WorldWideScience

Sample records for lv mass measured

  1. ATP synthase subunit alpha and LV mass in ischaemic human hearts.

    Science.gov (United States)

    Roselló-Lletí, Esther; Tarazón, Estefanía; Barderas, María G; Ortega, Ana; Molina-Navarro, Maria Micaela; Martínez, Alba; Lago, Francisca; Martínez-Dolz, Luis; González-Juanatey, Jose Ramón; Salvador, Antonio; Portolés, Manuel; Rivera, Miguel

    2015-02-01

    Mitochondrial dysfunction plays a critical role in the development of ischaemic cardiomyopathy (ICM). In this study, the mitochondrial proteome in the cardiac tissue of ICM patients was analysed by quantitative differential electrophoresis (2D-DIGE) and mass spectrometry (MS) for the first time to provide new insights into cardiac dysfunction in this cardiomyopathy. We isolated mitochondria from LV samples of explanted hearts of ICM patients (n = 8) and control donors (n = 8) and used a proteomic approach to investigate the variations in mitochondrial protein expression. We found that most of the altered proteins were involved in cardiac energy metabolism (82%). We focused on ATPA, which is involved in energy production, and dihydrolipoyl dehydrogenase, implicated in substrate utilization, and observed that these molecules were overexpressed and that the changes detected in the processes mediated by these proteins were closely related. Notably, we found that ATPA overexpression was associated with reduction in LV mass (r = -0.74, P ATPA could serve as a molecular target suitable for new therapeutic interventions.

  2. Determination of the top mass with exclusive events t->Wb->lvJPsiX

    CERN Document Server

    Chierici, Roberto

    2006-01-01

    This note presents a realistic estimate of the CMS potential for determining the top quark mass via indirect reconstruction using leptonic W decays and from the fragmentation of the b quark. The top quark mass is determined via its correlation with the invariant mass of the and the lepton from the W decay coming from the sametop. This measurement is expected to strongly reduce the systematic errors coming from the hadronic sector, which is known to be dominant indirect reconstruction methods. This analysis also presents many innovations with respect to previously published methods on the subject, and takes into account both physics and combinatorial background. The expected error on from this measurement will be presented as a function of the collected luminosity, and emphasis will be given to the determination of systematic errors, studied in great detail.

  3. Fits to Moment Measurements from B->Xc lv and B-> Xs gamma Decays using Heavy Quark Expansions in the Kinetic Scheme

    CERN Document Server

    Buchmüller, O L; Buchmueller, Oliver; Flaecher, Henning

    2006-01-01

    We present a fit to moment measurements of inclusive distributions in B->Xc lv and B->Xs gamma decays to extract values for the CKM matrix element |Vcb|, the b- and c- quark masses, and higher order parameters that appear in the Heavy Quark Expansion. The fit is carried out using theoretical calculations in the kinetic scheme and includes moment measurements of the BaBar, Belle, CDF, CLEO and DELPHI collaborations where correlation matrices have been published. We also derive values for the heavy quark distribution function parameters $m_b$ and $\\mu_{\\pi}^2$ in different theoretical schemes that can be used as input for the evaluation of the associated theory error on |Vub|.

  4. Study of semi-leptonic decay of B meson, in the ways lvD{sup *} and lvD with ALEPH detector at LEP: measurement of the fragmentation function of b quark and search for D{sup **} states; Etude des desintegrations semi-leptoniques du meson B, dans les canaux D*lv et Dlv, aupres du detecteur ALEPH au LEP: mesure de la fonction de fragmentation du quark b et recherche d`etats D**

    Energy Technology Data Exchange (ETDEWEB)

    Bonis, I. de

    1994-06-01

    This work is dedicated to the measurement of the fragmentation function of the quark b, with the ALEPH detector, at LEP. The main aspects of this measure is to be as independent as possible from any model. For this, we reconstruct the semi-leptonic decay modes of the B meson, in the ways lvD deg., lvD{sup *+} and lvD{sup +}. In a first step, we describe the criteria used to select those modes. Then, we determine the fragmentation function by measuring the ratio X{sub B} = 2 E{sub B} / {radical} S, where E{sub B} is the B meson energy and {radical} s/2 the useful energy in the center of mass. The measure of E{sub B} needs a precise reconstruction of the neutrino energy, which is not detected. We present here the method that we used for this reconstruction. Once the acceptance correction is applied, we obtain, for the variable X{sub B}, a distribution with mean value: < X{sub B} > = 0.711 {+-} 0.009 (stat). To be as independent as possible of the model (Peterson function) used n the Monte-Carlo determination of the acceptance, we do an iterative calculation of the acceptance. We obtain < X{sub B}> = 0.712 {+-} 0.009(stat) {+-} 0.017 (syst). Furthermore, this measure depends of the D** contribution, badly known for now. Therefore, we search this contribution, using the events selected before, on the one hand by a direct observation, on the other hand by reconstructing the mass of the B meson. (author). 64 refs.

  5. Intercomparison of magnetic field measurements near MV/LV transformer substations: methodological planning and results.

    Science.gov (United States)

    Violanti, S; Fraschetta, M; Adda, S; Caputo, E

    2009-12-01

    Within the framework of Environmental Agencies system's activities, coordinated by ISPRA (superior institute for environmental protection and research), a comparison among measurements was designed and accomplished, in order to go into depth on the matter of measurement problems and to evaluate magnetic field at power frequencies. These measurements have been taken near medium voltage /low voltage transformer substation. This project was developed with the contribution of several experts who belong to different Regional Agencies. In three of these regions, substations having specific international standard characteristics were chosen; then a measurement and data analysis protocol was arranged. Data analysis showed a good level of coherence among results obtained by different laboratories. However, a range of problems emerged, either during the protocol predisposition and definition of the data analysis procedure or during the execution of measures and data reprocessing, because of the spatial and temporal variability of magnetic field. These problems represent elements of particular interest in determining a correct measurement methodology, whose purpose is the comparison with limits of exposure, attention values and quality targets.

  6. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction.

    Science.gov (United States)

    Jacquier, Alexis; Thuny, Franck; Jop, Bertrand; Giorgi, Roch; Cohen, Frederic; Gaubert, Jean-Yves; Vidal, Vincent; Bartoli, Jean Michel; Habib, Gilbert; Moulin, Guy

    2010-05-01

    To describe a method for measuring trabeculated left ventricular (LV) mass using cardiac magnetic resonance imaging and to assess its value in the diagnosis of left ventricular non-compaction (LVNC). Between January 2003 and 2008, we prospectively included 16 patients with LVNC. During the mean period, we included 16 patients with dilated cardiomyopathy (DCM), 16 patients with hypertrophic cardiomyopathy (HCM), and 16 control subjects. Left ventricular volumes, LV ejection fraction, and trabeculated LV mass were measured in the four different populations. The percentage of trabeculated LV mass was almost three times higher in the patients with LVNC (32 +/- 10%), compared with those with DCM (11 +/- 4%, P < 0.0001), HCM (12 +/- 4%, P < 0.0001), and controls (12 +/- 5%, P < 0.0001). A value of trabeculated LV mass above 20% of the global mass of the LV predicted the diagnosis of LVNC with a sensitivity of 93.7% [95% confidence interval (CI), 71.6-98.8%] and a specificity of 93.7% (95% CI, 83.1-97.8%; kappa = 0.84). The method described is reproducible and provides an assessment of the global amount of LV trabeculation. A trabeculated LV mass above 20% of the global LV mass is highly sensitive and specific for the diagnosis of LVNC.

  7. Mass Customization Measurements Metrics

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Brunø, Thomas Ditlev; Jørgensen, Kaj Asbjørn

    2014-01-01

    A recent survey has indicated that 17 % of companies have ceased mass customizing less than 1 year after initiating the effort. This paper presents measurement for a company’s mass customization performance, utilizing metrics within the three fundamental capabilities: robust process design, choice...... navigation, and solution space development. A mass customizer when assessing performance with these metrics can identify within which areas improvement would increase competitiveness the most and enable more efficient transition to mass customization....

  8. W mass measurement

    CERN Document Server

    Andari, Nansi; The ATLAS collaboration

    2017-01-01

    A first measurement of the W-boson mass at the LHC is presented based on about 4.6 fb^-1 of proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector. The measured value is 80370±19 MeV, consistent with the Standard Model prediction, with the combined values measured at the LEP and Tevatron colliders, and with the world average. The ATLAS result equals in precision the previous best measurement of the W mass, performed by the CDF collaboration. The CMS results for the W-like measurement of the Z boson mass using dimuon events are also shown. An overview of the analyses is shown with a special emphasis on the evaluation of the experimental systematic uncertainties, as well as on the uncertainties due to the modelling of the vector boson production and decay.

  9. Top quark mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Tuula [Univ. of Helsinki (Finland)

    2008-03-18

    The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parametrized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector.

  10. Handbook of mass measurement

    CERN Document Server

    Jones, Frank E

    2002-01-01

    "How much does it weigh?" seems a simple question. To scientists and engineers, however, the answer is far from simple, and determining the answer demands consideration of an almost overwhelming number of factors.With an intriguing blend of history, fundamentals, and technical details, the Handbook of Mass Measurement sets forth the details of achieving the highest precision in mass measurements. It covers the whole field, from the development, calibration, and maintenance of mass standards to detailed accounts of weighing designs, balances, and uncertainty. It addresses the entire measurement process and provides in-depth examinations of the various factors that introduce error.Much of the material is the authors'' own work and some of it is published here for the first time. Jones and Schoonover are both highly regarded veterans of the U.S. National Institute of Standards and Technology. With this handbook, they have provided a service and resource vital to anyone involved not only in the determination of m...

  11. Association Between Myocardial Mechanics and Ischemic LV Remodeling.

    Science.gov (United States)

    D'Elia, Nicholas; D'hooge, Jan; Marwick, Thomas H

    2015-12-01

    The outcomes associated with heart failure after myocardial infarction are still poor. Both global and regional left ventricular (LV) remodeling are associated with the progression of the post-infarct patient to heart failure, but although global remodeling can be accurately measured, regional LV remodeling has been more difficult to investigate. Preliminary evidence suggests that post-MI assessment of LV mechanics using stress and strain may predict global (and possibly regional) LV remodeling. A method of predicting both global and regional LV remodeling might facilitate earlier, targeted, and more extensive clinical intervention in those most likely to benefit from novel interventions such as cell therapy.

  12. First mass measurement at JYFLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, A. [Department of Physics, PB 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Eronen, T. [Department of Physics, PB 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Hager, U. [Department of Physics, PB 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Hakala, J. [Department of Physics, PB 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Kolhinen, V. [Department of Physics, PB 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Kopecky, S. [Department of Physics, PB 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Rinta-Antila, S. [Department of Physics, PB 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Szerypo, J. [Department of Physics, PB 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland); Aeystoe, J. [Department of Physics, PB 35 (YFL), FIN-40014 University of Jyvaeskylae (Finland)

    2004-12-27

    The first mass measurements at JYFLTRAP facility are reviewed. Those are also first ever direct mass measurements of the heaviest Zr-isotopes. Results are compared to atomic mass evaluation data and the recent calculations. The first TOF-resonances from high-precision trap and an implication to high-precision mass measurements are discussed.

  13. The W Boson Mass Measurement

    Science.gov (United States)

    Kotwal, Ashutosh V.

    2016-10-01

    The measurement of the W boson mass has been growing in importance as its precision has improved, along with the precision of other electroweak observables and the top quark mass. Over the last decade, the measurement of the W boson mass has been led at hadron colliders. Combined with the precise measurement of the top quark mass at hadron colliders, the W boson mass helped to pin down the mass of the Standard Model Higgs boson through its induced radiative correction on the W boson mass. With the discovery of the Higgs boson and the measurement of its mass, the electroweak sector of the Standard Model is over-constrained. Increasing the precision of the W boson mass probes new physics at the TeV-scale. We summarize an extensive Tevatron (1984-2011) program to measure the W boson mass at the CDF and Dø experiments. We highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.

  14. The W Boson Mass Measurement

    CERN Document Server

    Kotwal, Ashutosh V

    2016-01-01

    The measurement of the W boson mass has been growing in importance as its precision has improved, along with the precision of other electroweak observables and the top quark mass. Over the last decade, the measurement of the W boson mass has been led at hadron colliders. Combined with the precise measurement of the top quark mass at hadron colliders, the W boson mass helped to pin down the mass of the Standard Model Higgs boson through its induced radiative correction on the W boson mass. With the discovery of the Higgs boson and the measurement of its mass, the electroweak sector of the Standard Model is over-constrained. Increasing the precision of the W boson mass probes new physics at the TeV-scale. We summarize an extensive Tevatron (1984–2011) program to measure the W boson mass at the CDF and Dø experiments. We highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.

  15. Mass measurement of radioactive isotopes

    CERN Document Server

    Kluge, H J; Scheidenberger, C

    2004-01-01

    The highest precision in mass measurements on short-lived radionuclides is obtained using trapping and cooling techniques. Here, the experimental storage ring (ESR) at GSI/Darmstadt and the tandem Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN play an important role. Status and recent results on mass measurements of radioactive nuclides with ESR and ISOLTRAP are summarized.

  16. Direct neutrino mass measurements

    Science.gov (United States)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  17. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  18. First mass measurements at LHCb

    CERN Multimedia

    Bressieux, J

    2011-01-01

    The LHC opens new frontiers in heavy flavour physics through an unprecedented statistical reach for a variety of interesting states produced in pp collisions. The LHCb spectrometer provides a good mass resolution and is suitable for spectroscopy studies. We present first preliminary mass measurements of several $b$ hadrons and of the exotic $X(3872)$ meson, reconstructed in final states containing a $J/\\psi$ using the data collected in 2010 by the LHCb experiment. An important aspect of the analysis is the calibration of the momentum scale using $J/\\psi \\to \\mu^+ \\mu^-$ decays, as well as the control of systematic uncertainties. While the already very competitive mass measurements for the $B^+$, $B^0$ and $B^0_s$ mesons receive similar contributions from systematic and statistical uncertainties, those of the $\\Lambda_b$, $B^+_c$ and $X(3872)$ particles are dominated by statistical uncertainties, and will therefore substantially improve with more data in the future.

  19. Direct measurements of neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Holzschuh, E. [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    The direct measurements have so far given no indication for a nonzero (positive) mass of any of the three known neutrinos. The experiments measuring the tau and the muon neutrino are good shape. The tritium experiments are in an unfortunate situation. It is unclear to me whether the problems are experimental or theoretical or a combination of both. The electronic final states distribution have been calculated, but the results have never been tested experimentally. The most important question to be answered is about the validity of the sudden approximation. (author) 9 figs., 2 tabs., 16 refs.

  20. Top Mass Measurement at CMS

    CERN Document Server

    Duda, Markus

    2006-01-01

    Given the big cross section for \\ttbar production in proton-proton collisions at 14\\TeV, the LHC with its high luminosity will be, among others,a top factory, allowing a precision measurement of the top quark mass. Based on a detailed simulation of the CMS detector, the following top mass reconstruction accuracies are possible in the respective final states with the present knowledge of experimental and theoretical uncertainties. Delta m_t (di-leptonic, 1fbinv) = pm 1.5 (stat) pm 2.9 (syst.) GeVcc Delta m_t (semi-leptonic, 1fbinv) = pm 0.7 (stat) pm 1.9 (syst.) GeVcc Delta m_t (fully hadronic, 1fbinv) = pm 0.6(stat) pm 4.2 (syst.) GeVcc Delta m_t (di-leptonic}, 10 fbinv) = pm 0.5 (stat) pm 1.1 (syst.) GeVcc Delta m_t (semi-leptonic, 10 fbinv) = pm 0.2 (stat) pm 1.1 (syst.) GeVcc Delta m_t (JPsi, 20 fbinv) = pm 1.2 (stat) pm 1.5 (syst.) GeVcc A combined top mass accuracy of mathcal O (1GeVcc) for 10-20fbinv of well-understood CMS data will be feasible.

  1. Measurements of Moments of the Hadronic Mass Distribution in Semileptonic B Decays

    CERN Document Server

    Aubert, Bernard; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Le Clerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmücker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; MacKay, C; Wilson, F F; Abe, K; Çuhadar-Dönszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le, F; Diberder; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljevic, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, Erwin; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Monchenault; Kozanecki, Witold; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Convery, M R; Cristinziani, M; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Von Wimmersperg-Töller, J H; Wu, J; Wu Sau Lan; Yu, Z; Neal, H

    2004-01-01

    We report a measurement of the first four moments of the hadronic mass distribution in B --> X_c lv decays. The measurements are based on 89 million Upsilon(4S) --> BBbar events where the hadronic decay of one of the B mesons is fully reconstructed and a charged lepton from the decay of the other B meson is identified. The moments are presented for minimum lepton momenta ranging from 0.9 to 1.6 GeV in the B rest frame. It is expected that such measurements will lead to improved determinations of |V_{cb}| and |V_{ub}|.

  2. Zero G Mass Measurement Device (ZGMMD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Zero Gravity Mass Measurement Device (ZGMMD) provides the ability to measure the mass of samples in a microgravity environment, like that found on the...

  3. Relation of maximum blood pressure during exercise and regular physical activity in normotensive men with left ventricular mass and hypertrophy. MARATHOM Investigators. Medida de la Actividad fisica y su Relación Ambiental con Todos los Lípidos en el HOMbre.

    Science.gov (United States)

    Molina, L; Elosua, R; Marrugat, J; Pons, S

    1999-10-15

    The relation between maximum systolic blood pressure (BP) during exercise and left ventricular (LV) mass is controversial. Physical activity also induces LV mass increase. The objective was to assess the relation between BP response to exercise and LV mass in normotensive men, taking into account physical activity practice. A cross-sectional study was performed. Three hundred eighteen healthy normotensive men, aged between 20 and 60 years, participated in this study. The Minnesota questionnaire was used to assess physical activity practice. An echocardiogram and a maximum exercise test were performed. LV mass was calculated and indexed to body surface area. LV hypertrophy was defined as a ventricular mass index > or =134 g/m2. BP was measured at the moment of maximum effort. Hypertensive response was considered when BP was > or =210 mm Hg. In the multiple linear regression model, maximum systolic BP was associated with LV mass index and correlation coefficient was 0.27 (SE 0.07). Physical activity practice and age were also associated with LV mass. An association between hypertensive response to exercise and LV hypertrophy was observed (odds ratio 3.16). Thus, BP response to exercise is associated with LV mass and men with systolic BP response > or =210 mm Hg present a 3-times higher risk of LV hypertrophy than those not reaching this limit. Physical activity practice is related to LV mass, but not to LV hypertrophy.

  4. LV reverse remodeling imparted by aortic valve replacement for severe aortic stenosis; is it durable? A cardiovascular MRI study sponsored by the American Heart Association

    Directory of Open Access Journals (Sweden)

    Caruppannan Ketheswaram

    2011-04-01

    Full Text Available Abstract Background In patients with severe aortic stenosis (AS, long-term data tracking surgically induced effects of afterload reduction on reverse LV remodeling are not available. Echocardiographic data is available short term, but in limited fashion beyond one year. Cardiovascular MRI (CMR offers the ability to serially track changes in LV metrics with small numbers due to its inherent high spatial resolution and low variability. Hypothesis We hypothesize that changes in LV structure and function following aortic valve replacement (AVR are detectable by CMR and once triggered by AVR, continue for an extended period. Methods Tweny-four patients of which ten (67 ± 12 years, 6 female with severe, but compensated AS underwent CMR pre-AVR, 6 months, 1 year and up to 4 years post-AVR. 3D LV mass index, volumetrics, LV geometry, and EF were measured. Results All patients survived AVR and underwent CMR 4 serial CMR's. LVMI markedly decreased by 6 months (157 ± 42 to 134 ± 32 g/m2, p 2. Similarly, EF increased pre to post-AVR (55 ± 22 to 65 ± 11%,(p 2. LV stroke volume increased rapidly from pre to post-AVR (40 ± 11 to 44 ± 7 ml, p Conclusion After initial beneficial effects imparted by AVR in severe AS patients, there are, as expected, marked improvements in LV reverse remodeling. Via CMR, surgically induced benefits to LV structure and function are durable and, unexpectedly express continued, albeit markedly incomplete improvement through 4 years post-AVR concordant with sustained improved clinical status. This supports down-regulation of both mRNA and MMP activity acutely with robust suppression long term.

  5. The NIM Inertial Mass Measurement Project

    CERN Document Server

    Li, Shisong; He, Qing; Li, Zhengkun; Zhao, Wei; Han, Bing; Lu, Yunfeng

    2014-01-01

    An inertial mass measurement project, which is expected to precisely measure the Planck constant, $h$, for possible comparisons with known gravitational mass measurement projects, e.g., the watt balance and the Avogadro project, is being carried out at the National Institute of Metrology, China. The principle, apparatus, and experimental investigations of the inertial mass measurement are presented. The prototype of the experiment and the Planck constant with relative uncertainty of several parts in $10^{4}$ have been achieved for principle testing.

  6. Zero G Mass Measurement Device (ZGMMD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Zero G Mass Measurement Device (ZGMMD) will provide the ability to quantify the mass of objects up to 2,000 grams, including live animal specimens in a zero G...

  7. Selected top quark mass measurements at CMS

    CERN Document Server

    Bouvier, Elvire

    2016-01-01

    Selected measurements of the top quark mass are presented, obtained from CMS data collected in proton-proton collisions at the LHC at center-of-mass energies of 7, 8, and 13 TeV. ``Standard'' techniques are employed in each decay channel of top quark pair events and their results are combined. The mass of the top quark is also measured using several ``alternative'' methods, including measurements from shapes of top quark decay distributions in single top quark and top quark pair events as well as pole mass measurements.

  8. Simple area-based measurement for multidetector computed tomography to predict left ventricular size

    Energy Technology Data Exchange (ETDEWEB)

    Schlett, Christopher L.; Kwait, Dylan C.; Mahabadi, Amir A.; Hoffmann, Udo [Massachusetts General Hospital, and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); Bamberg, Fabian [Massachusetts General Hospital, and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); University Hospitals Munich, and Ludwig Maximilians University, Department of Clinical Radiology, Munich (Germany); O' Donnell, Christopher J. [Lung and Blood Institute' s Framingham Heart Study, National Heart, Framingham (United States); Fox, Caroline S. [Lung and Blood Institute' s Framingham Heart Study, National Heart, Framingham (United States); Brigham and Women' s Hospital, and Harvard Medical School, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Boston, MA (United States)

    2010-07-15

    Measures of left ventricular (LV) mass and dimensions are independent predictors of morbidity and mortality. We determined whether an axial area-based method by computed tomography (CT) provides an accurate estimate of LV mass and volume. A total of 45 subjects (49% female, 56.0 {+-} 12 years) with a wide range of LV geometry underwent contrast-enhanced 64-slice CT. LV mass and volume were derived from 3D data. 2D images were analysed to determine LV area, the direct transverse cardiac diameter (dTCD) and the cardiothoracic ratio (CTR). Furthermore, feasibility was confirmed in 100 Framingham Offspring Cohort subjects. 2D measures of LV area, dTCD and CTR were 47.3 {+-} 8 cm{sup 2}, 14.7 {+-} 1.5 cm and 0.54 {+-} 0.05, respectively. 3D-derived LV volume (end-diastolic) and mass were 148.9 {+-} 45 cm{sup 3} and 124.2 {+-} 34 g, respectively. Excellent inter- and intra-observer agreement were shown for 2D LV area measurements (both intraclass correlation coefficients (ICC) = 0.99, p < 0.0001) and could be confirmed on non-contrast CT. The measured 2D LV area was highly correlated to LV volume, mass and size (r = 0.68; r = 0.73; r = 0.82; all p < 0.0001, respectively). On the other hand, CTR was not correlated to LV volume, mass, size or 2D LV area (all p > 0.27). Compared with traditionally used CTR, LV size can be accurately predicted based on a simple and highly reproducible axial LV area-based measurement. (orig.)

  9. Mass measurements with a Penning trap mass spectrometer at ISOLDE

    CERN Document Server

    Bollen, G; Audi, G; Beck, D; Herfurth, F; Kluge, H J; Kohl, A; Lunney, M D; Moore, R B; De Saint-Simon, M; Schark, E; Schwarz, S; Szerypo, J

    1998-01-01

    Penning trap mass measurements on radioactive isotopes are performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN. In the last years the applicability of the spectrometer has been considerably extended. The most recent measurements were carried out on isotopes of rare earth elements and on isotopes with Z=80-85. An accuracy of $\\delta$ m/m approximately=1$\\cdot$10$^{-7}$was achieved. (19 refs).

  10. Top Quark Mass Measurements at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Reinhild Yvonne [DESY

    2014-01-01

    Since the discovery of the top quark in 1995 by the CDF and D0 collaborations at the Fermilab Tevatron proton antiproton collider, precise measurements of its mass are ongoing. Using data recorded by the D0 and CDF experiment, corresponding to up to the full Tevatron data sample, top quark mass measurements performed in different final states using various extraction techniques are presented in this article. The recent Tevatron top quark mass combination yields m_t=173.20 +-0.87 GeV. Furthermore, measurements of the top antitop quark mass difference from the Tevatron are discussed.

  11. Quantifying coronary sinus flow and global LV perfusion at 3T

    Directory of Open Access Journals (Sweden)

    Bloch Karin

    2009-06-01

    Full Text Available Abstract Background Despite the large availability of 3T MR scanners and the potential of high field imaging, this technical platform has yet to prove its usefulness in the cardiac MR setting, where 1.5T remains the established standard. Global perfusion of the left ventricle, as well as the coronary flow reserve (CFR, can provide relevant diagnostic information, and MR measurements of these parameters may benefit from increased field strength. Quantitative flow measurements in the coronary sinus (CS provide one method to investigate these parameters. However, the ability of newly developed faster MR sequences to measure coronary flow during a breath-hold at 3T has not been evaluated. Methods The aim of this work was to measure CS flow using segmented phase contrast MR (PC MR on a clinical 3T MR scanner. Parallel imaging was employed to reduce the total acquisition time. Global LV perfusion was calculated by dividing CS flow with left ventricular (LV mass. The repeatability of the method was investigated by measuring the flow three times in each of the twelve volunteers. Phantom experiments were performed to investigate potential error sources. Results The average CS flow was determined to 88 ± 33 ml/min and the deduced LV perfusion was 0.60 ± 0.22 ml/min·g, in agreement with published values. The repeatability (1-error of the three repeated measurements in each subject was on average 84%. Conclusion This work demonstrates that the combination of high field strength (3T, parallel imaging and segmented gradient echo sequences allow for quantification of the CS flow and global perfusion within a breath-hold.

  12. Precision Mass Measurement of Argon Isotopes

    CERN Multimedia

    Lunney, D

    2002-01-01

    % IS388\\\\ \\\\ A precision mass measurement of the neutron-deficient isotopes $^{32,33,34}$Ar is proposed. Mass values of these isotopes are of importance for: a) a stringent test of the Isobaric-Multiplet- Mass-Equation, b) a verification of the correctness of calculated charge-dependent corrections as used in super-allowed $\\beta$- decay studies aiming at a test of the CVC hypothesis, and c) the determination of the kinematics in electron-neutrino correlation experiments searching for scalar currents in weak interaction. The measurements will be carried out with the ISOLTRAP Penning trap mass spectrometer.

  13. W Boson Mass Measurement at the Tevatron

    CERN Document Server

    Hays, C; Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Badaud, F; Baden, A; Baldin, B Yu; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Böhnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystrický, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christiansen, T; Christofek, L; Claes, D; Clement, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cothenet, A; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cristetiu, M; Cutts, D; Da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Ginther, G; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Gris, P; Grivaz, J F; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Harder, K; Harrington, R; Hauptman, J M; Hauser, R; Hebbeker, T; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Huang, J; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Krzywdzinski, S; Kuleshov, S; Kulik, Y; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lager, S; Lahrichi, N; Landsberg, G L; Lazoflores, J; Le Bihan, A C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J T; Lipaev, V V; Lipton, R; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lubatti, H J; Lueking, L; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; Meder, D; Melanson, H L; Melnitchouk, A S; Mendes, A; Merkin, M; Merritt, K W; Meyer, A; Michaut, M; Miettinen, H; Mitrevski, J; Mokhov, N V; Molina, J; Mondal, N K; Moore, R W; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Oshima, N; Oteroy-Garzon, G J; Padley, P; Parashar, N; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Pérez, E; Petroff, P; Petteni, M; Phaf, L; Piegaia, R; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pope, B G; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Qian, J; Quadt, A; Quinn, B; Rani, K J; Ranjan, K; Rapidis, P A; Ratoff, P N; Reay, N W; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schwartzman, A; Schwienhorst, R; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Sidwell, R A; Simák, V; Sirotenko, V I; Skubic, P L; Slattery, P F; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A H; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vlimant, J R; Von Törne, E; Vreeswijk, M; Vu-Anh, T; Wahl, H D; Walker, R; Wang, L; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; White, A; White, V; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xu, Q; Xuan, N; Yacoob, S Y; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G; Hays, Chris

    2005-01-01

    The W boson mass (mW) is a key parameter of the standard model, constraining the mass of the unobserved Higgs boson. Using Tevatron ppbar collision data from 1992-1996, the CDF and D0 collaborations measured mW to a precision of 59 MeV. The ongoing Tevatron Run 2 has produced a factor of 5 more collisions, promising a significant reduction in the W mass uncertainty. CDF has analyzed the first 200/pb of Run 2 data and determined the uncertainty on its W mass measurement to be 76 MeV.

