WorldWideScience

Sample records for lvp organic material

  1. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  2. Biological half-lives and organ distribution of tritiated 8-lysine-vasopressin and 1-deamino-8-D-arginine-vasopressin in Brattleboro rats

    International Nuclear Information System (INIS)

    Janaky, T.; Laczi, F.; Laszlo, F.A.

    1982-01-01

    The biological half-lives and organ distribution of tritiated 8-lysine-vasopressin and 1-deamino-8-D-arginine-vasopressin were determined in R-Amsterdam rats and in homozygous and heterozygous Brattleboro rats with hereditary central diabetes insipidus. It was found that the biological half-lives of [ 3 H]LVP and [ 3 H]dDAVP in the Brattleboro rats did not differ significantly from that found in the control R-Amsterdam rats. The half-life of [ 3 H]dDAVP proved longer than that of [ 3 H]LVP in all three groups of animals. In the case of [ 3 H]LVP the highest radioactivities were observed in the neurohypophyses, adenohypophyses, and kidneys of both the R-Amsterdam and Brattleboro rats. The accumulation of tritiated material was higher in the small intestine of the Brattleboro rats than in that of the R-Amsterdam animals. In all three groups of rats, [ 3 H]dDAVP was accumulated to the greatest extent in the kidney and the small intestine. The kidney and small intestine contained less radioactivity in homozygous Brattleboro rats than in the controls. There was only a slight radioactivity accumulation in the adenohypophysis and neurohypophysis. From the results it was concluded that the decrease in the rate of enzymatic decomposition may play a role in the increased duration of antidiuretic action of dDAVP. The results have led to the conclusion that the accelerated elimination of vasopressin and its pathologic organ accumulation are probably not involved in the water metabolism disturbance of Brattleboro rats with hereditary diabetes insipidus

  3. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources

    International Nuclear Information System (INIS)

    Rui, X.H.; Li, C.; Chen, C.H.

    2009-01-01

    The carbon-coated monoclinic Li 3 V 2 (PO 4 ) 3 (LVP) cathode materials were synthesized by a solid-state reaction process under the same conditions using citric acid, glucose, PVDF and starch, respectively, as both reduction agents and carbon coating sources. The carbon coating can enhance the conductivity of the composite materials and hinder the growth of Li 3 V 2 (PO 4 ) 3 particles. Their structures and physicochemical properties were investigated using X-ray diffraction (XRD), thermogravimetric (TG), scanning electron microscopy (SEM) and electrochemical methods. In the voltage region of 3.0-4.3 V, the electrochemical cycling of these LVP/C electrodes all presents good rate capability and excellent cycle stability. It is found that the citric acid-derived LVP owns the largest reversible capacity of 118 mAh g -1 with no capacity fading during 100 cycles at the rate of 0.2C, and the PVDF-derived LVP possesses a capacity of 95 mAh g -1 even at the rate of 5C. While in the voltage region of 3.0-4.8 V, all samples exhibit a slightly poorer cycle performance with the capacity retention of about 86% after 50 cycles at the rate of 0.2C. The reasons for electrochemical performance of the carbon coated Li 3 V 2 (PO 4 ) 3 composites are also discussed. The solid-state reaction is feasible for the preparation of the carbon coated Li 3 V 2 (PO 4 ) 3 composites which can offer favorable properties for commercial applications

  4. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    Science.gov (United States)

    Li, Weihua; Li, Lijie; Chen, Chia-li; Kacarab, Mary; Peng, Weihan; Price, Derek; Xu, Jin; Cocker, David R.

    2018-04-01

    Emissions of certain low vapor pressure-volatile organic compounds (LVP-VOCs) are considered exempt to volatile organic compounds (VOC) regulations due to their low evaporation rates. However, these compounds may still play a role in ambient secondary organic aerosol (SOA) and ozone formation. The LVP-VOCs selected for this work are categorized as intermediate-volatility organic compounds (IVOCs) according to their vapor pressures and molecular formulas. In this study, the evaporation rates of 14 select IVOCs are investigated with half of them losing more than 95% of their mass in less than one month. Further, SOA and ozone formation are presented from 11 select IVOCs and 5 IVOC-containing generic consumer products under atmospherically relevant conditions using varying radical sources (NOx and/or H2O2) and a surrogate reactive organic gas (ROG) mixture. Benzyl alcohol (0.41), n-heptadecane (0.38), and diethylene glycol monobutyl ether (0.16) are determined to have SOA yields greater than 0.1 in the presence of NOx and a surrogate urban hydrocarbon mixture. IVOCs also influence ozone formation from the surrogate urban mixture by impacting radical levels and NOx availability. The addition of lab created generic consumer products has a weak influence on ozone formation from the surrogate mixture but strongly affects SOA formation. The overall SOA and ozone formation of the generic consumer products could not be explained solely by the results of the pure IVOC experiments.

  5. Organic optoelectronic materials

    CERN Document Server

    Li, Yongfang

    2015-01-01

    This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.

  6. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  7. Bio-assisted synthesis of mesoporous Li3V2(PO4)3 for high performance lithium-ion batteries

    International Nuclear Information System (INIS)

    He, Wen; Zhang, Xudong; Du, Xiaoyong; Zhang, Yang; Yue, Yuanzheng; Shen, Jianxing; Li, Mei

    2013-01-01

    Graphical abstract: - Highlights: • We present a biomimetic way for obtaining mesoporous biocarbon coated Li 3 V 2 (PO 4 ) 3 (MBC-LVP). • This method is to apply yeasts as a structural template and a biocarbon source. • The MBC-LVP has uniform particles and fine biocarbon coating network structure. • The MBC-LVP exhibits outstanding electrochemical performances. - Abstract: The mesoporous biocarbon coated Li 3 V 2 (PO 4 ) 3 (MBC-LVP) cathode material is synthesized by a biotemplate-assisted sol–gel reaction process using low-cost beer waste brewing yeasts (BWBYs) as both structural template and biocarbon source. The structure and electrochemical performances of MBC-LVP were investigated using Raman spectra, thermogravimetric measurements (TGA), adsorption–desorption isotherms and pore-size-distribution curves, X-ray diffraction (XRD), transmission electron microscope (TEM and HRTEM), and electrochemical methods. The results show that the MBC-LVP synthesized at 750 °C has a hierarchical nanostructure, which consist of Li 3 V 2 (PO 4 ) 3 crystal nanoparticles and amorphous biocarbons network (11.5%) with hierarchical mesoporous structures (slit shape mesopores, open wormlike mesopores and plugged mesopores). This hierarchical nanostructure facilitates electron and lithium ion diffusion. The MBC-LVP electrode has high discharge capacity (about 205 mAh g −1 ) at a current density of 0.2 C in the voltage region of 3.0–4.8 V and the diffusion coefficient of Li + -ions determined by CV and EIS is higher than those of olivine LiFePO 4 . We have revealed the formation mechanism of MBC-LVP, the possible lithium pathways in the MBC-LVP and established a relation between the structure and the ionic and electronic transport properties

  8. Li3V2(PO4)3-coated Li1.17Ni0.2Co0.05Mn0.58O2 as the cathode materials with high rate capability for Lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Yi; Huang, Xiao; Qiao, Qiqi; Wang, Yonglong; Ye, Shihai; Gao, Xueping

    2014-01-01

    In this work, Lithium rich layered oxide Li 1.17 Ni 0.2 Co 0.05 Mn 0.58 O 2 (LNCMO) is prepared and coated with Li 3 V 2 (PO 4 ) 3 (LVP) by a chemical deposition method. The surface modification with LVP is introduced into Li-rich layered oxides LNCMO for the first time. After 100 cycles of charging and discharging at various rates, the Li 3 V 2 (PO 4 ) 3 -coated Li 1.17 Ni 0.2 Co 0.05 Mn 0.58 O 2 (LVP-coated LNCMO) (5 wt%) still provides a large capacity of 261.4 mAh g -1 , much higher than the pristine LNCMO (211.5 mAh g -1 ). At 5 C rate, the LVP-coated LNCMO exhibits a stable cyclic capacity of 153.4 mAh g -1 , higher than 114.1 mAh g -1 of the pristine LNCMO. The electrochemical impedance spectroscopy (EIS) analysis demonstrates the LVP coating layer can suppress interaction between the cathode surface and the electrolyte and enhance the kinetics of lithium-ion diffusion, contributing to the stable cyclic performance with more cyclic capacity as well as at the high current density

  9. Organic light emitting device architecture for reducing the number of organic materials

    Science.gov (United States)

    D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  10. Molecular materials for organic field-effect transistors

    International Nuclear Information System (INIS)

    Mori, T

    2008-01-01

    Organic field-effect transistors are important applications of thin films of molecular materials. A variety of materials have been explored for improving the performance of organic transistors. The materials are conventionally classified as p-channel and n-channel, but not only the performance but also even the carrier polarity is greatly dependent on the combinations of organic semiconductors and electrode materials. In this review, particular emphasis is laid on multi-sulfur compounds such as tetrathiafulvalenes and metal dithiolates. These compounds are components of highly conducting materials such as organic superconductors, but are also used in organic transistors. The charge-transfer complexes are used in organic transistors as active layers as well as electrodes. (topical review)

  11. Li3V2(PO4)3/LiFePO4 composite hollow microspheres for wide voltage lithium ion batteries

    International Nuclear Information System (INIS)

    He, Wen; Wei, Chuanliang; Zhang, Xudong; Wang, Yaoyao; Liu, Qinze; Shen, Jianxing; Wang, Lianzhou; Yue, Yuanzheng

    2016-01-01

    Highlights: • Using yeast cells to control the in-situ growth of crystal particle. • Heterogeneous isomorphism nanocomposite hollow microspheres are synthesized. • The cathode exhibits a higher discharge capacity and energy density. - Abstract: Li 3 V 2 (PO 4 ) 3 (LVP)/LiFePO 4 (LVP) composite hollow microspheres (LVP/LFP-CHMs) for lithium-ion batteries have been synthesized by a combination method, using yeast cells as both structure templates and biocarbon source. The stable heterogeneous isomorphism solid solution with superlattice structure is formed in the joint of LVP and LFP particles. A detailed analysis of the formation mechanism of solid solution with superlattice structure and the influences of different Fe:V mole ratios on the structure and electrochemical properties of composites are presented. When the LVP/LFP-CHMs with a Fe:V mole ratio of 1:3 were used as cathode material in coin cells with metallic Li as anode, the cell exhibits a discharge capacity of 221.5 mAh g −1 for 5 cycles and discharge specific energy of 682 Wh kg −1 at 0.1C in a wide voltage range (1.5–4.3 V). Its capacity is far higher than the capacity of unsubstituted LFP and LVP in the same wide voltage range. The energy density of this cell is about 4 times higher than that of modern commercial lithium-ion batteries (157 Wh kg −1 ). The wide voltage range not only increases the discharge capacity and energy density of cathode materials, but also could expand the range of its applications in electronic equipment.

  12. High mobility high efficiency organic films based on pure organic materials

    Science.gov (United States)

    Salzman, Rhonda F [Ann Arbor, MI; Forrest, Stephen R [Ann Arbor, MI

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  13. The interval high rate discharge behavior of Li3V2(PO4)3/C cathode based on in situ polymerization method

    International Nuclear Information System (INIS)

    Mao, Wen-feng; Yan, Ji; Xie, Hui; Tang, Zhi-yuan; Xu, Qiang

    2013-01-01

    An in situ polymerization assisted fast sol–gel method was introduced to synthesize high performance Li 3 V 2 PO 4 /C (LVP/C) cathode material. The crystal structure, surface morphology and electrochemical performances of the LVP/C samples sintered at different temperatures were investigated. The composite sintered at 750 °C exhibits the highest specific discharge capacity of 119.02 mAh g −1 (440.35 Wh g −1 ) at 10 C rate. The Li + diffusion coefficient ranges from 10 −6 to 10 −8 cm 2 s −1 based on different scanning rates and the electronic conductivity is about 10 −5 S cm −1 . For comparison, an ex situ polymerization method was also employed to obtain the LVP/C composite. A novel charge/discharge testing mode was designed to investigate the electrochemical behavior of the as-prepared LVP/C composite for practical application in electric vehicle cells. The obtained high power density and the special testing mode prove the LVP/C composite would be a promising candidate for the electric vehicle application and deserves further investigation

  14. Organic optoelectronics:materials,devices and applications

    Institute of Scientific and Technical Information of China (English)

    LIU Yi; CUI Tian-hong

    2005-01-01

    The interest in organic materials for optoelectronic devices has been growing rapidly in the last two decades. This growth has been propelled by the exciting advances in organic thin films for displays, low-cost electronic circuits, etc. An increasing number of products employing organic electronic devices have become commercialized, which has stimulated the age of organic optoelectronics. This paper reviews the recent progress in organic optoelectronic technology. First, organic light emitting electroluminescent materials are introduced. Next, the three kinds of most important organic optoelectronic devices are summarized, including light emitting diode, organic photovoltaic cell, and photodetectors. The various applications of these devices are also reviewed and discussed in detail. Finally, the market and future development of optoelectronic devices are also demonstrated.

  15. High-performance Li3V2(PO4)3/C cathode materials prepared via a sol–gel route with double carbon sources

    International Nuclear Information System (INIS)

    Zhang Lulu; Li Ying; Peng Gang; Wang Zhaohui; Ma Jun; Zhang Wuxing; Hu Xianluo; Huang Yunhui

    2012-01-01

    Graphical abstract: Double carbon sources were employed to prepare core–shell Li 3 V 2 (PO 4 ) 3 /C composites, giving rise to uniform carbon coating and high conducting network. The as-obtained composites showed remarkably enhanced capacity and rate capability. Highlights: ► Double carbon sources were used to prepare core–shell Li 3 V 2 (PO 4 ) 3 /C composites. ► An improved oxalic acid-based sol–gel method was developed. ► Uniform carbon coating and high conducting network were attained for Li 3 V 2 (PO 4 ) 3 . ► Remarkably enhanced capacity and rate capability were obtained. - Abstract: Li 3 V 2 (PO 4 ) 3 /C (LVP/C) composites have been successfully synthesized via an oxalic acid-based sol–gel process assisted by glucose, in which oxalic acid and glucose serve as double carbon sources. X-ray diffraction patterns show that all samples are well crystallized. Transmission electron microscopy images reveal that the LVP/C sample prepared with 15 wt% glucose is uniformly coated by carbon layer with an appropriate thickness of 8–10 nm, resulting in a high electrical conductivity and a fast kinetics. The Li + -ion diffusion coefficient in the LVP/C sample prepared with glucose is ∼10 −10 cm 2 s −1 , which is larger than that of the LVP/C sample prepared without glucose. The LVP/C sample prepared with 15 wt% glucose exhibits the best electrochemical performance with discharge capacity as high as 171 mAh g −1 at 0.1 C and 119 mAh g −1 at 10 C. The present work provides a valuable route for preparing lithium metal phosphates with double carbon sources to improve the conductivity and hence the electrochemical performance.

  16. Organic electrode materials for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yanliang; Tao, Zhanliang; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Chemistry College, Nankai University, Tianjin (China)

    2012-07-15

    Organic compounds offer new possibilities for high energy/power density, cost-effective, environmentally friendly, and functional rechargeable lithium batteries. For a long time, they have not constituted an important class of electrode materials, partly because of the large success and rapid development of inorganic intercalation compounds. In recent years, however, exciting progress has been made, bringing organic electrodes to the attention of the energy storage community. Herein thirty years' research efforts in the field of organic compounds for rechargeable lithium batteries are summarized. The working principles, development history, and design strategies of these materials, including organosulfur compounds, organic free radical compounds, organic carbonyl compounds, conducting polymers, non-conjugated redox polymers, and layered organic compounds are presented. The cell performances of these materials are compared, providing a comprehensive overview of the area, and straightforwardly revealing the advantages/disadvantages of each class of materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Noncovalent Interactions in Organic Electronic Materials

    KAUST Repository

    Ravva, Mahesh Kumar

    2017-06-29

    In this chapter, we provide an overview of how noncovalent interactions, determined by the chemical structure of π-conjugated molecules and polymers, govern essential aspects of the electronic, optical, and mechanical characteristics of organic semiconductors. We begin by describing general aspects of materials design, including the wide variety of chemistries exploited to control the electronic and optical properties of these materials. We then discuss explicit examples of how the study of noncovalent interactions can provide deeper chemical insights that can improve the design of new generations of organic electronic materials.

  18. Investigation on pyrolysis of some organic raw materials

    Directory of Open Access Journals (Sweden)

    Purevsuren B

    2017-02-01

    Full Text Available We have been working on pyrolysis of some organic raw materials including different rank coals, oil shale, wood waste, animal bone, cedar shell, polypropylene waste, milk casein and characterization of obtained hard residue, tar and pyrolytic water and gas after pyrolysis. The technical characteristics of these organic raw materials have been determined and the thermal stability characteristics such as thermal stability indices (T5% and T25% determined by using thermogravimetric analysis. The pyrolysis experiments were performed at different heating temperatures and the yields of hard residue, tar, pyrolysis water and gaseous products were determined and discussed. The main technical characteristics of hard residue of organic raw materials after pyrolysis have been determined and the adsorption ability of pyrolysis hard residue and its activated carbon of organic raw materials also determined. The pyrolysis tars of organic raw materials were distilled in air condition and determined the yields of obtained light, middle and heavy fractions and bitumen like residue with different boiling temperature. This is the first time to investigate the curing ability of pyrolysis tars of organic raw materials for epoxy resin and the results of these experiments showed that only tar of milk casein has the highest (95.0%, tar of animal bone has certain (18.70% and tars of all other organic raw materials have no curing ability for epoxy resin.

  19. Amorphous electron-accepting materials for organic optoelectronics

    NARCIS (Netherlands)

    Ganesan, P.

    2007-01-01

    The importance of organic materials for use in electronic devices such as OLEDs, OFETs and photovoltaic cells has increased significantly over the past decade. Organic materials have been attractive candidates for such electronic devices because of their compatibility with high-throughput,

  20. Magnetic Characterization of Organic Materials

    Science.gov (United States)

    2016-12-12

    full doughnut. • 3D organization of these doughnuts are currently under study. • A nano doughnut formation requires 2D bending of the lamella...AFRL-AFOSR-JP-TR-2017-0005 Magnetic Characterization of Organic Materials Dongho Kim YONSEI UNIVERSITY UNIVERSITY- INDUSTRY FOUNDATION Final Report 12...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) YONSEI UNIVERSITY UNIVERSITY- INDUSTRY FOUNDATION 50 Yonsei-ro, Seodaemun-g SEOUL, 120-749 KR

  1. EDITORIAL Light-induced material organization Light-induced material organization

    Science.gov (United States)

    Vainos, Nikos; Rode, Andrei V.

    2010-12-01

    Light-induced material organization extends over a broad area of research, from photon momentum transfer to atoms, molecules and particles, serving the basis for optical trapping, and expands into the laser-induced changes of material properties through photopolymerization, photodarkening, and materials ablation. Relevant phenomena are observed over many orders of magnitude of light intensity, from a few kW cm-2 for the optical trapping of living cells to 1014 W cm-2 encountered in femtosecond laser micromachining and micro-explosion. Relevant interactions reveal a rich palette of novel phenomena in the solid state, from subtle excitations and material organization to phase transformations, non-equilibrium and transient states. The laser-induced material modifications relate to changes in the crystal structure and the molecular bonding, phase transitions in liquid state, ablation and plasma production associated with extreme pressure and temperature conditions towards entirely new states of matter. The underlying physical mechanisms form the foundations for micro-engineering photonic and other functional devices and lead the way to relevant applications. At the same time, they hold the potential for creating non-equilibrium material states and a range of fundamentally new products not available by other means. The fundamental understanding of both materials nature and functional behaviour will ultimately yield novel devices and improved performance in several fields. The far reaching goals of these studies relate to the development of new methods and technologies for micro- and nano-fabrication, not only offering a significant reduction of cost, but also expanding the fabrication capabilities into unexplored areas of biophotonics and nanotechnology. This special issue of Journal of Optics presents some very recent and exciting advances in the field of materials manipulation by laser beams, aiming to underline its current trends. In optical trapping research we

  2. C60 ion sputtering of layered organic materials

    International Nuclear Information System (INIS)

    Shard, Alexander G.; Green, Felicia M.; Gilmore, Ian S.

    2008-01-01

    Two different organic materials, Irganox1010 and Irganox3114, were vacuum deposited as alternating layers. The layers of Irganox3114 were thin (∼2.5 nm) in comparison to the Irganox1010 (∼55 or ∼90 nm); we call these 'organic delta layers'. Both materials are shown to have identical sputtering yields and the alternating layers may be used to determine some of the important metrological parameters for cluster ion beam depth profiling of organic materials. The sputtering yield for C 60 ions is shown to diminish with ion dose. Comparison with atomic force microscopy data from films of pure Irganox1010, demonstrates that the depth resolution is limited by the development of topography. Secondary ion intensities are a well-behaved function of sputtering yield and may be employed to obtain useful analytical information. Organic delta layers are shown to be valuable reference materials for comparing the capabilities of different cluster ion sources and experimental arrangements for the depth profiling of organic materials.

  3. Spiers memorial lecture. Organic electronics: an organic materials perspective.

    Science.gov (United States)

    Wudl, Fred

    2014-01-01

    This Introductory Lecture is intended to provide a background to Faraday Discussion 174: "Organic Photonics and Electronics" and will consist of a chronological, subjective review of organic electronics. Starting with "ancient history" (1888) and history (1950-present), the article will take us to the present. The principal developments involved the processes of charge carrier generation and charge transport in molecular solids, starting with insulators (photoconductors) and moving to metals, to semiconductors and ending with the most popular semiconductor devices, such as organic light-emitting diodes (OLEDs), organic field effect transistors (OFETs) and organic photovoltaics (OPVs). The presentation will be from an organic chemistry/materials point of view.

  4. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    Science.gov (United States)

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Organic materials for fusion-reactor applications

    International Nuclear Information System (INIS)

    Hurley, G.F.; Coltman, R.R. Jr.

    1983-09-01

    Organic materials requirements for fusion-reactor magnets are described with reference to the temperature, radiation, and electrical and mechanical stress environment expected in these magnets. A review is presented of the response to gamma-ray and neutron irradiation at low temperatures of candidate organic materials; i.e. laminates, thin films, and potting compounds. Lifetime-limiting features of this response as well as needed testing under magnet operating conditions not yet adequately investigated are identified and recomendations for future work are made

  6. Evaluación de la compactación de suelos en siembra directa en la Llanura Chacopampeana de la provincia de Tucumán, R. Argentina Evaluation of soil compaction under no tillage systems in the Chacopampeana Plain in Tucumán, Argentina

    Directory of Open Access Journals (Sweden)

    G. Agustín Sanzano

    2012-06-01

    para decidir el uso de descompactadores de suelo.No-tilled soils can cause topsoil compaction as a result of the lack of soil removal and of machinery traffic. Using subsoilers can reduce this effect. This study was carried out in grain fields located at four sites in the Chacopampeana Plain, province of Tucumán, Argentina. Five no-tillage soil management situations were evaluated in terms of soil compaction degree and other related soil physical properties. These situations were: 'new soils', under no tillage management for less than five years (N; more than 10 years under no tillage management, continuously planted with soybean (SS; more than 10 years under no tillage management and soybean/corn rotation (SM; more than 10 years under no tillage management, with deep vertical tillage prior to sowing, and continuously planted with soybean (SS + LVP; and soils of more than 10 years under no tillage management, soybean/corn rotation, and deep vertical tillage before sowing (SM + LVP. Parameters evaluated before sowing were: bulk density (Dap, maximum bulk density (Dap max, relative apparent density, penetration resistance (RP, crop residue, infiltration rate (I, and organic matter (OM. In topsoil, OM was significantly higher in N than in SS and SS + LVP, while SM and SM + LVP showed intermediate values. LVP showed significantly lower crop residues than those without LPV. In turn, SM had higher crop residues than SS. Upper 20 cm Dap was higher in all situations without LVP, except in N. In most situations, relative apparent density did not exceed 90%, considered critical for normal soybean root growth. RP was significantly lower in SS + LPV and SM + LVP than in SS and SM, respectively. Infiltration rates (I were significantly higher in LPV than in those situations without tillage. However, N had the highest I, probably due to soil porous system conservation. It is advisable to quantify all these parameters before deciding to use deep tillage equipments.

  7. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Wong, Michael Y; Zysman-Colman, Eli

    2017-06-01

    The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low-cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices. TADF emitters are cross-compared within specific color ranges, with a focus on blue, green-yellow, orange-red, and white OLEDs. Organic small-molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  9. Organic materials and devices for detecting ionizing radiation

    Science.gov (United States)

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  10. 78 FR 19637 - National Organic Program: Notice of Draft Guidance on Classification of Materials and Materials...

    Science.gov (United States)

    2013-04-02

    ... which are specifically allowed in section 205.601 of the USDA organic regulations, as well as materials..., filing of petitions and applications and agency #0;statements of organization and functions are examples... Classification of Materials and Materials for Organic Crop Production AGENCY: Agricultural Marketing Service...

  11. Introduction to organic electronic and optoelectronic materials and devices

    CERN Document Server

    Sun, Sam-Shajing

    2008-01-01

    Introduction to Optoelectronic Materials, N. Peyghambarian and M. Fallahi Introduction to Optoelectronic Device Principles, J. Piprek Basic Electronic Structures and Charge Carrier Generation in Organic Optoelectronic Materials, S.-S. Sun Charge Transport in Conducting Polymers, V.N. Prigodin and A.J. Epstein Major Classes of Organic Small Molecules for Electronic and Optoelectronics, X. Meng, W. Zhu, and H. Tian Major Classes of Conjugated Polymers and Synthetic Strategies, Y. Li and J. Hou Low Energy Gap, Conducting, and Transparent Polymers, A. Kumar, Y. Ner, and G.A. Sotzing Conjugated Polymers, Fullerene C60, and Carbon Nanotubes for Optoelectronic Devices, L. Qu, L. Dai, and S.-S. Sun Introduction of Organic Superconducting Materials, H. Mori Molecular Semiconductors for Organic Field-Effect Transistors, A. Facchetti Polymer Field-Effect Transistors, H.G.O. Sandberg Organic Molecular Light-Emitting Materials and Devices, F. So and J. Shi Polymer Light-Emitting Diodes: Devices and Materials, X. Gong and ...

  12. Radiation damage in organic materials

    International Nuclear Information System (INIS)

    Campbell, F.J.

    1981-01-01

    A surprising number of electrical components and seals are listed as being inside the containment building of a nuclear power plant. The types of radiation and their interaction with organic materials lead to a dosimetry discussion, and then a brief description of the chemical mechanisms which predominate in typical organic materials follows. Relative stability of polymer structures and the types of additives that contribute stabilization to the basic polymer matrix in formulated compounds are reviewed. However, the emphasis must now be directed toward the need to consider the total environment of nuclear plant service on the degradation of these materials if maximum reliability is to be achieved. The degradation mechanisms may be strongly affected by the dose-rate/oxidation effect. Temperature, steam and physical stress, when applied concurrently with the radiation field, can also influence the amount of absorbed dose required to produce a given change in the property being tested. Determining the degree of these influences and developing standardized test procedures to evaluate them have become the objective of several prominent research programs and international committee efforts. (author)

  13. Organic Material in the ISM

    Science.gov (United States)

    Pendleton, Yvonne; Morrison, David (Technical Monitor)

    1994-01-01

    Spectra of objects which lie along several lines of sight through the diffuse interstellar medium (ISM) all contain an absorption feature near 3.4 micrometers which has been attributed to saturated aliphatic hydrocarbons on interstellar grains. The similarity of the absorption bands near 3.4 micrometers along different lines of sight reveal that the carrier of this band lies in the diffuse dust. Several materials have been proposed as "fits" to the 3.4 micrometers feature over the years. A comparison of these identifications is presented. A remarkable similarity between the spectrum of the diffuse dust and an organic extract from the Murchison meteorite suggests that some of the interstellar organic material may be preserved in primitive solar system bodies. The optical depth/extinction tau /A(sub v) ratio for the 3.4 micrometers band is higher toward the Galactic center than toward sources which sample the interstellar medium in the local neighborhood. A similar trend has been observed previously for silicates, indicating that the two materials may be simultaneously enhanced in the Galactic center.

  14. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  15. Self-organization in irradiated materials

    International Nuclear Information System (INIS)

    Gerasimenko, N.N.; Dzhamanbalin, K.K.; Medetov, N.A.

    2003-01-01

    Full text: By the present time a great deal of experimental material concerning self-organization in irradiated materials is stored. It means that in different materials (single crystal and amorphous semiconductor, metals, polymers) during one process of irradiation with accelerated particles or energetic quanta the structure previously disordered can be reordered to the previous or different order. These processes are considered separately from the processes of radiation-stimulated ordering when the renewal of the structure occurs as the result of extra irradiation, sometimes accompanied with another influence (heating, lighting, application of mechanical tensions). The processes of reordering are divided into two basic classes: the reconstruction of crystalline structure (1) and the formation of space-ordered system (2). The processes of ordering are considered with the use of synergetic approach and are analyzed conformably to the concrete conditions of new order appearance process realization in order to reveal the self-organization factor's role. The concrete experimental results of investigating of the radiation ordering processes are analyzed for different materials: semiconductor, metals, inorganic dielectrics, polymers. The ordering processes are examined from the point of their possible use in the technology of creating nano-dimensional structures general and quantum-dimensional ones in particular

  16. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.; Atoyo, Jonathan; Carnie, Matthew J.; Baran, Derya; Schroeder, Bob C.

    2017-01-01

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  17. Review—Organic Materials for Thermoelectric Energy Generation

    KAUST Repository

    Cowen, Lewis M.

    2017-01-29

    Organic semiconductor materials have been promising alternatives to their inorganic counterparts in several electronic applications such as solar cells, light emitting diodes, field effect transistors as well as thermoelectric generators. Their low cost, light weight and flexibility make them appealing in future applications such as foldable electronics and wearable circuits using printing techniques. In this report, we present a mini-review on the organic materials that have been used for thermoelectric energy generation.

  18. Synthesis and characterization of a new organic semiconductor material

    Energy Technology Data Exchange (ETDEWEB)

    Tiffour, Imane [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); Dehbi, Abdelkader [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Mourad, Abdel-Hamid I., E-mail: ahmourad@uaeu.ac.ae [Mechanical Engineering Department, Faculty of Engineering, United Arab Emirates University, Al-Ain, P.O. Box 15551 (United Arab Emirates); Belfedal, Abdelkader [Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); LPCMME, Département de Physique, Université d' Oran Es-sénia, 3100 Oran (Algeria)

    2016-08-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε{sub r}, the activation energy E{sub a}, the optical transmittance T and the gap energy E{sub g} have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10{sup −5} S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10{sup −4} S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ{sub max}) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  19. Synthesis and characterization of a new organic semiconductor material

    International Nuclear Information System (INIS)

    Tiffour, Imane; Dehbi, Abdelkader; Mourad, Abdel-Hamid I.; Belfedal, Abdelkader

    2016-01-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε_r, the activation energy E_a, the optical transmittance T and the gap energy E_g have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10"−"5 S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10"−"4 S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ_m_a_x) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  20. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  1. Flexible organic electronic devices: Materials, process and applications

    International Nuclear Information System (INIS)

    Logothetidis, Stergios

    2008-01-01

    The research for the development of flexible organic electronic devices (FEDs) is rapidly increasing worldwide, since FEDs will change radically several aspects of everyday life. Although there has been considerable progress in the area of flexible inorganic devices (a-Si or solution processed Si), there are numerous advances in the organic (semiconducting, conducting and insulating), inorganic and hybrid (organic-inorganic) materials that exhibit customized properties and stability, and in the synthesis and preparation methods, which are characterized by a significant amount of multidisciplinary efforts. Furthermore, the development and encapsulation of organic electronic devices onto flexible polymeric substrates by large-scale and low-cost roll-to-roll production processes will allow their market implementation in numerous application areas, including displays, lighting, photovoltaics, radio-frequency identification circuitry and chemical sensors, as well as to a new generation of modern exotic applications. In this work, we report on some of the latest advances in the fields of polymeric substrates, hybrid barrier layers, inorganic and organic materials to be used as novel active and functional thin films and nanomaterials as well as for the encapsulation of the materials components for the production of FEDs (flexible organic light-emitting diodes, and organic photovoltaics). Moreover, we will emphasize on the real-time optical monitoring and characterization of the growing films onto the flexible polymeric substrates by spectroscopic ellipsometry methods. Finally, the potentiality for the in-line characterization processes for the development of organic electronics materials will be emphasized, since it will also establish the framework for the achievement of the future scientific and technological breakthroughs

  2. Self-Organized Construction with Continuous Building Material

    DEFF Research Database (Denmark)

    Heinrich, Mary Katherine; Wahby, Mostafa; Divband Soorati, Mohammad

    2016-01-01

    Self-organized construction with continuous, structured building material, as opposed to modular units, offers new challenges to the robot-based construction process and lends the opportunity for increased flexibility in constructed artifact properties, such as shape and deformation. As an example...... investigation, we look at continuous filaments organized into braided structures, within the context of bio-hybrids constructing architectural artifacts. We report the result of an early swarm robot experiment. The robots successfully constructed a braid in a self-organized process. The construction process can...... be extended by using different materials and by embedding sensors during the self-organized construction directly into the braided structure. In future work, we plan to apply dedicated braiding robot hardware and to construct sophisticated 3-d structures with local variability in patterns of filament...

  3. Landfill leachate effects on sorption of organic micropollutants onto aquifer materials

    DEFF Research Database (Denmark)

    Larsen, Thomas; Christensen, Thomas Højlund; Pfeffer, Fred M.

    1992-01-01

    The effect of dissolved organic carbon as present in landfill leachate, on the sorption of organic micropollutants in aquifer materials was studied by laboratory batch and column experiments involving 15 non-polar organic chemicals, 5 landfill leachates and 4 aquifer materials of low organic carbon......, the effect of landfill leachate on retardation of organic micropollutants in aquifer material seems limited....... content. The experiments showed that hydrophobic organic micropollutants do partition into dissolved organic carbon found in landfill leachate potentially increasing their mobility. However, landfill leachate interacted with aquifer materials apparently increases the sorbent affinity for the hydrophobic...

  4. Langmuir-Blodgett films of molecular organic materials

    International Nuclear Information System (INIS)

    Talham, Daniel R; Yamamoto, Takashi; Meisel, Mark W

    2008-01-01

    Langmuir-Blodgett methods are perhaps the original approach for achieving controlled deposition of organic thin films. Molecules are first organized into a monolayer array on the surface of water before transfer as a monolayer onto solid supports. Molecular monolayers, multilayers, and multilayered heterostructures can be achieved. The capability of exercising such control over thin film assemblies has attracted materials chemists and physicists to develop Langmuir-Blodgett films for studies on organic conductors, magnets, non-linear optics, rectifiers, and intermolecular electron transfer. This article reviews objectives in each of these areas and selects some specific examples from the literature to highlight the state of the art, mostly from the point of view of the chemical systems that are studied. Mixed organic/inorganic hybrid films represent a new direction for Langmuir-Blodgett films in materials science, combining conventional inorganic solid-state phenomena with the properties of the organic networks, and recent examples, taken principally from the authors' work, are highlighted

  5. New organic-inorganic hybrid molecular systems and highly organized materials in catalysis

    Science.gov (United States)

    Kustov, L. M.

    2015-11-01

    Definitions of hybrid materials are suggested, and applications of these materials are considered. Particular attention is focused on the application of hybrid materials in hydrogenation, partial oxidation, plant biomass conversion, and natural gas reforming, primarily on the use of core-shell nanoparticles and decorated metal nanoparticles in these reactions. Application prospects of various hybrid materials, particularly those of metal-organic frameworks, are discussed.

  6. Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes

    Science.gov (United States)

    Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario; Brandell, Daniel

    2016-01-01

    In this review, we summarize research efforts to realize Na-based organic materials for novel battery chemistries. Na is a more abundant element than Li, thereby contributing to less costly materials with limited to no geopolitical constraints while organic electrode materials harvested from biomass resources provide the possibility of achieving renewable battery components with low environmental impact during processing and recycling. Together, this can form the basis for truly sustainable electrochemical energy storage. We explore the efforts made on electrode materials of organic salts, primarily carbonyl compounds but also Schiff bases, unsaturated compounds, nitroxides and polymers. Moreover, sodiated carbonaceous materials derived from biomasses and waste products are surveyed. As a conclusion to the review, some shortcomings of the currently investigated materials are highlighted together with the major limitations for future development in this field. Finally, routes to move forward in this direction are suggested. PMID:28773272

  7. SYSTEM ORGANIZATION OF MATERIAL PROVIDING OF BUILDING

    Directory of Open Access Journals (Sweden)

    A. V. Rаdkеvich

    2014-04-01

    Full Text Available Purpose. Development of scientific-methodical bases to the design of rational management of material streams in the field of building providing taking into account intersystem connections with the enterprises of building industry. Methodology. The analysis of last few years of functioning of building industry in Ukraine allows distinguishing a number of problems that negatively influence the steady development of building, as the component of the state economics system. Therefore the research of existent organization methods of the system of building objects providing with material resources is extremely necessary. In connection with this the article justifies the use of method of hierarchies analysis (Saati method for finding the optimal task solution of fixing the enterprises of building industry after building objects. Findings. Results give an opportunity to guidance of building organization to estimate and choose advantageous suppliers - enterprises of building industry, to conduct their rating, estimation taking into account basic descriptions, such as: quality, price, reliability of deliveries, specialization, financial status etc. Originality. On the basis of Saati method the methodologies of organization are improved, planning and managements of the reliable system of providing of building necessary material resources that meet the technological requirements of implementation of building and installation works. Practical value. Contribution to the decisions of many intricate organizational problems that are accompanied by the problems of development of building, provided due to organization of the reliable system of purchase of material resources.

  8. Study on the biological half-life and organ-distribution of tritiated lysine-vasopressin in Brattleboro rats

    International Nuclear Information System (INIS)

    Laczi, F.; Laszlo, F.A.; Keri, Gy.; Teplan, I.

    1980-01-01

    The biological half-life and organ-distribution of tritiated lysine-vasopressin were determined in R-Amsterdam rats, and in homozygous and heterozygous Brattleboro rats with hereditary central diabetes insipidus. It was found that the biological half-life of the tritiated lysin-vasopressin in the Brattleboro rats did not differ significantly from that found in the R-Amsterdam rats. The highest radioactivities were observed in the neuro- and adenohypophyses and in the kidneys of both the R-Amsterdam and the Brattleboro rats. The accumulation of tritiated LVP was higher in the small intestine of the Brattleboro rats than in that of the R-Amsterdam animals. The results have led to the conclusion that the accelerated elimination of vasopressin and its pathologic organ-accumulation are probably not involved in the water metabolism disturbance of Brattleboro rats with hereditary hypothalamic diabetes insipidus. (author)

  9. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  10. Principal organic materials in a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Hallbeck, Lotta

    2010-01-01

    The largest pool of organic material in a repository at closure is the organic material in the bentonite in buffer and backfill. It is impossible to make any assumptions as to how much of this material will be available for biodegradation, since the character of the material is unknown. However, it is unlikely that this organic material can dissolve in groundwater unless the bentonite loses its swelling capacity. The second largest pool will be the biofilms formed on the rock surfaces. This assumption presupposes that no cleaning is undertaken before repository closure. The third largest pool is the organic material produced by microorganisms using hydrogen from the anaerobic corrosion of iron in steel as an energy source. The following provides summary descriptions of the different pools of organic material that will remain in the repository: 1. Microorganisms. Their effect would mainly be to reduce the redox potential soon after repository closure. They may contribute to the depletion of the oxygen entrapped during repository construction, an effect that would not jeopardise repository stability. If the dominant microorganisms in the anaerobic environment are sulphate-reducing bacteria, oxidation of organic material would lead to the formation of HS - . The produced sulphide could corrode the copper canisters under anaerobic conditions if it reaches them. Another effect of microorganisms would be to increase the complexing capacity of the groundwater due to excreted metabolites. The impact of these compounds is not yet clear, although it will surely not be very important, due to the small amounts of such substances. 2. Materials in the ventilation air. Their effect will probably be to help maintain reducing conditions in the area, although this effect will likely be minimal or negligible. 3. Construction materials. Among these materials, we emphasise the organic materials present in concrete, asphalt, bentonite, and wood. Hydrocarbons from asphalt may help reduce

  11. Principal organic materials in a repository for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta (Microbial Analytics Sweden AB, Moelnlycke (Sweden))

    2010-01-15

    The largest pool of organic material in a repository at closure is the organic material in the bentonite in buffer and backfill. It is impossible to make any assumptions as to how much of this material will be available for biodegradation, since the character of the material is unknown. However, it is unlikely that this organic material can dissolve in groundwater unless the bentonite loses its swelling capacity. The second largest pool will be the biofilms formed on the rock surfaces. This assumption presupposes that no cleaning is undertaken before repository closure. The third largest pool is the organic material produced by microorganisms using hydrogen from the anaerobic corrosion of iron in steel as an energy source. The following provides summary descriptions of the different pools of organic material that will remain in the repository: 1. Microorganisms. Their effect would mainly be to reduce the redox potential soon after repository closure. They may contribute to the depletion of the oxygen entrapped during repository construction, an effect that would not jeopardise repository stability. If the dominant microorganisms in the anaerobic environment are sulphate-reducing bacteria, oxidation of organic material would lead to the formation of HS-. The produced sulphide could corrode the copper canisters under anaerobic conditions if it reaches them. Another effect of microorganisms would be to increase the complexing capacity of the groundwater due to excreted metabolites. The impact of these compounds is not yet clear, although it will surely not be very important, due to the small amounts of such substances. 2. Materials in the ventilation air. Their effect will probably be to help maintain reducing conditions in the area, although this effect will likely be minimal or negligible. 3. Construction materials. Among these materials, we emphasise the organic materials present in concrete, asphalt, bentonite, and wood. Hydrocarbons from asphalt may help reduce

  12. Organic material of the Messel oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, B.; Littke, R.

    1986-05-01

    According to chemism, the Messel oil shales belong to the Kerogen type II, formed by algae with additions of huminite detritus, i.e. residues of higher plants. This has been confirmed by the organo-petrographic studies reported. The oil shale deposits are characterised by their content of organic materials, the occurrence of a cream-coloured inertinite maceral, and of siderite. Hence, two facies can be clearly discriminated, the lower one containing relatively much organic material and the cream-coloured inertinite, but no siderite, and the upper facies exhibiting just the opposite. As the detritus is finely grained and quite uniform in content of huminite and silicate material, and only few spores and pollen have been found, there is reason to assume that the two facies represent sediments formed far from the border of the lake.

  13. Microporous Organic Materials for Membrane-Based Gas Separation.

    Science.gov (United States)

    Zou, Xiaoqin; Zhu, Guangshan

    2018-01-01

    Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore-chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H 2 , CO 2 , O 2 , and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Survival in pediatric lung transplantation: The effect of center volume and expertise.

    Science.gov (United States)

    Khan, Muhammad S; Zhang, Wei; Taylor, Rachel A; Dean McKenzie, E; Mallory, George B; Schecter, Marc G; Morales, David L S; Heinle, Jeffrey S; Adachi, Iki

    2015-08-01

    Institutional operative volume has been shown to impact outcomes of various procedures including lung transplantation (LTx). We sought to determine whether this holds true with pediatric LTx by comparing outcomes of adult centers (with larger overall volume) to those of pediatric centers (with smaller volume but more pediatric-specific experience). A retrospective analysis of the Organ Procurement and Transplant Network data was performed. Centers were categorized as either adult (LTx volume predominantly in adult patients), high-volume pediatric (HVP, ≥4 LTxs/year), or low-volume pediatric (LVP, HVP 3 [5%], LVP 8 [13%]). Although adult centers had larger overall LTx volume, their pediatric experiences were severely limited (median 1/year). In younger children, HVP centers were significantly better than LVP centers for patient survival (half-life: 7.3 vs 2.9 years, p = 0.002). Similarly, in older children and adolescents, HVP centers were significantly better than adult centers for patient survival (half-life: 4.6 vs 2.5 years, p = 0.001). Of note, even LVP centers tended to have longer patient survival than adult centers (p = 0.064). Multivariable analysis identified adult centers as an independent risk factor for graft failure (hazard ratio: 1.5, p < 0.001) as with LVP (hazard ratio: 1.3, p = 0.0078). Despite larger overall clinical volume, outcomes among pediatric LTx recipients in adult centers are not superior to those of pediatric centers. Not only center volume but pediatric-specific experience has an impact on outcomes in pediatric LTx. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  15. The rise of organic electrode materials for energy storage.

    Science.gov (United States)

    Schon, Tyler B; McAllister, Bryony T; Li, Peng-Fei; Seferos, Dwight S

    2016-11-07

    Organic electrode materials are very attractive for electrochemical energy storage devices because they can be flexible, lightweight, low cost, benign to the environment, and used in a variety of device architectures. They are not mere alternatives to more traditional energy storage materials, rather, they have the potential to lead to disruptive technologies. Although organic electrode materials for energy storage have progressed in recent years, there are still significant challenges to overcome before reaching large-scale commercialization. This review provides an overview of energy storage systems as a whole, the metrics that are used to quantify the performance of electrodes, recent strategies that have been investigated to overcome the challenges associated with organic electrode materials, and the use of computational chemistry to design and study new materials and their properties. Design strategies are examined to overcome issues with capacity/capacitance, device voltage, rate capability, and cycling stability in order to guide future work in the area. The use of low cost materials is highlighted as a direction towards commercial realization.

  16. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    Science.gov (United States)

    Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.

    1998-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.

  17. Method of processing radiation-contaminated organic polymer materials

    International Nuclear Information System (INIS)

    Kobayashi, Yoshii.

    1980-01-01

    Purpose: To process radiation contaminated organic high polymer materials with no evolution of toxic gases, at low temperature and with safety by hot-acid immersion process using sulfuric acid-hydrogen peroxide. Method: Less flammable or easily flammable organic polymers contaminated with radioactive substances, particularly with long life actinoid are heated and carbonized in concentrated sulfuric acid. Then, aqueous 30% H 2 O 2 solution is continuously added dropwise as an oxidizing agent till the solution turns colourless. If the carbonization was insufficient, addition of H 2 O 2 solution is stopped temporarily and the carbonization is conducted again. Thus, the organic polymers are completely decomposed by the wet oxidization. Then, the volume of the organic materials to be discharged is decreased and the radioactive substances contained are simultaneously concentrated and collected. (Seki, T.)

  18. Conservação refrigerada de carambolas em embalagens plásticas Refrigerated preservation of carambolas in plastic packagings

    Directory of Open Access Journals (Sweden)

    Rosemberg G. da Cruz

    2001-05-01

    Full Text Available Pesquisou-se o efeito de duas embalagens (polietileno de baixa densidade - PEBD e polipropileno - Longa Vida Pak ou LVP em relação ao controle (sem embalagem sobre a conservação de carambolas em atmosfera refrigerada (10 ºC. Utilizou-se o planejamento fatorial inteiramente casualizado 3 x 4 x 2 (3 embalagens x 4 períodos de armazenamento x 2 repetições. As análises para acompanhamento do armazenamento foram: pH, ºBrix (sólidos solúveis, acidez titulável, perda de peso, coliformes totais e fecais, bolores e leveduras. O nível de contaminação microbiológica (bolores e leveduras foi aceitável até 21 e 28 dias para carambolas não embaladas e embaladas, respectivamente. A embalagem LVP apresentou os menores índices de contaminação. Em relação às alterações físico-químicas, não houve diferenças significativas entre as embalagens com relação a perda de peso, pH e acidez titulável e o teor de sólidos solúveis foi maior para os frutos armazenados em embalagens LVP. Os resultados globais indicam que ambas as embalagens aumentam a vida útil deste produto e que, do ponto de vista microbiológico, a embalagem LVP foi melhor que a embalagem PEBD para a preservação sob condições refrigeradas.The aim of the study was to investigate the effect of two packaging materials (low density polyethylene- LPDE and polypropylene-LVP on Averrhoa carambola L shelf-life under refrigeration. A factorial design 3 x 4 x 2 (3 packaging x 4 days of storage x 2 repetitions was used. The fruits were analysed for pH, total soluble solids, total titrable acidity, weight loss, total and fecal coliforms, moulds and yeasts. The microbiological contamination levels (moulds and yeast was acceptable up to 21 and 28 storage days for unpacked and packed fruits, respectively. The fruits inside LVP packaging showed lower level of contamination. The weight loss, pH and titrable acidity alterations were not significantly different between the two

  19. A comparative structural and electrochemical study of monoclinic Li3V2(PO4)3/C and rhombohedral Li2.5Na0.5V(2−2x/3)Nix(PO4)3/C

    International Nuclear Information System (INIS)

    Wang, Wenhui; Chen, Zhenyu; Zhang, Jiaolong; Dai, Changsong; Li, Jiajie; Ji, Dalong

    2013-01-01

    In order to synthesize pure derivative of rhombohedral Li 3 V 2 (PO 4 ) 3 (LVP), lithium-ion batteries materials Li 2.5 Na 0.5 V (2−2x/3) Ni x (PO 4 ) 3 /C (x = 0.03, 0.06, 0.09) and its control, monoclinic Li 3 V 2 (PO 4 ) 3 /C (LVP/C), were prepared by sol–gel method. The samples were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), Raman spectroscopy, and electrochemical methods. The XRD patterns of Li 2.5 Na 0.5 V (2−2x/3) Ni x (PO 4 ) 3 /C are in good agreement with that of rhombohedral LVP, which indicates that the Na + –Ni 2+ composite doping can change the structure of monoclinic LVP. All the composite doping samples displayed a single flat plateau at 3.7 V in the charge/discharge voltage profile, which is caused by transformation of multi-phase mechanism to single-phase mechanism. For Li 2.5 Na 0.5 V 1.98 Ni 0.03 (PO 4 ) 3 /C, a specific discharge capacity of 108 mAh g −1 was achieved at a 0.5 C charge rate and a 1 C discharge rate, and a 99.0% retention rate of the initial capacity was obtained after 50 cycles

  20. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    Science.gov (United States)

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. X-ray characterization of solid small molecule organic materials

    Science.gov (United States)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  2. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    Science.gov (United States)

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  3. New Organic Semiconductor Materials Applied in Organic Photovoltaic and Optical Devices

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2015-04-01

    Full Text Available The development of flexible organic photovoltaic solar cells, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The flexible organic photovoltaic solar cells are the base Poly (3,4-ethylenedioxythiophene, PEDOT, Poly(3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by Electrical Measurements and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by electrical Measurements has demonstrated that the PET/ITO/PEDOT/P3HT:PCBM Blend/PANI-X1 layer presents the characteristic curve of standard solar cell after spin-coating and electrodeposition. The Thin film obtained by electrodeposition of PANI-X1 on P3HT/PCBM Blend was prepared in perchloric acid solution. These flexible organic photovoltaic solar cells presented power conversion efficiency of 12%. The inclusion of the PANI-X1 layer reduced the effects of degradation these organic photovoltaic panels induced for solar irradiation. In Scanning Electron Microscopy (SEM these studies reveal that the surface of PANI-X1 layers is strongly conditioned by the surface morphology of the dielectric.

  4. Adsorbed Organic Material and Its Control on Wettability

    DEFF Research Database (Denmark)

    Matthiesen, Jesper; Hassenkam, Tue; Bovet, Nicolas Emile

    2017-01-01

    salinity. Here we quantified the response of sandstone core plug material in its preserved state (i.e., after storage in kerosene) and after the same core plug material was treated with ethanol and ozone to remove adsorbed organic compounds. We used the chemical force microscopy (CFM) mode of atomic force...... surfaces in artificial seawater (ASW; 35,600 ppm) and in ASW diluted to ∼1,500 ppm (ASW-low). Both before and after the ethanol/ozone treatment, and for both the alkane and the carboxylate functionalized tips, the adhesion was lower in ASW diluted to ∼1,500 ppm than in ASW. For both alkane and carboxylate...... ethanol/ozone treatment, to be a result of the loss of the organic material that was originally adsorbed on these surfaces, which adds to the charge density and thereby to the salinity dependent EDL force. Investigating the same area on the same pore surface, before and after removal of the organic...

  5. Recent Advances as Materials of Functional Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Xiao-Lan Tong

    2013-01-01

    Full Text Available Metal-organic frameworks (MOFs, also known as hybrid inorganic-organic materials, represent an emerging class of materials that have attracted the imagination of solid-state chemists because MOFs combine unprecedented levels of porosity with a range of other functional properties that occur through the metal moiety and/or the organic ligand. The purpose of this critical review is to give a representative and comprehensive overview of the arising developments in the field of functional metal-organic frameworks, including luminescence, magnetism, and porosity through presenting examples. This review will be of interest to researchers and synthetic chemists attempting to design multifunctional MOFs.

  6. Acetylene-Based Materials in Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Fabio Silvestri

    2010-04-01

    Full Text Available Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (polyarylacetylenes that have been used in the field. A general introduction to (polyarylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (copolymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices.

  7. Advances in phosphors based on organic materials for light emitting devices

    International Nuclear Information System (INIS)

    Sharma, Kashma; Kumar, Vijay; Kumar, Vinod; Swart, Hendrik C.

    2016-01-01

    A brief overview is presented in the light emitting diodes (LEDs) based on purely organic materials. Organic LEDs are of great interest to the research community because of their outstanding properties and flexibility. Comparison between devices made using different organic materials and their derivatives with respect to synthetic protocols, characterizations, quantum efficiencies, sensitivity, specificity and their applications in various fields have been discussed. This review also discusses the essential requirement and scientific issues that arise in synthesizing cost-effective and environmental friendly organic LEDs diodes based on purely organic materials. This mini review aims to capture and convey some of the key current developments in phosphors formed by purely organic materials and highlights some possible future applications. Hence, this study comes up with a widespread discussion on the various contents in a single platform. Also, it offers avenues for new researchers for futuristic development in the area.

