but also have a potential in particle physics and astrophysics. Second prototype 50 mu mx50 mu m single pixels as well as large (64x64) DEPFET matrices have been successfully produced and operated confirming the low noise behavior (12e). Device studies as well as a full DEPFET pixel Bioscope system to be used in real-time digital autoradiography with excellent spatial and energy resolution for X-rays are presented.

  14. DC-DC powering for the CMS pixel upgrade

    Science.gov (United States)

    Feld, Lutz; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R&D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  15. DC-DC Powering for the CMS Pixel Upgrade

    CERN Document Server

    Feld, Lutz Werner; Marcel Friedrichs; Richard Hensch; Karpinski, Waclaw; Klein, Katja; Rittich, David Michael; Sammet, Jan Domenik; Wlochal, Michael

    2013-01-01

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC-DC converters close to the sensitive detector volume. This paper reviews the DC-DC powering scheme and reports on the ongoing R and D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to24 converters. The performance of pixel modules powered by DC-DC converters is compared to conventional powering. The integration of the DC-DC powering scheme into the pixel detector is described and system design issues are reviewed.

  16. DC–DC powering for the CMS pixel upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz, E-mail: Lutz.Feld@rwth-aachen.de; Fleck, Martin; Friedrichs, Marcel; Hensch, Richard; Karpinski, Waclaw; Klein, Katja; Rittich, David; Sammet, Jan; Wlochal, Michael

    2013-12-21

    The CMS experiment plans to replace its silicon pixel detector with a new one with improved rate capability and an additional detection layer at the end of 2016. In order to cope with the increased number of detector modules the new pixel detector will be powered via DC–DC converters close to the sensitive detector volume. This paper reviews the DC–DC powering scheme and reports on the ongoing R and D program to develop converters for the pixel upgrade. Design choices are discussed and results from the electrical and thermal characterisation of converter prototypes are shown. An emphasis is put on system tests with up to 24 converters. The performance of pixel modules powered by DC–DC converters is compared to conventional powering. The integration of the DC–DC powering scheme into the pixel detector is described and system design issues are reviewed.

  17. Neural network based cluster creation in the ATLAS Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing be- tween pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. How- ever, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambigui- ties in the assignment of pixel detector measurement to tracks and improves the position accuracy with respect to standard techniques by taking into account the 2-dimensional charge distribution.

  18. Sub-pixel mapping method based on BP neural network

    Institute of Scientific and Technical Information of China (English)

    LI Jiao; WANG Li-guo; ZHANG Ye; GU Yan-feng

    2009-01-01

    A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel. The network was used to train a model that describes the relationship between spatial distribution of target components in mixed pixel and its neighboring information. Then the sub-pixel scaled target could be predicted by the trained model. In order to improve the performance of BP network, BP learning algorithm with momentum was employed. The experiments were conducted both on synthetic images and on hyperspectral imagery (HSI). The results prove that this method is capable of estimating land covers fairly accurately and has a great superiority over some other sub-pixel mapping methods in terms of computational complexity.

  19. DAQ hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment has been extended by about 12 million pixels thanks to the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented along with newly designed read-out hardware to support high bandwidth for data readout and calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  20. DAQ Hardware and software development for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    In 2014, the Pixel Detector of the ATLAS experiment was extended by about 12 million pixels with the installation of the Insertable B-Layer (IBL). Data-taking and tuning procedures have been implemented by employing newly designed read-out hardware, which supports the full detector bandwidth even for calibration. The hardware is supported by an embedded software stack running on the read-out boards. The same boards will be used to upgrade the read-out bandwidth for the two outermost layers of the ATLAS Pixel Barrel (54 million pixels). We present the IBL read-out hardware and the supporting software architecture used to calibrate and operate the 4-layer ATLAS Pixel detector. We discuss the technical implementations and status for data taking, validation of the DAQ system in recent cosmic ray data taking, in-situ calibrations, and results from additional tests in preparation for Run 2 at the LHC.

  1. Multiport solid-state imager characterization at variable pixel rates

    Science.gov (United States)

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1993-10-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD-13, manufactured by English Electric Valve (EEV), is a 512 X 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal X 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory's High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 are presented and the versatility/capabilities of the test station are reviewed.

  2. Near Future Upgrades for the CMS Pixel Detector

    CERN Document Server

    Kumar, Ashish

    2015-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. The current pixel detector is designed to operate at a maximum luminosity of $1\\times10^{34}cm^{-2}s^{-1}$. Before 2018 the instantaneous luminosity of the LHC is expected to reach $2\\times10^{34}cm^{-2}s^{-1}$, which will significantly increase the number of interactions per bunch crossing. The performance of the current pixel detector in such high occupancy environment will be degraded due to substantial data-loss and effects of radiation damage of sensors, built up over the operational period. In order to maintain or exceed its current performance, the CMS pixel detector will be replaced by a new lightweight system with additional detection layers, better acceptance and improved readout electronics. The upgraded pixel detector will provide improved track and vertex reconstruction, standalone tracking capabilities, as well as identification of ...

  3. Detector apparatus having a hybrid pixel-waveform readout system

    Science.gov (United States)

    Meng, Ling-Jian

    2014-10-21

    A gamma ray detector apparatus comprises a solid state detector that includes a plurality of anode pixels and at least one cathode. The solid state detector is configured for receiving gamma rays during an interaction and inducing a signal in an anode pixel and in a cathode. An anode pixel readout circuit is coupled to the plurality of anode pixels and is configured to read out and process the induced signal in the anode pixel and provide triggering and addressing information. A waveform sampling circuit is coupled to the at least one cathode and configured to read out and process the induced signal in the cathode and determine energy of the interaction, timing of the interaction, and depth of interaction.

  4. Test of CZT Detectors with Different Pixel Pitches and Thicknesses

    CERN Document Server

    Li, Qiang; Jung, Ira; Groza, Michael; Dowkontt, Paul; Bose, Richard; Simburger, Garry; Burger, Arnold; Krawczynski, Henric

    2007-01-01

    The Modified Horizontal Bridgman (MHB) process produces Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity. Various groups,including our own, previously reported on the test of 2x2x0.5 cm3 MHB CZT detectors grown by the company Orbotech and read out with 8x8 pixels. In this contribution, we describe the optimization of the photolithographic process used for contacting the CZT detector with pixel contacts. The optimized process gives a high yield of good pixels down to pixel diameters/pitches of 50 microns. Furthermore, we discuss the performance of 0.5 cm and 0.75 cm thick detectors contacted with 64 and 225 pixel read out with the RENA-3 ASICs from the company NOVA R&D.

  5. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    AUTHOR|(CDS)2083994

    2016-01-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  6. Readout of TPC Tracking Chambers with GEMs and Pixel Chip

    Energy Technology Data Exchange (ETDEWEB)

    Kadyk, John; Kim, T.; Freytsis, M.; Button-Shafer, J.; Kadyk, J.; Vahsen, S.E.; Wenzel, W.A.

    2007-12-21

    Two layers of GEMs and the ATLAS Pixel Chip, FEI3, have been combined and tested as a prototype for Time Projection Chamber (TPC) readout at the International Linear Collider (ILC). The double-layer GEM system amplifies charge with gain sufficient to detect all track ionization. The suitability of three gas mixtures for this application was investigated, and gain measurements are presented. A large sample of cosmic ray tracks was reconstructed in 3D by using the simultaneous timing and 2D spatial information from the pixel chip. The chip provides pixel charge measurement as well as timing. These results demonstrate that a double GEM and pixel combination, with a suitably modified pixel ASIC, could meet the stringent readout requirements of the ILC.

  7. Development of a novel pixel-level signal processing chain for fast readout 3D integrated CMOS pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Y.; Torheim, O.; Hu-Guo, C. [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France); Degerli, Y. [CEA Saclay, IRFU/SEDI, 91191 Gif-sur-Yvette Cedex (France); Hu, Y., E-mail: yann.hu@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien (IPHC), 23 rue du loess, BP 28, 67037 Strasbourg (France)

    2013-03-11

    In order to resolve the inherent readout speed limitation of traditional 2D CMOS pixel sensors, operated in rolling shutter readout, a parallel readout architecture has been developed by taking advantage of 3D integration technologies. Since the rows of the pixel array are zero-suppressed simultaneously instead of sequentially, a frame readout time of a few microseconds is expected for coping with high hit rates foreseen in future collider experiments. In order to demonstrate the pixel readout functionality of such a pixel sensor, a 2D proof-of-concept chip including a novel pixel-level signal processing chain was designed and fabricated in a 0.13μm CMOS technology. The functionalities of this chip have been verified through experimental characterization.

  8. ANALYSIS OF MULTIPATH PIXELS IN SAR IMAGES

    Directory of Open Access Journals (Sweden)

    J. W. Zhao

    2016-06-01

    Full Text Available As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings and the physical parameters of the surface (roughness, correlation length, permittivitywhich determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  9. Fabrication and Test of Pixelated CZT Detectors with Different Pixel Pitches and Thicknesses

    OpenAIRE

    Li, Q.; Garson, A.; Dowkontt, P.; Martin, J.; Beilicke, M; Jung, I.; Groza, M.; A. Burger; De Geronimo, G.; Krawczynski, H.; .

    2008-01-01

    The main methods grown Cadmium Zinc Telluride (CZT) crystals with high yield and excellent homogeneity are Modified Horizontal Bridgman (MHB) and High Pressure Bridgman (HPB) processes, respectively. In this contribution, the readout system based on two 32-channel NCI-ASICs for pixellated CZT detector arrays has been developed and tested. The CZT detectors supplied by Orbotech (MHB) and eV products (HPB) are tested by NCI-ASIC readout system. The CZT detectors have an array of 8x8 or 11x11 pi...

  10. Long-Range Reconnaissance Imager on New Horizons

    CERN Document Server

    Cheng, A F; Conard, S J; Morgan, M F; Barnouin-Jha, O; Boldt, J D; Cooper, K A; Darlington, E H; Grey, M P; Hayes, J R; Kosakowski, K E; Magee, T; Rossano, E; Sampath, D; Schlemm, C; Taylor, H W

    2007-01-01

    The LOng-Range Reconnaissance Imager (LORRI) is the high resolution imaging instrument for the New Horizons mission to Pluto, its giant satellite Charon, its small moons Nix and Hydra, and the Kuiper Belt, which is the vast region of icy bodies extending roughly from Neptune's orbit out to 50 astronomical units (AU). New Horizons launched on January 19, 2006 as the inaugural mission in NASA's New Frontiers program. LORRI is a narrow angle (field of view=0.29 deg), high resolution (4.95 microrad pixels), Ritchey-Chretien telescope with a 20.8 cm diameter primary mirror, a focal length of 263 cm, and a three lens field-flattening assembly. A 1024 x 1024 pixel (optically active region), thinned, backside-illuminated charge-coupled device (CCD) detector is used in the focal plane unit and is operated in frame transfer mode. LORRI provides panchromatic imaging over a bandpass that extends approximately from 350 nm to 850 nm. LORRI operates in an extreme thermal environment, situated inside the warm spacecraft with...

  11. High-performance visible/UV CCD focal plane technology for spacebased applications

    Science.gov (United States)

    Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.

    1993-01-01

    We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.

  12. High-performance visible/UV CCD focal plane technology for spacebased applications

    Science.gov (United States)

    Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.

    1993-01-01

    We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.

  13. VizieR Online Data Catalog: Catalog of X-ray sources in the NARCS (Fornasini+, 2014)

    Science.gov (United States)

    Fornasini, F. M.; Tomsick, J. A.; Bodaghee, A.; Krivonos, R. A.; An, H.; Rahoui, F.; Gotthelf, E. V.; Bauer, F. E.; Stern, D.

    2017-08-01

    We performed Chandra ACIS-I observations in faint mode of a 2°x0.8° region of the Norma spiral arm in 2011 June. The ACIS-I consists of four 1024x1024 pixel CCDs, covering a 17'x17' field of view (Garmire et al. 2003SPIE.4851...28G). The on-axis spatial resolution of the ACIS-I is fully sampled by the 0.492"x0.492" CCD pixel but it increases greatly off-axis. The PSF increases in size and becomes more elliptical at large off-axis angles, such that at an off-axis angle of 10', the PSF has ellipticity ~0.3 and semi-major axis ~15' for an enclosed-count fraction (ECF) of 90% for 4.5 keV photons (Allen et al. 2004SPIE.5165..423A). The CCDs are sensitive to incident photons with energies in the 0.3-10.0 keV range, and have a resolution of about 50-300 eV. The time resolution of the CCDs, which is determined by the read-out time, is 3.2 s. (3 data files).

  14. First Results of the Athena Microscopic Imager Investigation

    Science.gov (United States)

    Herkenhoff, K.; Squyres, S.; Archinal, B.; Arvidson, R.; Bass, D.; Barrett, J.; Becker, K.; Becker, T.; Bell, J., III; Burr, D.

    2004-01-01

    The Athena science payload on the Mars Exploration Rovers (MER) includes the Microscopic Imager (MI). The MI is a fixed-focus camera mounted on an extendable arm, the Instrument Deployment Device (IDD). The MI acquires images at a spatial resolution of 30 microns/pixel over a broad spectral range (400 - 700 nm). The MI uses the same electronics design as the other MER cameras but its optics yield a field of view of 31 x 31 mm across a 1024 x 1024 pixel CCD image. The MI acquires images using only solar or skylight illumination of the target surface. A contact sensor is used to place the MI slightly closer to the target surface than its best focus distance (about 69 mm), allowing concave surfaces to be imaged in good focus. Coarse focusing (approx. 2 mm precision) is achieved by moving the IDD away from a rock target after contact is sensed. The MI optics are protected from the Martian environment by a retractable dust cover. This cover includes a Kapton window that is tinted orange to restrict the spectral bandpass to 500 - 700 nm, allowing crude color information to be obtained by acquiring images with the cover open and closed. The MI science objectives, instrument design and calibration, operation, and data processing were described by Herkenhoff et al. Initial results of the MI experiment on both MER rovers ('Spirit' and 'Opportunity') are described below.

  15. TIRSPEC : TIFR Near Infrared Spectrometer and Imager

    CERN Document Server

    Ninan, J P; Ghosh, S K; D'Costa, S L A; Naik, M B; Poojary, S S; Sandimani, P R; Meshram, G S; Jadhav, R B; Bhagat, S B; Gharat, S M; Bakalkar, C B; Prabhu, T P; Anupama, G C; Toomey, D W

    2014-01-01

    We describe the TIFR Near Infrared Spectrometer and Imager (TIRSPEC) designed and built in collaboration with M/s. Mauna Kea Infrared LLC, Hawaii, USA, now in operation on the side port of the 2-m Himalayan Chandra Telescope (HCT), Hanle (Ladakh), India at an altitude of 4500 meters above mean sea level. The TIRSPEC provides for various modes of operation which include photometry with broad and narrow band filters, spectrometry in single order mode with long slits of 300" length and different widths, with order sorter filters in the Y, J, H and K bands and a grism as the dispersing element as well as a cross dispersed mode to give a coverage of 1.0 to 2.5 microns at a resolving power R of ~1200. The TIRSPEC uses a Teledyne 1024 x 1024 pixel Hawaii-1 PACE array detector with a cutoff wavelength of 2.5 microns and on HCT, provides a field of view of 307" x 307" with a plate scale of 0.3"/pixel. The TIRSPEC was successfully commissioned in June 2013 and the subsequent characterization and astronomical observatio...

  16. Mars Descent Imager (MARDI) on the Mars Polar Lander

    Science.gov (United States)

    Malin, M.C.; Caplinger, M.A.; Carr, M.H.; Squyres, S.; Thomas, P.; Veverka, J.

    2001-01-01

    The Mars Descent Imager, or MARDI, experiment on the Mars Polar Lander (MPL) consists of a camera characterized by small physical size and mass (???6 ?? 6 ?? 12 cm, including baffle; geography (e.g., context for other lander instruments: precise location, detailed local relief); and (3) relationships to features seen in orbiter data. To accomplish these goals, MARDI will collect three types of images. Four small images (256 x 256 pixels) will be acquired on 0.5 s centers beginning 0.3 s before MPL's heatshield is jettisoned. Sixteen full-frame images (1024 X 1024, circularly edited) will be acquired on 5.3 s centers thereafter. Just after backshell jettison but prior to the start of powered descent, a "best final nonpowered descent image" will be acquired. Five seconds after the start of powered descent, the camera will begin acquiring images on 4 s centers. Storage for as many as ten 800 x 800 pixel images is available during terminal descent. A number of spacecraft factors are likely to impact the quality of MARDI images, including substantial motion blur resulting from large rates of attitude variation during parachute descent and substantial rocket-engine-induced vibration during powered descent. In addition, the mounting location of the camera places the exhaust plume of the hydrazine engines prominently in the field of view. Copyright 2001 by the American Geophysical Union.

  17. Performance limits of a single photon counting pixel system

    Science.gov (United States)

    Chmeissani, M.; Mikulec, B.

    2001-03-01

    X-ray imaging using hybrid pixel detectors in single photon counting mode is a relatively recent and exciting development. The photon counting mode implies that each pixel has a threshold in energy above which a hit is recorded. Sharing of charge between adjacent pixels would therefore lead to a loss of registered hits and for medical imaging applications to a higher patient dose. This explains why the demand for high spatial resolution and consequently small pixel sizes (<100 μm) motivates the Medipix2 collaboration to study the effects of charge sharing between pixels on system performance. Two different simulation codes are used to simulate the energy loss inside the detector and the charge transport towards the pixel electrodes. The largest contribution to the lateral spreading of charge comes from diffusion and can result in a considerable loss of detection efficiency in photon counting systems for small pixel sizes. The Medipix2 collaboration consists of groups from Barcelona, Cagliari, CEA/Leti DEIN, CERN, Freiburg, Glasgow, Mitthögskolan, Napoli, NIKHEF, MRC lab Cambridge, Pisa, Prague and Sassari.

  18. A low light level sensor with dark current compensating pixels

    Science.gov (United States)

    Perley, Mitchell; Baxter, Patrick; Raynor, Jeffrey M.; Renshaw, David

    2008-09-01

    In ultra-low light conditions the presence of dark current becomes a major source of noise for a CMOS sensor. Standard dark current compensation techniques, such as using a dark reference frame, bring significant improvements to dark noise in typical applications. However, applications requiring long integration times mean that such techniques cannot always be used. This paper presents a differential dark current compensating pixel. The pixel is made up of a differential amplifier and two photodiodes: one light shielded photodiode connected to the non-inverting input of the opamp and a light detecting photodiode connected to the inverting input of the opamp. An integrating capacitor is used in the feedback loop to convert photocurrent to voltage, and a switched capacitor network is present in parallel with the light shielded pixel, which is used to satisfy the output equation to compensate the dark current. The pixel uses 150 μm x 150 μm photodiodes and is fabricated in a standard 0.18 μm, 6M1P, CMOS process. The results show that the pixel is light sensitive and has a linear output as expected. However, the dark current is not predictably controlled. Further work will be carried out on the pixel design, and particularly the switched capacitor circuit, to determine the cause of the non-predictability of the pixel output.

  19. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    Science.gov (United States)

    Giubilato, P.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Demaria, L.; Ikemoto, Y.; Kloukinas, K.; Mansuy, S. C.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Silvestrin, L.; Snoeys, W.

    2013-12-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV 55Fe double peak at room temperature. To achieve high granularity (10-20 μm pitch pixels) over large detector areas maintaining high readout speed, a completely new compressing architecture has been devised. This architecture departs from the mainstream hybrid pixel sparsification approach, which uses in-pixel logic to reduce data, by using topological compression to minimize pixel area and power consumption.