  14. Top quark mass measurement at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes da Costa, Joao; /Harvard U.

    2004-12-01

    The authors report on the latest experimental measurements of the top quark mass by the CDF and D0 Collaborations at the Fermilab Tevatron. They present a new top mass measurement using the t{bar t} events collected by the D0 Collaboration in Run I between 1994 and 1996. This result is combined with previous measurements to yield a new world top mass average. They also describe several preliminary results using up to 193 pb{sup -1} of t{bar t} events produced in {bar p}p collisions at {radical}s = 1.96 TeV during the Run II of the Tevatron.

  15. Top quark mass measurements at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Tuula; /Helsinki U. /Helsinki Inst. of Phys.

    2007-10-01

    The top quark mass is interesting both as a fundamental parameter of the standard model as well as an important input to precision electroweak tests. The CDF Collaboration has measured the top quark mass with high precision in all decay channels with complementary methods. A combination of the results from CDF gives a top quark mass of 170.5{+-}1.3(stat.){+-}1.8(syst.) GeV/c{sup 2}.

  16. Effect of Body Mass Index on Left Ventricular Mass in Career Male Firefighters

    Science.gov (United States)

    Korre, Maria; Porto, Luiz Guilherme G.; Farioli, Andrea; Yang, Justin; Christiani, David C.; Christophi, Costas A.; Lombardi, David A.; Kovacs, Richard J.; Mastouri, Ronald; Abbasi, Siddique; Steigner, Michael; Moffatt, Steven; Smith, Denise; Kales, Stefanos N.

    2017-01-01

    Left ventricular (LV) mass is a strong predictor of cardiovascular disease (CVD) events; increased LV mass is common among US firefighters and plays a major role in firefighter sudden cardiac death. We aim to identify significant predictors of LV mass among firefighters. Cross-sectional study of 400 career male firefighters selected by an enriched randomization strategy. Weighted analyses were performed based on the total number of risk factors per subject with inverse probability weighting. LV mass was assessed by echocardiography (ECHO) and cardiac magnetic resonance, and normalized (indexed) for height. CVD risk parameters included vital signs at rest, body mass index (BMI)–defined obesity, obstructive sleep apnea risk, low cardiorespiratory fitness, and physical activity. Linear regression models were performed. In multivariate analyses, BMI was the only consistent significant independent predictor of LV mass indexes (all, p <0.001). A 1-unit decrease in BMI was associated with 1-unit (g/m1.7) reduction of LV mass/height1.7 after adjustment for age, obstructive sleep apnea risk, and cardiorespiratory fitness. In conclusion, after height-indexing ECHO-measured and cardiac magnetic resonance–measured LV mass, BMI was found to be a major driver of LV mass among firefighters. Our findings taken together with previous research suggest that reducing obesity will improve CVD risk profiles and decrease on-duty CVD and sudden cardiac death events in the fire service. Our results may also support targeted noninvasive screening for LV hypertrophy with ECHO among obese firefighters. PMID:27687051

  17. Miniature Sensor for Aerosol Mass Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project seeks to develop a miniature sensor for mass measurement of size-classified aerosols. A cascade impactor will be used to classify aerosol sample...

  18. Measurement of the [tau]-lepton mass

    Energy Technology Data Exchange (ETDEWEB)

    Balest, R.; Daoudi, M.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Besson, D.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Honscheid, K.; Jones, C.D.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; O' Grady, C.; Patterson, J.R.; Peterson, D.; Riley, D.; Sapper, M.; Selen, M.; Worden, H.; Worris, M.; Wuerthwein, F.; Avery, P.; Freyberger, A.; Rodriguez, J.; Stephens, R.; Yelton, J.; Cinabro, D.; Henderson, S.; Kinoshita, K.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Sadoff, A.J.; Ammar, R.; Ball, S.; Baringer, P.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Nelson, J.K.; Patton, S.; Perticone, D.; Poling, R.; Savino; (CLEO Collaboration)

    1993-05-01

    Using data from the CLEO II detector at CESR, we measure the [tau]-lepton mass by exploiting the unique kinematics of events in which both [tau]'s decay hadronically. The result is [ital m][sub [tau

  19. Efficacy of an inactivated FeLV vaccine compared to a recombinant FeLV vaccine in minimum age cats following virulent FeLV challenge.

    Science.gov (United States)

    Stuke, Kristin; King, Vickie; Southwick, Kendra; Stoeva, Mira I; Thomas, Anne; Winkler, M Teresa C

    2014-05-07

    The aim of the study was to determine the efficacy of an inactivated feline leukemia virus (FeLV) vaccine (Versifel(®) FeLV, Zoetis.) compared to a recombinant FeLV vaccine (Purevax(®) FeLV, Merial Animal Health) in young cats, exposed under laboratory conditions to a highly virulent challenge model. The study was designed to be consistent with the general immunogenicity requirements of the European Pharmacopoeia 6.0 Monograph 01/2008:1321-Feline Leukaemia Vaccine (Inactivated) with the exception that commercial-strength vaccines were assessed. Fifty seronegative cats (8-9 weeks old) were vaccinated subcutaneously on two occasions, three weeks apart, with either placebo (treatment group T01), Versifel FeLV Vaccine (treatment group T02), or Purevax FeLV Vaccine (treatment group T03) according to the manufacturer's directions. Cats were challenged three weeks after the second vaccination with a virulent FeLV isolate (61E strain). Persistent FeLV antigenemia was determined from 3 to 15 weeks postchallenge. Bone marrow samples were tested for the presence of FeLV proviral DNA to determine FeLV latent infection. At week 15 after challenge with the virulent FeLV 61E strain, the Versifel FeLV Vaccine conferred 89.5% protection against FeLV persistent antigenemia and 94.7% protection against FeLV proviral DNA integration in bone marrow cells. In comparison, the Purevax FeLV Vaccine conferred 20% protection against FeLV persistent antigenemia and 35% protection against FeLV proviral DNA integration in bone marrow cells following challenge. The data from this study show that the Versifel FeLV Vaccine was efficacious in preventing both FeLV persistent p27 antigenemia and FeLV proviral DNA integration in bone marrow cells of cats challenged with this particular challenge model under laboratory conditions and provided better protection than Purevax FeLV in this experimental challenge model with highly virulent FeLV.

  20. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  1. Investigating young children's learning of mass measurement

    Science.gov (United States)

    Cheeseman, Jill; McDonough, Andrea; Ferguson, Sarah

    2014-06-01

    This paper reports results of a design experiment regarding young children's concepts of mass measurement. The research built on an earlier study in which a framework of "growth points" in early mathematics learning and a related, task-based, one-to-one interview to assess children's understanding of the measurement of mass were developed. Prompted by the results and recommendations from the earlier study, five lessons were developed that offered rich learning experiences regarding concepts of mass. The 119 Year 1 and 2 children participating in the study were interviewed using the same protocol before and after the teaching period. The assessment data showed that the majority of these children moved from using nonstandard units to using standard units and instruments for measuring mass. The findings from this study challenge the traditional approach of using informal units for an extended period before the introduction of standard units.

  2. Measurement of the First and Second Moments of the Hadronic Mass Distribution in Semileptonic B Decays

    CERN Document Server

    Aubert, Bernard; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Kukartsev, G; Le Clerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, Michael T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmücker, H; Steinke, M; Barlow, N R; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; MacKay, C; Wilson, F F; Abe, K; Çuhadar-Dönszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Shen, B C; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Schwanke, U; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, C; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Biasini, M; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Pioppi, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljevic, V; Cheng, C H; Lange, D J; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, Erwin; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Strother, P; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, R J; Forti, A C; Hart, P A; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Milek, M; Patel, P M; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Hast, C; Taras, P; Levesque, J A; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J E; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, Witold; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graugès-Pous, E; Hadig, T; Halyo, V; Hrynóva, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Von, J H; Wimmersperg-Toeller; Wu, J; Wu Sau Lan; Yu, Z; Neal, H

    2003-01-01

    We report a preliminary measurement of the first and second moments of the hadronic mass distributions in B --> X_c lv decays. The measurements are based on Upsilon (4S) --> BBbar events where the hadronic decay of one of the B mesons is fully reconstructed and a charged lepton from the decay of the other B meson is identified. The moments are presented for threshold lepton momenta ranging from 0.9 to 1.6 GeV. From the $$ moments we determine the non-perturbative Heavy Quark Expansion (HQE) parameters, $\\bar{\\Lambda}$ and $\\lambda_1$. We combine the measured moments $$ with earlier BABAR measurements of the semileptonic branching ratios and B lifetimes and perform a simultaneous fit to the HQE for the moments obtained for different threshold lepton momenta and the semileptonic decay width. This fit results in an improved value for the CKM matrix element $|V_{cb}|$.

  3. Measurement of the eta mass at KLOE

    CERN Document Server

    Antonelli, A; Archilli, F; Bacci, C; Beltrame, P; Bencivenni, G; Bertolucci, S; Bini, C; Bloise, C; Bocchetta, S; Bocci, V; Bossi, F; Branchini, P; Caloi, R; Campana, P; Capon, G; Capussela, T; Ceradini, F; Chi, S; Chiefari, G; Ciambrone, P; De Lucia, E; De Santis, A; De Simone, P; De Zorzi, G; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Di Micco, B; Doria, A; Dreucci, M; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Fiore, S; Forti, C; Franzini, P; Gatti, C; Gauzzi, P; Giovannella, S; Gorini, E; Graziani, E; Incagli, M; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Leone, D; Martini, M; Massarotti, P; Mei, W; Meola, S; Miscetti, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nguyen, F; Palutan, M; Pasqualucci, E; Passeri, A; Patera, V; Perfetto, F; Primavera, M; Santangelo, P; Saracino, G; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Spadaro, T; Testa, M; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Versaci, R; Xu, G

    2007-01-01

    An integrated luminosity of 410 pb^(-1), corresponding to ~ 17 million of eta events, has been analyzed to measure the eta mass using the decay eta to gamma gamma. The measurement is insensitive to the calorimeter energy calibration and the systematic error on the measurement is dominated by the uniformity of the detector response. As a cross check of the method the pi0 mass from the decay phi to pi0 gamma, pi0 to gamma gamma has been measured and it is in agreement with the most accurate previous determinations. The result obtained is m(eta) = 547.873 +/- 0.007 (stat.) +/- 0.031 (syst.) MeV, that is today best measurement of the eta mass.

  4. Ratio method of measuring W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng [Stony Brook Univ., NY (United States)

    2010-08-01

    This dissertation describes an alternative method of measuring the W boson mass in DØ experiment. Instead of extracting MW from the fitting of W → ev fast Monte Carlo simulations to W → ev data as in the standard method, we make the direct fit of transverse mass between W → ev data and Z → ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (MW/MZ). Given the precisely measured Z boson mass, W mass is directly fitted from W → ev and Z → ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb-1 DØ Run IIa dataset, ratio method gives MW = 80435 ± 43(stat) ± 26(sys) MeV.

  5. Testing substellar models with dynamical mass measurements

    Directory of Open Access Journals (Sweden)

    Liu M.C.

    2011-07-01

    Full Text Available We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1 We find that model color–magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2 Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100–300 K. (3 For the only known pair of field brown dwarfs with a precise mass (3% and age determination (≈25%, the measured luminosities are ~2–3× higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20–30% larger than measured. To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.

  6. The First Isochronous Mass Measurements at CSRe

    Institute of Scientific and Technical Information of China (English)

    TU Xiao-lin; XU Hu-shan; WANG Meng; XIA Jia-wen; MAO Rui-shi; YUAN You-jin; HU Zheng-guo; LIU Yong; ZHANG Hong-bin; ZANG Yong-dong; ZHAO Tie-cheng; ZHANG Xue-ying; FU Fen; YANG Jian-cheng; MAO Li-jun; XIAO Chen; XIAO Guo-qing; ZHAO Hong-wei; ZHAN Wen-long

    2009-01-01

    With the commissioning of the Cooler Storage Ring at the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR),a pilot experiment operating the CSRe in isochronous mode to test the power of HIRFL-CSR for measuring the mass of the short-lived nucleus was performed in December of 2007.The fragments with A/q=2 of ~(36) Ar were injected into CSRe and their revolution frequencies were measured with a fast time pick-up detector with a thin foil in the circulating path of the ions.The preliminary result is presented.The result shows the potential of CSRe for mass measurements of short-lived nuclei.

  7. Measuring the running top-quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Langenfeld, U.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Berlin Univ. (Germany). Inst. fuer Physik

    2009-06-15

    We present the first direct determination of the running top-quark mass based on the total cross section of top-quark pair-production as measured at the Tevatron. Our theory prediction for the cross section includes various next-to-next-to-leading order QCD contributions, in particular all logarithmically enhanced terms near threshold, the Coulomb corrections at two loops and all explicitly scale dependent terms at NNLO accuracy. The result allows for an exact and independent variation of the renormalization and factorization scales. For Tevatron and LHC we study its dependence on all scales, on the parton luminosity and on the top-quark mass using both the conventional pole mass definition as well as the running mass in the MS scheme. We extract for the top-quark an MS mass of m({mu}=m) =160.0{sup +3.3}{sub -3.2} GeV. (orig.)

  8. Measurement of the W boson mass

    Science.gov (United States)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grim, G.; Grinstein, S.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-11-01

    We present a measurement of the W boson mass using data collected by the D0 experiment at the Fermilab Tevatron during 1994-1995. We identify W bosons by their decays to eν final states. We extract the W mass MW by fitting the transverse mass and transverse electron momentum spectra from a sample of 28 323 W-->eν decay candidates. We use a sample of 3563 dielectron events, mostly due to Z-->ee decays, to constrain our model of the detector response. From the transverse mass fit we measure MW=80.44+/-0.10(stat)+/-0.07(syst) GeV. Combining this with our previously published result from data taken in 1992-1993, we obtain MW=80.43+/-0.11 GeV.

  9. Protection of LV system against lightning

    OpenAIRE

    Yordanova Nedyalkova, Greta

    2010-01-01

    Lightning is a natural hazard and one of the greatest local mysteries. Scientists have not fully understood the mechanism of lightning. It is one of the most beautiful displays in nature and one of the nature's most dangerous phenomenon known to man. Overvoltage due to lightning is a very important problem of LV systems. Some lightning flashes damage buildings and a few kill or injure people and animals, either directly or indirectly, by causing fire and explosions. The need for protect...

  10. A method to measure the axion mass

    Science.gov (United States)

    Carboni, G.

    1981-05-01

    We have calculated the decay rate of the triplet state of positronium into axion + gamma, under the hypothesis that the axion mass is less than 1 MeV. The branching ratio is found to be ~3 × 10-8. We describe a possible experiment that could detect the axion and measure its mass. On leave from Istituto Nazionale di Fisica Nuclear, Sezione di Pisa, Pisa, Italy.

  11. Measurement of the W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Abolins, Maris A.; /Michigan State U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Aguilo, Ernest; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, Mahsana; /Kansas State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-08-01

    The authors present a measurement of the W boson mass in W {yields} e{nu} decays using 1 fb{sup -1} of data collected with the D0 detector during Run II of the Fermilab Tevatron collider. With a sample of 499830 W {yields} e{nu} candidate events, they measure M{sub W} = 80.401 {+-} 0.043 GeV. This is the most precise measurement from a single experiment.

  12. Measurement of the W boson mass.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Andeen, T; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Devaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, W M; Leflat, A; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Mal, P K; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mondal, N K; Montgomery, H E; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2009-10-02

    We present a measurement of the W boson mass in W-->e(nu) decays using 1 fb-1 of data collected with the D0 detector during Run II of the Fermilab Tevatron collider. With a sample of 499830 W-->e(nu) candidate events, we measure M(W)=80.401+/-0.043 GeV. This is the most precise measurement from a single experiment.

  13. Precision measurement of $D$ meson mass differences

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    Using three- and four-body decays of $D$ mesons produced in semileptonic $b$-hadron decays, precision measurements of $D$ meson mass differences are made together with a measurement of the $D^{0}$ mass. The measurements are based on a dataset corresponding to an integrated luminosity of 1.0 fb$^{-1}$ collected in $pp$ collisions at 7~TeV. Using the decay $D^0 \\rightarrow K^{+} K^{-} K^{-} \\pi^{+}$, the $D^0$ mass is measured to be \\begin{alignat*}{3} M(D^0) \\phantom{ghd} &=&~1864.75 \\pm 0.15 \\,({\\rm stat}) \\pm 0.11 \\,({\\rm syst}) \\, \\textrm{MeV}/c^2. \\end{alignat*} The mass differences \\begin{alignat*}{3} M(D^{+}) - M(D^{0}) &=& 4.76 \\pm 0.12 \\,({\\rm stat}) \\pm 0.07 \\,({\\rm syst}) \\, \\textrm{MeV}/c^2, \\\\ M(D^{+}_s) - M(D^{+}) &=& \\phantom{00}98.68 \\pm 0.03 \\,({\\rm stat}) \\pm 0.04 \\,({\\rm syst}) \\, \\textrm{MeV}/c^2 \\end{alignat*} are measured using the $D^0 \\rightarrow K^{+} K^{-} \\pi^{+} \\pi^{-}$ and $D^{+}_{(s)} \\rightarrow K^{+}K^{-} \\pi^{+}$ modes.

  14. Measurement of $b$-hadron masses

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Constantin, F; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Gracianiv Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, A C; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Torr, N; Tournefier, E; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Voss, H; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Measurements of $b$-hadron masses are performed with the exclusive decay modes $B^+\\to J/\\psi K^+$, $B^0 \\to J/\\psi K^{*0}$, $B^0 \\to J/\\psi K^0_{\\rm S}$, $B_s^0 \\to J/\\psi\\phi$ and $\\Lambda^0_b\\to J/\\psi\\Lambda$ using an integrated luminosity of 35 pb$^{-1}$ collected in $pp$ collisions at a centre-of-mass energy of 7 TeV by the LHCb experiment. The momentum scale is calibrated with $J/\\psi \\to \\mu^+\\mu^-$ decays and verified to be known to a relative precision of $2 \\times 10^{-4}$ using other two-body decays. The results are more precise than previous measurements, particularly in the case of the $B^0_s$ and $\\Lambda^0_b$ masses.

  15. W Boson Mass Measurement at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [Duke Univ., Durham, NC (United States). Physics Dept.

    2017-03-27

    This is the closeout report for the grant for experimental research at the energy frontier in high energy physics. The report describes the precise measurement of the W boson mass at the CDF experiment at Fermilab, with an uncertainty of ≈ 12 MeV, using the full dataset of ≈ 9 fb-1 collected by the experiment up to the shutdown of the Tevatron in 2011. In this analysis, the statistical and most of the experimental systematic uncertainties have been reduced by a factor of two compared to the previous measurement with 2.2 fb-1 of CDF data. This research has been the culmination of the PI's track record of producing world-leading measurements of the W boson mass from the Tevatron. The PI performed the first and only measurement to date of the W boson mass using high-rapidity leptons using the D0 endcap calorimeters in Run 1. He has led this measurement in Run 2 at CDF, publishing two world-leading measurements in 2007 and 2012 with total uncertainties of 48 MeV and 19 MeV respectively. The analysis of the final dataset is currently under internal review in CDF. Upon approval of the internal review, the result will be available for public release.

  16. Mass measurements and superallowed beta decay

    CERN Document Server

    Hardy, J C; Towner, I S

    2005-01-01

    A recent Penning-trap measurement of the masses of 46V and 46Ti leads to a Qec value that disagrees significantly with the previously accepted value, and destroys overall consistency among the nine most precisely characterized T=1 superallowed beta emitters. This raises the possibility of a systematic discrepancy between Penning-trap measurements and the reaction-based measurements upon which the Qec values depended in the past. We carefully re-analyze (n,gamma) and (p,gamma) reaction measurements in the 24 \\leq A \\leq 28 mass region, and compare the results to very precise Penning-trap measurements of the stable nuclei 24Mg, 26Mg and 28Si. We thus determine upper limits to possible systematic effects in the reaction results, and go on to establish limits for the mass of radioactive 26Al, to which future on-line Penning-trap measurements can be compared. We stress the urgency of identifying or ruling-out possible systematic effects.

  17. Mass measurements based on nanomechanical devices: differential measurements

    Energy Technology Data Exchange (ETDEWEB)

    Arcamone, J; Rius, G; Llobet, J; Borrise, X; Perez-Murano, F [CNM-IMB (CSIC). Campus UAB. E-08193 Bellaterra (Barcelona) (Spain)], E-mail: francesc.perez@cnm.es, E-mail: julien.arcamone@cnm.es

    2008-03-15

    In the last few years, there has been a strong interest in implementing nano-mechanical devices as mass sensors. Regarding this application, an important question to address is to know to what extent the observed frequency shift is exclusively due to the targeted mass loading. For this purpose, we present a device, a polysilicon double cantilever, with an innovative design that allows the direct determination of the measurement uncertainty. Two almost identical nanomechanical resonators are simultaneously operated: one serves as sensor and the other as reference. In this way, rapid and reliable measurements in air are made possible. In first experimental measurements, some masses in the order of 300 fg, locally deposited by focused ion beam, have been measured with an uncertainty of 30 fg. These results are corroborated by the determination of the deposits size based on SEM images.

  18. Interpreting W mass measurements in the SMEFT

    Science.gov (United States)

    Bjørn, Mikkel; Trott, Michael

    2016-11-01

    Measurements of the W± mass (mW) provide an important consistency check of the Standard Model (SM) and constrain the possibility of physics beyond the SM. Precision measurements of mW at hadron colliders are inferred from kinematic distributions of transverse variables. We examine how this inference is modified when considering the presence of physics beyond the SM expressed in terms of local contact operators. We show that Tevatron measurements of mW using transverse variables are transparent and applicable as consistent constraints in the Standard Model Effective Field Theory (SMEFT) with small measurement bias. This means that the leading challenge to interpreting these measurements in the SMEFT is the pure theoretical uncertainty in how these measurements are mapped to Lagrangian parameters. We stress the need to avoid using naive combinations of Tevatron and LEPII measurements of mW without the introduction of any SMEFT theoretical error to avoid implicit UV assumptions.

  19. Left Ventricle: Fully Automated Segmentation Based on Spatiotemporal Continuity and Myocardium Information in Cine Cardiac Magnetic Resonance Imaging (LV-FAST

    Directory of Open Access Journals (Sweden)

    Lijia Wang

    2015-01-01

    Full Text Available CMR quantification of LV chamber volumes typically and manually defines the basal-most LV, which adds processing time and user-dependence. This study developed an LV segmentation method that is fully automated based on the spatiotemporal continuity of the LV (LV-FAST. An iteratively decreasing threshold region growing approach was used first from the midventricle to the apex, until the LV area and shape discontinued, and then from midventricle to the base, until less than 50% of the myocardium circumference was observable. Region growth was constrained by LV spatiotemporal continuity to improve robustness of apical and basal segmentations. The LV-FAST method was compared with manual tracing on cardiac cine MRI data of 45 consecutive patients. Of the 45 patients, LV-FAST and manual selection identified the same apical slices at both ED and ES and the same basal slices at both ED and ES in 38, 38, 38, and 41 cases, respectively, and their measurements agreed within -1.6±8.7 mL, -1.4±7.8 mL, and 1.0±5.8% for EDV, ESV, and EF, respectively. LV-FAST allowed LV volume-time course quantitatively measured within 3 seconds on a standard desktop computer, which is fast and accurate for processing the cine volumetric cardiac MRI data, and enables LV filling course quantification over the cardiac cycle.

  20. A measurement of the tau mass

    Science.gov (United States)

    Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Appuhn, R. D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Walther, A.; Wegener, D.; Paulini, M.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reβing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Cronström, H. I.; Jönsson, L.; Balagura, V.; Belyaev, I.; Danilov, M.; Droutskoy, A.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Murat, P.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration

    1992-10-01

    Using the ARGUS detector at the DORIS II storage ring, a new measurement of the mass of the τ lepton has been obtained. An analysis of the tau pseudomass spectrum for decays of the type τ- → π-π-π+ντ finds mτ = 1776.3±2.4±1.4 MeV/ c2. This result also leads to an improvement of the upper limit on the ντ mass to mντ < 31 MeV/ c2 at the 95% confidence level.

  1. Interpreting $W$ mass measurements in the SMEFT

    CERN Document Server

    Bjørn, Mikkel

    2016-01-01

    Measurements of the $W^\\pm$ mass ($m_W$) provide an important consistency check of the Standard Model (SM) and constrain the possibility of physics beyond the SM. Precision measurements of $m_W$ at hadron colliders are inferred from kinematic distributions of transverse variables. We examine how this inference is modified when considering the presence of physics beyond the SM expressed in terms of local contact operators. We show that Tevatron measurements of $m_W$ using transverse variables are transparent and applicable as consistent constraints in the Standard Model Effective Field theory (SMEFT) and find the extra error introduced in these measurements due to SMEFT higher dimensional operators to be subdominant to the current experimental systematic errors. This means that the leading challenge to interpreting these measurements in the SMEFT is the pure theoretical uncertainty in how these measurements are mapped to Lagrangian parameters. We stress the need to avoid using naive combinations of Tevatron an...

  2. CDF measurement of the top quark mass in the lepton + jets channel using the multivariate template method

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, John; /Fermilab

    2004-12-01

    The authors measure the mass of the top quark using 162 pb{sup -1} of data collected by the CDF experiment at FNAL in Run II. The decay chain t{bar t} {yields} bq{bar q}{bar b}lv is studied using a novel technique called the Multivariate Template Method (MTM). Using this technique they obtain a result of M{sub top} = 179.6{sub -6.3}{sup +6.4} {+-} 6.8 GeV/c{sup 2} for the top quark.

  3. Reanalysing glacier mass balance measurement series

    Directory of Open Access Journals (Sweden)

    M. Zemp

    2013-08-01

    Full Text Available Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until recently, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without consideration of errors. In this study, we propose a framework for reanalysing glacier mass balance series that includes conceptual and statistical toolsets for assessment of random and systematic errors, as well as for validation and calibration (if necessary of the glaciological with the geodetic balance results. We demonstrate the usefulness and limitations of the proposed scheme, drawing on an analysis that comprises over 50 recording periods for a dozen glaciers, and we make recommendations to investigators and users of glacier mass balance data. Reanalysing glacier mass balance series needs to become a standard procedure for every monitoring programme to improve data quality, including reliable uncertainty estimates.

  4. Direct Measurement of the Top Quark Mass

    Science.gov (United States)

    Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Drinkard, J.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grim, G.; Grinstein, S.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lan, H.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Q.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Mani, S.; Mao, H. S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Nes̆iĆ, D.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pus̆eljić, D.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rapidis, P. A.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Q.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1997-08-01

    We measure the top quark mass mt using tt¯ pairs produced in the D0 detector by s = 1.8 TeVpp¯ collisions in a 125 pb-1 exposure at the Fermilab Tevatron. We make a two constraint fit to mt in tt¯-->bW+b¯W- final states with one W decaying to qq¯ and the other to eν or μν. Events are binned in fit mass versus a measure of probability for events to be signal rather than background. Likelihood fits to the data yield mt = 173.3+/-5.6\\(stat\\)+/-6.2\\(syst\\) GeV/c2.

  5. Precision mass measurements utilizing beta endpoints

    CERN Document Server

    Moltz, D M; Kern, B D; Noma, H; Ritchie, B G; Toth, K S

    1981-01-01

    A technique for precise determination of beta endpoints with an intrinsic germanium detector has been developed. The energy calibration is derived from gamma -ray photopeak measurements. This analysis procedure has been checked with a /sup 27/Si source produced in a (p, n) reaction on a /sup 27/Al target and subsequently applied to mass separated samples of /sup 76/Rb, /sup 77/Rb and /sup 78/Rb. Results indicate errors <50 keV are obtainable. (29 refs).