  8. Multilevel structures of Li3V2(PO4)3/phosphorus-doped carbon nanocomposites derived from hybrid V-MOFs for long-life and cheap lithium ion battery cathodes

    Science.gov (United States)

    Wang, Zhaoyang; He, Wen; Zhang, Xudong; Yue, Yuanzheng; Liu, Jinhua; Zhang, Chuanjiang; Fang, Leyong

    2017-10-01

    The Li3V2(PO4)3/phosphorus-doped carbon (LVP/P-C) nanocomposites with multilevel structures (such as spheroidal, foam, prism and flower-like structures) are synthesized via one-pot in-situ synthesis using hybrid vanadium metal-organic frameworks (V-MOFs) as precursor. The structure and morphology of the LVP/P-C nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, Raman, X-ray diffraction and element mapping. The results show that the multilevel structures are generated from the assemblies of the hybrid surfactant templates in the glass fiber drawing wastewater (GFDW) and the hybrid V-MOFs. The structure of LVP/P-C nanocomposite is controlled by V-MOFs. The nanocomposites exhibit a long service life, a discharge capacity of 65 mA h g-1 at 10 C with 90% capacity retention after 1100 cycles. The high cycling stability is attributed to the multilevel structures, which is ideal for making rechargeable lithium ion batteries. More importantly, our results have demonstrated that GFDW can be transformed into treasure of multilevel structure nanocomposites for cheap Li ion batteries.

  9. Deterioration and preservation of organic materials on the seabed

    DEFF Research Database (Denmark)

    Gregory, David; Matthiesen, Henning

    2018-01-01

    Easily degradable organic materials can be preserved astonishingly well in underwater environments. This applies, for instance, to the seabed of the relatively cold and brackish Waters of the Baltic Sea as well as the warmer and much more salty Mediterranean Sea. We provide an overview of the many...... kinds of biodeterioration processes in water-saturated sediments, with special attention to wood and the activity of organisms that can both rapidly and totally degrade organic materials. The main reason that well-preserved archaeological artefacts do, nevertheless, exist in abundance in buried...

  10. Alkaline degradation of organic materials contained in TRU wastes under repository conditions

    International Nuclear Information System (INIS)

    Otsuka, Yoshiki; Banba, Tsunetaka

    2007-09-01

    Alkaline degradation tests for 9 organic materials were conducted under the conditions of TRU waste disposal: anaerobic alkaline conditions. The tests were carried out at 90degC for 91 days. The sample materials for the tests were selected from the standpoint of constituent organic materials of TRU wastes. It has been found that cellulose and plastic solidified products are degraded relatively easily and that rubbers are difficult to degrade. It could be presumed that the alkaline degradation of organic materials occurs starting from the functional group in the material. Therefore, the degree of degradation difficulty is expected to be dependent on the kinds of functional group contained in the organic material. (author)

  11. Effect of natural organic materials on cadmium and neptunium sorption

    International Nuclear Information System (INIS)

    Kung, K.S.; Triay, I.R.

    1994-01-01

    In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOAP sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study

  12. Ordered materials for organic electronics and photonics.

    Science.gov (United States)

    O'Neill, Mary; Kelly, Stephen M

    2011-02-01

    We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. EELS from organic crystalline materials

    International Nuclear Information System (INIS)

    Brydson, R; Seabourne, C R; Hondow, N; Eddleston, M D; Jones, W

    2014-01-01

    We report the use of the electron energy loss spectroscopy (EELS) for providing light element chemical composition information from organic, crystalline pharmaceutical materials including theophylline and paracetamol and discuss how this type of data can complement transmission electron microscopy (TEM) imaging and electron diffraction when investigating polymorphism. We also discuss the potential for the extraction of bonding information using electron loss near-edge structure (ELNES)

  14. Theory-inspired development of organic electro-optic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, Larry R., E-mail: dalton@chem.washington.ed [Department of Chemistry, Bagley Hall 202D, Box 351700, University of Washington, Seattle, Washington 98195-1700 (United States); Department of Electrical Engineering, Bagley Hall 202D, Box 351700, University of Washington, Seattle, Washington 98195-1700 (United States)

    2009-11-30

    Real-time, time-dependent density functional theory (RTTDDFT) and pseudo-atomistic Monte Carlo-molecular dynamics (PAMCMD) calculations have been used in a correlated manner to achieve quantitative definition of structure/function relationships necessary for the optimization of electro-optic activity in organic materials. Utilizing theoretical guidance, electro-optic coefficients (at telecommunication wavelengths) have been increased to 500 pm/V while keeping optical loss to less than 2 dB/cm. RTTDDFT affords the advantage of permitting explicit treatment of time-dependent electric fields, both applied fields and internal fields. This modification has permitted the quantitative simulation of the variation of linear and nonlinear optical properties of chromophores and the electro-optic activity of materials with optical frequency and dielectric permittivity. PAMCMD statistical mechanical calculations have proven an effective means of treating the full range of spatially-anisotropic intermolecular electrostatic interactions that play critical roles in defining the degree of noncentrosymmetric order that is achieved by electric field poling of organic electro-optic materials near their glass transition temperatures. New techniques have been developed for the experimental characterization of poling-induced acentric order including a modification of variable angle polarization absorption spectroscopy (VAPAS) permitting a meaningful correlation of theoretical and experimental data related to poling-induced order for a variety of complex organic electro-optic materials.

  15. Theory-inspired development of organic electro-optic materials

    International Nuclear Information System (INIS)

    Dalton, Larry R.

    2009-01-01

    Real-time, time-dependent density functional theory (RTTDDFT) and pseudo-atomistic Monte Carlo-molecular dynamics (PAMCMD) calculations have been used in a correlated manner to achieve quantitative definition of structure/function relationships necessary for the optimization of electro-optic activity in organic materials. Utilizing theoretical guidance, electro-optic coefficients (at telecommunication wavelengths) have been increased to 500 pm/V while keeping optical loss to less than 2 dB/cm. RTTDDFT affords the advantage of permitting explicit treatment of time-dependent electric fields, both applied fields and internal fields. This modification has permitted the quantitative simulation of the variation of linear and nonlinear optical properties of chromophores and the electro-optic activity of materials with optical frequency and dielectric permittivity. PAMCMD statistical mechanical calculations have proven an effective means of treating the full range of spatially-anisotropic intermolecular electrostatic interactions that play critical roles in defining the degree of noncentrosymmetric order that is achieved by electric field poling of organic electro-optic materials near their glass transition temperatures. New techniques have been developed for the experimental characterization of poling-induced acentric order including a modification of variable angle polarization absorption spectroscopy (VAPAS) permitting a meaningful correlation of theoretical and experimental data related to poling-induced order for a variety of complex organic electro-optic materials.

  16. From molecular design and materials construction to organic nanophotonic devices.

    Science.gov (United States)

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  17. Towards an Articulation of the Material and Visual Turn in Organization Studies

    DEFF Research Database (Denmark)

    Boxenbaum, Eva; Jones, Candace; Meyer, Renate

    2018-01-01

    Contemporary organizations increasingly rely on images, logos, videos, building materials, graphic and product design, and a range of other material and visual artifacts to compete, communicate, form identity and organize their activities. This Special Issue focuses on materiality and visuality...... on the articles in the special issue, we further explore the affordances and limits of the material and visual dimensions of organizing in relation to novelty. We conclude by pointing out theoretical avenues for advancing multimodal research, and discuss some of the ethical, pragmatic and identity...... in the course of objectifying and reacting to novel ideas, and, more broadly, contributes to organizational theory by articulating the emergent contours of a material and visual turn in the study of organizations. In this Introduction, we provide an overview of research on materiality and visuality. Drawing...

  18. Organic n-type materials for charge transport and charge storage applications.

    Science.gov (United States)

    Stolar, Monika; Baumgartner, Thomas

    2013-06-21

    Conjugated materials have attracted much attention toward applications in organic electronics in recent years. These organic species offer many advantages as potential replacement for conventional materials (i.e., silicon and metals) in terms of cheap fabrication and environmentally benign devices. While p-type (electron-donating or hole-conducting) materials have been extensively reviewed and researched, their counterpart n-type (electron-accepting or electron-conducting) materials have seen much less popularity despite the greater need for improvement. In addition to developing efficient charge transport materials, it is equally important to provide a means of charge storage, where energy can be used on an on-demand basis. This perspective is focused on discussing a selection of representative n-type materials and the efforts toward improving their charge-transport efficiencies. Additionally, this perspective will also highlight recent organic materials for battery components and the efforts that have been made to improve their environmental appeal.

  19. Humic and fluvic acids and organic colloidal materials in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States); Clark, S.B. [Univ. of Georgia, Aiken, SC (United States)

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  20. Main organic materials in a repository for high level radioactive waste

    International Nuclear Information System (INIS)

    Hallbeck, Lotta; Grive, Mireia; Gaona, Xavier; Duro, Lara; Bruno, Jordi

    2007-11-01

    A compilation of the origin and composition of organic material possibly left in a repository is made. Recommendations of precautions and actions for the different material are listed as well. As a brief summary, the different categories of organic material of relevance for the repository are: 1. Microorganisms. Their effect would be mainly a reduction of the redox potential in the initial stages after the repository closure. They may contribute to the depletion of the oxygen entrapped due to the repository construction. This effect would not jeopardize the stability of the repository. If the dominating microorganisms in the anaerobic environment are sulphate-reducing bacteria, oxidation of organic material would lead to formation of HS - . The produced sulphide can corrode copper under anaerobic conditions, if it reaches the canisters. Another effect of microorganisms would be the increase of the complexing capacity of the groundwater due to excreted metabolites. The impact of these compounds is not yet clear, although it will surely not be very important, due to the low amounts of the excreted substances. 2. Materials in the ventilation air. Their effect will probably be a contribution to the maintenance of reducing conditions in the area, although it is likely that this effect will be minimal or negligible. 3. Construction materials. Among them we can highlight organic materials present in concrete, asphalt, bentonite and wood. The most important compounds from the repository safety perspective will be those hydrocarbons from asphalt that may contribute to decreasing the redox potential around the repository, and the products of degradation of cellulose. This last category of compounds may contribute to enhance the complexing capacity of the groundwater around the repository and it is recommended to minimize the amount of cellulose left in the repository. 4. Fuels and engine emissions. No important effects from these organics in the repository are expected

  1. Main organic materials in a repository for high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta [Vita vegrandis, Hindaas (Sweden); Grive, Mireia; Gaona, Xavier; Duro, Lara; Bruno, Jordi [Enviros Consulting, Valldoreix, Barcelona (Spain)

    2007-11-15

    A compilation of the origin and composition of organic material possibly left in a repository is made. Recommendations of precautions and actions for the different material are listed as well. As a brief summary, the different categories of organic material of relevance for the repository are: 1. Microorganisms. Their effect would be mainly a reduction of the redox potential in the initial stages after the repository closure. They may contribute to the depletion of the oxygen entrapped due to the repository construction. This effect would not jeopardize the stability of the repository. If the dominating microorganisms in the anaerobic environment are sulphate-reducing bacteria, oxidation of organic material would lead to formation of HS{sup -}. The produced sulphide can corrode copper under anaerobic conditions, if it reaches the canisters. Another effect of microorganisms would be the increase of the complexing capacity of the groundwater due to excreted metabolites. The impact of these compounds is not yet clear, although it will surely not be very important, due to the low amounts of the excreted substances. 2. Materials in the ventilation air. Their effect will probably be a contribution to the maintenance of reducing conditions in the area, although it is likely that this effect will be minimal or negligible. 3. Construction materials. Among them we can highlight organic materials present in concrete, asphalt, bentonite and wood. The most important compounds from the repository safety perspective will be those hydrocarbons from asphalt that may contribute to decreasing the redox potential around the repository, and the products of degradation of cellulose. This last category of compounds may contribute to enhance the complexing capacity of the groundwater around the repository and it is recommended to minimize the amount of cellulose left in the repository. 4. Fuels and engine emissions. No important effects from these organics in the repository are expected

  2. Microporous Metal Organic Materials for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  3. (Dis)organizing through imbrications of human and material agencies

    DEFF Research Database (Denmark)

    Tavella, Elena

    and material agencies. However there is a lack of insight into how human and material agencies are imbricated during the emergence of (dis)order, and how different imbrications lead to (dis)order. This paper addresses this gap by presenting a content analysis of a book reporting the Battle of Stalingrad during...... World War II. Drawing on the theory of affordances, the author identifies how different materials were used by the German and Soviet armies to organize specific activities, and whether and how those activities led to order and/or disorder. The analysis suggests that soldiers used different materials...... to organize different activities within one and the same organizational context, which led to (dis)order. Whether order or disorder emerged was dependent on how human and material agencies were imbricated within the conduct of particular activities, and how they related to internal or external influencing...

  4. Screening of High Temperature Organic Materials for Future Stirling Convertors

    Science.gov (United States)

    Shin, Euy-sik E.; Scheiman, Daniel A.

    2017-01-01

    Along with major advancement of Stirling-based convertors, high temperature organics are needed to develop future higher temperature convertors for much improved efficiencies as well as to improve the margin of reliability for the current SOA (State-of-the-Art) convertors. The higher temperature capabilities would improve robustness of the convertors and also allow them to be used in additional missions, particularly ones that require a Venus flyby for a gravity assist. Various organic materials have been employed as essential components in the convertor for their unique properties and functions such as bonding, potting, sealing, thread locking, insulation, and lubrication. The Stirling convertor radioisotope generators have been developed for potential future space applications including Lunar/Mars surface power or a variety of spacecraft and vehicles, especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration. Thus, performance, durability, and reliability of the organics should be critically evaluated in terms of every possible material structure-process-service environment relations based on the potential mission specifications. The initial efforts in screening the high temperature candidates focused on the most susceptible organics, such as adhesive, potting compound, O-ring, shrink tubing, and thread locker materials in conjunction with commercially available materials. More systematic and practical test methodologies that were developed and optimized based on the extensive organic evaluations and validations performed for various Stirling convertor types were employed to determine thermal stability, outgassing, and material compatibility of the selected organic candidates against their functional requirements. Processing and fabrication conditions and procedures were also optimized. This report presents results of the three-step candidate evaluation processes, their application limitations, and the final selection

  5. Materials and devices with applications in high-end organic transistors

    International Nuclear Information System (INIS)

    Takeya, J.; Uemura, T.; Sakai, K.; Okada, Y.

    2014-01-01

    The development of functional materials typically benefits from an understanding of the microscopic mechanisms by which those materials operate. To accelerate the development of organic semiconductor devices with industrial applications in flexible and printed electronics, it is essential to elucidate the mechanisms of charge transport associated with molecular-scale charge transfer. In this study, we employed Hall effect measurements to differentiate coherent band transport from site-to-site hopping. The results of tests using several different molecular systems as the active semiconductor layers demonstrate that high-mobility charge transport in recently-developed solution-crystallized organic transistors is the result of a band-like mechanism. These materials, which have the potential to be organic transistors exhibiting the highest speeds ever obtained, are significantly different from the conventional lower-mobility organic semiconductors with incoherent hopping-like transport mechanisms which were studied in the previous century. They may be categorized as “high-end” organic semiconductors, characterized by their coherent electronic states and high values of mobility which are close to or greater than 10 cm 2 /Vs. - Highlights: • Transport in high-mobility solution-crystallized organic transistors is band-like. • High-end organic semiconductors carry coherent electrons with mobility > 10 cm 2 /Vs. • Hall-effect measurement differentiates coherent band transport from hopping. • We found an anomalous pressure effect in organic semiconductors

  6. Modeling self-organization of novel organic materials

    Science.gov (United States)

    Sayar, Mehmet

    In this thesis, the structural organization of oligomeric multi-block molecules is analyzed by computational analysis of coarse-grained models. These molecules form nanostructures with different dimensionalities, and the nanostructured nature of these materials leads to novel structural properties at different length scales. Previously, a number of oligomeric triblock rodcoil molecules have been shown to self-organize into mushroom shaped noncentrosymmetric nanostructures. Interestingly, thin films of these molecules contain polar domains and a finite macroscopic polarization. However, the fully polarized state is not the equilibrium state. In the first chapter, by solving a model with dipolar and Ising-like short range interactions, we show that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a ≈ 6 nm), leading to a reduction in the repulsive dipolar interactions that oppose polar order within layers. This enables the formation of a striped pattern with polar domains of alternating directions. The energies of the possible structures at zero temperature are computed exactly and results of Monte Carlo simulations are provided at non-zero temperatures. In the second chapter, the macroscopic polarization of such nanostructured films is analyzed in the presence of a short range surface interaction. The surface interaction leads to a periodic domain structure where the balance between the up and down domains is broken, and therefore films of finite thickness have a net macroscopic polarization. The polarization per unit volume is a function of film thickness and strength of the surface interaction. Finally, in chapter three, self-organization of organic molecules into a network of one dimensional objects is analyzed. Multi-block organic dendron rodcoil molecules were found to self-organize into supramolecular nanoribbons (threads) and

  7. Soft X-ray excited optical luminescence from functional organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Sham, T.K., E-mail: tsham@uwo.ca

    2015-10-01

    Highlights: • Many functional organic materials convert X-ray energy into visible light. • The X-ray induced luminescence (XEOL) across an absorption edge can be site and excitation channel specific. • XEOL is composition, morphology, size and crystallinity dependent. • XEOL using the time structure of a synchrotron can reveal the decay and energy transfer dynamics of the sample. • The combined use of XEOL and XAS in the analysis of functional organic materials is illustrated. - Abstract: This brief report reviews some of the recent findings in the study of synchrotron based X-ray excited optical luminescence (XEOL) from representative organic light emitting device (OLED) and related functional organic materials. The systems of interest include Alq{sub 3}, aluminium tris(8-hydroxylquinoline); Ru(bipy){sub 3}{sup 2+}, tris-(2,2-bipyridine) ruthenium(II); Ir(bpy){sub 3}, tris(2-phenyl-bipyridine)iridium; PVK (poly(N-vinylcarbazole)) and [Au{sub 2}(dppe)(bipy)]{sup 2+}, a Au(I) polymer containing 1,2-bis(diphenylphosphino)ethane and the 4,40-bipyridyl ligands, as well as TBPe (2,5,8,11-tetra-tert-butylperylene) polyhedral crystals and fluorescein isothiocyanate (FITC) and FITC-labelled proteins. It is shown that tunable and pulsed X-rays from synchrotron light sources enable the detailed tracking of the optical properties of organic functional materials by monitoring the luminescence in both the energy and time domain as the excitation energy is scanned across an element-specific absorption edge. The use of XEOL and X-ray absorption spectroscopy (XAS) in materials analysis is illustrated.

  8. Thermal energy storage and utilization system

    International Nuclear Information System (INIS)

    1976-01-01

    The power output from a nuclear power plant or fossil fuel power plant operating under constant reactor (or furnace) and boiler conditions is varied by regulating the rate of turbine extraction steam and primary high pressure steam used to heat boiler feed water (BFW). During periods of low power demand, excess extraction steam is drawn off to heat excess quantities of boiler feed water. Such boiler feed water can be heated to the maximum extent possible and used to reheat interstage steam before being sent at slightly reduced temperature to the boilers. In this way, maximum use can be made of the thermal energy stored in the low vapor pressure organic material. Alternatively, or simultaneously, the stored hot LVP organic material can be used to raise intermediate pressure steam and this steam can be injected into the steam turbines between appropriate stages or into auxiliary turbines used solely for this purpose

  9. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-06-01

    Over the past few decades, vast majority of industrial and academic research throughout the world has witnessed the emergence of materials that can serve as ideal candidates for potential utility in desired applications, and these materials are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due to their inherent structural methodology (e.g. use of various metals, expanded library of organic building blocks with different geometry and functionality particularly frameworks designed from carboxylate organic linkers) and unquestionably unique structural and chemical features for many practical applications. (i.e. gas storage/separation, catalysis, drug delivery etc). Simply, metal organic frameworks epitomize the beauty of porous chemical structures. From a design perspective, the introduction of the Molecular Building Block (MBB) approach is actively being pursued pathway by researchers toward the construction of MOFs by employing inorganic building blocks and organic linkers and taking advantage of not only their multiple coordination modes and geometries but also the way in which they are reticulated to generate final framework. In this thesis, research studies will be directed toward (i) the investigation of the relationship between experimental parameters and synthesis of well-known fcu –MOF, (ii) rational design and synthesis of new rare earth (RE) based MOFs, (ii) isoreticular materials based on particular MBB ([M3O(RCO2)6]), M= p-and d-block metals, and (iv) zeolite- like metal organic framework assembled from single-metal ion based MBB ([MN2(CO2)4]) via 2-, 3-,and 4-connected organic linkers. Consequently, the porosity, chemical and thermal stability, and gas sorption properties will be evaluated and detailed.

  10. Organic materials for second harmonic generation. Final report

    International Nuclear Information System (INIS)

    Twieg, R.J.

    1985-01-01

    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs

  11. Organic materials for second harmonic generation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Twieg, R.J. (comp.)

    1985-03-31

    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs. (WRF)

  12. Self-organization of a tetrasubstituted tetrathiafulvalene (TTF) in a silica based hybrid organic-inorganic material.

    Science.gov (United States)

    Cerveau, Geneviève; Corriu, Robert J P; Lerouge, Frédéric; Bellec, Nathalie; Lorcy, Dominique; Nobili, Maurizio

    2004-02-21

    A hybrid organic inorganic nanostructured material containing a TTF core substituted by four arms exhibited a high level of both condensation at silicon (96%) and self-organization as evidenced by X-ray diffraction and an unprecedented birefringent behaviour.

  13. Load dependence of left ventricular contraction and relaxation. Effects of caffeine.

    Science.gov (United States)

    Leite-Moreira, A F; Correia-Pinto, J; Gillebert, T C

    1999-08-01

    Load dependence of left ventricular (LV) contraction and relaxation was investigated at baseline and after alteration of intracellular calcium handling by caffeine. Afterload was increased by aortic clamp occlusions (n = 281) in anesthetized open-chest dogs (n = 7). Control and first heartbeat after the intervention were considered for analysis. Caffeine (50 mg/kg, iv) had no inotropic effect. The systolic LV pressure (LVP), developed in response to aortic occlusion, decreased as ejection proceeded and this pressure generating capacity was not affected by caffeine. Late-systolic aortic occlusions induced premature onset and accelerated rate of initial LVP fall at baseline and similarly after caffeine. Graded diastolic aortic occlusions induced systolic LVP elevations of various magnitudes. Smaller LVP elevations prolonged ejection and accelerated LVP fall, while larger elevations had opposite effects. The transition from acceleration to deceleration was observed at 83.1 +/- 1.1% of peak isovolumetric LVP at baseline and at lower loads, at 77.6 +/- 1.2%, after caffeine (p caffeine (p dependence of relaxation, was also modified by caffeine. Caffeine affected LV relaxation without altering contractility. As a consequence contraction-relaxation coupling was modified by caffeine. These results might help to understand load dependence of relaxation in conditions where intracellular calcium handling is altered.

  14. Solar System Connections to the Organic Material In the ISM

    Science.gov (United States)

    Pendleton, Yvonne J.

    2003-01-01

    The organic component of the interstellar medium (ISM) has relevance to the formation of the early solar nebula, since our solar system formed out of ISM material. Comparisons of near infrared spectra of the diffuse ISM dust with those of primitive solar system bodies (such as comets and meteorites) show a remarkable similarity, suggesting that perhaps some of the interstellar organic material made its way, unaltered, into our solar system. Tracing the interstellar organic material is necessary to understand how these materials may be important links in the development of prebiotic phenomena. Studies of the ISM reveal that the organic refractory component of the diffuse ISM is largely hydrocarbon in nature, possessing little N or O, with carbon distributed between the aromatic and aliphatic forms. There is a strong similarity in the near IR spectra of the diffuse ISM (the 3.4 micron hydrocarbon bands) and those seen in the Murchison and Orgueil meteorites, however, detailed comparisons at longer wavelengths reveal critical dissimilarities. Here we will present comparisons and discussion of relevant spectra. As we continue to explore, we will gain insight into the connection between planetesimals in the solar system and chemistry in the dusty space between the stars.

  15. Addressing challenges in bar-code scanning of large-volume infusion bags.

    Science.gov (United States)

    Raman, Kirthana; Heelon, Mark; Kerr, Gary; Higgins, Thomas L

    2011-08-01

    A hospital pharmacy's efforts to identify and address challenges with bedside scanning of bar codes on large-volume parenteral (LVP) infusion bags are described. Bar-code-assisted medication administration (BCMA) has been shown to reduce medication errors and improve patient safety. After the pilot implementation of a BCMA system and point-of-care scanning procedures at a medical center's intensive care unit, it was noted that nurses' attempted bedside scans of certain LVP bags for product identification purposes often were not successful. An investigation and root-cause analysis, including observation of nurses' scanning technique by a multidisciplinary team, determined that the scanning failures stemmed from the placement of two bar-code imprints-one with the product identification code and another, larger imprint with the expiration date and lot number-adjacently on the LVP bags. The nursing staff was educated on a modified scanning technique, which resulted in significantly improved success rates in the scanning of the most commonly used LVP bags. Representatives of the LVP bag manufacturer met with hospital staff to discuss the problem and corrective measures. As part of a subsequent infusion bag redesign, the manufacturer discontinued the use of the bar-code imprint implicated in the scanning failures. Failures in scanning LVP bags were traced to problematic placement of bar-code imprints on the bags. Interdisciplinary collaboration, consultation with the bag manufacturer, and education of the nursing and pharmacy staff resulted in a reduction in scanning failures and the manufacturer's removal of one of the bar codes from its LVP bags.

  16. Production of fungal volatile organic compounds in bedding materials

    Directory of Open Access Journals (Sweden)

    S. LAPPALAINEN

    2008-12-01

    Full Text Available The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin and analysed by gas chromatography. Several microbial volatile organic compounds (MVOCs, e.g. 1-butanol, 2-hexanone, 2-heptanone, 3-octanone, 1-octen-3-ol and 1-octanol were detected in laboratory experiments; however, these accounted for only 0.08-1.5% of total volatile organic com-pounds (TVOCs. Emission rates of MVOCs were 0.001-0.176 mg/kg of bedding materials per hour. Despite some limitations of the analytical method, certain individual MVOCs, 2-hexanone, 2-hep-tanone and 3-octanone, were also detected in concentrations of less than 4.6 mg/m 3 (0.07-0.31% of TVOC in a horse stable where peat and shavings were used as bedding materials. MVOC emission rate was estimated to be 0.2-2.0 mg/kg ´ h -1 from bedding materials in the stable, being about ten times higher than the rates found in the laboratory experiments. Some compounds, e.g. 3-octanone and 1-octen-3-ol, can be assumed to originate mainly from microbial metabolisms.;

  17. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  19. Organic Phase Change Materials And Their Textile Applications: An Overview

    OpenAIRE

    Sarıer, Nihal; Önder, Emel

    2012-01-01

    An organic phase change material (PCM) possesses the ability to absorb and release large quantity of latent heat during a phase change process over a certain temperature range. The use of PCMs in energy storage and thermal insulation has been tested scientifically and industrially in many applications. The broad based research and development studies concentrating on the characteristics of known organic PCMs and new materials as PCM candidates, the storage methods of PCMs, as well as the reso...

  20. Composition of estuarine colloidal material: organic components

    Science.gov (United States)

    Sigleo, A.C.; Hoering, T.C.; Helz, G.R.

    1982-01-01

    Colloidal material in the size range 1.2 nm to 0.4 ??m was isolated by ultrafiltration from Chesapeake Bay and Patuxent River waters (U.S.A.). Temperature controlled, stepwise pyrolysis of the freeze-dried material, followed by gas chromatographic-mass spectrometric analyses of the volatile products indicates that the primary organic components of this polymer are carbohydrates and peptides. The major pyrolysis products at the 450??C step are acetic acid, furaldehydes, furoic acid, furanmethanol, diones and lactones characteristic of carbohydrate thermal decomposition. Pyrroles, pyridines, amides and indole (protein derivatives) become more prevalent and dominate the product yield at the 600??C pyrolysis step. Olefins and saturated hydrocarbons, originating from fatty acids, are present only in minor amounts. These results are consistent with the composition of Chesapeake phytoplankton (approximately 50% protein, 30% carbohydrate, 10% lipid and 10% nucleotides by dry weight). The pyrolysis of a cultured phytoplankton and natural particulate samples produced similar oxygen and nitrogencontaining compounds, although the proportions of some components differ relative to the colloidal fraction. There were no lignin derivatives indicative of terrestrial plant detritus in any of these samples. The data suggest that aquatic microorganisms, rather than terrestrial plants, are the dominant source of colloidal organic material in these river and estuarine surface waters. ?? 1982.

  1. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    Science.gov (United States)

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  2. Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials

    Science.gov (United States)

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D.

    2016-01-01

    Abstract Research on redox‐flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of “green”, safe, and cost‐efficient energy storage, research has shifted from metal‐based materials to organic active materials in recent years. This Review presents an overview of various flow‐battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox‐active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted. PMID:28070964

  3. Theory-Guided Design of Organic Electro-Optic Materials and Devices

    Directory of Open Access Journals (Sweden)

    Stephanie Benight

    2011-08-01

    Full Text Available Integrated (multi-scale quantum and statistical mechanical theoretical methods have guided the nano-engineering of controlled intermolecular electrostatic interactions for the dramatic improvement of acentric order and thus electro-optic activity of melt-processable organic polymer and dendrimer electro-optic materials. New measurement techniques have permitted quantitative determination of the molecular order parameters, lattice dimensionality, and nanoscale viscoelasticity properties of these new soft matter materials and have facilitated comparison of theoretically-predicted structures and thermodynamic properties with experimentally-defined structures and properties. New processing protocols have permitted further enhancement of material properties and have facilitated the fabrication of complex device structures. The integration of organic electro-optic materials into silicon photonic, plasmonic, and metamaterial device architectures has led to impressive new performance metrics for a variety of technological applications.

  4. Bio-assisted synthesis of mesoporous Li3V2(PO4)3 for high performance lithium-ion batteries

    DEFF Research Database (Denmark)

    He, W.; Zhang, X.D.; Du, X.Y.

    2013-01-01

    The mesoporous biocarbon coated Li3V2(PO4)3(MBC-LVP) cathode material is synthesized by abiotemplate-assisted sol–gel reaction process using low-cost beer waste brewing yeasts (BWBYs) as bothstructural template and biocarbon source. The structure and electrochemical performances of MBC-LVPwere in...

  5. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Evaluation and Validation of Organic Materials for Advanced Stirling Convertors (ASCs): Overview

    Science.gov (United States)

    Shin, Euy-Sik Eugene

    2015-01-01

    Various organic materials are used as essential parts in Stirling Convertors for their unique properties and functionalities such as bonding, potting, sealing, thread locking, insulation, and lubrication. More efficient Advanced Stirling Convertors (ASC) are being developed for future space applications especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration or lunar surface power or Mars rovers, and others. Thus, performance, durability, and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations based on their mission specifications. In general, thermal stability, radiation hardness, outgassing, and material compatibility of the selected organics have been systematically evaluated while their process and fabrication conditions and procedures were being optimized. Service environment-simulated long term aging tests up to 4 years were performed as a function of temperature for durability assessment of the most critical organic material systems.

  7. Radiation tests at cryogenic temperature on selected organic materials for LHC

    International Nuclear Information System (INIS)

    Humer, K.; Weber, H.W.; Szeless, B.; Tavlet, M.

    1997-01-01

    Future multi-TeV particle accelerators like the CERN Large Hadron Collider (LHC) will use superconducting magnets in which organic materials will be exposed to high radiation levels at temperatures as low as 2 K. A representative selection of organic materials comprising insulating films, cable insulations, epoxy resins and composites were exposed to neutron and gamma radiation of a nuclear reactor. Depending on the type of materials, the integrated radiation doses varied between 180 kGy and 155 MGy. During irradiation, the samples were kept close to the boiling temperature of liquid nitrogen, i.e. at 80 K, and thereafter stored in liquid nitrogen and transferred at the same temperature into the testing device for measurement of tensile and flexural strength. Tests were carried out on the same materials at similar dose rates at room temperature, and the results are compared with the ones obtained at cryogenic temperature. They show that within the selected dose range, a number of organic materials are suitable for use in radiation fields of the LHC at cryogenic temperature

  8. Newly developed standard reference materials for organic contaminant analysis

    Energy Technology Data Exchange (ETDEWEB)

    Poster, D.; Kucklick, J.; Schantz, M.; Porter, B.; Wise, S. [National Inst. of Stand. and Technol., Gaithersburg, MD (USA). Center for Anal. Chem.

    2004-09-15

    The National Institute of Standards and Technology (NIST) has issued a number of Standard Reference Materials (SRM) for specified analytes. The SRMs are biota and biological related materials, sediments and particle related SRMs. The certified compounds for analysis are polychlorinated biphenyls (PCB), polycylic aromatic hydrocarbons (PAH) and their nitro-analogues, chlorinated pesticides, methylmercury, organic tin compounds, fatty acids, polybrominated biphenyl ethers (PBDE). The authors report on origin of materials and analytic methods. (uke)

  9. Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wu; Read, Adam L.; Koech, Phillip K.; Hu, Dehong; Wang, Chong M.; Xiao, Jie; Padmaperuma, Asanga B.; Graff, Gordon L.; Liu, Jun; Zhang, Jiguang

    2012-02-01

    Two organic cathode materials based on poly(anthraquinonyl sulfide) structure with different substitution positions were synthesized and their electrochemical behavior and battery performances were investigated. The substitution positions on the anthraquinone structure, binders for electrode preparation and electrolyte formulations have been found to have significant effects on the battery performances of such organic cathode materials. The substitution position with less steric stress has higher capacity, longer cycle life and better high-rate capability. Polyvinylidene fluoride binder and ether-based electrolytes are favorable for the high capacity and long cycle life of the quinonyl organic cathodes.

  10. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials.

    Science.gov (United States)

    Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2017-01-16

    Research on redox-flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of "green", safe, and cost-efficient energy storage, research has shifted from metal-based materials to organic active materials in recent years. This Review presents an overview of various flow-battery systems. Relevant studies concerning their history are discussed as well as their development over the last few years from the classical inorganic, to organic/inorganic, to RFBs with organic redox-active cathode and anode materials. Available technologies are analyzed in terms of their technical, economic, and environmental aspects; the advantages and limitations of these systems are also discussed. Further technological challenges and prospective research possibilities are highlighted. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-01-01

    are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due

  12. Acid digestion of organic materials

    International Nuclear Information System (INIS)

    Capp, P.D.

    1988-01-01

    To overcome the high temperatures involved in straight incineration of organic waste and the difficulty of extracting actinides from the ash various research establishments throughout the world, including Winfrith and Harwell in the UK, have carried out studies on an alternative chemical combustion method known as acid digestion. The basis of the technique is to digest the waste in concentrated sulphuric acid containing a few percent of nitric acid at a temperature of about 250 0 C. Acid digestion residues consist mainly of non-refractory inorganic sulphates and oxides from which any actinide materials can easily be extracted. (author)

  13. Investigations on quinquethiophenes as donor materials in organic solar cells

    International Nuclear Information System (INIS)

    Schulze, Kerstin

    2008-01-01

    Organic photovoltaics could in the future represent a possibility for energy production from renewable energy sources. The advance consists here first of all in the potential of a very reasonable fabrication, for instance a production in the role-to-role procedurre, which can be prusued so on flexible substrates like for instance foils. Although the material costs are low, until the commercialization of organic solar cells among others an increasement of their power efficiency is necessary. Preferably in organic solar cells donor and acceptor materials should be applied, the absorption spectra and energy levels of which are ideally matched, because so can high zero-current voltages be reached. Additionally high absorption coefficents of the materials over a large spectral range can lead to high current densities in these photovoltaic components. In this thesis novel quinquethiophenes as donors in organic solar cells are studied, which consist as basic unit of five thiophene rings as well as dicyanovinyl end groups and alkyl side chains. The studied materials possess a high absorption coefficient and reach because of the high ionization potential high zero-current voltages in organic solar cells under application of the fullerenet C 60 as acceptor. Simultaneously a efficient separation of the excitons on the acceptor-donor interface occurs. However the high ionization potential of the quinquethiophenes puts special requirements to the further solar-cell structure. Within this thesis it is shown that adifference between internal voltage and zero-current voltage influences decidingly the shape of the solar-cell characteristic and can generate a S-shape in the neighbourhood of the zero-current voltage. The internal voltage is hereby determined by the contacting of the photoactive layers. An increasement of the internal voltage of the solar cell can be reached by a corresponding material choice. So in this thesis it is shown that organic solar cells based on these

  14. On the origin of the organic-rich material on Ceres

    Science.gov (United States)

    Marchi, Simone; Bowling, Timothy; De Sanctis, Maria Cristina

    2017-10-01

    The detection of localized, organic-rich material on Ceres [1] poses an interesting conundrum. Either the organic-rich material has an exogenous origin, and thus it has been delivered to Ceres after its formation; or it has an endogenous origin, and thus it has been synthesized and/or concentrated in a specific location on Ceres via internal processes.Both scenarios have shortfalls, indicating we may ultimately be missing how organic matter has been formed, transported and reworked in solar system objects. The very location of Ceres at the boundary between the inner and outer solar system, and its intriguing composition characterized by clays, sodium- and ammonium-carbonates [2], suggest Ceres experienced a very complex chemical evolution. The role of organics in this evolution is not fully understood, with important astrobiological implications [3].Here we investigate the viability of organics delivery to Ceres via asteroidal/cometary impactors. We will present iSALE shock physics code [4-5] simulations that explore a range of impact parameters, such as impactor sizes and velocities, and discuss the likelihood of organics delivery. We find that comet-like projectiles, with relatively high impact velocities, are expected to lose almost all of their organics due to shock compression. Asteroidal-like impactors, with lower incident velocities, can retain 20-30% of their pre-impact organic material during delivery, especially for small impactors and very oblique impact angles. However, the spatial distribution of organics on Ceres seems difficult to reconcile with delivery from small main belt asteroids. These findings corroborate an endogenous origin for the organics on Ceres.[1] De Sanctis M. C. et al. Science 355, 2016. [2] De Sanctis M. C. et al. Nature 536, 2016. [3] Castillo-Rogez J. C. et al. Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989). [4] Amsden A. et al. LANL Report, LA-8095, 1980. [5] Collins G. S. et al. MAPS 39, 2004.

  15. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    Science.gov (United States)

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  16. Chemistry of decomposition of freshwater wetland sedimentary organic material during ramped pyrolysis

    Science.gov (United States)

    Williams, E. K.; Rosenheim, B. E.

    2011-12-01

    Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (μmol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary

  17. Tandem-type organic solar cells by stacking different heterojunction materials

    International Nuclear Information System (INIS)

    Triyana, Kuwat; Yasuda, Takeshi; Fujita, Katsuhiko; Tsutsui, Tetsuo

    2005-01-01

    Three layers of phthalocyanine/perylene heterojunction (HJ) components were stacked and sandwiched by an indium tin oxide (ITO) and a top metal electrode, which is denoted by a triple-HJ organic solar cell. The organic material in the middle-HJ component second from the ITO was varied to investigate the photovoltaic properties. The power conversion efficiency (PCE) was improved by the more balanced photo-generated carrier by use of the appropriate material for the second-HJ component. The optimized device showed higher PCE (1.38%) than the reference device (0.98%)

  18. New organic materials for optics: optical storage and nonlinear optics

    International Nuclear Information System (INIS)

    Gan, F.

    1996-01-01

    New organic materials have received considerable attention recently, due to their easy preparation and different variety. The most application fields in optics are optical storage and nonlinear optics. In optical storage the organic dyes have been used for example, in record able and erasable compact disks (CD-R, CD-E) nonlinear optical effects, such as nonlinear optical absorption, second and third order optical absorption, second and third order optical nonlinearities, can be applied for making optical limiters, optical modulators, as well as laser second and third harmonic generations. Due to high value of optical absorption and optical nonlinearity organic materials are always used as thin films in optical integration. In this paper the new experimental results have been presented, and future development has been also discussed. (author)

  19. Recent Advances in Analytical Pyrolysis to Investigate Organic Materials in Heritage Science.

    Science.gov (United States)

    Degano, Ilaria; Modugno, Francesca; Bonaduce, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2018-06-18

    The molecular characterization of organic materials in samples from artworks and historical objects traditionally entailed qualitative and quantitative analyses by HPLC and GC. Today innovative approaches based on analytical pyrolysis enable samples to be analysed without any chemical pre-treatment. Pyrolysis, which is often considered as a screening technique, shows previously unexplored potential thanks to recent instrumental developments. Organic materials that are macromolecular in nature, or undergo polymerization upon curing and ageing can now be better investigated. Most constituents of paint layers and archaeological organic substances contain major insoluble and chemically non-hydrolysable fractions that are inaccessible to GC or HPLC. To date, molecular scientific investigations of the organic constituents of artworks and historical objects have mostly focused on the minor constituents of the sample. This review presents recent advances in the qualitative and semi-quantitative analyses of organic materials in heritage objects based on analytical pyrolysis coupled with mass spectrometry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of gamma-rays irradiation on tracking resistance of organic insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Du, Boxue; Suzuki, Akio; Kobayashi, Shigeo [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology

    1996-04-01

    This paper describes the influence of gamma-rays irradiation on tracking failure of organic insulating materials by use of the IEC Publ.112 method. Tracking resistance of organic insulating materials under wet polluted condition has been studied by many investigators with a test method of the IEC Publ.112. The investigations on irradiation effects on tracking resistance should be enhanced due to the increasing usage of organic insulating materials in the radiation environments. The tracking resistance seems to be affected by gamma-irradiation, but the knowledge on the influence of gamma-irradiation is quite a few and systematic studies are needed. In this paper, modified polyphenylene oxide, polybutylene naphthalate, modified polycarbonate and polybutylene terephthalate which were irradiated in air until 1x10{sup 7}R and 1x10{sup 8}R with dose rate of 10{sup 6}R/hr using {sup 60}Co gamma-source have been employed. The total dose effects on the number of drops to tracking failure, contact angle and charges of scintillation have been studied. As the total doses are increased, the number of drops to tracking failure decreases with polybutylene terephthalate. On the other hand, the number of drops to tracking failure increases with polybutylene naphthalate and modified polycarbonate when the total doses are increased. The effects of gamma-rays irradiation on tracking failure are due to radiation-induced degradation or cross-linking of organic insulating materials. When the organic insulating materials are degraded by gamma-irradiation, the tracking resistance decreases, but for cross-linking type materials, the tracking resistance increases. (author)

  1. Diagnostic accuracy and comparison of BIPSS in response to lysine vasopressin and hCRH

    Directory of Open Access Journals (Sweden)

    Kush Dev Singh Jarial

    2018-03-01

    Full Text Available Context: Bilateral inferior petrosal sinus sampling (BIPSS using hCRH is currently considered the ‘gold standard’ test for the differential diagnosis of ACTH-dependent Cushing’s syndrome (CS. Vasopressin is more potent than CRH to stimulate ACTH secretion as shown in animal studies; however, no comparative data of its use are available during BIPSS. Objective: To study the diagnostic accuracy and comparison of hCRH and lysine vasopressin (LVP stimulation during BIPSS. Patients and methods: 29 patients (27-Cushing’s disease, 2-ectopic CS; confirmed on histopathology underwent BIPSS and were included for the study. Patients were randomized to receive hCRH, 5 U LVP or 10 U LVP during BIPSS for ACTH stimulation. BIPSS and contrast-enhanced magnetic resonance imaging (CEMRI were compared with intra-operative findings of trans-sphenoidal surgery (TSS for localization and lateralization of the ACTH source. Results: BIPSS correctly localized the source of ACTH excess in 29/29 of the patients with accuracy of 26/26 patients, using any of the agent, whereas sensitivity and PPV for lateralization with hCRH, 5 U LVP and 10 U LVP was seen in 10/10, 6/10; 10/10,8/10 and 7/7,6/7 patients respectively. Concordance of BIPSS with TSS was seen in 20/27, CEMRI with BIPSS in 16/24 and CEMRI with TSS in 18/24 of patients for lateralizing the adenoma. Most of the side effects were transient and were comparable in all the three groups. Conclusion: BIPSS using either hCRH or LVP (5 U or 10 U confirmed the source of ACTH excess in all the patients, while 10 U LVP correctly lateralized the pituitary adenoma in three fourth of the patients.

  2. In silico evaluation of highly efficient organic light-emitting materials

    Science.gov (United States)

    Kwak, H. Shaun; Giesen, David J.; Hughes, Thomas F.; Goldberg, Alexander; Cao, Yixiang; Gavartin, Jacob; Dixon, Steve; Halls, Mathew D.

    2016-09-01

    Design and development of highly efficient organic and organometallic dopants is one of the central challenges in the organic light-emitting diodes (OLEDs) technology. Recent advances in the computational materials science have made it possible to apply computer-aided evaluation and screening framework directly to the design space of organic lightemitting diodes (OLEDs). In this work, we will showcase two major components of the latest in silico framework for development of organometallic phosphorescent dopants - (1) rapid screening of dopants by machine-learned quantum mechanical models and (2) phosphorescence lifetime predictions with spin-orbit coupled calculations (SOC-TDDFT). The combined work of virtual screening and evaluation would significantly widen the design space for highly efficient phosphorescent dopants with unbiased measures to evaluate performance of the materials from first principles.

  3. Organic Insulation Materials, the Effect on Indoor Humidity, and the Necessity of a Vapor Barrier

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Examples of organic insulation products are cellulose fiber, other plant fiber, and animal wool. These materials, which are all very hygroscopic, are associated with certain assertions about their building physical behavior that need to be verified.Examples of such assertions are: "A vapor barrier...... is not needed when using organic insulation materials" and "Organic insulation materials have a stabilizing effect on the indoor humidity".The paper presents some numerical analyses of the hygrothermal behavior of wall constructions and the occupied spaces they surround when an organic insulation material...

  4. Organic material in clay-based buffer materials and its potential impact on radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Goulard, M.; Stroes-Gascoyne, S.; Haveman, S.A.; Bachinski, D.B.; Hamon, C.J.; Comba, R.

    1997-03-01

    AECL has submitted an Environmental Impact Statement (EIS) to evaluate the concept of nuclear fuel disposal at depth in crystalline rock of the Canadian Shield. In this disposal concept used fuel would be emplaced in corrosion-resistant containers which would be surrounded by clay-based buffer and backfill materials. Once groundwater is able to penetrate the buffer and corrosion-resistant container, radionuclides could be transported from the waste form to the surrounding geosphere, and eventually to the biosphere. The release of radionuclides from the waste form and their subsequent transport would be determined by the geochemistry of the disposal vault and surrounding geosphere. Organic substances affect the geochemistry of radionuclides through complexation reactions that increase solubility and alter mobility, by affecting the redox of certain radionuclides and by providing food for microbes. The purpose of this study was to determine whether the buffer and backfill materials proposed for use in a disposal vault contain organics that could be leached by groundwater in large enough quantities to complex with radionuclides and affect their mobility within the disposal vault and surrounding geosphere. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon, humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 deg C and 90 deg C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. Humic substances were isolated from the leachates to determine the concentrations of humic and fulvic acids and to determine their functional group content by acid-base titrations. The results showed that groundwater would leach significant amounts of organics that would complex with radionuclides such as

  5. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    Science.gov (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  6. Inorganic-organic hybrid polymer for preparation of affiliating material using electron beam irradiation

    International Nuclear Information System (INIS)

    Chung, Jaeseung; Kim, Seongeun; Kim, Byounggak; Lee, Jongchan; Park, Jihyun; Lee, Byeongcheol

    2011-01-01

    Recently, silver nano materials have gained a lot of attentions in a variety of applications due to the unique biological, optical, and electrical properties. Especially, the antifouling property of these material is considered to be an important character for biomedical field, marine coatings industry, biosensor, and drug delivery. In this study, we design and synthesize the inorganic-organic hybrid polymer for preparation of affiliating materials. Silver nano materials having antifouling property with different shapes are prepared by control the electron beam irradiation conditions. Inorganic-organic hybrid polymer was synthesized and characterized. → Morphology and size controlled nano materials are prepared using electron beam irradiation. → Silver nano materials having various shapes can be used for antifouling material

  7. Nanoporous ionic organic networks: from synthesis to materials applications

    OpenAIRE

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-01-01

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of specia...

  8. Relating desorption of polycyclic aromatic hydrocarbons from harbour sludges to type of organic material

    Science.gov (United States)

    Heister, K.; Pols, S.; Loch, J. P. G.; Bosma, T.

    2009-04-01

    For decades, polycyclic aromatic hydrocarbons (PAH) cause great concern as environmental pollutants. Especially river and marine harbour sediments are frequently polluted with PAH derived from surface runoff, fuel and oil spills due to shipping and industrial activities, industrial waste and atmospheric deposition. Harbour sediments contain large amounts of organic carbon and clay minerals and are therefore not easy to remediate and have to be stored in sludge depositories after dredging to maintain sufficient water depth for shipping. The organic contaminants will be adsorbed to particles, leached in association with dissolved organic material or microbially degraded. However, compounds of high molecular weight are very persistent, particularly under anaerobic conditions, thus giving rise to the potential to become desorbed again. PAH adsorb mainly to organic material. It has been shown that components of the organic material with a low polarity and a high hydrophobicity like aliphatic and aromatic components exhibit a high sorption capacity for hydrophobic organic contaminants like PAH. Accordingly, not only the amount but also the type of organic material needs to be determined in order to be able to predict contaminant behaviour. In this study, desorption behaviour of the 16 EPA-PAH in two different harbour sludges from the port of Rotterdam, the Netherlands, has been investigated. The Beerkanaal (BK) site is located relatively close to the North Sea and represents a brackish environment; the Beneden Merwede River (BMR) site originates from a fresh water environment and is close to industrial sites. The samples were placed in dialysis membranes and brought into contact with water for a period of 130 days. At several time intervals, water samples were retrieved for analysis of pH, dissolved organic carbon (DOC) content, electrical conductivity and PAH concentrations. The experiment was conducted at 4 and at 20°C. Although the samples were initially treated with

  9. Behaviour of organic materials in radiation environment

    CERN Document Server

    Tavlet, M

    2000-01-01

    Radiation effects in polymers are reminded together with the ageing factors. Radiation-ageing results are mainly discussed about thermosetting insulators, structural composites and cable-insulating materials. Some hints are given about high-voltage insulations, cooling fluids, organic scintillators and light-guides. Some parameters to be taken into account for the estimate of the lifetime of components in radiation environment are also shown. (23 refs).

  10. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage

    International Nuclear Information System (INIS)

    Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C.

    2015-01-01

    Highlights: • Review of organic phase change materials for thermal energy storage. • Review of the eutectic mixtures of organic PCMs. • Review of the techniques of PCM encapsulations and enhancing the thermal conductivity. • Applications of low and medium temperature organic PCMs are listed in detail. • Recommendations are made for future applications of organic PCMs. - Abstract: Thermal energy storage as sensible or latent heat is an efficient way to conserve the waste heat and excess energy available such as solar radiation. Storage of latent heat using organic phase change materials (PCMs) offers greater energy storage density over a marginal melting and freezing temperature difference in comparison to inorganic materials. These favorable characteristics of organic PCMs make them suitable in a wide range of applications. These materials and their eutectic mixtures have been successfully tested and implemented in many domestic and commercial applications such as, building, electronic devices, refrigeration and air-conditioning, solar air/water heating, textiles, automobiles, food, and space industries. This review focuses on three aspects: the materials, encapsulation and applications of organic PCMs, and provides an insight on the recent developments in applications of these materials. Organic PCMs have inherent characteristic of low thermal conductivity (0.15–0.35 W/m K), hence, a larger surface area is required to enhance the heat transfer rate. Therefore, attention is also given to the thermal conductivity enhancement of the materials, which helps to keep the area of the system to a minimum. Besides, various available techniques for material characterization have also been discussed. It has been found that a wide range of the applications of organic PCMs in buildings and other low and medium temperature solar energy applications are in abundant use but these materials are not yet popular among space applications and virtual data storage media. In

  11. The release of organic material from clay based buffer materials and its potential implications for radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Stroes-Gascoyne, S.; Goulard, M.; Haveman, S.A.; Bachinski, D.B.

    1998-01-01

    In the Canadian nuclear fuel waste disposal concept used fuel would be placed in corrosion resistant containers which would be surrounded by clay-based buffer and backfill materials in an engineered vault excavated at 500 to 1000 m depth in crystalline rock formations in the Canadian shield. Organic substances could affect radionuclide mobility due to the effects of redox and complexation reactions that increase solubility and alter mobility. The purpose of this study was to determine whether the buffer and backfill materials, proposed for use in a disposal vault, contain organics that could be leached by groundwater in large enough quantities to affect radionuclide mobility within the disposal vault and surrounding geosphere complex. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon (DOC), humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 and 90 C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. The results showed that groundwater would leach significant amounts of organics from buffer that complex with radionuclides such as the actinides, potentially affecting their solubility and transport within the disposal vault and possibly the surrounding geosphere. In addition, the leached organics would likely stimulate microbial growth by several orders of magnitude. Heating and radiation affect the amount and nature of leachable organics. (orig.)

  12. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Min [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  13. Localized aliphatic organic material on the surface of Ceres

    Science.gov (United States)

    De Sanctis, M. C.; Ammannito, E.; McSween, H. Y.; Raponi, A.; Marchi, S.; Capaccioni, F.; Capria, M. T.; Carrozzo, F. G.; Ciarniello, M.; Fonte, S.; Formisano, M.; Frigeri, A.; Giardino, M.; Longobardo, A.; Magni, G.; McFadden, L. A.; Palomba, E.; Pieters, C. M.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2017-02-01

    Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

  14. Report on current research into organic materials in radioactive waste

    International Nuclear Information System (INIS)

    Norris, G.H.