  20. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  1. Image Restoration After Pixel Binning in Image Sensors

    Institute of Scientific and Technical Information of China (English)

    LI Hao; ZHANG Hui; GUO Xiaolian; HU Guangshu

    2009-01-01

    A method was developed to restore degraded images to some extent after the pixel binning pro-cess in image sensors to improve the resolution. A pixel binning model was used to approximate the original un-binned image. Then, the least squares error criterion was used as a constraint to reconstruct the re-stored pixel values from the binning model. The technique achieves about a one-decibel increase in the peak signal-to-noise ratio compared with the odginal estimated image. The technique has good detail pre-servation performance as well as low computation load. Thus, this restoration technique provides valuable improvements in practical, real time image processing.

  2. Pixelated camouflage patterns from the perspective of hyperspectral imaging

    Science.gov (United States)

    Racek, František; Jobánek, Adam; Baláž, Teodor; Krejčí, Jaroslav

    2016-10-01

    Pixelated camouflage patterns fulfill the role of both principles the matching and the disrupting that are exploited for blending the target into the background. It means that pixelated pattern should respect natural background in spectral and spatial characteristics embodied in micro and macro patterns. The HS imaging plays the similar, however the reverse role in the field of reconnaissance systems. The HS camera fundamentally records and extracts both the spectral and spatial information belonging to the recorded scenery. Therefore, the article deals with problems of hyperspectral (HS) imaging and subsequent processing of HS images of pixelated camouflage patterns which are among others characterized by their specific spatial frequency heterogeneity.

  3. Dual readout 3D direct/induced-signals pixel systems

    CERN Document Server

    Parker, Sherwood; Deile, Mario; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; Watts, Stephen

    2008-01-01

    In this paper, 3D-electrode pixel detectors are described, in which the bias electrode systems have additional elements. Adding resistors between the bias supply line and each bias electrode together with a signal electrode readout that can measure pulse heights of both polarities could simultaneously provide lower capacitance and improved spatial resolution in both directions. A separate paper (“Dual-readout—strip/pixel systems”) covers an alternative—pixels with an added strip readout in one direction which could be used with either planar or 3D-electrodes, and could simultaneously provide a fast trigger and significantly increase the spatial resolution in both directions.

  4. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kaestli, Hans-Christian

    2010-01-01

    and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking regi...

  5. Dual collection mode optical microscope with single-pixel detection

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Fernández-Alonso, Mercedes; Tajahuerce, E.; Lancis, J.

    2015-07-01

    In this work we have developed a single-pixel optical microscope that provides both re ection and transmission images of the sample under test by attaching a diamond pixel layout DMD to a commercial inverted microscope. Our system performs simultaneous measurements of re ection and transmission modes. Besides, in contrast with a conventional system, in our single-element detection system both images belong, unequivocally, to the same plane of the sample. Furthermore, we have designed an algorithm to modify the shape of the projected patterns that improves the resolution and prevents the artifacts produced by the diamond pixel architecture.

  6. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    Science.gov (United States)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  7. Improvement of Event Synchronization in the ATLAS Pixel Readout Development

    Science.gov (United States)

    Adams, Logan; Atlas Collaboration

    2017-01-01

    As the LHC continues in Run2, the B-Layer still uses the Atlas-SiROD Pixel readout system initially developed for Run 1. The higher luminosity occurring during Run 2 results in higher occupancy causing increased desynchronization errors in the Pixel Readout. In order to ensure lasting operation of the B-Layer until it is replaced after Run 3, changes were made to the firmware and software to add debug capabilities to identify when the errors are crossing certain thresholds and change the internal control logic accordingly. These features also allow for better debugging of the Event Counter Reset addition to the firmware. This talk will focus on the features implemented and measurements to demonstrate the positive impact on the Pixel DAQ system. A Pixel front-end chip emulator which can be used for readout system development beyond Run 3 will also be discussed. Presenter is Logan Adams, University of Washington.

  8. Comparing three spaceborne optical sensors via fine scale pixel ...

    African Journals Online (AJOL)

    User @

    Pixel-based Urban Land Cover Classification Products ... operational VHR spaceborne measurement systems such as those envisaged under ...... zone correlated vegetation stratification in the Kruger National Park, South Africa', Physics and.

  9. Monolithic CMOS pixel detector for international linear collider vertex detection

    Indian Academy of Sciences (India)

    J E Brau; O Igonkina; N Sinew; D Strom; C Baltay; W Emmet; H Neal; D Rabinowitz

    2007-12-01

    A monolithic CMS pixel detector is under development for an ILC experiment. This chronopixel array provides a time stamp resolution of one bunch crossing, a critical feature for background suppression. The status of this effort is summarized.

  10. HISTOGRAM TECHNIQUE WITH PIXEL INDICATOR FOR HIGH FIDELITY STEGANOGRAPHY

    Directory of Open Access Journals (Sweden)

    V.Meiamai

    2013-06-01

    Full Text Available In this current world of increasing technology trends and the “internet age”, the security of our personal information has become more important than it has ever been there are media reports ofidentity theft and fraud and the numbers of innocent victims are increasing exponentially. Steganography plays an important role in preventing such information destruction by implementing a principle ofimperceptible secret sharing. By this security can be established by clearly embedding data in such a way that the quality of the image is not affected. The existing methodology prevailing now is based on pixel indicator and number of data to be embedded is by pixel value differencing technique. A limitation in this methodology is that the pixel indicator channel is manually selected. The proposed methodology uses pixel indicator channel which is decided using histogram technique and the secret message file has to be embedded in the plane which has the highest color intensity.

  11. Performance of silicon pixel detectors at small track incidence angles

    CERN Document Server

    Viel, Simon; The ATLAS collaboration

    2015-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN, as well as simulated data.

  12. Digital column readout architectures for hybrid pixel detector readout chips

    CERN Document Server

    Poikela, T; Westerlund, T; Buytaert, J; Campbell, M; De Gaspari, M; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; van Beuzekom, M; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 µm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures.

  13. Two-dimensional pixel array image sensor for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Beuville, E.; Beche, J.-F.; Cork, C. [and others

    1996-07-01

    A 2D pixel array image sensor module has been designed for time resolved Protein Crystallography. This smart pixels detector significantly enhances time resolved Laue Protein crystallography by two to three orders of magnitude compared to existing sensors like films or phosphor screens coupled to CCDs. The resolution in time and dynamic range of this type of detector will allow one to study the evolution of structural changes that occur within the protein as a function of time. This detector will also considerably accelerate data collection in static Laue or monochromatic crystallography and make better use of the intense beam delivered by synchrotron light sources. The event driven pixel array detectors, based on the column Architecture, can provide multiparameter information (energy discrimination, time), with sparse and frameless readout without significant dead time. The prototype module consists of a 16x16 pixel diode array bump-bonded to the integrated circuit. The detection area is 150x150 square microns.

  14. Pixel-by-pixel VIS/NIR and LIR sensor fusion system

    Science.gov (United States)

    Zhang, Evan; Zhang, James S.; Song, Vivian W.; Chin, Ken P.; Hu, Gelbert

    2003-01-01

    Visible (VIS) camera (such as CCD) or Near Infrared (NIR) camera (such as low light level CCD or image intensifier) has high resolution and is easy to distinguish enemy and foe, but it cannot see through thin fog/cloud, heavy smoke/dust, foliage, camouflage, and darkness. The Long Infrared (LIR) imager can overcome above problems, but the resolution is too low and it cannot see the NIR aiming light from enemy. The best solution is to fuse the VIS/NIR and LIR sensors to overcome their shortcomings and take advantages of both sensors. In order to see the same target without parallax, the fusio system must have a common optical aperature. In this paper, three common optical apertures are designed: common reflective objective lens, common beam splitter, and common transmissive objective lens. The first one has very small field of view and the second one needs two heads, so the best choice is the third one, but we must find suitable optical materials and correct the color aberrations from 0.6 to 12 μ. It is a tough job. By choosing ZnSe as the first common piece of the objective lens and using glass for NIR and Ge (or IR glass) for LIR as rest pieces, we only need to and are able to correct the aberrations from 0.6 to 1.0 μ for NIR and from 8 to 12 μ for LIR. Finally, a common reflective objective lens and the common beam splitter are also successfully designed. Five application examples are given. In the digital signal processing, we use only one Altera chip. After inserting data, scaling the image size, and adjusting the signal level, the LIR will have the same format and same pixel number of the VIS/NIR, so real-time pixel-by-pixel sensor fusion is realized. The digital output can be used for further image processing and automatic target recognition, such as if we overlap the LIR image on the VIS/NIR image for missile guidance or rifle sight we don't need to worry about the time and the environment again. A gum-size wireless transmitter is also designed that is

  15. Simulation of charge transport in pixelated CdTe

    OpenAIRE

    Kolstein, M.; G Ariño; Chmeissani, M.; De Lorenzo, G.

    2014-01-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have op...

  16. Pixels Intensity Evolution to Describe the Plastic Films Deformation

    Directory of Open Access Journals (Sweden)

    Juan C. Briñez-De León

    2013-11-01

    Full Text Available This work proposes an approach for mechanical behavior description in the plastic film deformation using techniques for the images analysis, which are based on the intensities evolution of fixed pixels applied to an images sequence acquired through polarizing optical assembly implemented around the platform of the plastic film deformation. The pixels intensities evolution graphs, and mechanical behavior graphic of the deformation has dynamic behaviors zones which could be associated together.

  17. Leakage current measurements on pixelated CdZnTe detectors

    NARCIS (Netherlands)

    Dirks, B.P.F.; Blondel, C.; Daly, F.; Gevin, O.; Limousin, O.; Lugiez, F.

    2006-01-01

    In the field of the R&D of a new generation hard X-ray cameras for space applications we focus on the use of pixelated CdTe or CdZnTe semiconductor detectors. They are covered with 64 (0.9×0.9 mm2) or 256 (0.5×0.5 mm2) pixels, surrounded by a guard ring and operate in the energy ranging from several

  18. MTF study of planar small pixel pitch quantum IR detectors

    Science.gov (United States)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-06-01

    The actual trend in quantum IR detector development is the design of very small pixel pitch large arrays. From previously 30μm pitch, the standard pixel pitch is today 15μm and is expected to decrease to 12μm in the next few years. Furthermore, focal plane arrays (FPA) with pixel pitch as small as small as 10μm has been demonstrated. Such ultra-small pixel pitches are very small compared to the typical length ruling the electrical characteristics of the absorbing materials, namely the minority carrier diffusion length. As an example for low doped N type HgCdTe or InSb material, this diffusion length is of the order of 30 to 50μm, i.e. 3 to 5 times the targeted pixel pitches. This has strong consequences on the modulation transfer function (MTF) for planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain optimal MTF. Therefore, this issue has to be addressed in order to take full benefits of the pixel pitch reduction in terms of image resolution. This paper aims at investigating the MTF evolution of HgCdTe and InSb FPAs decreasing the pixel pitch below 15μm. Both experimental measurements and finite element simulations are used to discuss this issue. Different scenarii will be compared, namely deep mesa etch between pixels, internal drift, surface recombination, thin absorbing layers.

  19. Angle-sensitive pixel design for wavefront sensing

    CERN Document Server

    Zheng, Guoan

    2013-01-01

    Conventional image sensors are only responsive to the intensity variation of the incoming light wave. By encoding the wavefront information into the balanced detection scheme, we demonstrate an image sensor pixel design that is capable to detect both the local intensity and wavefront information simultaneously. With the full compatibility to the CMOS fabrication process, the proposed pixel design can benefit a variety of applications, including phase microscopy, lensless imaging and machine vision.

  20. Small pitch pixel sensors\\\\ for the CMS Phase II upgrade

    CERN Document Server

    Steinbrueck, Georg

    2015-01-01

    The CMS collaboration has undertaken two sensor R\\&D programs on thin n-in-p planar and 3D silicon sensor technologies. To cope with the increase in instantaneous luminosity, the pixel area has to be reduced to approximately 2500 $\\mu$m$^{2}$ to keep the occupancy at the percent level. Suggested pixel cell geometries to match this requirement are {50$\\times$50 }$\\mu$...

  1. FPIX2, the BTeV pixel readout chip

    CERN Document Server

    Christian, D C; Chiodini, G; Hoff, J; Kwan, S; Mekkaoui, A; Yarema, R; 10.1016/j.nima.2005.04.046

    2005-01-01

    A radiation tolerant pixel readout chip, FPIX2, has been developed at Fermilab for use by BTeV. Some of the requirements of the BTeV pixel readout chip are reviewed and contrasted with requirements for similar devices in LHC experiments. A description of the FPIX2 is given, and results of initial tests of its performance are presented, as is a summary of measurements planned for the coming year.

  2. VCSEL and Smart Pixel Research for VLSI Photonics

    Science.gov (United States)

    2007-11-02

    Texas (20 GHz) and the Vitesse GaAs E/D MESFET/MSM technology utilizing the MOSIS foundry (2.5 GHz). 14. SUBJECT TERMS Vertical cavity...pixels operating at 2.5 Gb/s using the Vitesse GaAs E/D MESFET/MSM MOSIS foundry. Design, fabrication, and testing of 2 x2 smart pixels operating at 20

  3. Pixel History for Advanced Camera for Surveys Wide Field Channel

    Science.gov (United States)

    Borncamp, D.; Grogin, N.; Bourque, M.; Ogaz, S.

    2017-06-01

    Excess thermal energy present in a Charged Coupled Device (CCD) can result in additional electrical current. This excess charge is trapped within the silicon lattice structure of the CCD electronics. It can persist through multiple exposures and have an adverse effect on science performance of the detectors unless properly flagged and corrected for. The traditional way to correct for this extra charge is to take occasional long-exposure images with the camera shutter closed. These images, generally referred to as "dark" images, allow for the measurement of the thermal-electron contamination present in each pixel of the CCD lattice. This so-called "dark current" can then be subtracted from the science images by re-scaling the dark to the corresponding exposure times. Pixels that have signal above a certain threshold are traditionally marked as "hot" and flagged in the data quality array. Many users will discard these because of the extra current. However, these pixels may not be unusable because of an unreliable dark subtraction; if we find these pixels to be stable over an anneal period, we can properly subtract the charge and the extra Poisson noise from this dark current will be propagated into the error arrays. Here we present the results of a pixel history study that analyzes every individual pixel of the Hubble Space Telescope's (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs over time and allows pixels that were previously flagged as unusable to be brought back into the science image as a reliable pixel.

  4. Small pixel CZT detector for hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew David, E-mail: Matt.Wilson@stfc.ac.uk [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX (United Kingdom); Cernik, Robert [Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester (United Kingdom); Chen, Henry [Redlen Technologies, Saanichton, British Columbia (Canada); Hansson, Conny [Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester (United Kingdom); Iniewski, Kris [Redlen Technologies, Saanichton, British Columbia (Canada); Jones, Lawrence L.; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0QX (United Kingdom)

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20x20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20x20 pixels on a 250 {mu}m pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A {sup 241}Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09{+-}0.46 to 1.50{+-}0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20x20 array. A large area 80x80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  5. Small pixel CZT detector for hard X-ray spectroscopy

    Science.gov (United States)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  6. Content Progressive Coding of Limited Bits/pixel Images

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Forchhammer, Søren

    1999-01-01

    A new lossless context based method for content progressive coding of limited bits/pixel images is proposed. Progressive coding is achieved by separating the image into contelnt layers. Digital maps are compressed up to 3 times better than GIF.......A new lossless context based method for content progressive coding of limited bits/pixel images is proposed. Progressive coding is achieved by separating the image into contelnt layers. Digital maps are compressed up to 3 times better than GIF....

  7. Scaling and Pixel Crosstalk Considerations for CMOS Image Sensor

    Institute of Scientific and Technical Information of China (English)

    JIN Xiang-liang; CHEN Jie(member,IEEE); QIU Yu-lin

    2003-01-01

    With the scaling development of the minimum lithographic size,the scaling trend of CMOS imager pixel size and fill factor has been computed according to the Moore rule.When the CMOS minimum lithographic feature scales down to 0.35 μm,the CCD image pixel size is not so easy to be reduced and but the CMOS image pixel size benefits from the scaling minimum lithographic feature. However, when the CMOS technology is downscaled to or under 0.35 μm,the fabrication of CMOS image sensors will be limited by the standard CMOS process in both ways of shallow trench isolation and source/drain junction,which results in pixel crosstalk.The impact of the crosstalk on the active pixel CMOS image sensor is analyzed based on the technology scaling.Some suppressed crosstalk methods have been reviewed.The best way is that combining the advantages of CMOS and SOI technology to fabricate the image sensors will reduce the pixel crosstalk.

  8. 3D electronics for hybrid pixel detectors – TWEPP-09

    CERN Document Server

    Godiot, S; Chantepie, B; Clémens, J C; Fei, R; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Hemperek, T; Karagounis, M; Krueger, H; Mekkaoui, A; Pangaud, P; Rozanov, A; Wermes, N

    2009-01-01

    Future hybrid pixel detectors are asking for smaller pixels in order to improve spatial resolution and to deal with an increasing counting rate. Facing these requirements is foreseen to be done by microelectronics technology shrinking. However, this straightforward approach presents some disadvantages in term of performances and cost. New 3D technologies offer an alternative way with the advantage of technology mixing. For the upgrade of ATLAS pixel detector, a 3D conception of the read-out chip appeared as an interesting solution. Splitting the pixel functionalities into two separate levels will reduce pixel size and open the opportunity to take benefit of technology's mixing. Based on a previous prototype of the read-out chip FE-I4 (IBM 130nm), this paper presents the design of a hybrid pixel read-out chip using threedimensional Tezzaron-Chartered technology. In order to disentangle effects due to Chartered 130nm technology from effects involved by 3D architecture, a first translation of FEI4 prototype had ...

  9. Intrinsic Pixel Size Variation in an LSST Prototype Sensor

    CERN Document Server

    Baumer, Michael

    2015-01-01

    The ambitious science goals of the Large Synoptic Survey Telescope (LSST) have motivated a search for new and unexpected sources of systematic error in the LSST camera. Flat-field images are a rich source of data on sensor anomalies, although such effects are typically dwarfed by shot noise in a single flat field. After combining many ($\\sim 500$) such images into `ultraflats' to reduce the impact of shot noise, we perform photon transfer analysis on a pixel-by-pixel basis and observe no spatial structure in pixel linearity or gain at light levels of 100 ke$^-$ and below. At 125 ke$^-$, a columnar structure is observed in the gain map--we attribute this to a flux-dependent charge transfer inefficiency. We also probe small-scale variations in effective pixel size by analyzing pixel-neighbor correlations in ultraflat images, where we observe clear evidence of intrinsic variation in effective pixel size in an LSST prototype sensor near the $\\sim .3\\%$ level.

  10. Optical differentiation wavefront sensing with binary pixelated transmission filters.

    Science.gov (United States)

    Qiao, J; Mulhollan, Z; Dorrer, C

    2016-05-02

    Sensors measuring the spatial phase of optical waves are widely used in optics. The optical differentiation wavefront sensor (ODWS) reconstructs the wavefront of an optical wave from wavefront slope measurements obtained by inducing linear field-transmission gradients in the far-field. Its dynamic range and sensitivity can be adjusted simply by changing the gradient slope. We numerically and experimentally demonstrate the possibility of implementing the spatially varying transmission gradient using distributions of small pixels that are either transparent or opaque. Binary pixelated filters are achromatic and can be fabricated with high accuracy at relatively low cost using commercial lithography techniques. We study the impact of the noise resulting from pixelation and binarization of the far-field filter for various test wavefronts and sensor parameters. The induced wavefront error is approximately inversely proportional to the pixel size. For an ODWS with dynamic range of 100 rad/mm over a 1-cm pupil, the error is smaller than λ/15 for a wide range of test wavefronts when using 2.5-μm pixels. We experimentally demonstrate the accuracy and consistency of a first-generation ODWS based on binary pixelated filters.