  6. Wide-band mass measurements with a multi-reflection time-of-flight mass spectrograph

    CERN Document Server

    Schury, P; Wada, M; Wollnik, H

    2013-01-01

    We characterize the mass bandwidth of the a multi-reflection time-of-flight mass spectrograph, showing both the functional and useful mass bandwidth. We then demonstrate the use of a multi-reflection time-of-flight mass spectrograph to perform mass measurements in mass bands much wider than the mass bandwidth.

  7. Measurement of the partial branching fraction for inclusive semileptonic B meson decays to light hadrons B {yields} X{sub u}lv and an improved determination of the quark-mixing matrix element vertical stroke V{sub ub} vertical stroke

    Energy Technology Data Exchange (ETDEWEB)

    Volk, Alexei

    2009-07-01

    This thesis presents an analysis of inclusive semileptonic B{yields} X{sub u}e anti {nu}{sub e} decays using approximately 454 million {upsilon}(4S){yields}B anti B decays collected during the years 1999 to 2008 with the BABAR detector. The electron energy, E{sub e}, and the invariant mass squared of the electron-neutrino pair, q{sup 2}, are reconstructed, where the neutrino kinematics is deduced from the decay products of both B mesons. The final hadronic state, X{sub u}, consists of a sum of many hadronic channels, each of which contains at least one u quark. The variables q{sup 2} and E{sub e} are then combined to compute the maximum kinematically allowed invariant mass squared of the hadronic system, s{sub h}{sup max}. Using these kinematic quantities, the partial branching fraction, {delta}B(B {yields} X{sub u}lv), unfolded for detector effects, is measured to be {delta}B(E{sub e}>2.0 GeV, s{sub h}{sup max}<3.52 GeV{sup 2}) (3.33{+-}0.18{+-}0.21) x 10{sup -4} in the {upsilon}(4S) and {delta}B(E{sub e}>1.9 GeV, s{sub h}{sup max}<3.5 GeV{sup 2})= (4.57{+-}0.24{+-}0.32) x 10{sup -4} in the B meson rest frames. The quoted errors are statistical and systematic, respectively. The CKM matrix element vertical stroke V{sub ub} vertical stroke is determined from the measured {delta}B using theoretical calculation based on Heavy Quark Expansion. The result is vertical stroke V{sub ub} vertical stroke =(4.19{+-}0.18{sub -0.20-0.25}{sup +0.26+0.26}) x 10{sup -3}, where the errors represent experimental uncertainties, uncertainties from HQE parameters and theoretical uncertainties, respectively. (orig.)

  8. Measurement of b-hadron masses

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Abellan Beteta, C. [Universitat de Barcelona, Barcelona (Spain); Adeva, B. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Adrover, C. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Affolder, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Ajaltouni, Z. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand (France); Albrecht, J.; Alessio, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Alexander, M. [School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Alkhazov, G. [Petersburg Nuclear Physics Institute (PNPI), Gatchina (Russian Federation); Alvarez Cartelle, P. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Alves, A.A. [Sezione INFN di Roma La Sapienza, Roma (Italy); Amato, S. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (Brazil); Amhis, Y. [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Anderson, J. [Physik-Institut, Universitaet Zuerich, Zuerich (Switzerland); Appleby, R.B. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Aquines Gutierrez, O. [Max-Planck-Institut fuer Kernphysik (MPIK), Heidelberg (Germany); Archilli, F. [Laboratori Nazionali dell' INFN di Frascati, Frascati (Italy); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Arrabito, L. [CC-IN2P3, CNRS/IN2P3, Lyon-Villeurbanne (France); and others

    2012-02-28

    Measurements of b-hadron masses are performed with the exclusive decay modes B{sup +}{yields}J/{psi}K{sup +}, B{sup 0}{yields}J/{psi}K{sup Low-Asterisk 0}, B{sup 0}{yields}J/{psi}K{sub S}{sup 0}, B{sub s}{sup 0}{yields}J/{psi}{phi} and {Lambda}{sub b}{sup 0}{yields}J/{psi}{Lambda} using an integrated luminosity of 35 pb{sup -1} collected in pp collisions at a centre-of-mass energy of 7 TeV by the LHCb experiment. The momentum scale is calibrated with J/{psi}{yields}{mu}{sup +}{mu}{sup -} decays and verified to be known to a relative precision of 2 Multiplication-Sign 10{sup -4} using other two-body decays. The results are more precise than previous measurements, particularly in the case of the B{sub s}{sup 0} and {Lambda}{sub b}{sup 0} masses.

  9. Synchronised Aerosol Mass Spectrometer Measurements across Europe

    Science.gov (United States)

    Nemitz, Eiko

    2010-05-01

    Up to twelve Aerodyne Aerosol Mass Spectrometers (AMSs) were operated simultaneously at rural and background stations (EMEP and EUSAAR sites) across Europe. Measurements took place during three intensive periods, in collaboration between the European EUCAARI IP and the EMEP monitoring activities under the UNECE Convention for Long-Range Transboundary Air Pollution (CLRTAP) during three contrasting months (May 2008, Sep/Oct 2008, Feb/Mar 2009). These measurements were conducted, analysed and quality controlled carefully using a unified protocol, providing the largest spatial database of aerosol chemical composition measured with a unified online technique to date, and a unique snapshots of the European non-refractory submicron aerosol climatology. As campaign averages over all active monitoring sites, organics represent 28 to 43%, sulphate 18 to 25%, ammonium 13 to 15% and nitrate 15 to 36% of the resolved aerosol mass, with the highest relative nitrate contribution during the Feb/Mar campaign. The measurements demonstrate that in NW Europe (e.g. Ireland, UK, The Netherlands, Germany, Switzerland) the regional submicron aerosol tends to be neutralised and here nitrates make a major contribution to the aerosol mass. By contrast, periods with low nitrate and acidic aerosol were observed at sites in S and E Europe (e.g. Greece, Finland), presumably due to a combination of larger SO2 point sources in Easter Europe, smaller local NH3 sources and, in the case of Greece, higher temperatures. While at the more marine and remote sites (Ireland, Scotland, Finland) nitrate concentrations were dominated by episodic transport phenomena, at continental sites (Switzerland, Germany, Hungary) nitrate followed a clear diurnal cycle, reflecting the thermodynamic behaviour of ammonium nitrate. The datasets clearly shows spatially co-ordinated, large-scale pollution episodes of organics, sulphate and nitrate, the latter being most pronounced during the Feb/Mar campaign. At selected

  10. Precision mass measurements of highly charged ions

    Science.gov (United States)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  11. PRECISION ELECTROWEAK MEASUREMENTS AND THE HIGGS MASS.

    Energy Technology Data Exchange (ETDEWEB)

    MARCIANO, W.J.

    2004-08-02

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current constraints from m{sub w} and sin{sup 2} {theta}{sub w} (m{sub z}){sub {ovr MS}} imply a relatively light Higgs {approx}< 154 GeV which is consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described.

  12. Measurement of the W mass at LEP

    CERN Document Server

    Przysiezniak, H

    2000-01-01

    The mass of the W boson is measured using W pair events collected with the ALEPH, DELPHI, L3 and OPAL detectors at LEP2. Three methods are used: the cross section method, the lepton energy spectrum method and the direct reconstruction method, where the latter is described more in detail. For data collected at E/sub cm/=161, 172 and 183 GeV, the following combined preliminary result is obtained: M/sub W//sup LEP/=80.37+or-0.08 GeV/c/sup 2/. (5 refs).

  13. To quark mass measurements at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Maria Florencia Canelli

    2003-10-15

    We present two new measurements of the top-quark mass. Using the same methodology applied in Run I, the CDF experiment uses 72 pb{sup -1} of Run II data to measure M{sub top} = 171.2 {+-} 13.4{sub stat} {+-} 99{sub syst} GeV/c{sup 2}. On the other hand, the D0 experiment, using 125 pb{sup -1} from Run I, and applying a new method that extracts information from data through a direct calculation of a probability for each event, obtains M{sub top} = 180.1 {+-} 3.6{sub stat} {+-} 4.0{sub syst} GeV/c{sup 2}.

  14. Mass Distribution Measurement of 252Cf Spontaneous Fission

    Institute of Scientific and Technical Information of China (English)

    LIU; Shi-long; YANG; Yi; ZHANG; Chun-li; HAN; Hong-yin

    2015-01-01

    The E-v method of measuring the kinetic energy(E)and velocity(v)of outgoing fission products has been utilized,with the goal of measuring the mass resolution better than 1atomic mass units(amu),and could identify every mass for light fission products of unsymmetrical fission.This work measured mass yield distribution

  15. Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm.

    Science.gov (United States)

    Alshawaqfeh, Mustafa; Serpedin, Erchin; Younes, Ahmad Bani

    2017-03-27

    Inferring the microbial interaction networks (MINs) and modeling their dynamics are critical in understanding the mechanisms of the bacterial ecosystem and designing antibiotic and/or probiotic therapies. Recently, several approaches were proposed to infer MINs using the generalized Lotka-Volterra (gLV) model. Main drawbacks of these models include the fact that these models only consider the measurement noise without taking into consideration the uncertainties in the underlying dynamics. Furthermore, inferring the MIN is characterized by the limited number of observations and nonlinearity in the regulatory mechanisms. Therefore, novel estimation techniques are needed to address these challenges. This work proposes SgLV-EKF: a stochastic gLV model that adopts the extended Kalman filter (EKF) algorithm to model the MIN dynamics. In particular, SgLV-EKF employs a stochastic modeling of the MIN by adding a noise term to the dynamical model to compensate for modeling uncertainties. This stochastic modeling is more realistic than the conventional gLV model which assumes that the MIN dynamics are perfectly governed by the gLV equations. After specifying the stochastic model structure, we propose the EKF to estimate the MIN. SgLV-EKF was compared with two similarity-based algorithms, one algorithm from the integral-based family and two regression-based algorithms, in terms of the achieved performance on two synthetic data-sets and two real data-sets. The first data-set models the randomness in measurement data, whereas, the second data-set incorporates uncertainties in the underlying dynamics. The real data-sets are provided by a recent study pertaining to an antibiotic-mediated Clostridium difficile infection. The experimental results demonstrate that SgLV-EKF outperforms the alternative methods in terms of robustness to measurement noise, modeling errors, and tracking the dynamics of the MIN. Performance analysis demonstrates that the proposed SgLV-EKF algorithm

  16. Thallium-201 uptake ratio correlated with myocardial mass ratio in chronically hypertrophied rat hearts induced by preferential pressure or volume overload

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masashi [Kanazawa Univ. (Japan). School of Medicine

    1995-10-01

    Hemodynamic measurements, left to right myocardial ventricular mass ratio and myocardial thallium-201 ({sup 201}Tl) uptake ratio were measured in 6 normal and the following 30 experimental rats (each group, n=6). Right ventricular (RV) pressure overload (PO) was induced by administration of monocrotaline. RV volume overload (VO) was induced by suturing a pulmonary valve to the pulmonary artery. Biventricular (BV) VO was induced by creation of an aortocaval fistula. Left ventricular (LV) PO was induced by constriction of the ascending aorta and LVVO was induced by destruction of the aortic valves. RV mass to body weight (BW) was significantly increased in RPVO, RVVO and BVVO models compared with the control. LV mass to BW was significantly increased in LVPO, LVVO models. RV peak systolic pressure (PSP) was significantly increased in RVPO, BVVO and LVVO models, and LVPSP was significantly increased in LVPO, BVVO and LVVO models. LV/RV mass ratio was significantly decreased in RVPO, RVVO and BVVO models, and was significantly increased in LVPO and LVVO models. LV/RV myocardial {sup 201}Tl uptake ratio was significantly decreased in RVPO and RVVO models, and was significantly increased in LVPO and LVVO models. Linear regression analysis showed an excellent correlation between LV/RV myocardial {sup 201}Tl uptake ratio and LV/RV mass ratio. Although the presence of significant correlation between LV/RV pressure ratio and LV/RV myocardial {sup 201}Tl uptake ratio was confirmed in PO models, rather poor correlation was observed in VO models. Our results suggest that LV/RV myocardial mass ratio as well as LV/RV pressure ratio can be evaluated by LV/RV myocardial {sup 201}Tl uptake ratio in chronic overload models. (S.Y.).

  17. Flow angle from intermediate mass fragment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rami, F.; Crochet, P.; Dona, R.; De Schauenburg, B.; Wagner, P.; Alard, J.P.; Andronic, A.; Basrak, Z.; Bastid, N.; Belyaev, I.; Bendarag, A.; Berek, G.; Best, D.; Caplar, R.; Devismes, A.; Dupieux, P.; Dzelalija, M.; Eskef, M.; Fodor, Z.; Gobbi, A.; Grishkin, Y.; Herrmann, N.; Hildenbrand, K.D.; Hong, B.; Kecskemeti, J.; Kirejczyk, M.; Korolija, M.; Kotte, R.; Lebedev, A.; Leifels, Y.; Merlitz, H.; Mohren, S.; Moisa, D.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Plettner, C.; Reisdorf, W.; Schuell, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczynska, K.; Stoicea, G.; Stockmeir, M.; Vasiliev, M.; Wisniewski, K.; Wohlfarth, D.; Yushmanov, I.; Zhilin, A

    1999-02-15

    Directed sideward flow of light charged particles and intermediate mass fragments was measured in different symmetric reactions at bombarding energies from 90 to 800 A MeV. The flow parameter is found to increase with the charge of the detected fragment up to Z = 3-4 and then turns into saturation for heavier fragments. Guided by simple simulations of an anisotropic expanding thermal source, we show that the value at saturation can provide a good estimate of the flow angle, {theta}{sub flow}, in the participant region. It is found that {theta}{sub flow} depends strongly on the impact parameter. The excitation function of {theta}{sub flow} reveals striking deviations from the ideal hydrodynamical scaling. The data exhibit a steep rise of {theta}{sub flow} to a maximum at around 250 - 400 A MeV, followed by a moderate decrease as the bombarding energy increases further.

  18. Fat mass measured by DXA varies with scan velocity

    DEFF Research Database (Denmark)

    Black, Eva; Petersen, Liselotte; Kreutzer, Martin

    2002-01-01

    To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight.......To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight....

  19. Measurement of the top quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Varnes, Erich Ward [Univ. of California, Berkeley, CA (United States)

    1997-01-01

    This dissertation describes the measurement of the top quark mass mt using events recorded during a 125 pb-1 exposure of the D0 detector to √s=1.8 TeV $\\bar{p}$p collisions. Six events consistent with the hypothesis t$\\bar{t}$ → bW+, $\\bar{b}$W-measurement of mt based on these relative solution likelihoods gives mt2+, $\\bar{b}$W- → b$\\bar{l}$v, $\\bar{b}$q$\\bar{q}$ , and this, in combination with an estimate on the likelihood that each event is top, yields mt = 173.3 ± 5.6 (stat.) ± 6.2 (syst.) GeV/c2measurements gives mt = 173.1 ± 5.2 (stat.) ± 5.7 (syst.) GeV/c2

  20. Mass Measurements of Proton-rich Nuclei with JYFLTRAP

    OpenAIRE

    Eronen, Tommi

    2011-01-01

    The Penning trap setup JYFLTRAP, connected to the IGISOL facility, has been extensively used for atomic mass measurements of exotic nuclei. On the proton rich side of the chart of nuclei mass measurements have mostly contributed to fundamental physics and nuclear astrophysics studies with about 100 atomic masses measured.

  1. Application of MV/LV Transformers with OLTC for Increasing the PV Hosting Capacity Of LV Grids

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Heckmann, Wolfram; Geibel, Dominik

    2015-01-01

    the operation of OLTC during high PV generation periods are investigated and the methods are applied to an LV feeder with an MV/LV transformer equipped by OLTC located in Felsberg, Germany. The potential interferences between OLTCs and two other overvoltage prevention methods, the demand side management (DSM...

  2. Acculturation is associated with left ventricular mass in a multiethnic sample: the Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Effoe, Valery S; Chen, Haiying; Moran, Andrew; Bertoni, Alain G; Bluemke, David A; Seeman, Teresa; Darwin, Christine; Watson, Karol E; Rodriguez, Carlos J

    2015-12-03

    Acculturation involves stress-related processes and health behavioral changes, which may have an effect on left ventricular (LV) mass, a risk factor for cardiovascular disease (CVD). We examined the relationship between acculturation and LV mass in a multiethnic cohort of White, African-American, Hispanic and Chinese subjects. Cardiac magnetic resonance assessment was available for 5004 men and women, free of clinical CVD at baseline. Left ventricular mass index was evaluated as LV mass indexed by body surface area. Acculturation was characterized based on language spoken at home, place of birth and length of stay in the United States (U.S.), and a summary acculturation score ranging from 0 = least acculturated to 5 = most acculturated. Mean LV mass index adjusted for traditional CVD risk factors was compared across acculturation levels. Unadjusted mean LV mass index was 78.0 ± 16.3 g/m(2). In adjusted analyses, speaking exclusively English at home compared to non-English language was associated with higher LV mass index (81.3 ± 0.4 g/m(2) vs 79.9 ± 0.5 g/m(2), p = 0.02). Among foreign-born participants, having lived in the U.S. for ≥ 20 years compared to acculturation score, those with the highest score had greater LV mass index (78.9 ± 1.1 g/m(2) vs 81.1 ± 0.4 g/m(2), p = 0.002). There was heterogeneity in which measure of acculturation was associated with LV mass index across ethnic groups. Greater acculturation is associated with increased LV mass index in this multiethnic cohort. Acculturation may involve stress-related processes as well as behavioral changes with a negative effect on cardiovascular health.

  3. Measurement of Black Hole Mass Radio-Loud Quasars

    Indian Academy of Sciences (India)

    Cheng-Yue Su; Z.-F. Chen; R.-L. He; C.-H. Zhang; T.-T. Wang

    2011-03-01

    In this work, we construct a sample of 1585 radio-loud quasars to measure their black hole masses using broad emission lines. We compare our black hole masses with the virial black hole masses measured by Shen et al. (2010).We find that there is a large deviation between them if our black hole mass is measured from the CIV broad emission line. Whereas, if our black hole mass is measured from broad emission line of Mg II or H, both the values are consistent.

  4. Towards precise top mass measurement at LHC

    CERN Document Server

    Kawabata, Sayaka

    2015-01-01

    The top quark mass plays an important role in a variety of discussions both within and beyond the Standard Model. However, a precise determination of a theoretically well-defined top quark mass is still missing. Towards a precise determination of a theoretically well-defined top quark mass at the LHC, we propose a method which uses lepton energy distribution and has a boost-invariant nature. We investigate its experimental viability by performing a simulation analysis for ttbar production process and lepton+jets decay channel at the leading order. We estimate several major uncertainties in the top mass determination with this method and they amount to 1.7 GeV with an integrated luminosity of 100 fb^{-1} at sqrt{s}=14 TeV. The uncertainties should be reduced by considering the next-to-leading order corrections to the method.

  5. Accurate mass measurements on neutron-deficient krypton isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany)]. E-mail: rodriguez@lpccaen.in2p3.fr; Audi, G. [CSNSM-IN2P3-CNRS, 91405 Orsay-Campus(France); Aystoe, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, 40351 Jyvaeskylae (Finland); Beck, D. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Blaum, K. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Bollen, G. [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Herfurth, F. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Jokinen, A. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, 40351 Jyvaeskylae (Finland); Kellerbauer, A. [CERN, Division EP, 1211 Geneva 23 (Switzerland); Kluge, H.-J. [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); University of Heidelberg, 69120 Heidelberg (Germany); Kolhinen, V.S. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, 40351 Jyvaeskylae (Finland); Oinonen, M. [Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki (Finland); Sauvan, E. [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Schwarz, S. [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2006-04-17

    The masses of {sup 72-78,80,82,86}Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for {sup 72-75}Kr outweighed previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  6. Accurate mass measurements on neutron-deficient krypton isotopes

    CERN Document Server

    Rodríguez, D; Äystö, J; Beck, D

    2006-01-01

    The masses of $^{72–78,80,82,86}$Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for $^{72–75}$Kr being more precise than the previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  7. Measuring masses of large biomolecules and bioparticles using mass spectrometric techniques.

    Science.gov (United States)

    Peng, Wen-Ping; Chou, Szu-Wei; Patil, Avinash A

    2014-07-21

    Large biomolecules and bioparticles play a vital role in biology, chemistry, biomedical science and physics. Mass is a critical parameter for the characterization of large biomolecules and bioparticles. To achieve mass analysis, choosing a suitable ion source is the first step and the instruments for detecting ions, mass analyzers and detectors should also be considered. Abundant mass spectrometric techniques have been proposed to determine the masses of large biomolecules and bioparticles and these techniques can be divided into two categories. The first category measures the mass (or size) of intact particles, including single particle quadrupole ion trap mass spectrometry, cell mass spectrometry, charge detection mass spectrometry and differential mobility mass analysis; the second category aims to measure the mass and tandem mass of biomolecular ions, including quadrupole ion trap mass spectrometry, time-of-flight mass spectrometry, quadrupole orthogonal time-of-flight mass spectrometry and orbitrap mass spectrometry. Moreover, algorithms for the mass and stoichiometry assignment of electrospray mass spectra are developed to obtain accurate structure information and subunit combinations.

  8. Value of dobutamine stress tissue Doppler in evaluation of LV ...

    African Journals Online (AJOL)

    Shaimaa Ahmed Mostafa

    2014-12-12

    Dec 12, 2014 ... Prosthetic valve disease. Complicated PCI. LVEF less .... annulus moved toward the cardiac apex due to longitudinal contraction of the LV. ..... to fibrotic tissue is too high and also, improved the integrity of cardiac myocyte cell ...

  9. Noninvasive LV pressure estimation using subharmonic emissions from microbubbles.

    Science.gov (United States)

    Dave, Jaydev K; Halldorsdottir, Valgerdur G; Eisenbrey, John R; Raichlen, Joel S; Liu, Ji-Bin; McDonald, Maureen E; Dickie, Kris; Wang, Shumin; Leung, Corina; Forsberg, Flemming

    2012-01-01

    To develop a new noninvasive approach to quantify left ventricular (LV) pressures using subharmonic emissions from microbubbles, an ultrasound scanner was used in pulse inversion grayscale mode; unprocessed radiofrequency data were obtained with pulsed wave Doppler from the aorta and/or LV during Sonazoid infusion. Subharmonic data (in dB) were extracted and processed. Calibration factor (mm Hg/dB) from the aortic pressure was used to estimate LV pressures. Errors ranged from 0.19 to 2.50 mm Hg when estimating pressures using the aortic calibration factor, and were higher (0.64 to 8.98 mm Hg) using a mean aortic calibration factor. Subharmonic emissions from ultrasound contrast agents have the potential to noninvasively monitor LV pressures.

  10. Mass measurements and nuclear physics - recent results from ISOLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Herfurth, F [CERN, 1211 Geneva 23 (Switzerland); Ames, F [Sektion Physik, Ludwig-Maximilians-Universitaet, Muenchen, 85748 Garching (Germany); Audi, G [CSNSM-IN2P3-CNRS, 91405 Orsay-Campus (France); Beck, D [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Blaum, K [CERN, 1211 Geneva 23 (Switzerland); Bollen, G [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Kellerbauer, A [Sektion Physik, Ludwig-Maximilians-Universitaet, Muenchen, 85748 Garching (Germany); Kluge, H-J [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Kuckein, M [Sektion Physik, Ludwig-Maximilians-Universitaet, Muenchen, 85748 Garching (Germany); Lunney, D [CSNSM-IN2P3-CNRS, 91405 Orsay-Campus (France); Moore, R B [Department of Physics, McGill University, Montreal (Quebec) H3A 2T8 (Canada); Oinonen, M [Helsinki Institute of Physics, University of Helsinki, PO Box 9, 00014 Helsinki (Finland); Rodriguez, D [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Sauvan, E [CERN, 1211 Geneva 23 (Switzerland); Scheidenberger, C [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Schwarz, S [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Sikler, G [GSI, Planckstrasse 1, 64291 Darmstadt (Germany); Weber, C [GSI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2003-03-14

    The Penning trap mass spectrometer ISOLTRAP is a facility for high-precision mass measurements of short-lived radioactive nuclei installed at ISOLDE/CERN in Geneva. More than 200 masses have been measured with relative uncertainties of 1 x 10{sup -7} or even close to 1 x 10{sup -8} in special cases. This publication gives an overview of the measurements performed with ISOLTRAP and discusses some results.

  11. Selected Topics from Top Mass Measurements at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Schwienhorst, Reinhard [Michigan State U.

    2016-12-07

    The most recent results of the top-quark mass measurements at the Tevatron at Fermilab are presented. Data were collected in proton-antiproton collisions at sqrt{s}=1.96 TeV by the CDF and D0 experiments. Top quark mass measurements in the lepton+jets, dilepton and alljet final states as well as their combination and the extraction of the mass from the cross-section measurement are presented.

  12. High precision mass measurements for wine metabolomics

    Science.gov (United States)

    Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis; Schmitt-Kopplin, Philippe

    2014-11-01

    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS². In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy.

  13. 3D quantitative visualization of altered LV wall thickening dynamics caused by coronary microembolization

    Science.gov (United States)

    Eusemann, Christian D.; Mohlenkamp, Stefan; Ritman, Erik L.; Robb, Richard A.

    2001-05-01

    Regional heart wall dynamics has been shown to be a sensitive indicator of LV wall ischemia. Rates of local LV wall thickening during a cardiac cycle can be measured and illustrated using functional parametric mappings. This display conveys the spatial distribution of dynamic strain in the myocardium and thereby provides a rapid qualitative appreciation of the severity and extent of the ischemic region. 3D reconstructions were obtained in an anesthetized pig from 8 adjacent, shortaxis, slices of the left ventricle imaged with an Electron Beam Computer Tomograph at 11 time points through one complete cardiac cycle. The 3D reconstructions were obtained before and after injection of 100 micrometer microspheres into the Left Anterior Descending (LAD) coronary artery. This injection causes microembolization of LAD artery branches within the heart wall. The image processing involved radially dividing the tomographic images of the myocardium into small subdivisions with color encoding of the local magnitude of regional thickness or regional velocities of LV wall thickening throughout the cardiac cycle. We compared the effectiveness of animation of wall thickness encoded in color versus a static image of computed rate of wall thickness change in color. The location, extent and severity of regional wall akinesis or dyskinesis, as determined from these displays, can then be compared to the region of embolization as indicated by the distribution of altered LV wall perfusion.

  14. The Natural History of Left Ventricular Geometry in the Community: Clinical Correlates and Prognostic Significance of Change in LV Geometric Pattern

    Science.gov (United States)

    Lieb, Wolfgang; Gona, Philimon; Larson, Martin G.; Aragam, Jayashri; Zile, Michael R.; Cheng, Susan; Benjamin, Emelia J.; Vasan, Ramachandran S.

    2014-01-01

    Objectives We evaluated pattern and clinical correlates of change in left ventricular (LV) geometry over a 4-year period in the community; we also assessed whether the pattern of change in LV geometry over 4 years predicts incident cardiovascular disease (CVD), including myocardial infarction, heart failure and cardiovascular death during an additional subsequent follow-up period. Background It is unclear how LV geometric patterns change over time and whether changes in LV geometry have prognostic significance. Methods We evaluated 4492 observations (2604 unique Framingham Study participants attending consecutive examinations) to categorize LV geometry at baseline and after 4 years. Four groups were defined based on the sex-specific distributions of LV mass (LVM) and relative wall thickness (RWT) (normal: LVM and RWTgeometric pattern over 4 years was associated with increased CVD risk (140 events) during a subsequent median follow-up of 12.0 years (adjusted-hazards ratio, 1.59; 95%CI, 1.04–2.43). Conclusions Our longitudinal observations in the community suggest that dynamic changes in LV geometric pattern over time are common. Higher blood pressure and greater BMI are modifiable factors associated with the development of abnormal LV geometry, and such progression portends an adverse prognosis. PMID:25129518

  15. The mass accretion rate of galaxy clusters: a measurable quantity

    CERN Document Server

    De Boni, Cristiano; Diaferio, Antonaldo; Giocoli, Carlo; Baldi, Marco

    2015-01-01

    We explore the possibility of measuring the mass accretion rate of galaxy clusters by using dense galaxy redshift surveys of their outer regions. By approximating the accretion with the infall of a spherical shell, the mass accretion rate only depends on the mass profile of the cluster in a thin shell at radii larger than $R_{200}$. This approximation is rather crude in hierarchical clustering scenarios, where both smooth accretion and aggregation of smaller dark matter haloes contribute to the mass accretion of clusters. Nevertheless, in the redshift range $z=[0,1]$, our prescription returns an average mass accretion rate within $20 \\%$ of the average rate derived with the more realistic merger trees of dark matter haloes extracted from $N$-body simulations. The mass accretion rate of galaxy clusters has been the topic of numerous detailed numerical and theoretical investigations, but so far it has remained inaccessible to measurements in the real Universe. Our result suggests that measuring the mass accreti...