    1987-11-01

    A preliminary review of relevant recent papers on organic materials in radioactive waste is presented. In particular, the effects of chelating or complexing agents, the influence of bacteria and the role of colloids are assessed. The requirement for further radioactive waste inventory detail is indicated. Potential problem areas associated with the presence of organic materials in radioactive waste are identified and appropriate experimental work to assess their significance is proposed. Recommendations for specific further work are made. A list and diagrams of some of the more important polymer structures likely to be present in radioactive waste and their possible degradation products are appended. (author)

  15. Organic materials: sources of nitrogen in the organic production of lettuce

    OpenAIRE

    MANOJLOVIC, Maja; CABILOVSKI, Ranko; BAVEC, Martina

    2010-01-01

    This paper presents the results of 2 experiments: an incubation experiment and a subsequent field experiment. An incubation experiment was set up in order to determine the mineralization potential of different organic materials (OMs) (well-rotted farmyard manure [FTM], guano [G], soybean seed [S], and forage pea seed [P]), the kinetics of mineral nitrogen (N) release, and the correlation between OM content and the quantity of mineralized N. The results of the incubation experiment were checke...

  16. Silicon-organic pigment material hybrids for photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, T.; Weiler, U.; Jaegermann, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstreet 23, D-64287 Darmstadt (Germany); Kelting, C.; Schlettwein, D. [Institute for Applied Physics, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Makarov, S.; Woehrle, D. [Institute of Organic and Macromolecular Chemistry, University Bremen, Leobener Street NW II, D-28359 Bremen (Germany); Abdallah, O.; Kunst, M. [Department Solar Energy, Hahn-Meitner-Institute, D-14109 Berlin (Germany)

    2007-12-14

    Hybrid materials of silicon and organic dyes have been investigated for possible application as photovoltaic material in thin film solar cells. High conversion efficiency is expected from the combination of the advantages of organic dyes for light absorption and those of silicon for charge carrier separation and transport. Low temperature remote hot wire chemical vapor deposition (HWCVD) was developed for microcrystalline silicon ({mu}c-Si) deposition using SiH{sub 4}/H{sub 2} mixtures. As model dyes zinc phthalocyanines have been evaporated from Knudsen type sources. Layers of dye on {mu}c-Si and {mu}c-Si on dye films, and composites of simultaneously and sequentially deposited Si and dye have been prepared and characterized. Raman, absorption, and photoemission spectroscopy prove the stability of the organic molecules against the rough HWCVD-Si process. Transient microwave conductivity (TRMC) indicates good electronic quality of the {mu}c-Si matrix. Energy transfer from dye to Si is indicated indirectly by luminescence and directly by photoconductivity measurements. F{sub x}ZnPc pigments with x=0,4,8,16 have been synthesized, purified and adsorbed onto H-terminated Si(1 1 1) for electronic state line up determination by photoelectron spectroscopy. For x=4 and 8 the dye frontier orbitals line up symmetrically versus the Si energy gap offering similar energetic driving forces for electron and hole injection, which is considered optimum for bulk sensitization and indicates a direction to improve the optoelectronic coupling of the organic dyes to silicon. (author)

  17. Chronic Hippocampal Expression of Notch Intracellular Domain Induces Vascular Thickening, Reduces Glucose Availability, and Exacerbates Spatial Memory Deficits in a Rat Model of Early Alzheimer.

    Science.gov (United States)

    Galeano, Pablo; Leal, María C; Ferrari, Carina C; Dalmasso, María C; Martino Adami, Pamela V; Farías, María I; Casabona, Juan C; Puntel, Mariana; Do Carmo, Sonia; Smal, Clara; Arán, Martín; Castaño, Eduardo M; Pitossi, Fernando J; Cuello, A Claudio; Morelli, Laura

    2018-03-26

    The specific roles of Notch in progressive adulthood neurodegenerative disorders have begun to be unraveled in recent years. A number of independent studies have shown significant increases of Notch expression in brains from patients at later stages of sporadic Alzheimer's disease (AD). However, the impact of Notch canonical signaling activation in the pathophysiology of AD is still elusive. To further investigate this issue, 2-month-old wild-type (WT) and hemizygous McGill-R-Thy1-APP rats (Tg(+/-)) were injected in CA1 with lentiviral particles (LVP) expressing the transcriptionally active fragment of Notch, known as Notch Intracellular Domain (NICD), (LVP-NICD), or control lentivirus particles (LVP-C). The Tg(+/-) rat model captures presymptomatic aspects of the AD pathology, including intraneuronal amyloid beta (Aβ) accumulation and early cognitive deficits. Seven months after LVP administration, Morris water maze test was performed, and brains isolated for biochemical and histological analysis. Our results showed a learning impairment and a worsening of spatial memory in LVP-NICD- as compared to LVP-C-injected Tg(+/-) rats. In addition, immuno histochemistry, ELISA multiplex, Western blot, RT-qPCR, and 1 H-NMR spectrometry of cerebrospinal fluid (CSF) indicated that chronic expression of NICD promoted hippocampal vessel thickening with accumulation of Aβ in brain microvasculature, alteration of blood-brain barrier (BBB) permeability, and a decrease of CSF glucose levels. These findings suggest that, in the presence of early Aβ pathology, expression of NICD may contribute to the development of microvascular abnormalities, altering glucose transport at the BBB with impact on early decline of spatial learning and memory.

  18. Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: a review.

    Science.gov (United States)

    Mupambwa, Hupenyu Allan; Mnkeni, Pearson Nyari Stephano

    2018-04-01

    Vermicomposting is a bio-oxidative process that involves the action of mainly epigeic earthworm species and different micro-organisms to accelerate the biodegradation and stabilization of organic materials. There has been a growing realization that the process of vermicomposting can be used to greatly improve the fertilizer value of different organic materials, thus, creating an opportunity for their enhanced use as organic fertilizers in agriculture. The link between earthworms and micro-organisms creates a window of opportunity to optimize the vermi-degradation process for effective waste biodegradation, stabilization, and nutrient mineralization. In this review, we look at up-to-date research work that has been done on vermicomposting with the intention of highlighting research gaps on how further research can optimize vermi-degradation. Though several researchers have studied the vermicomposting process, critical parameters that drive this earthworm-microbe-driven process which are C/N and C/P ratios; substrate biodegradation fraction, earthworm species, and stocking density have yet to be adequately optimized. This review highlights that optimizing the vermicomposting process of composts amended with nutrient-rich inorganic materials such as fly ash and rock phosphate and inoculated with microbial inoculants can enable the development of commercially acceptable organic fertilizers, thus, improving their utilization in agriculture.

  19. Organic lining materials test in flue gas ducts

    International Nuclear Information System (INIS)

    Raveh, R.; Sfez, D.; Johannsson, L.

    1998-01-01

    Corrosion protection solutions are being widely used in electric power plants equipped with Flue Gas Desulfurization (FGD) systems. Organic lining materials are one of many solutions available on the market for corrosion protection. This market segment is found in a continuous development in order to fulfill the severe demands of these materials. The main goal of this test is to obtain information about the high temperature resistance of the materials as occurs when the FGD system is by-passed. Aster initial investigation of this market segment only a few lining materials were found compatible according to their manufacturer data. Seven of these materials were installed in the outlet flue gas duct of the Israeli power station M.D. B. This power station is not equipped with a FGD system, thus it gives a real simulation of the environmental conditions into which the lining material is subjected when the FGD system is by-passed. The materials installation was observed carefully and performed by representatives from the manufacturers in order to avoid material failure due to a non-adequate application. The power station was shut down and the lining materials were inspected three and a half months after the lining materials were applied. The inspection results were good and besides changes in the lining color, most materials did not show any damages. During that time the flue gas temperature at the duct was 134?C except some temperature fluctuations

  20. Improvement of the quality of propagation material for organic farming system

    NARCIS (Netherlands)

    Groot, S.P.C.; Jalink, H.; Hospers-Brands, A.J.T.M.; Köhl, J.; Veerman, A.; Wenneker, M.; Wolf, van der J.M.; Bulk, van den R.W.

    2006-01-01

    The use of organic propagation material is obligatory according to the current EU regulations for organic production. However, frequently difficulties are en-countered regarding the availability, the costs or the quality. In the Netherlands a national research program aims at developing solutions,

  1. Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity.

    Science.gov (United States)

    Hwang, Sunbin; Potscavage, William J; Yang, Yu Seok; Park, In Seob; Matsushima, Toshinori; Adachi, Chihaya

    2016-10-26

    Recent progress in conducting polymer-based organic thermoelectric generators (OTEGs) has resulted in high performance due to high Seebeck coefficient, high electrical conductivity (σ), and low thermal conductivity obtained by chemically controlling the materials's redox levels. In addition to improving the properties of individual OTEGs to obtain high performance, the development of solution processes for the fabrication of OTEG modules is necessary to realize large thermoelectric voltage and low-cost mass production. However, the scarcity of good candidates for soluble organic n-type materials limits the use of π-leg module structures consisting of complementary elements of p- and n-type materials because of unbalanced transport coefficients that lead to power losses. In particular, the extremely low σ of n-type materials compared with that of p-type materials is a serious challenge. In this study, poly(pyridinium phenylene) (P(PymPh)) was tested as an n-type semiconductor in solution-processed OTEGs, and the carrier density was controlled by a solution-based chemical doping process using the dopant sodium naphthalenide, a well-known reductant. The electronic structures and doping mechanism of P(PymPh) were explored based on the changes in UV-Vis-IR absorption, ultraviolet photoelectron, and X-ray photoelectron spectra. By controlling the dopant concentration, we demonstrate a maximum n-type power factor of 0.81 μW m -1 K -2 with high σ, and at higher doping concentrations, a switch from n-type to p-type TE operation. This is one of the first cases of a switch in polarity just by increasing the concentration of the reductant and may open a new route for simplified fabrication of complementary organic layers.

  2. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    Full Text Available Irreversible electroporation (IRE produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs to create a large electroporated area and long low-voltage pulses (LVPs to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  3. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Science.gov (United States)

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  4. Tidal day organic and inorganic material flux of ponds in the Liberty Island freshwater tidal wetland.

    Science.gov (United States)

    Lehman, Peggy W; Mayr, Shawn; Liu, Leji; Tang, Alison

    2015-01-01

    The loss of inorganic and organic material export and habitat produced by freshwater tidal wetlands is hypothesized to be an important contributing factor to the long-term decline in fishery production in San Francisco Estuary. However, due to the absence of freshwater tidal wetlands in the estuary, there is little information on the export of inorganic and organic carbon, nutrient or phytoplankton community biomass and the associated mechanisms. A single-day study was conducted to assess the potential contribution of two small vegetated ponds and one large open-water pond to the inorganic and organic material flux within the freshwater tidal wetland Liberty Island in San Francisco Estuary. The study consisted of an intensive tidal day (25.5 h) sampling program that measured the flux of inorganic and organic material at three ponds using continuous monitoring of flow, chlorophyll a, turbidity and salt combined with discrete measurements of phytoplankton community carbon, total and dissolved organic carbon and nutrient concentration at 1.5 h intervals. Vegetated ponds had greater material concentrations than the open water pond and, despite their small area, contributed up to 81% of the organic and 61% of the inorganic material flux of the wetland. Exchange between ponds was important to wetland flux. The small vegetated pond in the interior of the wetland contributed as much as 72-87% of the total organic carbon and chlorophyll a and 10% of the diatom flux of the wetland. Export of inorganic and organic material from the small vegetated ponds was facilitated by small-scale topography and tidal asymmetry that produced a 40% greater material export on ebb tide. The small vegetated ponds contrasted with the large open water pond, which imported 29-96% of the inorganic and 4-81% of the organic material into the wetland from the adjacent river. This study identified small vegetated ponds as an important source of inorganic and organic material to the wetland and the

  5. Two new inorganic-organic hybrid materials based on inorganic ...

    Indian Academy of Sciences (India)

    fields such as catalysis, pharmacology, medicine, nan- otechnology, and molecular ... such POM-based hybrid materials: (a) organic ligands graft onto POMs directly; .... average value of 6.028, close to the ideal value of 6 for MoVI. The bond ...

  6. Geochemical study of the insoluble organic material (kerogen) in the Oklo uranium ore and the associated Francevillian schists

    International Nuclear Information System (INIS)

    Vandenbroucke, M.; Rouzaud, J.N.; Oberlin, A.

    1978-01-01

    The purpose of this study was to describe the organic material associated with uranium ore and ore transformations undergone by it, in terms of the following problems: (1) In the natural reactor zones, evolution of the organic material in the core and as a function of the distance away from it; (2) Comparison of organic materials from a rich and a poor ore; (3) Intercomparison of organic materials in the dispersed and concentrated state; (4) Comparison of organic materials in the uranium ore zones and in the adjacent non-mineralized Francevillian. The organic material from the reactor core could not be isolated by the normal techniques of treatment with acid. It is found in other cases that the organic material is oxidized in the uranium-bearing sediments and that the nearer to the reaction zone, the greater the oxidation, irrespective of the state of dispersion of the organic material in the rock. The uranium content does not affect this phenomenon, which is attributed to the action of the water raised to a high temperature in the vicinity of the reaction zones. On the basis of the present distribution of organic material and uranium the authors suggest a pattern for the formation of the deposit that would take into account localization of the ore in the sandstones and the part played by organic material in the accumulation process. (author)

  7. Production of fungal volatile organic compounds in bedding materials

    OpenAIRE

    S. LAPPALAINEN; A. PASANEN; P. PASANEN

    2008-01-01

    The high relative humidity of the air and many potential growth media, such as bedding materials, hay and grains in the horse stable, for example, provide suitable conditions for fungal growth. Metabolic activity of four common agricultural fungi incubated in peat and wood shavings at 25°C and 4°C was characterized in this study using previously specified volatile metabolites of micro-organisms and CO 2 production as indicators. The volatile organic compounds were collected into Tenax resin a...

  8. Progress in high-efficient solution process organic photovoltaic devices fundamentals, materials, devices and fabrication

    CERN Document Server

    Li, Gang

    2015-01-01

    This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process fo...

  9. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    Science.gov (United States)

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  10. Quantitative EDXS analysis of organic materials using the ζ-factor method

    International Nuclear Information System (INIS)

    Fladischer, Stefanie; Grogger, Werner

    2014-01-01

    In this study we successfully applied the ζ-factor method to perform quantitative X-ray analysis of organic thin films consisting of light elements. With its ability to intrinsically correct for X-ray absorption, this method significantly improved the quality of the quantification as well as the accuracy of the results compared to conventional techniques in particular regarding the quantification of light elements. We describe in detail the process of determining sensitivity factors (ζ-factors) using a single standard specimen and the involved parameter optimization for the estimation of ζ-factors for elements not contained in the standard. The ζ-factor method was then applied to perform quantitative analysis of organic semiconducting materials frequently used in organic electronics. Finally, the results were verified and discussed concerning validity and accuracy. - Highlights: • The ζ-factor method is used for quantitative EDXS analysis of light elements. • We describe the process of determining ζ-factors from a single standard in detail. • Organic semiconducting materials are successfully quantified

  11. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin [Northwestern Univ., Evanston, IL (United States)

    2016-11-18

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental, understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide electrodes

  12. Materials and Systems for Organic Redox Flow Batteries: Status and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Pan, Wenxiao [Department; Duan, Wentao [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Hollas, Aaron [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Yang, Zheng [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Li, Bin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Nie, Zimin [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Liu, Jun [Joint Center for Energy Storage Research (JCESR), Argonne, Illinois 60439, United States; Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Reed, David [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Wang, Wei [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States; Sprenkle, Vincent [Energy & amp, Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States

    2017-08-14

    Redox flow batteries are propitious stationary energy storage technologies with exceptional scalability and flexibility to improve the stability, efficiency and sustainability of our power grid. The redox-active materials are the central component to RFBs for achieving high energy density and good cyclability. Traditional inorganic-based materials encounter critical technical and economic limitations such as low solubility, inferior electrochemical activity, and high cost. Redox-active organic materials (ROMs) are promising alternative “green” candidates to push the boundaries of energy storage because of the significant advantages of molecular diversity, structural tailorability, and natural abundance. Here the recent development of a variety of ROM families and associated battery designs in both aqueous and nonaqueous electrolytes are reviewed. Moreover, the critical challenges and potential research opportunities for developing practically relevant organic flow batteries are discussed.

  13. Molecular Packing and Arrangement Govern the Photo-Oxidative Stability of Organic Photovoltaic Materials

    KAUST Repository

    Mateker, William R.; Heumueller, Thomas; Cheacharoen, Rongrong; Sachs-Quintana, I. T.; Warnan, Julien; Liu, Xiaofeng; Bazan, Guillermo C.; Beaujuge, Pierre; McGehee, Michael D.

    2015-01-01

    For long-term performance chemically robust materials are desired for organic solar cells (OSCs). Illuminating neat films of OSC materials in air and tracking the rate of absorption loss, or photobleaching, can quickly screen a material’s photo-chemical stability. In this report, we photobleach neat films of OSC materials including polymers, solution-processed oligomers, solution-processed small molecules, and vacuum-deposited small molecules. Across the materials we test, we observe photobleaching rates that span seven orders of magnitude. Furthermore, we find that the film morphology of any particular material impacts the observed photobleaching rate, and that amorphous films photobleach faster than crystalline ones. In an extreme case, films of amorphous rubrene photobleach at a rate 2500 times faster than polycrystalline films. When we compare density to photobleaching rate, we find that stability increases with density. We also investigate the relationship between backbone planarity and chemical reactivity. The polymer PBDTTPD is more photostable than it’s more twisted and less ordered furan derivitative, PBDFTPD. Finally, we relate our work to what is known about the chemical stability of structural polymers, organic pigments, and organic light emitting diode materials. For the highest chemical stability, planar materials that form dense, crystalline film morphologies should be designed for OSCs.

  14. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    KAUST Repository

    Collis, Gavin E.

    2015-12-22

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  15. Molecular Packing and Arrangement Govern the Photo-Oxidative Stability of Organic Photovoltaic Materials

    KAUST Repository

    Mateker, William R.

    2015-08-19

    For long-term performance chemically robust materials are desired for organic solar cells (OSCs). Illuminating neat films of OSC materials in air and tracking the rate of absorption loss, or photobleaching, can quickly screen a material’s photo-chemical stability. In this report, we photobleach neat films of OSC materials including polymers, solution-processed oligomers, solution-processed small molecules, and vacuum-deposited small molecules. Across the materials we test, we observe photobleaching rates that span seven orders of magnitude. Furthermore, we find that the film morphology of any particular material impacts the observed photobleaching rate, and that amorphous films photobleach faster than crystalline ones. In an extreme case, films of amorphous rubrene photobleach at a rate 2500 times faster than polycrystalline films. When we compare density to photobleaching rate, we find that stability increases with density. We also investigate the relationship between backbone planarity and chemical reactivity. The polymer PBDTTPD is more photostable than it’s more twisted and less ordered furan derivitative, PBDFTPD. Finally, we relate our work to what is known about the chemical stability of structural polymers, organic pigments, and organic light emitting diode materials. For the highest chemical stability, planar materials that form dense, crystalline film morphologies should be designed for OSCs.

  16. ACTHsub(1-24) and lysine vasopressin selectively activate dopamine synthesis in frontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Delanoy, R L; Kramarcy, N R; Dunn, A J [Florida Univ., Gainesville (USA). Coll. of Medicine

    1982-01-07

    The accumulation of (/sup 3/H)catecholamines from (/sup 3/H)tyrosine in frontal cortical, septal, striatal and hippocampal slices was examined following intracerebroventricular (i.c.v.) injections of ACTHsub(1-24), lysine vasopressin (LVP) and saline. Both ACTHsub(1-24) and LVP (1..mu..g) selectively increased the accumulation of (/sup 3/H)dopamine (DA) in frontal cortical slices, but did not affect that of (/sup 3/H)norepinephrine (NE). LVP but not ACTHsub(1-24) also inhibited the accumulation of (/sup 3/H)DA in striatal slices. ACTHsub(1-24) did not alter the accumulation of (/sup 3/H)NE in hippocampal slices, nor did LVP alter the accumulation of either catecholamine (CA) in septal slices. In vitro incubations with ACTH analogs or LVP failed to alter the rate of accumulation of (/sup 3/H)CAs in striatal, substantia nigral and frontal cortical slices, except for an inhibitory effect at high doses. This effect is believed to be an artifact of precursor dilution caused by release of tyrosine following degradation of the peptides. Neither peptide modified the increased (/sup 3/H)CA accumulation stimulated by 26 mM K/sup +/, nor did ACTHsub(1-24) modify the inhibition of (/sup 3/H)CA accumulation caused by 3 X 10/sup -6/ M Haloperidol or 3 X 10/sup -7/ M apomorphine. Selective activation of the mesocortical DA system has also been reported to occur in response to footshock, suggesting the possibility that endogenous ACTH and/or LVP might mediate the stress-induced activation of mesocortical DA synthesis. Alternatively, i.c.v. injections of these peptides may themselves be stressful and thus indirectly elicit the response.

  17. Assessing environmental effects on organic materials in cultural heritage

    DEFF Research Database (Denmark)

    Boyatzis, Stamatis; Ioakimoglou, Eleni; Facorellis, Yorgos

    2015-01-01

    Under the auspices of INVENVORG (Thales Research Funding Program – NRSF), and within a holistic approach for assessing environmental effects on organic materials in cultural heritage (CH) artefacts, the effect of artificial ageing on elemental and molecular damage and their effects...... on the structural integrity of bone was investigated. Metapodial roe deer bone samples were artificially aged under humidity and atmospheres of sulfur and nitrogen oxides in room temperature. Elemental micro-analysis of bone material through SEM-EDX and molecular investigations through FTIR and Raman spectroscopy...

  18. Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water.

    Science.gov (United States)

    Mao, Guannan; Wang, Yingying; Hammes, Frederik

    2018-02-01

    Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of different organic materials and chemical fertilizers on ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... 2The Chamber of Agricultural Engineers, Gaziantep, Turkey. Accepted 5 July, 2010. This study was conducted under greenhouse conditions to investigate the effects of applied nutrients such as ... Key words: Organic material, chemical fertilizer, Pistacia vera L., soil ... systematic approach of soil and plant.

  20. Survival of Organic Materials in Ancient Cryovolcanically-Produced Halite Crystals

    Science.gov (United States)

    Zolensky, M.; Fries, M.; Chan, Q. H.-S.; Kebukawa, Y.; Bodnar, R.; Burton, A.; Callahan, M.; Steele, A.; Sandford, S.

    2015-01-01

    Spectroscopic evidence supports the presence of Mg-Na-K salts derived from cryovolcanism on the surface of Europa. Halite (NaCl) is effective at very long-term preservation of organic phases and structures. Collection of salt crystals from Europan plumes would provide solid inclusions of organics, potentially also biomaterials, all suitable for analysis. Two thermally-metamorphosed ordinary chondrite regolith breccias (Monahans 1998 (H5) and Zag (H3-6)) contain fluid and solid inclusion-bearing halite crystals, dated to approximately 4.5 billion years, and thus the trapped aqueous fluids and solids are at least as old. Heating/freezing studies of the aqueous fluid inclusions in these halites demonstrated that they were trapped near 25 degrees Centigrade, and their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid occurred after that body's metamorphism ended, since heating would have dessicated the halite. O and H isotopes of the trapped fluids are consistent with mixing of asteroidal and cometary water. Cryovolcanic Origin of the Halite: We hypothesize that these meteoritic halites derive from ancient cryovolcanism based on the following points. (1) Salts crystals are observed as products of current cryovolcanism on Enceladus. (2) In-situ spacecraft analysis of some of the icy grains associated with the Enceladus salt found minor organic or siliceous components, including methane, also found in the Monahans halite. (3) Cryovolcanic fluids are observed to be in chemical disequilibrium, reflecting incomplete reactions between interior volatiles and rocky materials. The coexistence of N2 and HCN in Enceladus' cryovolcanic fluids requires that the plume consists of a mixture of materials whose sources experienced different degrees of aqueous processing, including primordial material trapped in ice that has not been in contact with liquid water. The observed mineral assemblage within the Monahans and Zag halites is

  1. Chemical stability of salt cake in the presence of organic materials

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1976-04-01

    High-level waste stored as salt cake is principally NaNO 3 . Some organic material is known to have been added to the waste tanks. It has been suggested that some of this organic material may have become nitrated and transformed to a detonable state. Arguments are presented to discount the presence of nitrated organics in the waste tanks. Nitrated organics generated accidentally usually explode at the time of formation. Detonation tests show that salt cake and ''worst-case'' organic mixtures are not detonable. Organic mixtures with salt cake are compared with black powder, a related exothermic reactant. Black-powder mixtures of widely varying composition can and do burn explosively; ignition temperatures are 300-450 0 C. However, black-powder-type mixes cannot be ignited by radiation and are shock-insensitive. Temperatures generated by radionuclide decay in the salt are below 175 0 C and would be incapable of igniting any of these mixtures. The expected effect of radiation on organics in the waste tanks is a slow dehydrogenation and depolymerization along with a slight increase in sensitivity to oxidation. The greatest explosion hazard, if any exists, is a hydrogen--oxygen explosion from water radiolysis, but the hydrogen must first be generated and then trapped so that the concentration of hydrogen can rise above 4 vol percent. This is impossible in salt cake. Final confirmation of the safety against organic-related explosive reactions in the salt cake will be based upon analytical determinations of organic concentrations. 12 tables, 5 fig

  2. Stimulation of soil microorganisms in pesticide-contaminated soil using organic materials

    Directory of Open Access Journals (Sweden)

    Ima Yudha Perwira

    2016-08-01

    Full Text Available Agrochemicals such as pesticides have contributed to significant increases in crop yields; however, they can also be linked to adverse effects on human health and soil microorganisms. For efficient bioremediation of pesticides accumulated in agricultural fields, stimulation of microorganisms is necessary. In this study, we investigated the relationships between bacterial biomass and total carbon (TC and total nitrogen (TN in 427 agricultural soils. The soil bacterial biomass was generally positively correlated with TC and TN contents in the soil, but some soils had a low bacterial biomass despite containing high amounts of TC and TN. Soils of two fields (fields A and B with low bacterial biomass but high TC and TN contents were investigated. Long-term pesticide use (dichloropropane-dichloropropene and fosthiazate in field A and chloropicrin in field B appeared to have contributed to the low bacterial biomass observed in these soils. Soil from field A was treated with different organic materials and incubated for 1 month under laboratory conditions. The bacterial biomass in field A soil was enhanced in treatments containing organic materials rich in TN. Application of organic materials stimulated the growth of microorganisms with the potential to bioremediate pesticide-polluted soils.

  3. Rate of Decomposition of Organic Matter in Soil as Influenced by Repeated Air Drying-Rewetting and Repeated Additions of Organic Material

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1974-01-01

    Repeated air drying and rewetting of three soils followed by incubation at 20°C resulted in an increase in the rate of decomposition of a fraction of 14C labeled organic matter in the soils. The labeled organic matter originated from labeled glucose, cellulose and straw, respectively, metabolized...... of the treatment was least in the soil which had been incubated with the labeled material for the longest time. Additions of unlabeled, decomposable organic material also increased the rate of decomposition of the labeled organic matter. The evolution of labeled CO2 during the 1st month of incubation after...... addition was in some cases 4–10 times larger than the evolution from the controls. During the continued incubation the evolution decreased almost to the level of the controls, indicating that the effect was related to the increased biological activity in the soils during decomposition of the added material...

  4. Destruction of organic materials by pressurized microwave digestion

    Energy Technology Data Exchange (ETDEWEB)

    Schramel, P. (GSF - Research Center for Environment and Health, Inst. of Ecological Chemistry, Neuherberg (Germany)); Hasse, S. (GSF - Research Center for Environment and Health, Inst. of Ecological Chemistry, Neuherberg (Germany))

    This paper describes the utility of pressurized microwave digestion (up to 85 bar) for a broad spectrum of organic materials (blood, urine, milk powder, tissues). The 'quality' of the sample solution was tested by the determination of Pb, Cd and Cu (additionally Ni and Co in some of the matrices) by anodic stripping voltammetry (DPASV) and Hydride Generation AAS (HAAS) for As. It is clearly shown that no universal 'cooking recipe' can be given. The necessary oxidation potential is very dependent on the type of organic matrix and therefore the use of acid combinations (HNO[sub 3]/HClO[sub 4]/H[sub 2]SO[sub 4]) is generally necessary to obtain adequate solution of the sample. In some cases the power of the microwave oven was not high enough to digest two samples simultaneoulsy. (Significant differences in the ease of solution are shown in the digestion of one or two samples). Some important improvements for sample preparation, such as moistening the powdered material with water and mixing well with the acid used before closing the digestion vessel etc., are also given. (orig.)

  5. Interfacial Structures and Properties of Organic Materials for Biosensors: An Overview

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2012-11-01

    Full Text Available The capabilities of biosensors for bio-environmental monitoring have profound influences on medical, pharmaceutical, and environmental applications. This paper provides an overview on the background and applications of the state-of-the-art biosensors. Different types of biosensors are summarized and sensing mechanisms are discussed. A review of organic materials used in biosensors is given. Specifically, this review focuses on self-assembled monolayers (SAM due to their high sensitivity and high versatility. The kinetics, chemistry, and the immobilization strategies of biomolecules are discussed. Other representative organic materials, such as graphene, carbon nanotubes (CNTs, and conductive polymers are also introduced in this review.

  6. Methods of organization of SCORM-compliant teaching materials in electronic format

    Directory of Open Access Journals (Sweden)

    Jacek Marciniak

    2012-06-01

    Full Text Available This paper presents a method of organizing electronic teaching materials based on their role in the teaching process rather than their technical structure. Our method allows SCORM materials stored as e-learning courses („electronic books” to be subdivided and structured so that content can be used in multiple contexts. As a standard, SCORM defines rules for organizing content, but not how to divide and structure it. Our method uses UCTS nomenclature to divide content, define relationships between content entities, and aggregate those entities into courses. This allows content to be shared in different implementations of SCORM while guaranteeing that usability and consistency are maintained.

  7. Diffraction Studies from Minerals to Organics - Lessons Learned from Materials Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Whitfield, Pamela S [ORNL

    2014-01-01

    In many regards the study of materials and minerals by powder diffraction techniques are complimentary, with techniques honed in one field equally applicable to the other. As a long-time materials researcher many of the examples are of techniques developed for materials analysis applied to minerals. However in a couple of cases the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the AXAA many of the examples have an Australian connection, the materials ranging from organics to battery materials.

  8. n-Channel semiconductor materials design for organic complementary circuits.

    Science.gov (United States)

    Usta, Hakan; Facchetti, Antonio; Marks, Tobin J

    2011-07-19

    Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an

  9. Synthesis of novel inorganic-organic hybrid materials for simultaneous adsorption of metal ions and organic molecules in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xinliang [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Li, Yanfeng, E-mail: liyf@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Yu, Cui; Ma, Yingxia; Yang, Liuqing; Hu, Huaiyuan [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Novel hybrid materials were synthesized and employed in the absorption of heavy metal and organic pollutants. Black-Right-Pointing-Pointer A novel method for amphiphilic adsorbent material synthesis was first reported in this paper. Black-Right-Pointing-Pointer The adsorbent material showed excellent adsorption capacity to Pb(II) and phenol. - Abstract: In this paper, atom transfer radical polymerization (ATRP) and radical grafting polymerization were combined to synthesize a novel amphiphilic hybrid material, meanwhile, the amphiphilic hybrid material was employed in the absorption of heavy metal and organic pollutants. After the formation of attapulgite (ATP) ATRP initiator, ATRP block copolymers of styrene (St) and divinylbenzene (DVB) were grafted from it as ATP-P(S-b-DVB). Then radical polymerization of acrylonitrile (AN) was carried out with pendent double bonds in the DVD units successfully, finally we got the inorganic-organic hybrid materials ATP-P(S-b-DVB-g-AN). A novel amphiphilic hybrid material ATP-P(S-b-DVB-g-AO) (ASDO) was obtained after transforming acrylonitrile (AN) units into acrylamide oxime (AO) as hydrophilic segment. The adsorption capacity of ASDO for Pb(II) could achieve 131.6 mg/g, and the maximum removal capacity of ASDO towards phenol was found to be 18.18 mg/g in the case of monolayer adsorption at 30 Degree-Sign C. The optimum pH was 5 for both lead and phenol adsorption. The adsorption kinetic suited pseudo-second-order equation and the equilibrium fitted the Freundlich model very well under optimal conditions. At the same time FT-IR, TEM and TGA were also used to study its structure and property.

  10. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Blochwitz-Nimoth, Jan; Bhandari, Abhinav; Boesch, Damien; Fincher, Curtis R.; Gaspar, Daniel J.; Gotthold, David W.; Greiner, Mark T.; Kido, Junji; Kondakov, Denis; Korotkov, Roman; Krylova, Valentina A.; Loeser, Falk; Lu, Min-Hao; Lu, Zheng-Hong; Lussem, Bjorn; Moro, Lorenza; Padmaperuma, Asanga B.; Polikarpov, Evgueni; Rostovtsev, Vsevolod V.; Sasabe, Hisahiro; Silverman, Gary; Thompson, Mark E.; Tietze, Max; Tyan, Yuan-Sheng; Weaver, Michael; Xin , Xu; Zeng, Xianghui

    2015-05-26

    What is an organic light emitting diode (OLED)? Why should we care? What are they made of? How are they made? What are the challenges in seeing these devices enter the marketplace in various applications? These are the questions we hope to answer in this book, at a level suitable for knowledgeable non-experts, graduate students and scientists and engineers working in the field who want to understand the broader context of their work. At the most basic level, an OLED is a promising new technology composed of some organic material sandwiched between two electrodes. When current is passed through the device, light is emitted. The stack of layers can be very thin and has many variations, including flexible and/or transparent. The organic material can be polymeric or composed small molecules, and may include inorganic components. The electrodes may consist of metals, metal oxides, carbon nanomaterials, or other species, though of course for light to be emitted, one electrode must be transparent. OLEDs may be fabricated on glass, metal foils, or polymer sheets (though polymeric substrates must be modified to protect the organic material from moisture or oxygen). In any event, the organic material must be protected from moisture during storage and operation. A control circuit, the exact nature of which depends on the application, drives the OLED. Nevertheless, the control circuit should have very stable current control to generate uniform light emission. OLEDs can be designed to emit a single color of light, white light, or even tunable colors. The devices can be switched on and off very rapidly, which makes them suitable for displays or for general lighting. Given the amazing complexity of the technical and design challenges for practical OLED applications, it is not surprising that applications are still somewhat limited. Although organic electroluminescence is more than 50 years old, the modern OLED field is really only about half that age – with the first high

  11. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.

    Science.gov (United States)

    Zhang, Congcong; Chen, Penglei; Hu, Wenping

    2016-03-09

    Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Decaying organic materials and soil quality in the Inland Northwest: A management opportunity

    Science.gov (United States)

    Alan E. Harvey; Martin F. Jurgensen; Michael J. Larsen; Russell T. Graham

    1987-01-01

    Organic debris, including wood residue, is important to the development and function of. forest soil. Organic matter stores nutrients and moisture plus it provides important habitats for microbes beneficial to tree growth. To protect long-term forest soil productivity, organic horizons and their parent materials should be maintained.

  13. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  14. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    Science.gov (United States)

    Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin G.; Abdeldayem, Hossin A.; Smith, David D.; Witherow, William K.

    1997-01-01

    Some of the primary purposes of this work are to study important technologies, particularly involving thin films, relevant to organic and polymeric materials for improving applicability to optical circuitry and devices and to assess the contribution of convection on film quality in unit and microgravity environments. Among the most important materials processing techniques of interest in this work are solution-based and by physical vapor transport, both having proven gravitational and acceleration dependence. In particular, PolyDiAcetylenes (PDA's) and PhthaloCyanines (Pc's) are excellent NonLinear Optical (NLO) materials with the promise of significantly improved NLO properties through order and film quality enhancements possible through microgravity processing. Our approach is to focus research on integrated optical circuits and optoelectronic devices relevant to solution-based and vapor processes of interest in the Space Sciences Laboratory at the Marshall Space Flight Center (MSFC). Modification of organic materials is an important aspect of achieving more highly ordered structures in conjunction with microgravity processing. Parallel activities include characterization of materials for particular NLO properties and determination of appropriation device designs consistent with selected applications. One result of this work is the determination, theoretically, that buoyancy-driven convection occurs at low pressures in an ideal gas in a thermalgradient from source to sink. Subsequent experiment supports the theory. We have also determined theoretically that buoyancy-driven convection occurs during photodeposition of PDA, an MSFC-patented process for fabricating complex circuits, which is also supported by experiment. Finally, the discovery of intrinsic optical bistability in metal-free Pc films enables the possibility of the development of logic gate technology on the basis of these materials.

  15. Survey of reference materials for trace elements, nuclides and organic microcontaminants

    International Nuclear Information System (INIS)

    Parr, R.M.; Stone, S.F.; Bel-Amakeletch, T.; Zeisler, R.

    1998-01-01

    The International Atomic Energy Agency (IAEA), in co-operation with the United Nations Environment Programme (UNEP), has recently prepared a survey on internationally available analytical reference materials for trace elements, nuclides and organic contaminants in biological, environmental and related matrices. The purpose is to help analysts to select reference materials for quality assurance that match as closely as possible, with respect to matrix type and concentrations of the measurands of interest, the ''real'' samples that are to be measured. The present version of the survey, which is available in the form of two cost-free printed volumes [1], contains over 10,000 certified and information values in 650 reference materials from 27 different producers. The 455 measurands listed include trace elements, major and minor elements, organic contaminants, organometallic compounds, radionuclides and stable isotopes. Currently, the database from which the survey has been produced is being modified and extended so as to make the data available in electronic form via the Internet. (orig.)

  16. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    Science.gov (United States)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  17. Method of distilling organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, E G.T.

    1921-11-11

    In the distillation of organic materials, by means of coursing heated gases through the distillation chamber, that can be heated by other means also, a method is given by which the hot gases coming from the distillation chamber are cooled in one or more heat-absorbent devices (for example, in spray coolers, condensers and/or water). The greater part of the products or constituents condensable at ordinary temperature are separated from the vapors and gases, and thereafter the gases should be passed through the distillation chamber after the necessary additional heating in special heaters, as one or more heat producers, suitably of the same construction as the heat absorbers, for heating and saturation with steam by means of warm condensate and/or water obtained fully or partly from the heat absorbers, possibly after separation of tar or oil from them. The patent has 11 other claims.

  18. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  19. Solution processed nanogap organic diodes based on liquid crystalline materials

    Science.gov (United States)

    Wang, Yi-Fei; Iino, Hiroaki; Hanna, Jun-ichi

    2017-09-01

    Co-planar nanogap organic diodes were fabricated with smectic liquid crystalline materials of the benzothienobenzothiophene (BTBT) derivative by a spin-coating technique. A high rectification ratio of the order of 106 at ±3 V was achieved when a liquid crystalline material of 2,7-didecyl benzothieno[3,2-b][1]benzothiophene (10-BTBT-10) was used in a device configuration of Al/10-BTBT-10/pentafluorobenzenethiol-treated Au on a glass substrate, which was 4 orders higher than that of the device based on non-liquid crystalline materials of 2,7-dibutyl benzothieno[3,2-b][1]benzothiophene (4-BTBT-4) and BTBT. Similar results were also observed when another liquid crystalline material of ω, ω'-dioctylterthiophene (8-TTP-8) and a non-liquid crystalline material of terthiophene (TTP) were used. These improved rectifications can be ascribed to the self-assembly properties and controllable molecular orientation of liquid crystalline materials, which made uniform perpendicular oriented polycrystalline films favorable for superior charge transport in nano-channels.

  20. Virtual screening of electron acceptor materials for organic photovoltaic applications

    International Nuclear Information System (INIS)

    D Halls, Mathew; Giesen, David J; Goldberg, Alexander; Djurovich, Peter J; Sommer, Jonathan; McAnally, Eric; Thompson, Mark E

    2013-01-01

    Virtual screening involves the generation of structure libraries, automated analysis to predict properties related to application performance and subsequent screening to identify lead systems and estimate critical structure–property limits across a targeted chemical design space. This approach holds great promise for informing experimental discovery and development efforts for next-generation materials, such as organic semiconductors. In this work, the virtual screening approach is illustrated for nitrogen-substituted pentacene molecules to identify systems for development as electron acceptor materials for use in organic photovoltaic (OPV) devices. A structure library of tetra-azapentacenes (TAPs) was generated by substituting four nitrogens for CH at 12 sites on the pentacene molecular framework. Molecular properties (e.g. E LUMO , E g and μ) were computed for each candidate structure using hybrid DFT at the B3LYP/6-311G** level of theory. The resulting TAPs library was then analyzed with respect to intrinsic properties associated with OPV acceptor performance. Marcus reorganization energies for charge transport for the most favorable TAP candidates were then calculated to further determine suitability as OPV electron acceptors. The synthesis, characterization and OPV device testing of TAP materials is underway, guided by these results. (paper)

  1. Study on the metabolism of contamination of radioactive materials in organism by autoradiographic techniques

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zhang Lansheng; Kang Baoan

    1988-08-01

    The metabolism of contamination of radioactive materials in organism was studied by diferent types of autoradiographic techniques, such as: (1) in body level by whole-body autoradiography; (2) in organ level by whole-organ autoradiography; (3) in cellular level by microautoradiography; (4) in subcellular level by electron microscopic autoradiography; (5) in combinative form by tissue fixative autoradiography; (6) in ionizing form by freezing autoradiography; (7) for radioactive mateials with two radionuclides by double radionuclide autoradiography; (8) for radioactive materials with low level of radionuclides by fluorescence sensitization autoradiography; (9) in dissociative products by chromatographic autoradiography

  2. The interaction of iodine with organic material in containment

    Energy Technology Data Exchange (ETDEWEB)

    Wren, J C; Ball, J M; Glown, G A; Portmann, R; Sanipelli, G G [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-01

    Organic impurities in containment water, originating from various painted structural surfaces and organic containment materials, could have a significant impact on iodine volatility following an accident. A research program has been designed to determine the impact of organic impurities on iodine volatility under accident conditions. The program consists of experimental, literature and modelling studies on the radiolysis or organic compounds in the aqueous phase, thermal and radiolytic formation and decomposition of organic iodides, dissolution of organic solvents from various painted surfaces into the aqueous phase, and iodine deposition on painted surfaces. The experimental studies consist of bench-scale `separate effects` tests as well as intermediate-scale `integrated effects` in the Radioiodine Test facility. The studies have shown that organic impurities will be found in containment water, arising from the dissolution of organic compounds from various surface paints and that these compounds can potentially have a significant impact on iodine volatility following an accident. The main impact of surface paints will occur through aqueous-phase reactions of the organic compounds that they release to the aqueous phase. Under the radiation conditions expected during an accident, these compounds will react to reduce the pH and dissolved oxygen concentration, consequently increasing the formation of I{sub 2} from I{sup -} that is present in the sump. It appears that the rates of these processes may be controlled by the dissolution kinetics of the organic compounds from the surface coatings. Moreover, the organic compounds may also react thermally and radiolytically with I{sub 2} to form organic iodides in the aqueous phase. Our studies have shown that the formation of organic iodides from soluble organics such as ketones, alcohols and phenols may have more impact on the total iodine volatility than the formation of CH{sub 3}I. (author) 13 figs., 2 tabs., 19 refs.

  3. The interaction of iodine with organic material in containment

    International Nuclear Information System (INIS)

    Wren, J.C.; Ball, J.M.; Glown, G.A.; Portmann, R.; Sanipelli, G.G.

    1996-01-01

    Organic impurities in containment water, originating from various painted structural surfaces and organic containment materials, could have a significant impact on iodine volatility following an accident. A research program at the Whiteshell Laboratories of AECL has been designed to determine the impact of organic impurities on iodine volatility under accident conditions. The program consists of experimental, literature and modelling studies on the radiolysis or organic compounds in the aqueous phase, thermal and radiolytic formation and decomposition of organic iodides, dissolution of organic solvents from various painted surfaces into the aqueous phase, and iodine deposition on painted surfaces. The experimental studies consist of bench-scale 'separate effects' tests as well as intermediate-scale 'integrated effects' in the Radioiodine Test facility. The studies have shown that organic impurities will be found in containment water, arising from the dissolution of organic compounds from various surface paints and that these compounds can potentially have a significant impact on iodine volatility following an accident. The main impact of surface paints will occur through aqueous-phase reactions of the organic compounds that they release to the aqueous phase. Under the radiation conditions expected during an accident, these compounds will react to reduce the pH and dissolved oxygen concentration, consequently increasing the formation of I 2 from I - that is present in the sump. It appears that the rates of these processes may be controlled by the dissolution kinetics of the organic compounds from the surface coatings. Moreover, the organic compounds may also react thermally and radiolytically with I 2 to form organic iodides in the aqueous phase. Our studies have shown that the formation of organic iodides from soluble organics such as ketones, alcohols and phenols may have more impact on the total iodine volatility than the formation of CH 3 I. (author) 13 figs., 2

  4. Recovery of light oil from organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, E; Schultz, E L

    1927-10-04

    To recover a high percentage of light oil from organic materials, such as crude oil, shale, and the like, the raw material, as crude oil, is vaporized in a still. The vapors are passed into a converter constructed of zinc, nickel, and lead, or sherardized steel, and contain lime and zinc chloride or zinc oxide and are agitated by paddles. The gases react under pressure which is maintained therein and gradually increased, as the temperatures in the still and converter are both gradually increased, so that after the gases have been condensed an odorless high grade light oil is produced. A pressure of from 2 to 10 lb per square inch is maintained in the converter by means of an expansion valve of the needle type, which is located in the vapor outlet pipe between the converter and the condenser. In a modified form of apparatus, a dephlegmator is located between the converter and the condenser.

  5. Preliminary investigation into the use of surface modification techniques to detect organic materials in meteorites

    OpenAIRE

    Goodyear, M. D.; Gilmour, I.; Pearson, V. K.

    2011-01-01

    Many carbonaceous chondrites (CCs) display evidence of aqueous and/or thermal alteration of their component minerals. In addition, CCs also contain up to ca. 5% carbon, much of which is organic, insoluble, involatile and unreactive, and known as insoluble organic material (IOM). It is not known if there is a causal connection between the mineral alteration, and formation or modification of organic materials; however by understanding the relationships between them, any connections (chemical or...

  6. Organics, Meteoritic Material, and other Elements in High Altitude Aerosols

    Science.gov (United States)

    Mahoney, M.; Murphy, D. M.; Thomson, D. S.

    1998-01-01

    Recent in situ measurements of the chemical composition of single aerosol particles at altitudes up to 19 km have revealed a number of surprising features about ambient particles. Upper tropospheric aerosols in the study region often contained more organic material than sulfate.

  7. Gas cluster ion beam for the characterization of organic materials in submarine basalts as Mars analogs

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Naoko, E-mail: naoko.sano@ncl.ac.uk; Barlow, Anders J.; Cumpson, Peter J. [National EPSRC XPS Users' Service (NEXUS), School of Mechanical and Systems Engineering, Stephenson Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom); Purvis, Graham W. H.; Abbott, Geoffrey D.; Gray, Neil N. D. [School of Civil Engineering and Geosciences, Devonshire Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU (United Kingdom)

    2016-07-15

    The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars and Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.

  8. Gas cluster ion beam for the characterization of organic materials in submarine basalts as Mars analogs

    International Nuclear Information System (INIS)

    Sano, Naoko; Barlow, Anders J.; Cumpson, Peter J.; Purvis, Graham W. H.; Abbott, Geoffrey D.; Gray, Neil N. D.

    2016-01-01

    The solar system contains large quantities of organic compounds that can form complex molecular structures. The processing of organic compounds by biological systems leads to molecules with distinctive structural characteristics; thus, the detection and characterization of organic materials could lead to a high degree of confidence in the existence of extra-terrestrial life. Given the nature of the surface of most planetary bodies in the solar system, evidence of life is more likely to be found in the subsurface where conditions are more hospitable. Basalt is a common rock throughout the solar system and the primary rock type on Mars and Earth. Basalt is therefore a rock type that subsurface life might exploit and as such a suitable material for the study of methods required to detect and analyze organic material in rock. Telluric basalts from Earth represent an analog for extra-terrestrial rocks where the indigenous organic matter could be analyzed for molecular biosignatures. This study focuses on organic matter in the basalt with the use of surface analysis techniques utilizing Ar gas cluster ion beams (GCIB); time of flight secondary ion mass spectrometry (ToF-SIMS), and x-ray photoelectron spectroscopy (XPS), to characterize organic molecules. Tetramethylammonium hydroxide (TMAH) thermochemolysis was also used to support the data obtained using the surface analysis techniques. The authors demonstrate that organic molecules were found to be heterogeneously distributed within rock textures. A positive correlation was observed to exist between the presence of microtubule textures in the basalt and the organic compounds detected. From the results herein, the authors propose that ToF-SIMS with an Ar GCIB is effective at detecting organic materials in such geological samples, and ToF-SIMS combined with XPS and TMAH thermochemolysis may be a useful approach in the study of extra-terrestrial organic material and life.

  9. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries.

    Science.gov (United States)

    Kang, Jungwon; Mathew, Vinod; Gim, Jihyeon; Kim, Sungjin; Song, Jinju; Im, Won Bin; Han, Junhee; Lee, Jeong Yong; Kim, Jaekook

    2014-02-10

    A monoclinic Li3V2(PO4)3/C (LVP/C) cathode for lithium battery applications was synthesized by a polyol-assisted pyro-synthesis. The polyol in the present synthesis acts not only as a solvent, reducing agent and a carbon source but also as a low-cost fuel that facilitates a combustion process combined with the release of ultrahigh exothermic energy useful for nucleation process. Subsequent annealing of the amorphous particles at 800°C for 5 h is sufficient to produce highly crystalline LVP/C nanoparticles. A combined analysis of X-ray diffraction (XRD) and neutron powder diffraction (NPD) patterns was used to determine the unit cell parameters of the prepared LVP/C. Electron microscopic studies revealed rod-type particles of length ranging from nanometer to micrometers dispersed among spherical particles with average particle-sizes in the range of 20-30 nm. When tested for Li-insertion properties in the potential windows of 3-4.3 and 3-4.8 V, the LVP/C cathode demonstrated initial discharge capacities of 131 and 196 mAh/g (~100% theoretical capacities) at 0.15 and 0.1 C current densities respectively with impressive capacity retentions for 50 cycles. Interestingly, the LVP/C cathode delivered average specific capacities of 125 and 90 mAh/g at current densities of 9.6 C and 15 C respectively within the lower potential window.

  10. A review on organic spintronic materials and devices: II. Magnetoresistance in organic spin valves and spin organic light emitting diodes

    Directory of Open Access Journals (Sweden)

    Rugang Geng

    2016-09-01

    Full Text Available In the preceding review paper, Paper I [Journal of Science: Advanced Materials and Devices 1 (2016 128–140], we showed the major experimental and theoretical studies on the first organic spintronic subject, namely organic magnetoresistance (OMAR in organic light emitting diodes (OLEDs. The topic has recently been of renewed interest as a result of a demonstration of the magneto-conductance (MC that exceeds 1000% at room temperature using a certain type of organic compounds and device operating condition. In this report, we will review two additional organic spintronic devices, namely organic spin valves (OSVs where only spin polarized holes exist to cause magnetoresistance (MR, and spin organic light emitting diodes (spin-OLEDs where both spin polarized holes and electrons are injected into the organic emissive layer to form a magneto-electroluminescence (MEL hysteretic loop. First, we outline the major advances in OSV studies for understanding the underlying physics of the spin transport mechanism in organic semiconductors (OSCs and the spin injection/detection at the organic/ferromagnet interface (spinterface. We also highlight some of outstanding challenges in this promising research field. Second, the first successful demonstration of spin-OLEDs is reviewed. We also discuss challenges to achieve the high performance devices. Finally, we suggest an outlook on the future of organic spintronics by using organic single crystals and aligned polymers for the spin transport layer, and a self-assembled monolayer to achieve more controllability for the spinterface.

  11. Poly(vinyl acetate)/clay nanocomposite materials for organic thin film transistor application.

    Science.gov (United States)

    Park, B J; Sung, J H; Park, J H; Choi, J S; Choi, H J

    2008-05-01

    Nanocomposite materials of poly(vinyl acetate) (PVAc) and organoclay were fabricated, in order to be utilized as dielectric materials of the organic thin film transistor (OTFT). Spin coating condition of the nanocomposite solution was examined considering shear viscosity of the composite materials dissolved in chloroform. Intercalated structure of the PVAc/clay nanocomposites was characterized using both wide-angle X-ray diffraction and TEM. Fracture morphology of the composite film on silicon wafer was also observed by SEM. Dielectric constant (4.15) of the nanocomposite materials shows that the PVAc/clay nanocomposites are applicable for the gate dielectric materials.

  12. Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Baddock, J.A.; Oades, J.M.; Nelson, P.N.; Skene, T.M.; Golchin, A.; Clarke, P.

    1997-01-01

    Solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy has become an important tool for examining the chemical structure of natural organic materials and the chemical changes associated with decomposition. In this paper, solid-state 13 C NMR data pertaining to changes in the chemical composition of a diverse range of natural organic materials, including wood, peat, composts, forest litter layers, and organic materials in surface layers of mineral soils, were reviewed with the objective of deriving an index of the extent of decomposition of such organic materials based on changes in chemical composition. Chemical changes associated with the decomposition of wood varied considerably and were dependent on a strong interaction between the species of wood examined and the species composition of the microbial decomposer community, making the derivation of a single general index applicable to wood decomposition unlikely. For the remaining forms of natural organic residues, decomposition was almost always associated with an increased content of alkyl C and a decreased content of O-alkyl C. The concomitant increase and decrease in alkyl and O-alkyl C contents, respectively, suggested that the ratio of alkyl to O-alkyl carbon (A/O-A ratio) may provide a sensitive index of the extent of decomposition. Contrary to the traditional view that humic substances with an aromatic core accumulate as decomposition proceeds, changes in the aromatic region were variable and suggested a relationship with the activity of lignin-degrading fungi. The A/O-A ratio did appear to provide a sensitive index of extent of decomposition provided that its use was restricted to situations where the organic materials were derived from a common starting material. In addition, the potential for adsorption of highly decomposable materials on mineral soil surfaces and the impacts which such an adsorption may have on bioavailability required consideration when the A/O-A ratio was used to assess the

  13. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    Science.gov (United States)

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    Science.gov (United States)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the

  15. New Materials and Device Designs for Organic Light-Emitting Diodes

    Science.gov (United States)

    O'Brien, Barry Patrick

    Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications. Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments. Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials. This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red

  16. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  17. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    Science.gov (United States)

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-02-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.