  11. Challenges of small-pixel infrared detectors: a review

    Science.gov (United States)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  12. Imaging by photon counting with 256 x 256 pixel matrix

    CERN Document Server

    Tlustos, Lukas; Heijne, Erik H M; Llopart-Cudie, Xavier

    2004-01-01

    Using 0.25 mum standard CMOS we have developed 2-D semiconductor matrix detectors with sophisticated functionality integrated inside each pixel of a hybrid sensor module. One of these sensor modules is a matrix of 256 multiplied by 256 square 55mum pixels intended for X- ray imaging. This device is called 'Medipix2' and features a fast amplifier and two-level discrimination for signals between 1000 and 100000 equivalent electrons, with overall signal noise similar to 150 e- rms. Signal polarity and comparator thresholds are programmable. A maximum count rate of nearly 1 MHz per pixel can be achieved, which corresponds to an average flux of 3 multiplied by 10exp10 photons per cm2. The selected signals can be accumulated in each pixel in a 13- bit register. The serial readout takes 5-10 ms. A parallel readout of similar to 300 mus could also be used. Housekeeping functions such as local dark current compensation, test pulse generation, silencing of noisy pixels and threshold tuning in each pixel contribute to t...

  13. High frame rate measurements of semiconductor pixel detector readout IC

    Science.gov (United States)

    Szczygiel, R.; Grybos, P.; Maj, P.

    2012-07-01

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  14. High frame rate measurements of semiconductor pixel detector readout IC

    Energy Technology Data Exchange (ETDEWEB)

    Szczygiel, R., E-mail: robert.szczygiel@agh.edu.pl [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland); Grybos, P.; Maj, P. [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2012-07-11

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm Multiplication-Sign 4 mm. Its main part is a matrix of 40 Multiplication-Sign 32 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  15. An adaptive regression method for infrared blind-pixel compensation

    Science.gov (United States)

    Chen, Suting; Meng, Hao; Pei, Tao; Zhang, Yanyan

    2017-09-01

    Blind pixel compensation is an ill-posed inverse problem of infrared imaging systems and image restoration. The performance of a blind pixel compensation algorithm depends on the accuracy of estimation for the underlying true infrared images. We propose an adaptive regression method (ARM) for blind pixel compensation that integrates the multi-scale framework with a regression model. A blind-pixel is restored by exploiting the intra-scale properties through the nonparametric regressive estimation and the inter-scale characteristics via parametric regression for continuous learning. Combining the respective strengths of a parametric model and a nonparametric model, ARM establishes a set of multi-scale blind-pixel compensation method to correct the non-uniformity based on key frame extraction. Therefore, it is essentially different from the traditional frameworks for blind pixel compensation which are based on filtering and interpolation. Experimental results on some challenging cases of blind compensation show that the proposed algorithm outperforms existing methods by a significant margin in both isolated blind restoration and clustered blind restoration.

  16. 长波红外高光谱成像光谱仪的辐射定标%Study of Radiation Calibration for LWIR Hyperspectral Imager Spectrometer

    Institute of Scientific and Technical Information of China (English)

    袁小春; 杨智雄; 余春超; 郑为建; 雷正刚; 严敏

    2015-01-01

    Infrared radiometric calibration is of critical importance for information quantification of remote sensing of environment in infrared spectrum. In the quantitative analysis, the calibration of the measured spectra is very imporant. LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) is developed for studying Radiation Calibration. Two-point linear calibration method is carried out for the spectrometer by using blackbody respectively. Firstly, relative intensity is converted to the absolute radiation lightness of the object. Then, radiation intensity of the object is converted into the brightness temperature spectrum by the method of brightness temperature. The result indicats that such method of Radiation Calibration calibration is very good , which is of significance to the further analysis of atmospheric transmission and the retrieval of the concentration of infrared active gas in atmosphere.%红外辐射定标是红外遥感信息定量化的关键技术,对所测光谱进行定标是定量分析中的重要环节。采用自行研制长波红外高光谱成像光谱仪原理实验装置(简称 CHIPED-I)进行验证,用黑体对实验装置进行了两点线性定标,将测量的相对强度转化成目标的绝对辐射亮度谱,采用亮温法算出标定后的亮温光谱。结果表明,这种辐射定标方法用于长波红外高光谱成像光谱仪方法可行,这对进一步分析大气透过率和反演大气中红外活性气体浓度具有实际意义。

  17. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  18. Automated Detection of Contaminated Radar Image Pixels in Mountain Areas

    Institute of Scientific and Technical Information of China (English)

    LIU Liping; Qin XU; Pengfei ZHANG; Shun LIU

    2008-01-01

    In mountain areas,radar observations are often contaminated(1)by echoes from high-speed moving vehicles and(2)by point-wise ground clutter under either normal propagation(NP)or anomalous propa-gation(AP)conditions.Level II data are collected from KMTX(Salt Lake City,Utah)radar to analyze these two types of contamination in the mountain area around the Great Salt Lake.Human experts provide the"ground truth"for possible contamination of either type on each individual pixel.Common features are then extracted for contaminated pixels of each type.For example,pixels contaminated by echoes from high-speed moving vehicles are characterized by large radial velocity and spectrum width.Echoes from a moving train tend to have larger velocity and reflectivity but smaller spectrum width than those from moving vehicles on highways.These contaminated pixels are only seen in areas of large terrain gradient(in the radial direction along the radar beam).The same is true for the second type of contamination-point-wise ground clutters.Six quality control(QC)parameters are selected to quantify the extracted features.Histograms are computed for each QC parameter and grouped for contaminated pixels of each type and also for non-contaminated pixels.Based on the computed histograms,a fuzzy logical algorithm is developed for automated detection of contaminated pixels.The algorithm is tested with KMTX radar data under different(clear and rainy)weather conditions.

  19. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    Science.gov (United States)

    Moon, C.-S.; Savoy-Navarro, A.

    2015-10-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC) . It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours (b and c quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their momentum. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC) . The special case here addressed is the CMS experiment. This document describes exercises focusing on the development of a fast pixel track reconstruction where the pixel track matches with a Level-1 electron object using a ROOT-based simulation framework.

  20. Smart pixel imaging with computational-imaging arrays

    Science.gov (United States)

    Fernandez-Cull, Christy; Tyrrell, Brian M.; D'Onofrio, Richard; Bolstad, Andrew; Lin, Joseph; Little, Jeffrey W.; Blackwell, Megan; Renzi, Matthew; Kelly, Mike

    2014-07-01

    Smart pixel imaging with computational-imaging arrays (SPICA) transfers image plane coding typically realized in the optical architecture to the digital domain of the focal plane array, thereby minimizing signal-to-noise losses associated with static filters or apertures and inherent diffraction concerns. MIT Lincoln Laboratory has been developing digitalpixel focal plane array (DFPA) devices for many years. In this work, we leverage legacy designs modified with new features to realize a computational imaging array (CIA) with advanced pixel-processing capabilities. We briefly review the use of DFPAs for on-chip background removal and image plane filtering. We focus on two digital readout integrated circuits (DROICS) as CIAs for two-dimensional (2D) transient target tracking and three-dimensional (3D) transient target estimation using per-pixel coded-apertures or flutter shutters. This paper describes two DROICs - a SWIR pixelprocessing imager (SWIR-PPI) and a Visible CIA (VISCIA). SWIR-PPI is a DROIC with a 1 kHz global frame rate with a maximum per-pixel shuttering rate of 100 MHz, such that each pixel can be modulated by a time-varying, pseudorandom, and duo-binary signal (+1,-1,0). Combining per-pixel time-domain coding and processing enables 3D (x,y,t) target estimation with limited loss of spatial resolution. We evaluate structured and pseudo-random encoding strategies and employ linear inversion and non-linear inversion using total-variation minimization to estimate a 3D data cube from a single 2D temporally-encoded measurement. The VISCIA DROIC, while low-resolution, has a 6 kHz global frame rate and simultaneously encodes eight periodic or aperiodic transient target signatures at a maximum rate of 50 MHz using eight 8-bit counters. By transferring pixel-based image plane coding to the DROIC and utilizing sophisticated processing, our CIAs enable on-chip temporal super-resolution.

  1. Effect of Pixel’s Spatial Characteristics on Recognition of Isolated Pixelized Chinese Character

    Science.gov (United States)

    Yang, Kun; Liu, Shuang; Wang, Hong; Liu, Wei; Wu, Yaowei

    2015-01-01

    The influence of pixel’s spatial characteristics on recognition of isolated Chinese character was investigated using simulated prosthestic vision. The accuracy of Chinese character recognition with 4 kinds of pixel number (6*6, 8*8, 10*10, and 12*12 pixel array) and 3 kinds of pixel shape (Square, Dot and Gaussian) and different pixel spacing were tested through head-mounted display (HMD). A captured image of Chinese characters in font style of Hei were pixelized with Square, Dot and Gaussian pixel. Results showed that pixel number was the most important factor which could affect the recognition of isolated pixelized Chinese Chartars and the accuracy of recognition increased with the addition of pixel number. 10*10 pixel array could provide enough information for people to recognize an isolated Chinese character. At low resolution (6*6 and 8*8 pixel array), there were little difference of recognition accuracy between different pixel shape and different pixel spacing. While as for high resolution (10*10 and 12*12 pixel array), the fluctuation of pixel shape and pixel spacing could not affect the performance of recognition of isolated pixelized Chinese Character. PMID:26628934

  2. The IMPACTON Project: Pole and Shape of Seven near-Earth Asteroids

    Science.gov (United States)

    Lazzaro, Daniela; Silva, José Sergio; Rodrigues, Teresinha; Márcio Carvano, Jorge; Roig, Fernando; Souza, Roberto Pereira e.; IMPACTON Team

    2015-08-01

    The formation and evolution of Solar System small bodies, in particular those in near-Earth orbits, is a complex problem which solution strongly depends on a better knowledge of their physical properties. To contribute to the international efforts in this direction the IMPACTON project (www.on.br/IMPACTON) set up a dedicated facility in a remote region in the northeast part of Brazil, denominated Observatório Astronômico do Sertão de Itaparica (OASI - code Y28, Itacuruba).Using the 1-m telescope of the OASI we observed more of 40 NEAs during several observational runs between March 2012 and October 2014. Our observations were made using an Apogee Alta U47 CCD camera, 1024 X 1024 pixels, giving a 5.9 x 5.9 arcmin field, and using an R Johnson filter.Standard reduction procedures were applied and relative magnitudes were used to obtain lightcurves for the observed asteroids. The application of the inversion of method developed by Kaasalainen and Torppa (2001) and Kaasalainen et al. (2001) allowed us to derive the rotational period for 14 NEAs and, for 7 of these, also the pole direction and the shape. The implications of the obtained results will be discussed.

  3. Clinical Experience With A High Resolution Digital Imaging System For Gastro-Intestinal Radiology

    Science.gov (United States)

    Edmonds, E. W.; Rowlands, J. A.; Hynes, D. M.; Toth, B. D.; Porter, A. J.

    1987-01-01

    In our department, it is planned that the gastro-intestinal fluoroscopic area will be equipped entirely with digital imaging systems. The use of the 1024 X 1024 pixel frame store, backed by a hard disc for rapid image transfer, and the production of hard copy on a laser imager has reached the point where clinical efficacy and acceptance are assured. The further addition of facilities for annotation and the application of digital post-processing techniques are being explored both at the clinical site and at the research laboratorieS. The use of laser imaging has produced a further improvement in image quality and some of the practical problems related to this apparatus will be described. The availability of larger capacity laser disc image storage enables the local area network or "mini-PACS" system for fluoroscopy areas to become a concept worthy of investigation. We present our experience over a number of years with these systems, together with our latest investigations into potential applications of laser technology to the practice of radiology in a busy imaging centre.

  4. VizieR Online Data Catalog: HKs photometry in the Arches cluster (Espinoza+, 2009)

    Science.gov (United States)

    Espinoza, P.; Selman, F. J.; Melnick, J.

    2009-06-01

    The NAOS-CONICA data (ESO Program ID 073.D-0815) were obtained under clear weather conditions with subarcsecond seeing. The detector was an Aladdin 1024x1024 pixel InSb array and the camera had a plate scale of 27.15[mas/pix], giving us a 27x27arcsec2^ field of view of the Arches cluster. Total integration times were 1000, 400 and 720[s] in J, H, and Ks respectively, with the telescope moving alternatively to sky positions for a proper background subtraction. To optimize the Adaptive Optics (AO) performance we used the N90C10 dichroic, i.e. 90% of the light was directed to the infrared wavefront sensor. The Strehl ratio of our observations exceeded 27% in Ks, and reached more modest values of 5% in J, and 11% in the H band. Tables 2 and 3 present the DAOPHOT photometry of 427 HKS and 126 JHKS stars in the innermost 10 arcseconds of the Arches cluster. Table 3 is considerably shorter due to the increasing extinction towards bluer wavelengths. Table 5 presents the catalog with all the observed data and physical parameters derived from the Bayesian method and using the Color-magnitude stereogram. (3 data files).

  5. The Mid-Infrared Instrument for the James Webb Space Telescope, VII: The MIRI Detectors

    CERN Document Server

    Rieke, G H; Morrison, Jane E; Bergeron, L; Bouchet, Patrice; Garcıa-Marın, Macarena; Greene, T P; Regan, M W; Sukhatme, K G; Walker, Helen

    2015-01-01

    The MIRI Si:As IBC detector arrays extend the heritage technology from the Spitzer IRAC arrays to a 1024 x 1024 pixel format. We provide a short discussion of the principles of operation, design, and performance of the individual MIRI detectors, in support of a description of their operation in arrays provided in an accompanying paper (Ressler et al. (2015)). We then describe modeling of their response. We find that electron diffusion is an important component of their performance, although it was omitted in previous models. Our new model will let us optimize the bias voltage while avoiding avalanche gain. It also predicts the fraction of the IR-active layer that is depleted (and thus contributes to the quantum efficiency) as signal is accumulated on the array amplifier. Another set of models accurately predicts the nonlinearity of the detector-amplifier unit and has guided determination of the corrections for nonlinearity. Finally, we discuss how diffraction at the interpixel gaps and total internal reflecti...

  6. ULTRASPEC: a high-speed imaging photometer on the 2.4-m Thai National Telescope

    CERN Document Server

    Dhillon, V S; Atkinson, D C; Bezawada, N; Bours, M C P; Copperwheat, C M; Gamble, T; Hardy, L K; Hickman, R D H; Irawati, P; Ives, D J; Kerry, P; Leckngam, A; Littlefair, S P; McLay, S A; O'Brien, K; Peacocke, P T; Poshyachinda, S; Richichi, A; Soonthornthum, B; Vick, A

    2014-01-01

    ULTRASPEC is a high-speed imaging photometer mounted permanently at one of the Nasmyth focii of the 2.4-m Thai National Telescope (TNT) on Doi Inthanon, Thailand's highest mountain. ULTRASPEC employs a 1024x1024 pixel frame-transfer, electron-multiplying CCD (EMCCD) in conjunction with re-imaging optics to image a field of 7.7'x7.7' at (windowed) frame rates of up to ~200 Hz. The EMCCD has two outputs - a normal output that provides a readout noise of 2.3 e- and an avalanche output that can provide essentially zero readout noise. A six-position filter wheel enables narrow-band and broad-band imaging over the wavelength range 330-1000 nm. The instrument saw first light on the TNT in November 2013 and will be used to study rapid variability in the Universe. In this paper we describe the scientific motivation behind ULTRASPEC, present an outline of its design and report on its measured performance on the TNT.

  7. Observation of Quiet Limb in He I 1083.0 nm, H Paschen alpha1281.8 nm and H Brackett gamma 2166.1 nm lines

    Science.gov (United States)

    Prasad Choudhary, Debi

    2016-05-01

    In this paper, we shall present the results of an observational study of the quiet solar limb in the near infrared lines using the New IR Array Camera (NAC) and the vertical spectrograph at the focal plane of McMath-Pierce telescope. The NAC, at the exit port of the spectrograph, was used to record the limb spectrum in HeI 1083.0 nm, Hydrogen Paschen 1281.8 nm and Brackett 2165.5 nm wavelength regions. The NAC is a 1024x1024 InSb Alladin III Detector operating over 1-5 micron range with high density sampling at 0.018 arc second/pixel. The all-reflective optical train minimizes number of surfaces and eliminates ghosts leading to low scatter, ghost-free optics. The close-cycle cryogenic provides a stable cooling environment over six hour period with an accuracy of 0.01K leading to low dark current. The low read out noise combined with low scattered light and dark current makes NAC an ideal detector for making high quality infrared spectral observations of solar limb. The limb spectrums were obtained by placing the spectrograph slit perpendicular to the limb at an interval of 10 degrees around the solar disk. We shall report the intensity profile, line-of-sight velocity and line width distribution around the sun derived from the spectra along the slit.

  8. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Using Infrared Spectroscopy to Identify Organic Molecules in Space

    Science.gov (United States)

    Sandford, Scott A.; Ennico, Kimberly; Allamandola, Louis; Bregman, Jesse; Greene, Thomas; Hudgins, Douglas

    2002-01-01

    One of the principal means by which organic compounds are detected and identified in space is by infrared spectroscopy. Past IR telescopic and laboratory studies have shown that much of the carbon in the interstellar medium (ISM) is in complex organic species but the distribution, abundance and evolutionary relationships of these materials are not well understood. The Astrobiology Explorer (ABE) is a MIDEX mission concept designed to conduct IR spectroscopic observations to detect and identify these materials and address outstanding problems in astrobiology, astrochemistry, and astrophysics. ABE's core science program includes observations of planetary nebulae and stellar outflows, protostellar objects, Solar System objects, and galaxies, and lines of sight through dense molecular clouds and the diffuse ISM. ABE is a cryogenically-cooled 60 cm diameter space telescope equipped with 3 cross-dispersed R-2000 spectrometers that share a single common slit. Each spectrometer measures one spectral octave and together cover the entire 2.5-20 micron region simultaneously. The spectrometers use state-of-the-art InSb and Si:As 1024x1024 pixel detectors. ABE would operate in a heliocentric, Earth drift-away orbit and have a core science mission lasting approximately 1.5 years. ABE is currently under study at NASA's Ames Research Center in collaboration with Ball Aerospace and Technologies Corp.

  9. The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space

    Science.gov (United States)

    Ennico, Kimberly; Sandford, Scott; Allamandola, Louis; Bregman, Jesse; Cohen, Martin; Cruikshank, Dale; Greene, Thomas; Hudgins, Douglas; Kwok, Sun; Lord, Steven; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrobiology Explorer (ABE) is a MIDEX mission concept, currently under Concept Phase A study at NASA's Ames Research Center in collaboration with Ball Aerospace & Technologies, Corp., and managed by NASA's Jet Propulsion Laboratory. ABE will conduct infrared spectroscopic observations to address important problems in astrobiology, astrochemistry, and astrophysics. The core observational program would make fundamental scientific progress in understanding the distribution, identity, and evolution of ices and organic matter in dense molecular clouds, young forming stellar systems, stellar outflows, the general diffuse ISM, HII regions, Solar System bodies, and external galaxies. The ABE instrument concept includes a 0.6 m aperture Ritchey-Chretien telescope and three moderate resolution (R = 2000-3000) spectrometers together covering the 2.5-20 micron spectral region. Large format (1024 x 1024 pixel) IR detector arrays will allow each spectrometer to cover an entire octave of spectral range per exposure without any moving parts. The telescope will be cooled below 50 K by a cryogenic dewar shielded by a sunshade. The detectors will be cooled to approx. 7.5 K by a solid hydrogen cryostat. The optimum orbital configuration for achieving the scientific objectives of the ABE mission is a low background, 1 AU Earth driftaway orbit requiring a Delta II launch vehicle. This configuration provides a low thermal background and allows adequate communications bandwidth and good access to the entire sky over the approx. 1.5 year mission lifetime.