  16. White Paper: Measuring the Neutrino Mass Hierarchy

    CERN Document Server

    Cahn, R N; Freedman, S J; Haxton, W C; Kadel, R W; Kolomensky, Yu G; Luk, K B; McDonald, P; Gann, G D Orebi; Poon, A W P

    2013-01-01

    This white paper is a condensation of a report by a committee appointed jointly by the Nuclear Science and Physics Divisions at Lawrence Berkeley National Laboratory (LBNL). The goal of this study was to identify the most promising technique(s) for resolving the neutrino mass hierarchy. For the most part, we have relied on calculations and simulations presented by the proponents of the various experiments. We have included evaluations of the opportunities and challenges for these experiments based on what is available already in the literature.

  17. Time-of-Flight Mass Measurements of Neutron Rich Nuclides

    Science.gov (United States)

    Estrade, A.; Matos, M.; Amthor, A. M.; Becerril, A.; Elliot, T.; Lorusso, G.; Rogers, A.; Schatz, H.; Bazin, D.; Gade, A.; Portillo, M.; Stolz, A.; Galaviz, D.; Pereira, J.; Shapira, D.; Smith, E.; Wallace, M.

    2008-10-01

    Nuclear masses of neutron rich isotopes in the region of Z ˜ 20-30 have been measured using the time-of-flight technique at the National Superconducting Cyclotron Laboratory (NSCL). The masses of 5 isotopes have been measured for the first time, and the precision of several other masses has been improved. The time-of-flight technique has shown the potential to access nuclear masses very far from stability when applied at radioactive beam facilities like the NSCL. Such measurements are important for understanding nuclear structure far from the valley of β-stability, and provide valuable information for astrophysical model calculations of processes involving very unstable nuclides.

  18. Precision mass measurements of radioactive nuclei at JYFLTRAP

    CERN Document Server

    Rahaman, S; Eronen, T; Hager, U; Hakala, J; Jokinen, A; Kankainen, A; Moore, I D; Pentillä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonoda, T; Weber, C; Äystö, J

    2007-01-01

    The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z = 46) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around A = 100.

  19. Finding the Density of Objects without Measuring Mass and Volume

    Science.gov (United States)

    Mumba, Frackson; Tsige, Mesfin

    2007-01-01

    A simple method based on the moment of forces and Archimedes' principle is described for finding density without measuring the mass and volume of an object. The method involves balancing two unknown objects of masses M[subscript 1] and M[subscript 2] on each side of a pivot on a metre rule and measuring their corresponding moment arms. The object…

  20. Results of the First TOF Mass Measurements at NSCL

    Science.gov (United States)

    Matos, M.; Estrade, A.; Amthor, M.; Bazin, D.; Becerril, A.; Elliot, T.; Galaviz, D.; Gade, A.; Lorusso, G.; Pereira, J.; Portillo, M.; Rogers, A.; Schatz, H.; Stolz, A.; Shapira, D.; Smith, E.; Wallace, M.

    2008-04-01

    Time-of-Flight mass measurements technique, recently developed at the NSCL, MSU, was used to measure masses of exotic neutron-rich nuclides in the Fe region, important for r-process calculations as well as for calculations of processes occurring in the crust of accreting neutron stars. Results from the experiment will be presented and discussed.

  1. Towards direct mass measurements of nobelium at SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Block, M.; Ackermann, D.; Blaum, K.; Eliseev, S.; Herfurth, S.; Hebberger, F.P.; Hofmann, S.; Kluge, H.J.; Maero, G.; Martin, A.; Mazzocco, M.; Mukherjee, M.; Quint, W.; Rahaman, S.; Rauth, C.; Scheidenberger, C.; Vorobjev, G.; Weber, C. [Gesellschaft fur Schwerionenforschung, Darmstadt (Germany); Blaum, K.; Ferrer, R.; Weber, C. [Johannes-Gutenberg-Univ., Institut fur Physik, Mainz (Germany); Chaudhuri, A.; Marx, G.; Schweikhard, L. [Ernst-Moritz-Arndt-Univ., Institut fur Physik, Greifswald (Germany); Eliseev, S.; Vorobjev, G. [Saint Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Di, Z.; Plab, W.R.; Scheidenberger, C. [Justus-Liebig-Univ., Physikalisches Institut, Gieben (Germany); Habs, D.; Neumayr, J.B.; Thirolf, P.G. [Ludwig-Maximilians-Univ. Munchen, Dept. fur Physik, Garching (Germany); Kluge, H.J. [Ruprecht-Karls-Univ., Physikalisches Institut, Heidelberg (Germany); Rodruguez, D. [IN2P3, LPC-ENSICAEN, 14 - Caen (France)

    2007-10-15

    The Penning-trap mass spectrometer SHIPTRAP allows precision mass measurements of rare isotopes produced in fusion-evaporation reactions. In the first period of operation the masses of more than 50 neutron-deficient radionuclides have been measured. In this paper the perspectives for direct mass measurements of rare isotopes around nobelium are discussed and the achievable precision is addressed. The temporal stability of the magnetic field, an important issue for the long measurement times resulting from the low production rates, was investigated and the time-dependent uncertainty due to magnetic field fluctuations was determined. Based on the present performance direct mass measurements of nobelium isotopes are already feasible. With several technical improvements heavier elements between Z=102-105 will be in reach. (authors)

  2. High-Precision Mass Measurements of Exotic Nuclei with the Triple-Trap Mass Spectrometer Isoltrap

    CERN Multimedia

    Blaum, K; Zuber, K T; Stanja, J

    2002-01-01

    The masses of close to 200 short-lived nuclides have already been measured with the mass spectrometer ISOLTRAP with a relative precision between 1$\\times$10$^{-7}$ and 1$\\times$10^{-8}$. The installatin of a radio-frequency quadrupole trap increased the overall efficiency by two orders of magnitude which is at present about 1%. In a recent upgrade, we installed a carbon cluster laser ion source, which will allow us to use carbon clusters as mass references for absolute mass measurements. Due to these improvements and the high reliability of ISOLTRAP we are now able to perform accurate high-precision mass measurements all over the nuclear chart. We propose therefore mass measurements on light, medium and heavy nuclides on both sides of the valley of stability in the coming four years. ISOLTRAP is presently the only instrument capable of the high precision required for many of the proposed studies.

  3. Alternative methods for top quark mass measurements at the CMS

    CERN Document Server

    Kim, Ji Hyun

    2016-01-01

    The top quark mass is a fundamental parameter of the standard model and together with the W boson mass and the Higgs boson mass it provides a strong self-consistency check of the electroweak theory. Recently several new measurements of the top quark mass using alternative observables and reconstruction methods are performed by the CMS collaborations at the CERN LHC. Alternative methods can give a insight by providing different systematic sensitivities while standard ones are currently limited by jet energy uncertainties. We introduce various results from new methods including the one using a charmed meson, which are found to be consistent with what is obtained in standard measurements.

  4. A pilot experiment for mass measurement at CSRe

    Institute of Scientific and Technical Information of China (English)

    TU Xiao-Lin; XU Hu-Shan; XIA Jia-Wen; WANG Meng; MAO Rui-Shi; YUAN You-Jin; HU Zheng-Guo; LIU Yong; ZHANG Hong-Bin; ZANG Yong-Dong; ZHAO Tie-Cheng; ZHANG Xue-Ying; FU Fen; YANG Jian-Cheng; MAO Li-Jun; XIAO Chen; XIAO Guo-Qing; ZHAO Hong-Wei; ZHAN Wen-Long

    2009-01-01

    A pilot experiment of mass measurement was performed at CSRe with the method of isochronous mass spectrometry. The secondary fragments produced via RIBLL2 with the primary beam of 400 MeV/u 36Ar delivered by CSRm were injected into CSRe. The revolution periods of the stored ions, which depend on the mass-to-charge ratios of the stored ions, were measured with a time-of-flight detector system. The results show that the mass resolution around 8×10-6 for Δm/m is achieved.

  5. Recent Top quark properties measurements (excluding mass and asymmetrie)

    CERN Document Server

    Homann, Michael; The ATLAS collaboration

    2017-01-01

    In this talk the newest results of top quark properties (excluding mass and asymmetry) measurements from LHC and Tevatron collaborations are presented. Measurement of spin correlation and top polarization give information about the production of top quarks whereas W-Boson helicity measurements and measurements of anomalous couplings give information about the decay mechanisms of top quarks.

  6. Top-quark mass measurements using jet rates at LHC

    Directory of Open Access Journals (Sweden)

    Moch S.

    2013-11-01

    Full Text Available This work presents a new method to measure the top-quark mass in hadronic collisions[1]. The method uses the sensitivity of the tt¯+1$tar t + 1$-jet production on the top-quark mass. In detail we study the ℛ distribution defined as the tt¯+1$tar t + 1$-jet normalized cross section differential in the invariant mass of the total system and calculated at NLO accuracy. We prove that the ℛ distribution has a high sensitivity to the top-quark mass. Furthermore we investigate and quantify the impact of the dominant theoretical and experimental uncertainties. The results obtained show, that the method has the potential to be competitive in precision with established approaches and allows a complementary measurement of the top-quark mass at hadron colliders. We emphasize that in the proposed method the mass parameter is uniquely defined through one-loop renormalization.

  7. Mass Measurement of Very Short Half-Lived Nuclei

    CERN Multimedia

    Duma, M; Iacob, V E; Thibault, C

    2002-01-01

    The MISTRAL (Mass measurements at ISolde with a Transmission RAdiofrequency spectrometer on-Line) experiment exploits a rapid measurement technique to make accurate mass determinations of very short-lived nuclei. The physics goals are to elucidate new nuclear structure effects and constrain nuclear mass models in regions of interest to nuclear astrophysics.\\\\ \\\\The spectrometer, installed in May 97, performed as promised in the proposal with mass resolution exceeding 100,000. In its first experiment in July 1998, neutron-rich Na isotopes having half-lives as short as 31 ms were measured. A second experiment in November 1998 enabled us to improve the measurement precision of the isotopes $^{26-30}$Na to about 20 keV. The measurement program continues as experiment IS 373.

  8. Measurements of the top quark mass at ATLAS and CMS

    CERN Document Server

    Mirman, Nathan Emmanuel

    2015-01-01

    We present recent measurements of the top quark mass by the ATLAS and CMS experiments in the t-tbar lepton+jets, all-hadronic, and dilepton channels. In addition, we present a measurement utilizing a topology enriched in t-channel single top events. The analyses include observables whose sensitivity to the top mass is calibrated using Monte Carlo simulation before they are utilized to extract the value of mt in data. The measurements outlined here enter into recent combinations by ATLAS and CMS that yield a sub-GeV precision on the top mass.

  9. Measurement of the W boson mass with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00408270

    This thesis describes a measurement of the W boson mass with the ATLAS detector based on the data-set recorded by ATLAS in 2011 at a centre-of-mass energy of 7 TeV, and corresponding to 4.6 inverse femtobarn of integrated luminosity. Measurements are performed through template fits to the transverse momentum distributions of charged leptons and to transverse mass distributions of the W boson, in electron and muon decay modes in various kinematic categories. The individual measurements are found to be consistent and their combination leads to a value of \\begin{eqnarray} \

  10. Mass Measurements on Short-Lived Nuclides with ISOLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Ames, F. [Universitaet Mainz, Institut fuer Physik (Germany); Audi, G. [Universite Paris-Sud, CSNSM-IN2P3-CNRS (France); Beck, D.; Dilling, J. [GSI (Germany); Engels, O. [LMU (Germany); Henry, S. [Universite Paris-Sud, CSNSM-IN2P3-CNRS (France); Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Kohl, A.; Lamour, E. [GSI (Germany); Lunney, D. [Universite Paris-Sud, CSNSM-IN2P3-CNRS (France); Moore, R. B. [LMU (Germany); Oinonen, M. [CERN, EP Division (Switzerland); Scheidenberger, C. [GSI (Germany); Schwarz, S. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Sikler, G. [GSI (Germany); Szerypo, J. [JYFL (Finland); Weber, C. [GSI (Germany)

    2001-01-15

    Penning trap mass spectrometry has reached a state that allows its application to very short-lived nuclides available from various sources of radioactive beams. Mass values with outstanding accuracy are achieved even far from stability. This paper illustrates the state of the art by summarizing the status of the ISOLTRAP experiment at ISOLDE/CERN. Furthermore, results of mass measurements on unstable rare earth isotopes will be given.

  11. The Kilogram and Measurements of Mass and Force.

    Science.gov (United States)

    Jabbour, Z J; Yaniv, S L

    2001-01-01

    This paper describes the facilities, measurement capabilities, and ongoing research activities in the areas of mass and force at the National Institute of Standards and Technology (NIST). The first section of the paper is devoted to mass metrology and starts with a brief historical perspective on the developments that led to the current definition of the kilogram. An overview of mass measurement procedures is given with a brief discussion of current research on alternative materials for mass standards and surface profiles of the U.S. national prototype kilograms. A brief outlook into the future possible redefinition of the unit of mass based on fundamental principles is included. The second part of this paper focuses on the unit of force and describes the realization of the unit, measurement procedures, uncertainty in the realized force, facilities, and current efforts aimed at the realization of small forces.

  12. Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star

    CERN Document Server

    Muraki, Y; Bennett, D P; Suzuki, D; Monard, L A G; Street, R; Jorgensen, U G; Kundurthy, P; Skowron, J; Becker, A C; Albrow, M D; Fouque, P; Heyrovsky, D; Barry, R K; Beaulieu, J -P; Wellnitz, D D; Bond, I A; Sumi, T; Dong, S; Gaudi, B S; Bramich, D M; Dominik, M; Abe, F; Botzler, C S; Freeman, M; Fukui, A; Furusawa, K; Hayashi, F; Hearnshaw, J B; Hosaka, S; Itow, Y; Kamiya, K; Korpela, A V; Kilmartin, P M; Lin, W; Ling, C H; Makita, S; Masuda, K; Matsubara, Y; Miyake, N; Nishimoto, K; Ohnishi, K; Perrott, Y C; Rattenbury, N J; Saito, To; Skuljan, L; Sullivan, D J; Sweatman, W L; Tristram, P J; Wada, K; Yock, P C M; Christie, G W; DePoy, D L; Gorbikov, E; Gould, A; Kaspi, S; Lee, C -U; Mallia, F; Maoz, D; McCormick, J; Moorhouse, D; Natusch, T; Park, B -G; Pogge, R W; Polishook, D; Shporer, A; Thornley, G; Yee, J C; Allan, A; Browne, P; Horne, K; Kains, N; Snodgrass, C; Steele, I; Tsapras, Y; Batista, V; Bennett, C S; Brillant, S; Caldwell, J A R; Cassan, A; Cole, A; Corrales, R; Coutures, Ch; Dieters, S; Prester, D Dominis; Donatowicz, J; Greenhill, J; Kubas, D; Marquette, J -B; Martin, R; Menzies, J; Sahu, K C; Waldman, I; Zub, A Williams M; Bourhrous, H; Matsuoka, Y; Nagayama, T; Oi, N; Randriamanakoto, Z; Bozza, V; Burgdorf, M J; Novati, S Calchi; Dreizler, S; Finet, F; Glitrup, M; Harpsoe, K; Hinse, T C; Hundertmark, M; Liebig, C; Maier, G; Mancini, L; Mathiasen, M; Rahvar, S; Ricci, D; Scarpetta, G; Skottfelt, J; Surdej, J; Southworth, J; Wambsganss, J; Zimmer, F; Udalski, A; Poleski, R; Wyrzykowski, L; Ulaczyk, K; Szymanski, M K; Kubiak, M; Pietrzynski, G; Soszynski, I

    2011-01-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of m_p = 10.4 +- 1.7 Earth masses and orbits a star of mass M_* = 0.56 +- 0.09 Solar masses at a semi-major axis of a = 3.2 (+1.9 -0.5) AU and an orbital period of P = 7.6 (+7.7 -1.5} yrs. The planet and host star mass measurements are enabled by the measurement of the microlensing parallax effect, which is seen primarily in the light curve distortion due to the orbital motion of the Earth. But, the analysis also demonstrates the capability to measure microlensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a "failed" gas giant. This and future microlensing detections will test planet formation theory predictions regarding the preval...

  13. Measurement of the W boson mass at ATLAS

    CERN Document Server

    Ruiz-Martinez, Aranzazu; The ATLAS collaboration

    2017-01-01

    A measurement of the mass of the $W$ boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb$^{−1}$ of integrated luminosity.

  14. Top Quark Mass Measurement from Dilepton Events at CDF II

    CERN Document Server

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas-Maestro, J; Culbertson, R; Cyr, D; Da Ronco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, Mauro; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J; Di Turo, P; Dorr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; García, J E; Garcia Sciverez, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D A; Gold, M; Goldschmidt, N; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimarães da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Mäki, T; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitine, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; Van Remortel, N; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakian, A; Sjölin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A W; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobuev, I P; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-01-01

    We report a measurement of the top quark mass using events collected by the CDF II Detector from ppbar collisions at \\sqrt{s} = 1.96 TeV at the Fermilab Tevatron. We calculate a likelihood function for the top mass in events that are consistent with ttbar->bbar l^- \

  15. Formation and characterization of FeLV iscoms.

    NARCIS (Netherlands)

    L. Akerblom; K. Strö mstedt; S. Hö glund; A.D.M.E. Osterhaus (Albert); B. Morein (Bror)

    1989-01-01

    textabstractImmunostimulating complexes (ISCOMs) have been prepared from feline leukaemia virus (FeLV) envelope proteins. The ISCOMs were characterized biochemically in SDS-polyacrylamide gel electrophoresis showing the presence of proteins of estimated molecular weights of 15,000, 27,000 and 70,000

  16. Effect of paricalcitol on left ventricular mass and function in CKD--the OPERA trial.

    Science.gov (United States)

    Wang, Angela Yee-Moon; Fang, Fang; Chan, John; Wen, Yue-Yi; Qing, Shang; Chan, Iris Hiu-Shuen; Lo, Gladys; Lai, Kar-Neng; Lo, Wai-Kei; Lam, Christopher Wai-Kei; Yu, Cheuk-Man

    2014-01-01

    Vitamin D seems to protect against cardiovascular disease, but the reported effects of vitamin D on patient outcomes in CKD are controversial. We conducted a prospective, double blind, randomized, placebo-controlled trial to determine whether oral activated vitamin D reduces left ventricular (LV) mass in patients with stages 3-5 CKD with LV hypertrophy. Subjects with echocardiographic criteria of LV hypertrophy were randomly assigned to receive either oral paricalcitol (1 μg) one time daily (n=30) or matching placebo (n=30) for 52 weeks. The primary end point was change in LV mass index over 52 weeks, which was measured by cardiac magnetic resonance imaging. Secondary end points included changes in LV volume, echocardiographic measures of systolic and diastolic function, biochemical parameters of mineral bone disease, and measures of renal function. Change in LV mass index did not differ significantly between groups (median [interquartile range], -2.59 [-6.13 to 0.32] g/m(2) with paricalcitol versus -4.85 [-9.89 to 1.10] g/m(2) with placebo). Changes in LV volume, ejection fraction, tissue Doppler-derived measures of early diastolic and systolic mitral annular velocities, and ratio of early mitral inflow velocity to early diastolic mitral annular velocity did not differ between the groups. However, paricalcitol treatment significantly reduced intact parathyroid hormone (P<0.001) and alkaline phosphatase (P=0.001) levels as well as the number of cardiovascular-related hospitalizations compared with placebo. In conclusion, 52 weeks of treatment with oral paricalcitol (1 μg one time daily) significantly improved secondary hyperparathyroidism but did not alter measures of LV structure and function in patients with severe CKD.

  17. Black hole mass function from gravitational wave measurements

    Science.gov (United States)

    Kovetz, Ely D.; Cholis, Ilias; Breysse, Patrick C.; Kamionkowski, Marc

    2017-05-01

    We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binary BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parametrizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass which allows for BH formation and to confirm or refute the currently observed mass gap between neutron stars and BHs. In order to glean information on the progenitors of the merging BH binaries, we then advocate the study of the two-dimensional mass distribution to constrain parameters that describe the two-body system, such as the mass ratio between the two BHs, in addition to the merger rate and mass function parameters. We argue that several years of data collection can efficiently probe models of binary formation, and show, as an example, that the hypothesis that some gravitational-wave events may involve primordial black holes can be tested. Finally, we point out that in order to maximize the constraining power of the data, it may be worthwhile to lower the signal-to-noise threshold imposed on each candidate event and amass a larger statistical ensemble of BH mergers.

  18. Measurement of boron isotopes by negative thermal ionization mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The isobaric interference for boron isotopic measurement by negative thermal ionization mass spectrometry (NTIMS) has been studied. The result shows that the CNO- is not only from the organic material, but also from nitrate in loading reagent in NTIMS. Monitoring the mass 43 ion intensity and 43/42 ratio of blank are also necessary for the boron isotopic measurement by NTIMS, other than is only boron content.

  19. Voltage regulation in LV grids by coordinated volt-var control strategies

    DEFF Research Database (Denmark)

    Juamperez Goñi, Miguel Angel; Yang, Guangya; Kjær, Søren Bækhøj

    2014-01-01

    in terms of network power losses and voltage level along the feeder. As a practical implementation, a reconfigurable hardware is used for developing a testing platform based on real-time measurements to regulate the reactive power level. The proposed testing platform has been developed within PVNET......The increasing penetration level of photovoltaic (PV) power generation in low voltage (LV) networks results in voltage rise issues, particularly at the end of the feeders. In order to mitigate this problem, several strategies, such as grid reinforcement, transformer tap change, demand......-side management, active power curtailment, and reactive power optimization methods, show their contribution to voltage support, yet still limited. This paper proposes a coordinated volt-var control architecture between the LV distribution transformer and solar inverters to optimize the PV power penetration level...

  20. Precise measurements of the $W$ mass at the Tevatron and indirect constraints on the Higgs mass

    Energy Technology Data Exchange (ETDEWEB)

    Lopes de Sa, Rafael

    2012-04-01

    I describe the latest D0 and CDF W boson mass measurements. The D0 measurement is performed with 4.3 fb{sup -1} of integrated luminosity in the electron decay channel with a data set of 1.68 x 10{sup 8} W candidates. The value of the W boson mass measured by D0 is M{sub W} = 80.375 {+-} 0.023 GeV when combined with the previously analyzed 1 fb{sup -1} of integrated luminosity. The CDF measurement uses 2.2 fb{sup -1} of integrated luminosity in both electron and muon decay channels with a total of 1.1 x 10{sup 8} W candidates. The value of the W boson mass measured by CDF is M{sub W} = 80.387 {+-} 0.019 GeV. I report the combination of these two measurements with previous Tevatron measurements and with the LEP measurements of the W boson mass. The new world average is M{sub W} = 80.385 {+-} 0.015GeV. I discuss the implications of the new measurement to the indirect measurement of the Standard Model Higgs boson mass.

  1. The Black Hole Mass Function from Gravitational Wave Measurements

    CERN Document Server

    Kovetz, Ely D; Breysse, Patrick C; Kamionkowski, Marc

    2016-01-01

    We examine how future gravitational-wave measurements from merging black holes (BHs) can be used to infer the shape of the black-hole mass function, with important implications for the study of star formation and evolution and the properties of binary BHs. We model the mass function as a power law, inherited from the stellar initial mass function, and introduce lower and upper mass cutoff parameterizations in order to probe the minimum and maximum BH masses allowed by stellar evolution, respectively. We initially focus on the heavier BH in each binary, to minimize model dependence. Taking into account the experimental noise, the mass measurement errors and the uncertainty in the redshift-dependence of the merger rate, we show that the mass function parameters, as well as the total rate of merger events, can be measured to <10% accuracy within a few years of advanced LIGO observations at its design sensitivity. This can be used to address important open questions such as the upper limit on the stellar mass ...

  2. A top quark mass measurement using a matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Linacre, Jacob Thomas [St. John' s College, Annapolis, MD (United States)

    2009-01-01

    A measurement of the mass of the top quark is presented, using top-antitop pair (t$\\bar{t}$) candidate events for the lepton+jets decay channel. The measurement makes use of Tevatron p$\\bar{p}$ collision data at centre-of-mass energy √s = 1.96 TeV, collected at the CDF detector. The top quark mass is measured by employing an unbinned maximum likelihood method where the event probability density functions are calculated using signal (t$\\bar{t}$) and background (W+jets) matrix elements, as well as a set of parameterised jet-to-parton mapping functions. The likelihood function is maximised with respect to the top quark mass, the fraction of signal events, and a correction to the jet energy scale (JES) of the calorimeter jets. The simultaneous measurement of the JES correction (ΔJES) provides an in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using 578 lepton+jets candidate events corresponding to 3.2 fb -1 of integrated luminosity, the top quark mass is measured to be mt = 172.4± 1.4 (stat+ΔJES) ±1.3 (syst) GeV=c2, one of the most precise single measurements to date.

  3. A top quark mass measurement using a matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Linacre, Jacob Thomas [St. John' s College, Annapolis, MD (United States)

    2009-01-01

    A measurement of the mass of the top quark is presented, using top-antitop pair (t$\\bar{t}$) candidate events for the lepton+jets decay channel. The measurement makes use of Tevatron p$\\bar{p}$ collision data at centre-of-mass energy √s = 1.96 TeV, collected at the CDF detector. The top quark mass is measured by employing an unbinned maximum likelihood method where the event probability density functions are calculated using signal (t$\\bar{t}$) and background (W+jets) matrix elements, as well as a set of parameterised jet-to-parton mapping functions. The likelihood function is maximised with respect to the top quark mass, the fraction of signal events, and a correction to the jet energy scale (JES) of the calorimeter jets. The simultaneous measurement of the JES correction (ΔJES) provides an in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using 578 lepton+jets candidate events corresponding to 3.2 fb -1 of integrated luminosity, the top quark mass is measured to be mt = 172.4± 1.4 (stat+ΔJES) ±1.3 (syst) GeV=c2, one of the most precise single measurements to date.

  4. Measurement of the mass difference between t and t quarks.

    Science.gov (United States)

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rubbo, F; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P

    2011-04-15

    We present a direct measurement of the mass difference between t and t quarks using tt candidate events in the lepton+jets channel, collected with the CDF II detector at Fermilab's 1.96 TeV Tevatron pp Collider. We make an event by event estimate of the mass difference to construct templates for top quark pair signal events and background events. The resulting mass difference distribution of data is compared to templates of signals and background using a maximum likelihood fit. From a sample corresponding to an integrated luminosity of 5.6  fb(-1), we measure a mass difference, ΔM(top) = M(t) - M(t) = -3.3 ± 1.4(stat) ± 1.0(syst)  GeV/c2, approximately 2 standard deviations away from the CPT hypothesis of zero mass difference.

  5. A Critical Assessment of Stellar Mass Measurement Methods

    CERN Document Server

    Mobasher, Bahram; Ferguson, Henry C; Acquaviva, Viviana; Barro, Guillermo; Finkelstein, Steven L; Fontana, Adriano; Gruetzbauch, Ruth; Johnson, Seth; Lu, Yu; Papovich, Casey J; Pforr, Janine; Salvato, Mara; Somerville, Rachel S; Wiklind, Tommy; Wuyts, Stijn; Ashby, Matthew L N; Bell, Eric; Conselice, Christopher J; Dickinson, Mark E; Faber, Sandra M; Fazio, Giovanni; Finlator, Kristian; Galametz, Audrey; Gawiser, Eric; Giavalisco, Mauro; Grazian, Andrea; Grogin, Norman A; Guo, Yicheng; Hathi, Nimish; Kocevski, Dale; Koekemoer, Anton M; Koo, David C; Newman, Jeffrey A; Reddy, Naveen; Santini, Paola; Wechsler, Risa H

    2015-01-01

    In this paper we perform a comprehensive study of the main sources of random and systematic errors in stellar mass measurement for galaxies using their Spectral Energy Distributions (SEDs). We use mock galaxy catalogs with simulated multi-waveband photometry (from U-band to mid-infrared) and known redshift, stellar mass, age and extinction for individual galaxies. Given different parameters affecting stellar mass measurement (photometric S/N ratios, SED fitting errors, systematic effects, the inherent degeneracies and correlated errors), we formulated different simulated galaxy catalogs to quantify these effects individually. We studied the sensitivity of stellar mass estimates to the codes/methods used, population synthesis models, star formation histories, nebular emission line contributions, photometric uncertainties, extinction and age. For each simulated galaxy, the difference between the input stellar masses and those estimated using different simulation catalogs, $\\Delta\\log(M)$, was calculated and use...