  18. Thermal analysis on organic phase change materials for heat storage applications

    Science.gov (United States)

    Lager, Daniel

    2016-07-01

    In this paper, methodologies based on thermal analysis to evaluate specific heat capacity, phase transition enthalpies, thermal cycling stability and thermal conductivity of organic phase change materials (PCMs) are discussed. Calibration routines for a disc type heat flow differential scanning calorimetry (hf-DSC) are compared and the applied heating rates are adapted due to the low thermal conductivity of the organic PCMs. An assessment of thermal conductivity measurements based on "Laser Flash Analysis" (LFA) and the "Transient Hot Bridge" method (THB) in solid and liquid state has been performed. It could be shown that a disc type hf-DSC is a useful method for measuring specific heat capacity, melting enthalpies and cycling stability of organic PCM if temperature and sensitivity calibration are adapted to the material and quantity to be measured. The LFA method shows repeatable and reproducible thermal diffusivity results in solid state and a high effort for sample preparation in comparison to THB in liquid state. Thermal conductivity results of the two applied methods show large deviations in liquid phase and have to be validated by further experiments.

  19. The land disposal of organic materials in radioactive wastes: international practice and regulation

    International Nuclear Information System (INIS)

    Hooper, A.J.

    1988-01-01

    World-wide practice and regulation with regard to organic materials in radioactive wastes for land disposal have been examined with a view to establishing, where possible, their scientific justification and their relevance to disposal of organic-bearing wastes in the UK. (author)

  20. Organic molecules based on dithienyl-2,1,3-benzothiadiazole as new donor materials for solution-processed organic photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhonglian; Fan, Benhu; Ouyang, Jianyong [Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore); Xue, Feng [Department of Chemistry, National University of Singapore, Singapore 117573 (Singapore); Adachi, Chihaya [Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2010-12-15

    Polymers based on dithienyl-2,1,3-benzothiadiazole (TBT) have received strong attention as the donor materials of polymer photovoltaic cells (PVs), since they can have a low band gap. But soluble small organic molecules based on TBT have been rarely studied. This paper reports the synthesis of two small organic molecules based on TBT and their application as the donor materials of solution-processed bulk heterojunction organic photovoltaic cells (OPVs). These compounds were soluble in common organic solvents, such as chloroform, chlorobenzene and tetrahydrofuran. They have band gaps comparable to poly(3-hexylthiophene) (P3HT) and lower HOMO and LUMO (HOMO: highest occupied molecular orbital, LUMO: lowest unoccupied molecular orbital) levels than P3HT. These molecules and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were used as the donors and acceptor to fabricate bulk heterojunction OPVs through solution processing. After optimization of the experimental conditions, power conversion efficiency (PCE) of 0.66% was achieved on the solution-processed OPVs under AM 1.5G, 100 mW cm{sup -2} illumination. (author)

  1. Economic aspects of the application of different organic materials as N-sources in organic production of lettuce

    OpenAIRE

    Cabilovski, dipl ing Ranko; Manojlovic, Prof Maja; Bogdanovic, Prof Darinka; Bavec, Prof Martina

    2008-01-01

    In a field experiment on a farm registered for organic production, we studied the effect of the application of different organic materials (OM): farmyard manure (FYM), guano (G), soybean seed (S), forage pea seed (P) on lettuce yield. Besides yield, we also analyzed the economic profitability of the application of different OM. Fresh lettuce yield was significantly higher with OM treatments than with the treatments without fertilization. The highest yield was obtained with the FYM treatment (...

  2. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    N. Sareen

    2010-02-01

    Full Text Available We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10−6 M−1 min−1 and kH3O+II≤10−3 M−1 min−1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS. Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  3. Study of Uranium Concentrations in Water and Organic Material from Streams in Sweden

    International Nuclear Information System (INIS)

    Ek, J.

    1981-12-01

    The purpose of the investigation has been to study how uranium concentrations in stream water and organic material are related to various geological parameters such as rock types, average uranium content and radioactivity, fracturing, leachability of uranium from the bedrock, occurrence of uranium mineralisations and thickness and type of Quarternary deposits. The investigation has also taken account of the effects of environmental factors such as climate , precipitation, height above sea level and topography. The background concentration of uranium in organic stream sediment varies from 1 ppm to 45 ppm, with a background value of 10 ppm for all 14 areas considered together. The threshold value for organic stream material varies from 3 ppm U to 303 ppm U with a threshold value of 133 ppm U for all 14 areas considered together. For water, the background concentration varies between the 5 areas from 0.2 ppb U to 0.7 ppb U with a background value of 0.4 ppb U for all 5 areas together. The threshold value varies from 0.3 ppb U to 5.2 ppb U with a threshold value of 2.9 ppb U for all 5 areas together. An investigation of the correlation between uranium concentrations in water and organic stream material from one and the same sampling point shows a positive correlation for high concentrations, but the correlation becomes successively less significant with lower concentrations. Uranium concentrations in organic stream material and water are positively correlated with the following geological parameters:1) Background concentrations of uranium in the bedrock. 2) Abundance of fractures in the bedrock. 3) Leachability of uranium from the bedrock. 4) Presence of uranium mineralisations. For organic stream material, this positive correlation is obtained for both high and low uranium concentrations whereas for water it occurs only with high concentrations. In areas of broken topography and high relief, there is a more clearly defined correlation to the bedrock than in areas of

  4. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems

    NARCIS (Netherlands)

    Broer, D.J.; Bastiaansen, C.W.M.; Debije, M.G.; Schenning, A.P.H.J.

    2012-01-01

    Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of

  5. Computational screening of organic materials towards improved photovoltaic properties

    Science.gov (United States)

    Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan; Borunda, Mario

    2015-03-01

    The world today faces an energy crisis that is an obstruction to the development of the human civilization. One of the most promising solutions is solar energy harvested by economical solar cells. Being the third generation of solar cell materials, organic photovoltaic (OPV) materials is now under active development from both theoretical and experimental points of view. In this study, we constructed a parameter to select the desired molecules based on their optical spectra performance. We applied it to investigate a large collection of potential OPV materials, which were from the CEPDB database set up by the Harvard Clean Energy Project. Time dependent density functional theory (TD-DFT) modeling was used to calculate the absorption spectra of the molecules. Then based on the parameter, we screened out the top performing molecules for their potential OPV usage and suggested experimental efforts toward their synthesis. In addition, from those molecules, we summarized the functional groups that provided molecules certain spectrum capability. It is hoped that useful information could be mined out to provide hints to molecular design of OPV materials.

  6. Types of organic materials present in BNFL intermediate level waste streams

    International Nuclear Information System (INIS)

    Barlow, P.

    1988-01-01

    This presentation lists the constituents present in BNFL intermediate-level radioactive wastes. The inorganic and organic components are listed and there is a detailed analysis of the plutonium contaminated materials in terms of proportion of combustible and non-combustible content, up to the year 2000. A description of the Waste Treatment Complex at Sellafield is presented. The research programme for leach testing, sorption and solubility testing and decomposition of organic matter was outlined. (U.K.)

  7. Photosensitive self-assembling materials as functional dopants for organic photovoltaic cells

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Iwan, A.; Cigl, Martin; Boharewicz, B.; Tazbir, I.; Wójcik, K.; Sikora, A.; Hamplová, Věra

    2016-01-01

    Roč. 6, č. 14 (2016), s. 11577-11590 ISSN 2046-2069 R&D Projects: GA MŠk 7AMB13PL041; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : self-assembling materials * functional dopants * organic photovoltaic cells * azo group * liquid crystal Subject RIV: JI - Composite Materials Impact factor: 3.108, year: 2016

  8. Milk and serum standard reference materials for monitoring organic contaminants in human samples.

    Science.gov (United States)

    Schantz, Michele M; Eppe, Gauthier; Focant, Jean-François; Hamilton, Coreen; Heckert, N Alan; Heltsley, Rebecca M; Hoover, Dale; Keller, Jennifer M; Leigh, Stefan D; Patterson, Donald G; Pintar, Adam L; Sharpless, Katherine E; Sjödin, Andreas; Turner, Wayman E; Vander Pol, Stacy S; Wise, Stephen A

    2013-02-01

    Four new Standard Reference Materials (SRMs) have been developed to assist in the quality assurance of chemical contaminant measurements required for human biomonitoring studies, SRM 1953 Organic Contaminants in Non-Fortified Human Milk, SRM 1954 Organic Contaminants in Fortified Human Milk, SRM 1957 Organic Contaminants in Non-Fortified Human Serum, and SRM 1958 Organic Contaminants in Fortified Human Serum. These materials were developed as part of a collaboration between the National Institute of Standards and Technology (NIST) and the Centers for Disease Control and Prevention (CDC) with both agencies contributing data used in the certification of mass fraction values for a wide range of organic contaminants including polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, polybrominated diphenyl ether (PBDE) congeners, and polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners. The certified mass fractions of the organic contaminants in unfortified samples, SRM 1953 and SRM 1957, ranged from 12 ng/kg to 2200 ng/kg with the exception of 4,4'-DDE in SRM 1953 at 7400 ng/kg with expanded uncertainties generally <14 %. This agreement suggests that there were no significant biases existing among the multiple methods used for analysis.

  9. C4N3H monolayer: A two-dimensional organic Dirac material with high Fermi velocity

    Science.gov (United States)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Li, Jianfu; Du, Youwei; Tang, Nujiang

    2017-11-01

    Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications compared with inorganic ones, is of great significance and has been ongoing. However, only two such materials with low Fermi velocity have been discovered so far. Herein, we report the design of an organic monolayer with C4N3H stoichiometry that possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than the largest velocity ever reported in 2D organic Dirac materials, and it is comparable to that in graphene. The Dirac states in this monolayer arise from the extended π -electron conjugation system formed by the overlapping 2 pz orbitals of carbon and nitrogen atoms. Our finding paves the way to a search for more 2D organic Dirac materials with high Fermi velocity.

  10. Results of radiation tests at cryogenic temperature on some selected organic materials for the LHC

    International Nuclear Information System (INIS)

    Schoenbacher, H.; Szeless, B.; Tavlet, M.; Humer, K.; Weber, H.W.

    1996-01-01

    Future multi-TeV particle accelerators like the CERN Large Hadron Collider (LHC) will use superconducting magnets where organic materials will be exposed to high radiation levels at temperatures as low as 2 K. A representative selection of organic materials comprising insulating films, cable insulations, and epoxy-type impregnated resins were exposed to neutron and gamma radiation of a nuclear reactor. Depending on the type of materials, the integrated radiation doses varied between 180 kGy and 155 MGy. During irradiation, the samples were kept close to the boiling temperature of liquid nitrogen i.e. ∼ 80 K and thereafter stored in liquid nitrogen and transferred at the same temperature into the testing device for measurement of tensile and flexural strength. Tests were carried out on the same materials at similar dose rates at room temperature, and the results were compared with those obtained at cryogenic temperature. They show that, within the selected dose range, a number of organic materials are suitable for use in the radiation field of the LHC at cryogenic temperature. (orig.)

  11. Purely organic thermally activated delayed fluorescence (TADF) materials for organic light-emitting diodes (OLEDs)

    OpenAIRE

    Wong, Michael Y.; Zysman-Colman, Eli

    2017-01-01

    We thank the University of St Andrews for support. EZ-C thanks the Leverhulme Trust for financial support (RPG-2016-047). and the EPSRC (EP/P010482/1) for financial support. The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shif...

  12. High laser-fluence deposition of organic materials in water ice matrices by ''MAPLE''

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Rodrigo, K.; Schou, Jørgen

    2005-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) is a deposition technique for organic material. Water ice was used as a matrix for the biotechnologically important guest material, polyethylene glycol (PEG), for concentrations from 0.5 to 4 wt.%. The target was irradiated with 6 ns laser pulses...

  13. Recent advances in organic one-dimensional composite materials: design, construction, and photonic elements for information processing.

    Science.gov (United States)

    Yan, Yongli; Zhang, Chuang; Yao, Jiannian; Zhao, Yong Sheng

    2013-07-19

    Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials

    Directory of Open Access Journals (Sweden)

    Yuqiu Qu

    2015-12-01

    Full Text Available The effect of different organic charge transporting materials on the photoluminescence of CdSe/ZnS core/shell quantum dots has been studied by means of steady-state and time-resolved photoluminescence spectroscopy. With an increase in concentration of the organic charge transporting material in the quantum dots solutions, the photoluminescence intensity of CdSe/ZnS quantum dots was quenched greatly and the fluorescence lifetime was shortened gradually. The quenching efficiency of CdSe/ZnS core/shell quantum dots decreased with increasing the oxidation potential of organic charge transporting materials. Based on the analysis, two pathways in the photoluminescence quenching process have been defined: static quenching and dynamic quenching. The dynamic quenching is correlated with hole transporting from quantum dots to the charge transporting materials.

  15. Role of shear stress in nitric oxide-dependent modulation of renal angiotensin II vasoconstriction.

    Science.gov (United States)

    Endlich, K; Muller, C; Barthelmebs, M; Helwig, J J

    1999-08-01

    1. Renal vasoconstriction in response to angiotensin II (ANGII) is known to be modulated by nitric oxide (NO). Since shear stress stimulates the release of a variety of vasoactive compounds from endothelial cells, we studied the impact of shear stress on the haemodynamic effect of ANGII in isolated perfused kidneys of rats under control conditions and during NO synthase inhibition with L-NAME (100 microM). 2. Kidneys were perfused in the presence of cyclo-oxygenase inhibitor (10 microM indomethacin) with Tyrode's solution of relative viscosity zeta=1 (low viscosity perfusate, LVP) or, in order to augment shear stress, with Tyrode's solution containing 7% Ficoll 70 of relative viscosity zeta=2 (high viscosity perfusate, HVP). 3. Vascular conductance was 3.5+/-0.4 fold larger in HVP as compared with LVP kidneys, associated with an augmentation of overall wall shear stress by 37+/-5%. During NO inhibition, vascular conductance was only 2.5+/-0.2 fold elevated in HVP vs LVP kidneys, demonstrating shear stress-induced vasodilatation by NO and non-NO/non-prostanoid compound(s). 4. ANGII (10 - 100 pM) constricted the vasculature in LVP kidneys, but was without effect in HVP kidneys. During NO inhibition, in contrast, ANGII vasoconstriction was potentiated in HVP as compared with LVP kidneys. 5. The potentiation of ANGII vasoconstriction during NO inhibition has been shown to be mediated by endothelium-derived P450 metabolites and to be sensitive to AT2 receptor blockade in our earlier studies. Accordingly, in HVP kidneys, increasing concentrations of the AT2 receptor antagonist PD123319 (5 and 500 nM) gradually abolished the potentiation of ANGII vasoconstriction during NO inhibition, but did not affect vasoconstriction in response to ANGII in LVP kidneys. 6. Our results demonstrate, that augmentation of shear stress by increasing perfusate viscosity induces vasodilatation in the rat kidney, which is partially mediated by NO. Elevated levels of shear stress attenuate

  16. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil.

    Science.gov (United States)

    Wang, Dan; Dinh, Quang Toan; Anh Thu, Tran Thi; Zhou, Fei; Yang, Wenxiao; Wang, Mengke; Song, Weiwei; Liang, Dongli

    2018-05-01

    To exploit the plant byproducts from selenium (Se) biofortification and reduce environmental risk of inorganic Se fertilizer, pot experiment was conducted in this study. The effects of Se-enriched wheat (Triticum aestivum L.) straw (WS + Se) and pak choi (Brassica chinensis L.) (P + Se) amendment on organo-selenium speciation transformation in soil and its bioavailability was evaluated by pak choi uptake. The Se contents of the cultivated pak choi in treatments amended with the same amount of Se-enriched wheat straw and pak choi were 1.7 and 9.7 times in the shoots and 2.3 and 6.3 times in the roots compared with control treatment. Soil respiration rate was significantly increased after all organic material amendment in soil (p organic materials and thus resulted in soluble Se (SOL-Se), exchangeable Se (EX-Se), and fulvic acid-bound Se (FA-Se) fraction increasing by 25.2-29.2%, 9-13.8%, and 4.92-8.28%, respectively. In addition, both Pearson correlation and cluster analysis showed that EX-Se and FA-Se were better indicators for soil Se availability in organic material amendment soils. The Marquardt-Levenberg Model well described the dynamic kinetics of FA-Se content after Se-enriched organic material amendment in soil mainly because of the mineralization of organic carbon and organo-selenium. The utilization of Se in P + Se treatment was significantly higher than those in WS + Se treatment because of the different mineralization rates and the amount of FA-Se in soil. Se-enriched organic materials amendment can not only increase the availability of selenium in soil but also avoid the waste of valuable Se source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials

    Science.gov (United States)

    Wong, William S. Y.; Li, Minfei; Nisbet, David R.; Craig, Vincent S. J.; Wang, Zuankai; Tricoli, Antonio

    2016-01-01

    One of the innate fundamentals of living systems is their ability to respond toward distinct stimuli by various self-organization behaviors. Despite extensive progress, the engineering of spontaneous motion in man-made inorganic materials still lacks the directionality and scale observed in nature. We report the directional self-organization of soft materials into three-dimensional geometries by the rapid propagation of a folding stimulus along a predetermined path. We engineer a unique Janus bilayer architecture with superior chemical and mechanical properties that enables the efficient transformation of surface energy into directional kinetic and elastic energies. This Janus bilayer can respond to pinpoint water stimuli by a rapid, several-centimeters-long self-assembly that is reminiscent of the Mimosa pudica’s leaflet folding. The Janus bilayers also shuttle water at flow rates up to two orders of magnitude higher than traditional wicking-based devices, reaching velocities of 8 cm/s and flow rates of 4.7 μl/s. This self-organization regime enables the ease of fabricating curved, bent, and split flexible channels with lengths greater than 10 cm, demonstrating immense potential for microfluidics, biosensors, and water purification applications. PMID:28861471

  18. Charge transfer processes in hybrid solar cells composed of amorphous silicon and organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Sebastian; Neher, Dieter [Universitaet Potsdam, Inst. Physik u. Astronomie, Karl-Liebknecht-Strasse 24/25, 14467 Potsdam-Golm (Germany); Schulze, Tim; Korte, Lars [Helmholtz Zentrum Berlin, Inst. fuer Silizium Photovoltaik, Kekulestrasse 5, 12489 Berlin (Germany)

    2011-07-01

    The efficiency of hybrid solar cells composed of organic materials and amorphous hydrogenated silicon (a-Si:H) strongly depends upon the efficiency of charge transfer processes at the inorganic-organic interface. We investigated the performance of devices comprising an ITO/a-Si:H(n-type)/a-Si:H(intrinsic)/organic/metal multilayer structure and using two different organic components: zinc phthalocyanine (ZnPc) and poly(3-hexylthiophene) (P3HT). The results show higher power conversion- and quantum efficiencies for the P3HT based cells, compared to ZnPc. This can be explained by larger energy-level offset at the interface between the organic layer and a-Si:H, which facilitates hole transfer from occupied states in the valence band tail to the HOMO of the organic material and additionally promotes exciton splitting. The performance of the a-Si:H/P3HT cells can be further improved by treatment of the amorphous silicon surface with hydrofluoric acid (HF) and p-type doping of P3HT with F4TCNQ. The improved cells reached maximum power conversion efficiencies of 1%.

  19. Evolution of electrochemical performance in Li3V2(PO4)3/C composites caused by cation incorporation

    International Nuclear Information System (INIS)

    Zhang, Lu-Lu; Liang, Gan; Peng, Gang; Jiang, Yan; Fang, Hui; Huang, Yun-Hui; Croft, Mark C.; Ignatov, Alexander

    2013-01-01

    Graphical abstract: Four electrochemically active cations (M = Fe, Co, Ni, Mn) are doped into Li 3 V 2 (PO 4 ) 3 . M-incorporation does not change the monoclinic structure of Li 3 V 2 (PO 4 ) 3 , but forms some solid solutions. Minor LiMPO 4 impurity phases can be formed in the LVMP/C samples. Moreover, FePO 4 also exists as impurity in the LVFeP/C sample. Compared with pristine LVP/C, LVNiP/C electrode exhibits the lowest capacity, resulting from the decreased electronic conductivity and the lowest Li-ion diffusion coefficient, whereas LVFeP/C shows the best electrochemical performance. -- Highlights: • Cation-incorporated Li 3 V 2 (PO 4 ) 3 /C have been systematically investigated. • Cation incorporation in Li 3 V 2 (PO 4 ) 3 does not change the monoclinic structure but form solid solution. • Fe-incorporation shows the best electrochemical performance whereas Ni-incorporation shows the poorest performance. • A clear profile of cation incorporation with Fe, Co, Ni, Mn ions in Li 3 V 2 (PO 4 ) 3 /C is obtained. -- Abstract: Li 3 V 2 (PO 4 ) 3 /C (LVP/C) composites incorporated by a series of electrochemically active cations (Fe, Co, Ni, Mn) have been successfully prepared by a conventional solid-state reaction. M-incorporation (M = Fe, Co, Ni, Mn) in Li 3 V 2 (PO 4 ) 3 does not change the monoclinic structure. Analyzed with X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and high-resolution transmission electron microscopy, we find that the valence is between +2.67 and +3 for Fe, and is +2 for Co, Ni and Mn. M-doped LVP and LiMPO 4 phases coexist in the incorporated LVP/C composites. Compared with pristine LVP/C, Fe-incorporated LVP/C shows the best electrochemical performance with the highest initial discharge capacity of 131.4 mAh g −1 at 0.1 C between 2.5 and 4.3 V. The Fe-incorporated LVP/C sample also exhibits excellent rate capability with an average capacity of 122.4 mAh g −1 at 1 C and 93.5 mAh g −1 at 5 C, resulting from the

  20. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  1. Need for organic reference materials in marine science

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.E.

    1988-12-01

    The reference materials (RMs) available for organic trace analysis (OTA) and the development programmes of the RM producers are reviewed. The need for a wider range of determinants, matrices and classes of RMs, particularly the more widespread use of laboratory RMs (LRMs) is discussed. Additional certified RMs should include phenolic surfactant degradation products, chlorophenolics from the wood and paper industries, and organobromines from fire retardants. RMs as molecular markers of geogenic, pyrogenic and biogenic sources; chlorophylls and xanthophylls as a measure of marine productivity and natural shellfish toxins are proposed.

  2. Ternary solution-processed organic solar cells incorporating 2D materials

    Science.gov (United States)

    Stylianakis, Minas M.; Konios, Dimitrios; Petridis, Constantinos; Kakavelakis, George; Stratakis, Emmanuel; Kymakis, Emmanuel

    2017-12-01

    Recently, the study of ternary organic solar cells (OSCs) has attracted the efforts of the scientific community, leading to significantly higher performance due to the enhanced harvesting of incoming irradiation. Here, for the first time, and in order to promote this OSC architecture, we review the progress implemented by the application of two-dimensional (2D) materials in the field of blend bulk heterojunction ternary OSCs. Power conversion efficiency (PCE) improvements of the order of 40% compared to the reference binary devices, and PCEs in excess of 8% have been reported by incorporating graphene-based or other 2D materials as a third element inside the active layer. These OSCs combine the synergetic advantages of ternary devices and the superb properties of the 2D material family. In conclusion, the incorporation of the unique properties of graphene and other 2D materials inside the active layer opens up a very promising pathway in the design and construction of high-performance, simply fabricated and low- cost photovoltaic devices.

  3. From self-organization to self-assembly: a new materialism?

    Science.gov (United States)

    Vincent, Bernadette Bensaude

    2016-09-01

    While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.

  4. Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries.

    Science.gov (United States)

    Lee, Hyeon Jeong; Shin, Jaeho; Choi, Jang Wook

    2018-03-24

    The intrinsic limitations of lithium-ion batteries (LIBs) with regard to safety, cost, and the availability of raw materials have promoted research on so-called "post-LIBs". The recent intense research of post-LIBs provides an invaluable lesson that existing electrode materials used in LIBs may not perform as well in post-LIBs, calling for new material designs compliant with emerging batteries based on new chemistries. One promising approach in this direction is the development of materials with intercalated water or organic molecules, as these materials demonstrate superior electrochemical performance in emerging battery systems. The enlarged ionic channel dimensions and effective shielding of the electrostatic interaction between carrier ions and the lattice host are the origins of the observed electrochemical performance. Moreover, these intercalants serve as interlayer pillars to sustain the framework for prolonged cycles. Representative examples of such intercalated materials applied to batteries based on Li + , Na + , Mg 2+ , and Zn 2+ ions and supercapacitors are considered, along with their impact in materials research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Exploration on relationship between uranium and organic materials in carbonate-siliceous pelite type uranium ore deposits

    International Nuclear Information System (INIS)

    Dong Yongjie

    1996-01-01

    The author determines the content of uranium and organic carbon of part specimen of surrounding rocks and ores, which sampled from carbonate and black shale type uranium deposits in Xiushui, Jiangxi Province, and Tongcheng, Hubei Province. According to the analytical operation regulations of organic materials, extraction and separation of chloroform pitch is carried out. Internal relationships between uranium and organic derivative is discussed. The conclusion shows that: (1) certain co-relationship between U and organic carbon and chloroform extract is detected; (2) evolutionary processes of organic materials in the exogenetic uranium deposits are not all the same; (3) non-hydrocarbon is closely related to uranium, so it can be regarded as indicator of uranium gathering in exogenetic uranium deposits

  6. The effect of organic matter in clay sealing materials on the performance of a nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Stroes-Gascoyne, S.; Cheung, S.C.H.

    1986-12-01

    The potential effect of organic matter in clay sealing materials on the performance of a nuclear fuel waste disposal vault was examined. The available data indicate that the engineering properties of clays are not significantly affected by the relatively low levels of organic matter (< 1.2 wt.%) present in the clay sealing materials. Complexing of radionuclides by organic substances that are released from the clay sealing materials or produced by microorganisms will likely inhibit rather than promote radionuclide mobility in the compacted sealing materials because of the relatively large size of organic complexing species. Decreasing the level of organic matter in the clay sealing materials will not eliminate microorganisms, and perhaps not decrease their numbers significantly, because chemolithotrophic microorganisms (microorganisms that utilize inorganic forms of C) will be present in a disposal vault. Furthermore, an examination of the nutrient budget in a disposal vault indicates that N, rather than C, will likely be the limiting nutrient for microbial growth. Finally, there is not suitable, proven method for decreasing the level of organic matter in the large amounts of clay needed to seal a vault. It is concluded that the organic matter present in the clay sealing material will not adversely affect the performance of a disposal vault

  7. Optical band gaps of organic semiconductor materials

    Science.gov (United States)

    Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2016-08-01

    UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.

  8. Extracting dimer structures from simulations of organic-based materials using QM/MM methods

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Jiménez, A.J., E-mail: aj.perez@ua.es; Sancho-García, J.C., E-mail: jc.sancho@ua.es

    2015-09-28

    Highlights: • DFT geometries of isolated dimers in organic crystals differ from experimental ones. • This can be corrected using QM/MM geometry optimizations. • The QM = B3LYP–D3(ZD)/cc-pVDZ and MM = GAFF combination works reasonably well. - Abstract: The functionality of weakly bound organic materials, either in Nanoelectronics or in Materials Science, is known to be strongly affected by their morphology. Theoretical predictions of the underlying structure–property relationships are frequently based on calculations performed on isolated dimers, but the optimized structure of the latter may significantly differ from experimental data even when dispersion-corrected methods are used for it. Here, we address this problem on two organic crystals, namely coronene and 5,6,11,12-tetrachlorotetracene, concluding that it is caused by the absence of the surrounding monomers present in the crystal, and that it can be efficiently cured when the dimer is embedded into a general Quantum Mechanics/Molecular Mechanics (QM/MM) geometry optimization scheme. We also investigate how the size of the MM region affects the results. These findings may be helpful for the simulation of the morphology of active materials in crystalline or glassy samples.

  9. Neutron and gamma irradiation effects on organic insulating materials for fusion magnets

    International Nuclear Information System (INIS)

    Maurer, W.

    1985-10-01

    Available low-temperature neutron and gamma irradiation data for organic insulating materials are collected and compared with room temperature data. Only the most promising polymers in terms of mechanical strength for magnet insulation are taken into account. For characterization and comparison of different materials the 75% dose is used, i.e. the dose, where the mechanical strength is reduced by 25%, and 75% is retained. For room temperature special prepared polyimide and epoxy materials reinforced with glass fibre retained 75% of the mechanical strength up to a dose of 7x10 7 Gy. For 5 K irradiation the best epoxy material retained the 75% dose up to 1x10 7 Gy, the best polyimide material up to 1x10 8 Gy. (orig.) [de

  10. Investigation of material systems in industry and research by organic analytical mass spectrometer

    International Nuclear Information System (INIS)

    Decsy, Z.

    1980-01-01

    The modern, many-sided and efficient organic analytical mass spectrometer possesses all the structure-and composition-examination possibilities of complex organic analytical laboratories. The article presents the advantages and possibilities of the application of mass spectrometer in different operation modes in connection with the examination of a petrochemical synthesis product: ortho-phenylene-diamine, an experimental gas odorizing material, a petroleum production auxiliary material: petroleum sulfonate, a gasoline sample and a sulfur-containing standard substance. The useful operation modes include spectrum records of low and high resolution, the application of space ionization and space desorption ion sources as well as the ''mass fragmentographic'' measuring method. (author)

  11. Dynamical Effects in Metal-Organic Frameworks: The Microporous Materials as Shock Absorbers

    Science.gov (United States)

    Banlusan, Kiettipong; Strachan, Alejandro

    2017-06-01

    Metal-organic frameworks (MOFs) are a class of nano-porous crystalline solids consisting of inorganic units coordinated to organic linkers. The unique molecular structures and outstanding properties with ultra-high porosity and tunable chemical functionality by various choices of metal clusters and organic ligands make this class of materials attractive for many applications. The complex and quite unique responses of these materials to mechanical loading including void collapse make them attractive for applications in energy absorption and storage. We will present using large-scale molecular dynamics simulations to investigate shock propagation in zeolitic imidazolate framework ZIF-8 and MOF-5. We find that for shock strengths above a threshold a two-wave structure develops with a leading elastic precursor followed by a second wave of structural collapse to relax the stress. Structural transition of MOFs in response to shock waves corresponds to the transition between two Hugoniot curves, and results in abrupt change in temperature. The pore-collapse wave propagates at slower velocity than the leading wave and weakens it, resulting in shock attenuation. Increasing piston speed results in faster propagation of pore-collapse wave, but the leading elastic wave remains unchanged below the overdriven regime. We discuss how the molecular structure of the MOFs and shock propagation direction affect the response of the materials and their ability to weaken shocks. Office of Naval Research, MURI 2012 02341 01.

  12. Real-time and online screening method for materials emitting volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changhyuk [University of Minnesota, Department of Mechanical Engineering (United States); Sul, Yong Tae [Hoseo University (Korea, Republic of); Pui, David Y. H., E-mail: dyhpui@umn.edu [University of Minnesota, Department of Mechanical Engineering (United States)

    2016-09-15

    In the semiconductor industry, volatile organic compounds (VOCs) in the cleanroom air work as airborne molecular contamination, which reduce the production yield of semiconductor chips by forming nanoparticles and haze on silicon wafers and photomasks under ultraviolet irradiation during photolithography processes. Even though VOCs in outdoor air are removed by gas filters, VOCs can be emitted from many kinds of materials used in cleanrooms, such as organic solvents and construction materials (e.g., adhesives, flame retardants and sealants), threatening the production of semiconductors. Therefore, finding new replacements that emit lower VOCs is now essential in the semiconductor industry. In this study, we developed a real-time and online method to screen materials for developing the replacements by converting VOCs into nanoparticles under soft X-ray irradiation. This screening method was applied to measure VOCs emitted from different kinds of organic solvents and adhesives. Our results showed good repeatability and high sensitivity for VOCs, which come from aromatic compounds, some alcohols and all tested adhesives (Super glue and cleanroom-use adhesives). In addition, the overall trend of measured VOCs from cleanroom-use adhesives was well matched with those measured by a commercial thermal desorption–gas chromatography–mass spectrometry, which is a widely used off-line method for analyzing VOCs. Based on the results, this screening method can help accelerate the developing process for reducing VOCs in cleanrooms.

  13. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    Science.gov (United States)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  14. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    DEFF Research Database (Denmark)

    Huang, Lei; Fantke, Peter; Jolliet, Olivier

    2017-01-01

    of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32......Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...

  15. Nanoporous ionic organic networks: from synthesis to materials applications.

    Science.gov (United States)

    Sun, Jian-Ke; Antonietti, Markus; Yuan, Jiayin

    2016-11-21

    The past decade has witnessed rapid progress in the synthesis of nanoporous organic networks or polymer frameworks for various potential applications. Generally speaking, functionalization of porous networks to add extra properties and enhance materials performance could be achieved either during the pore formation (thus a concurrent approach) or by post-synthetic modification (a sequential approach). Nanoporous organic networks which include ion pairs bound in a covalent manner are of special importance and possess extreme application profiles. Within these nanoporous ionic organic networks (NIONs), here with a pore size in the range from sub-1 nm to 100 nm, we observe a synergistic coupling of the electrostatic interaction of charges, the nanoconfinement within pores and the addressable functional units in soft matter resulting in a wide variety of functions and applications, above all catalysis, energy storage and conversion, as well as environment-related operations. This review aims to highlight the recent progress in this area, and seeks to raise original perspectives that will stimulate future advancements at both the fundamental and applied level.

  16. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the

  17. Analysis of accidents with organic material in health workers.

    Science.gov (United States)

    Vieira, Mariana; Padilha, Maria Itayra; Pinheiro, Regina Dal Castel

    2011-01-01

    This retrospective and descriptive study with a quantitative design aimed to evaluate occupational accidents with exposure to biological material, as well as the profile of workers, based on reporting forms sent to the Regional Reference Center of Occupational Health in Florianópolis/SC. Data collection was carried out through a survey of 118 reporting forms in 2007. Data were analyzed electronically. The occurrence of accidents was predominantly among nursing technicians, women and the mean age was 34.5 years. 73% of accidents involved percutaneous exposure, 78% had blood and fluid with blood, 44.91% resulted from invasive procedures. It was concluded that strategies to prevent the occurrence of accidents with biological material should include joint activities between workers and service management and should be directed at improving work conditions and organization.

  18. Fate of N and relative efficiency of 15N-labeled organic materials applied to transplanted rice in northern Kyushu region of Japan

    International Nuclear Information System (INIS)

    Nishida, Mizuhiko; Tsuchiya, Kazunari; Yamamuro, Shigekazu

    2004-01-01

    Seven kinds of 15 N-labeled organic materials were applied to transplanted rice to investigate their N fate and relative efficiency in the northern Kyushu region of Japan. The 15 N-labeled organic materials examined in a micro-plot experiment were cattle manure compost, poultry manure compost, swine feces, rice straw compost, rice bran, rice straw, and wheat straw. Regarding swine feces, rice bran, and wheat straw, the direct evaluation of their N fate in paddy fields using 15 N organic materials has not been reported. A significant difference in the N fate in response to the type of organic materials was observed in the uptake rate by rice plants. The uptake rate at the maturity stage was significantly higher in poultry manure (29%), swine feces (25%), and rice bran (26%) than for the other organic materials (6-13%). Cattle manure compost showed the lowest value, namely 6-7%. Using the uptake rate of ( 15 NH 4 ) 2 SO 4 observed earlier, the relative efficiency of organ nic materials (relative uptake rate of organic material N to chemical fertilizer N) was calculated as the index of the organic material N efficiency. These relative efficiencies of organic materials derived from animal wastes were 16-19, 81, 72, and 71% for cattle manure compost, poultry manure compost, poultry manure compost without inherent NH 4 -H, and swine feces, respectively, and were similar to those estimated by indirect way. The relative efficiencies of organic materials derived from plant residues were 25-31, 73, 33 and 34% for rice straw compost, rice bran, rice straw, and wheat straw, respectively. The N uptake from the organic materials (OM-N uptake) in swine feces and cattle manure compost continued throughout the rice growth period, whereas the OM-N uptake of the other organic materials declined remarkably after 54 DAT. No significant difference was observed in the residual rate and the loss rate among the organic materials. However, some tendencies that might be related to the

  19. Effects of long-term organic material applications and green manure crop cultivation on soil organic carbon in rain fed area of Thailand

    Directory of Open Access Journals (Sweden)

    Tomohide Sugino

    2013-12-01

    Full Text Available A long-term field experiment on organic material application and crop rotation with green manure crops has been conducted since 1976 at Lopburi Agricultural Research and Development Center, Department of Agriculture, Lop Buri Province, Thailand, to clarify the effect of organic materials and green manure crop on soil organic carbon changes. The stock change factors that stand for the relative change of soil organic carbon on the carbon stock in a reference condition (native vegetation that is not degraded or improved. Stock change factor for input of organic matter (FI, representing different levels of C input to soil such as organic material application, crop residue treatment and green manure crop cultivation, was computed with the present field experimental results. While the computed FI of "High input with manure" was within the range of IPCC default FI value, some of the computed FI of " High input without manure" was much higher than the IPCC default though it was varied due to the biomass production and nutrient contents of the green manure crops planted as the second crops after corn. Therefore, the FI computed by field experimental results can contribute to more accurate estimation of SOC changes in farm land especially in Southeast Asia because the default FI mostly depends on the experimental data in temperate zones. Moreover, the field experiment has focused the effect of reduced tillage practices on SOC changes and corn yield since 2011. The results of the experiment will be used to compute Stock change factor for management regime (FMG which represents the effects of tillage operations.

  20. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, East US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  1. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  2. Treatment of radioactive silts and soils with organic materials

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Barinov, A.S.; Dmitriev, S.A.; Lifanov, F.A.; Varlakov, A.P.; Karlin, S.V.

    1997-01-01

    Moscow SIA RADON is developing the ''Clinker'' method to treat radioactive silts and grounds. The ''Clinker'' method consists of radioactive silt (ground) mixed with lime and other components. This mixture is calcined at 800 to 1000 o C. The product is ground to a surface area size of 2500 to 4500 cm 2 /g, mixed with water at a water-to-cement ratio not less than 0.25, and aged to form a solid monolith. The ''Clinker'' method was compared to the traditional cementation methods. The ''Clinker'' method reduces the final volume and enhance the strength characteristics of the final product. The ''Clinker'' cement compound has higher hardening rate. Preliminary data show that it has higher cold resistance, sulfate and leaching corrosion durability in comparison to one prepared by the traditional cementation method. The range of applicability of the ''Clinker'' method is increased by the possibility of treating materials containing up to 80% (mass) of organic materials, such as turf, flora and fauna decomposition products, and manmade material, including natural materials, such as petroleum products and polymers. In addition, the ''Clinker'' method does not require expensive waste binders, i.e., cement. The ''Clinker'' cement can be used for cementation of other radioactive waste. (author)

  3. Organic and perovskite solar cells: Working principles, materials and interfaces.

    Science.gov (United States)

    Marinova, Nevena; Valero, Silvia; Delgado, Juan Luis

    2017-02-15

    In the last decades organic solar cells (OSCs) have been considered as a promising photovoltaic technology with the potential to provide reasonable power conversion efficiencies combined with low cost and easy processability. Unexpectedly, Perovskite Solar Cells (PSCs) have experienced unprecedented rise in Power Conversion Efficiency (PCE) thus emerging as a highly efficient photovoltaic technology. OSCs and PSCs are two different kind of devices with distinct charge generation mechanism, which however share some similarities in the materials processing, thus standard strategies developed for OSCs are currently being employed in PSCs. In this article, we recapitulate the main processes in these two types of photovoltaic technologies with an emphasis on interfacial processes and interfacial modification, spotlighting the materials and newest approaches in the interfacial engineering. We discuss on the relevance of well-known materials coming from the OSCs field, which are now being tested in the PSCs field, while maintaining a focus on the importance of the material design for highly efficient, stable and accessible solar cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Demonstration test results of organic materials' volumetric reduction using bio-ethanol, thermal decomposition and burning

    International Nuclear Information System (INIS)

    Tagawa, Akihiro; Watanabe, Masahisa

    2013-01-01

    To discover technologies that can be utilized for decontamination work and verify their effects, economic feasibility, safety, and other factors, the Ministry of the Environment launched the 'FY2011 Decontamination Technology Demonstrations Project' to publicly solicit decontamination technologies that would be verified in demonstration tests and adopted 22 candidates. JAEA was commissioned by the Ministry of the Environment to provide technical assistance related to these demonstrations. This paper describes the volume reduction due to bio-ethanol, thermal decomposition and burning of organic materials in this report. The purpose of this study is that to evaluate a technique that can be used as biomass energy source, while performing volume reduction of contamination organic matter generated by decontamination. An important point of volume reduction technology of contaminated organic matter, is to evaluate the mass balance in the system. Then, confirming the mass balance of radioactive material and where to stay is important. The things that are common to all technologies, are ensuring that the radioactive cesium is not released as exhaust gas, etc.. In addition, it evaluates the cost balance and energy balance in order to understand the applicability to the decontamination of volume reduction technology. The radioactive cesium remains in the carbides when organic materials are carbonized, and radioactive cesium does not transfer to bio-ethanol when organic materials are processed for bio-ethanol production. While plant operating costs are greater if radioactive materials need to be treated, if income is expected by business such as power generation, depreciation may be calculated over approximately 15 years. (authors)

  5. Unraveling atomic-level self-organization at the plasma-material interface

    Science.gov (United States)

    Allain, J. P.; Shetty, A.

    2017-07-01

    The intrinsic dynamic interactions at the plasma-material interface and critical role of irradiation-driven mechanisms at the atomic scale during exposure to energetic particles require a priori the use of in situ surface characterization techniques. Characterization of ‘active’ surfaces during modification at atomic-scale levels is becoming more important as advances in processing modalities are limited by an understanding of the behavior of these surfaces under realistic environmental conditions. Self-organization from exposure to non-equilibrium and thermalized plasmas enable dramatic control of surface morphology, topography, composition, chemistry and structure yielding the ability to tune material properties with an unprecedented level of control. Deciphering self-organization mechanisms of nanoscale morphology (e.g. nanodots, ripples) and composition on a variety of materials including: compound semiconductors, semiconductors, ceramics, polymers and polycrystalline metals via low-energy ion-beam assisted plasma irradiation are critical to manipulate functionality in nanostructured systems. By operating at ultra-low energies near the damage threshold, irradiation-driven defect engineering can be optimized and surface-driven mechanisms controlled. Tunability of optical, electronic, magnetic and bioactive properties is realized by reaching metastable phases controlled by atomic-scale irradiation-driven mechanisms elucidated by novel in situ diagnosis coupled to atomistic-level computational tools. Emphasis will be made on tailored surface modification from plasma-enhanced environments on particle-surface interactions and their subsequent modification of hard and soft matter interfaces. In this review, we examine current trends towards in situ and in operando surface and sub-surface characterization to unravel atomic-scale mechanisms at the plasma-material interface. This work will emphasize on recent advances in the field of plasma and ion

  6. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Microraman Spectroscopy

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using µ-Raman spectroscopy.

  7. Chromium(II) Metal–Organic Polyhedra as Highly Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinhee; Perry, Zachary; Chen, Ying-Pin; Bae, Jaeyeon; Zhou, Hong-Cai (DGIST); (TAM)

    2017-08-10

    Herein we report for the first time the synthesis of Cr(II)-based metal–organic polyhedra (MOPs) and the characterization of their porosities. Unlike the isostructural Cu(II)- or Mo(II)-based MOPs, Cr(II)-based MOPs show unusually high gas uptakes and surface areas. The combination of comparatively robust dichromium paddlewheel units (Cr2 units), cage symmetries, and packing motifs enable these materials to achieve Brunauer–Emmett–Teller surface areas of up to 1000 m2/g. Reducing the aggregation of the Cr(II)-based MOPs upon activation makes their pores more accessible than their Cu(II) or Mo(II) counterparts. Further comparisons of surface areas on a molar (m2/mol cage) rather than gravimetric (m2/g) basis is proposed as a rational method of comparing members of a family of related molecular materials.

  8. Influence of Organic Material and Biofilms on Disinfectant Efficacy Against Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Hilda Nyati

    2012-04-01

    Full Text Available The effects of organic material and biofilm formation on the efficacy of Suma Tab D4 chlorine tablets and Suma Bac D10 quaternary ammonium compound (QAC against Listeria monocytogenes was determined in suspension and on stainless steel and polystyrene surfaces according to standard disinfectant test methodology. Exposure to 200 and 740 mg L-1 QAC and to 150 mg L-1 active chlorine resulted in a > 5.0 log10 CFU mL-1 and > 5.0 log10 CFU/coupon reduction of six L. monocytogenes strains within one minute, in suspension tests, and on stainless steel surfaces, respectively. Additionally, there was a reduction by as much as 5 log10 CFU/coupon or 5 log10 CFU/well of reference strains EGDe and Scott A biofilms within five minutes on stainless steel and polystyrene surfaces. Organic material, added as bovine serum albumin at 0.3% (w/v completely prevented the inactivation of L. monocytogenes in 150 mg L-1 chlorine, while reductions of only 0.6 +- 0.1 log10 CFU mL-1 were recorded in the presence of UHT milk at 3% (v/v. In contrast, reductions of 5 log10 CFU mL-1 were recorded within one minute on exposure to 740 mg L-1 QAC in the presence of 0.3% (w/v bovine serum albumin and within two minutes in the presence of 20 % (v/v UHT milk. Although Suma D4 chlorine tablets and Suma Bac D10 QAC are effective listericidal agents at recommended concentrations, Suma Tab D4 chlorine efficacy against L. monocytogenes is impaired by the presence of low concentrations of organic material, while Suma Bac D10 QAC maintains its listericidal activity in high organic loads.

  9. Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baudelet, Matthieu; Boueri, Myriam [Laboratoire de Spectrometrie Ionique et Moleculaire, Universite Claude Bernard Lyon 1, UMR CNRS 5579, 43, Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France); Yu Jin [Laboratoire de Spectrometrie Ionique et Moleculaire, Universite Claude Bernard Lyon 1, UMR CNRS 5579, 43, Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France)], E-mail: jin.yu@lasim.univ-lyon1.fr; Mao, Samuel S; Piscitelli, Vincent; Xianglei, Mao; Russo, Richard E [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2007-12-15

    Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.

  10. Zirconium-Based metal organic framework (Zr-MOF) material with high hydrostability for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2013-09-01

    Full Text Available Material-based solutions, such as metal organic frameworks (MOFs), continue to attract increasing attention as viable options for hydrogen storage applications. MOFs are widely regarded as promising materials for hydrogen storage due to their high...

  11. Strategies toward High Performance Organic Photovoltaic Cell: Material and Process

    Science.gov (United States)

    Kim, Bong Gi

    The power conversion efficiency of organic photovoltaic (OPV) cells has been rapidly improved during the last few years and currently reaches around 10 %. The performance is evenly governed by absorption, exciton diffusion, exciton dissociation, carrier transfer, and collection efficiencies. Establishing a better understanding of OPV device physics combined with the development of new materials for each executive step contributes to this dramatic improvement. This dissertation focuses mainly on material design and development to correlate the intrinsic properties of organic semiconductors and the OPV performance. The introductory Chapter 1 briefly reviews the motivation of OPV research, its working mechanism, and representative organic materials for OPV application. Chapter 2 discusses the modulation of conjugated polymer's (CP's) absorption behavior and an efficient semi-empirical approach to predict CP's energy levels from its constituent monomers' HOMO/LUMO values. A strong acceptor lowered both the HOMO and LUMO levels of the CP, but the LUMO dropped more rapidly which ultimately produced a narrowed band-gap in the electron donating/accepting alternating copolymer system. In addition, the energy level difference between the CP and the constituent monomers converged to a constant value, providing an energy level prediction tool. Chapter 3 illustrates the systematic investigation on the relationship between the molecular structure of an energy harvesting organic dye and the exciton dissociation efficiency. The study showed that the quantum yield decreased as the exciton binding energy increases, and dipole moment direction should be properly oriented in the dye framework in order to improve photo-current generation when used in a dye sensitized photovoltaic device. Chapter 4 demonstrates the ultrasonic-assisted self-assembly of CPs in solution, rapidly and efficiently. Ultrasonication combined with dipolar media accelerated CP's aggregation, and the effect of CP

  12. Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.R.

    1994-02-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.

  13. A simple diethylene glycol-assisted synthesis and high rate performance of Li3V2(PO4)3/C composites as cathode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Liu, Qianjin; Yang, Fei; Wang, Shuping; Feng, Lijun; Zhang, Wenjing; Wei, Huiying

    2013-01-01

    Spherical Li 3 V 2 (PO 4 ) 3 /C(LVP/C) composites were synthesized by sol–gel method using diethylene glycol as the spheroidizing medium and glucose as the carbon source. The crystal structure, morphology, the lithium diffusion behavior and high rates capacities were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and electrochemical methods. Results indicated that the sphere-like LVP/C sample prepared with 10 wt% glucose has a uniform carbon layer about 10 nm on the surfaces, and presented a high discharge capacity of 131.8, 126.5, 102.4, 82.8 mAh g −1 at 0.1, 2, 10, 20 C between 3.0 and 4.3 V with no obvious capacity fading during 200 cycles at the rate of 2 C. While in the voltage region of 3.0–4.8 V, it owned the largest reversible capacity of 169.4, 139.8, 121.7 mAh g −1 at 0.5, 1, 5 C, respectively. Its capacity retained 79.9% after 200 cycles at 2 C, and the apparent Li-ion diffusion coefficient was calculated to be 3.37 × 10 −9 cm 2 s −1

  14. Rational design of organic electro-optic materials

    CERN Document Server

    Dalton, L R

    2003-01-01

    Quantum mechanical calculations are used to optimize the molecular first hyperpolarizability of organic chromophores and statistical mechanical calculations are used to optimize the translation of molecular hyperpolarizability to macroscopic electro-optic activity (to values of greater than 100 pm V sup - sup 1 at telecommunications wavelengths). Macroscopic material architectures are implemented exploiting new concepts in nanoscale architectural engineering. Multi-chromophore-containing dendrimers and dendronized polymers not only permit optimization of electro-optic activity but also of auxiliary properties including optical loss (both absorption and scattering), thermal and photochemical stability and processability. New reactive ion etching and photolithographic techniques permit the fabrication of three-dimensional optical circuitry and the integration of that circuitry with semiconductor very-large-scale integration electronics and silica fibre optics. Electro-optic devices have been fabricated exploiti...

  15. Floor cleaning: effect on bacteria and organic materials in hospital rooms.

    Science.gov (United States)

    Andersen, B M; Rasch, M; Kvist, J; Tollefsen, T; Lukkassen, R; Sandvik, L; Welo, A

    2009-01-01

    Routine surface cleaning is recommended to control the spread of pathogens in hospital environments. In Norway, ordinary cleaning of patient rooms is traditionally performed with soap and water. In this study, four floor-mopping methods--dry, spray, moist and wet mopping--were compared by two systems using adenosine triphosphate (ATP) bioluminescence (Hygiena and Biotrace). These systems assess residual organic soil on surfaces. The floor-mopping methods were also assessed by microbiological samples from the floor and air, before and after cleaning. All methods reduced organic material on the floors but wet and moist mopping seemed to be the most effective (P < 0.001, P < 0.011, respectively, ATP Hygiena). The two ATP methods were easy to use, although each had their own reading scales. Cleaning reduced organic material to 5-36% of the level present before cleaning, depending upon mopping method. All four mopping methods reduced bacteria on the floor from about 60-100 to 30-60 colony-forming units (cfu)/20cm2 floor. Wet, moist and dry mopping seemed to be more effective in reducing bacteria on the floor, than the spray mopping (P=0.007, P=0.002 and P=0.011, respectively). The burden of bacteria in air increased for all methods just after mopping. The overall best cleaning methods seemed to be moist and wet mopping.

  16. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  17. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  18. An alginic acid assisted rheological phase synthesis of carbon coated Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} with high-rate performance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue, E-mail: tju_wuyue@163.com [Department of Applied Chemistry, School of Chemical and Engineering, Tianjin University, Tianjin 300072 (China); Tang, Zhiyuan [Department of Applied Chemistry, School of Chemical and Engineering, Tianjin University, Tianjin 300072 (China); Guo, Xuyun [Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Du, Chenqiang [Department of Applied Chemistry, School of Chemical and Engineering, Tianjin University, Tianjin 300072 (China); Zhang, Xinhe [McNair Technology Co., Ltd., Dongguan, Guangdong 523700 (China)

    2014-12-15

    Highlights: • Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C sample was prepared by a modified rheological phase reaction method. • Alginic acid was firstly used as a promising carbon source and investigated. • LVP/C exhibits excellent rate and cycling performances in different voltage ranges. • LVP/C delivers the largest discharge capacity of 61.4 mAh g{sup −1} at 90 C rate in 3.0–4.3 V. • LVP/C can cycle 400 times with slight capacity fading at 20 C high rate in 3.0–4.8 V. - Abstract: A nanoscaled Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C(LVP/C) composite is successfully synthesized via a modified rheological phase method. Alginic acid is applied as a new carbon source and ethylene glycol is used as the dispersant, and both of which play multifaceted roles during the synthetic route. A series of intensive investigations shows that the LVP/C composite possesses a three-dimensional carbon network and a loose structure, which provide discontinuous electronic and ionic pathways. The electrochemical performance of the LVP/C cathode is revealed to be impressive in terms of capacity, high-rate capability and long-life cycleability. Between 3.0 and 4.3 V, it delivers a discharge capacity of 132.3 mAh g{sup −1} at 0.5 C rate, approaching the theoretical value, and can cycle at a rate as high as 40 C without obvious capacity fading. Most distinctively, when discharged at 90 C ultrahigh rate (charged at 5 C rate), the largest capacity of 61.4 mAh g{sup −1} can still be available, after 600 cycles the capacity retention can still maintain 76%. When operated within 3.0–4.8 V, it cannot only discharge the initial capacity of 184.1 mAh g{sup −1} at 0.1 C, but also exhibit a stable cycling performance at 20 C for 400 cycles. These excellent performances can be fundamentally attributed to the high electronic/ionic conductivities which are related closely to the modified rheological phase preparation route and the promising new carbon source.