  10. Spectral imager based on Fabry-Perot interferometer for Aalto-1 nanosatellite

    Science.gov (United States)

    Mannila, Rami; Näsilä, Antti; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Saari, Heikki

    2013-09-01

    The Aalto-1 is a 3U-cubesat project coordinated by Aalto University. The satellite, Aalto-1, will be mainly built by students as project assignments and thesis works. The Aalto-1 is planned to launch on 2014. VTT Technical Research Centre of Finland is developing the main Earth observation payload, a miniaturized spectral imager unit, for the satellite. The spectral imager unit contains a spectral imager, a visible RGB-camera and control electronics of the cameras. Detailed design of the spectral imager unit has been completed and assembly of the spectral imager unit will be done in the autumn 2013. The spectral imager is based on a tunable Fabry-Perot interferometer (FPI) accompanied by an RGB CMOS image sensor. The FPI consists of two highly reflective surfaces separated by a tunable air gap and it is based on a piezo-actuated structure. The piezo-actuated FPI uses three piezo-actuators and is controlled in a closed capacitive feedback loop. The spectral resolution of the imager will be 8-15 nm at full width at half maximum and it will operate in the wavelength range 500-900 nm. Imaging resolution of the spectral imager is 1024x1024 pixels and the focal length of the optics is 32 mm and F-number is 3.4. Mass of the spectral imager unit is approximately 600 grams, and dimensions are 97 mm x 97 mm x 48 mm.

  11. Determining the Pixel-to-Pixel Uncertainty in Satellite-Derived SST Fields

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2017-08-01

    Full Text Available The primary measure of the quality of sea surface temperature (SST fields obtained from satellite-borne infrared sensors has been the bias and variance of matchups with co-located in-situ values. Because such matchups tend to be widely separated, these bias and variance estimates are not necessarily a good measure of small scale (several pixels gradients in these fields because one of the primary contributors to the uncertainty in satellite retrievals is atmospheric contamination, which tends to have large spatial scales compared with the pixel separation of infrared sensors. Hence, there is not a good measure to use in selecting SST fields appropriate for the study of submesoscale processes and, in particular, of processes associated with near-surface fronts, both of which have recently seen a rapid increase in interest. In this study, two methods are examined to address this problem, one based on spectra of the SST data and the other on their variograms. To evaluate the methods, instrument noise was estimated in Level-2 Visible-Infrared Imager-Radiometer Suite (VIIRS and Advanced Very High Resolution Radiometer (AVHRR SST fields of the Sargasso Sea. The two methods provided very nearly identical results for AVHRR: along-scan values of approximately 0.18 K for both day and night and along-track values of 0.21 K for day and night. By contrast, the instrument noise estimated for VIIRS varied by method, scan geometry and day-night. Specifically, daytime, along-scan (along-track, spectral estimates were found to be approximately 0.05 K (0.08 K and the corresponding nighttime values of 0.02 K (0.03 K. Daytime estimates based on the variogram were found to be 0.08 K (0.10 K with the corresponding nighttime values of 0.04 K (0.06 K. Taken together, AVHRR instrument noise is significantly larger than VIIRS instrument noise, along-track noise is larger than along-scan noise and daytime levels are higher than nighttime levels. Given the similarity of

  12. Multiport solid-state imager characterization at variable pixel rates

    Energy Technology Data Exchange (ETDEWEB)

    Yates, G.J.; Albright, K.A. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley Lab., CA (United States)

    1993-08-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

  13. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  14. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kästli, H C

    2010-01-01

    The CMS pixel detector has been designed for a peak luminosity of 10^34cm-2s-1 and a total dose corresponding to 2 years of LHC operation at a radius of 4 cm from the interaction region. Parts of the pixel detector will have to be replaced until 2015. The detector performance will be degraded for two reasons: radiation damage of the innermost layers and the planned increase of the LHC peak luminosity by a factor of 2-3. Based on the experience in planning, constructing and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking region.

  15. Improving Charge-Collection Efficiency of Kyoto's SOI Pixel Sensors

    CERN Document Server

    Matsumura, Hideaki; Tanaka, Takaaki; Takeda, Ayaki; Ito, Makoto; Ohmura, Syunichi; Arai, Yasuo; Mori, Koji; Nishioka, Yusuke; Takenaka, Ryota; Kohmura, Takayoshi

    2015-01-01

    We have been developing X-ray SOIPIXs for next-generation satellites for X-ray astronomy. Their high time resolution ($\\sim10~\\mu$s) and event-trigger-output function enable us to read out without pile-ups and to use anti-coincidence systems. Their performance in imaging spectroscopy is comparable to that in the CCDs. A problem in our previous model was degradation of charge-collection efficiency (CCE) at pixel borders. We measured the response in the sub-pixel scale, using finely collimated X-ray beams at $10~\\mu$m\\Phi$ at SPring-8, and investigated the non-uniformity of the CCE within a pixel. We found that the X-ray detection efficiency and CCE degrade in the sensor region under the pixel circuitry placed outside the buried p-wells (BPW). A 2D simulation of the electric fields shows that the isolated pixel-circuitry outside the BPW creates local minimums in the electric potentials at the interface between the sensor and buried oxide layers. Thus, a part of signal charge is trapped there and is not collecte...

  16. Super pixel density based clustering automatic image classification method

    Science.gov (United States)

    Xu, Mingxing; Zhang, Chuan; Zhang, Tianxu

    2015-12-01

    The image classification is an important means of image segmentation and data mining, how to achieve rapid automated image classification has been the focus of research. In this paper, based on the super pixel density of cluster centers algorithm for automatic image classification and identify outlier. The use of the image pixel location coordinates and gray value computing density and distance, to achieve automatic image classification and outlier extraction. Due to the increased pixel dramatically increase the computational complexity, consider the method of ultra-pixel image preprocessing, divided into a small number of super-pixel sub-blocks after the density and distance calculations, while the design of a normalized density and distance discrimination law, to achieve automatic classification and clustering center selection, whereby the image automatically classify and identify outlier. After a lot of experiments, our method does not require human intervention, can automatically categorize images computing speed than the density clustering algorithm, the image can be effectively automated classification and outlier extraction.

  17. The pixel tracking telescope at the Fermilab Test Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Simon; Lei, CM [Fermi National Accelerator Laboratory, Batavia, IL (United States); Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca, and Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Prosser, Alan; Rivera, Ryan [Fermi National Accelerator Laboratory, Batavia, IL (United States); Terzo, Stefano [Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca, and Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Turqueti, Marcos [Fermi National Accelerator Laboratory, Batavia, IL (United States); Uplegger, Lorenzo, E-mail: uplegger@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vigani, Luigi; Dinardo, Mauro E. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100×150 μm{sup 2} pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.

  18. Planar Pixel Sensors for the ATLAS Upgrade: Beam Tests results

    CERN Document Server

    Weingarten, J; Beimforde, M; Benoit, M; Bomben, M; Calderini, G; Gallrapp, C; George, M; Gibson, S; Grinstein, S; Janoska, Z; Jentzsch, J; Jinnouchi, O; Kishida, T; La Rosa, A; Libov, V; Macchiolo, A; Marchiori, G; Münstermann, D; Nagai, R; Piacquadio, G; Ristic, B; Rubinskiy, I; Rummler, A; Takubo, Y; Troska, G; Tsiskaridtze, S; Tsurin, I; Unno, Y; Weigel, P; Wittig, T

    2012-01-01

    Results of beam tests with planar silicon pixel sensors aimed towards the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include spatial resolution, charge collection performance and charge sharing between neighbouring cells as a function of track incidence angle for different bulk materials. Measurements of n-in-n pixel sensors are presented as a function of fluence for different irradiations. Furthermore p-type silicon sensors from several vendors with slightly differing layouts were tested. All tested sensors were connected by bump-bonding to the ATLAS Pixel read-out chip. We show that both n-type and p-type tested planar sensors are able to collect significant charge even after integrated fluences expected at HL-LHC.

  19. The first bump-bonded pixel detectors on CVD diamond

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Palmieri, V.G.; Pan, L.S.; Peitz, A.; Pernicka, M.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Steuerer, J.; Stone, R.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W. E-mail: william@physics.utoronto.ca; Turchetta, R.; Vittone, E.; Wagner, A.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Zeuner, W.; Ziock, H.; Zoeller, M.; Charles, E.; Ciocio, A.; Dao, K.; Einsweiler, K.; Fasching, D.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Milgrome, O.; Palaio, N.; Richardson, J.; Sinervo, P.; Zizka, G

    1999-11-01

    Diamond is a nearly ideal material for detecting ionising radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow it to be used in high radiation environments. These characteristics make diamond sensors particularly appealing for use in the next generation of pixel detectors. Over the last year, the RD42 collaboration has worked with several groups that have developed pixel readout electronics in order to optimise diamond sensors for bump-bonding. This effort resulted in an operational diamond pixel sensor that was tested in a pion beam. We demonstrate that greater than 98% of the channels were successfully bump-bonded and functioning. The device shows good overall hit efficiency as well as clear spatial hit correlation to tracks measured in a silicon reference telescope. A position resolution of 14.8 {mu}m was observed, consistent with expectations given the detector pitch.

  20. The Phase-1 Upgrade of the CMS Pixel Detector

    CERN Document Server

    Klein, Katja

    2016-01-01

    The CMS experiment features a pixel detector with three barrel layers and two disks per side, corresponding to an active silicon area of 1\\,m$^2$. The detector delivered high-quality data during LHC Run~1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of $1\\cdot 10^{34}\\,$cm$^{-2}$s$^{-1}$. It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to~16\\,\\%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  1. Silicon pixel detector prototyping in SOI CMOS technology

    Science.gov (United States)

    Dasgupta, Roma; Bugiel, Szymon; Idzik, Marek; Kapusta, Piotr; Kucewicz, Wojciech; Turala, Michal

    2016-12-01

    The Silicon-On-Insulator (SOI) CMOS is one of the most advanced and promising technology for monolithic pixel detectors design. The insulator layer that is implemented inside the silicon crystal allows to integrate sensors matrix and readout electronic on a single wafer. Moreover, the separation of electronic and substrate increases also the SOI circuits performance. The parasitic capacitances to substrate are significantly reduced, so the electronic systems are faster and consume much less power. The authors of this presentation are the members of international SOIPIX collaboration, that is developing SOI pixel detectors in 200 nm Lapis Fully-Depleted, Low-Leakage SOI CMOS. This work shows a set of advantages of SOI technology and presents possibilities for pixel detector design SOI CMOS. In particular, the preliminary results of a Cracow chip are presented.

  2. Performance of the INTPIX6 SOI pixel detector

    Science.gov (United States)

    Arai, Y.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Kucewicz, W.; Miyoshi, T.; Turala, M.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e-. The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e-. The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  3. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  4. Pixel front-end development in 65 nm CMOS technology

    CERN Document Server

    Havránek, M; Kishishita, T; Krüger, H; Wermes, N

    2014-01-01

    Luminosity upgrade of the LHC (HL-LHC) imposes severe constraints on the detector tracking systems in terms of radiation hardness and capability to cope with higher hit rates. One possible way of keeping track with increasing luminosity is the usage of more advanced technologies. Ultra deep sub-micron CMOS technologies allow a design of complex and high speed electronics with high integration density. In addition, these technologies are inherently radiation hard. We present a prototype of analog pixel front-end integrated circuit designed in 65 nm CMOS technology with applications oriented towards the ATLAS Pixel Detector upgrade. The aspects of ultra deep sub-micron design and performance of the analog pixel front-end circuits will be discussed.

  5. Digital Power Consumption Estimations for CHIPIX65 Pixel Readout Chip

    CERN Document Server

    Marcotulli, Andrea

    2016-01-01

    New hybrid pixel detectors with improved resolution capable of dealing with hit rates up to 3 GHz/cm2 will be required for future High Energy Physics experiments in the Large Hadron Collider (LHC) at CERN. Given this, the RD53 collaboration works on the design of the next generation pixel readout chip needed for both the ATLAS and CMS detector phase 2 pixel upgrades. For the RD53 demonstrator chip in 65nm CMOS technology, different architectures are considered. In particular the purpose of this work is estimating the power consumption of the digital architecture of the readout ASIC developed by CHIPIX65 project of the INFN National Scientific Committee. This has been done with modern chip design tools integrated with the VEPIX53 simulation framework that has been developed within the RD53 collaboration in order to assess the performance of the system in very high rate, high energy physics experiments.

  6. The Phase-1 upgrade of the CMS silicon pixel detector

    CERN Document Server

    Menichelli, Mauro

    2015-01-01

    The present CMS pixel detector will be replaced in the shutdown period 2016/17 by an upgraded version due to the following reasons: increased luminosity at reduced bunch spacing ( from 7 x 10 33 cm - 2 s - 1 at 50 ns bunch spacing to 2 x 10 34 cm - 2 s - 1 at 25 ns bunch spacing) in the LHC , and radiation damage effects that will significantly degrade the present detector. The new upgraded detector will have higher tracking efficiency and lower mass with four barrel layer and three forward/backward disks to provide higher hit pixel coverage out to pseudorapidities of ±2.5. In this paper we will describe the new pixel detector focus ing mostly on the barrel detector design, construction and expected performances

  7. Simulation of Caliste-SO single pixel response

    Science.gov (United States)

    Barylak, J.; Barylak, A.; Mrozek, T.; Podgórski, P.; Steślicki, M.; Ścisłowski, D.

    2016-09-01

    The paper presents a method for determining the pixel response using Geant4 package. The response is calculated for cadmium telluride sensor of Caliste-SO detector. Caliste-SO will be used in STIX instrument on board Solar Orbiter, which is M-class mission of the ESA's program Cosmic Vision 2015-2025. Solar Orbiter is to be launched in October 2018. STIX instrument will provide imaging spectroscopy of solar hard X-ray emissions (4 - 150 keV) using a Fourier-imaging technique. Response of pixels in pixelized Caliste-SO detector vary between each other due to different sizes and locations. This can influence the scientific data obtained from STIX. Additionally, in the simulation we considered detector effects, like: hole tailing, damage layer, Fano and electronic noise.

  8. The Phase-1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Klein, Katja

    2017-02-01

    The CMS experiment features a pixel detector with three barrel layers and two discs per side, corresponding to an active silicon area of 1 m2. The detector delivered high-quality data during LHC Run 1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of 1 ·1034cm-2s-1 . It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to 16%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  9. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  10. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    Stramaglia, Maria Elena; The ATLAS collaboration

    2015-01-01

    The calibration of the Pixel detector fulfills two main purposes: to tune front-end registers for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied toghether to chips with dierent characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  11. Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    CERN Document Server

    Bubna, M; Krzywda, A; Koybasi, O; Arndt, K; Bortoletto, D; Shipsey, I; Bolla, G; Kok, A; Hansen, T -E; Hansen, T A; Jensen, G U; Brom, J M; Boscardin, M; Chramowicz, J; Cumalat, J; Betta, G F Dalla; Dinardo, M; Godshalk, A; Jones, M; Krohn, M D; Kumar, A; Lei, C M; Moroni, L; Perera, L; Povoli, M; Prosser, A; Rivera, R; Solano, A; Obertino, M M; Kwan, S; Uplegger, L; Via, C D; Vigani, L; Wagner, S

    2014-01-01

    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.

  12. Detector Modules for the CMS Pixel Phase 1 Upgrade

    CERN Document Server

    Zhu, De Hua; Berger, Pirmin; Meinhard, Maren Tabea; Starodumov, Andrey; Tavolaro, Vittorio Raoul

    2017-01-01

    The CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important part of the production is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average $0.55 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\, \\pm \\, 0.01 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\,$ defective pixels and that all performance parameters stay within their specifications.

  13. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  14. HEXITEC ASIC-a pixellated readout chip for CZT detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)], E-mail: l.l.jones@stfc.ac.uk; Seller, Paul; Wilson, Matthew; Hardie, Alec [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20x20 pixel ASIC has been developed and manufactured on a standard 0.35 {mu}m CMOS process.

  15. HEXITEC ASIC—a pixellated readout chip for CZT detectors

    Science.gov (United States)

    Jones, Lawrence; Seller, Paul; Wilson, Matthew; Hardie, Alec

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20×20 pixel ASIC has been developed and manufactured on a standard 0.35 μm CMOS process.

  16. Radiation hardness studies on CMOS monolithic pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Marco [Department of Physics, University of California at Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Bisello, Dario [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy); Contarato, Devis, E-mail: DContarato@lbl.go [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Denes, Peter; Doering, Dionisio [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Giubilato, Piero [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy); Sung Kim, Tae [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Mattiazzo, Serena [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, I-35131 Padova (Italy); Radmilovic, Velimir [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Zalusky, Sarah [Department of Physics, University of California at Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-12-11

    This paper presents irradiation studies performed on a CMOS monolithic pixel sensor prototype implementing different optimizations of the pixel cell aimed at a superior radiation tolerance. Irradiations with 200 keV electrons up to a total dose of 1.1 Mrad have been performed in view of the utilization of such a design in Transmission Electron Microscopy (TEM) applications. Comparative irradiations were performed with 29 MeV protons up to a 2 Mrad total dose and with 1-14 MeV neutrons up to fluences in excess of 10{sup 13} n{sub eq} cm{sup -2}. Experimental results show an improved performance of pixels designed with Enclosed Layout Transistor (ELT) rules and an optimized layout of the charge collecting diodes.

  17. Design and test of pixel sensors for the CMS experiment

    CERN Document Server

    Bölla, G; Rott, C; Roy, A; Kwan, S; Chien, C Y; Cho, H; Gobbi, B; Horisberger, R P; Kaufmann, R

    2001-01-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) will have a silicon pixel detector as its innermost tracking device. The pixel system will be exposed to the harsh radiation environment of the LHC. Prototype sensors have been designed to meet the specifications of the CMS experiment. The sensors are n/sup +/-n devices to allow partial depletion operation after bulk type inversion. The isolation of the n/sup +/ pixels is provided through a novel double open p-ring design that allows sensor testing before bump bonding and flip chipping. The prototype wafers contain a variety of p-stop designs and are fabricated by two vendors on different bulk substrates including oxygenated silicon. A study of the static measurement of the prototype sensors before irradiation is presented. (2 refs).

  18. Calibration analysis software for the ATLAS Pixel Detector

    Science.gov (United States)

    Stramaglia, Maria Elena

    2016-07-01

    The calibration of the ATLAS Pixel Detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel Detector scans and analyses is called calibration console. The introduction of a new layer, equipped with new FE-I4 chips, required an update of the console architecture. It now handles scans and scan analyses applied together to chips with different characteristics. An overview of the newly developed calibration analysis software will be presented, together with some preliminary results.

  19. Hybrid Predictor and Field-Biased Context Pixel Selection Based on PPVO

    OpenAIRE

    Hongyin Xiang; Jinsha Yuan; Sizu Hou

    2016-01-01

    Most pixel-value-ordering (PVO) predictors generated prediction-errors including −1 and 1 in a block-by-block manner. Pixel-based PVO (PPVO) method provided a novel pixel scan strategy in a pixel-by-pixel way. Prediction-error bin 0 is expanded for embedding with the help of equalizing context pixels for prediction. In this paper, a PPVO-based hybrid predictor (HPPVO) is proposed as an extension. HPPVO predicts pixel in both positive and negative orientations. Assisted by expansion bins selec...

  20. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  1. Characterizing pixel and point patterns with a hyperuniformity disorder length

    Science.gov (United States)

    Chieco, A. T.; Dreyfus, R.; Durian, D. J.

    2017-09-01

    We introduce the concept of a "hyperuniformity disorder length" h that controls the variance of volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations are determined by the average number of particles within a distance h from the boundary of the window. We first compute special expectations and bounds in d dimensions, and then illustrate the range of behavior of h versus window size L by analyzing several different types of simulated two-dimensional pixel patterns—where particle positions are stored as a binary digital image in which pixels have value zero if empty and one if they contain a particle. The first are random binomial patterns, where pixels are randomly flipped from zero to one with probability equal to area fraction. These have long-ranged density fluctuations, and simulations confirm the exact result h =L /2 . Next we consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These also display long-range density fluctuations, but with h =(L /2 )(f /d ) for small f , and h =L /2 for f →1 . And finally, for a hyperuniform system with no long-range density fluctuations, we consider "Einstein patterns," where each particle is independently displaced from a lattice site by a Gaussian-distributed amount. For these, at large L ,h approaches a constant equal to about half the root-mean-square displacement in each dimension. Then we turn to gray-scale pixel patterns that represent simulated arrangements of polydisperse particles, where the volume of a particle is encoded in the value of its central pixel. And we discuss the continuum limit of point patterns, where pixel size vanishes. In general, we thus propose to quantify particle configurations not just by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h (L ) versus L . We call this approach "hyperuniformity disorder length spectroscopy".