  6. The mass accretion rate of galaxy clusters: a measurable quantity

    CERN Document Server

    De Boni, Cristiano

    2016-01-01

    We are interested in investigating the growth of structures at the nonlinear scales of galaxy clusters from an observational perspective: we explore the possibility of measuring the mass accretion rate of galaxy clusters from their mass profile beyond the virial radius. We derive the accretion rate from the mass of a spherical shell whose infall velocity is extracted from $N$-body simulations. In the redshift range $z=[0,2]$, our prescription returns an average mass accretion rate within $20-40 \\%$ of the average rate derived from the merger trees of dark matter haloes extracted from $N$-body simulations. Our result suggests that measuring the mean mass accretion rate of a sample of galaxy clusters is actually feasible, thus providing a new potential observational test of the cosmological and structure formation models.

  7. Mass Measurements with the Canadian Penning Trap at CARIBU

    Science.gov (United States)

    Orford, Rodney

    2017-01-01

    Roughly half of the elements heavier than iron are thought to be produced through the astrophysical r process of nucleosynthesis. Despite its large influence in explaining the observed abundance of heavy elements, much of the r process is still poorly understood. A more thorough library of nuclear data of neutron-rich nuclei is needed to improve the accuracy and progression of r-process calculations. In particular, accurate mass measurements are in demand due to the strong coupling between mass and other nuclear properties such as β-decay and neutron-capture rates. For nearly three decades, direct mass measurements conducted by Penning trap mass spectrometers have proven to be an accurate method of determining masses to a precision suitable for r-process calculations (Δm / m Science User Facility.

  8. Measurement of the Higgs boson mass with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Garay Walls F. M.

    2015-01-01

    Full Text Available A summary of the latest results on the combined measurement of the Higgs boson mass in the H → ZZ* → 4l and the H → γγ decay channels with the ATLAS detector is presented. The analysis uses 25 fb−1 of pp collision data recorded by the ATLAS detector at the CERN Large Hadron Collider at centre-of-mass energies of 7TeV and 8 TeV during 2011 and 2012. The combined measured value of the Higgs boson mass is mH = 125.36 ± 0.37 (stat ± 0.18 (syst GeV.

  9. Precision measurement of a particle mass at the linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Milstene, C.; /Fermilab; Freitas, A.; /Zurich U.; Schmitt, M.; /Northwestern U.; Sopczak, A.; /Lancaster U.

    2007-06-01

    Precision measurement of the stop mass at the ILC is done in a method based on cross-sections measurements at two different center-of-mass energies. This allows to minimize both the statistical and systematic errors. In the framework of the MSSM, a light stop, compatible with electro-weak baryogenesis, is studied in its decay into a charm jet and neutralino, the Lightest Supersymmetric Particle (LSP), as a candidate of dark matter. This takes place for a small stop-neutralino mass difference.

  10. Discovery and Mass Measurements of a Cold, 10-Earth Mass Planet and Its Host Star

    Science.gov (United States)

    Barry, Richard K.; Muraki, Y.; Han, C.; Bennett, D. P.; Gaudi, B. S.

    2011-01-01

    We present the discovery and mass measurement of the cold, low-mass planet MOA-2009-BLG-266Lb, made with the gravitational microlensing method. This planet has a mass of mp = 10.4 +/- M(Earth) and orbits a star of Mstar = 0.56 +/- 0.09 M(Sun) at a semi-major axis of a = 3.2 + 1.9/-0.5 AU, and an orbital period of 7.6 +7.7/-1.5 yrs. The planet and host star mass measurements are due to the measurement of the microlensing parallax effect. This measurement was primarily due to the orbital motion of the Earth, but the analysis also demonstrates the capability measure micro lensing parallax with the Deep Impact (or EPOXI) spacecraft in a Heliocentric orbit. The planet mass and orbital distance are similar to predictions for the critical core mass needed to accrete a substantial gaseous envelope, and thus may indicate that this planet is a failed gas giant. This and future microlensing detections will test planet formation theory predictions regarding the prevalence and masses of such planets

  11. Measuring Neutron Star Mass and Radius with Three Mass-Radius Relations

    CERN Document Server

    Zhang, C M; Kojima, Y; Chang, H K; Xu, R X; Li, X D; Zhang, B; Kiziltan, B

    2006-01-01

    We propose to determine the mass and the radius of a neutron star (NS) using three measurable mass-radius relationships, namely the ``apparent'' radius inferred from neutron star thermal emission, the gravitational redshift inferred from the absorption lines, as well as the averaged stellar mass density inferred from the orbital Keplerian frequency derived from the kilohertz quasi periodic oscillation (kHz QPO) data. We apply the method to constrain the NS mass and the radius of the X-ray sources, 1E 1207.4-5209, Aql X-1 and EXO 0748-676.

  12. Precise measurement of the {Sigma}{sup 0} mass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.H.; Hartouni, E.P.; Kreisler, M.N.; Uribe, J. [Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Church, M.D.; Gottschalk, E.E.; Knapp, B.C.; Stern, B.J.; Wiencke, L.R. [Columbia University, Nevis Laboratories, Irvington, New York 10533 (United States); Christian, D.C.; Gutierrez, G.; Wehmann, A. [Fermilab, Batavia, Illinois 60510 (United States); Avilez, C.; Felix, J.; Moreno, G. [Instituto de Fisica, Universidad de Guanajuato, 37150 Leon, Guanajuato (Mexico); Forbush, M.; Huson, F.R.; White, J.T. [Department of Physics, Texas AM University, College Station, Texas 77843 (United States)

    1997-09-01

    We have obtained precise measurements of the {Sigma}{sup 0} mass and the {Sigma}{sup 0}-{Lambda}{sup 0} mass difference from a fit to the {Lambda}{sup 0}{gamma} invariant mass distribution of 3327 {Sigma}{sup 0}{r_arrow}{Lambda}{sup 0}+{gamma} decays. Our measurements yield M{sub {Sigma}{sup 0}}=1192.65{plus_minus}0.020{plus_minus}0.014 MeV/c{sup 2} and M{sub {Sigma}{sup 0}}{minus}M{sub {Lambda}{sup 0}}=76.966{plus_minus}0.020{plus_minus}0.013 MeV/c{sup 2}, where the uncertainties are statistical and systematic in that order. This represents a significant improvement over all previous determinations and is the first direct measurement of the {Sigma}{sup 0} mass itself. {copyright} {ital 1997} {ital The American Physical Society}

  13. Measurement of the W boson mass with the ATLAS detector

    CERN Document Server

    Balli, Fabrice; The ATLAS collaboration

    2017-01-01

    A precise measurement of the mass of the W boson mass represents an important milestone to test the overall consistency of the Standard Model. Since the discovery of a Higgs Boson, the W boson mass is predicted to 7 MeV precision, while the world average of all measurements is 15 MeV, making the improved measurement an important goal. The ATLAS experiment at the LHC represents an ideal laboratory for such a precise measurement. Large samples of many millions of leptonic decays of W and Z bosons were collected with efficient single lepton triggers in the 7 TeV data set corresponding to an integrated luminosity of 4.6/fb. With these samples the detector and physics modelling has been studied in great detail to enable a systematic uncertainty on the measurement that approaches the statistical power of the data of 7 MeV per decay channel as far as possible.

  14. Measurement of the W boson mass with the ATLAS detector

    CERN Document Server

    Balli, Fabrice; The ATLAS collaboration

    2017-01-01

    The W boson mass ($m_W$) is a fundamental parameter of the Standard Model (SM) and was measured by several experiments at high energy $e^{+}e^{-}$ and $p\\bar{p}$ colliders. This parameter's measurement has the biggest impact on indirect searches for new particles or interactions, by comparing the measurement of this parameter with the prediction from the SM. Its current value, which combines several independent measurements, is 80385~$\\pm$~15 MeV. It was measured recently by the ATLAS experiment at LHC, using data recorded in 2011, with a centre of mass energy of 7 TeV. This measurement provides the following value for $m_W$ : 80370~$\\pm$~19 MeV. This proceeding reviews some aspects of the measurement and includes some considerations for future measurements at the LHC.

  15. Measurements of the τ mass and the mass difference of the τ+ and τ- at BABAR

    Science.gov (United States)

    Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Tico, J. Garra; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolku, P.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Lueck, T.; Volk, A.; Bard, D. J.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.

    2009-11-01

    We present the result from a precision measurement of the mass of the τ lepton, Mτ, based on 423fb-1 of data recorded at the Υ(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, we determine the mass to be 1776.68±0.12(stat)±0.41(syst)MeV. We also measure the mass difference between the τ+ and τ-, and obtain (Mτ+-Mτ-)/MAVGτ=(-3.4±1.3(stat)±0.3(syst))×10-4, where MAVGτ is the average value of Mτ+ and Mτ-.

  16. Mass measurements of neutron-rich Rb and Sr isotopes

    CERN Document Server

    Klawitter, R; Brodeur, M; Chowdhury, U; Chausdhuri, A; Fallis, J; Gallant, A T; Grossheim, A; Kwiatkowski, A A; Lascar, D; Leach, K G; Lennarz, A; Macdonald, T D; Pearkes, J; Seeraji, S; Simon, M C; Simon, V V; Schultz, B E; Dilling, J

    2015-01-01

    We report on the mass measurements of several neutron-rich $\\mathrm{Rb}$ and $\\mathrm{Sr}$ isotopes in the $A \\approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,99}\\mathrm{Rb}$ and $^{98-100}\\mathrm{Sr}$ have been determined with a precision of $6 - 12\\ \\mathrm{keV}$, making their uncertainty negligible for r-process nucleosynthesis network calculations. The mass of $^{101}\\mathrm{Sr}$ has been determined directly for the first time with a precision eight times higher than the previous indirect measurement and a deviation of $3\\sigma$ when compared to the Atomic Mass Evaluation. We also confirm the mass of $^{100}\\mathrm{Rb}$ from a previous measurement. Furthermore, our data indicates the existance of a low-lying isomer with $80\\ \\mathrm{keV}$ excitation energy in $^{98}\\mathrm{Rb}$. We show that our updated mass values lead to minor changes in the r-process by calculating fractional abundances in the $A\\approx 100$ re...

  17. First direct mass measurements on nobelium and lawrencium with the Penning trap mass spectrometer SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Dworschak, Michael Gerhard

    2009-12-08

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt was set up for high-precision mass measurements of heavy radionuclides produced in fusion evaporation reactions and separated from the primary beam by the velocity filter SHIP. It consists of a gas stopping cell for the deceleration of the high energetic reaction products, an RFQ cooler and buncher for cooling and accumulation of the ions, and a double Penning trap system to perform mass measurements. The mass is determined by measuring the cyclotron frequency of the ion of interest in a strong homogeneous magnetic field and comparing it to the frequency of a well-known reference ion. With this method relative uncertainties in the order of 10{sup -8} can be achieved. Recently, mass measurements of the three nobelium isotopes {sup 252-254}No (Z=102) and the lawrencium isotope {sup 255}Lr (Z=103) were performed successfully. These were the first direct mass measurements of transuranium elements ever per- formed. The production rate of the atoms of interest was about one per second or less. The results of the measurements on nobelium confirm the previous mass values which were deduced from Q{sub {alpha}} values. In the case of {sup 255}Lr the mass excess value, which was previously only estimated from systematic trends, was for the first time directly measured. These results mark the first step in the exploration of the region of transuranium elements which is planned at SHIPTRAP. The main objective is to fix the endpoints of {alpha} decay chains which are originating from superheavy elements close to the predicted island of stability. (orig.)

  18. A precision measurement of the mass of the top quark

    Science.gov (United States)

    Abazov, V. M.; Abbott, B.; Abdesselam, A.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Ahmed, S. N.; Alexeev, G. D.; Alton, A.; Alves, G. A.; Arnoud, Y.; Avila, C.; Babintsev, V. V.; Babukhadia, L.; Bacon, T. C.; Baden, A.; Baffioni, S.; Baldin, B.; Balm, P. W.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Bean, A.; Beaudette, F.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blekman, F.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Bolton, T. A.; Borcherding, F.; Bos, K.; Bose, T.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Claes, D.; Clark, A. R.; Connolly, B.; Cooper, W. E.; Coppage, D.; Crépé-Renaudin, S.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Davis, G. A.; De, K.; de Jong, S. J.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Eltzroth, J. T.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Ferbel, T.; Filthaut, F.; Fisk, H. E.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gao, M.; Gavrilov, V.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gómez, B.; Goncharov, P. I.; Gounder, K.; Goussiou, A.; Grannis, P. D.; Greenlee, H.; Greenwood, Z. D.; Grinstein, S.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hall, R. E.; Han, C.; Hansen, S.; Hauptman, J. M.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Huang, J.; Huang, Y.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jaffré, M.; Jain, S.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jöstlein, H.; Juste, A.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kesisoglou, S.; Khanov, A.; Kharchilava, A.; Klima, B.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kothari, B.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krivkova, P.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kupco, A.; Kuznetsov, V. E.; Landsberg, G.; Lee, W. M.; Leflat, A.; Lehner, F.; Leonidopoulos, C.; Li, J.; Li, Q. Z.; Lima, J. G. R.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Luo, C.; Maciel, A. K. A.; Madaras, R. J.; Malyshev, V. L.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Mattingly, S. E. K.; Mayorov, A. A.; McCarthy, R.; McMahon, T.; Melanson, H. L.; Melnitchouk, A.; Merkin, A.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mutaf, Y. D.; Nagy, E.; Narain, M.; Narasimham, V. S.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Nelson, S.; Nomerotski, A.; Nunnemann, T.; O'Neil, D.; Oguri, V.; Oshima, N.; Padley, P.; Papageorgiou, K.; Parashar, N.; Partridge, R.; Parua, N.; Patwa, A.; Peters, O.; Pétroff, P.; Piegaia, R.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Przybycien, M. B.; Qian, J.; Rajagopalan, S.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Ridel, M.; Rijssenbeek, M.; Rizatdinova, F.; Rockwell, T.; Royon, C.; Rubinov, P.; Ruchti, R.; Sabirov, B. M.; Sajot, G.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Shabalina, E.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Sirotenko, V.; Slattery, P.; Smith, R. P.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Song, Y.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stoker, D.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strang, M. A.; Strauss, M.; Strovink, M.; Stutte, L.; Sznajder, A.; Talby, M.; Taylor, W.; Tentindo-Repond, S.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; Van Kooten, R.; Vaniev, V.; Varelas, N.; Villeneuve-Seguier, F.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, Z.-M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; Whiteson, D.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Womersley, J.; Wood, D. R.; Xu, Q.; Yamada, R.; Yasuda, T.; Yatsunenko, Y. A.; Yip, K.; Yu, J.; Zanabria, M.; Zhang, X.; Zhou, B.; Zhou, Z.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.

    2004-06-01

    The standard model of particle physics contains parameters-such as particle masses-whose origins are still unknown and which cannot be predicted, but whose values are constrained through their interactions. In particular, the masses of the top quark (Mt) and W boson (MW) constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. A precise measurement of Mt can therefore indicate where to look for the Higgs, and indeed whether the hypothesis of a standard model Higgs is consistent with experimental data. As top quarks are produced in pairs and decay in only about 10-24s into various final states, reconstructing their masses from their decay products is very challenging. Here we report a technique that extracts more information from each top-quark event and yields a greatly improved precision (of +/- 5.3GeV/c2) when compared to previous measurements. When our new result is combined with our published measurement in a complementary decay mode and with the only other measurements available, the new world average for Mt becomes 178.0 +/- 4.3GeV/c2. As a result, the most likely Higgs mass increases from the experimentally excluded value of 96 to 117GeV/c2, which is beyond current experimental sensitivity. The upper limit on the Higgs mass at the 95% confidence level is raised from 219 to 251GeV/c2.

  19. Body mass index and blood pressure measurement during pregnancy.

    LENUS (Irish Health Repository)

    Hogan, Jennifer L

    2012-02-01

    OBJECTIVE: The accurate measurement of blood pressure requires the use of a large cuff in subjects with a high mid-arm circumference (MAC). This prospective study examined the need for a large cuff during pregnancy and its correlation with maternal obesity. METHODS: Maternal body mass index (BMI), fat mass, and MAC were measured. RESULTS: Of 179 women studied, 15.6% were obese. With a BMI of level 1 obesity, 44% needed a large cuff and with a BMI of level 2 obesity 100% needed a large cuff. CONCLUSION: All women booking for antenatal care should have their MAC measured to avoid the overdiagnosis of pregnancy hypertension.

  20. Optical measurement of a micro coriolis mass flow sensor

    NARCIS (Netherlands)

    Kristiansen, L.; Mehendale, A.; Brouwer, D.M.; Zwikker, J.M.; Klein, M.E.

    2009-01-01

    Haneveld [1,2] demonstrated a micro Coriolis mass flow sensor, operating in the measurement range of 0 to 1 g/hr achieving a resolution in the order of 10 mg/hr using a laser vibrometer. Equipped with an integrated capacitive [3] readout the measurement uncertainty amounted to 2% of the full scale r

  1. Measurement of the top quark mass in the dilepton channel

    Science.gov (United States)

    Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Balamurali, V.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Breedon, R.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Ko, W.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lobkowicz, F.; Loken, S. C.; Lucotte, A.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mostafa, M.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Vaniev, V.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.

    1999-09-01

    We report a measurement of the top quark mass using six candidate events for the process pp¯-->tt¯+X-->l+νbl-ν¯b¯+X, observed in the D0 experiment at the Fermilab pp¯ collider. Using maximum likelihood fits to the dynamics of the decays, we measure a mass for the top quark of mt=168.4+/-12.3(stat)+/-3.6(syst) Gev. We combine this result with our previous measurement in the tt¯-->l+jets channel to obtain mt=172.1+/-7.1 GeV as the best value of the mass of the top quark measured by D0.

  2. Mass measurements on radioactive isotopes using the ISOLTRAP spectrometer

    CERN Document Server

    Dilling, J; Kluge, H J; Kohl, A; Lamour, E; Marx, G; Schwarz, S C; Bollen, G; Kellerbauer, A G; Moore, R B; Henry, S

    2000-01-01

    ISOLTRAP is a Penning trap mass spectrometer installed at the on line isotope separator ISOLDE at CERN. Direct measurements of the masses of short lived radio isotopes are performed using the existing triple trap system. This consists of three electromagnetic traps in tandem: a Paul trap to accumulate and bunch the 60 keV dc beam, a Penning trap for cooling and isobar separation, and a precision Penning trap for the determination of the masses by cyclotron resonance. Measurements of masses of unknown mercury isotopes and in the vicinity of doubly magic /sup 208/Pb are presented, all with an accuracy of delta m/m approximately=1*10/sup -7/. Developments to replace the Paul trap by a radiofrequency quadrupole ion guide system to increase the collection efficiency are presently under way and the status is presented. (10 refs).

  3. Avoided losses on LV networks as a result of microgeneration

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paulo Moises [Escola Superior Tecnologia Viseu, Instituto Politecnico Viseu, Campus Politecnico Repeses, 3504-510 Viseu (Portugal); Matos, Manuel A. [INESC Porto, Faculdade de Engenharia da Universidade do Porto, Porto (Portugal)

    2009-04-15

    In the scope of the discussions about microgeneration (and microgrids), the avoided electrical losses are often pointed out as an important value to be credited to those entities. Therefore, methods to assess the impact of microgeneration on losses must be developed in order to support the definition of a suitable regulatory framework for the economic integration of microgeneration on distribution networks. This paper presents an analytical method to quantify the value of avoided losses that microgeneration may produce on LV networks. Intervals of expected avoided losses are used to account for the variation of avoided losses due to the number, size and location of microgenerators, as well as for the kind of load distribution on LV networks. (author)

  4. Precision mass measurements at TITAN with radioactive ions

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, A.A., E-mail: aniak@triumf.ca [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Macdonald, T.D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Andreoiu, C. [Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada); Bale, J.C. [Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada); Brunner, T.; Chaudhuri, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Chowdhury, U. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Ettenauer, S.; Gallant, A.T. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Grossheim, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Lennarz, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Institut für Kernphysik, Westfälische Wilhelms-Universität, D-48149 Münster (Germany); Mané, E.; Pearson, M.R.; Schultz, B.E.; Simon, M.C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Simon, V.V. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität, 61920 Heidelberg (Germany); Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

    2013-12-15

    Highlights: • The TITAN facility is the sole online Penning trap mass spectrometer with charge breeding capabilities. • Use of highly charged exotic ions reduces the beam time requirements. • Threshold charge breeding was developed as a novel technique to separate isobaric species. • Recent mass measurements have been performed to investigate nuclear structure, tests of electroweak theory, and neutrino physics. -- Abstract: Measurements of the atomic mass further our understanding in many disciplines from metrology to physics beyond the standard model. The accuracy and precision of Penning trap mass spectrometry have been well demonstrated at TITAN, including measurements of neutron-rich calcium and potassium isotopes to investigate three-body forces in nuclear structure and within the island of inversion to study the mechanism of shell quenching and deformation. By charge breeding ions, TITAN has enhanced the precision of the measurement technique. The precision achieved in the measurement of the superallowed β-emitter {sup 74}Rb in the 8+ charge state rivaled earlier measurements with singly charged ions in a fraction of the time. By breeding {sup 78}Rb to the same charge state, the ground state could be easily distinguished from the isomer. Further developments led to threshold charge breeding, which permitted capturing and measuring isobarically and elementally pure ion samples in the Penning trap. This was demonstrated via the Q-value determination of {sup 71}Ge. An overview of the TITAN facility and recent results are presented herein.

  5. Direct mass measurements beyond the proton drip-line

    CERN Document Server

    Rauth, C; Blaum, K; Block, M; Chaudhuri, A; Eliseev, S; Ferrer, R; Habs, D; Herfurth, F; Hessberger, F P; Hofmann, S; Kluge, H J; Maero, G; Martin, A; Marx, G; Mukherjee, M; Neumayr, J B; Plass, W R; Quint, W; Rahaman, S; Rodríguez, D; Scheidenberger, C; Schweikhard, L; Thirolf, P G; Vorobjev, G; Weber, C; Di, Z

    2007-01-01

    First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncertainties of about $7\\cdot 10^{-8}$, nine of them for the first time. Four nuclides ($^{144, 145}$Ho and $^{147, 148}$Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies.

  6. New mass measurements of neutron rich nuclides at the NSCL.

    Science.gov (United States)

    Estrade, Alfredo; Matos, Milan; Amthor, Matthew; Bazin, Daniel; Becerril, Ana; Elliot, Thom; Gade, Alexandra; Galaviz, Daniel; Lorusso, Giuseppe; Pereira, Jorge; Portillo, Mauricio; Rogers, Andrew; Schatz, Hendrik; Shapira, Dan; Smith, Ed; Stolz, Andreas; Wallace, Mark

    2007-10-01

    A mass measurement of exotic isotopes in the region of 68Fe has been performed at the NSCL using the time-of-flight technique recently established. Experimental knowledge of the mass of very neutron rich nuclides is an important input for astrophysical applications, such as nucleosynthesis during the r-process and the evolution of matter in the crust of an accreting neutron star, where present calculations are mostly limited to using theoretical mass extrapolations. We present the details of the experimental set up, as well as preliminary results.

  7. Measurement of the top quark mass in the dilepton channel

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Blumenschein, U; Böhnlein, A; Boeriu, O; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Claes, D; Clement, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Das, M; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Fatakia, S N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Gerber, C E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Krop, D; Kryemadhi, A; Kühl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lammers, S; Landsberg, G L; Lazoflores, J; Le Bihan, A C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; McCarthy, R; Meder, D; Melnitchouk, A; Mendes, A; Mendoza, L; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Mutaf, Y D; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Oguri, V; Oliveira, N; Onoprienko, D; Oshima, N; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Pérez, E; Peters, K; Petroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simák, V; Sirotenko, V I; Skubic, P L; Slattery, P F; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; vanden Berg, P J; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A H; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vint, P; Vlimant, J R; Von Törne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Wang, M H L; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xie, Y; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; al, et

    2007-01-01

    We present a measurement of the top quark mass in the dilepton channel based on approximately 370/pb of data collected by the D0 experiment during Run II of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the D0 Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m_t = 178.1 +/- 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV.

  8. Novel approach for automatic segmentation of LV endocardium via SPCNN

    Science.gov (United States)

    Ma, Yurun; Wang, Deyuan; Ma, Yide; Lei, Ruoming; Wang, Kemin

    2017-02-01

    Automatic segmentation of Left Ventricle (LV) is an essential task in the field of computer-aided analysis of cardiac function. In this paper, a simplified pulse coupled neural network (SPCNN) based approach is proposed to segment LV endocardium automatically. Different from the traditional image-driven methods, the SPCNN based approach is independent of the image gray distribution models, which makes it more stable. Firstly, the temporal and spatial characteristics of the cardiac magnetic resonance image are used to extract a region of interest and to locate LV cavity. Then, SPCNN model is iteratively applied with an increasing parameter to segment an optimal cavity. Finally, the endocardium is delineated via several post-processing operations. Quantitative evaluation is performed on the public database provided by MICCAI 2009. Over all studies, all slices, and two phases (end-diastole and end-systole), the average percentage of good contours is 91.02%, the average perpendicular distance is 2.24 mm and the overlapping dice metric is 0.86.These results indicate that the proposed approach possesses high precision and good competitiveness.

  9. A Dynamic and Heuristic Phase Balancing Method for LV Feeders

    Directory of Open Access Journals (Sweden)

    Samad Taghipour Boroujeni

    2016-01-01

    Full Text Available Due to the single-phase loads and their stochastic behavior, the current in the distribution feeders is not balanced. In addition, the single-phase loads are located in different positions along the LV feeders. So the amount of the unbalanced load and its location affect the feeder losses. An unbalanced load causes the feeder losses and the voltage drop. Because of time-varying behavior of the single-phase loads, phase balancing is a dynamic and combinatorial problem. In this research, a heuristic and dynamic solution for the phase balancing of the LV feeders is proposed. In this method, it is supposed that the loads’ tie could be connected to all phases through a three-phase switch. The aim of the proposed method is to make the feeder conditions as balanced as possible. The amount and the location of single-phase loads are considered in the proposed phase balancing method. Since the proposed method needs no communication interface or no remote controller, it is inexpensive, simple, practical, and robust. Applying this method provides a distributed and dynamic phase balancing control. In addition, the feasibility of reducing the used switches is investigated. The ability of the proposed method in the phase balancing of the LV feeders is approved by carrying out some simulations.

  10. A Precision Measurement of the Mass of the Top Quark

    CERN Document Server

    Abazov, V M; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Arnoud, Y; Avila, C; Babintsev, V V; Babukhadia, L; Bacon, Trevor C; Baden, A; Baffioni, S; Baldin, B Yu; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Böhnlein, A; Bozhko, N; Bolton, T A; Borcherding, F; Bos, K; Bose, T; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Bühler, M; Büscher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Claes, D; Clark, A R; Connolly, B; Cooper, W E; Coppage, D; Crepe-Renaudin, S; Cummings, M A C; Cutts, D; Da Motta, H; Davis, G A; De, K; De Jong, S J; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Eltzroth, J T; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Ferbel, T; Filthaut, F; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gallas, E; Galjaev, A N; Gao, M; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Yu; Ginther, G; Gómez, B; Goncharov, P I; Gounder, K; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hall, R E; Han, C; Hansen, S; Hauptman, J M; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Kesisoglou, S; Khanov, A; Kharchilava, A I; Klima, B; Kohli, J M; Kostritskii, A V; Kotcher, J; Kothari, B; Kozelov, A V; Kozlovskii, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G L; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Luo, C; Maciel, A K A; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mattingly, S E K; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Melnitchouk, A S; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mokhov, N V; Mondal, N K; Montgomery, H E; Moore, R W; Mutaf, Y D; Nagy, E; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Nomerotski, A; Nunnemann, T; O'Neil, D; Oguri, V; Oshima, N; Padley, P; Papageorgiou, K; Parashar, N; Partridge, R; Parua, N; Patwa, A; Peters, O; Petroff, P; Piegaia, R; Pope, B G; Prosper, H B; Protopopescu, S D; Przybycien, M B; Qian, J; Rajagopalan, S; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F K; Rockwell, T; Royon, C; Rubinov, P; Ruchti, R; Sabirov, B M; Sajot, G; Santoro, A F S; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simák, V; Sirotenko, V I; Slattery, P F; Smith, R P; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorin, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbruck, G; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Trippe, T G; Turcot, A S; Tuts, P M; Van Kooten, R; Vaniev, V; Varelas, N; Villeneuve-Séguier, F; Volkov, A A; Vorobev, A P; Wahl, H D; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; Whiteson, D; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yasuda, T; Yatsunenko, Y A; Yip, K; Yu, J; Zanabria, M; Zhang, X; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2004-01-01

    The Standard Model of particle physics contains about two dozen parameters - such as particle masses - whose origins are still unknown and cannot be predicted, but whose values are constrained through their interactions. In particular, the masses of the top (t) quark (M_t) and W boson constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. A precise measurement of the top-quark mass can therefore point to where to look for the Higgs, and indeed whether the hypothesis of a SM Higgs is consistent with experimental data. Since top quarks are produced in pairs and decay in only ~10^-24 s into various final states, reconstructing their mass from their decay products is very challenging. Here we report a technique that extracts far more information from each top-quark event and yields a greatly improved precision on the top mass of 5.3 GeV/c^2, compared to previous measurements. When our new result is combined with our published measurement in a complementary decay mode and with the onl...