  19. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Micro-Raman Spectroscopy

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy.

  20. Extraction of organic materials from red water by metal-impregnated lignite activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Fangfang [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhang, Yihe, E-mail: zyh@cugb.edu.cn [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lv, Fengzhu [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ye, Zhengfang, E-mail: zhengfangye@163.com [Department of Environmental Engineering, Key Laboratory of Water and Sediment Sciences of the Ministry of Education, Peking University, Beijing 100871 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Metal-impregnated lignite activated carbon was investigated as adsorbent. Black-Right-Pointing-Pointer Adsorbent for the extraction of organic materials from 2,4,6-trinitrotoluene (TNT) red water. Black-Right-Pointing-Pointer Effects of different metals on the extraction were investigated and discussed. Black-Right-Pointing-Pointer Many loading factors of Cu{sup 2+} were found having great influences on the extraction. Black-Right-Pointing-Pointer Extraction performances and mechanism of TNT red water on Cu/LAC were investigated. - Abstract: Extraction of organic materials from 2,4,6-trinitrotoluene (TNT) red water by lignite activated carbon (LAC) impregnated with Cu{sup 2+}, Ba{sup 2+}, Sn{sup 2+}, Fe{sup 3+}, Ca{sup 2+} and Ag{sup +} was investigated. The affinity to organic materials in red water was found to follow the order: Cu/LAC > Sn/LAC > Ag/LAC > Ba/LAC > Fe/LAC > Ca/LAC, which was explained by the hard and soft acid base (HSAB) theory. Cu{sup 2+} showed the best performance and several parameters were further studied. X-ray photoelectron spectroscopy (XPS) verified effective loading of Cu{sup 2+} on the LAC surface. The water quality before and after treated by Cu/LAC was evaluated using high performance liquid chromatograph, Gas Chromatography/Mass Spectroscopy (GC/MS), UV-vis spectroscopy and other analyses. The extraction performances and mechanism of organic materials on Cu/LAC were investigated through static methods. The experimental results showed that Cu/LAC possessed stronger extraction ability for the sulfonated nitrotoluenes than the non-sulfonated nitrotoluenes, the kinetic data fitted the pseudo-second-order kinetic model well. In addition, the leaching out of Cu{sup 2+} from Cu/LAC was found much lower in the 100 times diluted red water (0.074%) than in the raw water (10.201%). Column adsorptions with more concentrated red water were also studied. Finally, Cu/LAC was observed to possess excellent

  1. Enhanced photoconductivity by melt quenching method for amorphous organic photorefractive materials

    Science.gov (United States)

    Tsujimura, S.; Fujihara, T.; Sassa, T.; Kinashi, K.; Sakai, W.; Ishibashi, K.; Tsutsumi, N.

    2014-10-01

    For many optical semiconductor fields of study, the high photoconductivity of amorphous organic semiconductors has strongly been desired, because they make the manufacture of high-performance devices easy when controlling charge carrier transport and trapping is otherwise difficult. This study focuses on the correlation between photoconductivity and bulk state in amorphous organic photorefractive materials to probe the nature of the performance of photoconductivity and to enhance the response time and diffraction efficiency of photorefractivity. The general cooling processes of the quenching method achieved enhanced photoconductivity and a decreased filling rate for shallow traps. Therefore, sample processing, which was quenching in the present case, for photorefractive composites significantly relates to enhanced photorefractivity.

  2. Fumed silica nanoparticle mediated biomimicry for optimal cell-material interactions for artificial organ development.

    Science.gov (United States)

    de Mel, Achala; Ramesh, Bala; Scurr, David J; Alexander, Morgan R; Hamilton, George; Birchall, Martin; Seifalian, Alexander M

    2014-03-01

    Replacement of irreversibly damaged organs due to chronic disease, with suitable tissue engineered implants is now a familiar area of interest to clinicians and multidisciplinary scientists. Ideal tissue engineering approaches require scaffolds to be tailor made to mimic physiological environments of interest with specific surface topographical and biological properties for optimal cell-material interactions. This study demonstrates a single-step procedure for inducing biomimicry in a novel nanocomposite base material scaffold, to re-create the extracellular matrix, which is required for stem cell integration and differentiation to mature cells. Fumed silica nanoparticle mediated procedure of scaffold functionalization, can be potentially adapted with multiple bioactive molecules to induce cellular biomimicry, in the development human organs. The proposed nanocomposite materials already in patients for number of implants, including world first synthetic trachea, tear ducts and vascular bypass graft. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Two-Dimensional Metal-Free Organic Multiferroic Material for Design of Multifunctional Integrated Circuits.

    Science.gov (United States)

    Tu, Zhengyuan; Wu, Menghao; Zeng, Xiao Cheng

    2017-05-04

    Coexistence of ferromagnetism and ferroelectricity in a single 2D material is highly desirable for integration of multifunctional units in 2D material-based circuits. We report theoretical evidence of C 6 N 8 H organic network as being the first 2D organic multiferroic material with coexisting ferromagnetic and ferroelectric properties. The ferroelectricity stems from multimode proton-transfer within the 2D C 6 N 8 H network, in which a long-range proton-transfer mode is enabled by the facilitation of oxygen molecule when the network is exposed to the air. Such oxygen-assisted ferroelectricity also leads to a high Curie temperature and coupling between ferroelectricity and ferromagnetism. We also find that hydrogenation and carbon doping can transform the 2D g-C 3 N 4 network from an insulator to an n-type/p-type magnetic semiconductor with modest bandgap. Akin to the dopant induced n/p channels in silicon wafer, a variety of dopant created functional units can be integrated into the g-C 3 N 4 wafer by design for nanoelectronic applications.

  4. Design Efficient and Ultralong Pure Organic Room-Temperature Phosphorescent Materials by Structural Isomerism.

    Science.gov (United States)

    Xiong, Yu; Zhao, Zheng; Zhao, Wei Jun; Ma, Hui Li; Peng, Qian; He, Zi Kai; Zhang, Xue Peng; Chen, Yun Cong; He, Xue Wen; Lam, Jacky; Tang, Ben Zhong

    2018-05-08

    Pure organic materials with ultralong room temperature phosphorescence (RTP) are attractive alternatives to inorganic phosphors. However, without heavy atoms and carbonyl or heteroatomic groups, they generally show inefficient intersystem crossing (ISC) due to the weak spin-orbit coupling (SOC). Many efforts have been made to enhance SOC but examples in realizing both efficient and ultralong RTP have been limited. Here we present a novel design principle based on the realization of small energy gap between the lowest singlet and triplet states (ΔEST) and pure ππ* configuration of the lowest triplet state (T1) via structural isomerism to obtain efficient and ultralong RTP materials. The meta-isomer of carbazole-substituted methyl benzoate exhibits an ultralong lifetime of 795.0 ms with a quantum yield of 2.1%, whose performance is among the best RTP materials reported so far. Study on the structure-property relationship demonstrates that the varied steric and conjugation effects imposed by ester substituent at different positions are responsible for the small ΔEST and pure ππ* configuration of T1. This rational design will open a new avenue for exploring novel pure organic RTP materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Behaviour of organic materials in radiation environment

    International Nuclear Information System (INIS)

    Tavlet, M.; Ilie, S.

    1999-01-01

    An extensive radiation damage test program has been carried out in CERN for decades and many results have yet been published. Over the years, EPR/EPDM-based rubbers and polyolefin-based compounds used for cable insulation have been tested. Polyolefin-based compounds usually present an important dose-rate effect. This is related to the presence of oxygen, it may be combined with a temperature effect. On the other hand, it appears from many results that the degradation of cable insulations does not depend on the radiation type. Tests of insulating and structural materials after irradiation at cryogenic temperature have shown that there is no significant influence of the irradiation temperature on the radiation degradation of thermo-sets and composites, while the degradation of plastic films is even less severe as they are protected against oxidation. Some experiments about the synergy between irradiation and mechanical stress have shown that rubbers and composites under stress are more sensitive to radiation and degrade faster. Very strong synergetic effects between radiation and other parameters are observed in organic optical materials such as scintillators and optical fibres. For fluorocarbon cooling fluids, a special care must be paid to alkanes and hydro-fluoro-alkanes, which are usually present as impurities, and of which the C-H bonds content opens the way to the reactive hydrofluoric acid evolution during the radiolytic process

  6. Reduced Albumin Dosing During Large-Volume Paracentesis Is Not Associated with Adverse Clinical Outcomes.

    Science.gov (United States)

    Johnson, Kara B; Mueller, Jessica L; Simon, Tracey G; Zheng, Hui; King, Lindsay Y; Makar, Robert S; Gervais, Debra A; Chung, Raymond T

    2015-07-01

    LVP is used to manage diuretic-resistant ascites in cirrhotic patients. Albumin administration prevents complications including acute kidney injury and paracentesis-induced circulatory dysfunction, but the optimal dose is unclear. We sought to assess adherence to guidelines enacted in July 2011 at our center for reducing the albumin dose administered at large-volume paracentesis (LVP) and evaluate the cost and rate of complications of LVPs before and after guideline enactment. All LVPs performed on cirrhotic patients in our center's Department of Radiology between July 2009 and January 2014 were studied. Outcomes included adherence to guidelines, LVP complications, and administered albumin cost. Groups were compared using Student's t tests for continuous data and Chi-square or Fisher's exact tests for categorical data. A repeated measurements model accounted for patients with multiple LVPs. Of the 935 LVPs, 288 occurred before guideline implementation (group 1) and 647 occurred after (group 2). The mean dose of albumin administered was 13.7 g/L of ascites removed in group 1 versus 10.3 g/L in group 2 (p albumin administration and associated cost savings was still observed. There was no increase in LVP-related complications after guideline implementation or in the adherent group, suggesting that albumin dose can be safely reduced. Future efforts should be directed at enhancing guideline adherence and potentially further reducing albumin dosing.

  7. Rare earth doped nanoparticles in organic and inorganic host materials for application in integrated optics

    NARCIS (Netherlands)

    Dekker, R.; Hilderink, L.T.H.; Diemeer, Mart; Stouwdam, J.W.; Sudarsan, V; van Veggel, F.C.J.M.; Driessen, A.; Worhoff, Kerstin; Misra, D; Masscher, P.; Sundaram, K.; Yen, W.M.; Capobianco, J.

    2006-01-01

    The preparation and the optical properties of lanthanum fluoride (LaF3) nanoparticles doped with erbium and neodymium will be discussed. Organic and inorganic materials in the form of polymers and sol-gels were used to serve as the hosts for the inorganic nanoparticles, respectively. The organic

  8. [Effects of Different Kinds of Organic Materials on Soil Heavy Metal Phytoremediation Efficiency by Sedum alfredii Hance].

    Science.gov (United States)

    Yao, Gui-hua; Xu, Hai-zhou; Zhu, Lin-gang; Ma, Jia-wei; Liu, Dan; Ye, Zheng-qian

    2015-11-01

    In this study, a pot experiment was conducted to investigate the effect of clean organic materials i. e., biogas residue (BR), mushroom residue (MR), and bamboo shell (BS) on phytoextraction remediation of two heavy metal contaminated soils (collected from Wenzhou and Fuyang, which referred to "Wenzhou soil" and "Fuyang soil", respectively.) using a cadmium (Cd) and zinc (Zn) hyperaccumulator Sedum alfredii Hance. The results indicated that the effects of organic materials on availabilities of soil heavy metals were different due to different kinds of heavy metals, organic materials, and the application rates of the organic materials. Addition with 5% BR showed the greatest activation to copper (Cu), Zn in Wenzhou soil, and in Fuyang soil 1% BS had the highest activation for Cu, Zn, lead ( Ph) and Cd. Growth of shoot biomass of Sedum alfredii Hance increased with the addition rate of organic materials, and the plant dry weights were increased by 23.7%-93.0%. In Wenzhou soil, only 1% BS treatment had the best effect on Cd uptake and accumulation in shoots of Sedum alfredii Hance, increased by 22.6%, while other treatments were inferior to the control. For Zn, MR treatments were inferior to the control, while other treafments were superior to the control, of which 5% BR, 1% BS and 5% BS exceeded the control by 39. 6%, 32.6% and 23.8%, respectively. In Fuyang soil, for Cd, the treatment effects of 5% BS, 1% BR and 5% BR were the greatest, of which Cd accumulation in shoots exceeded the control by 12.9%, 12.8% and 6.2%, respectively, while Cd accumulations in shoots in all other treatments were less than that of control. For Zn, the treatments of adding organic materials promoted Zn accumulation in shoots of Sedum alfredii Hance, and the best treatments were as follows: 5% BS. 5% BR and 5% MR, exceeded the control by 38.4%, 25.7% and 22.4%, respectively.

  9. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  10. Chromophoric Dissolved Organic Material, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS data is used to develop an index of the amount of chromophoric dissolved organic material (CDOM) in the surface waters. CDOM absorbs heavily in the blue...

  11. Reticular Chemistry and Metal-Organic Frameworks: Design and Synthesis of Functional Materials for Clean Energy Applications

    KAUST Repository

    Alezi, Dalal

    2017-01-01

    Gaining control over the assembly of crystalline solid-state materials has been significantly advanced through the field of reticular chemistry and metal organic frameworks (MOFs). MOFs have emerged as a unique modular class of porous materials

  12. ISOTOPIC CHARACTERIZATION OF ORGANIC MATERIALS LEACHED FROM LEAVES IN WATER OF MUNDARING WEIR DAM

    Directory of Open Access Journals (Sweden)

    Markus Heryanto Langsa

    2010-06-01

    Full Text Available This study examined the organic constituents aquatically leached from leaf components of two tree species (wandoo eucalyptus and pinus radiate. In particular this study aimed to assess the stable isotope composition behaviour of dissolved organic carbon (DOC from the residue leaves after leaching over five months. The changes in the stable carbon and nitrogen isotope compositions of the leached leaves materials were investigated using an elemental analyzer-isotope ratio mass spectrometry (EA-irMS. The stable isotope compositions were found to vary according to microbially-mediated alteration and decomposition. The average  d13C content of the raw plant elements was consistent with the  d13C values of terrestrial plants using a C3 photosynthetic pathway. The isotope compositions of leached materials of wandoo eucalyptus fresh leaf were continually depleted in d13C over the leaching period of three months. These variations correlated well with its DOC profile. Changes in  d13C values may also relate to the differential leaching of the macromolecular precursors of the original material. Lignin, for example, has a typically low  d13C and probably contributed to the decrease of  d13C in residue of the plant materials.   Keywords: isotope composition, leached materials, C3 plant

  13. Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water.

    Science.gov (United States)

    Boyer, Treavor H; Persaud, Amar; Banerjee, Poulomi; Palomino, Pedro

    2011-10-15

    Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features

    Directory of Open Access Journals (Sweden)

    Mentovich Elad D

    2012-05-01

    Full Text Available Abstract Background One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Method Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. Results and conclusions One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC, which creates an all-organic engineered network.

  15. DNA-nanoparticle assemblies go organic: macroscopic polymeric materials with nanosized features.

    Science.gov (United States)

    Mentovich, Elad D; Livanov, Konstantin; Prusty, Deepak K; Sowwan, Mukules; Richter, Shachar

    2012-05-30

    One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC), which creates an all-organic engineered network.

  16. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds.

    Science.gov (United States)

    Võ, Uyên-Uyén T; Morris, Michael P

    2014-06-01

    Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test

  17. Study of the virome and microbiome associated to the proliferative verrucous leukoplakia

    OpenAIRE

    García López, Rodrigo

    2017-01-01

    Estudio del viroma y microbioma oral asociados con la leucoplasia verrugosa proliferativa La leucoplasia verrugosa proliferativa (LVP) es una forma maligna de leucoplasia oral (LO) que se manifiesta como parches blanquecinos hiperqueratóticos en la cavidad oral humana. Éstas son detectadas prevalentemente en mujeres de la tercera edad. La mayor parte de las LVP con el tiempo derivan en un tipo agresivo de cánceres orales, principalmente el carcinoma oral de célula escamosa (COCE). Las a...

  18. Biological and environmental reference materials for trace elements, nuclides and organic microcontaminants

    International Nuclear Information System (INIS)

    Cortes Toro, E.; Parr, R.M.; Clements, S.A.

    1990-01-01

    This report has been produced from a database on analytical reference materials of biological and environmental origin, which is maintained at the International Atomic Energy Agency. It is an updated version of an earlier report, published in 1985, which focussed mainly on reference materials for trace elements. In the present version of the report, reference materials for trace elements still constitute the major part of the data; however, information is also now included on a number of other selected analytes of relevance to IAEA programmes, i.e. radionuclides, stable isotopes and organic microcontaminants. The database presently contains 2,694 analyte values for 117 analytes in 116 biological and 77 environmental (non-biological) reference materials produced by 20 different suppliers. Additional information on the cost of the material, the unit size supplied, (weight or volume), and the minimum weight of material recommended for analysis is also provided (if available to the authors). It is expected that this report will help analysts to select the reference material that matches as closely as possible, with respect to matrix type and concentrations of the analytes of interest, the ''real'' samples that are to be analysed. Refs, 12 tabs

  19. Geometric Shape Regulation and Noncovalent Synthesis of One-Dimensional Organic Luminescent Nano-/Micro-Materials.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Zuolun; Zhang, Shoufeng; Wei, Jinbei; Ye, Kaiqi; Liu, Yu; Marder, Todd B; Wang, Yue

    2017-08-03

    Noncovalent synthesis of one-dimensional (1D) organic nano-/micro-materials with controllable geometric shapes or morphologies and special luminescent and electronic properties is one of the greatest challenges in modern chemistry and material science. Control of noncovalent interactions is fundamental for realizing desired 1D structures and crucial for understanding the functions of these interactions. Here, a series of thiophene-fused phenazines composed of a halogen-substituted π-conjugated plate and a pair of flexible side chains is presented, which displays halogen-dependent 1D self-assemblies. Luminescent 1D twisted wires, straight rods, and zigzag wires, respectively, can be generated in sequence when the halogen atoms are varied from the lightest F to the heaviest I. It was demonstrated that halogen-dependent anisotropic noncovalent interactions and mirror-symmetrical crystallization dominated the 1D-assembly behaviors of this class of molecules. The methodology developed in this study provides a potential strategy for constructing 1D organic materials with unique optoelectronic functions.

  20. Organizations Working to Reduce the Disposal of Construction and Demolition (C&D) Materials

    Science.gov (United States)

    Organizations with available resources and services related to reducing, reducing, and recycling C&D Materials? This table is a great place to start! Use the three tabs below to easily sort the data and best meet your needs.

  1. Metal-organic Materials (moms) For Co2 Adsorption And Methods Of Using Moms

    KAUST Repository

    Eddaoudi, Mohamed

    2015-06-11

    Embodiments of the present disclosure provide for metal-organic materials (MOMs), systems that exhibit permanent porosity and using hydrophobic MOMs to separate components in a gas, methods of separating CO.sub.2 from a gas, and the like.

  2. Metal-organic Materials (moms) For Co2 Adsorption And Methods Of Using Moms

    KAUST Repository

    Eddaoudi, Mohamed; Zaworotko, Michael J.; Nugent, Patrick; Burd, Stephen D.; Luebke, Ryan; Belmabkhout, Youssef; Shekhah, Osama

    2015-01-01

    Embodiments of the present disclosure provide for metal-organic materials (MOMs), systems that exhibit permanent porosity and using hydrophobic MOMs to separate components in a gas, methods of separating CO.sub.2 from a gas, and the like.

  3. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    Science.gov (United States)

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  4. Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials

    Directory of Open Access Journals (Sweden)

    Emil J. W. List

    2008-08-01

    Full Text Available Even though organic light-emitting device (OLED technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs, further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers.

  5. Carcinoma espinocelular em leucoplasia verrucosa proliferativa: relato de caso e revisão da literatura = Squamous cell carcinoma in proliferative verrucous leukoplakia: report of a case and review of the literature

    Directory of Open Access Journals (Sweden)

    Ramalho, Luciana Maria Pedreira

    2007-01-01

    Full Text Available A Leucoplasia Verrucosa Proliferativa (LVP é uma lesão cancerizável caracterizada por comportamento biológico mais agressivo e maior risco de malignização que as leucoplasias bucais. O diagnóstico da LVP deve ser feito pela combinação de achados clínicos e microscópicos e o acompanhamento dos pacientes deve ser rigoroso envolvendo a remoção de fatores de risco como o tabaco e o álcool e biópsias de controle, que podem ser realizadas quando ocorrerem mudanças nos sinais e sintomas. Este trabalho revisa a literatura sobre LVP e relata um caso de carcinoma espinocelular originado de leucoplasia verrucosa proliferativa, enfatizando os aspectos clínicos e histopatológico bem como a importância do acompanhamento rigoroso do paciente e de exames complementares como o azul de toluidina

  6. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems.

    Science.gov (United States)

    Broer, Dirk J; Bastiaansen, Cees M W; Debije, Michael G; Schenning, Albertus P H J

    2012-07-16

    Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of well-defined nanostructured materials. We have chosen the illustrative example of photopolymerizable hydrogen-bonding mesogens to show that a wide variety of functional materials can be made from a relatively simple set of building blocks. Upon mixing these compounds with other reactive mesogens, nematic, chiral nematic, and smectic or columnar liquid-crystalline phases can be formed that can be applied as actuators, sensors and responsive reflectors, and nanoporous membranes, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effect Of Shade Organic Materials And Varieties On Growth And Production Of Upland Rice

    Directory of Open Access Journals (Sweden)

    Jonatan Ginting

    2015-01-01

    Full Text Available Abstract There is a shade factor and low organic matter content of the soil is a problem that needs to be addressed in the development of upland rice cultivation as intercrops in the plantation area. Based on these considerations then one study that needs to be done is to conduct experiments on the effect of shade factor combined with the the provision of the organic material to the some varieties of upland rice that has been recommended nationally. The objective of experiment is to study the influence of shade organic materials and varieties on the growth and production of upland rice. This research using experimental design of Split - Split Plot Design with 3 treatment factors and 3 replications or blocks. The first factor is the treatment of shade with 3 levels shade percentage 0 20 and 40. The second factor is the dosage of organic material consists of 3 levels 0 g polybag 25 g polybag 50 g polybag and 75 g polybag. The third factor is the treatment of varieties consists of 4 types of upland rice varieties Si Kembiri Situ Patengggang Situ Bagendit and Tuwoti. The research results showed that the effect of shade on upland rice varieties decrease number of tillers number of panicles number of productive grains grain production per hill of uplnd rice plants and total sugar content of upland rice plants. Effect of organic matter increases number of panicles number of productive grains grain production per hill of upland rice plants and total sugar content of upland rice plants. It is known that the the variety of Situ Patenggang provides better growth and production compared with three other varieties Si Kembiri Situ Bagendit and Tuwoti in shaded conditions.

  8. Host-free, yellow phosphorescent material in white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng, E-mail: osolomio.ac89g@nctu.edu.t [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan 310 (China)

    2010-11-10

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W{sup -1} at a practical brightness of 1000 cd m{sup -2} with Commission Internationale d'Echariage coordinates (CIE{sub x,y}) of (0.37, 0.47) was achieved. (fast track communication)

  9. Accessing Synthetically-Challenging Isoindole-Based Materials for Assessment in Organic Photovoltaics via Chemical and Engineering Methodologies =

    Science.gov (United States)

    Dang, Jeremy

    Isoindoles are a broad class of compounds that comprise a very small space within the domain of established photoactive materials for organic photovoltaics (OPVs). Given this scarcity, combined with the performance appeal of presently and well known isoindole-based compounds such as the phthalocyanines, it is a worthy undertaking to develop new materials in this domain. This thesis aims to bring to light the suitability of five novel, or underexplored, classes of isoindole-based materials for OPVs. These classes are the boron subphthalocyanine (BsubPc) polymers, oxygen-bridged dimers of BsubPcs (mu-oxo-(BsubPc) 2), boron subnaphthalocyanines (BsubNcs), group XIII metal complexes of 1,3-bis(2-pyridylimino)isodinoline (BPI), and the boron tribenzosubporphyrins (BsubPys). The synthesis of these materials was proven to be challenging as evident in their low isolated yields, lengthy synthetic and purification processes, and/or batch-to-batch variations. This outcome was not surprising given their undeveloped chemical nature. The photo- and electro-physical properties were characterized and shown to be desirable for all classes other than the group XIII metal complexes of BPI for OPVs. mu-Oxo-(BsubPc)2 and BsubNcs show promise in this application while BsubPc polymers and BsubPys will be subjects of future exploration. The results from the work herein aid to develop and strengthen the fundamental understanding of the structure-property relationships of isoindole derivatives. On a broader scale, the work demonstrates their versatility as functional materials for OPVs and their possible expansion to other organic electronic technologies like organic light emitting diodes and organic field effect transistors.

  10. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-01-25

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min{sup −1} and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  11. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    International Nuclear Information System (INIS)

    Wang, Ruixue; Xu, Zhenming

    2016-01-01

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min"−"1 and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  12. Variation of mineralogy and organic material during the early stages of aqueous activity recorded in Antarctic micrometeorites

    Science.gov (United States)

    Noguchi, T.; Yabuta, H.; Itoh, S.; Sakamoto, N.; Mitsunari, T.; Okubo, A.; Okazaki, R.; Nakamura, T.; Tachibana, S.; Terada, K.; Ebihara, M.; Imae, N.; Kimura, M.; Nagahara, H.

    2017-07-01

    Micrometeorites (MMs) recovered from surface snow near the Dome Fuji Station, Antarctica are almost free from terrestrial weathering and contain very primitive materials, and are suitable for investigation of the evolution and interaction of inorganic and organic materials in the early solar system. We carried out a comprehensive study on seven porous and fluffy MMs [four Chondritic porous (CP) MMs and three fluffy fine-grained (Fluffy Fg) MMs] and one fine-grained type 1 (Fg C1) MM for comparison with scanning electron microscope, transmission electron microscope, X-ray absorption near-edge structure analysis, and secondary ion mass spectrometer. They show a variety of early aqueous activities. Four out of the seven CP MMs contain glass with embedded metal and sulfide (GEMS) and enstatite whiskers/platelets and do not have hydrated minerals. Despite the same mineralogy, organic chemistry of the CP MMs shows diversity. Two of them contain considerable amounts of organic materials with high carboxyl functionality, and one of them contains nitrile (Ctbnd N) and/or nitrogen heterocyclic groups with D and 15N enrichments, suggesting formation in the molecular cloud or a very low temperature region of the outer solar system. Another two CP MMs are poorer in organic materials than the above-mentioned MMs. Organic material in one of them is richer in aromatic C than the CP MMs mentioned above, being indistinguishable from those of hydrated carbonaceous chondrites. In addition, bulk chemical compositions of GEMS in the latter organic poor CP MMs are more homogeneous and have higher Fe/(Si + Mg + Fe) ratios than those of GEMS in the former organic-rich CP MMs. Functional group of the organic materials and amorphous silicate in GEMS in the organic-poor CP MMs may have transformed in the earliest stage of aqueous alteration, which did not form hydrated minerals. Three Fluffy Fg MMs contain abundant phyllosilicates, showing a clear evidence of aqueous alteration

  13. A double stage dry-wet-fermentation process for a fast and safe digestion of different kinds of organic material

    International Nuclear Information System (INIS)

    Busch, G.; Sieber, M.; Buschmann, J.; Burkhardat, M.

    2009-01-01

    The fermentation of organic material is a four-step-process. It is admissible to merge the first two steps (hydrolysis and acidification) to hydrolysis in general and the last two steps (aceto genesis and methano genesis) to methano genesis. The Brandenburg University of Technology in Cottbus has devised a double stage dry-wet-fermentation process for fast and safe anaerobic degradation. Using these processes, it is possible to decompose different kinds of organic material like renewable material (e. g. maize silage), waste (e. g. household-waste) and industrial material (e. g. glycerine). (Author)

  14. Results of radiation tests at cryogenic temperature on some selected organic materials for the LHC

    International Nuclear Information System (INIS)

    Tavlet, M.; Schoenbacher, H.

    1999-01-01

    In the near future, particle accelerators and detectors as well as fusion reactors will operate at cryogenic temperatures. At temperatures as low as 2 K, the organic materials used for the insulation of the superconducting magnets and cables will be exposed to high radiation levels. In this work, a representative selection of organic materials comprising insulating films, cable insulations and epoxy-type-impregnated resins were exposed to neutron and gamma radiation of nuclear reactors, both at ambient and cryogenic temperatures, and were subsequently mechanically tested. The results show that the radiation degradation is never worse in a cryogenic fluid than it is in usual ambient conditions. (author)

  15. Application of headspace for research volatile organic compounds emitted from building materials

    Directory of Open Access Journals (Sweden)

    Kultys Beata

    2018-01-01

    Full Text Available Headspace technique and gas chromatography method with mas detector has been used for the determination of volatile organic compounds (VOC emitted from various building and finishing materials, such as sealing foams, mounting strips, paints, varnishes, floor coverings. The tests were carried out for different temperatures (in the temperature range of 60 to 180 °C and the time of heated vials with tested materials inside. These tests were conducted to verify the possibility of use this method of determination the VOC emission. Interpretation of chromatograms and mass spectra allowed to identify the type of compounds emitted from the tested materials and the optimum time and temperature for each type of material was determined. The increase in heating temperature of the samples resulted in increase the type and number of identified compounds: for four materials the increase was in the whole temperature range, for others it was from 90 °C. On the other hand, emission from mineral wool was low in whole temperature range. 30-minutes heating of the samples was sufficient to identify emitted compounds for most of tested materials. Applying a longer time, i.e. 24 hours, significantly increased the sensitivity of the method.

  16. Method of treating organic material. [addition of formate, heating under pressure, and distilling the mass

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, H O.V.; Cederquist, K N

    1932-02-08

    A method is given of treating organic material such as wood, peat, shale, etc. It is characterized by the addition of formate to the material, before, during, or after heating it under pressure with alkalis, earth alkalis, et cetera, and by the mass thus produced undergoing dry distillation. The patent has three more claims.

  17. Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite

    Science.gov (United States)

    Zega, Thomas J.; Alexander, Conel M. O.'D.; Busemann, Henner; Nittler, Larry R.; Hoppe, Peter; Stroud, Rhonda M.; Young, Andrea F.

    2010-10-01

    We report a coordinated analytical study of matrix material in the Tagish Lake carbonaceous chondrite in which the same small (⩽20 μm) fragments were measured by secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS), and X-ray absorption near-edge spectroscopy (XANES). SIMS analysis reveals H and N isotopic anomalies (hotspots), ranging from hundreds to thousands of nanometers in size, which are present throughout the fragments. Although the differences in spatial resolution of the SIMS techniques we have used introduce some uncertainty into the exact location of the hotspots, in general, the H and N isotopic anomalies are spatially correlated with C enrichments, suggesting an organic carrier. TEM analysis, enabled by site-specific extraction using a focused-ion-beam scanning-electron microscope, shows that the hotspots contain an amorphous component, Fe-Ni sulfides, serpentine, and mixed-cation carbonates. TEM imaging reveals that the amorphous component occurs in solid and porous forms, EDS indicates that it contains abundant C, and EELS and XANES at the C K edge reveal that it is largely aromatic. This amorphous component is probably macromolecular C, likely the carrier of the isotopic anomalies, and similar to the material extracted from bulk samples as insoluble organic matter. However, given the large sizes of some of the hotspots, the disparity in spatial resolution among the various techniques employed in our study, and the phases with which they are associated, we cannot entirely rule out that some of the isotopic anomalies are carried by inorganic material, e.g., sheet silicates. The isotopic composition of the organic matter points to an initially primitive origin, quite possibly within cold interstellar clouds or the outer reaches of the solar protoplanetary disk. The association of organic material with secondary phases, e.g., serpentine

  18. Organic-inorganic hybrid material SUNCONNECT® for photonic integrated circuit

    Science.gov (United States)

    Nawata, Hideyuki; Oshima, Juro; Kashino, Tsubasa

    2018-02-01

    In this paper, we report the feature and properties about organic-inorganic hybrid material, "SUNCONNECT®" for photonic integrated circuit. "SUNCONNECT®" materials have low propagation loss at 1310nm (0.29dB/cm) and 1550nm (0.45dB/cm) respectively. In addition, the material has high thermal resistance both high temperature annealing test at 300°C and also 260°C solder heat resistance test. For actual device application, high reliability is required. 85°C /85% test was examined by using multi-mode waveguide. As a result, it indicated that variation of insertion loss property was not changed significantly after high temperature / high humidity test. For the application to photonic integrated circuit, it was demonstrated to fabricate polymer optical waveguide by using three different methods. Single-micron core pattern can be fabricated on cladding layer by using UV lithography with proximity gap exposure. Also, single-mode waveguide can be also fabricated with over cladding. On the other hands, "Mosquito method" and imprint method can be applied to fabricate polymer optical waveguide. Remarkably, these two methods can fabricate gradedindex type optical waveguide without using photo mask. In order to evaluate the optical performance, NFP's observation, measurement of insertion loss and propagation loss by cut-back methods were carried out by using each waveguide sample.

  19. Creating a Discovery Platform for Confined-Space Chemistry and Materials: Metal-Organic Frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Simmons, Blake

    2008-09-01

    Metal organic frameworks (MOF) are a recently discovered class of nanoporous, defect-free crystalline materials that enable rational design and exploration of porous materials at the molecular level. MOFs have tunable monolithic pore sizes and cavity environments due to their crystalline nature, yielding properties exceeding those of most other porous materials. These include: the lowest known density (91% free space); highest surface area; tunable photoluminescence; selective molecular adsorption; and methane sorption rivaling gas cylinders. These properties are achieved by coupling inorganic metal complexes such as ZnO4 with tunable organic ligands that serve as struts, allowing facile manipulation of pore size and surface area through reactant selection. MOFs thus provide a discovery platform for generating both new understanding of chemistry in confined spaces and novel sensors and devices based on their unique properties. At the outset of this project in FY06, virtually nothing was known about how to couple MOFs to substrates and the science of MOF properties and how to tune them was in its infancy. An integrated approach was needed to establish the required knowledge base for nanoscale design and develop methodologies integrate MOFs with other materials. This report summarizes the key accomplishments of this project, which include creation of a new class of radiation detection materials based on MOFs, luminescent MOFs for chemical detection, use of MOFs as templates to create nanoparticles of hydrogen storage materials, MOF coatings for stress-based chemical detection using microcantilevers, and "flexible" force fields that account for structural changes in MOFs that occur upon molecular adsorption/desorption. Eight journal articles, twenty presentations at scientific conferences, and two patent applications resulted from the work. The project created a basis for continuing development of MOFs for many Sandia applications and succeeded in securing $2.75 M in

  20. Effect of organic small-molecule hole injection materials on the performance of inverted organic solar cells

    Science.gov (United States)

    Li, Jie; Zheng, Yifan; Zheng, Ding; Yu, Junsheng

    2016-07-01

    In this study, the influence of small-molecule organic hole injection materials on the performance of organic solar cells (OSCs) as the hole transport layer (HTL) with an architecture of ITO/ZnO/P3HT:PC71BM/HTL/Ag has been investigated. A significant enhancement on the performance of OSCs from 1.06% to 2.63% is obtained by using N, N‧-bis(1-naphthalenyl)-N, N‧-bis-phenyl-(1, 1‧-biphenyl)-4, 4‧-diamine (NPB) HTL. Through the resistance simulation and space-charge limited current analysis, we found that NPB HTL cannot merely improve the hole mobility of the device but also form the Ohmic contact between the active layer and anode. Besides, when we apply mix HTL by depositing the NPB on the surface of molybdenum oxide, the power conversion efficiency of OSC are able to be further improved to 2.96%.

  1. Automatic isotope gas analysis of tritium labelled organic materials Pt. 1

    International Nuclear Information System (INIS)

    Gacs, I.; Mlinko, S.

    1978-01-01

    A new automatic procedure developed to convert tritium in HTO hydrogen for subsequent on-line gas counting is described. The water containing tritium is introduced into a column prepared from molecular sieve-5A and heated to 550 deg C. The tritium is transferred by isotopic exchange into hydrogen flowing through the column. The radioactive gas is led into an internal detector for radioactivity measurement. The procedure is free of memory effects, provides quantitative recovery with analytical reproducibility better than 0.5% rel. at a preset number of counts. The experimental and analytical results indicate that isotopic exchange between HTO and hydrogen over a column prepared from alumina or molecular sieve-5A can be successfully applied for the quantitative transfer of tritium from HTO into hydrogen for on-line gas countinq. This provides an analytical procedure for the automatic determination of tritium in water with an analytical reproducibility better than 0.5% rel. The exchange process will also be suitable for rapid tritium transfer from water formed during the decomposition of tritium-labelled organic compounds or biological materials. The application of the procedure in automatic isotope gas analysis of organic materials labelled with tritium will be described in subsequent papers (Parts II and III). (T.G.)

  2. Hygroscopic influence on the semisolid-to-liquid transition of secondary organic materials.

    Science.gov (United States)

    Bateman, Adam P; Bertram, Allan K; Martin, Scot T

    2015-05-14

    The effect of relative humidity (RH) on the rebound of particles composed of isoprene, α-pinene, and toluene secondary organic materials (SOMs) was studied. A three-arm impaction apparatus was used to study rebound from 5 to 95% RH at 298 K. Calibration experiments using sucrose particles of variable but known viscosities showed that the transition from rebounding to adhering particles occurred for a change in viscosity from 100 to 1 Pa s, corresponding to a transition from semisolid to liquid material. The experimentally determined rebound fractions of the studied SOMs were compared with results from a model of the rebound processes of hard particles, taking into account the particle kinetic energy, van der Waals forces, and RH-dependent capillary forces. For low RH values, the hard-particle model explained the diameter-dependent rebound behavior for all studied SOMs. For elevated RH, however, the experimental observations deviated from the model predictions. On the basis of the calibration experiments using sucrose particles as well as a comparison between the observations and the predictions of the hard-particle model, the interpretation is made that a semisolid-to-liquid transition occurred at elevated RH. Material softening, increased adhesion, or a combination of the two implied the action of additional modes of energy relaxation that were not included in the hard-particle model. The RH threshold for the semisolid-to-liquid phase transition was 40% RH for isoprene SOM, 70% for toluene SOM, and 70% for α-pinene SOM. A correlation between the rebound fraction and the hygroscopic growth factor G was demonstrated, implying that absorbed water volume was a dominant governing factor of the semisolid-to-liquid transition for the studied classes of SOM. Simple heuristic rules based on G of 1.15 for the semisolid-to-liquid phase transition could be used for prognostication of the SOM phase in modeling applications at 298 K. With respect to atmospheric processes, the

  3. Study of lithium insertion in hard carbon made from cotton wool

    Science.gov (United States)

    Peled, Emanuel; Eshkenazi, Victor; Rosenberg, Yuri

    Hard-carbon materials were made either by one-step or multi-step pyrolysis of cotton cloth between 700 and 1100°C. All carbons have been characterized by gas sorption, X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS) techniques. Two types of carbons have been obtained. One, made by multi-step pyrolysis, has the highest lithium reversible capacity [about 600 (mA h)/g] and two distinct voltage regions: a sloping one between 1.5 and about 0.1 V, called the high-voltage region (HVR), and a horizontal one between 0.1 and 0 V, called the low-voltage plateau (LVP). The other carbons made by the one-step process have only the HVR and less capacity [up to 470 (mA h)/g]. The influence of the current density and temperature on the capacity and degradation rate in both LVP and HVR was checked. We suggest that there are two different modes of lithium insertion: intercalation-like (on both sides of single graphene sheets) at lower potentials and chemical binding to edge carbon atoms at higher potentials vs. lithium reference electrode. A schematic model for lithiated carbon is proposed.

  4. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori, E-mail: kaji@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyusyu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Hirata, Osamu; Shibano, Yuki [Nissan Chemical Industries, LTD, 722-1 Tsuboi, Funabashi 274-8507 (Japan)

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  5. Study of the degradation of mulch materials in vegetable crops for organic farming

    Science.gov (United States)

    María Moreno, Marta; Mancebo, Ignacio; Moreno, Carmen; Villena, Jaime; Meco, Ramón

    2014-05-01

    Mulching is the most common technique used worldwide by vegetable growers in protected cultivation. For this purpose, several plastic materials have been used, with polyethylene (PE) being the most widespread. However, PE is produced from petroleum derivatives, it is not degradable, and thus pollutes the environment for periods much longer than the crop duration (Martín-Closas and Pelacho, 2011), which are very important negative aspects especially for organic farmers. A large portion of plastic films is left on the field or burnt uncontrollably by the farmers, with the associated negative consequences to the environment (Moreno and Moreno, 2008). Therefore, the best solution is to find a material with a lifetime similar to the crop duration time that can be later incorporated by the agricultural system through a biodegradation process (Martín-Closas and Pelacho, 2011). In this context, various biodegradable materials have been considered as alternatives in the last few years, including oxo-biodegradable films, biopolymer mulches, different types of papers, and crop residues (Kasirajan and Ngouajio, 2012). In this work we evaluate the evolution of different properties related to mulch degradation in both the buried and the superficial (exposed) part of mulch materials of different composition (standard black PE, papers and black biodegradable plastics) in summer vegetable crops under organic management in Castilla-La Mancha (Central Spain). As results, it is remarkable the early deterioration suffered by the buried part of the papers, disappearing completely in the soil at the end of the crop cycles and therefore indicating the total incorporation of these materials to the soil once the crop has finished. In the case of the degradation of the exposed mulch, small differences between crops were observed. In general, all the materials were less degraded under the plants than when receiving directly the solar radiation. As conclusion, biodegradable mulches degrade

  6. Remotely operated organic liquid waste incinerator for the fuels and materials examination facility

    International Nuclear Information System (INIS)

    Sales, W.L.; Barker, R.E.; Hershey, R.B.

    1980-01-01

    The search for a practical method for the disposal of small quantities of oraganic liquid waste, a waste product of metallographic sample preparation at the Fuels and Materials Examination Facility has led to the design of an incinerator/off-gas system to burn organic liquid wastes and selected organic solids. The incinerator is to be installed in a shielded inert-atmosphere cell, and will be remotely operated and maintained. The off-gas system is a wet-scrubber and filter system designed to release particulate-free off-gas to the FMEF Building Exhaust System

  7. Metal-organic materials (MOMs) for adsorption of polarizable gases and methods of using MOMs

    Science.gov (United States)

    Zaworotko, Michael; Mohamed, Mona H.; Elsaidi, Sameh

    2017-06-14

    Embodiments of the present disclosure provide for multi-component metal-organic materials (MOMs), systems including the MOM, systems for separating components in a gas, methods of separating polarizable gases from a gas mixture, and the like.

  8. In vitro assay for ACTH-releasing activity using ACTH radioimmunoassay. ACTH releasing activities by various drugs

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, K; Takahara, J; Hosogi, H; Ofuji, N; Yasuhara, T [Okayama Univ. (Japan). School of Medicine

    1976-02-01

    This report deals with an in vitro assay of ACTH releasing activity utilizing pituitary incubation combined with ACTH radioimmunoassay. Half of a rat pituitary was preincubated in 2ml Krebs Ringer bicarbonate buffer containing 0.2% glucose and 0.25% BSA (KRBG-BSA) for 1.5 hr (45 min x 2). The medium was replaced by 1 ml KRBG-BSA and incubated for 30 min. Then the medium was again replaced by 1 ml KRBG-BSA or KRBG-BSA containing test materials and incubated for another 30 min. The amount of ACTH assayed by radioimmunoassay in the 2nd 30 min incubation was compared with that in the 1st 30 min incubation, and the result was expressed as a percentage. In the ACTH radioimmunoassay, anti-ACTH serum was diluted to 1:1,500-3,000. The /sup 125/I-..cap alpha../sup 1 -24/ACTH-antibody system was not affected by lysine-vasopressin (LVP), arginine-vasopressin (AVP), rat's pituitary LH, GH or prolactin. Human /sup 1 -39/ACTH was used as the ACTH standard. The dilution curve of the incubation medium was parallel to the standard curve. Reproducibility of immunoassayable ACTH within-assay was 174 +- 5.0 pg/tube (CV=2.9%). A log dose-relationship was observed between the amounts of stalk median eminence extracts (SME; NIAMDD) added to the incubation medium and its ACTH releasing activities. The sensitivity of this assay method was at least 0.1 SME or 10 mU of LVP and AVP. Using this method, it was found that LVP, AVP, norepinephrine (100 ng/ml--200 ng/ml) and 5-hydroxytryptophane (1 ..mu..g/ml) had ACTH releasing activities, but LH-RH, TRH, glucagon, dopamine, phentolamine, propranolol, haloperidol, prostaglandin E/sub 1/ and indomethacin did not affect the release of ACTH.

  9. Automatic isotope gas analysis of tritium labelled organic materials Pt. 3

    International Nuclear Information System (INIS)

    Gacs, I.; Mlinko, S.; Payer, K.; Otvos, L.; Banfi, D.; Palagyi, T.

    1978-01-01

    An isotope analytical procedure and an automatic instrument developed for the determination of tritium in organic compounds and biological materials by internal gas counting are described. The sample is burnt in a stream of oxygen and the combustion products including water vapour carrying the tritium are led onto a column of molecular sieve-5A heated to 550 deg C. Tritium is retained temporarily on the column, then transferred into a stream of hydrogen by isotope exchange. After addition of butane, the tritiated hydrogen is led into an internal detector and enclosed there for radioactivity measurement. The procedure, providing quantitative recovery, is completed in five minutes. It is free of memory effect and suitable for the determination of tritium in a wide range of organic compounds and samples of biological origin. (author)

  10. Microwave synthesis of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C as positive-electrode materials for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Yupeng; Zhang, Yanhui; Su, Zhi, E-mail: suzhixj@sina.com

    2015-04-15

    Highlights: • High performance LVP/C synthesized by self-assembly microwave oven. • TEM showed the carbon layer is consisted of two kinds of concrete components. • The fast and efficient method make the process feasible commercially. - Abstract: The paper reports a microwave irradiation method to rapidly synthesize Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C materials as cathode for lithium ion batteries by the self-assembly microwave reaction oven with carbon seal reactor, using LiH{sub 2}PO{sub 4}, V{sub 2}O{sub 5} and sucrose as raw materials. Sucrose was used to be reducer and carbon source. Thermogravimetric (TG) analysis, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were used to characterize its structure and morphology. Electrochemical properties of the Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C materials were studied by cyclic voltammetry (CV) and charge–discharge cycling performance. The results showed that the diffraction peaks of the sample correspond to a single-phase, and can be indexed as monoclinic structure with a space group of P2{sub 1}/n. An electrochemical test showed that Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C demonstrated an excellent electrochemical capacity of 138 mA h g{sup −1} at 0.2 C rate and 124.1 mA h g{sup −1} at 5 C rate with stable cycle ability.

  11. Radiation effects on organic materials in nuclear plants. Final report

    International Nuclear Information System (INIS)

    Bruce, M.B.; Davis, M.V.

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10 4 rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10 5 rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects

  12. Organic compound materials used as pipes reinforcement of fluids conduction

    International Nuclear Information System (INIS)

    Latorre, G; Vargas, F

    1999-01-01

    This paper presents the experimental test and the results of the development of a composite organic material (MCO) for the reinforcement and covering of pipelines. MCO is designed to be applied to pipelines with external, damages such as dents or gauges or with surface damages caused by corrosion; The product can recover transport lines with 65% thickness losses due to corrosion in lengths of less than 0,2 m. the system developed by ECOPETROL-ICP can stop progressive picking corrosion, it has an excellent capillary, good adhesion, good resistance in cathodic protection, and mechanical strength that can support the operational pressure of the pipeline. MCO is a mixture of a polymeric resin reinforced with organic fibers, it can be applied to surface or underground pipelines without stopping normal operation. The maximum rupture pressure attained by the MCO was 23,4 MPA in pipelines with a 65% thickness loss due to corrosion. The normal operation pressure is 10-12 MPA

  13. Luminescent hybrid materials based on (8-hydroxyquinoline)-substituted metal-organic complexes and lead-borate glasses

    Science.gov (United States)

    Petrova, Olga B.; Anurova, Maria O.; Akkuzina, Alina A.; Saifutyarov, Rasim R.; Ermolaeva, Ekaterina V.; Avetisov, Roman I.; Khomyakov, Andrew V.; Taydakov, Ilya V.; Avetissov, Igor Ch.

    2017-07-01

    Novel luminescent organic-inorganic hybrid materials based on 8-hydroxyquinoline metal complexes (Liq, Kq, Naq, Rbq, Mgq2, Srq2, Znq2, Scq3, Alq3, Gaq3, and Inq3) have been synthesized by a high temperature exchange reaction with 80PbF2-20B2O3 inorganic low-melting glass. The mechanical and optical properties, transmission spectra, emission an excitation photoluminescence, and luminescence kinetic of hybrid materials were studied. All hybrid materials showed a wide luminescence band in the range 400-700 nm.

  14. Nanomaterial translocation - the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Balharry, Dominique; Wallin, Håkan

    2015-01-01

    into the toxicity posed by the NMs in these secondary organs is expanding due to the realisation that some materials may reach and accumulate in these target sites. The translocation to secondary organs includes, but is not limited to, the hepatic, central nervous, cardiovascular and renal systems. Current data...... dioxide and quantum dots) or fast (e.g. zinc oxide) solubility. The translocation of NMs following intratracheal, intranasal and pharyngeal aspiration is higher (up to 10% of administered dose), however the relevance of these routes for risk assessment is questionable. Uptake of the materials from....... For toxicological and risk evaluation, further information on the toxicokinetics and persistence of NMs is crucial. The overall aim of this review is to outline the data currently available in the literature on the biokinetics, accumulation, toxicity and eventual fate of NMs in order to assess the potential risks...

  15. Reclamation of waste rock material at the Summitville Mine Superfund site using organic matter and topsoil treatments

    Energy Technology Data Exchange (ETDEWEB)

    Winter, M.E.; Redente, E.F.

    1999-07-01

    The Summitville Mine was a high elevation (3,500 m) open-pit gold mine located in southwestern Colorado. The mine was abandoned in 1992 leaving approximately 200 ha of disturbed area comprised partially of two large waste rock piles. Reclamation of waste rock material is challenging due to extreme climatic conditions in conjunction with a high acid-production potential and low organic matter concentration of the material. In addition, stockpiled topsoil at the site is acidic and may be biologically inactive due to long-term storage, and therefore sufficient plant growth medium may be limited. The purpose of this study was to determine the effect of organic amendments (mushroom compost vs. biosolids) and topsoil (stockpiled vs. nonstockpiled) on aboveground biomass, herbaceous cover, and trace element uptake. An on-site field study was established in 1995 to identify the most effective combination of treatments for successful reclamation of waste rock material. Incorporation of organic matter increased total aboveground production and cover, with mushroom compost being more effective than biosolids, but did not show significant trends relative to trace element uptake. The use of topsoil did not show a significant response relative to aboveground production, cover, and trace element uptake. This study shows that waste rock materials can be directly revegetated if properly neutralized, fertilized, and amended with organic matter. Additionally, stockpiled topsoil was equivalent in plant growth to non-stockpiled topsoil when neutralized with lime.

  16. Plant growth response in experimental soilless mixes prepared from coal combustion products and organic waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, S.; Watson, M.; Dick, W.A. [Ohio State University, Wooster, OH (United States)

    2008-07-15

    Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth. An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.

  17. Research on Space Environmental Effect of Organic Composite Materials for Thermal Management of Satellites Using MC-50 Cyclotron

    Directory of Open Access Journals (Sweden)

    Dae-Weon Kim

    2005-12-01

    Full Text Available The organic material is one of the most popular material for the satellites and the spacecrafts in order to perform the thermal management, and to protect direct exposure from the space environment. The present paper observes material property changes of organic material under the space environment by using ground facilities. One of the representative organic thermal management material of satellites, 2 mil ITO(Indium Tin Oxide coated aluminized KAPTON was selected for experiments. In order to investigate the single parametric effect of protons in space environment, MC-50 cyclotron system in KIRAMS(Korea Institute of Radiological and Medical Science was utilized for the ion beam irradiation of protons and ion beam dose was set to the Very Large August 1972 EVENT model, the highest protons occurrence near the earth orbit in history. The energy of ion beam is fixed to 30MeV(mega electron volt, observed average energy, and the equivalent irradiance time conditions were set to 1-year, 3-year, 5-year and 10-year exposure in space. The procedure of analyses includes the measurement of the ultimate tensile strength for the assessment of quantitative degradation in material properties, and the imaging analyses of crystalline transformation and damages on the exposed surface by FE-SEM(Field Emission Scanning Electron Spectroscopy etc.

  18. Covalent organic polymer functionalized activated carbon: A novel material for water contaminant removal and CO2 capture

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    Covalent organic polymers (COPs) have emerged as one of the leading advanced materials for environmental applications, such as the capture and recovery of carbon dioxide and the removal of contaminants from polluted water. COPs exhibit many remarkable properties that other leading advanced materi...

  19. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Tatsuya Fukushima

    2015-08-01

    Full Text Available Liquid organic light-emitting diodes (liquid OLEDs are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  20. Five Years of Analyses of Volatiles, Isotopes and Organics in Gale Crater Materials

    Science.gov (United States)

    McAdam, A.; Mahaffy, P. R.; Andrejkovicova, S. C.; Archer, P. D., Jr.; Atreya, S. K.; Buch, A.; Coll, P. J.; Conrad, P. G.; Eigenbrode, J. L.; Farley, K. A.; Flesch, G.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Hogancamp, J. V.; House, C. H.; Knudson, C. A.; Lewis, J. M.; Malespin, C.; Martin, P. M.; Millan, M.; Ming, D. W.; Morris, R. V.; Navarro-Gonzalez, R.; Steele, A.; Stern, J. C.; Summons, R. E.; Sutter, B.; Szopa, C.; Teinturier, S.; Trainer, M. G.; Webster, C. R.; Wong, G. M.