  2. Imaging by photon counting with 256x256 pixel matrix

    Science.gov (United States)

    Tlustos, Lukas; Campbell, Michael; Heijne, Erik H. M.; Llopart, Xavier

    2004-09-01

    Using 0.25µm standard CMOS we have developed 2-D semiconductor matrix detectors with sophisticated functionality integrated inside each pixel of a hybrid sensor module. One of these sensor modules is a matrix of 256x256 square 55µm pixels intended for X-ray imaging. This device is called 'Medipix2' and features a fast amplifier and two-level discrimination for signals between 1000 and 100000 equivalent electrons, with overall signal noise ~150 e- rms. Signal polarity and comparator thresholds are programmable. A maximum count rate of nearly 1 MHz per pixel can be achieved, which corresponds to an average flux of 3x10exp10 photons per cm2. The selected signals can be accumulated in each pixel in a 13-bit register. The serial readout takes 5-10 ms. A parallel readout of ~300 µs could also be used. Housekeeping functions such as local dark current compensation, test pulse generation, silencing of noisy pixels and threshold tuning in each pixel contribute to the homogeneous response over a large sensor area. The sensor material can be adapted to the energy of the X-rays. Best results have been obtained with high-resistivity silicon detectors, but also CdTe and GaAs detectors have been used. The lowest detectable X-ray energy was about 4 keV. Background measurements have been made, as well as measurements of the uniformity of imaging by photon counting. Very low photon count rates are feasible and noise-free at room temperature. The readout matrix can be used also with visible photons if an energy or charge intensifier structure is interposed such as a gaseous amplification layer or a microchannel plate or acceleration field in vacuum.

  3. Comprehensive measurements of GaAs pixel detectors capacitance

    CERN Document Server

    Caria, M; D'Auria, S; Lai, A; Randaccio, P; Cadeddu, S

    2002-01-01

    We have studied GaAs pixel detectors on semi-insulating wafers with Schottky contacts. We performed comprehensive measurements on the inter-pixel and capacitance to back plane. Being semi-insulating, the behaviour is totally different with respect to other common semiconductors, such as high resistivity silicon. Non-homogeneities are also an issue, due to both the contacts and the crystal bulk. In order to detect them and their influence on capacitance, we undertook systematic measurements with different configurations of the measuring electrodes.

  4. Dynamic Efficiency Measurements for Irradiated ATLAS Pixel Single Chip Modules

    CERN Document Server

    Pfaff, Mike; Grosse-Knetter, Jorn

    2011-01-01

    The ATLAS pixel detector is the innermost subdetector of the ATLAS experiment. Due to this, the pixel detector has to be particularly radiation hard. In this diploma thesis effects on the sensor and the electronics which are caused by irradiation are examined. It is shown how the behaviour changes between an unirradiated sample and a irradiated sample, which was treated with the same radiation dose that is expected at the end of the lifetime of ATLAS. For this study a laser system, which is used for dynamic efficiency measurements was constructed. Furthermore, the behaviour of the noise during the detection of a particle was evaluated studied.

  5. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  6. CMOS VLSI Active-Pixel Sensor for Tracking

    Science.gov (United States)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  7. Modelling Gaia CCD pixels with Silvaco 3D engineering software

    CERN Document Server

    Seabroke, G M; Hopkinson, G; Burt, D; Robbins, M; Holland, A

    2010-01-01

    Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.

  8. An improved bit shuffling pixels-based image scrambling method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong; WANG Hong-xia; WANG Jin

    2011-01-01

    @@ Compared with the Arnold transform, the image scrambling method based on bit shuffling pixels is much more secure, and has higher efficiency and speed.However, the key space of this bit shuffling pixels based method is too small to resist exhaustive search attack.Therefore, an improved method based on chaos is proposed in this paper.The security of the improved scheme is enhanced by increasing the number of the keys.Theoretical analysis and experimental results show that the proposed method is effective and has higher security.

  9. Information preserved guided scan pixel difference coding for medical images

    CERN Document Server

    Takaya, K; Yuan, L; Takaya, Kunio; Yuan, Li

    2001-01-01

    This paper analyzes the information content of medical images, with 3-D MRI images as an example, in terms of information entropy. The results of the analysis justify the use of Pixel Difference Coding for preserving all information contained in the original pictures, lossless coding in other words. The experimental results also indicate that the compression ratio CR=2:1 can be achieved under the lossless constraints. A pratical implementation of Pixel Difference Coding which allows interactive retrieval of local ROI (Region of Interest), while maintaining the near low bound information entropy, is discussed.

  10. Semiconductor micropattern pixel detectors a review of the beginnings

    CERN Document Server

    Heijne, Erik H M

    2001-01-01

    The innovation in monolithic and hybrid semiconductor 'micropattern' or 'reactive' pixel detectors for tracking in particle physics was actually to fit logic and pulse processing electronics with µW power on a pixel area of less than 0.04 mm2, retaining the characteristics of a traditional nuclear amplifier chain. The ns timing precision in conjunction with local memory and logic operations allowed event selection at > 10 MHz rates with unambiguous track reconstruction even at particle multiplicities > 10 cm-2. The noise in a channel was ~100 e- r.m.s. and enabled binary operation with random noise 'hits' at a level 30 Mrad, respectively.

  11. New Active Digital Pixel Circuit for CMOS Image Sensor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new active digital pixel circuit for CMOS image sensor is designed consisting of four components: a photo-transducer, a preamplifier, a sample & hold (S & H) circuit and an A/D converter with an inverter. It is optimized by simulation and adjustment based on 2μm standard CMOS process. Each circuit of the components is designed with specific parameters. The simulation results of the whole pixel circuits show that the circuit has such advantages as low distortion, low power consumption, and improvement of the output performances by using an inverter.

  12. A prototype hybrid pixel detector ASIC for the CLIC experiment

    CERN Document Server

    Valerio, P; Arfaoui, S; Ballabriga, R; Benoit, M; Bonacini, S; Campbell, M; Dannheim, D; De Gaspari, M; Felici, D; Kulis, S; Llopart, X; Nascetti, A; Poikela, T; Wong, W S

    2014-01-01

    A prototype hybrid pixel detector ASIC specifically designed to the requirements of the vertex detector for CLIC is described and first electrical measurements are presented. The chip has been designed using a commercial 65 nm CMOS technology and comprises a matrix of 64x64 square pixels with 25 μm pitch. The main features include simultaneous 4-bit measure- ment of Time-over-Threshold (ToT) and Time-of-Arrival (ToA) with 10 ns accuracy, on-chip data compression and power pulsing capability.

  13. CMS Forward Pixel Upgrade Electronics and System Testing

    CERN Document Server

    Weber, Hannsjorg Artur

    2016-01-01

    This note discusses results of electronics and system testing of the CMS forward pixel (FPIX) detector upgrade for Phase 1. The FPIX detector is comprised of four stand-alone half cylinders, each of which contains frontend readout electronic boards, power regulators, cables and fibers in addition to the pixel modules. All of the components undergo rigorous testing and quality assurance before assembly into the half cylinders. Afterwards, we perform full system tests on the completely assembled half cylinders, including calibrations at final operating temperatures, characterization of the realistic readout chain, and system grounding and noise studies. The results from all these tests are discussed.

  14. Development of a high density pixel multichip module at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, G. [and others

    2001-03-08

    At Fermilab, both pixel detector multichip module and sensor hybridization are being developed for the BTeV experiment. The BTeV pixel detector is based on a design relying on a hybrid approach. With this approach, the readout chip and the sensor array are developed separately and the detector is constructed by flip-chip mating the two together. This method offers maximum flexibility in the development process, choice of fabrication technologies, and the choice of sensor material. This paper presents strategies to handle the required data rate and performance results of the first prototype and detector hybridization.

  15. Fully depleted CMOS pixel sensor development and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Baudot, J.; Kachel, M. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  16. CMOS integrator based lock-in pixel for heterodyne interferometry

    NARCIS (Netherlands)

    Soloviev, O.; Vdovin, G.

    2005-01-01

    This article presents a prototype of a CMOS phase sensor for high accuracy (1 Angstrom) heterodyne interferometry. Switched integrators realization of a lock-in pixel for 4-bucket phase detection algorithm is described and illustrated by experimental results. Factors that limit the accuracy of this

  17. Silicon Avalanche Pixel Sensor for High Precision Tracking

    CERN Document Server

    D'Ascenzo, N; Moon, C S; Morsani, F; Ratti, L; Saveliev, V; Navarro, A Savoy; Xie, Q

    2013-01-01

    The development of an innovative position sensitive pixelated sensor to detect and measure with high precision the coordinates of the ionizing particles is proposed. The silicon avalanche pixel sensors (APiX) is based on the vertical integration of avalanche pixels connected in pairs and operated in coincidence in fully digital mode and with the processing electronics embedded on the chip. The APiX sensor addresses the need to minimize the material budget and related multiple scattering effects in tracking systems requiring a high spatial resolution in the presence of a large occupancy. The expected operation of the new sensor features: low noise, low power consumption and suitable radiation tolerance. The APiX device provides on-chip digital information on the position of the coordinate of the impinging charged particle and can be seen as the building block of a modular system of pixelated arrays, implementing a sparsified readout. The technological challenges are the 3D integration of the device under CMOS ...

  18. Module and Electronics Developments for the ATLAS ITK Pixel System

    CERN Document Server

    Nellist, Clara; The ATLAS collaboration

    2016-01-01

    ATLAS is preparing for an extensive modification of its detector in the course of the planned HL-LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m$^{2}$, depending on the final layout choice that is expected to take place in early 2017. An intense R\\&D activity is taking place in the field of planar, 3D, CMOS sensors to identify the optimal technology for the different pixel layers. In parallel various sensor-chip interconnection options are explored to identify reliable technologies when employing 100-150~$\\mu$m thin chips. While the new read-out chip is being developed by the RD53 Collaboration, the pixel off de...

  19. The phase 1 upgrade of the CMS pixel detector

    CERN Document Server

    Verzocchi, Marco

    2016-01-01

    The CMS collaboration is building a replacement for the pixel detector that will be installed in the extended end of year shutdown 2016-2017. This contribution reviews the motivations for the upgrade, the technological choices made, the status of the construction of this new detector and the plans for installation and commissioning.

  20. Phase 1 pixel modules production and High Density Interconnect testing

    CERN Document Server

    Still, Joseph

    2014-01-01

    During the first run of the LHC, luminosity peaked at $1 \\times 10^{34} cm^{-2}s^{-1}$ with $ \\approx 50 ns$ bunch spacing a pile-up of about 25, or simultaneous inelastic collisions per crossing, occur in the CMS experiment. However after the upgrade of of the LHC during long shut down 1, luminosity, and therefore pile-up. Therefore the CMS pixel tracker has to be upgraded to be able to operate correctly under this news stronger constraints. That is how this CERN Summer Student project, which took place at the CERN Meyrin site, comes within the framework of the pixel detector upgrade in the CMS experiment with a work aimed on the phase 1 of pixel modules production and tests of the HDI. The production and tests of the HDI were held in cleanroom facilities. This included first hand as well as to work on pixel modules building and performing size and flatness tests on them, and on a other hand testing several HDIs. At first, prototypes modules were assembled before real modules building. Another aspect of work...

  1. The ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4 cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and sensors which can stand radiation levels beyond 5$ imes$10$^{15}$ n$_{eq}$/cm$^{2}$ . ATLAS has developed the new FEI4 chip and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation length and allows detector cooling with CO$_{2}$ at -40 $^{circ}$C coolant temperature. Currently the overall integration and installation procedure is being developed and tested ready for installation in 2013. The paper summarizes the current state of development of IBL modules, first preliminary test results of the new chip ...

  2. Overview of the ATLAS Insertable B-Layer Pixel Detector

    CERN Document Server

    Pernegger, H; The ATLAS collaboration

    2011-01-01

    ATLAS currently develops a new pixel detector for the first upgrade of its tracking system: The ATLAS Insertable B-Layer Pixel detector (IBL). The new layer will be inserted between the inner most layer of the current pixel detector and a new beam pipe. The sensors are placed at a radius of 3.4cm. The expected high radiation levels and high hit occupancy require new developments for front-end chip and the sensor which can stand radiation levels beyond 5E15 neq/cm2. ATLAS has developed the new FEI4 and new silicon sensors to be used as pixel modules. Furthermore a new lightweight support and cooling structure was developed, which minimizes the overall radiation and allows detector cooling with CO2 at -40C coolant temperature. Currently the overall integration and installation procedure is being developed and test ready for installation in ATLAS in 2013. The presentation summarizes the current state of development of IBL modules, first preliminary test results of the new chip with new sensors, the construction ...

  3. Fabrication of ATLAS pixel detector prototypes at IRST

    CERN Document Server

    Boscardin, M; Gregori, P; Zen, M; Zori, N

    2001-01-01

    We report on the development of a fabrication technology for n-on-n silicon pixel detectors oriented to the ATLAS experiment at LHC. The main processing issues and some selected results from the electrical characterization of detector prototypes and related test structures are presented and discussed. (5 refs).

  4. Light Field Rendering for Head Mounted Displays using Pixel Reprojection

    DEFF Research Database (Denmark)

    Hansen, Anne Juhler; Kraus, Martin; Klein, Jákup

    2017-01-01

    of the information of the different images is redundant, we use pixel reprojection from the corner cameras to compute the remaining images in the light field. We compare the reprojected images with directly rendered images in a user test. In most cases, the users were unable to distinguish the images. In extreme...

  5. Charge induction in semiconductor detectors with pixellated structure

    NARCIS (Netherlands)

    Samedov, Victor V.

    2007-01-01

    Considerable interest is now being attracted to the next generation of compound semiconductor detectors with pixellated structure in application to x-ray and gamma-astronomy, nuclear spectroscopy and nuclear medicine. The spatial resolution of this type of detectors is mainly determined by the proce

  6. The CMS pixel readout chip for the Phase 1 Upgrade

    CERN Document Server

    Hits, Dmitry

    2015-01-01

    The present CMS pixel Read Out Chip (ROC) was designed for operation at a bunch spacing of 25\\,ns and to be efficient up to the nominal instantaneous luminosity of 10$^{34} \\rm cm^{-2} \\rm s^{-1}$. Based on the excellent LHC performance to date and the upgrade plans for the accelerators, it is anticipated that the instantaneous luminosity could reach $2\\times10^{34} \\rm cm^{-2} \\rm s^{-1}$ before the Long Shutdown 2 (LS2) in 2018, and well above this by the LS3 in 2022. That is why a new ROC has been designed and why a completely new pixel detector will be built with a planned installation in CMS during an extended winter shutdown in 2016/17. The ROC for the upgraded pixel detector is an evolution of the present architecture. It will be manufactured in the same 250\\,nm CMOS process. The core of the architecture is maintained, with enhancement in performance in three main areas: readout protocol, reduced data loss and enhanced analog performance. The main features of the new CMS pixel ROC are presented togeth...

  7. The CMS Pixel Readout Chip for the Phase 1 Upgrade

    Science.gov (United States)

    Hits, D.; Starodumov, A.

    2015-05-01

    The present CMS pixel Read Out Chip (ROC) was designed for operation at a bunch spacing of 25 ns and to be efficient up to the nominal instantaneous luminosity of 1034 cm-2 s-1. Based on the excellent LHC performance to date and the upgrade plans for the accelerators, it is anticipated that the instantaneous luminosity could reach 2×1034 cm-2 s-1 before the Long Shutdown 2 (LS2) in 2018, and well above this by the LS3 in 2022. That is why a new ROC has been designed and why a completely new pixel detector will be built with a planned installation in CMS during an extended winter shutdown in 2016/17. The ROC for the upgraded pixel detector is an evolution of the present architecture. It will be manufactured in the same 250 nm CMOS process. The core of the architecture is maintained, with enhancement in performance in three main areas: readout protocol, reduced data loss and enhanced analog performance. The main features of the new CMS pixel ROC are presented together with measured performance of the chip.

  8. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    CERN Document Server

    Moon, Chang-Seong

    2015-01-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC). It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours ($b$ and $c$ quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their impulsion. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (P...

  9. Phase 1 upgrade of the CMS Pixel Detector

    CERN Document Server

    Saha, Anirban

    2016-01-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of $\\rm 1 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to $\\rm 2\\times10^{34} cm^{-2}s^{-1}$, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are the a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with hi...

  10. The NUC and blind pixel eliminating in the DTDI application

    Science.gov (United States)

    Su, Xiao Feng; Chen, Fan Sheng; Pan, Sheng Da; Gong, Xue Yi; Dong, Yu Cui

    2013-12-01

    AS infrared CMOS Digital TDI (Time Delay and integrate) has a simple structure, excellent performance and flexible operation, it has been used in more and more applications. Because of the limitation of the Production process level, the plane array of the infrared detector has a large NU (non-uniformity) and a certain blind pixel rate. Both of the two will raise the noise and lead to the TDI works not very well. In this paper, for the impact of the system performance, the most important elements are analyzed, which are the NU of the optical system, the NU of the Plane array and the blind pixel in the Plane array. Here a reasonable algorithm which considers the background removal and the linear response model of the infrared detector is used to do the NUC (Non-uniformity correction) process, when the infrared detector array is used as a Digital TDI. In order to eliminate the impact of the blind pixel, the concept of surplus pixel method is introduced in, through the method, the SNR (signal to noise ratio) can be improved and the spatial and temporal resolution will not be changed. Finally we use a MWIR (Medium Ware Infrared) detector to do the experiment and the result proves the effectiveness of the method.

  11. Gauss-Legendre Sky Pixelization (glesp) for CMB Maps

    Science.gov (United States)

    Doroshkevich, A. G.; Naselsky, P. D.; Verkhodanov, O. V.; Novikov, D. I.; Turchaninov, V. I.; Novikov, I. D.; Christensen, P. R.; Chiang, L.-Y.

    A new scheme of sky pixelization is developed for CMB maps. The scheme is based on the Gauss-Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map. A corresponding code has been implemented and comparison with other methods has been done.

  12. Gauss--Legendre Sky Pixelization (GLESP) for CMB maps

    CERN Document Server

    Doroshkevich, A G; Verkhodanov, O V; Novikov, D I; Turchaninov, V I; Novikov, I D; Christensen, P R

    2003-01-01

    A new scheme of sky pixelization is developed for CMB maps. The scheme is based on the Gauss--Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map. A corresponding code has been implemented and comparison with other methods has been done.

  13. Charge amplitude distribution of the Gossip gaseous pixel detector

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Chefdeville, M.A.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, Cora; Schmitz, Jurriaan; Smits, Sander M.; Timmermans, J.; Timmermans, J.; Visschers, J.L.

    2007-01-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few

  14. ATLAS Pixel Radiation Monitoring with HVPP4 System

    CERN Document Server

    Gorelov, Igor; Seidel, Sally; Toms, Konstantin

    2009-01-01

    In this talk we present the basis for the protocol for radiation monitoring of the ATLAS Pixel Sensors. The monitoring is based on a current measurement system, HVPP4. The status on the ATLAS HVPP4 system development is also presented.

  15. Study of Pixel Area Variations in Fully Depleted Thick CCD

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V.; O' Connor, P.; Kotov, A.I.; Frank, J.; Kubanek, P.; Prouza, M.; Radeka, V.; Takacs, P.