  11. Direct mass measurements of neutron-deficient xenon isotopes using the ISOLTRAP mass spectrometer

    CERN Document Server

    Dilling, J; Beck, D; Bollen, G; Herfurth, F; Kellerbauer, A G; Kluge, H J; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G

    2004-01-01

    The masses of the noble-gas Xe isotopes with 114 $\\leq$ A $\\leq$ 123 have been directly measured for the first time. The experiments were carried out with the ISOLTRAP triple trap spectrometer at the online mass separator ISOLDE/CERN. A mass resolving power of the Penning trap spectrometer of $m/\\Delta m$ of close to a million was chosen resulting in an accuracy of $\\delta m \\leq 13$ keV for all investigated isotopes. Conflicts with existing, indirectly obtained, mass data by several standard deviations were found and are discussed. An atomic mass evaluation has been performed and the results are compared to information from laser spectroscopy experiments and to recent calculations employing an interacting boson model.

  12. A precise mass measurement of the intermediate-mass binary pulsar PSR J1802-2124

    CERN Document Server

    Ferdman, Robert D; Kramer, Michael; McLaughlin, Maura A; Lorimer, Duncan R; Nice, David J; Manchester, Richard N; Hobbs, George; Lyne, Andrew G; Camilo, Fernando; Possenti, Andrea; Demorest, Paul B; Cognard, Ismael; Desvignes, Gregory; Theureau, Gilles; Faulkner, Andrew; Backer, Donald C

    2010-01-01

    PSR J1802-2124 is a 12.6-ms pulsar in a 16.8-hour binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar since its discovery in 2002. Concentrated observations at the Green Bank Telescope, augmented with data from the Parkes and Nancay observatories, have allowed us to determine the general relativistic Shapiro delay. This has yielded pulsar and white dwarf mass measurements of 1.24(11) and 0.78(4) solar masses (68% confidence), respectively. The low mass of the pulsar, the high mass of the WD companion, the short orbital period, and the pulsar spin period may be explained by the system having gone through a common-envelope phase in its evolution. We argue that selection effects may contribute to the relatively small number of known IMBPs.

  13. Two old ways to measure the electron-neutrino mass

    CERN Document Server

    De Rújula, A

    2013-01-01

    Three decades ago, the measurement of the electron neutrino mass in atomic electron capture (EC) experiments was scrutinized in its two variants: single EC and neutrino-less double EC. For certain isotopes an atomic resonance enormously enhances the expected decay rates. The favoured technique, based on calorimeters as opposed to spectrometers, has the advantage of greatly simplifying the theoretical analysis of the data. After an initial surge of measurements, the EC approach did not seem to be competitive. But very recently, there has been great progress on micro-calorimeters and the measurement of atomic mass differences. Meanwhile, the beta-decay neutrino-mass limits have improved by a factor of 15, and the difficulty of the experiments by the cube of that figure. Can the "calorimetric" EC theory cope with this increased challenge? I answer this question affirmatively. In so doing I briefly review the subject and extensively address some persistent misunderstandings of the underlying quantum physics.

  14. Mass Measurements of Isolated Objects from Space-based Microlensing

    CERN Document Server

    Zhu, Wei; Gould, A; Udalski, A; Han, C; Shvartzvald, Y; Ranc, C; Jorgensen, U G; Poleski, R; Bozza, V; Beichman, C; Bryden, G; Carey, S; Gaudi, B S; Henderson, C B; Pogge, R W; Porritt, I; Wibking, B; Yee, J C; Pawlak, M; Szymanski, M K; Skowron, J; Mroz, P; Kozlowski, S; Wyrzykowski, L; Pietrukowicz, P; Pietrzynski, G; Soszynski, I; Ulaczyk, K; Choi, J Y; Park, H; Jung, Y K; Shin, I -G; Albrow, M D; Park, B -G; Kim, S -L; Lee, C -U; Kim, D -J; Lee, Y; Friedmann, M; Kaspi, S; Maoz, D; Hundertmark, M; Street, R A; Tsapras, Y; Bramich, D M; Cassan, A; Dominik, M; Bachelet, E; Dong, Subo; Jaimes, R Figuera; Horne, K; Mao, S; Menzies, J; Schmidt, R; Snodgrass, C; Steele, I A; Wambsganss, J; Skottfelt, J; Andersen, M I; Burgdorf, M J; Ciceri, S; D'Ago, G; Evans, D F; Gu, S -H; Hinse, T C; Kerins, E; Korhonen, H; Kuffmeier, M; Mancini, L; Peixinho, N; popovas, A; Rabus, M; Rahvar, S; Rasmussen, R T; Scarpetta, G; Southworth, J; Surdej, J; von Essen, C; Wang, Y -B; Wertz, O

    2015-01-01

    We report on the mass and distance measurements of two single-lens events from the 2015 \\emph{Spitzer} microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is a $47\\pm7$ $M_{\\rm J}$ brown dwarf at $5.4\\pm1.0$ kpc, and that the lens of OGLE-2015-BLG-0763 is a $0.50\\pm0.04$ $M_\\odot$ star at $6.9\\pm1.0$ kpc. We show that the probability to definitively measure the mass of isolated microlenses, including isolated stellar mass black holes and free floating planets, is dramatically increased once simultaneous ground- and space-based observations are conducted.

  15. Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Kim, Hwajin; Zhang, Qi; Bae, Gwi-Nam; Kim, Jin Young; Bok Lee, Seung

    2017-02-01

    Highly time-resolved chemical characterization of nonrefractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital and largest metropolis of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter, when elevated particulate matter (PM) pollution events are often observed. This is the first time that detailed real-time aerosol measurement results have been reported from Seoul, Korea, and they reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicron aerosol (PM1 = NR-PM1+ black carbon (BC)) was 27.5 µg m-3, and the total mass was dominated by organics (44 %), followed by nitrate (24 %) and sulfate (10 %). The average atomic ratios of oxygen to carbon (O / C), hydrogen to carbon (H / C), and nitrogen to carbon (N / C) of organic aerosols (OA) were 0.37, 1.79, and 0.018, respectively, which result in an average organic mass-to-carbon (OM / OC) ratio of 1.67. The concentrations (2.6-90.7 µg m-3) and composition of PM1 varied dynamically during the measurement period due to the influences of different meteorological conditions, emission sources, and air mass origins. Five distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA, O / C = 0.06), cooking activities represented by a cooking OA factor (COA, O / C = 0.14), wood combustion represented by a biomass burning OA factor (BBOA, O / C = 0.34), and secondary organic aerosol (SOA) represented by a semivolatile oxygenated OA factor (SV-OOA, O / C = 0.56) and a low-volatility oxygenated OA factor (LV-OOA, O / C = 0.68). On average, primary OA (POA = HOA + COA + BBOA) accounted for 59 % the OA mass, whereas SV-OOA and LV-OOA contributed 15 and 26 %, respectively. Our results indicate that air

  16. Rare-RI ring for mass measurements at RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Akira [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan)

    2014-05-02

    The rare-RI (radioactive isotope) ring at the RIKEN RI Beam Factory is described. The main purpose of the rare-RI ring is to measure the mass of short-lived rare RI. In the rare-RI ring, the mass is determined by measuring the revolution time of each nucleus based on isochronous mass spectrometry. The rare-RI ring consists of six magnetic sectors, and each sector consists of four dipole magnets. To precisely optimize the isochronous conditions of the circulating particles for large acceptance, we install 10 trim coils to half of the dipole magnets. Individual injection system enables efficient injection of the produced rare RI into the ring one by one. With facilitating efficient extraction of the circulating particles, time-of-flight measurements can be performed to the each rare RI. Construction of the rare-RI ring was begun in the middle of the fiscal year 2012, and the ring is expected to be fully functional by 2015, when we can start the mass measurements for unknown masses.

  17. Recent results from the MISTRAL mass measurement program at ISOLDE

    CERN Document Server

    Lunney, M D; Audi, G; Bollen, G; Borcea, C; Doubre, H; Gaulard, C; Henry, S; De Saint-Simon, M; Thibault, C; Toader, C F; Vieira, N

    2001-01-01

    The MISTRAL experiment (Mass measurements at ISOLDE with a Transmission and Radiofrequency spectrometer on-Line), conceived for very short-lived nuclides, has reached the end of its commissioning phase. Installed in 1997, results have been obtained consistent with all aspects of the projected spectrometer performance: nuclides with half-lives as short as 30 ms have been measured and accuracies of $\\pm$0.4 have been achieved, despite the presence of a systematic shift and difficulties with isobaric contamination. Masses of several nuclides, including $^{25-26}\\!$Ne and $^{32}$Mg that forms the famous island of inversion around N=20, have been significantly improved.

  18. Observation and Mass Measurement of the Baryon $\\Xi^-_b$

    CERN Document Server

    Aaltonen, T; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cully, J C; Da Ronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, Mauro; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dorr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; García, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtälä, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobuev, I P; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-01-01

    We report the observation and measurement of the mass of the bottom, strange baryon $\\Xi^-_b$ through the decay chain $\\Xi^-_b \\to J/\\psi \\Xi^-$, where $J/\\psi \\to \\mu^+ \\mu^-$, $\\Xi^- \\to \\Lambda \\pi^-$, and $\\Lambda \\to p \\pi^-$. Evidence for observation is based on a signal whose probability of arising from the estimated background is $6.6 \\times 10^{-15}$, or 7.7 Gaussian standard deviations. The $\\Xi^-_b$ mass is measured to be $5792.9\\pm 2.5$ (stat.) $\\pm 1.7$ (syst.) MeV/$c^2$.

  19. A Precision Measurement of the Lambda_c Baryon Mass

    CERN Document Server

    Aubert, B; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Çuhadar-Dönszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Ruddick, W O; Smith, J G; Ulmer, K A; Zhang, J; Zhang, L; Chen, A; Eckhart, E A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Spaan, B; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Nogowski, R; Otto, S; Petzold, A; Schott, G; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De, R; Sangro; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Marks, J; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Mohapatra, A K; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Pierini, M; Plaszczynski, S; Schune, M H; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, Erwin; Gamet, R; Hutchcroft, D E; Parry, R J; Payne, D J; Touramanis, C; Cormack, C M; Di Lodovico, F; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hodgkinson, M C; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Simi, G; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai, F; Tehrani; Voena, C; Christ, S; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Gopal, G P; Olaiya, E O; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Graziani, G; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Claus, R; Convery, M R; Cristinziani, M; De Nardo, Gallieno; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Stelzer, J; Strube, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, Patricia R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Martínez-Vidal, F; Panvini, R S; Banerjee, S W; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Jackson, P D; Kowalewski, R V; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mihályi, A; Pan, Y; Prepost, R; Tan, P; Von Wimmersperg-Töller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2005-01-01

    The $\\Lambda_c^+$ baryon mass is measured using $\\Lambda_c^+\\to\\Lambda K^0_S K^+$ and $\\Lambda_c^+\\to\\Sigma^0 K^0_S K^+$ decays reconstructed in 232 fb$^{-1}$ of data collected with the BaBar detector at the PEP-II asymmetric-energy $e^+e^-$ storage ring. The $\\Lambda_c^+$ mass is measured to be $2286.46\\pm0.14\\mathrm{MeV}/c^2$. The dominant systematic uncertainties arise from the amount of material in the tracking volume and from the magnetic field strength.

  20. Observation and mass measurement of the baryon Xib-.

    Science.gov (United States)

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-08-03

    We report the observation and measurement of the mass of the bottom, strange baryon Xi(b)- through the decay chain Xi(b)- -->J/psiXi-, where J/psi-->mu+mu-, Xi- -->Lambdapi-, and Lambda-->ppi-. A signal is observed whose probability of arising from a background fluctuation is 6.6 x 10(-15), or 7.7 Gaussian standard deviations. The Xi(b)- mass is measured to be 5792.9+/-2.5(stat) +/- 1.7(syst) MeV/c2.

  1. Measurement of the W boson mass with the ATLAS detector

    CERN Document Server

    Camarda, Stefano; The ATLAS collaboration

    2017-01-01

    A precise measurement of the mass of the W boson represents an important milestone to test the overall consistency of the Standard Model. Since the discovery of a Higgs Boson, the the W boson mass is predicted to 7 MeV precision, while the world average of all measurements is 15 MeV, making the improved measurement an important goal. The ATLAS experiment at the LHC represents an ideal laboratory for such a precise measurement. Large samples of many millions of leptonic decays of W and Z bosons were collected with efficient single lepton triggers in the 7 TeV data set corresponding to an integrated luminosity of 4.6/fb. With these samples the detector and physics modelling has been studied in great detail to enable a systematic uncertainty on the measurement that approaches the statistical power of the data of 7 MeV per decay channel as far as possible.

  2. Measuring consistent masses for 25 Milky Way globular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kimmig, Brian; Seth, Anil; Ivans, Inese I.; Anderton, Tim; Gregersen, Dylan [Physics and Astronomy Department, University of Utah, SLC, UT 84112 (United States); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-02-01

    We present central velocity dispersions, masses, mass-to-light ratios (M/Ls ), and rotation strengths for 25 Galactic globular clusters (GCs). We derive radial velocities of 1951 stars in 12 GCs from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single-mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trends of M/L with cluster mass and metallicity. The overall values of M/L and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing M/L with cluster mass and lower than expected M/Ls for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.

  3. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  4. Measurement of the mass difference between top and antitop quarks

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M. A.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Sorin, V.; Song, H.; Stancari, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-03-01

    We present a measurement of the mass difference between top (t) and antitop (t¯) quarks using tt¯ candidate events reconstructed in the final state with one lepton and multiple jets. We use the full data set of Tevatron s=1.96TeV proton-antiproton collisions recorded by the CDF II detector, corresponding to an integrated luminosity of 8.7fb-1. We estimate event by event the mass difference to construct templates for top pair signal events and background events. The resulting mass difference distribution in data compared to signal and background templates using a likelihood fit yields ΔMtop=Mt-Mt¯=-1.95±1.11(stat)±0.59(syst)GeV/c2 and is in agreement with the standard model prediction of no mass difference.

  5. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    CERN Document Server

    Ntampaka, M; Sutherland, D J; Fromenteau, S; Poczos, B; Schneider, J

    2015-01-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark's publicly-available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power law scaling relation to infer cluster mass from galaxy line of sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with width = 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further (width = 2.13). We employ the Support Distribution Machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to...

  6. Measurement of the W boson mass with the ATLAS detector

    CERN Document Server

    CERN. Geneva

    2016-01-01

    A measurement of the W-boson mass is presented based on 4.6 fb^-1 of proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC. The selected data sample consists of 7.8x10^6 candidates in the W -> mu nu channel and 5.9x10^6 candidates in the W -> e nu channel. The W-boson mass is determined using template fits to the charged lepton transverse momentum distributions, and to the charged lepton and E_T^miss transverse mass distribution. Special emphasis is placed on the evaluation of the experimental systematic uncertainties, as well as on the uncertainties due to the modeling of the vector boson production and decay. The final result is compared to the current world average and interpreted in the context of the global electroweak fit.

  7. A Critical Assessment of Stellar Mass Measurement Methods

    Science.gov (United States)

    Mobasher, Bahram; Dahlen, Tomas; Ferguson, Henry C.; Acquaviva, Viviana; Barro, Guillermo; Finkelstein, Steven L.; Fontana, Adriano; Gruetzbauch, Ruth; Johnson, Seth; Lu, Yu; Papovich, Casey J.; Pforr, Janine; Salvato, Mara; Somerville, Rachel S.; Wiklind, Tommy; Wuyts, Stijn; Ashby, Matthew L. N.; Bell, Eric; Conselice, Christopher J.; Dickinson, Mark E.; Faber, Sandra M.; Fazio, Giovanni; Finlator, Kristian; Galametz, Audrey; Gawiser, Eric; Giavalisco, Mauro; Grazian, Andrea; Grogin, Norman A.; Guo, Yicheng; Hathi, Nimish; Kocevski, Dale; Koekemoer, Anton M.; Koo, David C.; Newman, Jeffrey A.; Reddy, Naveen; Santini, Paola; Wechsler, Risa H.

    2015-07-01

    This is the second paper in a series aimed at investigating the main sources of uncertainty in measuring the observable parameters in galaxies from their spectral energy distributions (SEDs). In the first paper we presented a detailed account of the photometric redshift measurements and an error analysis of this process. In this paper we perform a comprehensive study of the main sources of random and systematic error in stellar mass estimates for galaxies, and their relative contributions to the associated error budget. Since there is no prior knowledge of the stellar mass of galaxies (unlike their photometric redshifts), we use mock galaxy catalogs with simulated multi-waveband photometry and known redshift, stellar mass, age and extinction for individual galaxies. The multi-waveband photometry for the simulated galaxies were generated in 13 filters spanning from U-band to mid-infrared wavelengths. Given different parameters affecting stellar mass measurement (photometric signal-to-noise ratios (S/N), SED fitting errors and systematic effects), the inherent degeneracies and correlated errors, we formulated different simulated galaxy catalogs to quantify these effects individually. For comparison, we also generated catalogs based on observed photometric data of real galaxies in the Great Observatories Origins Deep Survey-South field, spanning the same passbands. The simulated and observed catalogs were provided to a number of teams within the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey collaboration to estimate the stellar masses for individual galaxies. A total of 11 teams participated, with different combinations of stellar mass measurement codes/methods, population synthesis models, star formation histories, extinction and age. For each simulated galaxy, the differences between the input stellar masses, Minput, and those estimated by each team, Mest, is defined as {{Δ }}{log}(M)\\equiv {log}({M}{estimated})-{log}({M}{input}), and used to

  8. Top quark mass measurements at and above threshold at CLIC

    CERN Document Server

    Seidel, Katja; Tesar, Michal; Poss, Stephane

    2013-01-01

    We present a study of the expected precision of the top quark mass determination, measured at a linear $e^+e^-$ collider based on CLIC technology. GEANT4-based detector simulation and full event reconstruction including realistic physics and beam-induced background levels are used. Two different techniques to measure the top mass are studied: The direct reconstruction of the invariant mass of the top quark decay products and the measurement of the mass together with the strong coupling constant in a threshold scan, in both cases including first studies of expected systematic uncertainties. For the direct reconstruction, experimental uncertainties around 100 MeV are achieved, which are at present not matched by a theoretical understanding on a similar level. With a threshold scan, total uncertainties of around 100 MeV are achieved, including theoretical uncertainties in a well-defined top mass scheme. For the threshold scan, the precision at ILC is also studied to provide a comparison of the two linear collide...

  9. A new data evaluation approach for mass measurements of exotic nuclei performed with isochronous mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Diwisch, M.; Fabian, B.; Kuzminchuk, N. [Justus Liebig University Giessen (Germany); Knoebel, R.; Geissel, H.; Plass, W.R.; Scheidenberger, C.; Boutin, D.; Brandau, C.; Chen, L. [Justus Liebig University Giessen (Germany); GSI, Darmstadt (Germany); Patyk, Z. [Soltan Institute for Nuclear Studies, Warszawa (Poland); Weick, H.; Beckert, K.; Bosch, F.; Dimopoulou, C.; Dolinskii, A.; Klepper, O.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S.A.; Litvinov, Yu.A.; Mazzocco, M.; Muenzenberg, G.; Nociforo, C.; Nolden, F.; Steck, M.; Winkler, M. [GSI, Darmstadt (Germany); Cullen, I.J.; Liu, Z.; Walker, P.M. [University of Surrey, Guildford (United Kingdom); Hausmann, M.; Montes, F. [Michigan State University, East Lansing (United States); Musumarra, A. [Laboratori Nazionali del Sud, INFN Catania (Italy); Nakajima, S.; Suzuki, T.; Yamaguchi, T. [Saitama University, Saitama (Japan); Ohtsubo, T. [Niigata University, Niigata (Japan); Ozawa, A. [University of Tsukuba, Tsukuba (Japan); Sun, B. [GSI, Darmstadt (Germany); School of Physics, Peking University, Beijing (China); Winckler, N. [Max Planck Institut fuer Kernphysik, Heidelberg (Germany)

    2014-07-01

    The Isochronous Mass Spectrometry (IMS) and Schottky Mass Spectrometry (SMS) are powerful tools to measure masses of rare exotic nuclei in a storage ring. While the SMS method provides very high accuracies it does not give access to rare isotopes with lifetimes in the sub second range because beam cooling has to be performed for a few seconds before the measurements start. As a complementary method IMS can be used without beam cooling to reach isotopes with lifetimes of only a few 10 μs. As a drawback of the IMS method one cannot achieve the high mass accuracy of the SMS method until now. For the data evaluation of the SMS data a correlation matrix method has been successfully applied in the past. In order to improve the accuracy of the IMS measurements the same method will now be used, which will allow to combine and to correlate data from different IMS measurements with each other. Applying this method to the analysis of previous experiments with uranium fission fragments at the FRS-ESR facility at GSI and to future experiments, will increase the accuracy of the IMS method and may lead to new mass values with reasonable accuracies for very rare and important nuclei for nuclear astrophysics such as {sup 130}Cd, which were not accessible before.

  10. Measuring neutrino masses with a future galaxy survey

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y. Y.

    2012-01-01

    that the minimum mass sum of sum m_nu ~ 0.06 eV in the normal hierarchy can be detected at 1.5 sigma to 2.5 sigma significance, depending on the model complexity, using a combination of galaxy and cosmic shear power spectrum measurements in conjunction with CMB temperature and polarisation observations from Planck....... With better knowledge of the galaxy bias, the significance of the detection could potentially reach 5.4 sigma. Interestingly, neither Planck+shear nor Planck+galaxy alone can achieve this level of sensitivity; it is the combined effect of galaxy and cosmic shear power spectrum measurements that breaks...... the persistent degeneracies between the neutrino mass, the physical matter density, and the Hubble parameter. Notwithstanding this remarkable sensitivity to sum m_nu, Euclid-like shear and galaxy data will not be sensitive to the exact mass spectrum of the neutrino sector; no significant bias (sigma...

  11. A New Top Mass Measurement in The Dilepton Channel

    Energy Technology Data Exchange (ETDEWEB)

    Trovato, Marco; /INFN, Pisa /Pisa U.

    2008-01-01

    The top quark discovery completed the present picture of the fundamental constituents of the nature. Since then, the Collider Detector at Fermilab and D0 Collaborations have been spending great efforts to measure its properties better. About 30 times larger than the second heaviest quark, the mass of the top has been measured with increased statistic and more and more sophisticated techniques in order to reduce as much as possible its uncertainty. This is because the top is expected to play a fundamental role in the Standard Model. The value of its mass sets boundaries on the mass of the unobserved Higgs boson, and perhaps more appealing, studies of its properties might lead to the discovery of new physics.

  12. Mass measurements on radioactive isotopes with a Penning trap mass spectrometer

    CERN Document Server

    Bollen, G; Audi, G; Beck, D; Herfurth, F; Kluge, H J; Kohl, A; Lunney, M D; Moore, R B; De Saint-Simon, M; Schark, E; Schwarz, S; Szerypo, R B

    1999-01-01

    Penning trap mass measurements on short-lived isotopes are performed with the ISOLTRAP mass spectrometer at the radioactive beam facility ISOLDE/CERN. In the last years the applicability of the spectrometer has been considerably extended by the installation of an RFQ trap ion beam buncher and a new cooler Penning trap, which is operated as an isobar separator. These improvements allowed for the first time measurements on isotopes of rare earth elements and on isotopes with Z=80-85. In all cases an accuracy of $\\delta$m/m approximately =1$\\cdot$10$^{-7}$was achieved. (20 refs).

  13. CLASSIFYING BENIGN AND MALIGNANT MASSES USING STATISTICAL MEASURES

    Directory of Open Access Journals (Sweden)

    B. Surendiran

    2011-11-01

    Full Text Available Breast cancer is the primary and most common disease found in women which causes second highest rate of death after lung cancer. The digital mammogram is the X-ray of breast captured for the analysis, interpretation and diagnosis. According to Breast Imaging Reporting and Data System (BIRADS benign and malignant can be differentiated using its shape, size and density, which is how radiologist visualize the mammograms. According to BIRADS mass shape characteristics, benign masses tend to have round, oval, lobular in shape and malignant masses are lobular or irregular in shape. Measuring regular and irregular shapes mathematically is found to be a difficult task, since there is no single measure to differentiate various shapes. In this paper, the malignant and benign masses present in mammogram are classified using Hue, Saturation and Value (HSV weight function based statistical measures. The weight function is robust against noise and captures the degree of gray content of the pixel. The statistical measures use gray weight value instead of gray pixel value to effectively discriminate masses. The 233 mammograms from the Digital Database for Screening Mammography (DDSM benchmark dataset have been used. The PASW data mining modeler has been used for constructing Neural Network for identifying importance of statistical measures. Based on the obtained important statistical measure, the C5.0 tree has been constructed with 60-40 data split. The experimental results are found to be encouraging. Also, the results will agree to the standard specified by the American College of Radiology-BIRADS Systems.

  14. Improvements to TITAN's mass measurement and decay spectroscopy capabilities

    Science.gov (United States)

    Lascar, D.; Kwiatkowski, A. A.; Alanssari, M.; Chowdhury, U.; Even, J.; Finlay, A.; Gallant, A. T.; Good, M.; Klawitter, R.; Kootte, B.; Li, T.; Leach, K. G.; Lennarz, A.; Leistenschneider, E.; Mayer, A. J.; Schultz, B. E.; Schupp, R.; Short, D. A.; Andreoiu, C.; Dilling, J.; Gwinner, G.

    2016-06-01

    The study of nuclei farther from the valley of β -stability than ever before goes hand-in-hand with shorter-lived nuclei produced in smaller abundances than their less exotic counterparts. The measurement, to high precision, of nuclear masses therefore requires innovations in technique in order to keep up. TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) facility deploys three ion traps, with a fourth in the commissioning phase, to perform and support Penning trap mass spectrometry and in-trap decay spectroscopy on some of the shortest-lived nuclei ever studied. We report on recent advances and updates to the TITAN facility since the 2012 EMIS conference. TITAN's charge breeding capabilities have been improved and in-trap decay spectroscopy can be performed in TITAN's Electron Beam Ion Trap (EBIT). Higher charge states can improve the precision of mass measurements, reduce the beam-time requirements for a given measurement, improve beam purity, and open the door to access isotopes not available from the ISOL method via in-trap decay and recapture. This was recently demonstrated during TITAN's mass measurement of 30 Al. The EBIT's decay spectroscopy setup was commissioned with a successful branching ratio and half-life measurement of 124 Cs. Charge breeding in the EBIT increases the energy spread of the ion bunch sent to the Penning trap for mass measurement, so a new Cooler PEnning Trap (CPET), which aims to cool highly charged ions with an electron plasma, is undergoing offline commissioning. Already CPET has demonstrated the trapping and self-cooling of a room-temperature electron plasma that was stored for several minutes. A new detector has been installed inside the CPET magnetic field which will allow for in-magnet charged particle detection.