    2017-12-01

    Over the last five years, the Curiosity rover has explored a variety of fluvial, lacustrine and aeolian sedimentary rocks, and soils. The Sample Analysis at Mars (SAM) instrument has analysed 3 soil and 12 rock samples, which exhibit significant chemical and mineralogical diversity in over 200 meters of vertical section. Here we will highlight several key insights enabled by recent measurements of the chemical and isotopic composition of inorganic volatiles and organic compounds detected in Gale Crater materials. Until recently samples have evolved O2 during SAM evolved gas analyses (EGA), attributed to the thermal decomposition of oxychlorine phases. A lack of O2 evolution from recent mudstone samples may indicate a difference in the composition of depositional or diagenetic fluids, and can also have implications for the detection of organic compounds since O2 can combust organics to CO2 in the SAM ovens. Recent mudstone samples have also shown little or no evolution of NO attributable to nitrate salts, possibly also as a result of changes in the chemical composition of fluids [1]. Measurements of the isotopic composition of sulfur, hydrogen, nitrogen, chlorine, and carbon in methane evolved during SAM pyrolysis are providing constraints on the conditions of possible paleoenvironments [e.g., 2, 3]. There is evidence of organic C from both EGA and GCMS measurements of Gale samples [e.g., 4, 5]. Organic sulfur volatiles have been detected in several samples, and the first opportunistic derivatization experiment produced a rich dataset indicating the presence of several organic compounds [6, 7]. A K-Ar age has been obtained from the Mojave mudstone, and the age of secondary materials formed by aqueous alteration is likely history and habitability. [1] Sutter et al. (2017) LPSC 3009. [2] Franz et al., this mtg. [3] Stern et al., this mtg. [4] Ming et al. (2014) Science 343. [5] Freissinet et al. (2015) JGR 120. [6] Eigenbrode et al. (2016) AGU P21D-08. [7] Freissinet

  1. Performance of sulphate- and selenium-reducing biochemical reactors using different ratios of labile to recalcitrant organic materials.

    Science.gov (United States)

    Mirjafari, Parissa; Baldwin, Susan A

    2015-01-01

    Successful operation of sulphate-reducing bioreactors using complex organic materials depends on providing a balance between more easily degrading material that achieves reasonable kinetics and low hydraulic retention times, and more slowly decomposing material that sustains performance in the long term. In this study, two organic mixtures containing the same ingredients typical of bioreactors used at mine sites (woodchips, hay and cow manure) but with different ratios of wood (recalcitrant) to hay (labile) were tested in six continuous flow bioreactors treating synthetic mine-affected water containing 600 mg/L of sulphate and 15 μg/L of selenium. The reactors were operated for short (5-6 months) and long (435-450 days) periods of time at the same hydraulic retention time of 15 days. There were no differences in the performance of the bioreactors in terms of sulphate-reduction over the short term, but the wood-rich bioreactors experienced variable and sometimes unreliable sulphate-reduction over the long term. Presence of more hay in the organic mixture was able to better sustain reliable performance. Production of dissolved organic compounds due to biodegradation within the bioreactors was detected for the first 175-230 days, after which their depletion coincided with a crash phase observed in the wood-rich bioreactors only.

  2. The Development of Inquiry Learning Materials to Complete Content Life System Organization in Junior High School Students

    Science.gov (United States)

    Mayasari, F.; Raharjo; Supardi, Z. A. I.

    2018-01-01

    This research aims to develop the material eligibility to complete the inquiry learning of student in the material organization system of junior high school students. Learning materials developed include syllabi, lesson plans, students’ textbook, worksheets, and learning achievement test. This research is the developmental research which employ Dick and Carey model to develop learning material. The experiment was done in Junior High School 4 Lamongan regency using One Group Pretest-Posttest Design. The data collection used validation, observation, achievement test, questionnaire administration, and documentation. Data analysis techniques used quantitative and qualitative descriptive.The results showed that the developed learning material was valid and can be used. Learning activity accomplished with good category, where student activities were observed. The aspects of attitudes were observed during the learning process are honest, responsible, and confident. Student learning achievement gained an average of 81, 85 in complete category, with N-Gain 0, 75 for a high category. The activities and student response to learning was very well categorized. Based on the results, this researcher concluded that the device classified as feasible of inquiry-based learning (valid, practical, and effective) system used on the material organization of junior high school students.

  3. Studies of the effects of organic materials on the sorption of uranium and plutonium

    International Nuclear Information System (INIS)

    Berry, J.A.; Bond, K.A.; Ferguson, D.R.; Pilkington, N.J.

    1989-10-01

    The effects of the presence of cellulosic degradation products on the sorption of uranium and plutonium on London clay and Caithness flagstones have been studied using the batch sorption method. Experimental conditions were chosen to simulate both those expected close to a cementitious repository (pH ∼ 11) and at the edge of the zone of migration of the calcium plume (pH ∼ 8). Work was carried out (i) under baseline conditions, in the absence of organic materials (ii) with gluconate, acting as a well-characterised simulant (iii) with authentic degradation products. These experimental studies are complemented by thermodynamic modelling work, the results of which are presented in a companion paper. The results have shown that organic degradation products can have a marked effect on sorption and the present work provides further evidence of the need to take account of the presence of such materials in safety assessment modelling. (author)

  4. Effect of organic fertilizers prepared from organic waste materials on the production of antibacterial volatile organic compounds by two biocontrol Bacillus amyloliquefaciens strains.

    Science.gov (United States)

    Raza, Waseem; Wei, Zhong; Ling, Ning; Huang, Qiwei; Shen, Qirong

    2016-06-10

    Three organic fertilizers made of different animal and plant waste materials (BOFs) were evaluated for their effects on the production of antibacterial volatile organic compounds (VOCs) by two Bacillus amyloliquefaciens strains SQR-9 and T-5 against the tomato wilt pathogen Ralstonia solanacearum (RS). Both strains could produce VOCs that inhibited the growth and virulence traits of RS; however, in the presence of BOFs, the production of antibacterial VOCs was significantly increased. The maximum inhibition of growth and virulence traits of RS by VOCs of T-5 and SQR-9 was determined at 1.5% BOF2 and 2% BOF3, respectively. In case of strain T-5, 2-nonanone, nonanal, xylene, benzothiazole, and butylated hydroxy toluene and in case of strain SQR-9, 2-nonanone, nonanal, xylene and 2-undecanone were the main antibacterial VOCs whose production was increased in the presence of BOFs. The results of this study reveal another significance of using organic fertilizers to improve the antagonistic activity of biocontrol agents against phytopathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Efficiency of biological activator formulated material (BAFM) for volatile organic compounds removal--preliminary batch culture tests with activated sludge.

    Science.gov (United States)

    Corre, Charline; Couriol, Catherine; Amrane, Abdeltif; Dumont, Eric; Andrès, Yves; Le Cloirec, Pierre

    2012-01-01

    During biological degradation, such as biofiltration of air loaded with volatile organic compounds, the pollutant is passed through a bed packed with a solid medium acting as a biofilm support. To improve microorganism nutritional equilibrium and hence to enhance the purification capacities, a Biological Activator Formulated Material (BAFM) was developed, which is a mixture of solid nutrients dissolving slowly in a liquid phase. This solid was previously validated on mineral pollutants: ammonia and hydrogen sulphide. To evaluate the efficiency of such a material for biodegradation of some organic compounds, a simple experiment using an activated sludge batch reactor was carried out. The pollutants (sodium benzoate, phenol, p-nitrophenol and 2-4-dichlorophenol) were in the concentration range 100 to 1200 mg L(-1). The positive impact of the formulated material was shown. The improvement of the degradation rates was in the range 10-30%. This was the consequence of the low dissolution of the nutrients incorporated during material formulation, followed by their consumption by the biomass, as shown for urea used as a nitrogen source. Owing to its twofold interest (mechanical resistance and nutritional supplementation), the Biological Activator Formulated Material seems to be a promising material. Its addition to organic or inorganic supports should be investigated to confirm its relevance for implementation in biofilters.

  6. Pyridine substituted spirofluorene derivative as an electron transport material for high efficiency in blue organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Yook, Kyoung Soo; Lee, Jun Yeob, E-mail: leej17@dankook.ac.k

    2010-11-01

    The quantum efficiency of blue fluorescent organic light-emitting diodes was enhanced by 20% using a pyridine substituted spirofluorene-benzofluorene derivative as an electron transport material. 2',7'-Di(pyridin-3-yl)spiro[benzofluorene-7,9'-fluorene] (SPBP) was synthesized and it was used as the electron transport material to block the hole leakage from the emitting layer. The improvement of the quantum efficiency and power efficiency of the blue fluorescent organic light-emitting diodes using the SPBP was investigated.

  7. Organic optoelectronics

    CERN Document Server

    Hu, Wenping; Gong, Xiong; Zhan, Xiaowei; Fu, Hongbing; Bjornholm, Thomas

    2012-01-01

    Written by internationally recognized experts in the field with academic as well as industrial experience, this book concisely yet systematically covers all aspects of the topic.The monograph focuses on the optoelectronic behavior of organic solids and their application in new optoelectronic devices. It covers organic electroluminescent materials and devices, organic photonics, materials and devices, as well as organic solids in photo absorption and energy conversion. Much emphasis is laid on the preparation of functional materials and the fabrication of devices, from materials synthesis a

  8. Water holding capacity and evaporative loss from organic bedding materials used in livestock facilities

    Science.gov (United States)

    Physical and chemical characteristics of organic bedding materials determine how well they will absorb and retain moisture and may influence the environment in livestock facilities where bedding is used. The objective of this study was to determine water holding capacity (WHC) and rate of evaporativ...

  9. New organic photorefractive material composed of a charge-transporting dendrimer and a stilbene chromophore

    Science.gov (United States)

    Bai, Jaeil; Ducharme, Stephen; Leonov, Alexei G.; Lu, Liu; Takacs, James M.

    1999-10-01

    In this report, we introduce new organic photorefractive composites consisting of charge transporting den-drimers highly doped with a stilbene nonlinear optic chromophore, The purpose of making these composites is to improve charge transport, by reducing inhomogeneity when compared to ordinary polymer-based systems. Because the structure of this material gives us freedom to control the orientation of charge transport agents synthetically, we can study the charge transport mechanism more systematically than in polymers. We discuss this point and present the characterization results for this material.

  10. Characterisation of different hole transport materials as used in organic p-i-n solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pfuetzner, Steffen; Petrich, Annette; Koch, Maik; Riede, Moritz; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden (Germany); Malbrich, Christine [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Dresden (Germany); Hildebrandt, Dirk; Pfeiffer, Martin [Heliatek GmbH, Dresden (Germany)

    2008-07-01

    This work focuses on the replacement of hole transport material MeO-TPD, which has been used so far in organic p-i-n- solar cells despite its has unfavourable behaviour at elevated temperatures. For this reason, different characterisation and investigations of the hole transport materials PV-TPD, PV-TPDoM, Di-NPB and MeO-Spiro-TPD were done, i.e. dopability, hole mobility, absorption, reflection, cyclic voltametry and glass transition temperature were measured. With simplified structures, e.g. m-i-p diodes, and simplified solar cells, consisting of the blue absorbing fullerene C{sub 60} as acceptor and the transparent donor material 4P-TPD, further specific material properties were determined.

  11. Quality assessment of organic coffee beans for the preparation of a candidate reference material

    International Nuclear Information System (INIS)

    Tagliaferro, F.S.; Nadai Fernandes de, E.A.; Bacchi, M.A.

    2006-01-01

    A random sampling was carried out in the coffee beans collected for the preparation of the organic green coffee reference material in view of assessing the homogeneity and the presence of soil as impurity. Fifteen samples were taken for the between-sample homogeneity evaluation. One of the samples was selected and 10 test portions withdrawn for the within-sample homogeneity evaluation. Br, Ca, Co, Cs, Fe, K, Na, Rb, Sc and Zn were determined by instrumental neutron activation analysis (INAA). The F-test demonstrated that the material is homogeneous for Ca, Co, Cs, K and Sc, but not homogeneous for Br, Fe, Na, Rb and Zn. Results of terrigenous elements suggested negligible soil contamination in the raw material. (author)

  12. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    International Nuclear Information System (INIS)

    Clauss, S.A.; Bean, R.M.

    1993-02-01

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods

  13. Enhanced bulk conductivity and bipolar transport in mixtures of MoOx and organic hole transport materials

    International Nuclear Information System (INIS)

    Tian, Baolin; Ban, Dayan; Aziz, Hany

    2013-01-01

    We study the conductivity of thin films of molybdenum oxide (MoO x ) mixed with an organic hole transport material, such as N,N′-bis(naphthalen-1-yl)-N,N′-bis (phenyl)benzidine or 4′,4″-tri(N-carbazolyl)triphenylamine, in lateral test devices. Contrary to previous reports, the conductivity of the mixture is found to exceed that of neat MoO x , exhibiting ∼ 5 orders of magnitude higher conductivity in comparison to the neat films. Studies also show that the mixing enhances both hole and electron transport. The higher conductivity may be attributed to a higher concentration of “free” carriers in the mixture, as a result of the formation of a charge transfer complex between the MoO x and the hole transport material. The findings shed light on the potential of hybrid composites of inorganic and organic materials in realizing enhanced conductivity. - Highlights: • We investigate the conductivity of mixtures of MoO x and hole transport material (HTM). • Materials are studied in lateral devices instead of conventional vertical devices. • Mixing MoO x with HTM brings > 5 orders of magnitude increase in bulk conductivity. • The mixture of MoO x and HTM enhances both hole and electron transport

  14. Organic materials in planetary and protoplanetary systems: nature or nurture?

    Science.gov (United States)

    Dalle Ore, C. M.; Fulchignoni, M.; Cruikshank, D. P.; Barucci, M. A.; Brunetto, R.; Campins, H.; de Bergh, C.; Debes, J. H.; Dotto, E.; Emery, J. P.; Grundy, W. M.; Jones, A. P.; Mennella, V.; Orthous-Daunay, F. R.; Owen, T.; Pascucci, I.; Pendleton, Y. J.; Pinilla-Alonso, N.; Quirico, E.; Strazzulla, G.

    2011-09-01

    Aims: The objective of this work is to summarize the discussion of a workshop aimed at investigating the properties, origins, and evolution of the materials that are responsible for the red coloration of the small objects in the outer parts of the solar system. Because of limitations or inconsistencies in the observations and, until recently, the limited availability of laboratory data, there are still many questions on the subject. Our goal is to approach two of the main questions in a systematic way: - Is coloring an original signature of materials that are presolar in origin ("nature") or stems from post-formational chemical alteration, or weathering ("nurture")? - What is the chemical signature of the material that causes spectra to be sloped towards the red in the visible? We examine evidence available both from the laboratory and from observations sampling different parts of the solar system and circumstellar regions (disks). Methods: We present a compilation of brief summaries gathered during the workshop and describe the evidence towards a primordial vs. evolutionary origin for the material that reddens the small objects in the outer parts of our, as well as in other, planetary systems. We proceed by first summarizing laboratory results followed by observational data collected at various distances from the Sun. Results: While laboratory experiments show clear evidence of irradiation effects, particularly from ion bombardment, the first obstacle often resides in the ability to unequivocally identify the organic material in the observations. The lack of extended spectral data of good quality and resolution is at the base of this problem. Furthermore, that both mechanisms, weathering and presolar, act on the icy materials in a spectroscopically indistinguishable way makes our goal of defining the impact of each mechanism challenging. Conclusions: Through a review of some of the workshop presentations and discussions, encompassing laboratory experiments as well

  15. Improved synthesis and hydrogen storage of a microporous metal-organic framework material

    International Nuclear Information System (INIS)

    Cheng Shaojuan; Liu Shaobing; Zhao Qiang; Li Jinping

    2009-01-01

    A microporous metal-organic framework MOF-5 [Zn 4 O(BDC) 3 , BDC = 1,4-benzenedicarboxylic] was synthesized with and without H 2 O 2 by improved methods based on the previous studies. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption, and their hydrogen storage capacities were measured. The synthesis experiments showed that H 2 O 2 favored the growth of high quality sample, large pore volume and high specific surface area. The measurements of hydrogen storage indicated that the sample with higher specific surface area and large pore volume showed better hydrogen storage behavior than other samples. It was suggested that specific surface area and pore volume influenced the capacity of hydrogen storage for MOF-5 material.

  16. Surface modification of zinc oxide nanorods for potential applications in organic materials

    International Nuclear Information System (INIS)

    Zhang Lei; Zhong Min; Ge Hongliang

    2011-01-01

    A facile and simple modification method towards changing surface property of ZnO nanorods from a hydrophilic one to a hydrophobic one have been developed by refluxing precursor in three-necked flask. Comparing with the other modifiers discussed in the paper, NDZ-311w titanate coupling agent was selected as the best one not only because of the good lipophilic modification effect, but also for its multifunctional groups could play a crucial part in further composite with organic materials. Moreover, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively, were used to evaluate the morphology, structure and combinative way before and after surface modification. The TEM result showed, after modifying process, there was a thin layer capping on the surface of ZnO nanorods which could be considered as NDZ-311w titanate coupling agent. Through the structure analysis by XRD, it was found that the surface modification had not substantially altered crystalline structure. Besides, the FT-IR test proved that NDZ-311w titanate coupling agent was rather covalently bonded to the surface of ZnO nanorods than physically capping. More practically speaking, the NDZ-311w titanate coupling agent modified ZnO nanorods have much more potential applications in organic materials than unmodified ones.

  17. Hot kinetic model as a guide to improve organic photovoltaic materials.

    Science.gov (United States)

    Sosorev, Andrey Yu; Godovsky, Dmitry Yu; Paraschuk, Dmitry Yu

    2018-01-31

    The modeling of organic solar cells (OSCs) can provide a roadmap for their further improvement. Many OSC models have been proposed in recent years; however, the impact of the key intermediates from photons to electricity-hot charge-transfer (CT) states-on the OSC efficiency is highly ambiguous. In this study, we suggest an analytical kinetic model for OSC that considers a two-step charge generation via hot CT states. This hot kinetic model allowed us to evaluate the impact of different material parameters on the OSC performance: the driving force for charge separation, optical bandgap, charge mobility, geminate recombination rate, thermalization rate, average electron-hole separation distance in the CT state, dielectric permittivity, reorganization energy and charge delocalization. In contrast to a widespread trend of lowering the material bandgap, the model predicts that this approach is only efficient along with improvement of the other material properties. The most promising ways to increase the OSC performance are decreasing the reorganization energy, i.e., an energy change accompanying CT from the donor molecule to the acceptor, increasing the dielectric permittivity and charge delocalization. The model suggests that there are no fundamental limitations that can prevent achieving the OSC efficiency above 20%.

  18. New Organic Stable Isotope Reference Materials for Distribution through the USGS and the IAEA

    Science.gov (United States)

    Schimmelmann, Arndt; Qi, Haiping

    2014-05-01

    The widespread adoption of relative stable isotope-ratio measurements in organic matter by diverse scientific disciplines is at odds with the dearth of international organic stable isotopic reference materials (RMs). Only two of the few carbon (C) and nitrogen (N) organic RMs, namely L-glutamic acids USGS40 and USGS41 [1], both available from the U.S. Geological Survey (USGS) and the International Atomic Energy Agency (IAEA), provide an isotopically contrasting pair of organic RMs to enable essential 2-point calibrations for δ-scale normalization [2, 3]. The supply of hydrogen (H) organic RMs is even more limited. Numerous stable isotope laboratories have resorted to questionable practices, for example by using 'CO2, N2, and H2 reference gas pulses' for isotopic calibrations, which violates the principle of identical treatment of sample and standard (i.e., organic unknowns should be calibrated directly against chemically similar organic RMs) [4], or by using only 1 anchor instead of 2 for scale calibration. The absence of international organic RMs frequently serves as an excuse for indefensible calibrations. In 2011, the U.S. National Science Foundation (NSF) funded an initiative of 10 laboratories from 7 countries to jointly develop much needed new organic RMs for future distribution by the USGS and the IAEA. The selection of targeted RMs attempts to cover various common compound classes of broad technical and scientific interest. We had to accept compromises to approach the ideal of high chemical stability, lack of toxicity, and low price of raw materials. Hazardous gases and flammable liquids were avoided in order to facilitate international shipping of future RMs. With the exception of polyethylene and vacuum pump oil, all organic RMs are individual, chemically-pure substances, which can be used for compound-specific isotopic measurements in conjunction with liquid and gas chromatographic interfaces. The compounds listed below are under isotopic calibration by

  19. of Effect of different organic materials on plant growth

    Directory of Open Access Journals (Sweden)

    mehrnosh eskandari

    2009-06-01

    Full Text Available Using organic matter, such as, peat and vermicompost as soil amendment, increases aeration, water infiltration, water holding capacity and nutrients of soil . A greenhouse experiment was performed to study the effect of organic materials on plant growth characteristics, total biomass and grain weight of chickpea with four treatments; 1 Soil + 3% peat (PS, 2 Sterile soil + 3% peat (SPS, 3 Soil + vermicompost (1:6 (VCS, 4 control (C in a completely randomized design with four replications. The results showed that the maximum germination percentage, number of branch and number of pod per plant were observed in SPS treatment due to the avoidance of harmful microbial impacts. Plant height in this treatment reduced, whereas, no significant differences in total dry matter per plant and dry weight of chickpea per plant were observed compared to control. Plant growth consist of plant height, number of branch and number of pod per plant in vermicompost and soil + peat treatment reduced in the early stages probably because of plant - microbes interaction effects. Application of vermicompost increased fresh and dry weight, pod dry weight and single grain weight, probably due to more plant nutrient availability in this treatment when compared with other treatments.

  20. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated...... and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties......) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition...

  1. Procurement of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials

    Science.gov (United States)

    2015-12-31

    SECURITY CLASSIFICATION OF: After acquiring the Infrared Imaging Microscope with large area mapping capabilities for structure -function research and...Inorganic Interfacial Analysis in Biological Materials The views, opinions and/or findings contained in this report are those of the author(s) and should...of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials Report Title After acquiring the Infrared

  2. Solution-processable red-emission organic materials containing triphenylamine and benzothiodiazole units: synthesis and applications in organic light-emitting diodes.

    Science.gov (United States)

    Yang, Yi; Zhou, Yi; He, Qingguo; He, Chang; Yang, Chunhe; Bai, Fenglian; Li, Yongfang

    2009-06-04

    Three solution-processable red-emissive organic materials with a hole-transporting unit triphenylamine (TPA) as the core part and a D-pi-A bipolar structure as the branch part, TPA-BT (single-branched molecule), b-TPA-BT (bibranched molecule), and t-TPA-BT (tribranched molecule), were synthesized by the Heck coupling reaction. Herein, for the D-pi-A push-pull structure, we use TPA as the electron donor, benzothiodiazole (BT) as the electron acceptor, and the vinylene bond as the pi-bridge connecting the TPA and BT units. The compounds exhibit good solubility in common organic solvents, benefited from the three-dimensional spatial configuration of TPA units and the branch structure of the molecules. TPA-BT, b-TPA-BT, and t-TPA-BT show excellent photoluminescent properties with maximum emission peaks at ca. 630 nm. High-performance red-emission organic light-emitting diodes (OLEDs) were fabricated with the active layer spin coated from a solution of these compounds. The OLED based on TPA-BT displayed a low turn-on voltage of 2.0 V, a maximum luminance of 12192 cd/m2, and a maximum current efficiency of 1.66 cd/A, which is among the highest values for the solution-processed red-emission OLEDs. In addition, high-performance white-light-emitting diodes (WLEDs) with maximum luminance around 4400 cd/m2 and maximum current efficiencies above 4.5 cd/A were realized by separately doping the three TPA-BT-containing molecules as red emitter and poly(6,6'-bi-(9,9'-dihexylfluorene)- co-(9,9'-dihexylfluorene-3-thiophene-5'-yl)) as green emitter into blue poly(9,9-dioctylfluorene-2,7-diyl) host material with suitable weight ratios.

  3. Investigation of nonlinear optical properties of various organic materials by the Z-scan method

    Science.gov (United States)

    Ganeev, R. A.; Boltaev, G. S.; Tugushev, R. I.; Usmanov, T.

    2012-06-01

    We have studied the nonlinear optical properties of various organic materials (vegetable oil, juice, wine, cognac, Coca-Cola and Fanta drinks, Nescafé coffee, tea, gasoline, clock oil, glycerol, and polyphenyl ether) that are used in everyday life. Their nonlinearities have been studied by the Z-scan method in the near-IR and visible spectral ranges. We have shown that the majority of samples possess a nonlinear absorption; however, some of the studied materials show a strong saturated absorption and nonlinear refraction. Red wine and glycerol proved to be the most interesting materials. For these samples, we have observed a change in the sign of the nonlinear absorption with increasing laser intensity, which was attributed to the competition between two-photon absorption and saturated absorption.

  4. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Science.gov (United States)

    2010-07-01

    ... operations and use that value as a substitute for mass fraction of organic HAP. (4) Alternative method. You... for each material used in your open molding resin and gel coat operations, carpet and fabric adhesive operations, or aluminum recreational boat surface coating operations, you must use one of the options in...

  5. Stepwise transformation of the molecular building blocks in a porphyrin-encapsulating metal-organic material

    KAUST Repository

    Zhang, ZhenJie; Wojtas, Łukasz; Eddaoudi, Mohamed; Zaworotko, Michael J.

    2013-01-01

    When immersed in solutions containing Cu(II) cations, the microporous metal-organic material P11 ([Cd4(BPT)4]·[Cd(C 44H36N8)(S)]·[S], BPT = biphenyl-3,4′,5-tricarboxylate) undergoes a transformation of its [Cd 2(COO)6]2- molecular building blocks

  6. Organic photovoltaic materials: squarylium and cyanine-TCNQ dyes

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, V.Y.

    1978-07-01

    The photovoltaic properties of Schottky barrier sandwich cells consisting of sublimed and solution-cast thin films of selected squarylium (bis-anilino derivatives of cyclobuta-1,3-diene-2,4-dione) and cyanine-tetracyanoquinodimethanide (TCNQ) dyes have been measured. For hydroxy squarylium (OHSq), maximum power conversion efficiencies (Eta) were 0.2% for 850-nm light (1 m W/cm/sup 2/); 0.05% for 633-nm light (94mW/cm/sup 2/); 0.06% for white light (21 mW/cm/sup 2/); 0.15% for low intensity (0.14 mW/cm) simulated AM0 light (sunlight under outer space conditions), and 0.02% for high intensity (140 mW/cm/sup 2/) AM0 light. Efficiencies of selected OHSq cells were observed to increase fivefold when the cells were doped with bromine or 1-phenyl-3-p-N, N-diethylaminostyryl-5-p-N, N-diethylaminophenyl-..delta../sup 2/-pyrazoline (DEASP), e.g., 0.05 to 0.23% (Br); 0.004 to 0.021% (DEASP). The efficiency of a solution-cast cell of amorphous 2,2'-dicarbocyanine-TCNQ was 0.02% when 933-nm light (approximately 1 mW/cm/sup 2/) was used. Amorphous solid solutions of 1,1'-diethyl-2,2'-dicarbocyanine-and oxa-2,2'-dicarbocyanine-TCNO salts were also tested. The effects of various material and device properties on the performance of organic photovoltaic cells are discussed, and it is proposed that organic solar cells having efficiencies of one percent or more can be made by using existing technologies.

  7. Research progress on organic-inorganic halide perovskite materials and solar cells

    Science.gov (United States)

    Ono, Luis K.; Qi, Yabing

    2018-03-01

    Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.

  8. Elastomeric organic material for switching application

    Energy Technology Data Exchange (ETDEWEB)

    Shiju, K., E-mail: shijuvenus@gmail.com, E-mail: pravymon@gmail.com, E-mail: ppredeep@gmail.com; Praveen, T., E-mail: shijuvenus@gmail.com, E-mail: pravymon@gmail.com, E-mail: ppredeep@gmail.com; Preedep, P., E-mail: shijuvenus@gmail.com, E-mail: pravymon@gmail.com, E-mail: ppredeep@gmail.com [Laboratory for Molecular Photonics and Electronics (LAMP), Department of Physics, National Institute of Technology, Calicut, Kerala, 673601 (India)

    2014-10-15

    Organic Electronic devices like OLED, Organic Solar Cells etc are promising as, cost effective alternatives to their inorganic counterparts due to various reasons. However the organic semiconductors currently available are not attractive with respect to their high cost and intricate synthesis protocols. Here we demonstrate that Natural Rubber has the potential to become a cost effective solution to this. Here an attempt has been made to fabricate iodine doped poly isoprene based switching device. In this work Poly methyl methacrylate is used as dielectric layer and Aluminium are employed as electrodes.

  9. Synthesis and stabilization of oxide-based colloidal suspensions in organic media: application in the preparation of hybrids organic-inorganic materials for very high laser damage threshold coatings

    International Nuclear Information System (INIS)

    Marchet, N.

    2008-02-01

    Multilayer coatings are widely used in optic and particular in the field of high power laser on the components of laser chains. The development of a highly reflective coating with a laser damage resistance requires the fine-tuning of a multilayer stack constituted by a succession alternated by materials with low and high refractive index. In order to limit the number of layers in the stack, refractive indexes must be optimized. To do it, an original approach consists in synthesizing new organic-inorganic hybrid materials satisfying the criteria of laser damage resistance and optimized refractive index. These hybrid materials are constituted by nano-particles of metal oxides synthesized by sol-gel process and dispersed in an organic polymer with high laser damage threshold. Nevertheless, this composite system requires returning both compatible phases between them by chemical grafting of alc-oxy-silanes or carboxylic acids. We showed that it was so possible to disperse in a homogeneous way these functionalized nano-particles in non-polar, aprotic solvent containing solubilized organic polymers, to obtain time-stable nano-composite solutions. From these organic-inorganic hybrid solutions, thin films with optical quality and high laser damage threshold were obtained. These promising results have permitted to realize highly reflective stacks, constituted by 7 pairs with optical properties in agreement with the theoretical models and high laser damage threshold. (author)

  10. Competence-Based, Research-Related Lab Courses for Materials Modeling: The Case of Organic Photovoltaics

    Science.gov (United States)

    Schellhammer, Karl Sebastian; Cuniberti, Gianaurelio

    2017-01-01

    We are hereby presenting a didactic concept for an advanced lab course that focuses on the design of donor materials for organic solar cells. Its research-related and competence-based approach qualifies the students to independently and creatively apply computational methods and to profoundly and critically discuss the results obtained. The high…

  11. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC

    Directory of Open Access Journals (Sweden)

    Bui Thanh-Tuan

    2013-10-01

    Full Text Available Issue from thin-film technologies, dye-sensitized solar cells have become one of the most promising technologies in the field of renewable energies. Their success is not only due to their low weight, the possibility of making large flexible surfaces, but also to their photovoltaic efficiency which are found to be more and more significant (>12% with a liquid electrolyte, >7% with a solid organic hole conductor. This short review highlights recent advances in the characteristics and use of low-molecular-weight glass-forming organic materials as hole transporters in all solid-state dye-sensitized solar cells. These materials must feature specific physical and chemical properties that will ensure both the operation of a photovoltaic cell and the easy implementation. This review is an english extended version based on our recent article published in Matériaux & Techniques 101, 102 (2013.

  12. Fires at storage sites of organic materials, waste fuels and recyclables.

    Science.gov (United States)

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  13. Nanoporous ceramic hybrid materials synthesized by organically modified ceramic precursor with terminal amine group

    Energy Technology Data Exchange (ETDEWEB)

    Velikova, Nina E.; Vueva, Yuliya E.; Abdallah, Mohammed E.; Ivanova, Yordanka Y.; Dimitriev, Yanko B. [Department of Silicate Technology, University of Chemical Technology and Metallurgy, Sofia (Bulgaria); Salvado, Isabel M.; Fernandes, Maria H. [Ceramic and Glass Engineering Department CICECO, University of Aveiro, Aveiro, (Portugal)

    2013-07-01

    Nanoporous ceramic materials was functionalized by co-condensation of tetraethyl orthosilicate (TEOS) and different 3-aminopropyltriethoxysilane (APTES) amounts in the presence of amphiphilic triblock copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (EO{sub 20}PO{sub 70}EO{sub 20} ), who was previously dissolved in acid solution with different acid concentrations. Pluronic P123 was used as structure-directing agent and xylene as a swelling agent. Inorganic salt was introduced in order to improve structure ordering and to tailor framework porosity. The synthesized materials were characterized by scanning electron microscopy (SEM), X-ray diffraction, nuclear magnetic resonance ( {sup 29}Si MAS NMR and {sup 13}C CP MAS NMR), Fourier –transform infrared spectroscopy (FT-IR) and elemental analysis. The results from NMR and FT-IR show that the organic functional group is successfuly incorporated in the silica framework and P123 was successfully extracted. The results from all analyzes prove that the acid concentration has significant influence on the materials morphology and properties. Kay words: sol-gel, mesoporous materials, hybrid materials, as structure-directing agent.

  14. Thermal conductivity of organic semi-conducting materials using 3omega and photothermal radiometry techniques

    Directory of Open Access Journals (Sweden)

    Reisdorffer Frederic

    2014-01-01

    Full Text Available Organic semiconductors for opto-electronic devices show several defects which can be enhanced while increasing the operating temperature. Their thermal management and especially the reduction of their temperature are of great interest. For the heat transfer study, one has to measure the thermal conductivity of thin film organic materials. However the major difficulty for this measurement is the very low thickness of the films which needs the use of very specific techniques. In our work, the 3-omega and photothermal radiometric methods were used to measure the thermal conductivity of thin film organic semiconducting material (Alq3. The measurements were performed as function of the thin film thickness from 45 to 785 nm and also of its temperature from 80 to 350 K. With the 3 omega method, a thermal conductivity value of 0.066 W.m−1K−1 was obtained for Alq3 thin film of 200 nm at room temperature, in close agreement with the photothermal value. Both techniques appear to be complementary: the 3 omega method is easier to implement for large temperature range and small thicknesses down to a few tens of nanometers whereas the photothermal method is more suitable for thicknesses over 200nm since it provides additional information such as the thin film volumetric heat capacity.

  15. Radioimmunoassay of antidiuretic hormone in human urine. Applications

    International Nuclear Information System (INIS)

    Zebidi, Abdelkrim.

    1977-10-01

    This work is devoted mainly to the development of a radioimmunological system of antidiuretic hormone (ADH) determination in the urine and its physiological and pathological applications. The radioimmunological method thus replaces the biological measurement of antidiuretic hormone in the urine. This new technique was not possible until specific arginine vasopressin antibodies were obtained and a labelled hormone was prepared according to the criteria set for a radioimmunoassay. The labelled hormone is lysine vasopressin (greater stability). Although 125 I-LVP has lost most of its biological activity the molecule keeps all its immunological properties, behaving in the same way as non-iodinated synthetic LVP towards anti-LVP antibodies. Once specific antivasopressin antibodies and immunologically competent labelled hormone were available, conditions were defined for the radioimmunological ADH test in the urine. This technique, relatively easy to use, allows twenty samples to be measured simultaneously. With this sensitive, specific and reproducible method, it is thus possible to estimate the urinary ADH excretion rates from a 20 ml volume of urine after previous extraction on amberlite CG 50. This extraction method is aimed at both concentrating the hormone and eliminating non-specific interferences. The hormone extraction yield is about 92%+-8 [fr

  16. Seneca Valley Virus 3Cpro Substrate Optimization Yields Efficient Substrates for Use in Peptide-Prodrug Therapy.

    Directory of Open Access Journals (Sweden)

    Linde A Miles

    Full Text Available The oncolytic picornavirus Seneca Valley Virus (SVV-001 demonstrates anti-tumor activity in models of small cell lung cancer (SCLC, but may ultimately need to be combined with cytotoxic therapies to improve responses observed in patients. Combining SVV-001 virotherapy with a peptide prodrug activated by the viral protease 3Cpro is a novel strategy that may increase the therapeutic potential of SVV-001. Using recombinant SVV-001 3Cpro, we measured cleavage kinetics of predicted SVV-001 3Cpro substrates. An efficient substrate, L/VP4 (kcat/KM = 1932 ± 183 M(-1s(-1, was further optimized by a P2' N→P substitution yielding L/VP4.1 (kcat/KM = 17446 ± 2203 M(-1s(-1. We also determined essential substrate amino acids by sequential N-terminal deletion and substitution of amino acids found in other picornavirus genera. A peptide corresponding to the L/VP4.1 substrate was selectively cleaved by SVV-001 3Cpro in vitro and was stable in human plasma. These data define an optimized peptide substrate for SVV-001 3Cpro, with direct implications for anti-cancer therapeutic development.

  17. Carbon dioxide capture using covalent organic frameworks (COFs) type material-a theoretical investigation.

    Science.gov (United States)

    Dash, Bibek

    2018-04-26

    The present work deals with a density functional theory (DFT) study of porous organic framework materials containing - groups for CO 2 capture. In this study, first principle calculations were performed for CO 2 adsorption using N-containing covalent organic framework (COFs) models. Ab initio and DFT-based methods were used to characterize the N-containing porous model system based on their interaction energies upon complexing with CO 2 and nitrogen gas. Binding energies (BEs) of CO 2 and N 2 molecules with the polymer framework were calculated with DFT methods. Hybrid B3LYP and second order MP2 methods combined with of Pople 6-31G(d,p) and correlation consistent basis sets cc-pVDZ, cc-pVTZ and aug-ccVDZ were used to calculate BEs. The effect of linker groups in the designed covalent organic framework model system on the CO 2 and N 2 interactions was studied using quantum calculations.

  18. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization

    KAUST Repository

    Park, Youngjune; Decatur, John; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa

    2011-01-01

    Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature

  19. Conversion from carbon dioxide to organic materials by RF impulse discharges with hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, G.; Kano, M.; Iizuka, S. [Tohoku Univ., Sendai (Japan). Dept. of Electrical Engineering

    2010-07-01

    Carbon dioxide (CO{sub 2}) is among the most serious greenhouse gases emitted from the burning of fossil fuels. The objective of this study was to investigate the fundamental process of reducing CO{sub 2} to generate beneficial and reusable organic materials like methane (CH{sub 4}) and alcohol (CH{sub 3}OH) by using RF impulse discharges in a low gas pressure regime. A low-pressure glow discharge was used to investigate the fundamental processes without catalysts. The discharge took place inside a glass tube by changing the discharge parameters such as voltage, gas flow rate and gas residence time, where the CO{sub 2} was reduced by hydrogen (H{sub 2}). Fourier transform infrared spectroscopy (FTIR) was used to analyze the gas species. Several organic materials were observed, including methane and methanol. The study focused primarily on the reduction of CO{sub 2} by using only H{sub 2}. Carbon monoxide (CO) was clearly a major product from CO{sub 2}, but CH{sub 4} was the most dominant organic species in this experiment. The density of CH{sub 4} increased with the discharge power, and eventually its volume ratio was about 20 percent among the gas species containing carbon via decomposition of CO{sub 2}. This ratio was dependent on the mixing ratio of CO{sub 2} and H{sub 2}. It was concluded that the total pressure is an important factor for efficient production. CH{sub 3}OH formation was observed, but its concentration was low in comparison to CH{sub 4}. 5 refs., 6 figs.

  20. Solidification of radioactive waste resins using cement mixed with organic material

    Energy Technology Data Exchange (ETDEWEB)

    Laili, Zalina, E-mail: liena@nm.gov.my [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor Malaysia (Malaysia); Waste and Environmental Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia); Yasir, Muhamad Samudi [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor Malaysia (Malaysia); Wahab, Mohd Abdul [Waste and Environmental Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  1. Solidification of radioactive waste resins using cement mixed with organic material

    International Nuclear Information System (INIS)

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-01-01

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins

  2. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

    Science.gov (United States)

    Heremans, Paul; Cheyns, David; Rand, Barry P

    2009-11-17

    Thin-film blends or bilayers of donor- and acceptor-type organic semiconductors form the core of heterojunction organic photovoltaic cells. Researchers measure the quality of photovoltaic cells based on their power conversion efficiency, the ratio of the electrical power that can be generated versus the power of incident solar radiation. The efficiency of organic solar cells has increased steadily in the last decade, currently reaching up to 6%. Understanding and combating the various loss mechanisms that occur in processes from optical excitation to charge collection should lead to efficiencies on the order of 10% in the near future. In organic heterojunction solar cells, the generation of photocurrent is a cascade of four steps: generation of excitons (electrically neutral bound electron-hole pairs) by photon absorption, diffusion of excitons to the heterojunction, dissociation of the excitons into free charge carriers, and transport of these carriers to the contacts. In this Account, we review our recent contributions to the understanding of the mechanisms that govern these steps. Starting from archetype donor-acceptor systems of planar small-molecule heterojunctions and solution-processed bulk heterojunctions, we outline our search for alternative materials and device architectures. We show that non-planar phthalocynanines have appealing absorption characteristics but also have reduced charge carrier transport. As a result, the donor layer needs to be ultrathin, and all layers of the device have to be tuned to account for optical interference effects. Using these optimization techniques, we illustrate cells with 3.1% efficiency for the non-planar chloroboron subphthalocyanine donor. Molecules offering a better compromise between absorption and carrier mobility should allow for further improvements. We also propose a method for increasing the exciton diffusion length by converting singlet excitons into long-lived triplets. By doping a polymer with a

  3. Thermochemolysis and the Search for Organic Material on Mars Onboard the MOMA Experiment

    Science.gov (United States)

    Morisson, Marietta; Buch, Arnaud; Szopa, Cyril; Glavin, Daniel; Freissinet, Carolinette; Pinnick, Veronica; Goetz, Walter; Stambouli, Moncef; Belmahdi, Imene; Coll, Patrice; Stalport, Fabien; Grand, Noël; Brinckerhoff, William; Goesmann, Fred; Raulin, François; Mahaffy, Paul

    2016-04-01

    Following the Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover, the Mars Organic Molecule Analyzer (MOMA) experiment onboard the future ExoMars 2018 mission will continue to investigate the organic composition of the martian subsurface. MOMA will have the advantage of extracting the sample from as deep as 2 meters below the martian surface where the deleterious effects of radiation and oxidation on organic matter are minimized. To analyse the wide range of organic compounds (volatile and non-volatile compounds) potentially present in the martian soil, MOMA includes two operational modes: UV laser desorption / ionization ion trap mass spectrometry (LDI-ITMS) and pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS). In order to analyse refractory organic compounds and chirality, samples which undergo GC-ITMS analysis may be derivatized beforhands, consisting in the reaction of the sample components with specific chemical reagents (MTBSTFA [1], DMF-DMA [2] or TMAH [3]). To prove the feasibility of the derivatization within the MOMA conditions we have adapated our laboratory procedure for the space conditions (temperature, time, pressure and size). Goal is optimize our detection limits and increase the range of the organic compounds that MOMA will be able to detect. Results of this study, show that Thermochemolysis is one of the most promising technique onboard MOMA to detect organic material. References : [1] Buch, A. et al. (2009) J Chrom. A, 43, 143-151. [2] Freissinet, C. et al. (2013) J Chrom. A, 1306, 731-740. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459.

  4. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.

    Science.gov (United States)

    Zhao, Qing; Zhu, Zhiqiang; Chen, Jun

    2017-12-01

    Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g -1 (2.27 V vs Li + /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g -1 (2.60 V vs Li + /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO 3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm -2 with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Changes in biochemical constituent of some organic waste materials under anaerobic methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, C R; Gulati, K C; Idnani, M A

    1970-10-01

    Changes in the percentage composition of holocellulose, cellulose, hemicellulose, lignin, pentosans and methoxyl contents of organic materials after fermentation of various systems like cow dung alone, cowdung-gum arabic, cowdung-wheat straw, cowdung-groundnut shells and cowdung-sugarcane bagasse by methane organisms indicated that the systems which had holocellulose (lignin in a ratio of 3 : 1 or less before fermentation) showed a greater decrease of hemicellulose fraction than of cellulose fraction. The percentage of lignin (18.41-22.03) and pentosans (0.292-5.129) increased after fermentation, except in cowdung-gum arabic which showed decrease of pentosans content. Methoxyl contents also decreased after fermentation, indicating a positive role of methyl group of methoxyls in the formation of methane by methane formers.

  6. White Organic Light-Emitting Diodes Using Two Phosphorescence Materials in a Starburst Hole-Transporting Layer

    Directory of Open Access Journals (Sweden)

    Tomoya Inden

    2012-01-01

    Full Text Available We fabricated two kinds of white organic light-emitting diodes (WOLEDs; one consisted of two emissive materials of red and blue, and the other of three emissive materials of red, green, and blue. The red and blue emissive materials were phosphorescent. We evaluated the thickness dependence of the CIE coordinate, the external quantum efficiency (EQE, and the luminance by changing the thicknesses of the Ir(btp2acac and FIrpic layers. Samples consisting of three emissive materials revealed the best CIE coordinate and the best EQE in the same sample structure. On the other hand, the samples consisting of two emissive materials revealed the best CIE coordinate and the best EQE in different structures. The best CIE coordinate of (0.33, 0.36 was observed by changing the thicknesses of the stacked active layers. The best EQE was 9.73%, which was observed in the sample consisting of different thickness of stacked active layers.

  7. Organic photovoltaic films

    OpenAIRE

    Nelson, Jenny

    2002-01-01

    Organic electronic materials are of interest for future applications in solar cells. Although results for single layer organic materials have been disappointing, high photocurrent quantum efficiencies can be achieved in composite systems including both electron donating and electron accepting components. Efficiencies of over 2% have now been reported in four different types of organic solar cell. Performance is limited by the low red absorption of organic materials, poor charge transport, and...

  8. Organic superconductors

    International Nuclear Information System (INIS)

    Bulaevskij, L.N.; Shchegolev, I.F.

    1986-01-01

    Main achievements in creating new organic conducting materials - synthetic metals and superconductors, are considered. The processes of superconductivity occurrence in organic materials are discussed. It is shown that conjugated bonds between C and H atoms in organic molecules play an important role in this case. At present ''crystal direction'' in organic superconductor synthesis is mainly developed. Later on, organic superconductor crystals are supposed to be introduced into usual polymers, e.g. polyethylene

  9. Formation and reactions of free radicals in the radiolysis of organic materials by ion beams

    International Nuclear Information System (INIS)

    Koizumi, H.

    2000-01-01

    High-energy heavy ions deposit energy along ion tracks with high density. Chemical effects of the heavy ions may hence differ from that of γ-rays and fast electrons. We can utilize these effects for material modification and fabrication of microstructure. It is necessary to know the dependence of the effects on ion beams and the variation of the effects on materials for developing new application of ion beams. We then studied radical formation in organic solids of alanine and of adipic acid by ion beams irradiation. (author)

  10. Electrocatalytic hydrogenation of organic molecules on conductive new catalytic material

    Energy Technology Data Exchange (ETDEWEB)

    Tountian, D. [Louis Pasteur Univ., Strasbourg (France). Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide; Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. de Chimie, Centre de Recherche en Electrochimie et Electrocatalyse; Brisach-Wittmeyer, A.; Menard, H. [Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. de Chimie, Centre de Recherche en Electrochimie et Electrocatalyse; Nkeng, P.; Poillerat, G. [Louis Pasteur Univ., Strasbourg (France). Laboratoire d' Electrochimie et de Chimie Physique du Corps Solide

    2008-07-01

    Electrocatalytic hydrogenation (ECH) of organic molecules is a process where chemisorbed hydrogen is produced by electroreduction of water which reacts with the species in bulk. Greater emphasis is being placed on improving the nature of the building material of the electrodes in order to increase ECH efficiency. The effectiveness of the ECH is known to be linked to the nature of electrode materials used and their adsorption properties. This work presented the effect of conductive support material on ECH. The conductive catalysts were obtained from tin dioxide which is chemically stable. Palladium was the catalytic metal used in this study. The production of chemisorbed hydrogen was shown to depend on the quantity of metallic nanoaggregates in electrical contact with the reticulated vitreous carbon use as electrode. The conductive support, F-doped tin dioxide, was obtained by the sol-gel method. The electrocatalysts were characterized by different methods as resistivity measurements, linear sweep voltammetry, XRD, SEM, TGA/DSC, and FTIR analysis. The effects of temperature and time of calcination were also investigated. The study showed that the F-doped SnO2 electrocatalyst appeared to increase the rate of phenol electrohydrogenation. It was concluded that the improved electrocatalytic activity of Pd/F-doped SnO2 can be attributed to the simultaneous polarization of all the metallic Pd nanoaggregates present on the surface as well as in the pores of the matrix by contact with RVC. This results in a better production of chemisorbed atomic hydrogen with a large number of adlienation points. 9 refs., 3 figs.

  11. Analysis of wear in organic and sintered friction materials used in small wind energy converters

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Lewis Esswein Junior

    2008-09-01

    Full Text Available Wind energy converters of small size used in isolated units to generate electrical energy must present low maintenance cost to such facilities economically viable. The aspect to be analyzed in cost reduction is the brake system, since in isolated systems the use of brake is more frequent reducing the brake pads life time. This study aims at analyzing the wear behavior of some materials used in brake pads. An organic material was analyzed comparing it with a commercial brake pad, and the sintered material was developed and tested. The materials behaviors were evaluated in both wear and friction coefficient. The sintered samples were made by powder metallurgy. The composition was compacted at 550 MPa and sintered in a furnace with controlled atmosphere to avoid oxidation. Despite the different compositions of the two types of materials, they presented a very similar wear; however, the sintered material presented a higher friction coefficient. An adjustment in the braking system of the wind generator might be proposed to use the sintered brake pad, due to its higher friction coefficient. Consequently, the braking action becomes lower, reducing the wear rate of the material.

  12. Characterisation of thin films of organic phosphorescent materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Thompson, J.; Arima, V.; Matino, F.; Cingolani, R.; Blyth, R.I.R.

    2005-01-01

    Synchrotron radiation photoemission and X-ray absorption spectroscopy (NEXAFS) have been used to investigate the electronic structure of evaporated films of the phosphorescent organic iridium complexes iridium tris-(2-(4-totyl)pyridinato-N,C 2 ), iridium bis(2-(4,6-difluorophenyl)pyridinato-N,C 2 )picolinate, and iridium bis(2-(2'-benzothienyl)pyridinato-N,C 3 )-(acetylacetonate) and spin coated films of these materials in a polymer host. Resonant photoemission at the Ir N 6,7 edge indicates that the Ir 5d states are hybridised with the π orbitals of the organic ligands, in agreement with recent calculations. The nitrogen K-edge NEXAFS shows the difference in the unoccupied orbitals induced by the acetylacetonate group compared to those of the pyridinate ligands. Although the valence bands of the ex situ prepared films are not accessible to photoemission, the Ir 4f core levels remain visible, and demonstrate that the polymer host serves to lower the electron injection barrier in the iridium complexes in comparison to the pure films

  13. Characterisation of thin films of organic phosphorescent materials using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J. [Float-Lux srl., via Ravenna 14, 73100 Lecce (Italy); Arima, V. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Matino, F. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Cingolani, R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Blyth, R.I.R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy)]. E-mail: rob.blyth@unile.it

    2005-07-30

    Synchrotron radiation photoemission and X-ray absorption spectroscopy (NEXAFS) have been used to investigate the electronic structure of evaporated films of the phosphorescent organic iridium complexes iridium tris-(2-(4-totyl)pyridinato-N,C{sup 2}), iridium bis(2-(4,6-difluorophenyl)pyridinato-N,C{sup 2})picolinate, and iridium bis(2-(2'-benzothienyl)pyridinato-N,C{sup 3})-(acetylacetonate) and spin coated films of these materials in a polymer host. Resonant photoemission at the Ir N{sub 6,7} edge indicates that the Ir 5d states are hybridised with the {pi} orbitals of the organic ligands, in agreement with recent calculations. The nitrogen K-edge NEXAFS shows the difference in the unoccupied orbitals induced by the acetylacetonate group compared to those of the pyridinate ligands. Although the valence bands of the ex situ prepared films are not accessible to photoemission, the Ir 4f core levels remain visible, and demonstrate that the polymer host serves to lower the electron injection barrier in the iridium complexes in comparison to the pure films.

  14. Two inorganic-organic hybrid materials based on polyoxometalate anions and methylene blue: Preparations, crystal structures and properties

    International Nuclear Information System (INIS)

    Nie Shanshan; Zhang Yaobin; Liu Bin; Li Zuoxi; Hu Huaiming; Xue Ganglin; Fu Feng; Wang Jiwu

    2010-01-01

    Two novel inorganic-organic hybrid materials based on an organic dye cation methylene blue (MB) and Lindqvist-type POM polyanions, [C 22 H 18 N 3 S] 2 Mo 6 O 19 2DMF (1) and [C 22 H 18 N 3 S] 2 W 6 O 19 2DMF (2) were synthesized under ambient conditions and characterized by CV, IR spectroscopy, solid diffuse reflectance spectrum, UV-vis spectra in DMF solution, luminescent spectrum and single crystal X-ray diffraction. Crystallographic data reveal that compounds 1 and 2 are isostructural and both crystallize in the triclinic space group P1-bar . Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong π...π stacking interactions between dimeric MB cations and near distance interactions among organic dye cations, Lindqvist-type POM polyanions and DMF molecules. The solid diffuse reflectance spectra and UV-vis spectra in DMF solution appear new absorption bands ascribed to the charge-transfer transition between the cationic MB donor and the POM acceptors. Studies of the photoluminescent properties show that the formation of 1 and 2 lead to the fluorescence quenching of starting materials. -- Graphical abstract: Their crystal structures present that the layers of organic molecules and inorganic anions array alternatively, and there exist strong π...π stacking interactions between dimeric MB cations. Display Omitted

  15. Chelating agents to solubilize heavy metals from Oxisols contaminated by the addition of organic and inorganic residues Uso de quelantes na solubilização de metais pesados de Latossolos contaminados pela adição de resíduos orgânico e inorgânico

    Directory of Open Access Journals (Sweden)

    Aline Renée Coscione

    2009-02-01

    Full Text Available Phytoremediation is an attractive technique for soils contaminated with heavy metals, especially in conjunction with chelating agents to assist metal phytoextraction. Nevertheless, their studies in Brazil are rare. Thus, the objective of the present work was to evaluate the efficiency of the chelating agents EDDS and EDTA for the solubilization of heavy metals from two Oxisols contaminated by organic sources in Jaguariúna (LVJ and inorganic sources in Paulínia (LVP, São Paulo State, Southeastern Brazil. First, the soil samples were fractionated and the DTPA method was used to quantify heavy metals available forms. The results indicated that the metals were highly available in the soil fractions and could be solubilized by the chelating agents. The soil was suspended for 24 h in a chelating agent solution (EDTA or EDDS at rates of 0, 250, 500 and 750 mg kg-1 of soil. The concentration of solubilized heavy metals was determined in the resulting solution. The extent of metal solubilization varied according to soil type, the chelating agent added and the specific metal. The amount of iron solubilized, as compared to the total iron (LVJ was 11% (EDTA and 19% (EDDS. EDDS solubilized more Cu than EDTA in both soils but more Ni in LVJ, while EDTA solubilized more Zn in both soils but more Cd in LVP. Both EDTA and EDDS may be useful for phytoextraction from soils, although the iron content is an important factor regarding the phytoextraction of heavy metals with chelating agents in Oxisols.A fitoextração tem sido uma opção atrativa para remediar solos contaminados com metais pesados, principalmente quando associada à aplicação de quelantes ao solo, embora no Brasil seus estudos sejam muito incipientes. Portanto, o objetivo deste trabalho foi avaliar a eficiência dos quelantes EDTA e EDDS na solubilização de metais pesados em Latossolos contaminados por Cu, Zn, Cd e Ni, cujas fontes de contaminação foram: orgânica em Jaguariúna (LVJ e

  16. Sensor devices comprising a metal-organic framework material and methods of making and using the same

    Science.gov (United States)

    Wang, Alan X.; Chang, Chih-hung; Kim, Ki-Joong; Chong, Xinyuan; Ohodnicki, Paul R.