    2010-06-30

    Future wide field astronomical surveys, like Large Synoptic Survey Telescope (LSST), require photometric precision on the percent level. The accuracy of sensor calibration procedures should match these requirements. Pixel size variations found in CCDs from different manufacturers are the source of systematic errors in the flat field calibration procedure. To achieve the calibration accuracy required to meet the most demanding science goals this effect should be taken into account. The study of pixel area variations was performed for fully depleted, thick CCDs produced in a technology study for LSST. These are n-channel, 100 {micro}m thick devices. We find pixel size variations in both row and column directions. The size variation magnitude is smaller in the row direction. In addition, diffusion is found to smooth out electron density variations. It is shown that the characteristic diffusion width can be extracted from the flat field data. Results on pixel area variations and diffusion, data features, analysis technique and modeling technique are presented and discussed.

  16. Fundamental Characteristics of a Pinned Photodiode CMOS Pixels

    NARCIS (Netherlands)

    Xu, Y.

    2015-01-01

    This thesis gives an insightful analysis of the pinned photodiode 4T CMOS pixel from three different aspects. Firstly, from the charge accumulated aspect, the PPD full well capacity and related parameters of influence are investigated such as the pinning voltage, and transfer gate potential barrier.

  17. Phase 1 upgrade of the CMS pixel detector

    Science.gov (United States)

    Saha, Anirban

    2017-02-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of 1 × 1034 cm‑2 s‑1. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to 2 × 1034 cm‑2 s‑1, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with higher rate capability and a new cooling system. In this document, we discuss the motivations for the upgrade, the design, and technological choices made, the status of the construction of the new detector and the future plans for the installation and commissioning.

  18. From Pixels to Geographic Objects in Remote Sensing Image Analysis

    NARCIS (Netherlands)

    Addink, E.A.; Van Coillie, Frieke M.B.; Jong, Steven M. de

    2012-01-01

    Traditional image analysis methods are mostly pixel-based and use the spectral differences of landscape elements at the Earth surface to classify these elements or to extract element properties from the Earth Observation image. Geographic object-based image analysis (GEOBIA) has received considerabl

  19. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Perrey, Hanno

    2013-01-01

    A high resolution ($\\sigma 2 \\sim \\mu$) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six sensor planes using Mimosa26 MAPS with a pixel pitch of $18.4 \\mu$ and thinned down to $50 \\mu$. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the new European detector infrastructure project AIDA the test beam telescope will be further extended in terms of cooling infrastructure, readout speed and precision. In order to provide a system optimized for the different requirements by the user community, a combination of various pixel technologies is foreseen. In this report the design of this even more flexible telescope with three different pixel technologies (TimePix, Mimosa, ATLAS FE-I4) will be presented. First test beam results with the HitOR signal provided by the FE-I4 integrated into the trigger...

  20. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    A high resolution (σ∼2μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six monolithic active pixel sensor planes (Mimosa26) with a pixel pitch of 18.4 \\mu m and thinned down to 50 \\mu m. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the European detector infrastructure project AIDA the test beam telescope is being further extended in terms of cooling and powering infrastructure, read-out speed, area of acceptance, and precision. In order to provide a system optimized for the different requirements by the user community a combination of various state-of-the-art pixel technologies is foreseen. Furthermore, new central dead-time-free trigger logic unit (TLU) has been developed to provide LHC-speed response with one-trigger-per-particle operating mode and a synchronous clock for all conn...

  1. From Pixels to Geographic Objects in Remote Sensing Image Analysis

    NARCIS (Netherlands)

    Addink, E.A.; Van Coillie, Frieke M.B.; Jong, Steven M. de

    Traditional image analysis methods are mostly pixel-based and use the spectral differences of landscape elements at the Earth surface to classify these elements or to extract element properties from the Earth Observation image. Geographic object-based image analysis (GEOBIA) has received

  2. Module and Electronics Developments for the ATLAS ITK Pixel System

    CERN Document Server

    Rummler, Andr{e}; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown around 2025 by an all-silicon detector (Inner Tracker, ITk). The pixel detector will be composed by the five innermost layers, instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m^2, depending on the final layout choice that is expected to take place in early 2017. Different designs of planar, 3D, CMOS sensors are being investigated to identify the optimal technology for the different pixel layers. In parallel sensor-chip interconnection options are evaluated in collaboration with industrial partners to identify reliable technologies when employing 100-150 μm thin chips. While the new read-out chip is being developed by the RD53 Collaboration, the pixel off detector read-out electronics will be implemented in the frame...

  3. Monolithic pixels on moderate resistivity substrate and sparsifying readout architecture

    CERN Document Server

    Giubilato, P; Snoeys, W; Bisello, D; Marchioro, A; Battaglia, M; Demaria, L; Mansuy, S C; Pantano, D; Rousset, J; Mattiazzo, S; Kloukinas, K; Potenza, A; Ikemoto, Y; Rivetti, A; Chalmet, P; Mugnier, H; Silvestrin, L

    2013-01-01

    The LePix projects aim realizing a new generation monolithic pixel detectors with improved performances at lesser cost with respect to both current state of the art monolithic and hybrid pixel sensors. The detector is built in a 90 nm CMOS process on a substrate of moderate resistivity. This allows charge collection by drift while maintaining the other advantages usually offered by MAPS, like having a single piece detector and using a standard CMOS production line. The collection by drift mechanism, coupled to the low capacitance design of the collecting node made possible by the monolithic approach, provides an excellent signal to noise ratio straight at the pixel cell together with a radiation tolerance far superior to conventional un-depleted MAPS. The excellent signal-to-noise performance is demonstrated by the device ability to separate the 6 keV Fe-55 double peak at room temperature. To achieve high granularity (10-20 mu m pitch pixels) over large detector areas maintaining high readout speed, a complet...

  4. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    Science.gov (United States)

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  5. Electron imaging with Medipix2 hybrid pixel detector

    CERN Document Server

    McMullan, G; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μm×55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach 35% of that expected for a perfect detector (4/π2). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected v...

  6. SNR improvement for hyperspectral application using frame and pixel binning

    Science.gov (United States)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  7. Automation of Endmember Pixel Selection in SEBAL/METRIC Model

    Science.gov (United States)

    Bhattarai, N.; Quackenbush, L. J.; Im, J.; Shaw, S. B.

    2015-12-01

    The commonly applied surface energy balance for land (SEBAL) and its variant, mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC) models require manual selection of endmember (i.e. hot and cold) pixels to calibrate sensible heat flux. Current approaches for automating this process are based on statistical methods and do not appear to be robust under varying climate conditions and seasons. In this paper, we introduce a new approach based on simple machine learning tools and search algorithms that provides an automatic and time efficient way of identifying endmember pixels for use in these models. The fully automated models were applied on over 100 cloud-free Landsat images with each image covering several eddy covariance flux sites in Florida and Oklahoma. Observed land surface temperatures at automatically identified hot and cold pixels were within 0.5% of those from pixels manually identified by an experienced operator (coefficient of determination, R2, ≥ 0.92, Nash-Sutcliffe efficiency, NSE, ≥ 0.92, and root mean squared error, RMSE, ≤ 1.67 K). Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.91 and RMSE ≤ 0.35 mm day-1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed approach should reduce time demands for applying SEBAL/METRIC models and allow for their more widespread and frequent use. This automation can also reduce potential bias that could be introduced by an inexperienced operator and extend the domain of the models to new users.

  8. Segmentation and intensity estimation for microarray images with saturated pixels

    Directory of Open Access Journals (Sweden)

    Yang Yan

    2011-11-01

    Full Text Available Abstract Background Microarray image analysis processes scanned digital images of hybridized arrays to produce the input spot-level data for downstream analysis, so it can have a potentially large impact on those and subsequent analysis. Signal saturation is an optical effect that occurs when some pixel values for highly expressed genes or peptides exceed the upper detection threshold of the scanner software (216 - 1 = 65, 535 for 16-bit images. In practice, spots with a sizable number of saturated pixels are often flagged and discarded. Alternatively, the saturated values are used without adjustments for estimating spot intensities. The resulting expression data tend to be biased downwards and can distort high-level analysis that relies on these data. Hence, it is crucial to effectively correct for signal saturation. Results We developed a flexible mixture model-based segmentation and spot intensity estimation procedure that accounts for saturated pixels by incorporating a censored component in the mixture model. As demonstrated with biological data and simulation, our method extends the dynamic range of expression data beyond the saturation threshold and is effective in correcting saturation-induced bias when the lost information is not tremendous. We further illustrate the impact of image processing on downstream classification, showing that the proposed method can increase diagnostic accuracy using data from a lymphoma cancer diagnosis study. Conclusions The presented method adjusts for signal saturation at the segmentation stage that identifies a pixel as part of the foreground, background or other. The cluster membership of a pixel can be altered versus treating saturated values as truly observed. Thus, the resulting spot intensity estimates may be more accurate than those obtained from existing methods that correct for saturation based on already segmented data. As a model-based segmentation method, our procedure is able to identify inner

  9. Microlens performance limits in sub-2mum pixel CMOS image sensors.

    Science.gov (United States)

    Huo, Yijie; Fesenmaier, Christian C; Catrysse, Peter B

    2010-03-15

    CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 mum, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 microm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 microm pixel node.

  10. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    CERN Document Server

    Zumbiehl, A; Fougeres, P; Koebel, J M; Regal, R; Rit, C; Ayoub, M; Siffert, P

    2001-01-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: af...

  11. Hardware architecture of high-performance digital hologram generator on the basis of a pixel-by-pixel calculation scheme.

    Science.gov (United States)

    Seo, Young-Ho; Lee, Yoon-Hyuk; Yoo, Ji-Sang; Kim, Dong-Wook

    2012-06-20

    In this paper we propose a hardware architecture for high-speed computer-generated hologram generation that significantly reduces the number of memory access times to avoid the bottleneck in the memory access operation. For this, we use three main schemes. The first is pixel-by-pixel calculation, rather than light source-by-source calculation. The second is a parallel calculation scheme extracted by modifying the previous recursive calculation scheme. The last scheme is a fully pipelined calculation scheme and exactly structured timing scheduling, achieved by adjusting the hardware. The proposed hardware is structured to calculate a row of a computer-generated hologram in parallel and each hologram pixel in a row is calculated independently. It consists of and input interface, an initial parameter calculator, hologram pixel calculators, a line buffer, and a memory controller. The implemented hardware to calculate a row of a 1920×1080 computer-generated hologram in parallel uses 168,960 lookup tables, 153,944 registers, and 19,212 digital signal processing blocks in an Altera field programmable gate array environment. It can stably operate at 198 MHz. Because of three schemes, external memory bandwidth is reduced to approximately 1/20,000 of the previous ones at the same calculation speed.

  12. High throughput optoelectronic smart pixel systems using diffractive optics

    Science.gov (United States)

    Chen, Chih-Hao

    1999-12-01

    Recent developments in digital video, multimedia technology and data networks have greatly increased the demand for high bandwidth communication channels and high throughput data processing. Electronics is particularly suited for switching, amplification and logic functions, while optics is more suitable for interconnections and communications with lower energy and crosstalk. In this research, we present the design, testing, integration and demonstration of several optoelectronic smart pixel devices and system architectures. These systems integrate electronic switching/processing capability with parallel optical interconnections to provide high throughput network communication and pipeline data processing. The Smart Pixel Array Cellular Logic processor (SPARCL) is designed in 0.8 m m CMOS and hybrid integrated with Multiple-Quantum-Well (MQW) devices for pipeline image processing. The Smart Pixel Network Interface (SAPIENT) is designed in 0.6 m m GaAs and monolithically integrated with LEDs to implement a highly parallel optical interconnection network. The Translucent Smart Pixel Array (TRANSPAR) design is implemented in two different versions. The first version, TRANSPAR-MQW, is designed in 0.5 m m CMOS and flip-chip integrated with MQW devices to provide 2-D pipeline processing and translucent networking using the Carrier- Sense-MultipleAccess/Collision-Detection (CSMA/CD) protocol. The other version, TRANSPAR-VM, is designed in 1.2 m m CMOS and discretely integrated with VCSEL-MSM (Vertical-Cavity-Surface- Emitting-Laser and Metal-Semiconductor-Metal detectors) chips and driver/receiver chips on a printed circuit board. The TRANSPAR-VM provides an option of using the token ring network protocol in addition to the embedded functions of TRANSPAR-MQW. These optoelectronic smart pixel systems also require micro-optics devices to provide high resolution, high quality optical interconnections and external source arrays. In this research, we describe an innovative

  13. Efficient defect pixel cluster detection and correction for Bayer CFA image sequences

    Science.gov (United States)

    Tajbakhsh, Touraj

    2011-01-01

    Image sensor arrays may have defect pixels, either originating from manufacturing or being developed over the lifetime of the image sensor array. Continuous defect pixel detection and correction performing during camera runtime is desirable. On-the-fly detection and correction is challenging since edges and high-frequency image content might get identified as defect pixel regions and intact pixels become corrupted during defect pixel replacement. We propose a table-based detection and correction method which by and by fills the non-volatile table during normal camera operation. In this work we model defect pixels and pixel clusters to be stuck to fixed values or at least fixed to a narrow value range whereas the local neighborhood of these pixels indicate a normal behavior. The idea is to temporally observe the value ranges of small group of pixels (e.g. 4x4 pixel blocks) and to decide about their defective condition depending on their variability with respect to their neighbor pixels. Our method is computationally efficient, requires no frame buffer, requires modest memory, and therefore is appropriate to operate in line-buffer based image signal processing (ISP) systems. Our results indicate high reliability in terms of detection rates and robustness against high-frequency image content. As part of the defect pixel replacement system we also propose a simple and efficient defect pixel correction method based on the mean of medians operating on the Bayer CFA image domain.

  14. Survey Paper on Image Denoising Using Spatial Statistic son Pixel

    Directory of Open Access Journals (Sweden)

    Varun Nigam

    2015-01-01

    Full Text Available The classical non-local means image denoising approach, the value of a pixel is determined based on the weighted average of other pixels, where the weights are determined based on a fixed isotropic ally weighted similarity function between the local neighbourhoods. It is demonstrate that noticeably improved perceptual quality can be achieved through the use of adaptive anisotropic ally weighted similarity functions between local neighbourhoods. This is accomplished by adapting the similarity weighing function in an anisotropic manner based on the perceptual characteristics of the underlying image content derived efficiently based on the Mexican Hat wavelet. Experimental results show that the it can be used to provide improved perceptual quality in the denoised image both quantitatively and qualitatively when compared to existing methods.

  15. Current progress on pixel level packaging for uncooled IRFPA

    Science.gov (United States)

    Dumont, G.; Rabaud, W.; Yon, J.-J.; Carle, L.; Goudon, V.; Vialle, C.; Becker, Sébastien; Hamelin, Antoine; Arnaud, A.

    2012-06-01

    Vacuum packaging is definitely a major cost driver for uncooled IRFPA and a technological breakthrough is still expected to comply with the very low cost infrared camera market. To address this key issue, CEA-LETI is developing a Pixel Level Packaging (PLP) technology which basically consists in capping each pixel under vacuum in the direct continuation of the wafer level bolometer process. Previous CEA-LETI works have yet shown the feasibility of PLP based microbolometers that exhibit the required thermal insulation and vacuum achievement. CEA-LETI is still pushing the technology which has been now applied for the first time on a CMOS readout circuit. The paper will report on the recent progress obtained on PLP technology with particular emphasis on the optical efficiency of the PLP arrangement compared to the traditional microbolometer packaging. Results including optical performances, aging studies and compatibility with CMOS readout circuit are extensively presented.

  16. Characterisation of pixel sensor prototypes for the ALICE ITS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Reidt, Felix [CERN (Switzerland); Physikalisches Institut, Universitaet Heidelberg (Germany); Collaboration: ALICE-Collaboration

    2014-07-01

    ALICE is preparing a major upgrade of its experimental apparatus to be installed in the second long LHC shutdown (LS2) in the years 2018-2019. A key element of the upgrade is the replacement of the Inner Tracking System (ITS) deploying Monolithic Active Pixel Sensors (MAPS). The upgraded ITS will have a reduced material budget while increasing the pixel density and readout rate capabilities. The novel design leads to higher pointing and momentum resolution as well as a p{sub T} acceptance extended to lower values. The corresponding sensor prototypes were qualified in laboratory measurements and beam tests with respect to their radiation tolerance and detection efficiency. This talk summarises recent results on the characterisation of prototypes belonging to the ALPIDE family.

  17. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    Sidebo, Per Edvin; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. The algorithms depend heavily on accurate estimation of the position of particles as they traverse the inner detector elements. An artificial neural network algorithm is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The method recovers otherwise lost tracks in dense environments where particles are separated by distances comparable to the size of the detector read-out elements. Such environments are highly relevant for LHC run 2, e.g. in searches for heavy resonances. Within the scope of run 2 track reconstruction performance and upgrades, the robustness of the neural network algorithm will be presented. The robustness has been studied by evaluating the stability of the algorithm’s performance under a range of variations in the pixel detector conditions.

  18. Digital Pixel Sensor Array with Logarithmic Delta-Sigma Architecture

    Science.gov (United States)

    Mahmoodi, Alireza; Li, Jing; Joseph, Dileepan

    2013-01-01

    Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs). To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC) in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS) technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia. PMID:23959239

  19. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  20. 3D silicon pixel sensors: Recent test beam results

    CERN Document Server

    Hansson, P; Sandaker, H; Korolkov, I; Barrera, C; Wermes, N; Borri, M; Grinstein, S; Troyano, I; Grenier, P; Devetak, E; Fleta, C; Kenney, C; Tsybychev, D; Nellist, C; Chmeissan, M; Su, D; DeWilde, B; Silverstein, D; Dorholt, O; Tsung, J; Sjoebaek, K; Stupak, J; Slaviec, T; Micelli, A; Helle, K; Bolle, E; Huegging, F; Kocian, M; Fazio, S; Balbuena, J; Dalla Betta, G F; La Rosa, A; Rivero, F; Mastroberardino, A; Hasi, J; Darbo, G; Boscardin, M; Da Via, C; Nordahl, P; Giordani, M; Jackson, P; Rohne, O; Gemme, C; Young, C

    2011-01-01

    The 3D silicon sensors aimed for the ATLAS pixel detector upgrade have been tested with a high energy pion beam at the CERN SPS in 2009. Two types of sensor layouts were tested: full-3D assemblies fabricated in Stanford, where the electrodes penetrate the entire silicon wafer thickness, and modified-3D assemblies fabricated at FBK-irst with partially overlapping electrodes. In both cases three read-out electrodes are ganged together to form pixels of dimension 50 x 400 mu m(2). Data on the pulse height distribution, tracking efficiency and resolution were collected for various particle incident angles, with and without a 1.6 T magnetic field. Data from a planar sensor of the type presently used in the ATLAS detector were used at the same time to give comparison. Published by Elsevier B.V.

  1. 3D silicon pixel sensors: Recent test beam results

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, P., E-mail: phansson@cern.c [University of Oslo (Norway); Balbuena, J.; Barrera, C. [CNM Barcelona (Spain); Bolle, E. [University of Oslo (Norway); Borri, M. [Torino University (Italy); Boscardin, M. [FBK Trento (Italy); Chmeissan, M. [IFAE Barcelona (Spain); Dalla Betta, G.-F. [Universita di Trento and INFN Trento (Italy); Darbo, G. [INFN Genova (Italy); Da Via, C. [University of Manchester (United Kingdom); Devetak, E.; DeWilde, B. [Stony Brook University (United States); Su, D. [SLAC (United States); Dorholt, O. [University of Oslo (Norway); Fazio, S. [Calabria University (Italy); Fleta, C. [CNM Barcelona (Spain); Gemme, C. [INFN Genova (Italy); Giordani, M. [University of Udine and INFN Udine (Italy); Gjersdal, H. [University of Oslo (Norway); Grenier, P. [SLAC (United States)

    2011-02-01

    The 3D silicon sensors aimed for the ATLAS pixel detector upgrade have been tested with a high energy pion beam at the CERN SPS in 2009. Two types of sensor layouts were tested: full-3D assemblies fabricated in Stanford, where the electrodes penetrate the entire silicon wafer thickness, and modified-3D assemblies fabricated at FBK-irst with partially overlapping electrodes. In both cases three read-out electrodes are ganged together to form pixels of dimension 50x400{mu}m{sup 2}. Data on the pulse height distribution, tracking efficiency and resolution were collected for various particle incident angles, with and without a 1.6 T magnetic field. Data from a planar sensor of the type presently used in the ATLAS detector were used at the same time to give comparison.