  15. Charged kaon mass measurement using the Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Graf, N., E-mail: ngraf@umail.iu.ed [Indiana University, Bloomington, IN 47403 (United States); Lebedev, A. [Harvard University, Cambridge, MA 02138 (United States); Abrams, R.J. [University of Michigan, Ann Arbor, MI 48109 (United States); Akgun, U.; Aydin, G. [University of Iowa, Iowa City, IA 52242 (United States); Baker, W. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Barnes, P.D. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bergfeld, T. [University of South Carolina, Columbia, SC 29201 (United States); Beverly, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bujak, A. [Purdue University, West Lafayette, IN 47907 (United States); Carey, D. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Dukes, C. [University of Virginia, Charlottesville, VA 22904 (United States); Duru, F. [University of Iowa, Iowa City, IA 52242 (United States); Feldman, G.J. [Harvard University, Cambridge, MA 02138 (United States); Godley, A. [University of South Carolina, Columbia, SC 29201 (United States); Guelmez, E.; Guenaydin, Y.O. [University of Iowa, Iowa City, IA 52242 (United States); Gustafson, H.R. [University of Michigan, Ann Arbor, MI 48109 (United States); Gutay, L. [Purdue University, West Lafayette, IN 47907 (United States); Hartouni, E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2010-03-21

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 to +63GeV/c. The measured value is 491.3+-1.7MeV/c{sup 2}, which is within 1.4sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  16. Charged Kaon Mass Measurement using the Cherenkov Effect

    CERN Document Server

    Graf, N; Abrams, R J; Akgun, U; Aydin, G; Baker, W; Barnes, P D; Bergfeld, T; Beverly, L; Bujak, A; Carey, D; Dukes, C; Duru, F; Feldman, G J; Godley, A; Gülmez, E; Günaydın, Y O; Gustafson, H R; Gutay, L; Hartouni, E; Hanlet, P; Hansen, S; Heffner, M; Johnstone, C; Kaplan, D; Kamaev, O; Kilmer, J; Klay, J; Kostin, M; Lange, D; Ling, J; Longo, M J; Lu, L C; Materniak, C; Messier, M D; Meyer, H; Miller, D E; Mishra, S R; Nelson, K; Nigmanov, T; Norman, A; Onel, Y; Paley, J M; Park, H K; Penzo, A; Peterson, R J; Raja, R; Rajaram, D; Ratnikov, D; Rosenfeld, C; Rubin, H; Seun, S; Solomey, N; Soltz, R; Swallow, E; Schmitt, R; Subbarao, P; Torun, Y; Tope, T E; Wilson, K; Wright, D; Wu, K

    2009-01-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 +/- 1.7 MeV/c^2, which is within 1.4 sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  17. Combined Measurements of the Higgs Boson Mass and Couplings

    CERN Document Server

    Zhang, Yu; The ATLAS collaboration

    2017-01-01

    Combined measurements of the Higgs boson mass, as well its production cross sections and branching fractions, are performed using the H->yy and H->ZZ->4l decay channels. The measurements are based on 36.1 fb−1 of proton-proton collision data recorded by the ATLAS experiment at the LHC at sqrt(s)= 13 TeV. The Higgs boson mass is measured to be 124.98 +/- 0.19 (stat) +/- 0.21 (syst) GeV. The rates for gluon fusion, vector-boson fusion, VH, and ttH production, as well as kinematic subdivisions of these processes, are found to be compatible with the Standard Model. The measured ratios of the Higgs boson couplings to their SM predictions are also consistent with the predictions.

  18. Improvements to TITAN's Mass Measurement and Decay Spectroscopy Capabilities

    NARCIS (Netherlands)

    Lascar, D.; Kwiatkowski, A. A.; Alanssari, M.; Chowdhury, U.; Even, J.; Finlay, A.; Gallant, A. T.; Good, M.; Klawitter, R.; Kootte, B.; Leach, T. Li K. G.; Lennarz, A.; Leistenschneider, E.; Mayer, A. J.; Schultz, B. E.; Schupp, R.; Short, D. A.; Andreoiu, C.; Dilling, J.; Gwinner, G.

    2016-01-01

    The study of nuclei farther from the valley of $\\beta$-stability goes hand-in-hand with shorter-lived nuclei produced in smaller abundances than their more stable counterparts. The measurement, to high precision, of nuclear masses therefore requires innovations in technique in order to keep up.

  19. Measuring the top quark mass in the channel: A study

    Indian Academy of Sciences (India)

    Rajwant Kaur; Suman B Beri; J M Kohli

    2001-10-01

    We describe a simple method to measure the top quark mass in the $t\\overline{t}$→ WbW$\\overline{b}$→ channel that may be useful in Run II of DØ detector. The method is validated by applying it to the Run Ib data.

  20. Precise Measurement of Separation Between Two Spherical Source Masses

    Institute of Scientific and Technical Information of China (English)

    陈德才; 罗俊; 胡忠坤; 赵亮

    2004-01-01

    A driving gauge method is performed to determine the separation between two spherical source masses in the measurement of Newtonian gravitational constant G. The experimental result shows that the uncertainty of determining the separation is about 0.35μm, which would contribute an uncertainty of 7.3ppm to the value of G.

  1. A NEW MEASUREMENT OF THE W BOSON MASS FROM CDF

    CERN Multimedia

    Ashutosh Kotwal

    CDF has measured the W boson mass using approx. 200pb-1 of data collected at  s = 1.96 TeV. The preliminary result mW = 80.413 ± 0.034(stat) ± 0.034(syst) GeV supports and strengthens the hypothesis of a light Higgs boson, based on the global electroweak fit in the standard model framework. The total measurement uncertainty of 48 MeV makes this result the most precise single measurement of the W boson mass to date. The mass of the W boson is a very interesting quantity. Experimentally, it can be measured precisely because of the two-body decay of the W boson into a charged lepton and a neutrino. Theoretically, it receives self-energy corrections due to vacuum fluctuations involving virtual particles. Thus the W boson mass probes the particle spectrum in nature, including those particles that have yet to be observed directly. The hypothetical particle of most immediate interest is the Higgs boson, representing the quantum of the Higgs field that spontaneously acquires a vacuu...

  2. Applicability of hydraulic dynamometer for measuring load mass on forwarders

    Directory of Open Access Journals (Sweden)

    Pandur Zdravko

    2015-01-01

    Full Text Available In the last few years, with the start of wood biomass production from wood residues, the need for determining the quantity of extracted wood residuals on a landing site has appeared. The beginning of intensive usage of wood residues for wood biomass starts in lowland forest where all wood residues are extracted with forwarders. There are several ways to determine load mass on a forwarder, first and probably most accurate is the use of load cells which are installed between forwarder undercarriage and loading space. In Croatia, as far as it is known, there is no forwarder with such equipment, although manufacturers offer the installation of such equipment when buying a new forwarder. The second option is using a portable measuring platform (axle scale which was already used for research of axle loads of trucks and forwarders. The data obtained with the measuring platform are very accurate, while its deficiency is relatively great mass, large dimensions and high price. The third option is determining mass by using hydraulic dynamometer which is installed on crane between the rotator and the telescopic boom. The production and installation of such a system is very simple, and with the price it can easily compete with previously described measuring systems. The main deficiency of this system is its unsatisfying accuracy. The results of assortment mass measuring with hydraulic dynamometer installed on a hydraulic crane and discussion on factors influencing obtained results will be presented in this paper.

  3. Mass flowmeter for measuring by the CT method

    NARCIS (Netherlands)

    Besseling, Johannes Henricus; Lötters, Joost Conrad

    2006-01-01

    A mass flowmeter of the thermal type provided with a flow sensor with a flow tube through which a fluid can flow during operation, with a temperature sensor in an upstream position (A) and a heater (H) in a downstream position (B), and power control means and temperature measuring means for keeping

  4. Accurate mass measurements of very short-lived nuclei

    CERN Document Server

    Herfurth, F; Ames, F; Audi, G; Beck, D; Blaum, K; Bollen, G; Engels, O; Kluge, H J; Lunney, M D; Moores, R B; Oinonen, M; Sauvan, E; Bolle, C A; Scheidenberger, C; Schwarz, S; Sikler, G; Weber, C

    2002-01-01

    Mass measurements of /sup 34/Ar, /sup 73-78/Kr, and /sup 74,76/Rb were performed with the Penning-trap mass spectrometer ISOLTRAP. Very accurate Q/sub EC/-values are needed for the investigations of the F /sub t/-value of 0/sup +/ to 0/sup +/ nuclear beta -decays used to test the standard model predictions for weak interactions. The necessary accuracy on the Q/sub EC/-value requires the mass of mother and daughter nuclei to be measured with delta m/mmeasured nuclides presented here this has been reached. The /sup 34/Ar mass has been measured with a relative accuracy of 1.1.10/sup -8/. The Q/sub EC/-value of the /sup 34/Ar 0 /sup +/ to 0/sup +/ decay can now he determined with an uncertainty of about 0.01%. Furthermore, /sup 74/Rb is the shortest-lived nuclide ever investigated in a Penning trap. (18 refs).

  5. Top quark properties and mass measurements with the ATLAS detector

    CERN Document Server

    Negrini, Matteo; The ATLAS collaboration

    2017-01-01

    Highlights on recent measurements of top quark properties in ATLAS, using pp collision data at \\sqrt{s}= 8 TeV and 13 TeV, are presented. The measurements of the top quark polarization and spin correlation coefficients, the W boson helicity fractions, the structure of the Wtb vertex, the associated production of a t anti-t pair with a vector boson or a photon, and the top quark mass are all in agreement with the Standard Model expectations.

  6. Can the masses of isolated planetary-mass gravitational lenses be measured by terrestrial parallax?

    CERN Document Server

    Freeman, M; Abe, F; Albrow, M D; Bennett, D P; Bond, I A; Botzler, C S; Bray, J C; Cherrie, J M; Christie, G W; Dionnet, Z; Gould, A; Han, C; Heyrovsky, D; McCormick, J M; Moorhouse, D M; Muraki, Y; Natusch, T; Rattenbury, N J; Skowron, J; Sumi, T; Suzuki, D; Tan, T -G; Tristram, P J; Yock, P C M

    2014-01-01

    Recently Sumi et al. (2011) reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits > 10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. (2012) concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the...

  7. Precision top-quark mass measurement at CDF.

    Science.gov (United States)

    Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-10-12

    We present a precision measurement of the top-quark mass using the full sample of Tevatron √s = 1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb(-1). Using a sample of tt¯ candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the W boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with in situ calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, M(top)=172.85±0.71(stat)±0.85(syst) GeV/c(2).

  8. A precise measurement of the top quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, Brian N. [Univ. of California, Los Angeles, CA (United States)

    2007-04-01

    We present a measurement of the mass of the top quark using data from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. Events are selected from the single lepton plus jets final state (t$\\bar{t}$ → W+bW-$\\bar{b}$ → ℓvbq$\\bar{q}$'$\\bar{b}$). The top quark mass is extracted using a calculation of the probability density for a t$\\bar{t}$ final state to resemble a data event. This probability density is a function of both top quark mass and energy scale of calorimeter jets, constrained in situ with the hadronic W boson mass. Using 167 events observed in 955 pb-1 integrated luminosity, we achieve the single most precise measurement of top quark mass to date of 170.8 ± 2.2 (stat.) ± 1.4 (syst.) GeV/c2, where the quoted statistical uncertainty includes uncertainty from the determination of the jet energy scale.

  9. A precise measurement of the top quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, Brian N. [Univ. of California, Los Angeles, CA (United States)

    2007-04-01

    We present a measurement of the mass of the top quark using data from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. Events are selected from the single lepton plus jets final state (t$\\bar{t}$ → W+bW-$\\bar{b}$ → ℓvbq$\\bar{q}$'$\\bar{b}$). The top quark mass is extracted using a calculation of the probability density for a t$\\bar{t}$ final state to resemble a data event. This probability density is a function of both top quark mass and energy scale of calorimeter jets, constrained in situ with the hadronic W boson mass. Using 167 events observed in 955 pb-1 integrated luminosity, we achieve the single most precise measurement of top quark mass to date of 170.8 ± 2.2 (stat.) ± 1.4 (syst.) GeV/c2, where the quoted statistical uncertainty includes uncertainty from the determination of the jet energy scale.

  10. Refining Mass Measurements of Kepler Planets with Keck/HIRES.

    Science.gov (United States)

    Isaacson, Howard T.; Marcy, Geoffrey W.; Howard, Andrew

    2015-12-01

    We present improved radial velocity mass measurements from Keck/HIRES for exoplanets detected by NASA’s Kepler Mission. Since Kepler’s launch 6 years ago, ~30 planetary systems have been monitored with radial velocities, resulting in measured masses for many planets between 1.0 and 4.0 Earth radii. The resulting planet masses have been used to determine the transition between planets with a rocky interior and those with a lower density interior which requiring significant H/He atmospheres. We provide updated masses and densities for those planets published in Marcy et al (2014) based on two additional observing seasons with HIRES of the Kepler field. These radial velocities also reveal non-transiting planets in systems with previously found transiting planets. One such system has a non-transiting planet with a period between two transiting planets, providing a constraint on the co-planarity of the system. Finally, we provide an updated mass-radius relation, showing the distinction between planets that must have a substantial iron-silicate interior, and those requiring significant contributions from volatiles such as hydrogen and helium.

  11. Precision Top-Quark Mass Measurements at CDF

    CERN Document Server

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K.R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H.S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W.H.; Chung, Y.S.; Ciocci, M.A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M.E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.A.; Cox, D.J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J.P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M.J.; Franklin, M.; Freeman, J.C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J.E.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Hahn, S.R.; Halkiadakis, E.; Hamaguchi, A.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R.F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R.E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jindariani, S.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kamon, T.; Karchin, P.E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.K.; Kim, Y.J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A.T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R.L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H.S.; Lee, J.S.; Lee, S.W.; Leo, S.; Leone, S.; Lewis, J.D.; Limosani, A.; Lin, C.J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D.O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martinez, M.; Mastrandrea, P.; Matera, K.; Mattson, M.E.; Mazzacane, A.; Mazzanti, P.; McFarland, K.S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M.N.; Moon, C.S.; Moore, R.; Morello, M.J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M.S.; Nielsen, J.; Nodulman, L.; Noh, S.Y.; Norniella, O.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A.A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D.E.; Penzo, A.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W.K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E.E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G.L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thome, J.; Thompson, G.A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vazquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizan, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R.L.; Wakisaka, T.; Wallny, R.; Wang, S.M.; Warburton, A.; Waters, D.; Wester, W.C., III; Whiteson, D.; Wicklund, A.B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H.H.; Wilson, J.S.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Yu, S.S.; Yun, J.C.; Zanetti, A.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2012-01-01

    We present a precision measurement of the top-quark mass using the full sample of Tevatron $\\sqrt{s}=1.96$ TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 $fb^{-1}$. Using a sample of $t\\bar{t}$ candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the $W$ boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with {\\it in situ} calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, $\\mtop = 172.85 $\\pm$ 0.71 (stat) $\\pm$ 0.85 (syst) GeV/c^{2}.$

  12. Precision Top-Quark Mass Measurements at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M

    2012-07-01

    We present a precision measurement of the top-quark mass using the full sample of Tevatron {radical}s = 1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb{sup -1}. Using a sample of t{bar t} candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the W boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with in situ calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, mtop = 172.85 {+-} 0.71 (stat) {+-} 0.85 (syst) GeV/c{sup 2}.

  13. (U) An Analytic Examination of Piezoelectric Ejecta Mass Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Ongoing efforts to validate a Richtmyer-Meshkov instability (RMI) based ejecta source model [1, 2, 3] in LANL ASC codes use ejecta areal masses derived from piezoelectric sensor data [4, 5, 6]. However, the standard technique for inferring masses from sensor voltages implicitly assumes instantaneous ejecta creation [7], which is not a feature of the RMI source model. To investigate the impact of this discrepancy, we define separate “areal mass functions” (AMFs) at the source and sensor in terms of typically unknown distribution functions for the ejecta particles, and derive an analytic relationship between them. Then, for the case of single-shock ejection into vacuum, we use the AMFs to compare the analytic (or “true”) accumulated mass at the sensor with the value that would be inferred from piezoelectric voltage measurements. We confirm the inferred mass is correct when creation is instantaneous, and furthermore prove that when creation is not instantaneous, the inferred values will always overestimate the true mass. Finally, we derive an upper bound for the error imposed on a perfect system by the assumption of instantaneous ejecta creation. When applied to shots in the published literature, this bound is frequently less than several percent. Errors exceeding 15% may require velocities or timescales at odds with experimental observations.

  14. Dynamical Mass Measurements of Contaminated Galaxy Clusters Using Machine Learning

    Science.gov (United States)

    Ntampaka, M.; Trac, H.; Sutherland, D. J.; Fromenteau, S.; Póczos, B.; Schneider, J.

    2016-11-01

    We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create two mock catalogs from Multidark’s publicly available N-body MDPL1 simulation, one with perfect galaxy cluster membership information and the other where a simple cylindrical cut around the cluster center allows interlopers to contaminate the clusters. In the standard approach, we use a power-law scaling relation to infer cluster mass from galaxy line-of-sight (LOS) velocity dispersion. Assuming perfect membership knowledge, this unrealistic case produces a wide fractional mass error distribution, with a width of {{Δ }}ε ≈ 0.87. Interlopers introduce additional scatter, significantly widening the error distribution further ({{Δ }}ε ≈ 2.13). We employ the support distribution machine (SDM) class of algorithms to learn from distributions of data to predict single values. Applied to distributions of galaxy observables such as LOS velocity and projected distance from the cluster center, SDM yields better than a factor-of-two improvement ({{Δ }}ε ≈ 0.67) for the contaminated case. Remarkably, SDM applied to contaminated clusters is better able to recover masses than even the scaling relation approach applied to uncontaminated clusters. We show that the SDM method more accurately reproduces the cluster mass function, making it a valuable tool for employing cluster observations to evaluate cosmological models.

  15. Measuring the mass of solar system planets using pulsar timing

    CERN Document Server

    Champion, D J; Manchester, R N; Edwards, R T; Backer, D C; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Coles, W; Demorest, P B; Ferdman, R D; Folkner, W M; Hotan, A W; Kramer, M; Lommen, A N; Nice, D J; Purver, M B; Sarkissian, J M; Stairs, I H; van Straten, W; Verbiest, J P W; Yardley, D R B

    2010-01-01

    High-precision pulsar timing relies on a solar-system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2)E-4 Msun, being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate m...

  16. 77 FR 21620 - Notice of the Buy America Waiver Request for Vossloh 101-LV Concrete Ties

    Science.gov (United States)

    2012-04-10

    ... Federal Railroad Administration Notice of the Buy America Waiver Request for Vossloh 101-LV Concrete Ties... requirements for the purchase of Vossloh 101-LV concrete ties, which contain certain components not... consist of the installation of Vossloh 101-LV concrete ties. FRA has received this request from the four...

  17. CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Philpott, L. C. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Abe, F.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, P.O. Box 4800, Christchurch 8020 (New Zealand); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Christie, G. W.; Natusch, T. [Auckland Observatory, PO Box 180, Royal Oak, Auckland 1345 (New Zealand); Dionnet, Z. [Université d' Orsay, bat 470, F-91400 Orsay (France); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, 410 Seongbong-Rho, Hungduk-Gu, Chongju 371-763 (Korea, Republic of); Heyrovský, D. [Institute of Theoretical Physics, Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); McCormick, J. M. [Farm Cove Observatory, 2/24 Rapallo Place, Pakuranga, Auckland 2012 (New Zealand); Moorhouse, D. M. [Kumeu Observatory, Kumeu (New Zealand); Skowron, J., E-mail: mfre070@aucklanduni.ac.nz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warszawa (Poland); and others

    2015-02-01

    Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.

  18. Measurements of the tau Mass and Mass Difference of the tau^+ and tau^- at BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-10-30

    The authors present the result of a precision measurement of the mass of the {tau} lepton, M{sub {tau}}, based on 423 fb{sup -1} of data recorded at the {Upsilon}(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, they determine the mass to be 1776.68 {+-} 0.12(stat) {+-} 0.41(syst) MeV. They also measure the mass difference between the {tau}{sup +} and {tau}{sup -}, and obtain (M{sub {tau}{sup +}} - M{sub {tau}{sup -}})/M{sub AVG}{sup {tau}} = (-3.4 {+-} 1.3(stat) {+-} 0.3(syst)) x 10{sup -4}, where M{sub AVG}{sup {tau}} is the average value of M{sub {tau}{sup +}} and M{sub {tau}{sup -}}.

  19. (U) An Analytic Study of Piezoelectric Ejecta Mass Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-16

    We consider the piezoelectric measurement of the areal mass of an ejecta cloud, for the specific case where ejecta are created by a single shock at the free surface and fly ballistically through vacuum to the sensor. To do so, we define time- and velocity-dependent ejecta “areal mass functions” at the source and sensor in terms of typically unknown distribution functions for the ejecta particles. Next, we derive an equation governing the relationship between the areal mass function at the source (which resides in the rest frame of the free surface) and at the sensor (which resides in the laboratory frame). We also derive expressions for the analytic (“true”) accumulated ejecta mass at the sensor and the measured (“inferred”) value obtained via the standard method for analyzing piezoelectric voltage traces. This approach enables us to derive an exact expression for the error imposed upon a piezoelectric ejecta mass measurement (in a perfect system) by the assumption of instantaneous creation. We verify that when the ejecta are created instantaneously (i.e., when the time dependence is a delta function), the piezoelectric inference method exactly reproduces the correct result. When creation is not instantaneous, the standard piezo analysis will always overestimate the true mass. However, the error is generally quite small (less than several percent) for most reasonable velocity and time dependences. In some cases, errors exceeding 10-15% may require velocity distributions or ejecta production timescales inconsistent with experimental observations. These results are demonstrated rigorously with numerous analytic test problems.

  20. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Day-Lewis, Frederick David [US Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John W. [US Geological Survey, Storrs, CT (United States)

    2014-11-25

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  1. Voltage rise mitigation for solar PV integration at LV grids

    DEFF Research Database (Denmark)

    Yang, Guangya; Marra, Francesco; Juamperez Goñi, Miguel Angel

    2015-01-01

    Solar energy from photovoltaic (PV) is among the fastest developing renewable energy systems worldwide. Driven by governmental subsidies and technological development, Europe has seen a fast expansion of solar PV in the last few years. Among the installed PV plants, most of them are situated...... at the distribution systems and bring various operational challenges such as power quality and power flow management. The paper discusses the modelling requirements for PV system integration studies, as well as the possible techniques for voltage rise mitigation at low voltage (LV) grids for increasing PV penetration...

  2. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  3. Measuring neutrino mass with radioactive ions in a storage ring

    CERN Document Server

    Lindroos, Mats; Orme, Christopher; Schwetz, Thomas

    2009-01-01

    We propose a method to measure the neutrino mass kinematically using beams of ions which undergo beta decay. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. Then, by counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for $m_\

  4. On uplimit of accurate measurement of tau mass

    CERN Document Server

    Mo, X H

    2016-01-01

    Tau lepton as one of three elementary leptons in nature, the measurement of its mass has ever been performed since its discovery. The present relative accuracy is already at the level of better than 10 to minus 4 and more effects are still made in order to increase the accuracy further. However, the analysis of available techniques for and expectable luminosity from e+e- collider indicates that the precision uplimit of tau mass is almost reached, which means that brand new approaches should be looked for if the great improvement is yearned for.

  5. Mass Measurements of Isolated Objects from Space-based Microlensing

    Science.gov (United States)

    Zhu, Wei; Calchi Novati, S.; Gould, A.; Udalski, A.; Han, C.; Shvartzvald, Y.; Ranc, C.; Jørgensen, U. G.; Poleski, R.; Bozza, V.; Beichman, C.; Bryden, G.; Carey, S.; Gaudi, B. S.; Henderson, C. B.; Pogge, R. W.; Porritt, I.; Wibking, B.; Yee, J. C.; SPITZER Team; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; OGLE Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNET Group; Friedmann, M.; Kaspi, S.; Maoz, D.; WISE Group; Hundertmark, M.; Street, R. A.; Tsapras, Y.; Bramich, D. M.; Cassan, A.; Dominik, M.; Bachelet, E.; Dong, Subo; Figuera Jaimes, R.; Horne, K.; Mao, S.; Menzies, J.; Schmidt, R.; Snodgrass, C.; Steele, I. A.; Wambsganss, J.; RoboNeT Team; Skottfelt, J.; Andersen, M. I.; Burgdorf, M. J.; Ciceri, S.; D'Ago, G.; Evans, D. F.; Gu, S.-H.; Hinse, T. C.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Rahvar, S.; Tronsgaard, R.; Scarpetta, G.; Southworth, J.; Surdej, J.; von Essen, C.; Wang, Y.-B.; Wertz, O.; MiNDSTEP Group

    2016-07-01

    We report on the mass and distance measurements of two single-lens events from the 2015 Spitzer microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf (BD). Assuming that the source star lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ± 7 {M}{{J}} BD at 5.9 ± 1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ± 0.04 {M}⊙ star at 6.9 ± 1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses is dramatically increased once simultaneous ground- and space-based observations are conducted.

  6. Measurement of the Top Quark Mass at CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Andrew N

    2003-11-01

    The authors describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II Detector from p{bar p} collisions with {radical}s = 1.96 TeV at the Fermilab Tevatron. The posterior probability distribution of the top quark pole mass is calculated using the differential cross-section for the t{bar t} production and decay expressed with respect to observed leptons and jets momenta. The presence of background events in the collected sample is modeled using calculations of the differential cross-sections for major background processes. This measurement represents the first application of this method to events with two charged leptons. In a data sample with integrated luminosity of 340 pb{sup -1}, they observe 33 candidate events and measure M{sub top} = 165.2 {+-} 61.{sub stat} {+-} 3.4{sub syst} GeV/c{sup 2}.

  7. MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING

    DEFF Research Database (Denmark)

    Zhu, Wei; Novati, S. Calchi; Gould, A.

    2016-01-01

    We report on the mass and distance measurements of two single-lens events from the 2015 Spitzer microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf (BD). Assuming that the source star...... lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ± 7 {M}{{J}} BD at 5.9 ± 1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ± 0.04 {M}⊙ star at 6.9 ± 1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses...

  8. Chemical abundances in the protoplanetary disk LV2 (Orion) - II: High dispersion VLT observations and microjet properties

    CERN Document Server

    Tsamis, Y G

    2011-01-01

    Integral field spectroscopy of the LV2 proplyd is presented taken with the VLT/FLAMES Argus array at an angular resolution of 0.31x0.31 arcsec^2 and velocity resolutions down to 2 km/s per pixel. Following subtraction of the local M42 emission, the spectrum of LV2 is isolated from the surrounding nebula. We measured the heliocentric velocities and widths of a number of lines detected in the intrinsic spectrum of the proplyd, as well as in the adjacent Orion nebula within a 6.6 x 4.2 arcsec^2 FoV. It is found that far-UV to optical collisional lines with critical densities, Ncrit, ranging from 10^3 to 10^9 /cm^3 suffer collisional de-excitation near the rest velocity of the proplyd correlating tightly with their critical densities. Lines of low Ncrit are suppressed the most. The bipolar jet arising from LV2 is spectrally and spatially well-detected in several emission lines. We compute the [O III] electron temperature profile across LV2 in velocity space and measure steep temperature variations associated with...

  9. Reduction of low voltage power cables electromagnetic field emission in MV/LV substations

    Energy Technology Data Exchange (ETDEWEB)

    Beltran San Segundo, Hector [Dpt. Industrial Systems Engineering and Design, Campus del Riu Sec, Universitat Jaume I, 12071 Castello (Spain); Fuster Roig, Vicente [Instituto de Tecnologia Electrica, Avda. Juan de la Cierva 24, Parc Tecnologic de Valencia, 46980 Paterna (Spain)

    2008-06-15

    In this paper a solution to reduce magnetic field emission levels generated by MV/LV substation power cables is proposed. The reduction is obtained by the arrangement of the phases in a proper way and by shielding the cables with magnetic or conductive materials. The effects introduced by these two options have been analyzed by means of simulations, using finite elements method calculation software, and by experimental measurements. The introduced results allow selecting an optimal arrangement and the best screening material in order to reduce the magnetic fields in those directions required to protect. (author)

  10. A Preliminary Analysis of LV Kun's Conception of Sage%吕坤的圣人观浅析

    Institute of Scientific and Technical Information of China (English)

    萧自强

    2011-01-01

    吕坤认为,在圣人的内涵上,圣人能够把握天理,与天理合一,并且能够达到无心而无境的地位,能够超越性情之限制;在圣人的成长上,吕坤认为圣人可以通过修身",克己复礼"而达到;在圣人与众人之关系上,吕坤认为,圣人与众人并不是完全割裂的,圣人即超越于众人,又生活在众人之中。%On the connotation of sage,LV Kun esteemed that sage could grasp the natural principle and united it,got the position without the mind and the state,and went beyond the restrictions of temper.On the growth of the sage,LV Kun thought that sage could be self-cultivation,achieved with "Denying self and observing the proprieties".And on the relationships between the sage and the masses,LV Kun acknowledged that the sage and the masses were not completely separated,namely,the sage transcended the masses,and also,the sage could'nt go beyond them.

  11. Ultra-low Q values for neutrino mass measurements

    CERN Document Server

    Kopp, Joachim

    2009-01-01

    We investigate weak nuclear decays with extremely small kinetic energy release (Q value) and thus extremely good sensitivity to the absolute neutrino mass scale. In particular, we consider decays into excited daughter states, and we show that partial ionization of the parent atom can help to tune Q values to << 1 keV. We discuss several candidate isotopes undergoing beta+, beta-, bound state beta, or electron capture decay, and come to the conclusion that a neutrino mass measurement using low-Q decays might only be feasible if no ionization is required, and if future improvements in isotope production technology, nuclear mass spectroscopy, and atomic structure calculations are possible. Experiments using ions, however, are extremely challenging due to the large number of ions that must be stored. New precision data on nuclear excitation levels could help to identify further isotopes with low-Q decay modes and possibly less challenging requirements.