    2018-05-29

    Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, or combinations thereof. In an exemplary embodiment, light guides can be coupled with the sensing components described herein to provide sensor devices capable of increased NIR detection sensitivity in determining the presence of detectable species, such as gases and volatile organic compounds. In another exemplary embodiment, optical properties of the plasmonic nanomaterials combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the particle or as a result of charge transfer to and from the plasmonic material as a result of interactions with the plasmonic material and/or the MOF material.

  17. Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries

    International Nuclear Information System (INIS)

    Zeng, Ronghua; Xing, Lidan; Qiu, Yongcai; Wang, Yating; Huang, Wenna; Li, Weishan; Yang, Shihe

    2014-01-01

    Highlights: • Quinonyl compounds containing –OH groups are reported as cathode of sustainable Li-ion battery. • Lithiation potential of these compounds is positively correlated to -OH group number on them. • These compounds exhibit a discharge plateau of 3 V and deliver a capacity of over 180 mAh g -1 at 20 mA g -1 . - Abstract: Suitably designed organic compounds are promising renewable electrode materials for lithium ion batteries (LIBs) with minimal environmental impacts and no CO 2 release. Herein we report a series of polycarbonyl organic compounds with different number of hydroxyl groups, which can be obtained from renewable plants, as cathode materials for LIBs. Density functional theory (DFT) calculations based on the natural bond orbital (NBO) reveal a positive correlation between the reduction potentials and the number of hydroxyl groups, which is borne out experimentally. Anthraquinone (AQ) with three or four -OH groups has the structural advantages for improving the discharge plateaus. Mechanistic studies show that AQ containing neighbouring carbonyl groups and hydroxyl groups facilitates the formation of six or five-membered rings with lithium ion. Charge/discharge tests show that AQ, 1,5-DHAQ, 1,2,7-THAQ, and 1,2,5,8-THAQ can achieve initial discharge capacities of 215, 190, 186 and 180 mAh g -1 at a current density of 20 mA g -1 , corresponding to 84%, 85%, 89% and 91% of their theoretical capacities, respectively

  18. Novel Fe-Pd/SiO2 catalytic materials for degradation of chlorinated organic compounds in water

    Science.gov (United States)

    Novel reactive materials for catalytic degradation of chlorinated organic compounds in water at ambient conditions have been prepared on the basis of silica-supported Pd-Fe nanoparticles. Nanoscale Fe-Pd particles were synthesized inside porous silica supports using (NH4

  19. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    Science.gov (United States)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  20. On the nature of organic matter from natural and contaminated materials : isolation methods, characterisation and application to geochemical modelling

    NARCIS (Netherlands)

    Zomeren, van A.

    2008-01-01

    Natural organic matter (NOM) is the material that is formed after the natural
    decomposition and transformation of dead plant and animal matter. The fresh
    organic matter (e.g. plant leaves or animal debris) is decomposed and
    transformed by microbial activity. As such, NOM is found

  1. Evaluation of internet-based patient education materials from internal medicine subspecialty organizations: will patients understand them?

    Science.gov (United States)

    Hansberry, David R; Agarwal, Nitin; John, Elizabeth S; John, Ann M; Agarwal, Prateek; Reynolds, James C; Baker, Stephen R

    2017-06-01

    The majority of Americans use the Internet daily, if not more often, and many search online for health information to better understand a diagnosis they have been given or to research treatment options. The average American reads at an eighth-grade level. The purpose of this study is to evaluate the readability of online patient education materials on the websites of 14 professional organizations representing the major internal medicine subspecialties. We used ten well-established quantitative readability scales to assess written text from patient education materials published on the websites of the major professional organizations representing the following subspecialty groups: allergy and immunology, cardiology, endocrinology, gastroenterology, geriatrics, hematology, hospice and palliative care, infectious disease, nephrology, oncology, pulmonology and critical care, rheumatology, sleep medicine, and sports medicine. Collectively the 540 articles analyzed were written at an 11th-grade level (SD 1.4 grade levels). The sleep medicine and nephrology websites had the most readable materials, written at an academic grade level of 8.5 ± 1.5 and 9.0 ± 0.2, respectively. Material at the infectious disease site was written at the most difficult level, with average readability corresponding to grades 13.9 ± 0.3. None of the patient education materials we reviewed conformed to the American Medical Association (AMA) and the National Institutes of Health (NIH) guidelines requiring that patient education articles be written at a third- to seventh-grade reading level. If these online resources were rewritten, it is likely that more patients would derive benefit from reading them.

  2. FY1995 new technology of artificial organ materials which can induce host biocompatibility; 1995 nendo jinko zokiyo seitai kino fukatsukagata sozai no kaihatsu gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The aim of this project is to produce a highly biocompatible materials for next generation's artificial organs using the following methods: 1, Micromodification of polymer materials. 2, Biocompatible treatment for biological materials. 3, Application of bioabsorbable materials. 4, Bioactive substance immobilization. and 5, Use of autologous tissue as artificial organ materials. As a synthetic polymer material, microporous polyurethane was used for a small diameter vascular prosthesis. The graft with this technology was successfully implanted in rat abdomical aortic position. The graft of 1.5 mm in internal diameter and 10cm in length showed excellent patency with nice endothelialisation. As a biological material, microfibers of collagen was used for a sealing substance of vascular prothesis. The microfibers absorbed a large amount of water, which could prevent blood leakage from the graft wall. The graft showed non-thrombogenic property and excellent host cell affinity, resulted in rapid neointima formation. As to autologous tissue, bone marrow was used, since marrow cells can differentiate into any mesenchimal cells with synthesis of growth factors. Marrow cell transplanted vascular prothesis showed rapid capillary ingrowth. These results indicated that the newly designed materials had suitable properties for materials of next generation's artificial organs. (NEDO)

  3. FY1995 new technology of artificial organ materials which can induce host biocompatibility; 1995 nendo jinko zokiyo seitai kino fukatsukagata sozai no kaihatsu gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The aim of this project is to produce a highly biocompatible materials for next generation's artificial organs using the following methods: 1, Micromodification of polymer materials. 2, Biocompatible treatment for biological materials. 3, Application of bioabsorbable materials. 4, Bioactive substance immobilization. and 5, Use of autologous tissue as artificial organ materials. As a synthetic polymer material, microporous polyurethane was used for a small diameter vascular prosthesis. The graft with this technology was successfully implanted in rat abdomical aortic position. The graft of 1.5 mm in internal diameter and 10 cm in length showed excellent patency with nice endothelialisation. As a biological material, microfibers of collagen was used for a sealing substance of vascular prothesis. The microfibers absorbed a large amount of water, which could prevent blood leakage from the graft wall. The graft showed non-thrombogenic property and excellent host cell affinity, resulted in rapid neointima formation. As to autologous tissue, bone marrow was used, since marrow cells can differentiate into any mesenchimal cells with synthesis of growth factors. Marrow cell transplanted vascular prothesis showed rapid capillary ingrowth. These results indicated that the newly designed materials had suitable properties for materials of next generation's artificial organs. (NEDO)

  4. Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants

    Science.gov (United States)

    Panizza, Marco

    Electrochemical oxidation is a promising method for the treatment of wastewaters containing organic compounds. As a general rule, the electrochemical incineration of organics at a given electrode can take place at satisfactory rates and without electrode deactivation only at high anodic potentials in the region of the water discharge due to the participation of the intermediates of oxygen evolution. The nature of the electrode material strongly influences both the selectivity and the efficiency of the process. In particular, anodes with low oxygen evolution overpotential (i.e., good catalysts for oxygen evolution reactions), such as graphite, IrO2, RuO2, and Pt only permit the partial oxidation of organics, while anodes with high oxygen evolution overpotential (i.e., anodes that are poor catalysts for oxygen evolution reactions), such as SnO2, PbO2, and boron-doped diamond (BDD) favor the complete oxidation of organics to CO2 and so are ideal electrodes for wastewater treatment.However, the application of SnO2 and PbO2 anodes may be limited by their short service life and the risk of lead contamination, while BDD electrodes exhibit good chemical and electrochemical stability, a long life, and a wide potential window for water discharge, and are thus promising anodes for industrial-scale wastewater treatment.

  5. Investigation of Trap Sites and Their Roles in Organic Triphenylamine-Based Photorefractive Materials

    OpenAIRE

    Tsujimura, Sho

    2016-01-01

    Organic photorefractive (PR) materials have been studied during the last quarter-century, and they have recently received much attention due to their updatable features that allow them to be used in dynamic holographic devices. However, understanding bulk trap sites that drive the PR effect (by inducing a space-charge field) remains a critical issue. In general, the trap site behavior can be controlled from the energetic point of view; however, bulk devices contain not only the energy trap si...

  6. Effects of Different Organic Materials and Exogenous Zn on Zn Distribution in Soil

    OpenAIRE

    HAO Jia-li; BU Yu-shan; JIA Zheng-rong; XI Ji-long; YAO Jing-zhen; DUAN Chao

    2015-01-01

    A pot experiment with a complete combinatorial design of two factors was conducted to study the effects of different organic materials and different concentrations of exogenous zinc on the soil total zinc, available zinc, zinc forms and zinc content distribution of pak-choi. The results showed that the total zinc, available zinc, and different forms of zinc contents in soil all increased as the concentration of exogenous zinc increased. Both lawn grass and maize straw decreased the total zinc...

  7. Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance

    Directory of Open Access Journals (Sweden)

    Steven L. McGeehan

    2012-01-01

    Full Text Available Waste materials, and materials derived from wastes, possess many characteristics that can improve soil fertility and enhance crop performance. These materials can be particularly useful as amendments to severely degraded soils associated with mining activities. This study evaluated biosolids, composts, log yard wastes, and two organic soil treatments for improved soil fertility and vegetative performance using side-by-side comparisons. Each plot was seeded with a standardized seed mix and evaluated for a series of soil chemical and physical parameters, total vegetation response, species diversity, ecological plant response, and invasion indices. All treatments were successful at improving soil fertility and promoting a self-sustaining vegetative cover. The level of available nitrogen had a strong impact on vegetative coverage, species distribution, and extent of unseeded vegetation. For example, high nitrogen treatments promoted a grass-dominated (low forb plant community with a low content of unseeded vegetation. In contrast, low nitrogen treatments promoted a more balanced plant community with a mixture of grass and forb species and greater susceptibility to unseeded vegetation establishment.

  8. Types of organic materials present in CEGB waste streams and possible encapsulation processes for organic ion-exchange materials

    International Nuclear Information System (INIS)

    Haighton, A.P.

    1988-01-01

    The organic composition of low and intermediate-level radioactive wastes is discussed. Work underway in the development of immobilising binders for organic ion exchange resins found in radioactive wastes and in the encapsulation of these ion exchangers is presented. (U.K.)

  9. Lipid Bilayer Formation on Organic Electronic Materials

    KAUST Repository

    Zhang, Yi

    2018-04-23

    The lipid bilayer is the elemental structure of cell membrane, forming a stable barrier between the interior and exterior of the cell while hosting membrane proteins that enable selective transport of biologically important compounds and cellular recognition. Monitoring the quality and function of lipid bilayers is thus essential and can be performed using electrically active substrates that allow for transduction of signals. Such a promising electronic transducer material is the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) which has provided a plethora of novel bio transducing architectures. The challenge is however in assembling a bilayer on the conducting polymer surface, which is defect-free and has high mobility. Herein, we investigate the fusion of zwitterionic vesicles on a variety of PEDOT:PSS films, but also on an electron transporting, negatively charged organic semiconductor, in order to understand the surface properties that trigger vesicle fusion. The PEDOT:PSS films are prepared from dispersions containing different concentrations of ethylene glycol included as a formulation additive, which gives a handle to modulate surface physicochemical properties without a compromise on the chemical composition. The strong correlation between the polarity of the surface, the fusion of vesicles and the mobility of the resulting bilayer aides extracting design principles for the development of future conducting polymers that will enable the formation of lipid bilayers.

  10. Rational design of organic electro-optic materials

    International Nuclear Information System (INIS)

    Dalton, L R

    2003-01-01

    Quantum mechanical calculations are used to optimize the molecular first hyperpolarizability of organic chromophores and statistical mechanical calculations are used to optimize the translation of molecular hyperpolarizability to macroscopic electro-optic activity (to values of greater than 100 pm V -1 at telecommunications wavelengths). Macroscopic material architectures are implemented exploiting new concepts in nanoscale architectural engineering. Multi-chromophore-containing dendrimers and dendronized polymers not only permit optimization of electro-optic activity but also of auxiliary properties including optical loss (both absorption and scattering), thermal and photochemical stability and processability. New reactive ion etching and photolithographic techniques permit the fabrication of three-dimensional optical circuitry and the integration of that circuitry with semiconductor very-large-scale integration electronics and silica fibre optics. Electro-optic devices have been fabricated exploiting stripline, cascaded prism and microresonator device structures. Sub-1 V drive voltages and operational bandwidths of greater than 100 GHz have been demonstrated. Both single-and double-ring microresonators have been fabricated for applications such as active wavelength division multiplexing. Free spectral range values of 1 THz and per channel modulation bandwidths of 15 GHz have been realized permitting single-chip data rates of 500 Gb s -1 . Other demonstrated devices include phased array radar, optical gyroscopes, acoustic spectrum analysers, ultrafast analog/digital converters and ultrahigh bandwidth signal generators. (topical review)

  11. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    Science.gov (United States)

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting.

  12. Investigation of the two-photon polymerisation of a Zr-based inorganic-organic hybrid material system

    International Nuclear Information System (INIS)

    Bhuian, B.; Winfield, R.J.; O'Brien, S.; Crean, G.M.

    2006-01-01

    Two-photon polymerisation of photo-sensitive materials allows the fabrication of three dimensional micro- and nano-structures for photonic, electronic and micro-system applications. However the usable process window and the applicability of this fabrication technique is significantly determined by the properties of the photo-sensitive material employed. In this study investigation of a custom inorganic-organic hybrid system, cross-linked by a two-photon induced process, is described. The material was produced by sol-gel synthesis using a silicon alkoxide species that also possessed methacrylate functionality. Stabilized zirconium alkoxide precursors were added to the precursor solution in order to reduce drying times and impart enhanced mechanical stability to deposited films. This enabled dry films to be used in the polymerisation process. A structural, optical and mechanical analysis of the optimised sol-gel material is presented. A Ti:sapphire laser with 80 MHz repetition rate, 100 fs pulse duration and 795 nm is used. The influence of both material system and laser processing parameters including: laser power, photo-initiator concentration and zirconium loading, on achievable micro-structure and size is presented

  13. Synthesis and characterizations of anion exchange organic-inorganic hybrid materials based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)

    International Nuclear Information System (INIS)

    Zhang Shaoling; Wu Cuiming; Xu Tongwen; Gong Ming; Xu Xiaolong

    2005-01-01

    A series of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based organic-inorganic hybrid materials for anion exchange were prepared through sol-gel process of polymer precursors PPO-Si(OCH 3 ) 3 . PPO-Si(OCH 3 ) 3 were obtained from the reaction of bromomethylated PPO with 3-aminopropyl-trimethoxysilane (A1110). These polymer precursors then underwent hydrolysis and condensation with additional A1110 to generate hybrid materials. The reaction to produce polymer precursors was identified by FTIR; while FTIR, TGA, XRD, SEM, as well as conventional ion exchange capacity (IEC) measurements were conducted for the structures and properties of the prepared hybrids. TGA results show that this series of hybrid materials possess high thermal stability; XRD and SEM indicate that the prepared hybrid materials are amorphous and the inorganic and organic contents show good compatibility if the ratio between them is proper. The IEC values of the hybrid materials due to the amine groups range from 1.13 mmol/gBPPO (material i) to 4.80 mmol/gBPPO (material iv)

  14. Chloric organic compound

    International Nuclear Information System (INIS)

    Moalem, F.

    2000-01-01

    Since many years ago, hazardous and toxic refuses which are results of human activities has been carelessly without any Biological and Engineering facts and knowledge discharged into our land and water. The effects of discharging those materials in environment are different. Some of refuse materials shows short and other has long-time adverse effects in our environment, Among hazardous organic chemical materials, chlorine, consider, to be the main element. Organic materials with chlorine is called chlorine hydrocarbon as a hazardous compound. This paper discuss the hazardous materials especially chloric organic compound and their misuse effects in environment and human being

  15. Neural network system and methods for analysis of organic materials and structures using spectral data

    Science.gov (United States)

    Meyer, Bernd J.; Sellers, Jeffrey P.; Thomsen, Jan U.

    1993-01-01

    Apparatus and processes for recognizing and identifying materials. Characteristic spectra are obtained for the materials via spectroscopy techniques including nuclear magnetic resonance spectroscopy, infrared absorption analysis, x-ray analysis, mass spectroscopy and gas chromatography. Desired portions of the spectra may be selected and then placed in proper form and format for presentation to a number of input layer neurons in an offline neural network. The network is first trained according to a predetermined training process; it may then be employed to identify particular materials. Such apparatus and processes are particularly useful for recognizing and identifying organic compounds such as complex carbohydrates, whose spectra conventionally require a high level of training and many hours of hard work to identify, and are frequently indistinguishable from one another by human interpretation.

  16. Optimum energy levels and offsets for organic donor/acceptor binary photovoltaic materials and solar cells

    International Nuclear Information System (INIS)

    Sun, S.-S.

    2005-01-01

    Optimum frontier orbital energy levels and offsets of an organic donor/acceptor binary type photovoltaic material have been analyzed using classic Marcus electron transfer theory in order to achieve the most efficient photo induced charge separation. This study reveals that, an exciton quenching parameter (EQP) yields one optimum donor/acceptor frontier orbital energy offset that equals the sum of the exciton binding energy and the charge separation reorganization energy, where the photo generated excitons are converted into charges most efficiently. A recombination quenching parameter (RQP) yields a second optimum donor/acceptor energy offset where the ratio of charge separation rate constant over charge recombination rate constant becomes largest. It is desirable that the maximum RQP is coincidence or close to the maximum EQP. A third energy offset is also identified where charge recombination becomes most severe. It is desirable that the most severe charge recombination offset is far away from maximum EQP offset. These findings are very critical for evaluating and fine tuning frontier orbital energy levels of a donor/acceptor pair in order to realize high efficiency organic photovoltaic materials

  17. Covalent Organic Framework Material bearing Phloroglucinol Building Units as a Potent Anticancer Agent

    KAUST Repository

    Bhanja, Piyali; Mishra, Snehasis; Manna, Krishnendu; Mallick, Arijit; Das Saha, Krishna; Bhaumik, Asim

    2017-01-01

    Covalent organic frameworks (COFs) having periodicity in pores of nanoscale dimensions can be suitably designed for the organic building units bearing reactive functional groups at their surfaces. Thus, they are an attractive option as an anticancer agent to overcome the limitations of chemotherapy. Herein, we first report a new porous biodegradable nitrogen containing COF material, EDTFP-1 (ethylenedianiline-triformyl phloroglucinol), synthesized using 4,4'-ethylenedianiline and 2,4,6-triformylphloroglucinol via Schiff base condensation reaction. EDTFP-1 exhibited 3D-hexagonal porous structure with average pores of ca. 1.5 nm dimension. Here, we have explored the anti-cancer potentiality of EDTFP-1. Result demonstrated an enhanced cytotoxicity was observed against four cancer cells HCT 116, HepG2, A549, and MIA-Paca2 with significant lower IC50 on HCT116 cells. Additionally, EDTFP-1-induced cell death was associated with the characteristic apoptotic changes like cell membrane blebbing, nuclear DNA fragmentation, externalization of phosphatidylserine from the cell membrane followed by a loss of mitochondrial membrane potential as well as modulation of pro and anti-apoptotic proteins. Further, the result depicted a direct correlation between the generations of ROS with mitochondrial-dependant apoptosis through the involvement of p53 phosphorylation upon EDTFP-1 induction, suggesting this COF material is a novel chemotherapeutic agent for cancer treatment.

  18. Recycling as a Pedagogical Strategy for the Reutilization of Organic and Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Dulce Aranel Gonzalez Orozco

    2017-02-01

    Full Text Available The objective of the present study is to establish recycling as a pedagogical strategy for the reuse of organic and inorganic material with the students of the National Basic School "Sebastián Araujo Briceño" of the Pedraza Municipality Barinas State; The researcher, through a direct approach to the study reality, has been able to verify firsthand that the subject of recycling is not being given due treatment, since it has been approached as a topic of more content, without being given due importance , Especially from the use of organic and inorganic materials, which makes this study an element of great importance in terms of the contribution that can be generated from it to the institution and to conscious formation. The informants of the present study will be made up of people from the "Sebastián Araujo Briceño" National Basic School of the Pedraza Municipality of Barinas, where the research will be carried out. Specifically, two (02 teachers and two (02 students of the institution, collaborators of the different activities that take place in the same. The technique used is the semi-structured interview, and the instrument is the interview guide. The analysis of the information will be done through the codification, categorization, triangulation and structuring of theories.

  19. Covalent Organic Framework Material bearing Phloroglucinol Building Units as a Potent Anticancer Agent

    KAUST Repository

    Bhanja, Piyali

    2017-08-23

    Covalent organic frameworks (COFs) having periodicity in pores of nanoscale dimensions can be suitably designed for the organic building units bearing reactive functional groups at their surfaces. Thus, they are an attractive option as an anticancer agent to overcome the limitations of chemotherapy. Herein, we first report a new porous biodegradable nitrogen containing COF material, EDTFP-1 (ethylenedianiline-triformyl phloroglucinol), synthesized using 4,4\\'-ethylenedianiline and 2,4,6-triformylphloroglucinol via Schiff base condensation reaction. EDTFP-1 exhibited 3D-hexagonal porous structure with average pores of ca. 1.5 nm dimension. Here, we have explored the anti-cancer potentiality of EDTFP-1. Result demonstrated an enhanced cytotoxicity was observed against four cancer cells HCT 116, HepG2, A549, and MIA-Paca2 with significant lower IC50 on HCT116 cells. Additionally, EDTFP-1-induced cell death was associated with the characteristic apoptotic changes like cell membrane blebbing, nuclear DNA fragmentation, externalization of phosphatidylserine from the cell membrane followed by a loss of mitochondrial membrane potential as well as modulation of pro and anti-apoptotic proteins. Further, the result depicted a direct correlation between the generations of ROS with mitochondrial-dependant apoptosis through the involvement of p53 phosphorylation upon EDTFP-1 induction, suggesting this COF material is a novel chemotherapeutic agent for cancer treatment.

  20. Military Hybrid Vehicle Optimization and Control

    Science.gov (United States)

    2012-08-14

    Iep S 2 lep K R 2 ) T ( S 2 K R2 ) We + + lgp (R+S) + lvp (R+S) = e Igp (R+S) + Ivp (R+S) - CR STg KRTm ---+ (2) Ivp... Iep = Ic + Ie B = 4Rbatt Cbatt C = T + 1\\1! R. . f + 0.5 Cd Rtire3 apw/ fb t1re r 9 K 2 and the vehicle constants are defined as: Unclass·ified...3_ + lvpRWr + 2IvpSwr +. IvpS2 wr + IvpS2 w,.] lep K Iep K Iep I< R lgp K R Iep K Iep I< Iep K R Igp I< R b = R W + S W + C R + Iep S 2 we + Iep K

  1. Exploring the Nutrient Release Potential of Organic Materials as Integrated Soil Fertility Management Components Using SAFERNAC

    NARCIS (Netherlands)

    Maro, G.P.; Mrema, J.P.; Msanya, B.M.; Janssen, B.H.; Teri, J.M.

    2014-01-01

    The aim of this study was to establish the nutrient release potential of different organic materials and assess their role in integrated soil fertility management for coffee using the new coffee yield model SAFERNAC. It involved an incubation experiment conducted at TaCRI Lyamungu Screenhouse for

  2. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  3. FY1995 new technology of artificial organ materials which can induce host biocompatibility; 1995 nendo jinko zokiyo seitai kino fukatsukagata sozai no kaihatsu gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The aim of this project is to produce a highly biocompatible materials for next generation's artificial organs using the following methods: 1, Micromodification of polymer materials. 2, Biocompatible treatment for biological materials. 3, Application of bioabsorbable materials. 4, Bioactive substance immobilization. and 5, Use of autologous tissue as artificial organ materials. As a synthetic polymer material, microporous polyurethane was used for a small diameter vascular prosthesis. The graft with this technology was successfully implanted in rat abdomical aortic position. The graft of 1.5 mm in internal diameter and 10cm in length showed excellent patency with nice endothelialisation. As a biological material, microfibers of collagen was used for a sealing substance of vascular prothesis. The microfibers absorbed a large amount of water, which could prevent blood leakage from the graft wall. The graft showed non-thrombogenic property and excellent host cell affinity, resulted in rapid neointima formation. As to autologous tissue, bone marrow was used, since marrow cells can differentiate into any mesenchimal cells with synthesis of growth factors. Marrow cell transplanted vascular prothesis showed rapid capillary ingrowth. These results indicated that the newly designed materials had suitable properties for materials of next generation's artificial organs. (NEDO)

  4. FY1995 new technology of artificial organ materials which can induce host biocompatibility; 1995 nendo jinko zokiyo seitai kino fukatsukagata sozai no kaihatsu gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The aim of this project is to produce a highly biocompatible materials for next generation's artificial organs using the following methods: 1, Micromodification of polymer materials. 2, Biocompatible treatment for biological materials. 3, Application of bioabsorbable materials. 4, Bioactive substance immobilization. and 5, Use of autologous tissue as artificial organ materials. As a synthetic polymer material, microporous polyurethane was used for a small diameter vascular prosthesis. The graft with this technology was successfully implanted in rat abdomical aortic position. The graft of 1.5 mm in internal diameter and 10 cm in length showed excellent patency with nice endothelialisation. As a biological material, microfibers of collagen was used for a sealing substance of vascular prothesis. The microfibers absorbed a large amount of water, which could prevent blood leakage from the graft wall. The graft showed non-thrombogenic property and excellent host cell affinity, resulted in rapid neointima formation. As to autologous tissue, bone marrow was used, since marrow cells can differentiate into any mesenchimal cells with synthesis of growth factors. Marrow cell transplanted vascular prothesis showed rapid capillary ingrowth. These results indicated that the newly designed materials had suitable properties for materials of next generation's artificial organs. (NEDO)

  5. Assessment of congenital heart disease by a thallium-201 SPECT study in children; Accuracy of estimated right to left ventricular pressure ratio

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Iwao; Nakajima, Kenichi; Taki, Junichi; Taniguchi, Mitsuru; Bunko, Hisashi; Tonami, Norihisa; Hisada, Kinichi; Ohno, Takashi (Kanazawa Univ. (Japan). School of Medicine)

    1993-01-01

    The characteristics of correlation between the right-to-left ventricular systolic pressure ratios (RVp/LVp) and the thallium-201 right-to-left ventricular ([sup 201]Tl R/L) count ratios was investigated in children with various congenital heart diseases. High-resolution three-headed SPECT system equipped with either parallel-hole or fan-beam collimators was used. In a total of 102 patients, the correlation between RVp/LVp and [sup 201]Tl R/L average count ratios was good in both planar (r=0.89, p=0.0001) and SPECT studies (r=0.80, p=0.0001). Quantitative analysis of myocardial uptake by SPECT demonstrated the characteristic pattern of each disease as well as the differences in the right ventricular overload types. When the linear regression analysis was performed in each heart disease, ventricular septal defect showed most excellent correlation. Complex heart anomalies also showed positive correlation (r=0.51, p=0.05) with RVp/LVp, and it can be used to estimate right ventricular pressure. After surgical treatment of tetralogy of Fallot and pulmonary stenosis, the decrease of [sup 201]Tl R/L count ratio was in accordance with improvement of right ventricular overload. We conclude that [sup 201]Tl SPECT study can be a good indicator for estimation of right ventricular pressure. (author).

  6. Assessment of congenital heart disease by a thallium-201 SPECT study in children

    International Nuclear Information System (INIS)

    Ishii, Iwao; Nakajima, Kenichi; Taki, Junichi; Taniguchi, Mitsuru; Bunko, Hisashi; Tonami, Norihisa; Hisada, Kinichi; Ohno, Takashi

    1993-01-01

    The characteristics of correlation between the right-to-left ventricular systolic pressure ratios (RVp/LVp) and the thallium-201 right-to-left ventricular ( 201 Tl R/L) count ratios was investigated in children with various congenital heart diseases. High-resolution three-headed SPECT system equipped with either parallel-hole or fan-beam collimators was used. In a total of 102 patients, the correlation between RVp/LVp and 201 Tl R/L average count ratios was good in both planar (r=0.89, p=0.0001) and SPECT studies (r=0.80, p=0.0001). Quantitative analysis of myocardial uptake by SPECT demonstrated the characteristic pattern of each disease as well as the differences in the right ventricular overload types. When the linear regression analysis was performed in each heart disease, ventricular septal defect showed most excellent correlation. Complex heart anomalies also showed positive correlation (r=0.51, p=0.05) with RVp/LVp, and it can be used to estimate right ventricular pressure. After surgical treatment of tetralogy of Fallot and pulmonary stenosis, the decrease of 201 Tl R/L count ratio was in accordance with improvement of right ventricular overload. We conclude that 201 Tl SPECT study can be a good indicator for estimation of right ventricular pressure. (author)

  7. Materials for n-type organic electronics: synthesis and properties of fluoroarene-thiophene semiconductors

    Science.gov (United States)

    Facchetti, Antonio; Yoon, Myung-Han; Katz, Howard E.; Marks, Tobin J.

    2003-11-01

    Recent progress in the field of organic electronics is due to a fruitful combination of both innovative molecular design and promising low-cost material/device assembly. Targeting the first strategy, we present here the general synthesis of fluoroarene-containing thiophene-based semiconductors and the study of their properties with respect to the corresponding fluorine-free hole-transporting analogues. The new compounds have been characterized by elemental analysis, mass spectrometry, and 1H- and 19F NMR. The dramatic influence of fluorine substitution and molecular architecture has been investigated by solution/film optical absorption, fluorescence emission, and cyclic voltammetry. Single crystal data for all of the oligomers have been obtained and will be presented. Film microstructure and morphology of this new class of materials have been studied by XRD and SEM. Particular emphasis will be posed on the solution-processable oligomers and polymers.

  8. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-04-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties in relation to BMP, protein content, lipids, lignocellulose biofibres and easily degradable carbohydrates (carbohydrates other than lignocellulose biofibres). The three components in lignocellulose biofibres, i.e. lignin, cellulose and hemicellulose, were differentiated, and theoretical BMP (TBMP) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability of material fractions such as vegetation waste, moulded fibres, animal straw, dirty paper and dirty cardboard, however, was constrained by lignin content. BMP for overall SSOHW (untreated) was 404 mL CH4 per g VS, which might increase if the relative content of material fractions, such as animal and vegetable food waste, kitchen tissue and dirty paper in the waste, becomes larger. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes

    KAUST Repository

    Sutton, Christopher

    2015-10-30

    Noncovalent intermolecular interactions, which can be tuned through the toolbox of synthetic chemistry, determine not only the molecular packing but also the resulting electronic, optical, and mechanical properties of materials derived from π-conjugated molecules, oligomers, and polymers. Here, we provide an overview of the theoretical underpinnings of noncovalent intermolecular interactions and briefly discuss the computational chemistry approaches used to understand the magnitude of these interactions. These methodologies are then exploited to illustrate how noncovalent intermolecular interactions impact important electronic properties-such as the electronic coupling between adjacent molecules, a key parameter for charge-carrier transport-through a comparison between the prototype organic semiconductor pentacene with a series of N-substituted heteropentacenes. Incorporating an understanding of these interactions into the design of organic semiconductors can assist in developing novel materials systems from this fascinating molecular class. © 2015 American Chemical Society.

  10. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-01-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180 degrees C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200 degrees C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air

  11. Keggin type inorganic-organic hybrid material containing Mn(II) monosubstituted phosphotungstate and S-(+)-sec-butyl amine: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Ketan [Chemistry Department, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India); Patel, Anjali, E-mail: aupatel_chem@yahoo.com [Chemistry Department, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India)

    2012-02-15

    Graphical abstract: A new organic-inorganic hybrid material containing Keggin type manganese substituted phosphotungstate and S-(+)-sec-butyl amine was synthesized and systematically characterized. Highlights: Black-Right-Pointing-Pointer New hybrid material comprising Mn substituted phosphotungstate (PW{sub 11}Mn) and S-(+)-sec-butyl amine (SBA) was synthesized. Black-Right-Pointing-Pointer The spectral studies reveal the attachment of SBA to the PW{sub 11}Mn without any distortion of structure. Black-Right-Pointing-Pointer The synthesized material comprises chirality. Black-Right-Pointing-Pointer The synthesized hybrid material can be used as a heterogeneous catalyst for carrying out asymmetric synthesis. -- Abstract: A new inorganic-organic POM-based hybrid material comprising Keggin type mono manganese substituted phosphotungstate and enantiopure S-(+)-sec-butyl amine was synthesized in an aqueous media by simple ligand substitution method. The synthesized hybrid material was systematically characterized in solid as well as solution by various physicochemical techniques such as elemental analysis, TGA, UV-vis, FT-IR, ESR and multinuclear solution NMR ({sup 31}P, {sup 1}H, {sup 13}C). The presence of chirality in the synthesized material was confirmed by CD spectroscopy and polarimeter. The above study reveals the attachment of S-(+)-sec-butyl amine to Keggin type mono manganese substituted phosphotungstate through N {yields} Mn bond. It also indicates the retainment of Keggin unit and presence of chirality in the synthesized material. An attempt was made to use the synthesized material as a heterogeneous catalyst for carrying out aerobic asymmetric oxidation of styrene using molecular oxygen. The catalyst shows the potential of being used as a stable recyclable catalytic material after simple regeneration without significant loss in conversion.

  12. Liquid-liquid phase separation in particles containing secondary organic material free of inorganic salts

    Science.gov (United States)

    Song, Mijung; Liu, Pengfei; Martin, Scot T.; Bertram, Allan K.

    2017-09-01

    Particles containing secondary organic material (SOM) are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid-liquid phase separation (LLPS) occurs at high relative humidity (RH) (greater than ˜ 95 %) in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than ˜ 95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C) of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  13. Development of organic-inorganic double hole-transporting material for high performance perovskite solar cells

    Science.gov (United States)

    Jo, Jea Woong; Seo, Myung-Seok; Jung, Jae Woong; Park, Joon-Suh; Sohn, Byeong-Hyeok; Ko, Min Jae; Son, Hae Jung

    2018-02-01

    The control of the optoelectronic properties of the interlayers of perovskite solar cells (PSCs) is crucial for achieving high photovoltaic performances. Of the solution-processable interlayer candidates, NiOx is considered one of the best inorganic hole-transporting layer (HTL) materials. However, the power conversion efficiencies (PCEs) of NiOx-based PSCs are limited by the unfavorable contact between perovskite layers and NiOx HTLs, the high density of surface trap sites, and the inefficient charge extraction from perovskite photoactive layers to anodes. Here, we introduce a new organic-inorganic double HTL consisting of a Cu:NiOx thin film passivated by a conjugated polyelectrolyte (PhNa-1T) film. This double HTL has a significantly lower pinhole density and forms better contact with perovskite films, which results in enhanced charge extraction. As a result, the PCEs of PSCs fabricated with the double HTL are impressively improved up to 17.0%, which is more than 25% higher than that of the corresponding PSC with a Cu:NiOx HTL. Moreover, PSCs with the double HTLs exhibit similar stabilities under ambient conditions to devices using inorganic Cu:NiOx. Therefore, this organic-inorganic double HTL is a promising interlayer material for high performance PSCs with high air stability.

  14. Immobilisation Of Spent Ion Exchange Resins Using Portland Cement Blending With Organic Material

    International Nuclear Information System (INIS)

    Zalina Laili; Mohd Abdul Wahab; Nur Azna Mahmud

    2014-01-01

    Immobilisation of spent ion exchange resins (spent resins) using Portland cement blending with organic material for example bio char was investigated. The performance of cement-bio char matrix for immobilisation of spent ion exchange resins was evaluated based on their compression strength and leachability under different experimental conditions. The results showed that the amount of bio char and spent resins loading effect the compressive strength of the waste form. Several factors affecting the leaching behaviour of immobilised spent resins in cement-bio char matrix. (author)

  15. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    Science.gov (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  16. Survival of organic materials in hypervelocity impacts of ice on sand, ice, and water in the laboratory.

    Science.gov (United States)

    Burchell, Mark J; Bowden, Stephen A; Cole, Michael; Price, Mark C; Parnell, John

    2014-06-01

    The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ~2 and ~4 km s(-1) at targets that included water ice, water, and sand. This involved shock pressures in the range of 2-12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s(-1) and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies.

  17. Study of different roles phosphorescent material played in different positions of organic light emitting diodes

    Science.gov (United States)

    Keke, Gu; Jian, Zhong; Jiule, Chen; Yucheng, Chen; Ming, Deng

    2013-09-01

    Phosphorescent materials are crucial to improve the luminescence and efficiency of organic light emitting diodes (OLED), because its internal quantum efficiency can reach 100%. So the studying of optical and electrical properties of phosphorescent materials is propitious for the further development of phosphorescent OLED. Phosphorescent materials were generally doped into different host materials as emitting components, not only played an important role in emitting light but also had a profound influence on carrier transport properties. We studied the optical and electrical properties of the blue 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi)-based devices, adding a common yellow phosphorescent material bis[2-(4- tert-butylphenyl)benzothiazolato- N,C2'] iridium(acetylacetonate) [( t-bt)2Ir(acac)] in different positions. The results showed ( t-bt)2Ir(acac) has remarkable hole-trapping ability. Especially the ultrathin structure device, compared to the device without ( t-bt)2Ir(acac), had increased the luminance by about 60%, and the efficiency by about 97%. Then introduced thin 4,4'-bis(carbazol-9-yl)biphenyl (CBP) host layer between DPVBi and ( t-bt)2Ir(acac), and got devices with stable white color.

  18. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng; Li, Bin; Wang, Peng; Dua, Rubal; Zhao, Dongyuan

    2012-01-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl

  19. WATSON: Detecting organic material in subsurface ice using deep-UV fluorescence and Raman spectroscopy

    Science.gov (United States)

    Eshelman, E.; Wanger, G.; Manatt, K.; Malaska, M.; Willis, M.; Abbey, W.; Doloboff, I.; Beegle, L. W.; DeFlores, L. P.; Priscu, J. C.; Lane, A. L.; Carrier, B. L.; Mellerowicz, B.; Kim, D.; Paulsen, G.; Zacny, K.; Bhartia, R.

    2017-12-01

    Future astrobiological missions to Europa and other ocean worlds may benefit from next-generation instrumentation capable of in situ organic and life detection in subsurface ice environments. WATSON (Wireline Analysis Tool for in Situ Observation of Northern ice sheets) is an instrument under development at NASA's Jet Propulsion Laboratory. WATSON contains high-TRL instrumentation developed for SHERLOC, the Mars 2020 deep-UV fluorescence and Raman spectrometer, including a 248.6 nm NeCu hollow cathode laser as an excitation source. In WATSON, these technologies provide spectroscopic capabilities highly sensitive to many organic compounds, including microbes, in an instrument package approximately 1.2 m long with a 101.6 mm diameter, designed to accommodate a 108 mm ice borehole. Interrogation into the ice wall with a laser allows for a non-destructive in situ measurement that preserves the spatial distribution of material within the ice. We report on a successful deployment of WATSON to Kangerlussuaq, Greenland, where the instrument was lowered to a 4.5 m depth in a hand-cored hole on the Kangerlussuaq sector of the Greenland ice sheet. Motorized stages within the instrument were used to raster a laser across cm-scale regions of the interior surface of the borehole, obtaining fluorescence spectral maps with a 200 µm spatial resolution and a spectral range from 265 nm to 440 nm. This region includes the UV emission bands of many aromatic compounds and microbes, and includes the water and ice Raman O-H stretching modes. We additionally report on experiments designed to inform an early-2018 deployment to Kangerlussuaq where WATSON will be incorporated into a Honeybee Robotics planetary deep drill, with a goal of drilling to a depth of 100 m and investigating the distribution of organic material within the ice sheet. These experiments include laboratory calibrations to determine the sensitivity to organic compounds embedded in ice at various depths, as well as

  20. Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3.

    Science.gov (United States)

    Kadoono, Tomosuke; Ogura, Masaru

    2014-03-28

    A novel type of material encapsulating phase-change materials (PCMs) is reported concerning their implication for use as thermal energy storage devices. The composites of siliceous SBA-15 or carbonaceous CMK-3 mesoporous assemblies and organic PCMs could be used to make leak-free devices that retain their capabilities over many thermal cycles for heat storage/release. A confinement effect was observed that alters the thermal properties of the encapsulated PCM, especially in CMK-3 without any similar effects in other carbon materials.

  1. A highly conducting organic metal derived from an organic-transistor material: benzothienobenzothiophene.

    Science.gov (United States)

    Kadoya, Tomofumi; Ashizawa, Minoru; Higashino, Toshiki; Kawamoto, Tadashi; Kumeta, Shohei; Matsumoto, Hidetoshi; Mori, Takehiko

    2013-11-07

    BTBT ([1]benzothieno[3,2-b][1]benzothiophene) is an organic semiconductor that realizes high mobility in organic transistors. Here we report that the charge-transfer (CT) salt, (BTBT)2PF6, shows a high room-temperature conductivity of 1500 S cm(-1). This compound exhibits a resistivity jump around 150 K, but when it is covered with Apiezon N grease the resistivity jump is suppressed, and the metallic conductivity is maintained down to 60 K. Owing to the very high conductivity, the ESR signal shows a significantly asymmetric Dysonian lineshape (A/B ≅ 3) even at room temperature. Since most organic conductors are based on strong electron donors, it is remarkable that such a weak electron donor as BTBT realizes a stable and highly conducting organic metal.

  2. Recent advances in pericentriolar material organization: ordered layers and scaffolding gels.

    Science.gov (United States)

    Fry, Andrew M; Sampson, Josephina; Shak, Caroline; Shackleton, Sue

    2017-01-01

    The centrosome is an unusual organelle that lacks a surrounding membrane, raising the question of what limits its size and shape. Moreover, while electron microscopy (EM) has provided a detailed view of centriole architecture, there has been limited understanding of how the second major component of centrosomes, the pericentriolar material (PCM), is organized. Here, we summarize exciting recent findings from super-resolution fluorescence imaging, structural biology, and biochemical reconstitution that together reveal the presence of ordered layers and complex gel-like scaffolds in the PCM. Moreover, we discuss how this is leading to a better understanding of the process of microtubule nucleation, how alterations in PCM size are regulated in cycling and differentiated cells, and why mutations in PCM components lead to specific human pathologies.

  3. Inventories of organic materials and complexing agents in intermediate-level long-lived parcels (Report PNGMDR 2013-2015)

    International Nuclear Information System (INIS)

    2014-01-01

    This report presents an inventory of organic materials and of complexing agents they may produce within parcels of alpha wastes which are to be produced or are being currently produced. The report proposes the results of campaigns of measurements of degassing, and comparison with results of modelling studies. The assessment of degassing rates of parcels of alpha wastes is completed by an assessment of hydrogen produced by radiolysis of interstitial water within the concrete container. Thus, after a presentation of the main parcels used by the CEA for intermediate-level long-lived wastes, and of an inventory of wastes containing organic materials, this report describes the consequences of radiolysis on polymers, and describes the objectives of R and D studies. It reports measurements and presents simulation tools for heterogeneous wastes, homogeneous wastes, production of water-soluble degradation products, and transfer and adsorption of these products in the storage site argillite

  4. The organic materials in the Five Northern Provinces' Assembly Hall: disclosing the painting technique of the Qing dynasty painters in civil buildings

    Science.gov (United States)

    Lluveras-Tenorio, A.; Bonaduce, I.; Sabatini, F.; Degano, I.; Blaensdorf, C.; Pouyet, E.; Cotte, M.; Ma, L.; Colombini, M. P.

    2015-11-01

    The beiwusheng huiguan (`Meeting hall of the Five Northern Dynasties') is a building complex from the Qing dynasty (1636-1912 ad) located in Wafangdian, near Ziyang, in the south of the Chinese Province of Shaanxi. Two of the preserved halls are richly decorated with wall paintings dated probably in 1848 ad and representing scenes of the `Romance of the Three Kingdoms' and Confucian moral tales. They are a rare example of well-preserved mural paintings of high artistic value inside civil buildings. The aims of this paper are the chemical characterization and localization of organic materials used as binders and colorants in the wall paintings. A multi-analytical approach, consisting in the combined use of gas chromatographic-mass spectrometric techniques (GC/MS and Py-GC/MS) and high-pressure liquid chromatography with diode array detector (HPLC-DAD), was chosen for these purposes. Proteinaceous materials (animal glue and egg), saccharide material (fruit tree gum) and a siccative oil were identified in different paint layers supplying invaluable information about the painting technique used. Moreover, the analyses of organic dyes allowed identifying indigo and gallic acid in more than one sample adding fundamental information about Chinese artists' techniques in mural paintings, missing from the previous studies. To shed light on the gilding technique, the distribution of the painting materials was achieved by means of synchrotron radiation Fourier transform infrared spectroscopy (SR micro-FTIR) and X-ray fluorescence (SR micro-XRF). The results obtained from the multi-analytical approach enabled us to determine the organic materials both binders and organic colorants used by Chinese artisans, highlighting the high technical level achieved in nineteenth century. The binding media and the organic colorants identified, as well as their distribution, allowed the discussion on the painting technique used by the artists of the Qing dynasty giving information for the

  5. Fundamentals and applications of organic electrochemistry synthesis, materials, devices

    CERN Document Server

    Fuchigami, Toshio; Inagi, Shinsuke

    2014-01-01

    This textbook is an accessible overview of the broad field of organic electrochemistry, covering the fundamentals and applications of contemporary organic electrochemistry.  The book begins with an introduction to the fundamental aspects of electrode electron transfer and methods for the electrochemical measurement of organic molecules. It then goes on to discuss organic electrosynthesis of molecules and macromolecules, including detailed experimental information for the electrochemical synthesis of organic compounds and conducting polymers. Later chapters highlight new methodology for organic electrochemical synthesis, for example electrolysis in ionic liquids, the application to organic electronic devices such as solar cells and LEDs, and examples of commercialized organic electrode processes. Appendices present useful supplementary information including experimental examples of organic electrosynthesis, and tables of physical data (redox potentials of various organic solvents and organic compounds and phy...

  6. The potential of organic polymer-based hydrogen storage materials.

    Science.gov (United States)

    Budd, Peter M; Butler, Anna; Selbie, James; Mahmood, Khalid; McKeown, Neil B; Ghanem, Bader; Msayib, Kadhum; Book, David; Walton, Allan

    2007-04-21

    The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.

  7. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    International Nuclear Information System (INIS)

    Samuels, W.D.; Camaioni, D.M.; Babad, H.

    1994-01-01

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H 2 , CO, NH 3 , CH 4 , and to changes in the composition of the organic and inorganic components brought about by ''Aging'' processes

  8. Amplification of the Luminescence Response in Organic Materials Exposed to Ionizing Radiation

    International Nuclear Information System (INIS)

    Michel, M.; Rocha, L.; Hamel, M.; Normand, S.

    2013-06-01

    Polymer-based scintillators present interesting features for the field of ionizing radiation detection, related to the high sensitivity of fluorescence techniques coupled to the manufacturing advantages of such materials. Organic materials can indeed be manufactured into large sensing areas with different geometrical conformations through low-cost fabrication techniques. While results herein presented focus on liquids, the same phenomena would occur in solid samples. Widely used for sensing applications because of its high sensitivity, fluorescence has yet been further improved using technologies yielded by research in photonics. It has already been shown that the use of nano-structuring for sensing applications enables previously unattained sensitivities. Herein we propose a technique based on the manipulation of light using nano-structuring of the detection medium in order to enable the amplification of the sensitive material emission. This amplification of the luminescence signal is aimed at reducing the detection limit of low-energy beta emitters such as tritium, well-known issue of major importance. The first step of our study, presented here, consists in demonstrating the ability of well-known scintillators to emit in laser regime when optically excited in a Distributed Feedback scheme. They are, to our knowledge, the first of their kind. The technique here presented, being usable whatever the sample maximum emission wavelength, should also enable a simplification of the devices based on scintillators. (authors)

  9. Ordered organic-organic multilayer growth

    Science.gov (United States)

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  10. Correlation between dynamic contrast-enhanced MRI and quantitative histopathologic microvascular parameters in organ-confined prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Niekerk, Cornelis G. van; Laak, Jeroen A.W.M. van der; Kaa, Christina A.H. de [Radboud University Medical Centre, Department of Pathology, P.O. Box 9101, Nijmegen (Netherlands); Hambrock, Thomas; Huisman, Henk-Jan; Barentsz, Jelle O. [Radboud University Medical Centre, Department of Radiology, Nijmegen (Netherlands); Witjes, J.A. [Radboud University Medical Centre, Department of Urology, Nijmegen (Netherlands)

    2014-10-15

    To correlate pharmacokinetic parameters of 3-T dynamic contrast-enhanced (DCE-)MRI with histopathologic microvascular and lymphatic parameters in organ-confined prostate cancer. In 18 patients with unilateral peripheral zone (pT2a) tumours who underwent DCE-MRI prior to radical prostatectomy (RP), the following pharmacokinetic parameters were assessed: permeability surface area volume transfer constant (K{sup trans}), extravascular extracellular volume (Ve) and rate constant (K{sub ep}). In the RP sections blood and lymph vessels were visualised immunohistochemically and automatically examined and analysed. Parameters assessed included microvessel density (MVD), area (MVA) and perimeter (MVP) as well as lymph vessel density (LVD), area (LVA) and perimeter (LVP). A negative correlation was found between age and K{sup trans} and K{sub ep} for tumour (r = -0.60, p = 0.009; r = -0.67, p = 0.002) and normal (r = -0.54, p = 0.021; r = -0.46, p = 0.055) tissue. No correlation existed between absolute values of microvascular parameters from histopathology and DCE-MRI. In contrast, the ratio between tumour and normal tissue (correcting for individual microvascularity variations) significantly correlated between K{sub ep} and MVD (r = 0.61, p = 0.007) and MVP (r = 0.54, p = 0.022). The lymphovascular parameters showed only a correlation between LVA and K{sub ep} (r = -0.66, p = 0.003). Significant correlations between DCE-MRI and histopathologic parameters were found when correcting for interpatient variations in microvascularity. (orig.)

  11. Triphenylsilane-substituted arenes as host materials for use in green phosphorescent organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jwajin; Lee, Kum Hee; Kim, Young Seok; Lee, Hyun Woo [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-03-15

    We demonstrated triphenylsilane-substituted arenes (1–4) as host materials for green phosphorescent organic light-emitting diodes. Particularly, a device using 9,9-dimethyl-2-(triphenylsilyl)-7-[4-(triphenylsilyl)phenyl]-9H-fluorene (compound 4) as the host material with the green phosphorescence dopant bis[2-(1,1′,2′,1′′-terphen-3-yl)pyridinato-C,N]iridium(III) (acetylacetonate) showed the efficient green emission with an external quantum efficiency of 4.64%, a power efficiency of 7.2 lm/W and luminous efficiency of 16.6 cd/A at 20 mA/cm{sup 2}, respectively, with the Commission International de L’Eclairage chromaticity coordinates of (0.33, 0.59) at 8.0 V.

  12. Fundamental mass transfer modeling of emission of volatile organic compounds from building materials

    Science.gov (United States)

    Bodalal, Awad Saad

    In this study, a mass transfer theory based model is presented for characterizing the VOC emissions from building materials. A 3-D diffusion model is developed to describe the emissions of volatile organic compounds (VOCs) from individual sources. Then the formulation is extended to include the emissions from composite sources (system comprising an assemblage of individual sources). The key parameters for the model (The diffusion coefficient of the VOC in the source material D, and the equilibrium partition coefficient k e) were determined independently (model parameters are determined without the use of chamber emission data). This procedure eliminated to a large extent the need for emission testing using environmental chambers, which is costly, time consuming, and may be subject to confounding sink effects. An experimental method is developed and implemented to measure directly the internal diffusion (D) and partition coefficients ( ke). The use of the method is illustrated for three types of VOC's: (i) Aliphatic Hydrocarbons, (ii) Aromatic Hydrocarbons and ( iii) Aldehydes, through typical dry building materials (carpet, plywood, particleboard, vinyl floor tile, gypsum board, sub-floor tile and OSB). Then correlations for predicting D and ke based solely on commonly available properties such as molecular weight and vapour pressure were proposed for each product and type of VOC. These correlations can be used to estimate the D and ke when direct measurement data are not available, and thus facilitate the prediction of VOC emissions from the building materials using mass transfer theory. The VOC emissions from a sub-floor material (made of the recycled automobile tires), and a particleboard are measured and predicted. Finally, a mathematical model to predict the diffusion coefficient through complex sources (floor adhesive) as a function of time was developed. Then this model (for diffusion coefficient in complex sources) was used to predict the emission rate from

  13. Sorption and migration of 137Cs attached to organic materials of tea in silty clay soil

    International Nuclear Information System (INIS)

    Yuecel, H.; Oezmen, A.