  2. The ATLAS tracker Pixel detector for HL-LHC

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current Inner Detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLAS Pixel detector developments as well as the various layout options are reviewed.

  3. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Rubinskiy, I

    2015-01-01

    Ahigh resolution(σ< 2 μm) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. EUDET was a coordinated detector R&D programme for the future International Linear Collider providing test beam infrastructure to detector R&D groups. The telescope consists of six sensor planes with a pixel pitch of either 18.4 μm or 10 μmand canbe operated insidea solenoidal magnetic fieldofupto1.2T.Ageneral purpose cooling, positioning, data acquisition (DAQ) and offine data analysis tools are available for the users. The excellent resolution, readout rate andDAQintegration capabilities made the telescopea primary beam tests tool also for several CERN based experiments. In this report the performance of the final telescope is presented. The plans for an even more flexible telescope with three differentpixel technologies(ATLASPixel, Mimosa,Timepix) withinthenew European detector infrastructure project AIDA are presented.

  4. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  5. A Single-Transistor Active Pixel CMOS Image Sensor Architecture

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-An; ZHANG Dong-Wei; HE Jin; SU Yan-Mei; WANG Cheng; CHEN Qin; LIANG Hai-Lang; YE Yun

    2012-01-01

    A single-transistor CMOS active pixel image sensor (1T CMOS APS) architecture is proposed,By switching the photosensing pinned diode,resetting and selecting can be achieved by diode pull-up and capacitive coupling pull-down of the source follower. Thus,the reset and selected transistors can be removed. In addition,the reset and selected signal lines can be shared to reduce the metal signal line,leading to a very high fill factor.The pixel design and operation principles are discussed in detail.The functionality of the proposed 1 T CMOS APS architecture has been experimentally verified using a fabricated chip in a standard 0.35 μm CMOS AMIS technology.

  6. Image pixel device using integrated organic electronic components

    Science.gov (United States)

    Swathi, K.; Narayan, K. S.

    2016-11-01

    We report a solution processed, monolithically integrated device similar to an imaging pixel element used in complementary metal-oxide semiconductor (CMOS) based cameras. This integrated pixel essentially consists of a pair of organic photodiode (OPD) and organic field effect transistor (OFET). The signal generated by the light responsive OPD drives the OFET to different output states to quantify the light intensity. The prerequisite of a low operating voltage OFET (polymer semiconductor and a self-assembled hybrid dielectric layer. A bulk heterojunction blend was used as the photo-active layer in the OPD along with suitable buffer layers for charge extraction. The material parameters were optimized to realize a suitable structure which clearly demonstrated the interplay of the OPD and OFET operations, thereby forming a roadmap for all-organic CMOS arrays.

  7. Image Encryption based on the RGB PIXEL Transposition and Shuffling

    Directory of Open Access Journals (Sweden)

    Quist Aphetsi Kester

    2013-06-01

    Full Text Available Privacy is one of the key issues information Security addresses. Through encryption one can prevent a third party from understanding raw data during signal transmission. The encryption methods for enhancing the security of digital contents has gained high significance in the current era of breach of security and misuse of the confidential information intercepted and misused by the unauthorized parties. This paper sets out to contribute to the general body of knowledge in the area of cryptography application and by developing a cipher algorithm for image encryption of m*n size by shuffling the RGB pixel values. The algorithm ultimately makes it possible for encryption and decryption of the images based on the RGB pixel. The algorithm was implemented using MATLAB.

  8. Compensation of radiation damages for SOI pixel detector via tunneling

    CERN Document Server

    Yamada, Miho; Kurachi, Ikuo

    2015-01-01

    We are developing monolithic pixel detectors based on SOI technology for high energy physics, X-ray applications and so on.To employ SOI pixel detector on such radiation environments, we have to solve effects of total ionization damages (TID) for transistors which are enclosed in oxide layer.The holes which are generated and trapped in the oxide layers after irradiation affect characteristics of near-by transistors due to its positive electric field.Annealing and radiation of ultraviolet are not realistic to remove trapped holes for a fabricated detector due to thermal resistance of components and difficulty of handling. We studied compensation of TID effects by tunneling using a high-voltage. For decrease of trapped holes, applied high-voltage to buried p-well which is under oxide layer to inject the electrons into the oxide layer.In this report, recent progress of this study is shown.

  9. Compensation for TID Damage in SOI Pixel Devices

    CERN Document Server

    Tobita, Naoshi; Hara, Kazuhiko; Aoyagi, Wataru; Arai, Yasuo; Miyoshi, Toshinobu; Kurachi, Ikuo; Hatsui, Takaki; Kudo, Togo; Kobayashi, Kazuo

    2015-01-01

    We are investigating adaption of SOI pixel devices for future high energy physic(HEP) experiments. The pixel sensors are required to be operational in very severe radiation environment. Most challenging issue in the adoption is the TID (total ionizing dose) damage where holes trapped in oxide layers affect the operation of nearby transistors. We have introduced a second SOI layer - SOI2 beneath the BOX (Buried OXide) layer - in order to compensate for the TID effect by applying a negative voltage to this electrode to cancel the effect caused by accumulated positive holes. In this paper, the TID effects caused by Co gamma-ray irradiation are presented based on the transistor characteristics measurements. The irradiation was carried out in various biasing conditions to investigate hole accumulation dependence on the potential configurations. We also compare the data with samples irradiated with X-ray. Since we observed a fair agreement between the two irradiation datasets, the TID effects have been investigated...

  10. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Munoz Sanchez, Francisca Javiela; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is preparing for an extensive modification of its detectors in the course of the planned HL-LHC accelerator upgrade around 2025. The ATLAS upgrade includes the replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will be a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in 2017. In this paper an overview of the ongoing R\\&D activities on modules and electronics for the ATLAS ITk is given including the main developments and achievements in silicon planar and 3D sensor technologies, readout and power challenges.

  11. MEDEA: a real time imaging pipeline for pixel lensing

    Science.gov (United States)

    Iovane, Gerardo; Capozziello, Salvatore; Longo, Giuseppe

    2003-05-01

    Pixel lensing is a technique used to search for baryonic components of dark matter (MACHOs) and allows detection of microlensing events even when the target galaxies are not resolved into individual stars. Potentially, it has the advantage of providing higher statistics than other methods but, unfortunately, traditional approaches to pixel lensing are very demanding in terms of computing time. We present the new, user friendly, tool MEDEA (Microlensing Experiment Data-Analysis Software for Events with Amplification). The package can be used either in a fully automatic or semi-automatic mode and can perform an on-line identification of events by means of a two level trigger and a quasi-on-line data analysis. The package will find application in the exploration of large databases as well as in the exploitation of specifically tailored future surveys.

  12. Bonding techniques for hybrid active pixel sensors (HAPS)

    Science.gov (United States)

    Bigas, M.; Cabruja, E.; Lozano, M.

    2007-05-01

    A hybrid active pixel sensor (HAPS) consists of an array of sensing elements which is connected to an electronic read-out unit. The most used way to connect these two different devices is bump bonding. This interconnection technique is very suitable for these systems because it allows a very fine pitch and a high number of I/Os. However, there are other interconnection techniques available such as direct bonding. This paper, as a continuation of a review [M. Lozano, E. Cabruja, A. Collado, J. Santander, M. Ullan, Nucl. Instr. and Meth. A 473 (1-2) (2001) 95-101] published in 2001, presents an update of the different advanced bonding techniques available for manufacturing a hybrid active pixel detector.

  13. Compressive sensing spectroscopy with a single pixel camera.

    Science.gov (United States)

    Starling, David J; Storer, Ian; Howland, Gregory A

    2016-07-01

    Spectrometry requires high spectral resolution and high photometric precision while also balancing cost and complexity. We address these requirements by employing a compressive-sensing camera capable of improving signal acquisition speed and sensitivity in limited signal scenarios. In particular, we implement a fast single pixel spectrophotometer with no moving parts and measure absorption and emission spectra comparable with commercial products. Our method utilizes Hadamard matrices to sample the spectra and then minimizes the total variation of the signal. The experimental setup includes standard optics and a grating, a low-cost digital micromirror device, and an intensity detector. The resulting spectrometer produces a 512 pixel spectrum with low mean-squared error and up to a 90% reduction in data acquisition time when compared with a standard spectrophotometer.

  14. A New Algorithm of Sub-pixels Image Matching

    Institute of Scientific and Technical Information of China (English)

    Wu Jianming(吴建明); Xu Zhiyang; Shi Pengfei

    2004-01-01

    This paper discusses a new algorithm of sub-pixels image matching and analyzes the characteristics of resampling and surface fitting methods. In order to meet the matching demands and to alleviate the computation workload, the following improvement algorithms are used. First, resample the model n-times, putt out (2n-1) sub-models, and calculate the NCs between each sub-model and image. Then choose the maximum between the sub-model and the displacement corresponding to this sub-model which requires the sub-pixel displacement. Finally, put forward a new algorithm that combines the resampling with surface fitting methods. Experimental results show the validity of the algorithm.

  15. Signal variations in high granularity Si pixel detectors

    CERN Document Server

    Tlustos, L; Heijne, Erik H M; Llopart-Cudie, Xavier

    2004-01-01

    Fixed pattern noise is one of the limiting factors of image quality and degrades the achievable spatial resolution. In the case of silicon sensors non-uniformities due to doping inhomogeneities can be limited by operating the sensor in strong overdepletion. For high granularity photon counting pixel detectors an additional high frequency interpixel signal variation is an important factor for the achievable signal to noise ratio (SNR). It is common practice to apply flatfield corrections to increase the SNR of the detector system. For the case of direct conversion detectors it can be shown that the Poisson limit can be reached for floodfield irradiation. However when used for imaging with spectral X-ray sources flatfield corrections are less effective. This is partly a consequence of charge sharing between adjacent pixels, which gives rise to an effective energy spectrum seen by the readout, which is different from the spectral content of the incident beam. In this paper we present simulations and measurements...

  16. Skin segmentation using color pixel classification: analysis and comparison.

    Science.gov (United States)

    Phung, Son Lam; Bouzerdoum, Abdesselam; Chai, Douglas

    2005-01-01

    This paper presents a study of three important issues of the color pixel classification approach to skin segmentation: color representation, color quantization, and classification algorithm. Our analysis of several representative color spaces using the Bayesian classifier with the histogram technique shows that skin segmentation based on color pixel classification is largely unaffected by the choice of the color space. However, segmentation performance degrades when only chrominance channels are used in classification. Furthermore, we find that color quantization can be as low as 64 bins per channel, although higher histogram sizes give better segmentation performance. The Bayesian classifier with the histogram technique and the multilayer perceptron classifier are found to perform better compared to other tested classifiers, including three piecewise linear classifiers, three unimodal Gaussian classifiers, and a Gaussian mixture classifier.

  17. Study of the CMS Phase 1 Pixel Pilot Blade Reconstruction

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system. It was replaced in March 2017 with an upgraded one, called the Phase 1 upgrade detector. During Long Shutdown 1, a third disk was inserted into the present forward pixel detector with eight prototype blades constructed using a new digital read-out chip architecture and a prototype readout chain. Testing the performance of these pilot modules enabled us to gain experience with the Phase 1 upgrade modules. In this document, the data reconstruction with the pilot system is presented. The hit finding efficiency and residual of these new modules is also shown, and how these observables were used to adjust the timing of the pilot blades.

  18. CMS Pixel Detector design for HL-LHC

    CERN Document Server

    Migliore, Ernesto

    2016-01-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5$\\times$10$^{34}$cm$^{-2}$s$^{-1}$ in 2028, to possibly reach an integrated luminosity of 3000 fb$^{-1}$ by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation.In order to maintain its physics reach the CMS Collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimations.

  19. Pixel detector system development at Diamond Light Source

    Science.gov (United States)

    Marchal, J.; Horswell, I.; Gimenez, E. N.; Tartoni, N.

    2010-10-01

    Hybrid pixel detectors consisting of an array of silicon photodiodes bump-bonded to CMOS read-out chips provide high signal-to-noise ratio and high dynamic range compared to CCD-based detectors and Image Plates. These detector features are important for SAXS experiments where a wide range of intensities are present in the images. For time resolved SAXS experiments, high frame rates are compulsory. The latest CMOS read-out chip developed by the MEDIPIX collaboration provides high frame rate and continuous acquisition mode. A read-out system for an array of MEDIPIX3 sensors is under development at Diamond Light Source. This system will support a full resolution frame rate of 1 kHz at a pixel counter depth of 12-bit and a frame rate of 30 kHz at a counter depth of 1 bit. Details concerning system design and MEDIPIX sensors characterization are presented.

  20. Optimisation of ROB mapping for SCT and Pixel detectors

    CERN Document Server

    Wheeler, S

    1999-01-01

    A simple object-oriented program has been written to simulate the SCT and Pixel detectors in order to determine the suitability of various ROB mapping schemes in the context of the Level 2 trigger. Layer and tower mappings have been investigated separately for the SCT barrel and endcap and for the Pixel barrel and endcap. Events containing one RoI were fired at each detector part and the number of ROBs hit determined. As a result, plots of ROB output data rates and ROB hit frequency as a function of ROB ID were obtained. In general it was found that layer mapping schemes might result in unacceptably high data rates and frequencies. This result would have to be confirmed with more detailed modelling. The tower mappings investigated, in general produced acceptable rates.

  1. Digital Pixel Sensor Array with Logarithmic Delta-Sigma Architecture

    Directory of Open Access Journals (Sweden)

    Jing Li

    2013-08-01

    Full Text Available Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs. To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia.

  2. Digital pixel sensor array with logarithmic delta-sigma architecture.

    Science.gov (United States)

    Mahmoodi, Alireza; Li, Jing; Joseph, Dileepan

    2013-08-16

    Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs). To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC) in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS) technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia.

  3. New SOFRADIR 10μm pixel pitch infrared products

    Science.gov (United States)

    Lefoul, X.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Aufranc, Sébastien; Decaens, G.; Ricard, N.; Mazaleyrat, E.; Billon-Lanfrey, D.; Gravrand, Olivier; Bisotto, Sylvette

    2014-10-01

    Recent advances in miniaturization of IR imaging technology have led to a growing market for mini thermal-imaging sensors. In that respect, Sofradir development on smaller pixel pitch has made much more compact products available to the users. When this competitive advantage is mixed with smaller coolers, made possible by HOT technology, we achieved valuable reductions in the size, weight and power of the overall package. At the same time, we are moving towards a global offer based on digital interfaces that provides our customers simplifications at the IR system design process while freeing up more space. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI.

  4. GaAs Medipix2 hybrid pixel detector

    CERN Document Server

    Kostamo, P; Vähänen, S; Tlustos, L; Fröjdh, C; Campbell, M; Zhilyaev, Y; Lipsanen, H

    2008-01-01

    A GaAs Medipix2 hybrid pixel detector based on high purity epitaxial GaAs material was successfully fabricated. The mesa type GaAs sensor with 256×256 pixels and total area of 1.4×1.4 cm2 was made of a 140-μm-thick epitaxial p–i–n structure utilizing reactive ion etching. A final thickness of approximately 110 μm for the all-epitaxial sensor element is achieved by back-thinning procedure. The sensor element is bump bonded to a Medipix2 read-out ASIC. The detector is capable of room temperature spectroscopic operation and it demonstrates the potential of GaAs for high resolution X-ray imaging systems operating at room temperature. This work describes the manufacturing process and electrical properties of the GaAs Medipix2 hybrid detector.

  5. Validation studies of the ATLAS pixel detector control system

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)]. E-mail: schultes@physik.uni-wuppertal.de; Becks, Karl-Heinz [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Flick, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Henss, Tobias [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Imhaeuser, Martin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kersten, Susanne [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Kind, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Lantzsch, Kerstin [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Maettig, Peter [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Reeves, Kendall [University of Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany); Weingarten, Jens [University of Bonn, Nussallee 12, 53115 Bonn (Germany)

    2006-09-01

    The ATLAS pixel detector consists of 1744 identical silicon pixel modules arranged in three barrel layers providing coverage for the central region, and three disk layers on either side of the primary interaction point providing coverage of the forward regions. Once deployed into the experiment, the detector will employ optical data transfer, with the requisite powering being provided by a complex system of commercial and custom-made power supplies. However, during normal performance and production tests in the laboratory, only single modules are operated and electrical readout is used. In addition, standard laboratory power supplies are used. In contrast to these normal tests, the data discussed here were obtained from a multi-module assembly which was powered and read out using production items: the optical data path, the final design power supply system using close to final services, and the Detector Control System (DCS)

  6. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  7. CMS Pixel Detector design for HL-LHC

    Science.gov (United States)

    Migliore, E.

    2016-12-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5×1034cm-2s-1 in 2028, to possibly reach an integrated luminosity of 3000 fb-1 by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation. In order to maintain its physics reach the CMS collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimation.

  8. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  9. Descent of the Silicon Pixel Detector (SPD) for ALICE Experiment

    CERN Multimedia

    2007-01-01

    The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the ALICE Inner Tracking System (ITS) at radii of 3.9 cm and 7.6 cm, respectively. It is a fundamental element for the determination of the position of the primary vertex as well as for the measurement of the impact parameter of secondary tracks originating from the weak decays of strange, charm and beauty particles.

  10. Readout chip for the CMS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Marco, E-mail: marco.rossini@phys.ethz.ch

    2014-11-21

    For the CMS experiment a new pixel detector is planned for installation during the extended shutdown in winter 2016/2017. Among the changes of the detector modified front end electronics will be used for higher efficiency at peak luminosity of the LHC and faster readout. The first prototype versions of the new readout chip have been designed and produced. The results of qualification and calibration for the new chip are presented in this paper.

  11. Interactive Isogeometric Volume Visualization with Pixel-Accurate Geometry

    OpenAIRE

    Fuchs, Franz G.; Hjelmervik, Jon M.

    2014-01-01

    A recent development, called isogeometric analysis, provides a unified approach for design, analysis and optimization of functional products in industry. Traditional volume rendering methods for inspecting the results from the numerical simulations cannot be applied directly to isogeometric models. We present a novel approach for interactive visualization of isogeometric analysis results, ensuring correct, i.e., pixel-accurate geometry of the volume including its bounding surfaces. The entire...

  12. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  13. A CMOS active pixel sensor for retinal stimulation

    Science.gov (United States)

    Prydderch, Mark L.; French, Marcus J.; Mathieson, Keith; Adams, Christopher; Gunning, Deborah; Laudanski, Jonathan; Morrison, James D.; Moodie, Alan R.; Sinclair, James

    2006-02-01

    Degenerative photoreceptor diseases, such as age-related macular degeneration and retinitis pigmentosa, are the most common causes of blindness in the western world. A potential cure is to use a microelectronic retinal prosthesis to provide electrical stimulation to the remaining healthy retinal cells. We describe a prototype CMOS Active Pixel Sensor capable of detecting a visual scene and translating it into a train of electrical pulses for stimulation of the retina. The sensor consists of a 10 x 10 array of 100 micron square pixels fabricated on a 0.35 micron CMOS process. Light incident upon each pixel is converted into output current pulse trains with a frequency related to the light intensity. These outputs are connected to a biocompatible microelectrode array for contact to the retinal cells. The flexible design allows experimentation with signal amplitudes and frequencies in order to determine the most appropriate stimulus for the retina. Neural processing in the retina can be studied by using the sensor in conjunction with a Field Programmable Gate Array (FPGA) programmed to behave as a neural network. The sensor has been integrated into a test system designed for studying retinal response. We present the most recent results obtained from this sensor.

  14. Construction of the Phase I Forward Pixel Detector

    Science.gov (United States)

    Neylon, Ashton; Bartek, Rachel

    2017-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. The original CMS detector was designed for the nominal instantaneous LHC luminosity of 1 x 1034 cm-2s-1 . The LHC has already started to exceed this luminosity causing the CMS pixel detector to see a dynamic inefficiency caused by data losses due to buffer overflows. For this reason the CMS Collaboration has been building an upgraded pixel detector which is scheduled for installation during an extended year end technical stop during winter 2016/2017. The phase 1 upgrade includes four barrel layers and three forward disks, providing robust tracking and vertexing for LHC luminosities up to 2 x 1034 cm-2s-1 . The upgrade incorporates new readout chips, front-end electronics, DC-DC powering, and dual-phase CO2 cooling to achieve performance exceeding that of the present detector with a lower material budget. This contribution will review the design and technology choices of the Phase I detector and discuss the status of the detector. The challenges and difficulties encountered during the construction will also be presented, as well as the lessons learned for future upgrades. National Science Foundation.

  15. Pixel diamond detectors for excimer laser beam diagnostics

    Science.gov (United States)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  16. A Beam Monitor Using Silicon Pixel Sensors for Hadron Therapy

    CERN Document Server

    Wang, Zhen; Fan, Yan; Liu, Jun; Sun, Xiangming; Wang, Dong; Kang, Huili; Sun, Daming; Yang, Ping; Pei, Hua; Huang, Guangming; Xu, Nu; Gao, Chaosong; Xiao, Le

    2016-01-01

    We report the design and test results of a beam monitor developed for online monitoring in hadron therapy. The beam monitor uses eight silicon pixel sensors, \\textit{Topmetal-${II}^-$}, as the anode array. \\textit{Topmetal-${II}^-$} is a charge sensor designed in a CMOS 0.35 $\\mu$m technology. Each \\textit{Topmetal-${II}^-$} sensor has $72\\times72$ pixels. Each pixel size is about $83\\times83$ $\\mu$m$^2$. In our design the beam passes through the beam monitor without hitting the electrodes, making the beam monitor especially suitable for monitoring heavy ion beams. This design also reduces radiation damage to the beam monitor itself. The beam monitor is tested at the Heavy Ion Research Facility in Lanzhou (HIRFL) which provides a carbon ion beam. Results indicate that the beam monitor can measure position, incident angle and intensity of the beam with a position resolution better than 20 $\\mu$m, angular resolution about 0.5$^\\circ$ and intensity statistical accuracy better than 2$\\%$.

  17. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  18. GigaTracker, a Thin and Fast Silicon Pixels Tracker

    CERN Document Server

    Velghe, Bob; Bonacini, Sandro; Ceccucci, Augusto; Kaplon, Jan; Kluge, Alexander; Mapelli, Alessandro; Morel, Michel; Noël, Jérôme; Noy, Matthew; Perktold, Lukas; Petagna, Paolo; Poltorak, Karolina; Riedler, Petra; Romagnoli, Giulia; Chiozzi, Stefano; Cotta Ramusino, Angelo; Fiorini, Massimiliano; Gianoli, Alberto; Petrucci, Ferruccio; Wahl, Heinrich; Arcidiacono, Roberta; Jarron, Pierre; Marchetto, Flavio; Gil, Eduardo Cortina; Nuessle, Georg; Szilasi, Nicolas

    2014-01-01

    GigaTracker, the NA62’s upstream spectrometer, plays a key role in the kinematically constrained background suppression for the study of the K + ! p + n ̄ n decay. It is made of three independent stations, each of which is a six by three cm 2 hybrid silicon pixels detector. To meet the NA62 physics goals, GigaTracker has to address challenging requirements. The hit time resolution must be better than 200 ps while keeping the total thickness of the sensor to less than 0.5 mm silicon equivalent. The 200 μm thick sensor is divided into 18000 300 μm 300 μm pixels bump-bounded to ten independent read-out chips. The chips use an end-of-column architecture and rely on time-over- threshold discriminators. A station can handle a crossing rate of 750 MHz. Microchannel cooling technology will be used to cool the assembly. It allows us to keep the sensor close to 0 C with 130 μm of silicon in the beam area. The sensor and read-out chip performance were validated using a 45 pixel demonstrator with a laser test setu...

  19. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  20. A beam monitor using silicon pixel sensors for hadron therapy

    Science.gov (United States)

    Wang, Zhen; Zou, Shuguang; Fan, Yan; Liu, Jun; Sun, Xiangming; Wang, Dong; Kang, Huili; Sun, Daming; Yang, Ping; Pei, Hua; Huang, Guangming; Xu, Nu; Gao, Chaosong; Xiao, Le

    2017-03-01

    We report the design and test results of a beam monitor developed for online monitoring in hadron therapy. The beam monitor uses eight silicon pixel sensors, Topmetal-II-, as the anode array. Topmetal-II- is a charge sensor designed in a CMOS 0.35 μm technology. Each Topmetal-II- sensor has 72×72 pixels and the pixel size is 83×83 μm2. In our design, the beam passes through the beam monitor without hitting the electrodes, making the beam monitor especially suitable for monitoring heavy ion beams. This design also reduces radiation damage to the beam monitor itself. The beam monitor is tested with a carbon ion beam at the Heavy Ion Research Facility in Lanzhou (HIRFL). Results indicate that the beam monitor can measure position, incidence angle and intensity of the beam with a position resolution better than 20 μm, angular resolution about 0.5° and intensity statistical accuracy better than 2%.

  1. Testbeam and laboratory characterization of 3D CMS pixel sensors

    Science.gov (United States)

    Bubna, Mayur; Krzwyda, Alex; Alagoz, Enver; Bortoletto, Daniela

    2013-04-01

    Future generations of colliders, like High Luminosity Large Hadron Collider (HL-LHC) at CERN will deliver much higher radiation doses to the particle detectors, specifically those closer to the beam line. Inner tracker detectors will be the most affected part, causing increased occupancy and radiation damage to Silicon detectors. Planar Silicon sensors have not shown enough radiation hardness for the innermost layers where the radiation doses can reach values around 10^16 neq/cm^2. As a possible replacement of planar pixel sensors, 3D Silicon technology is under consideration as they show higher radiation hardness, and efficiencies comparable to planar sensors. Several 3D CMS pixel designs were fabricated at FBK, CNM, and SINTEF. They were bump bonded to the CMS pixel readout chip and characterized in the laboratory using radioactive source (Sr90), and at Fermilab MTEST beam test facility. Sensors were also irradiated with 800 MeV protons at Los Alamos National Lab to study post-irradiation behavior. In addition, several diodes and test structures from FBK were studied before and after irradiation. We report the laboratory and testbeam measurement results for the irradiated 3D devices.

  2. A Smart Pixel Camera for future Cherenkov Telescopes

    CERN Document Server

    Hermann, G; Glück, B; Hauser, D; Hermann, German; Carrigan, Svenja; Gl\\"uck, Bernhard; Hauser, Dominik

    2005-01-01

    The Smart Pixel Camera is a new camera for imaging atmospheric Cherenkov telescopes, suited for a next generation of large multi-telescope ground based gamma-ray observatories. The design of the camera foresees all electronics needed to process the images to be located inside the camera body at the focal plane. The camera has a modular design and is scalable in the number of pixels. The camera electronics provides the performance needed for the next generation instruments, like short signal integration time, topological trigger and short trigger gate, and at the same time the design is optimized to minimize the cost per channel. In addition new features are implemented, like the measurement of the arrival time of light pulses in the pixels on the few hundred psec timescale. The buffered readout system of the camera allows to take images at sustained rates of O(10 kHz) with a dead-time of only about 0.8 % per kHz.

  3. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  4. Simulation of charge transport in pixelated CdTe

    Science.gov (United States)

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  5. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  6. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237541; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will al...

  7. Improved SAR Image Coregistration Using Pixel-Offset Series

    KAUST Repository

    Wang, Teng

    2014-03-14

    Synthetic aperture radar (SAR) image coregistration is a key procedure before interferometric SAR (InSAR) time-series analysis can be started. However, many geophysical data sets suffer from severe decorrelation problems due to a variety of reasons, making precise coregistration a nontrivial task. Here, we present a new strategy that uses a pixel-offset series of detected subimage patches dominated by point-like targets (PTs) to improve SAR image coregistrations. First, all potentially coherent image pairs are coregistered in a conventional way. In this step, we propose a coregistration quality index for each image to rank its relative “significance” within the data set and to select a reference image for the SAR data set. Then, a pixel-offset series of detected PTs is made from amplitude maps to improve the geometrical mapping functions. Finally, all images are resampled depending on the pixel offsets calculated from the updated geometrical mapping functions. We used images from a rural region near the North Anatolian Fault in eastern Turkey to test the proposed method, and clear coregistration improvements were found based on amplitude stability. This enhanced the fact that the coregistration strategy should therefore lead to improved InSAR time-series analysis results.

  8. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  9. The Pixels find their way to the heart of ATLAS

    CERN Multimedia

    Kevin Einsweiler

    Since the last e-news article on the Pixel Detector in December 2006, there has been much progress. At that time, we were just about to receive the Beryllium beampipe, and to integrate the innermost layer of the Pixel Detector around it. This innermost layer is referred to as the B-layer because of the powerful role it plays in finding the secondary vertices that are the key signature for the presence of b-quarks, and with somewhat greater difficulty, c-quarks and tau leptons. The integration of the central 7m long beampipe into the Pixel Detector was completed in December, and the B-layer was successfully integrated around it. In January this year, we had largely completed the central 1.5m long detector, including the three barrel layers and the three disk layers on each end of the barrel. Although this region contains all of the 80 million readout channels, it cannot be integrated into the Inner Detector without additional services and infrastructure. Therefore, the next step was to add the Service Panels...

  10. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Nellist, Clara; The ATLAS collaboration

    2016-01-01

    Summary ATLAS is preparing for an extensive modification of its detector in the course of the planned HL‐ LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all‐silicon detector (Inner Tracker, ITk). A revised trigger and data taking system is foreseen with triggers expected at lowest level at an average rate of 1 MHz. The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL‐LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice that is expected to take place in early 2017. A new on‐detector readout chip is designed in the context of the RD53 collaboration in 65 nm CMOS technology. This paper will present the on‐going R&D within the ATLAS ITK project towards the new pixel modules and the off‐detector electronics. Pla...

  11. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Munoz Sanchez, Francisca Javiela; The ATLAS collaboration

    2017-01-01

    ATLAS is preparing for an extensive modification of its detector in the course of the planned HL-LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice that is expected to take place in 2017. A new on-detector readout chip is designed in the context of the RD53 collaboration in 65 nm CMOS technology. This paper will present the on-going R&D within the ATLAS ITK project towards the new pixel modules and the off-detector electronics. Planar and 3D sensors are being re-designed with cell sizes of 50x50 or 25x100 μm2, compatible with the RD53 chip. A sensor thickness equal or less th...

  12. Physics benchmarks for the Belle II pixel detector

    Science.gov (United States)

    Li Gioi, L.

    2015-03-01

    SuperKEKB, the massive upgrade of the asymmetric electron positron collider KEKB in Tsukuba, Japan, aims at an integrated luminosity in excess of 50 ab-1. It will deliver an instantaneous luminosity of 8 ṡ 1035 cm-2s-1, which is 40 times higher than the world record set by KEKB. At this high luminosity, a large increase of the background relative to the previous KEKB machine is expected. This and the more demanding physics rate ask for an entirely new tracking system. The expected increase of background would in fact create an unacceptable high occupancy for a silicon strip detector, making an efficient tracks reconstruction and vertexing impossible. The solution for Belle II is a pixel detector which intrinsically provides three dimensional space points. The new two layers silicon pixel vertex detector, based on DEPFET technology, will be mounted directly on the beam pipe. It will provide an accurate measurement of the tracks position in order to precisely reconstruct the decay vertex of the short living particles.In this paper we will discuss the physics performance of the Belle II pixel vertex detector which will be essential for the precise measurement of the CP parameters in various B and D decay modes.

  13. ATLAS pixel detector design for the HL-LHC

    Science.gov (United States)

    Smart, B.

    2017-02-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector is called the Inner Tracker (ITk). The ITk will cover an extended η-range: at least to |η|<3.2, and likely up to 0|η|<4.. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362 mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into `extended' and `inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline, while inclined designs have sensors angled such that they point towards the interaction point. The relative advantages and challenges of these two classes of designs will be examined in this paper, along with the mechanical solutions being considered. Thermal management, radiation-length mapping, and electrical services will also be discussed.

  14. High Resolution Maps of the Moon Surface with AMIE/SMART-1

    Science.gov (United States)

    Despan, Daniela; Erard, S.; Barucci, A.; Josset, J. L.; Beauvivre, S.; Chevrel, S.; Pinet, P.; Koschny, D.; Almeida, M.; Grieger, B.; Foing, B.; AMIE Team

    2008-09-01

    The Advanced Moon micro-Imager Experiment (AMIE) on board the ESA lunar mission Smart-1 has performed colour imaging of the lunar surface using various filters in the visible and NIR range. This micro-camera provided high resolution images of selected parts of the lunar surface, including the North and South pole areas. Being give that the SMART-1 mission was in a 300km x 300km orbit with perilune over the South pole, the coverage between the North and the South regions is different. The AMIE images were obtained using a tele-objective with 5.3° x 5.3° field of view and a sensor of 1024 x 1024 pixels. The output images have resolution 45m/pixel at 500km, and are encoded with 10 bits/pixel. The data for the North pole were obtained at a much higher altitude than the South pole data. From the 300 Km pericenter altitude, the same field of view corresponds to a spatial resolution about 27 m/pixel. The high resolution imaging of the Moon surface makes possible detailed analysis of the morphological features and physical characteristics of the lunar surface. In order to construct AMIE data maps, systematic analysis and processing is being carried on using the whole data set. Geometrical analysis of AMIE images relies on the SPICE system: image coordinates are computed to get precise projection at the surface, and illumination angles are computed to analyze the photometric sequences. Using this method, high resolution mosaics were constructed then compared to lower resolution Clementine UV-Vis and NIR images. Maps of both North and South pole were obtained as well as other regions of interest. Eventually, this method will be applied in all areas where AMIE has provided high resolution observations of the surface, typically a factor of 3 higher than the Clementine UV-Vis camera. New results will be presented at the conference.

  15. Geometrical Analysis of AMIE/Smart-1 Images and Applications to Photometric Studies of the Lunar Surface

    Science.gov (United States)

    Despan, Daniela; Erard, S.; Barucci, M. A.; Josset, J. L.; Beauvivre, S.; Chevrel, S.; Pinet, P.; Koschny, D.; Almeida, M.; Foing, B. H.; AMIE Team

    2007-10-01

    AMIE, the Advanced Moon micro-Imager Experiment on board the ESA lunar mission SMART-1, is an imaging system to survey the terrain in visible and near-infrared light. AMIE provides high resolution images obtained using a tele-objective with 5.3° x 5.3° field of view and a sensor of 1024 x 1024 pixels. The output images have resolution 45m/pixel at 500km, and are encoded with 10 bits/pixel. From the 300 Km pericenter altitude, the same field of view corresponds to a spatial resolution about 30 m/pixel. The FOV is shared by various filters, allowing to reconstruct mosaics of the surface in 3 colors, depending on pointing mode. Spot-pointing observations provide photometric sequences that allow to study the surface properties in restricted areas. One of the scientific objectives of the mission is to get high resolution imaging of the Moon surface, e.g. high latitude regions in the southern hemisphere. In order to map the lunar surface with AMIE, systematic analysis and processing is being carried on using the whole data set. Geometrical analysis of AMIE images relies on the SPICE system: image coordinates are computed to get precise projection at the surface, and illumination angles are computed to analyze the photometric sequences. High resolution mosaics were constructed then compared to lower resolution Clementine UV-Vis and NIR images. Spot-pointing sequences are used to constrain the photometric and physical properties of surface materials in areas of interest, based on Hapke's modeling. Optical alignment parameters in the Spice kernels have been refined and provide absolute coordinates in the IAU lunar frame (ULCN). They provide discrepancies with the Clementine basemap, ranging up to some 0.1° in the equatorial regions, as expected (e.g., Cook et al DPS 2002; Arcinal et al. EPSC 2006). A progress report will be presented at the conference.

  16. Small-Scale Readout Systems Prototype for the STAR PIXEL Detector

    Energy Technology Data Exchange (ETDEWEB)

    Szelezniak, Michal A.; Besson, Auguste; Colledani, Claude; Dorokhov, Andrei; Dulinski, Wojciech; Greiner, Leo C.; Himmi, Abdelkader; Hu, Christine; Matis, Howard S.; Ritter, Hans Georg; Rose, Andrew; Shabetai, Alexandre; Stezelberger, Thorsten; Sun, Xiangming; Thomas, Jim H.; Valin, Isabelle; Vu, Chinh Q.; Wieman, Howard H.; Winter, Marc

    2008-10-01

    A prototype readout system for the STAR PIXEL detector in the Heavy Flavor Tracker (HFT) vertex detector upgrade is presented. The PIXEL detector is a Monolithic Active Pixel Sensor (MAPS) based silicon pixel vertex detector fabricated in a commercial CMOS process that integrates the detector and front-end electronics layers in one silicon die. Two generations ofMAPS prototypes designed specifically for the PIXEL are discussed. We have constructed a prototype telescope system consisting of three small MAPS sensors arranged in three parallel and coaxial planes with a readout system based on the readout architecture for PIXEL. This proposed readout architecture is simple and scales to the size required to readout the final detector. The real-time hit finding algorithm necessary for data rate reduction in the 400 million pixel detector is described, and aspects of the PIXEL system integration into the existing STAR framework are addressed. The complete system has been recently tested and shown to be fully functional.

  17. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Garcia-Sciveres, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    Letter of Intent for RD Collaboration Proposal focused on development of a next generation pixel readout integrated circuits needed for high luminosity LHC detector upgrades. Brings together ATLAS and CMS pixel chip design communities.

  18. [Study on the reflected and hyperspectral mixed-pixel character of aquatic plants and water].

    Science.gov (United States)

    Sun, Tian-lin; Zhao, Yun-sheng; Liang, Ren-feng; Zhang, Xia

    2012-02-01

    A study on the reflected and hyperspectral mixed-pixel of aquatic plants and water was given by using a orthogonal experimental design with three factors and two levels. The results of F test suggest that for the single factors, the band and the area ratio of mixed-pixel on the reflected and hyperspectral mixed-pixel of the reflection effects are particularly significant, however, the detector angle had no significant effect under these experimental conditions; For the interaction, the band and the area ratio of mixed-pixel, the detector and the area ratio of mixed-pixel, the effects of these two interactions on the reflected and hyperspectral mixed-pixel are also particularly significant, This study did quantitative analysis of the factors affecting the reflected and hyperspectral mixed-pixel character and their interaction, and provided a new method for the indepth study of mixed-pixel.

  19. Hexagonal Pixels and Indexing Scheme for Binary Images

    Science.gov (United States)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg

  20. A Fast quarter-pixel motion estimation algorithm for H.264/AVC

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A fast quarter-pixel motion estimation algorithm is proposed in this paper. The proposed algorithm based on mathematical models of the motion compensated prediction errors. Unlike conventional quarter-pixel accurate motion estimation algorithm,proposed algorithm can avoid fractional-pixel interpolation and subsequent fractional-pixel search after integer-precision motion estimation. Experiments show that the proposed algorithm greatly reduces the computational complexity of quarterpixel motion estimation, while keeping the nearly equal quality of the image.