    1996-01-01

    The effect of the organic material of tea on the adsorption behavior of 137 Cs on the silty clay soil has been examined by batch experiments, using 137 Cs extracted tea contaminated by the Chernobyl accident, with water. The variation of K d values was studied as a function of contact time and a volume-solid ratio (V/m). The equilibrium time of 137 Cs extracted from the tea is slower by 9 times than that of 137 Cs + ions for the silty clay soil. The V/m ratio did not affect the 137 Cs adsorption strongly. The sorption of 137 Cs extracted form the tea in terms of the distribution coefficient K d is higher (a factor of 2.5) than that of 137 Cs + ions. This result indicates that 137 Cs-complexes with organic materials of tea are much sorbed than 137 C + ions on the silty clay soil. The migration of 137 Cs extracted from the tea in the silty clay soil has been studied under a steady flow of tea-extract by using a soil zone apparatus. The 137 Cs concentrations contained in both effluent fractions and in soil samples were measured using a HPGe detector. The distribution patterns of 137 Cs in the layers of the soil zone were obtained as one- and two-dimensional. The migration of 137 Cs extracted from the tea in soil is mainly influenced by flow. The results indicate that the migration of 137 Cs-complexes with organic materials and 137 Cs adsorbed fine silts cannot be described by such a K d based on ion-exchange reactions, but it is important to consider the moving mechanism of particulates besides ion-exchange reactions. (Author)

  14. Development of new organic materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Y. C.; Kang, P. H.; Choi, J. H.; and others

    2012-01-15

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we have developed the radiation-based new therapeutic agents such as hydrogel patch, paste, naganol, nanoparticles and nano fibers containing natural medicinal materials for the treatment of atomic dermatitis and diabetic ulcer. Also, we have developed the separator, the polymer gel electrolyte, and proton exchange membranes for lithium secondary battery and fuel cell by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology. In the 3rd project, the crucial radiation-induced surface modification technologies for the fabrication of the advanced biosensors/chips and electronic devices have been successfully developed.

  15. Development of new organic materials by radiation

    International Nuclear Information System (INIS)

    Nho, Y. C.; Kang, P. H.; Choi, J. H.

    2012-01-01

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we have developed the radiation-based new therapeutic agents such as hydrogel patch, paste, naganol, nanoparticles and nano fibers containing natural medicinal materials for the treatment of atomic dermatitis and diabetic ulcer. Also, we have developed the separator, the polymer gel electrolyte, and proton exchange membranes for lithium secondary battery and fuel cell by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology. In the 3rd project, the crucial radiation-induced surface modification technologies for the fabrication of the advanced biosensors/chips and electronic devices have been successfully developed

  16. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    Science.gov (United States)

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  17. Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy.

    Science.gov (United States)

    Koehler, Geoff; Wassenaar, Leonard I

    2012-04-17

    Hydrogen isotopic compositions of hydrous minerals and organic materials were measured by combustion to water, followed by optical isotopic analysis of the water vapor by off-axis integrated cavity output spectroscopy. Hydrogen and oxygen isotopic compositions were calculated by numerical integration of the individual isotopologue concentrations measured by the optical spectrometer. Rapid oxygen isotope exchange occurs within the combustion reactor between water vapor and molecular oxygen so that only hydrogen isotope compositions may be determined. Over a wide range in sample sizes, precisions were ±3-4 per mil. This is comparable but worse than continuous flow-isotope ratio mass spectroscopy (CF-IRMS) methods owing to memory effects inherent in water vapor transfer. Nevertheless, the simplicity and reduced cost of this analysis compared to classical IRMS or CF-IRMS methods make this an attractive option to determine the hydrogen isotopic composition of organic materials where the utmost precision or small sample sizes are not needed.

  18. Liquid–liquid phase separation in particles containing secondary organic material free of inorganic salts

    Directory of Open Access Journals (Sweden)

    M. Song

    2017-09-01

    Full Text Available Particles containing secondary organic material (SOM are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid–liquid phase separation (LLPS occurs at high relative humidity (RH (greater than  ∼  95 % in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than  ∼  95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  19. The influence of organic materials on the near field of an intermediate level radioactive waste repository

    International Nuclear Information System (INIS)

    Wilkins, J.D.

    1988-01-01

    The influence of organic materials which are present in some intermediate level wastes on the chemistry of the near field of a radioactive waste repository is discussed. Particular attention is given to the possible formation of water soluble complexing agents as a result of the radiation field and chemical conditions. The present state of the research is reviewed. (author)

  20. Energy-level alignment at metal-organic and organic-organic interfaces

    NARCIS (Netherlands)

    Veenstra, Sjoerd; Jonkman, H.T.

    2003-01-01

    This article reports on the electronic structure at interfaces found in organic semiconductor devices. The studied organic materials are C-60 and poly (para-phenylenevinylene) (PPV)-like oligomers, and the metals are polycrystalline Au and Ag. To measure the energy levels at these interfaces,

  1. Azo compounds as a family of organic electrode materials for alkali-ion batteries.

    Science.gov (United States)

    Luo, Chao; Borodin, Oleg; Ji, Xiao; Hou, Singyuk; Gaskell, Karen J; Fan, Xiulin; Chen, Ji; Deng, Tao; Wang, Ruixing; Jiang, Jianjun; Wang, Chunsheng

    2018-02-27

    Organic compounds are desirable for sustainable Li-ion batteries (LIBs), but the poor cycle stability and low power density limit their large-scale application. Here we report a family of organic compounds containing azo group (N=N) for reversible lithiation/delithiation. Azobenzene-4,4'-dicarboxylic acid lithium salt (ADALS) with an azo group in the center of the conjugated structure is used as a model azo compound to investigate the electrochemical behaviors and reaction mechanism of azo compounds. In LIBs, ADALS can provide a capacity of 190 mAh g -1 at 0.5 C (corresponding to current density of 95 mA g -1 ) and still retain 90%, 71%, and 56% of the capacity when the current density is increased to 2 C, 10 C, and 20 C, respectively. Moreover, ADALS retains 89% of initial capacity after 5,000 cycles at 20 C with a slow capacity decay rate of 0.0023% per cycle, representing one of the best performances in all organic compounds. Superior electrochemical behavior of ADALS is also observed in Na-ion batteries, demonstrating that azo compounds are universal electrode materials for alkali-ion batteries. The highly reversible redox chemistry of azo compounds to alkali ions was confirmed by density-functional theory (DFT) calculations. It provides opportunities for developing sustainable batteries.

  2. In situ characterization of martian materials and detection of organic compounds with the MOMA investigation onboard the ExoMars rover

    Science.gov (United States)

    Arevalo, R. D., Jr.; Grubisic, A.; van Amerom, F. H. W.; Danell, R.; Li, X.; Kaplan, D.; Pinnick, V. T.; Brinckerhoff, W. B.; Getty, S.; Goesmann, F.

    2017-12-01

    Ground-based observations (e.g., via the NASA Infrared Telescope Facility) and in situ investigations, including flybys (e.g., Mariner Program), orbiters (most recently MAVEN and ExoMars TGO), stationary landers (i.e., Viking, Pathfinder and Phoenix), and mobile rovers (i.e., Sojourner, Spirit/Opportunity and Curiosity), have enabled the progressive exploration of the Martian surface. Evidence for liquid water, manifest as hydrated and amorphous materials representative of alteration products of primary minerals/lithologies, and geomorphological features such as recurring slope lineae (RSL), valley networks and open-basin lakes, indicates that Mars may have hosted habitable environments, at least on local scales (temporally and spatially). However, the preservation potential of molecular biosignatures in the upper meter(s) of the surface is limited by destructive cosmic radiation and oxidative chemical reactions. Moreover, the determination of indigenous versus exogenous origins, and biotic versus abiotic formation mechanisms of detected organic material, provide additional challenges for future missions to the red planet. The Mars Organic Molecule Analyzer (MOMA) onboard the ExoMars rover, set to launch in 2020, provides an unprecedented opportunity to discover unambiguous indicators of life. The MOMA instrument will investigate the compositions of materials collected during multiple vertical surveys, extending as deep as two meters below the surface, via: i) gas chromatography mass spectrometry, a method geared towards the detection of volatile organics and the determination of molecular chirality, mapping to previous in situ Mars investigations; and, ii) laser desorption mass spectrometry, a technique commonly employed in research laboratories to detect larger, more refractory organic materials, but a first for spaceflight applications. Selective ion excitation and tandem mass spectrometry (MS/MS) techniques support the isolation and disambiguation of complex

  3. Organic Contaminant Content and Physico-Chemical Characteristics of Waste Materials Recycled in Agriculture

    Directory of Open Access Journals (Sweden)

    Hannah Rigby

    2015-12-01

    Full Text Available A range of wastes representative of materials currently applied, or with future potential to be applied, to agricultural land in the UK as fertilisers and soil improvers or used as animal bedding in livestock production, were investigated. In addition to full physico-chemical characterization, the materials were analysed for a suite of priority organic contaminants. In general, contaminants were present at relatively low concentrations. For example, for biosolids and compost-like-output (CLO, concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs and polychlorinated biphenyls (PCBs were approximately 1−10 and 5–50 times lower, respectively, than various proposed or implemented European limit values for these contaminants in biosolids or composts applied to agricultural land. However, the technical basis for these limits may require re-evaluation in some cases. Polybrominated, and mixed halogenated, dibenzo-p-dioxins/dibenzofurans are not currently considered in risk assessments of dioxins and dioxin-like chemicals, but were detected at relatively high concentrations compared with PCDD/Fs in the biosolids and CLOs and their potential contribution to the overall toxic equivalency is assessed. Other ‘emerging’ contaminants, such as organophosphate flame retardants, were detected in several of the waste materials, and their potential significance is discussed. The study is part of a wider research programme that will provide evidence that is expected to improve confidence in the use of waste-derived materials in agriculture and to establish guidelines to protect the food chain where necessary.

  4. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  5. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  6. Top-level categories of constitutively organized material entities--suggestions for a formal top-level ontology.

    Directory of Open Access Journals (Sweden)

    Lars Vogt

    2011-04-01

    result, however, depends on the premise that all material entities are organized according to a constitutive granularity.

  7. Effect of Organic Material on Mechanical, Hydrological, and Microstructural Properties of Mudstones

    Science.gov (United States)

    Altobelli, M. A.; Reece, J. S.

    2016-12-01

    In this research we analyze the influence of organic material on the mechanical and flow properties of mudstones. We uniformly mix peat, milled and harvested by Bord na Móna from the surface of bogs in Ireland, with natural mudstone from Site C0011 in the Nankai Trough, offshore Japan, obtained during Integrated Ocean Drilling Program Expedition 322. The mudstone had previously been disaggregated into a homogeneous dry powder of clay- and silt-sized particles. The peat is ground and dry-sieved to achieve a similar particle size distribution as the mudstone (mechanical and hydrological processes affected by peat, we prepare dry peat-mudstone mixtures with three different peat concentrations: 0 wt%, 5 wt%, and 10 wt%. Then, these peat - mudstone mixtures are saturated with deionized water at a water content of 109%, formed into stable slurries, and uniaxially compressed to an axial stress of 100 kPa using resedimentation, a method that simulates the natural behavior of deposition and burial in the laboratory under controlled conditions. How the organic material interacts with the mudstone matrix and pore fluid under compression influences the physical properties of the mudstones such as porosity, compressibility, and permeability; all of which are measured in the resedimentation experiments. We will also analyze the microstructural changes as a function of peat concentration using a petrographic microscope and scanning electron microscope. Due to the fibrous and absorbent nature of peat, we anticipate the peat to force tightly packed clay particles in the mudstone apart resulting in a looser microstructure and increased porosity, and thus, a higher compressibility and permeability. Understanding the controls on the mechanical and flow properties of hydrocarbon-bearing, fine-grained formations is crucial for exploration and successful production from hydrocarbon reservoirs. Additionally, this study has large implications for soil water storage and soil amendment to

  8. Synthesis and characterization of the europium (III) complex as an organic luminescent material

    International Nuclear Information System (INIS)

    Zhuo Zuliang; Zhang Fujun; Xu Zheng; Lu Lifang; Li Junming; Wang Yongsheng; Lv Yuguang

    2010-01-01

    The red emission organic material Eu(coumarin) 3 ·2H 2 O complex was synthesized and its morphology, energy level alignment and luminescence characteristics were studied by using scanning electron microscopy, Fourier transform infrared spectra, cyclic voltammetry and ultraviolet-visible absorption spectra and fluorescence spectra. Eu(coumarin) 3 ·2H 2 O shows bright red emission originating from Eu 3+ ions under 345 nm light excitation. The luminescence lifetime of Eu 3+ in this complex is about 580 μs. To improve the quality of Eu(coumarin) 3 ·2H 2 O thin films, Eu(coumarin) 3 ·2H 2 O was doped with a poly(N-vinylcarbazole) (PVK) solution. The organic materials 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and aluminum quinoline (Alq 3 ) were used as hole-blocking and electron-transporting layers in our fabricated electroluminescence (EL) devices on indium tin oxide (ITO) substrates, respectively. The EL devices ITO/poly-(3,4-ethylenedioxythiophene):poly-(styrenesulphonic acid) (PEDOT:PSS)/emitting layer (PVK:Eu)/BCP/Alq 3 /Al were fabricated, and EL spectra were measured under different driving voltages. There is one emission peaking at 490 nm in addition to the characteristic emission peaks of Eu 3+ , which should be attributed to the spectral overlap between the PVK emission and electroplex emission originating from PVK and BCP interfaces. This explanation can be positively supported by the dependence of the EL spectral variation of ITO/ PVK/BCP/Alq 3 /Al devices on the driving voltage.

  9. Synthesis and characterization of the europium (III) complex as an organic luminescent material

    Science.gov (United States)

    Zhuo, Zuliang; Zhang, Fujun; Lv, Yuguang; Xu, Zheng; Lu, Lifang; Li, Junming; Wang, Yongsheng

    2010-11-01

    The red emission organic material Eu(coumarin)3·2H2O complex was synthesized and its morphology, energy level alignment and luminescence characteristics were studied by using scanning electron microscopy, Fourier transform infrared spectra, cyclic voltammetry and ultraviolet-visible absorption spectra and fluorescence spectra. Eu(coumarin)3·2H2O shows bright red emission originating from Eu3+ ions under 345 nm light excitation. The luminescence lifetime of Eu3+ in this complex is about 580 μs. To improve the quality of Eu(coumarin)3·2H2O thin films, Eu(coumarin)3·2H2O was doped with a poly(N-vinylcarbazole) (PVK) solution. The organic materials 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and aluminum quinoline (Alq3) were used as hole-blocking and electron-transporting layers in our fabricated electroluminescence (EL) devices on indium tin oxide (ITO) substrates, respectively. The EL devices ITO/poly-(3,4-ethylenedioxythiophene):poly-(styrenesulphonic acid) (PEDOT:PSS)/emitting layer (PVK:Eu)/BCP/Alq3/Al were fabricated, and EL spectra were measured under different driving voltages. There is one emission peaking at 490 nm in addition to the characteristic emission peaks of Eu3+, which should be attributed to the spectral overlap between the PVK emission and electroplex emission originating from PVK and BCP interfaces. This explanation can be positively supported by the dependence of the EL spectral variation of ITO/ PVK/BCP/Alq3/Al devices on the driving voltage.

  10. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials

    Science.gov (United States)

    Niu, Yingli; Li, Wenqiang; Peng, Qian; Geng, Hua; Yi, Yuanping; Wang, Linjun; Nan, Guangjun; Wang, Dong; Shuai, Zhigang

    2018-04-01

    MOlecular MAterials Property Prediction Package (MOMAP) is a software toolkit for molecular materials property prediction. It focuses on luminescent properties and charge mobility properties. This article contains a brief descriptive introduction of key features, theoretical models and algorithms of the software, together with examples that illustrate the performance. First, we present the theoretical models and algorithms for molecular luminescent properties calculation, which includes the excited-state radiative/non-radiative decay rate constant and the optical spectra. Then, a multi-scale simulation approach and its algorithm for the molecular charge mobility are described. This approach is based on hopping model and combines with Kinetic Monte Carlo and molecular dynamics simulations, and it is especially applicable for describing a large category of organic semiconductors, whose inter-molecular electronic coupling is much smaller than intra-molecular charge reorganisation energy.

  11. Method to prepare essentially organic waste liquids containing radioactive or toxic materials

    International Nuclear Information System (INIS)

    Baehr, W.; Drobnik, S.H.; Hild, W.; Kroebel, R.; Meyer, A.; Naumann, G.

    1976-01-01

    Waste solutions occuring in nuclear technology containing radioactive or toxic materials can be solidified by mixing with a polymerisable mixture with subsequent polymerization. An improvement of this method, especially for liquids in which the radioactive components are present as organic compounds is achieved by adding a mixture of at least one monomeric vinyl compound, at least one polyvinyl compound and appropriate catalysts and by polymerizing at temperatures between 15 and 150 0 C. Should the waste liquid contain mineral acid, this is first neutralized by the addition of CaO or MgO. In processing oils or soaps, the addition of swelling agent for polystyrol resins is advantageous. 16 examples illustrate the invention. (UWI) [de

  12. Organic spintronics

    International Nuclear Information System (INIS)

    Naber, W J M; Faez, S; Wiel, W G van der

    2007-01-01

    We review the emerging field of organic spintronics, where organic materials are applied as a medium to transport and control spin-polarized signals. The contacts for injecting and detecting spins are formed by ferromagnetic metals, oxides, or inorganic semiconductors. First, the basic concepts of spintronics and organic electronics are addressed, and phenomena which are in particular relevant for organic spintronics are highlighted. Experiments using different organic materials, including carbon nanotubes, organic thin films, self-assembled monolayers and single molecules are then reviewed. Observed magnetoresistance points toward successful spin injection and detection, but spurious magnetoresistance effects can easily be confused with spin accumulation. A few studies report long spin relaxation times and lengths, which forms a promising basis for further research. We conclude with discussing outstanding questions and problems. (topical review)

  13. Building up an electrocatalytic activity scale of cathode materials for organic halide reductions

    International Nuclear Information System (INIS)

    Bellomunno, C.; Bonanomi, D.; Falciola, L.; Longhi, M.; Mussini, P.R.; Doubova, L.M.; Di Silvestro, G.

    2005-01-01

    A wide investigation on the electrochemical activity of four model organic bromides has been carried out in acetonitrile on nine cathodes of widely different affinity for halide anions (Pt, Zn, Hg, Sn, Bi, Pb, Au, Cu, Ag), and the electrocatalytic activities of the latter have been evaluated with respect to three possible inert reference cathode materials, i.e. glassy carbon, boron-doped diamond, and fluorinated boron-doped diamond. A general electrocatalytic activity scale for the process is proposed, with a discussion on its modulation by the configuration of the reacting molecule, and its connection with thermodynamic parameters accounting for halide adsorption

  14. Self-assembled Li3V2(PO4)3/reduced graphene oxide multilayer composite prepared by sequential adsorption

    Science.gov (United States)

    Kim, Myeong-Seong; Bak, Seong-Min; Lee, Suk-Woo; Cho, Byung-Won; Roh, Kwang Chul; Kim, Kwang-Bum

    2017-11-01

    Herein, we report on Li3V2(PO4)3 (LVP)/reduced graphene oxide (rGO) multilayer composites prepared via a sequential adsorption method and subsequent heat treatment, and their use as cathodes for high-rate lithium-ion batteries. The sequential adsorption process includes adsorbing oppositely charged components of anionic inorganic species and cationic head of a surfactant adsorbed to graphite oxide sheets, which is a key step in the fabrication of the LVP/rGO multilayer composites. The multilayer structure has open channels between the highly conductive rGO layers while achieving a relatively high tap density, which could effectively improve the rate capability. Consequently, the LVP/rGO multilayer composites exhibit a high tap density (0.6 g cm-3) and good electrochemical properties. Specifically, in the voltage range of 3.0-4.3 V, the composite exhibits a specific capacity of 131 mAh g-1 at 0.1C, a good rate capabilities (88% capacity retention at 60C), and long cycling performance (97% capacity retention after 500 cycles at 10C). Moreover, in the extended voltage range of 3.0-4.8 V, it exhibits a high specific capacity of 185 mAh g-1 at 0.2C, a good rate capability (66% capacity retention at 30C), and stable cycling performance (96% capacity retention after 500 cycles at 10C).

  15. Bismuth-, Tin-, and Lead-Containing Metal-Organic Materials: Synthesis, Structure, Photoluminescence, Second Harmonic Generation, and Ferroelectric Properties

    Science.gov (United States)

    Wibowo, Arief Cahyo

    Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination

  16. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    Science.gov (United States)

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  17. Theoretical Investigations of CO 2 and H 2 Sorption in an Interpenetrated Square-Pillared Metal–Organic Material

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; McLaughlin, Keith; Tudor, Brant; Nugent, Patrick; Hogan, Adam; Mullen, Ashley; Cioce, Christian R.; Zaworotko, Michael J.; Space, Brian

    2013-01-01

    Simulations of CO2 and H2 sorption and separation were performed in [Cu(dpa)2SiF6-i], a metal-organic material (MOM) consisting of an interpenetrated square grid of Cu2+ ions coordinated to 4,4′-dipyridylacetylene (dpa) rings and pillars of SiF6 2

  18. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO_2 thin films to produce a new hybrid material coating

    International Nuclear Information System (INIS)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M.G.; Chaussé, A.; Andrieux, M.

    2016-01-01

    Graphical abstract: An innovative hybrid material layer is synthesized by combining two processes. SnO_2 thin films are deposited by MOCVD on Si substrates and an organic layer made of carboxyphenyl moieties is electrochemically grafted by the reduction of a diazonium salt. XPS characterizations are carried out to assess the efficiency of the electrochemical grafting. Display Omitted - Highlights: • An innovative hybrid material layer is synthesized by combining two processes. • SnO_2 thin films are deposited by MOCVD on Si substrates. • An organic layer is electrochemically grafted by the reduction of a diazonium salt. • The efficiency of the grafting is accurately assessed by XPS. • Three electrochemical grafting models are proposed. - Abstract: This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO_2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO_2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  19. Covalent Organic Frameworks: From Materials Design to Biomedical Application

    Directory of Open Access Journals (Sweden)

    Fuli Zhao

    2017-12-01

    Full Text Available Covalent organic frameworks (COFs are newly emerged crystalline porous polymers with well-defined skeletons and nanopores mainly consisted of light-weight elements (H, B, C, N and O linked by dynamic covalent bonds. Compared with conventional materials, COFs possess some unique and attractive features, such as large surface area, pre-designable pore geometry, excellent crystallinity, inherent adaptability and high flexibility in structural and functional design, thus exhibiting great potential for various applications. Especially, their large surface area and tunable porosity and π conjugation with unique photoelectric properties will enable COFs to serve as a promising platform for drug delivery, bioimaging, biosensing and theranostic applications. In this review, we trace the evolution of COFs in terms of linkages and highlight the important issues on synthetic method, structural design, morphological control and functionalization. And then we summarize the recent advances of COFs in the biomedical and pharmaceutical sectors and conclude with a discussion of the challenges and opportunities of COFs for biomedical purposes. Although currently still at its infancy stage, COFs as an innovative source have paved a new way to meet future challenges in human healthcare and disease theranostic.

  20. Oligothiophene-S,S-dioxides as a class of electron-acceptor materials for organic photovoltaics

    International Nuclear Information System (INIS)

    Camaioni, N.; Ridolfi, G.; Fattori, V.; Favaretto, L.; Barbarella, G.

    2004-01-01

    Oligothiophene-S,S-dioxides are proposed as electron acceptors materials in organic blended photovoltaic devices. Photoinduced charge transfer is demonstrated in blends between a regioregular poly(3-hexylthiophene) and the oligomers, via photoluminescence spectroscopy. The enhanced photovoltaic performance exhibited by the blended cells, with respect to that of pristine devices in which the polymer is the active layer, represents further evidence for exciton dissociation. An increase of the power conversion efficiency up to sixty-fold is achieved by blending the polymer with the oligothiophene-S,S-dioxides

  1. Noncovalent Interactions in Organic Electronic Materials

    KAUST Repository

    Ravva, Mahesh Kumar; Risko, Chad; Bredas, Jean-Luc

    2017-01-01

    In this chapter, we provide an overview of how noncovalent interactions, determined by the chemical structure of π-conjugated molecules and polymers, govern essential aspects of the electronic, optical, and mechanical characteristics of organic

  2. High-volume ovarian cancer care: survival impact and disparities in access for advanced-stage disease.

    Science.gov (United States)

    Bristow, Robert E; Chang, Jenny; Ziogas, Argyrios; Randall, Leslie M; Anton-Culver, Hoda

    2014-02-01

    To characterize the impact of hospital and physician ovarian cancer case volume on survival for advanced-stage disease and investigate socio-demographic variables associated with access to high-volume providers. Consecutive patients with stage IIIC/IV epithelial ovarian cancer (1/1/96-12/31/06) were identified from the California Cancer Registry. Disease-specific survival analysis was performed using Cox-proportional hazards model. Multivariate logistic regression analyses were used to evaluate for differences in access to high-volume hospitals (HVH) (≥20 cases/year), high-volume physicians (HVP) (≥10 cases/year), and cross-tabulations of high- or low-volume hospital (LVH) and physician (LVP) according to socio-demographic variables. A total of 11,865 patients were identified. The median ovarian cancer-specific survival for all patients was 28.2 months, and on multivariate analysis the HVH/HVP provider combination (HR = 1.00) was associated with superior ovarian cancer-specific survival compared to LVH/LVP (HR = 1.31, 95%CI = 1.16-1.49). Overall, 2119 patients (17.9%) were cared for at HVHs, and 1791 patients (15.1%) were treated by HVPs. Only 4.3% of patients received care from HVH/HVP, while 53.1% of patients were treated by LVH/LVP. Both race and socio-demographic characteristics were independently associated with an increased likelihood of being cared for by the LVH/LVP combination and included: Hispanic race (OR = 1.72, 95%CI = 1.22-2.42), Asian/Pacific Islander race (OR = 1.57, 95%CI = 1.07-2.32), Medicaid insurance (OR = 2.51, 95%CI = 1.46-4.30), and low socioeconomic status (OR = 2.84, 95%CI = 1.90-4.23). Among patients with advanced-stage ovarian cancer, the provider combination of HVH/HVP is an independent predictor of improved disease-specific survival. Access to high-volume ovarian cancer providers is limited, and barriers are more pronounced for patients with low socioeconomic status, Medicaid insurance, and racial minorities. Copyright © 2013

  3. Object-oriented sociology and organizing in the face of emergency: Bruno Latour, Graham Harman and the material turn.

    Science.gov (United States)

    Pierides, Dean; Woodman, Dan

    2012-12-01

    This paper explores the material turn in sociology and the tools it provides for understanding organizational problems highlighted by the Royal Commission into the 2009 'Black Saturday' bushfires during which 173 people died in the Australian State of Victoria. Often inspired by Bruno Latour's material-semiotic sociology of associations, organization scholars employing these tools focus on the messy details of organization otherwise overlooked by approaches assuming a macroscopic frame of analysis. In Latour's approach no object is reducible to something else - such as nature, the social, or atoms - it is instead a stabilized set of relations. A Latourian approach allows us to highlight how the Royal Commission and macroscopic models of organizing do unwitting damage to their objects of inquiry by purifying the 'natural' from the 'social'. Performative elements in their schemas are mistaken for descriptive ones. However, a long standing critique of this approach claims that it becomes its own form of reduction, to nothing but relations. Graham Harman, in his object-oriented philosophy develops this critique by showing that a 'relationist' metaphysics cannot properly accommodate the capacity of 'objects' to cause or mediate surprises. Through our case of the Victorian Bushfires Royal Commission, we argue that a purely relational model of objects loosens a productive tension between the structural and ephemeral that drives sociological analysis. By drawing on elements of Harman's ontology of objects we argue that it is necessary for material-semiotic sociology to retain a central place for the emergence of sociological objects. © London School of Economics and Political Science 2012.

  4. Organics in meteorites - Solar or interstellar?

    Science.gov (United States)

    Alexander, Conel M. O'D.; Cody, George D.; Fogel, Marilyn; Yabuta, Hikaru

    2008-10-01

    The insoluble organic material (IOM) in primitive meteorites is related to the organic material in interplanetary dust particles and comets, and is probably related to the refractory organic material in the diffuse interstellar medium. If the IOM is representative of refractory ISM organics, models for how and from what it formed will have to be revised.

  5. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    Science.gov (United States)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  6. Organic materials for semiconductor. Epoxy molding compound for IC encapsulation; Handotai kanren no yuki zairyo. Handotai fushiyo epoxy seikei zairyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kusuhara, A. [Sumitomo Bakelite Co. Ltd., Tokyo (Japan)

    1998-11-05

    This paper describes organic materials for semiconductor. Based on the composition and raw material, typical materials are epoxy resins, curing agents including phenol-novolak resins, fillers including silica and alumina, flame retardants including brominated epoxy resin and antimony oxide, hardening accelerators including amine compounds and phosphorus compounds, coupling agents including silane compounds and titanate compounds, and the others including colorants and mold lubricants. Raw materials are heated and kneaded after mixing, and produced as tablets after cooling and crushing. Recently, the packages have changed from insertion type to surface mounting type for the small thin IC package and for improving the efficiency of soldering during the incorporation of IC package on the print circuit substrate. High temperature of 260degC has been employed from the conventional limit of 100degC. Reduction of water absorption, improvement of adhesion, reduction of thermal expansion coefficient, and reduction of elastic modulus during heating are promoted for avoiding the peeling and cracking due to the sudden evaporation of adsorbed moisture. This paper also describes the organic materials for BGA. 10 figs., 4 tabs.

  7. Photo and thermochemical evolution of astrophysical ice analogues as a source for soluble and insoluble organic materials in Solar system minor bodies

    Science.gov (United States)

    de Marcellus, Pierre; Fresneau, Aurelien; Brunetto, Rosario; Danger, Gregoire; Duvernay, Fabrice; Meinert, Cornelia; Meierhenrich, Uwe J.; Borondics, Ferenc; Chiavassa, Thierry; Le Sergeant d'Hendecourt, Louis

    2017-01-01

    Soluble and insoluble organic matter (IOM) is a key feature of primitive carbonaceous chondrites. We observe the formation of organic materials in the photothermochemical treatment of astrophysical ices in the laboratory. Starting from a low vacuum ultraviolet (VUV) irradiation dose on templates of astrophysical ices at 77 K, we obtain first a totally soluble form of organic matter at room temperature. Once this organic residue is formed, irradiating it further in vacuum results in the production of a thin altered dark crust on top of the initial soluble one. The whole residue is studied here by non-destructive methods inducing no alteration of samples, visible microscopy and mid-infrared (micro-)spectroscopy. After water extraction of the soluble part, an insoluble fraction remains on the sample holder which provides a largely different infrared spectrum when compared to the one of the soluble sample. Therefore, from the same VUV and thermal processing of initial simple ices, we produce first a soluble material from which a much larger irradiation dose leads to an insoluble one. Interestingly, this insoluble fraction shows some spectral similarities with natural samples of IOM extracted from two meteorites (Tagish Lake and Murchison), selected as examples of primitive materials. It suggests that the organic molecular diversity observed in meteorites may partly originate from the photo and thermal processing of interstellar/circum-stellar ices at the final stages of molecular cloud evolution towards the build-up of our Solar system.

  8. Mapping Organic Materials in Carbonaceous Chondrites

    Science.gov (United States)

    Gasda, P. J.; Taylor, G. J.; Misra, A.; Sharma, S. K.

    2012-09-01

    We present two new techniques that, together, constitute a quick first order method to characterize the insoluble organic matter (IOM), shedding light on the heterogeneity of the IOM both in its composition and its distribution in meteorites.

  9. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at National Taipei University of Technology)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at National Taipei University of Technology. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  10. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at Center for Condensed Matter Sciences)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  11. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at National Sun Yat-sen University) 

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at National Sun Yat-sen University. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  12. Mechanical properties of permeable materials with an organized structure on the base of continuous metal fibers

    International Nuclear Information System (INIS)

    Karpinos, D.M.; Rutkovskij, A.E.; Zorin, V.A.; Ivanchuk, A.A.

    1979-01-01

    The mechanical properties were studied for permeable fibrous materials with an organized structure on the base of continuous metal fibers (from Kh18N9T steel) subjected to preliminary reprocessing volumetric net half-finished products. The effect of geometrical parameters of the net half-finished products and of their orientation in packing are shown to affect the mechanical properties within a wide range of porosities

  13. Synthesis and characterization of the europium (III) complex as an organic luminescent material

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo Zuliang; Zhang Fujun; Xu Zheng; Lu Lifang; Li Junming; Wang Yongsheng [Key Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing 100044 (China); Lv Yuguang, E-mail: fjzhang@bjtu.edu.c [The Provincial Key Laboratory of Biomaterials, College of Chemistry and Pharmacy, Jiamusi University, Jiamusi 154007 (China)

    2010-11-15

    The red emission organic material Eu(coumarin){sub 3{center_dot}}2H{sub 2}O complex was synthesized and its morphology, energy level alignment and luminescence characteristics were studied by using scanning electron microscopy, Fourier transform infrared spectra, cyclic voltammetry and ultraviolet-visible absorption spectra and fluorescence spectra. Eu(coumarin){sub 3{center_dot}}2H{sub 2}O shows bright red emission originating from Eu{sup 3+} ions under 345 nm light excitation. The luminescence lifetime of Eu{sup 3+} in this complex is about 580 {mu}s. To improve the quality of Eu(coumarin){sub 3{center_dot}}2H{sub 2}O thin films, Eu(coumarin){sub 3{center_dot}}2H{sub 2}O was doped with a poly(N-vinylcarbazole) (PVK) solution. The organic materials 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and aluminum quinoline (Alq{sub 3}) were used as hole-blocking and electron-transporting layers in our fabricated electroluminescence (EL) devices on indium tin oxide (ITO) substrates, respectively. The EL devices ITO/poly-(3,4-ethylenedioxythiophene):poly-(styrenesulphonic acid) (PEDOT:PSS)/emitting layer (PVK:Eu)/BCP/Alq{sub 3}/Al were fabricated, and EL spectra were measured under different driving voltages. There is one emission peaking at 490 nm in addition to the characteristic emission peaks of Eu{sup 3+}, which should be attributed to the spectral overlap between the PVK emission and electroplex emission originating from PVK and BCP interfaces. This explanation can be positively supported by the dependence of the EL spectral variation of ITO/ PVK/BCP/Alq{sub 3}/Al devices on the driving voltage.

  14. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    Science.gov (United States)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben

    2015-09-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  15. Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

    DEFF Research Database (Denmark)

    Huang, Wei; Li, Shuo; Cao, Xianyi

    2017-01-01

    of a redox conversion-type lithium-ion battery, this composite material has demonstrated high lithium-ion storage capacity at 1148 mA h g-1 under the current rate of 500 mA g-1 for 170 cycles and an impressive rate-retention capability at 657 mA h g-1 with a current density of 2000 mA g-1. On the basis......We report the design and nanoengineering of carbon-film-coated iron sulfide nanorods (C@Fe7S8) as an advanced conversion-type lithium-ion storage material. The structural advantages of the iron-based metal-organic framework (MIL-88-Fe) as both a sacrificed template and a precursor are explored...

  16. Templated synthesis, postsynthetic metal exchange, and properties of a porphyrin-encapsulating metal-organic material

    KAUST Repository

    Zhang, ZhenJie

    2012-01-18

    Reaction of biphenyl-3,4′,5-tricarboxylate (H 3BPT) and CdCl 2 in the presence of meso-tetra(N-methyl-4-pyridyl)porphine tetratosylate (TMPyP) afforded porph@MOM-10, a microporous metal-organic material containing CdTMPyP cations encapsulated in an anionic Cd(II) carboxylate framework, [Cd 6(BPT) 4Cl 4(H 2O) 4]. Porph@MOM-10 is a versatile platform that undergoes exchange to serve as the parent of a series of porph@MOMs that exhibit permanent porosity and heterogeneous catalytic activity. © 2011 American Chemical Society.

  17. A rationally designed amino-borane complex in a metal organic framework: A novel reusable hydrogen storage and size-selective reduction material

    KAUST Repository

    Wang, Xinbo

    2015-01-01

    A novel amino-borane complex inside a stable metal organic framework was synthesized for the first time. It releases hydrogen at a temperature of 78 °C with no volatile contaminants and can be well reused. Its application as a size-selective reduction material in organic synthesis was also demonstrated. © The Royal Society of Chemistry 2015.

  18. Quality assessment of baby food made of different pre-processed organic raw materials under industrial processing conditions.

    Science.gov (United States)

    Seidel, Kathrin; Kahl, Johannes; Paoletti, Flavio; Birlouez, Ines; Busscher, Nicolaas; Kretzschmar, Ursula; Särkkä-Tirkkonen, Marjo; Seljåsen, Randi; Sinesio, Fiorella; Torp, Torfinn; Baiamonte, Irene

    2015-02-01

    The market for processed food is rapidly growing. The industry needs methods for "processing with care" leading to high quality products in order to meet consumers' expectations. Processing influences the quality of the finished product through various factors. In carrot baby food, these are the raw material, the pre-processing and storage treatments as well as the processing conditions. In this study, a quality assessment was performed on baby food made from different pre-processed raw materials. The experiments were carried out under industrial conditions using fresh, frozen and stored organic carrots as raw material. Statistically significant differences were found for sensory attributes among the three autoclaved puree samples (e.g. overall odour F = 90.72, p processed from frozen carrots show increased moisture content and decrease of several chemical constituents. Biocrystallization identified changes between replications of the cooking. Pre-treatment of raw material has a significant influence on the final quality of the baby food.

  19. Experimental and in silico investigations of organic phosphates and phosphonates sorption on polymer-ceramic monolithic materials and hydroxyapatite.

    Science.gov (United States)

    Pietrzyńska, Monika; Zembrzuska, Joanna; Tomczak, Rafał; Mikołajczyk, Jakub; Rusińska-Roszak, Danuta; Voelkel, Adam; Buchwald, Tomasz; Jampílek, Josef; Lukáč, Miloš; Devínsky, Ferdinand

    2016-10-10

    A method based on experimental and in silico evaluations for investigating interactions of organic phosphates and phosphonates with hydroxyapatite was developed. This quick and easy method is used for determination of differences among organophosphorus compounds of various structures in their mineral binding affinities. Empirical sorption evaluation was carried out using liquid chromatography with tandem mass spectrometry or UV-VIS spectroscopy. Raman spectroscopy was used to confirm sorption of organic phosphates and phosphonates on hydroxyapatite. Polymer-ceramic monolithic material and bulk hydroxyapatite were applied as sorbent materials. Furthermore, a Polymer-ceramic Monolithic In-Needle Extraction device was used to investigate both sorption and desorption steps. Binding energies were computed from the fully optimised structures utilising Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level. Potential pharmacologic and toxic effects of the tested compounds were estimated by the Prediction of the Activity Spectra of Substances using GeneXplain software. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng

    2012-06-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC) as a structure directing agent. The mesopores were generated by adding micelle swelling agent, 1,3,5-trimethyl benzene, during the synthesis and removing it afterward, which was demonstrated to greatly increase the HOC removal efficiency. In this material, TPODAC surfactant is directly anchored on the pore surface of mesoporous silica via SiOSi covalent bond after the synthesis due to its reactive Si(OCH 3) 3 head group, and thus makes the synthesized materials can be easily regenerated for reuse. The obtained materials show great potential in water treatment as pollutants sorbents. © 2011 Elsevier Inc. All rights reserved.

  1. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    Science.gov (United States)

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-08-10

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  2. Effect of organic carbon content of the domestic bentonite on the performance of buffer material in a high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Lee, Jae Owan; Kang, Chul Hyung [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The organic carbon content of the domestic bentonite have been measured, and its effects on the performance of buffer are analyzed. The total carbon content and the organic carbon content were in the range of 3160 to 3600 and 2400 to 2800 ppm, respectively. The aqueous phase equilibrium concentrations of total carbon and organic carbon in bentonite-water mixture were in the range of 25 to 50 ppm and 4 to 18 ppm, respectively. The results indicate that the effect of organic matter in the domestic bentonite on the performance of buffer material were insignificant. 33 refs., 15 figs., 10 tabs. (Author)

  3. Stable carbon isotope composition of organic material and carbonate in sediment of a swamp and lakes in Honshu island, Japan

    International Nuclear Information System (INIS)

    Ishizuka, Toshio

    1978-01-01

    Recent sediments from a swamp and lakes in Honshu were analyzed for organic carbon and carbonate contents, and stable isotope ratios of carbon in the organic materials and carbonate. delta C 13 values of the carbonate tend to be distinctly larger than those of organic carbon in reducing condition as natural gas field, whereas in oxidizing SO 4 -reducing conditions, they are slightly larger than those of organic carbon within the limited range of a few per mil. Carbon isotopic compositions of organic carbon in sediment of the swamp, Obuchi-numa, were analyzed and compared with habitat analysis of associated fossil diatoms. deltaC 13 values of organic carbon in the sediment vary in correlation with the species abundance in habitat of the associated fossil diatoms, ranging from fresh-water (-0.0282) to coastal marine (-0.0236) via brackish. (auth.)

  4. Organic against inorganic electrodes grown onto polymer substrates for flexible organic electronics applications

    International Nuclear Information System (INIS)

    Logothetidis, S.; Laskarakis, A.

    2009-01-01

    One of the most challenging topics in the area of organic electronic devices is the growth of transparent electrodes onto flexible polymeric substrates that will be characterized by enhanced conductivity in combination with high optical transparency. An essential aspect for these materials is their synthesis and/or microstructure which define the transparency, the stability and the interfacial chemistry which in turn determine the performance and stability of the organic electronic devices, such as organic light emitting diodes, organic photovoltaics, etc. In this work, we will discuss the latest advances in the growth of organic (e.g. PEDOT:PSS) and inorganic (e.g. zinc oxide-ZnO, indium tin oxide-ITO) conductive materials and their deposition onto flexible polymeric substrates. We will compare the optical, structural, nano-mechanical and nano-topographical properties of the inorganic and organic materials and we investigate the effect of their structure on their properties and functionality. In the case of the organic conductive materials, we will discuss the effects of PEDOT:PSS weight ratios and the various spin speeds on their optical and electrical properties. Furthermore, in the case of ZnO the growth mechanisms, interface phenomena, crystallinity and optical properties of ZnO thin films grown onto polymer and hybrid (inorganic-organic) flexible substrates will be also discussed.

  5. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.

    Science.gov (United States)

    Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan

    2015-09-01

    Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles

    Science.gov (United States)

    Zwicker, David; Decker, Markus; Jaensch, Steffen; Hyman, Anthony A.; Jülicher, Frank

    2014-03-01

    We propose a physical description of the centrosome, a membrane-less organelle involved in cell division. In our model, centrosome material occurs in a soluble form in the cytosol and a form that tends to undergo phase separation from the cytosol. We find that an autocatalytic chemical transition between these forms accounts for the temporal evolution observed in experiments. Interestingly, the nucleation of centrosomes can be controlled by an enzymatic activity of the centrioles, which are present at the core of all centrosomes. This non-equilibrium feature also allows for multiple stable centrosomes, a situation which is unstable in equilibrium phase separation. Our theory explains the growth dynamics of centrosomes for all cell sizes down to the eight-cell stage of the C. elegans embryo. It also accounts for data acquired in experiments with aberrant numbers of centrosomes and altered cell volumes. Furthermore, our model can describe unequal centrosome sizes observed in cells with disturbed centrioles. Our example suggests a general picture of the organization of membrane-less organelles.

  7. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO{sub 2} thin films to produce a new hybrid material coating

    Energy Technology Data Exchange (ETDEWEB)

    Drevet, R., E-mail: richarddrevet@yahoo.fr [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France); Université d’Evry Val d’Essonne, LAMBE, CNRS-CEA UMR 8587, Boulevard François Mitterrand, 91025 Evry Cedex (France); Dragoé, D.; Barthés-Labrousse, M.G. [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France); Chaussé, A. [Université d’Evry Val d’Essonne, LAMBE, CNRS-CEA UMR 8587, Boulevard François Mitterrand, 91025 Evry Cedex (France); Andrieux, M. [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France)

    2016-10-30

    Graphical abstract: An innovative hybrid material layer is synthesized by combining two processes. SnO{sub 2} thin films are deposited by MOCVD on Si substrates and an organic layer made of carboxyphenyl moieties is electrochemically grafted by the reduction of a diazonium salt. XPS characterizations are carried out to assess the efficiency of the electrochemical grafting. Display Omitted - Highlights: • An innovative hybrid material layer is synthesized by combining two processes. • SnO{sub 2} thin films are deposited by MOCVD on Si substrates. • An organic layer is electrochemically grafted by the reduction of a diazonium salt. • The efficiency of the grafting is accurately assessed by XPS. • Three electrochemical grafting models are proposed. - Abstract: This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO{sub 2}) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO{sub 2} layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  8. Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point

    International Nuclear Information System (INIS)

    O’Connor, William E.; Warzoha, Ronald; Weigand, Rebecca; Fleischer, Amy S.; Wemhoff, Aaron P.

    2014-01-01

    Highlights: • Liquid-phase thermal properties for five phase change materials were estimated. • Various liquid phase and phase transition thermal properties were measured. • The thermal diffusivity was found using a best path to prediction approach. • The thermal diffusivity predictive method shows 15% agreement for organic PCMs. - Abstract: Organic phase change materials (PCMs) are a popular choice for many thermal energy storage applications including solar energy, building envelope thermal barriers, and passive cooling of portable electronics. Since the extent of phase change during a heating or cooling process is dependent upon rapid thermal penetration into the PCM, accurate knowledge of the thermal diffusivity of the PCM in both solid and liquid phases is crucial. This study addresses the existing gaps in information for liquid-phase PCM properties by examining an approach that determines the best path to prediction (BPP) for the thermal diffusivity of both alkanes and unsaturated acids. Knowledge of the BPP will enable researchers to explore the influence of PCM molecular structure on bulk thermophysical properties, thereby allowing the fabrication of optimized PCMs. The BPP method determines which of the tens of thousands of combinations of 22 different available theoretical techniques provides best agreement with thermal diffusivity values based on reported or measured density, heat capacity, and thermal conductivity for each of five PCMs (heneicosane, tricosane, tetracosane, oleic acid, and linoleic acid) in the liquid phase near the melting point. Separate BPPs were calibrated for alkanes based on heneicosane and tetracosane, and for the unsaturated acids. The alkane and unsaturated acid BPPs were then tested on a variety of similar materials, showing agreement with reported/measured thermal diffusivity within ∼15% for all materials. The alkane BPP was then applied to find that increasing the length of alkane chains decreases the PCM thermal

  9. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme.

    Science.gov (United States)

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M

    2011-07-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  10. Impact of level and source of compost based organic material on the productivity of autumn maize (zea mays l.)

    International Nuclear Information System (INIS)

    Iqbal, S.; Khan, H.Z.; Ehsanullah, A.

    2014-01-01

    Organic manure from different sources could be an effective substitute of chemical fertilizers. Therefore, the present study compares the effect of varying level (0, 2, 4, 6, 8, 10 t ha/sup -1/) of two types of compost, i.e poultry manure compost (PM compost) and press-mud compost (PrM compost) on the yield of maize. The experiment was conducted at Agronomic Research Area, University of Agriculture Faisalabad, Pakistan for two consecutive years 2011 and 2012. Results of this study revealed that all the levels and sources of compost based organic material had significant effect on the yield and yield parameters of autumn maize. Maximum plant height, cob diameter, cob length, cob weight, number of grain rows per cob, number of grains per cob, 1000-grain weight biological yield, grain yield and harvest index were produced by the application of 10 t ha/sup -1/ PM compost. Whereas, the number of cobs per plant was not significantly affected by level and source of compost based organic material. It was concluded that 10 t ha/sup -1/ PM compost could be used lucratively for optimizing maize yield. (author)

  11. Development of new organic materials by radiation

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kang, Phil Hyun; Choi, Jae Hak

    2010-04-01

    The aims of this project is to develop the high-performance industrial and biomedical new materials and finally contribute to the advancement of the national radiation technology industry. In the 1st project, we carried out the radiation-based new research to apply long-term moisturizing effects and effective natural herbal extracts on the atopic wounds using gamma-ray irradiation. Also, we have developed the separator and the polymer gel electrolyte for lithium secondary battery by radiation. In the 2nd project, we have developed the advanced composite materials such as silicon carbide fibers, carbon fiber reinforced plastics, low dielectric materials for semiconductor and adhesive technology for TFT-LCD panel by radiation. In the 3rd project, we have developed the various radiation-based techniques for the surface modification of polymers and ceramics, biomolecules immobilization and patterning, prevention of biomolecule's non-specific adhesion, and surface modification of carbon nanotubes

  12. Protection and control of nuclear materials

    International Nuclear Information System (INIS)

    Jalouneix, J.; Winter, D.

    2007-01-01

    In the framework of the French regulation on nuclear materials possession, the first liability is the one of operators who have to know at any time the quantity, quality and localization of any nuclear material in their possession. This requires an organization of the follow up and of the inventory of these materials together with an efficient protection against theft or sabotage. The French organization foresees a control of the implementation of this regulation at nuclear facilities and during the transport of nuclear materials by the minister of industry with the sustain of the institute of radiation protection and nuclear safety (IRSN). This article presents this organization: 1 - protection against malevolence; 2 - national protection and control of nuclear materials: goals, administrative organization, legal and regulatory content (authorization, control, sanctions), nuclear materials protection inside facilities (physical protection, follow up and inventory, security studies), protection of nuclear material transports (physical protection, follow up), control of nuclear materials (inspection at facilities, control of nuclear material measurements, inspection of nuclear materials during transport); 3 - international commitments of France: non-proliferation treaty, EURATOM regulation, international convention on the physical protection of nuclear materials, enforcement in France. (J.S.)

  13. Thiophene-Based Organic Semiconductors.

    Science.gov (United States)

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan

    2017-10-24

    Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).

  14. Organic chemistry in space

    Science.gov (United States)

    Johnson, R. D.

    1977-01-01

    Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.

  15. Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices.

    Science.gov (United States)

    Bessette, André; Hanan, Garry S

    2014-05-21

    This review article presents the most recent developments in the use of materials based on dipyrromethene (DPM) and azadipyrromethenes (ADPM) for organic photovoltaic (OPV) applications. These chromophores and their corresponding BF2-chelated derivatives BODIPY and aza-BODIPY, respectively, are well known for fluorescence-based applications but are relatively new in the field of photovoltaic research. This review examines the variety of relevant designs, synthetic methodologies and photophysical studies related to materials that incorporate these porphyrinoid-related dyes in their architecture. The main idea is to inspire readers to explore new avenues in the design of next generation small-molecule and bulk-heterojunction solar cell (BHJSC) OPV materials based on DPM chromophores. The main concepts are briefly explained, along with the main challenges that are to be resolved in order to take full advantage of solar energy.

  16. Organ Trade

    NARCIS (Netherlands)

    J.A.E. Ambagtsheer (Frederike)

    2017-01-01

    markdownabstractOrgan trade constitutes the sale and purchase of organs for financial or material gain. Although prohibited since the 1980s, an increasing number of reports indicate its proliferation across the globe. Yet, many knowledge gaps exist on organ trade, in particular on the demand -and

  17. LOGICAL-ORIENTED TASKS AS A FORM OF ORGANIZATION OF THE EDUCATIONAL MATERIAL CONTENT IN TEACHING MATHEMATICS TO STUDENTS

    Directory of Open Access Journals (Sweden)

    Oksana Smirnova

    2015-09-01

    Full Text Available The article substantiates the need to improve the logical preparation of students. The authors regard the logical-oriented tasks as a form of organization of the content of educational material in teaching Mathematics and discriminate the types of tasks aimed at the formation of logical methods and operations.

  18. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    Science.gov (United States)

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C 61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C 60 ). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan 3 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption?

    NARCIS (Netherlands)

    Bäuerlein, P.S.; Mansell, J.E.; ter Laak, T.L.; de Voogt, P.

    2012-01-01

    Numerous polar anthropogenic organic chemicals have been found in the aqueous environment. Solid phase extraction (SPE) has been applied for the isolation of these from aqueous matrices, employing various materials. Nevertheless, little is known about the influence of functional groups on the

  20. Computational materials chemistry for carbon capture using porous materials

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Malani, Ateeque; Huang, Runhong; Babarao, Ravichandar

    2017-01-01

    Control over carbon dioxide (CO 2 ) release is extremely important to decrease its hazardous effects on the environment such as global warming, ocean acidification, etc. For CO 2 capture and storage at industrial point sources, nanoporous materials offer an energetically viable and economically feasible approach compared to chemisorption in amines. There is a growing need to design and synthesize new nanoporous materials with enhanced capability for carbon capture. Computational materials chemistry offers tools to screen and design cost-effective materials for CO 2 separation and storage, and it is less time consuming compared to trial and error experimental synthesis. It also provides a guide to synthesize new materials with better properties for real world applications. In this review, we briefly highlight the various carbon capture technologies and the need of computational materials design for carbon capture. This review discusses the commonly used computational chemistry-based simulation methods for structural characterization and prediction of thermodynamic properties of adsorbed gases in porous materials. Finally, simulation studies reported on various potential porous materials, such as zeolites, porous carbon, metal organic frameworks (MOFs) and covalent organic frameworks (COFs), for CO 2 capture are discussed. (topical review)