  12. Uncertainties and re-analysis of glacier mass balance measurements

    Directory of Open Access Journals (Sweden)

    M. Zemp

    2013-03-01

    Full Text Available Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until present, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without error considerations. In this study, we propose a framework for re-analyzing glacier mass balance series including conceptual and statistical toolsets for assessment of random and systematic errors as well as for validation and calibration (if necessary of the glaciological with the geodetic balance results. We demonstrate the usefulness and limitations of the proposed scheme drawing on an analysis that comprises over 50 recording periods for a dozen glaciers and we make recommendations to investigators and users of glacier mass balance data. Reanalysis of glacier mass balance series needs to become a standard procedure for every monitoring programme to improve data quality and provide thorough uncertainty estimates.

  13. Comparisons between different techniques for measuring mass segregation

    CERN Document Server

    Parker, Richard J

    2015-01-01

    We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function $\\mathcal{M}_{\\rm MF}$; the minimum spanning tree-based $\\Lambda_{\\rm MSR}$ method; the local surface density $\\Sigma_{\\rm LDR}$ method; and the $\\Omega_{\\rm GSR}$ technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the $\\Omega_{\\rm GSR}$ method fails because it arbitra...

  14. Development of a continuous aerosol mass concentration measurement device.

    Science.gov (United States)

    Bémer, D; Thomas, D; Contal, P; Subra, I

    2003-08-01

    A dynamic aerosol mass concentration measurement device has been developed for personal sampling. Its principle consists in sampling the aerosol on a filter and monitoring the change of pressure drop over time (Delta P). Ensuring that the linearity of the Delta P = f(mass of particles per unit area of filter) relationship has been well established, the change of concentration can be deduced. The response of the system was validated in the laboratory with a 3.5 microm alumina aerosol (mass median diameter) generated inside a 1-m(3) ventilated enclosure. As the theory predicted that the mass sensitivity of the system would vary inversely with the square of the particle diameter, only sufficiently fine aerosols were able to be measured. The system was tested in the field in a mechanical workshop in the vicinity of an arc-welding station. The aerosol produced by welding is indeed particularly well-adapted due to the sub-micronic size of the particles. The device developed, despite this limitation, has numerous advantages over other techniques: robustness, compactness, reliability of calibration, and ease of use.

  15. A Precision Measurement of the Lambda_c Baryon Mass

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-07-06

    The {Lambda}{sub c}{sup +} baryon mass is measured using {Lambda}{sub c}{sup +} {yields} {Lambda}K{sub S}{sup 0}K{sup +} and {Lambda}{sub c}{sup +} {yields} {Sigma}{sup 0}K{sub S}{sup 0}K{sup +} decays reconstructed in 232 fb{sup -1} of data collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} storage ring. The {Lambda}{sub c}{sup +} mass is measured to be 2286.46 {+-} 0.14 MeV/c{sup 2}. The dominant systematic uncertainties arise from the amount of material in the tracking volume and from the magnetic field strength.

  16. Measurement of Top Mass and Properties with the ATLAS Detector

    CERN Document Server

    CERN. Geneva

    2013-01-01

    The extraordinary success of the LHC in delivering proton-proton collisions with large integrated luminosity allows the study of top-quark-enriched data samples with unprecedented statistics. This opens new possibilities for the assessment and further refinements of detector performance, and of data analysis tools. At the same time, different aspects of top-quark event modeling, as implemented in Monte Carlo simulations, can be tested and confronted with data with impressive precision. As an example, the description of the extra QCD radiation accompanying the top-anti-top system can be refined based on measurements. In this context, the experimental challenges and recent results on precision top-quark physics measurements within the ATLAS experiment are summarized and reviewed. In particular, the recent ATLAS top-quark mass result, obtained using a three dimensional template method, which allows the simultaneous determination of the top-quark mass together with a global jet energy scale factor (JSF), and a ...

  17. A Precision Measurement of the Lambda_c Baryon Mass

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.

    2005-07-06

    The {Lambda}{sub c}{sup +} baryon mass is measured using {Lambda}{sub c}{sup +} {yields} {Lambda}K{sub S}{sup 0}K{sup +} and {Lambda}{sub c}{sup +} {yields} {Sigma}{sup 0}K{sub S}{sup 0}K{sup +} decays reconstructed in 232 fb{sup -1} of data collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} storage ring. The {Lambda}{sub c}{sup +} mass is measured to be 2286.46 {+-} 0.14 MeV/c{sup 2}. The dominant systematic uncertainties arise from the amount of material in the tracking volume and from the magnetic field strength.

  18. Measurement of the mass difference between top and antitop quarks

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cerny, Karel; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Fischer, David; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Habib, Shiraz; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Visca, Lorenzo; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Lincoln, Don; Lipton, Ron; Lueking, Lee; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Evdokimov, Olga; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Chung, Kwangzoo; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Korjenevski, Sergey; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Richards, Alan; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Engh, Daniel; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2012-01-01

    A measurement of the mass difference between the top and the antitop quark (Delta m(t) = m(t) - m(anti-t)) is performed using events with a muon or an electron and at least four jets in the final state. The analysis is based on data collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.96 +/- 0.11 inverse femtobarns, and yields the value of Delta m(t) = -0.44 +/- 0.46 (stat) +/- 0.27 (syst) GeV. This result is consistent with equality of particle and antiparticle masses required by CPT invariance, and provides a significantly improved precision relative to existing measurements.

  19. Measurement of the mass difference between top and antitop quarks

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2012-06-01

    A measurement of the mass difference between the top and the antitop quark (Delta m(t) = m(t) - m(anti-t)) is performed using events with a muon or an electron and at least four jets in the final state. The analysis is based on data collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.96 +/- 0.11 inverse femtobarns, and yields the value of Delta m(t) = -0.44 +/- 0.46 (stat) +/- 0.27 (syst) GeV. This result is consistent with equality of particle and antiparticle masses required by CPT invariance, and provides a significantly improved precision relative to existing measurements.

  20. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  1. Measuring peptide mass spectrum correlation using the quantum Grover algorithm.

    Science.gov (United States)

    Choo, Keng Wah

    2007-03-01

    We investigated the use of the quantum Grover algorithm in the mass-spectrometry-based protein identification process. The approach coded the mass spectra on a quantum register and uses the Grover search algorithm for searching multiple solutions to find matches from a database. Measurement of the fidelity between the input and final states was used to quantify the similarity between the experimental and theoretical spectra. The optimal number of iteration is proven to be pi/4sqrt[N/k] , where k refers to the number of marked states. We found that one iteration is sufficient for the search if we let more that 62% of the N states be marked states. By measuring the fidelity after only one iteration of Grover search, we discovered that it resembles that of the correlation-based measurement used in the existing protein identification software. We concluded that the quantum Grover algorithm can be adapted for a correlation-based mass spectra database search, provided that decoherence can be kept to a minimum.

  2. Improvements to TITAN's Mass Measurement and Decay Spectroscopy Capabilities

    CERN Document Server

    Lascar, D; Chowdhury, U; Finlay, A; Gallant, A T; Good, M; Klawitter, R; Kootte, B; Leach, K G; Lennarz, A; Leistenschneider, E; Schultz, B E; Schupp, R; Short, D A; Andreoiu, C; Dilling, J; Gwinner, G

    2015-01-01

    The study of nuclei farther from the valley of $\\beta$-stability goes hand-in-hand with shorter-lived nuclei produced in smaller abundances than their more stable counterparts. The measurement, to high precision, of nuclear masses therefore requires innovations in technique in order to keep up. TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) facility deploys three ion traps, with a fourth in the commissioning phase, to perform and support Penning trap mass spectrometry and in-trap decay spectroscopy on some of the shortest-lived nuclei ever studied. We report on recent advances and updates to the TITAN facility since the 2012 EMIS Conference. TITAN's charge breeding capabilities have been improved and in-trap decay spectroscopy can be performed in TITAN's electron beam ion trap (EBIT). Higher charge states can improve the precision of mass measurements, reduce the beam-time requirements for a given measurement, improve beam purity and opens the door to access, via in-trap decay and recapture, isotope...

  3. Radionuclide measurements by accelerator mass spectrometry at Arizona

    Science.gov (United States)

    Jull, A. J. T.; Donahue, D. J.; Zabel, T. H.

    1986-01-01

    Over the past years, Tandem Accelerator Mass Spectrometry (TAMS) has become established as an important method for radionuclide analysis. In the Arizona system the accelerator is operated at a thermal voltage of 1.8MV for C-14 analysis, and 1.6 to 2MV for Be-10. Samples are inserted into a cesium sputter ion source in solid form. Negative ions sputtered from the target are accelerated to about 25kV, and the injection magnet selects ions of a particular mass. Ions of the 3+ charge state, having an energy of about 9MeV are selected by an electrostatic deflector, surviving ions pass through two magnets, where only ions of the desired mass-energy product are selected. The final detector is a combination ionization chamber to measure energy loss (and hence, Z), and a silicon surface-barrier detector which measures residual energy. After counting the trace iosotope for a fixed time, the injected ions are switched to the major isotope used for normalization. These ions are deflected into a Faraday cup after the first high-energy magnet. Repeated measurements of the isotope ratio of both sample and standards results in a measurement of the concentration of the radionuclide. Recent improvements in sample preparation for C-14 make preparation of high-beam current graphite targets directly from CO2 feasible. Except for some measurements of standards and backgrounds for Be-10 measurements to date have been on C-14. Although most results have been in archaeology and quaternary geology, studies have been expanded to include cosmogenic C-14 in meteorites. The data obtained so far tend to confirm the antiquity of Antarctic meteorites from the Allan Hills site. Data on three samples of Yamato meteorites gave terrestrial ages of between about 3 and 22 thousand years.

  4. Measurement of $R_{b}$ using a Vertex Mass Tag

    CERN Document Server

    Abe, K; Akagi, T; Allen, N J; Ash, W W; Aston, D; Baird, K G; Baltay, C; Band, H R; Barakat, M B; Baranko, G; Bardon, O; Barklow, T L; Bashindzhagian, G L; Bazarko, A O; Ben-David, R; Benvenuti, Alberto C; Bilei, G M; Bisello, D; Blaylock, G; Bogart, J R; Bolen, B; Bolton, T; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Busza, W; Calcaterra, A; Caldwell, D O; Calloway, D; Camanzi, B; Carpinelli, M; Cassell, R; Castaldi, R; Castro, A; Cavalli-Sforza, M; Chou, A; Church, E; Cohn, H O; Coller, J A; Cook, V; Cotton, R; Cowan, R F; Coyne, D G; Crawford, G; de Oliveira, A; Damerell, C J S; Daoudi, M; De Groot, N; De Sangro, R; Dell'Orso, R; Dervan, P J; Dima, M; Dong, D N; Du, P Y C; Dubois, R; Eisenstein, B I; Elia, R; Etzion, E; Fahey, S; Falciai, D; Fan, C; Fernández, J P; Fero, M J; Frey, R; Gillman, T; Gladding, G; González, S; Hart, E L; Harton, J L; Hasan, A; Hasegawa, Y; Hasuko, K; Hedges, S J; Hertzbach, S S; Hildreth, M D; Huber, J; Huffer, M E; Hughes, E W; Hwang, H; Iwasaki, Y; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Johnson, R A; Junk, T R; Kajikawa, R; Kalelkar, M; Kang, H J; Karliner, I; Kawahara, H; Kendall, H W; Kim, Y D; King, M E; King, R; Kofler, R R; Krishna, N M; Kroeger, R S; Labs, J F; Langston, M; Lath, A; Lauber, J A; Leith, D W G S; Lia, V; Liu, M X; Liu, X; Loreti, M; Lu, A; Lynch, H L; Ma, J; Mancinelli, G; Manly, S; Mantovani, G C; Markiewicz, T W; Maruyama, T; Masuda, H; Mazzucato, E; McKemey, A K; Meadows, B T; Messner, R; Mockett, P M; Moffeit, K C; Moore, T B; Müller, D; Nagamine, T; Narita, S; Nauenberg, U; Neal, H; Nussbaum, M; Ohnishi, Y; Oishi, N; Onoprienko, D; Osborne, L S; Panvini, R S; Park, C H; Park, H; Pavel, T J; Peruzzi, I; Piccolo, M; Piemontese, L; Pieroni, E; Pitts, K T; Plano, R J; Prepost, R; Prescott, C Y; Punkar, G D; Quigley, J; Ratcliff, B N; Reeves, T W; Reidy, J; Reinertsen, P L; Rensing, P E; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T; Schindler, R H; Schumm, B A; Schwiening, J; Sen, S; Serbo, V V; Shaevitz, M H; Shank, J T; Shapiro, G; Sherden, D J; Shmakov, K D; Simopoulos, C; Sinev, N B; Smith, S R; Smy, M B; Snyder, J A; Stängle, H; Stamer, P; Steiner, H; Steiner, R; Strauss, M G; Su, D; Suekane, F; Sugiyama, A; Suzuki, S; Swartz, M; Szumilo, A; Takahashi, T; Taylor, F E; Torrence, E; Trandafir, A I; Turk, J D; Usher, T; Vavra, J; Vannini, C; Vella, E; Venuti, J P; Verdier, R; Verdini, P G; Wagner, D L; Wagner, S R; Waite, A P; Watts, S J; Weidemann, A W; Weiss, E R; Whitaker, J S; White, S L; Wickens, F J; Williams, D C; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Woods, M; Word, G B; Wyss, J; Yamamoto, R K; Yamartino, J M; Yang, X; Yashima, J; Yellin, S J; Young, C C; Yuta, H; Zapalac, G; Zdarko, R W; Zhou, J

    1998-01-01

    We report a new measurement of Rb = Gamma(Z0->b-bbar) / Gamma(Z0->hadrons) using a double tag technique, where the b hemisphere selection is based on the reconstructed mass of the B hadron decay vertex. The measurement was performed using a sample of 130k hadronic Z0 events, collected with the SLD at the SLC. The method utilizes the 3-D vertexing abilities of the CCD pixel vertex detector and the small stable SLC beams to obtain a high b-tagging efficiency and purity. We obtain Rb=0.2142+/-0.0034(stat.)+/-0.0015(syst.)+/-0.0002(R_c).

  5. Initial measurements with the SUERC accelerator mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Stewart E-mail: toodeep@suerc.gla.ac.uk; Xu, Sheng; Schnabel, Christoph; Dougans, Andrew; Tait, Andrew; Kitchen, Richard; Klody, George; Loger, Roger; Pollock, Tom; Schroeder, James; Sundquist, Mark

    2004-08-01

    {sup 10}Be, {sup 14}C, {sup 36}Cl and {sup 129}I test measurements have been made with a new Pelletron-based accelerator mass spectrometer operating at up to 5.2 MV. All ion detection was with a versatile gas ionization detector. Low-background radiocarbon measurements with 2% scatter of identical samples was performed with both spectrometer ion sources. {sup 10}Be/Be backgrounds of 3 x 10{sup -15} were achieved using a gas cell adjoining the detector for {sup 10}B suppression. High sample-throughput Cl AMS with {sup 36}Cl/Cl backgrounds of 4 x 10{sup -15} was accomplished.

  6. Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry

    Science.gov (United States)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Coupling the Knudsen effusion method with mass spectrometry has proven to be one of the most useful experimental techniques for studying the equilibrium between condensed phases and complex vapors. The Knudsen effusion method involves placing a condensed sample in a Knudsen cell, a small "enclosure", that is uniformly heated and held until equilibrium is attained between the condensed and vapor phases. The vapor is continuously sampled by effusion through a small orifice in the cell. A molecular beam is formed from the effusing vapor and directed into a mass spectrometer for identification and pressure measurement of the species in the vapor phase. Knudsen cell mass spectrometry (KCMS) has been used for nearly fifty years now and continues to be a leading technique for obtaining thermodynamic data. Indeed, much of the well-established vapor specie data in the JANAF tables has been obtained from this technique. This is due to the extreme versatility of the technique. All classes of materials can be studied and all constituents of the vapor phase can be measured over a wide range of pressures (approximately 10(exp -4) to 10(exp -11) bar) and temperatures (500-2800 K). The ability to selectively measure different vapor species makes KCMS a very powerful tool for the measurement of component activities in metallic and ceramic solutions. Today several groups are applying KCMS to measure thermodynamic functions in multicomponent metallic and ceramic systems. Thermodynamic functions, especially component activities, are extremely important in the development of CALPHAD (Calculation of Phase Diagrams) type thermodynamic descriptions. These descriptions, in turn, are useful for modeling materials processing and predicting reactions such as oxide formation and fiber/matrix interactions. The leading experimental methods for measuring activities are the Galvanic cell or electro-motive force (EMF) technique and the KCMS technique. Each has specific advantages, depending on

  7. First Run II Measurement of the W Boson Mass

    CERN Document Server

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez-Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, Mauro; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; García, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtälä, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobuev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2007-01-01

    We describe a measurement of the W boson mass mW using 200/pb of root-s = 1.96 TeV p-pbar collision data taken with the CDF II detector. With a sample of 63,964 W -> e nu candidates and 51,128 W -> mu nu candidates, we measure mW = [80.413 +- 0.034 (stat) +- 0.034 (sys) = 80.413 +- 0.048] GeV/c^2. This is the single most precise mW measurement to date. When combined with other measured electroweak parameters, this result further constrains the properties of unobserved particles coupling to W and Z bosons.

  8. First Run II Measurement of the W Boson Mass

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Abulencia, A.; /Illinois U., Urbana; Adelman, J.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Albrow, Michael G.; /Fermilab; Alvarez Gonzalez, B.; /CSIC, Catalunya; Amerio, S.; /Padua U.; Amidei, Dante E.; /Michigan U.; Anastassov, A.; /Rutgers U., Piscataway; Annovi, A.; /Frascati; Antos, J.; /Comenius U. /Fermilab

    2007-08-01

    We describe a measurement of the W boson mass m{sub W} using 200 pb{sup -1} of {radical}s = 1.96 TeV p{bar p} collision data taken with the CDF II detector. With a sample of 63,964 W {yields} e{nu} candidates and 51,128 W {yields} {mu}{nu} candidates, we measure m{sub W} = [80.413 {+-} 0.034(stat.) {+-} 0.034 (sys.) = 80.413 {+-} 0.048] GeV/c{sup 2}. This is the single most precise m{sub W} measurement to date. When combined with other measured electroweak parameters, this result further constrains the properties of new unobserved particles coupling to W and Z bosons.

  9. Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics

    NARCIS (Netherlands)

    Shahaf, N.; Franceschi, P.; Arapitsas, P.; Rogachev, I.; Vrhovsek, U.; Wehrens, H.R.M.J.

    2013-01-01

    RATIONALE Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable

  10. Prospects for Measuring Supermassive Black Hole Masses with TMT

    Science.gov (United States)

    Do, Tuan; Wright, Shelley A.; Barth, Aaron J.; Barton, Elizabeth J.; Simard, Luc; Larkin, James E.; Moore, Anna M.; Wang, Lianqi; Ellerbroek, Brent

    2014-07-01

    The next generation of giant-segmented mirror telescopes will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope and the adaptive optics assisted integral- field spectrograph IRIS, which is capable of diffraction-limited spectroscopy from Z band (0.9 μm) to K band (2.2 μm). These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument to determine the expected signal-to-noise ratio of a range of possible targets spanning intermediate mass black holes of ˜10^4 M⊙ to the most massive black holes known today of >10^10 M⊙. I will present simulations across a spectrum of black hole masses and galaxy types to show the ability of IRIS and TMT to quantitatively explore the demographics of black holes in the universe. I will discuss how these observations will enable our study of the origin of the MBH - galaxy velocity dispersion and MBH - galaxy luminosity relationships, and the evolution of black holes through cosmic time.

  11. Mass measurements on short-lived Cd and Ag nuclides at the online mass spectrometer ISOLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Breitenfeldt, Martin

    2009-07-03

    In the present work, mass determinations of the eleven neutron-deficient nuclides {sup 99-109}Cd, of ten neutron-rich silver nuclides {sup 112,114-121,123}Ag, and seven neutron-rich cadmium nuclides {sup 114,120,122-124,126,128}Cd are reported. Due to the clean production of the neutron-deficient nuclides it was possible to reduce the experimental uncertainties down to 2 keV, whereas the measurements of neutron-rich nuclides were hampered by the presence of contaminations from more stable In and Cs nuclides. In the case of {sup 99}Cd and {sup 123}Ag the masses were determined for the first time and for the other nuclides the mass uncertainties could be reduced by up to a factor of 50 as in the case of {sup 100}Cd. In the case of a potential isomeric mixture as for {sup 115,117,119}Ag and {sup 123}Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of a potential isomeric mixture as for {sup 115,117,119}Ag and {sup 123}Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of the neutron-deficient Cd nuclides a conflict between the mass values obtained in the present work and those published by the JYFLTRAP group [EEH{sup +}] could be solved by performing an atomic-mass evaluation. Thus, it was revealed that reason for the conflict was a different value of the JYFLTRAP reference mass {sup 96}Mo. Furthermore, a reduction of the mass uncertainty and a slight increase of the mass of {sup 100}In were obtained. These mass measurements are an important step towards an understanding of the physics of

  12. Measurements of the top quark mass with the ATLAS detector

    CERN Document Server

    Nisius, Richard; The ATLAS collaboration

    2017-01-01

    The measurements of the top quark mass given are obtained from ATLAS data taken at proton--proton centre-of-mass energies of $\\sqrt{s}=7$ and $8$ TeV. An extraction of the top quark pole mass ($m_{\\mathrm{top}}^{\\mathrm{pole}}$) at next-to-leading order (NLO) is presented. This result is obtained from normalised differential cross-sections in the $t\\bar{t}\\to\\mbox{dilepton}$ channel leading to: $m_{\\mathrm{top}}^{\\mathrm{pole}} = 173.2 \\pm 0.9 (\\mathrm{stat.}) \\pm 0.8 (\\mathrm{syst.}) \\pm 1.2 (\\mathrm{theo.})$ GeV. In addition, measurements of $m_{\\mathrm{top}}$ are discussed that are based on the template method performed in three $t\\bar{t}$ decay channels. For all results the uncertainty is dominated by systematic effects. Finally, the 2016 ATLAS combined value of $m_{\\mathrm{top}}$ is: $m_{\\mathrm{top}}=172.84 \\pm 0.34 (\\mathrm{stat.}) \\pm 0.61 (\\mathrm{syst.})$ GeV, with a total uncertainty of 0.70 GeV, i.e.a precision of 0.4$\\%$.

  13. Precision measurement of the {Sigma}{sup 0} hyperon mass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.H.L.S.; Hartouni, E.P.; Kreisler, M.N. [and others

    1998-02-17

    The research that is described in this paper is part of a program to study strong interaction mechanisms in proton proton collisions. The program consists of two experiments: Brookhaven E766 in which we studied the reactions pp {yields} p+ all charged particles with 27.5 GeV/c incident protons and Fermilab E690 in which we studied the reactions pp {yields} p+ all charged particles with 800 GeV/c incident protons. In these experiments, we employed state-of-the-art data acquisition sys- tems and acquired large samples of data: at Brookhaven we amassed 300 million high multiplicity events and at Fermilab, 5.5 billion events. Our uncertainty in the {Sigma}{sup 0} mass is more than 7 times smaller than the best previous result and was based on 16 times the statistics. Likewise, the {Sigma}{sup 0} - {Lambda}{sup 0} mass difference is more than 14 times more accurate than the previous best result. Finally, we note that this measurement is the first direct measurement of the {Sigma}{sup 0} mass.

  14. Charged Kaon Mass Measurement using the Cherenkov Effect

    Energy Technology Data Exchange (ETDEWEB)

    Graf, N.; /Indiana U.; Lebedev, A.; /Harvard U., Phys. Dept.; Abrams, R.J.; /Michigan U.; Akgun, U.; Aydin, G.; /Iowa U.; Baker, W.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore; Bergfeld, T.; /South Carolina U.; Beverly, L.; /Fermilab; Bujak, A.; /Purdue U.; Carey, D.; /Fermilab /Virginia U. /Iowa U.

    2009-09-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 {+-} 1.7 MeV/c{sup 2}, which is within 1.4{sigma} of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  15. Effect of lifestyle intervention plus rosiglitazone or placebo therapy on left ventricular mass assessed with cardiovascular magnetic resonance in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Tamsma Jouke T

    2011-10-01

    Full Text Available Abstract Background To evaluate the effect of lifestyle intervention in conjunction with rosiglitazone or placebo therapy on left ventricular (LV mass, using cardiovascular magnetic resonance (CMR in the metabolic syndrome. Methods The present study was a pre-specified substudy of a double-blind randomized controlled trial evaluating the effect of lifestyle intervention in conjunction with rosiglitazone or placebo therapy on carotid artery atherosclerosis in the metabolic syndrome. From this original study population, 10 subjects from the placebo group and 10 from the rosiglitazone group were randomly selected. At baseline and follow-up (52 weeks, clinical and laboratory measurements were assessed and a CMR-examination was performed to evaluate LV mass indexed for body surface area (LV mass-I. Subsequently, the effect of therapy (rosiglitazone vs. placebo and clinical and laboratory variables on LV mass-I was evaluated. Results In both groups, body mass index, waist circumference, systolic and diastolic blood pressure significantly decreased during follow-up. Interestingly, LV mass-I significantly decreased in the placebo group (48.9 ± 5.3 g/m2 vs. 44.3 ± 5.6 g/m2, p 2 vs. 53.7 ± 9.2 g/m2, p = 0.3. After correction for systolic and diastolic blood pressure and triglyceride, the kind of therapy (rosiglitazone vs. placebo remained the only significant predictor of LV mass-I reduction. Conclusions Lifestyle intervention resulted in a reduction of LV mass-I in the metabolic syndrome, indicating reverse remodeling. However, rosiglitazone therapy may have inhibited this positive reverse remodeling. Trial registration Current Controlled Trials ISRCTN54951661.

  16. Measuring Neutrino Mass with Radioactive Ions in a Storage Ring

    Science.gov (United States)

    Lindroos, Mats; McElrath, Bob; Orme, Christopher; Schwetz, Thomas

    2010-03-01

    A method to measure the neutrino mass kinematically using beams of ions which undergo beta decay is proposed. The idea is to tune the ion beam momentum so that in most decays, the electron is forward moving with respect to the beam, and only in decays near the endpoint is the electron moving backwards. By counting the backward moving electrons one can observe the effect of neutrino mass on the beta spectrum close to the endpoint. In order to reach sensitivities for mν<0.2 eV, it is necessary to control the ion momentum with a precision better than δp/p<10-5, identify suitable nuclei with low Q-values (in the few to ten keV range), and one must be able to observe at least O(1018) decays.

  17. Top mass measurements at the Tevatron run II

    Energy Technology Data Exchange (ETDEWEB)

    Velev, Gueorgui V.; /Fermilab

    2005-10-01

    The latest top quark mass measurements by the CDF and D0 experiments are presented here. The mass has been determined in the dilepton (t{bar t} {yields} e{mu}, ee, {mu}{mu} + jets + E{sub T}) and lepton plus jets (t{bar t} {yields} e or {mu} + jets + E{sub T}) final states. The most accurate single result from lepton plus jets channel is 173.5{sub -3.6}{sup +3.7}(stat. + Jet Energy Scale Systematic) {+-} 1.3(syst.) GeV/c{sup 2}, which is better than the combined CDF and D0 Run I average. A preliminary and unofficial average of the best experimental Run II results gives M{sub top} = 172.7 {+-} 3.5 GeV/c{sup 2}.

  18. Thermally induced filter bias in TEOM mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Tuchman, D.P.; Vinson, R.P. [NIOSH, Pittsburgh, PA (United States). US Dept. of Health

    2007-07-01

    Researchers at the National Institute for Occupational Safety and Health (NIOSH) have long used stationary tapered element oscillating microbalances (TEOMs) in laboratory settings. Current NIOSH research is focused on adapting TEOM technology as a wearable personal dust monitor (PDM) for coal mining occupations. The present research investigated bias caused by thermal effects on filter assemblies. New filters used in the PDM for 8 It tests show an average positive bias of 25.5 {mu}g., while similar tests of equivalent filters used in two 1400A model TEOMs show an average positive bias of 34.3 {mu}g. The derived bias values allow correction of previously collected biased data. Also, pre-heating the filters for 24 h at 46 degrees C shows significant bias reduction, with PDM pre-heated filters subsequently averaging -3.3 {mu}g and 1400A TEOM filters averaging 5.9 {mu}g. On a single-point comparison to gravimetric sampling, a 25.5 {mu}g bias is only significant at low mass loadings. At 2.5 mg, this bias represents a negligible 1% of the mass measurement. If ordinary linear regression is used, the bias is still insignificant. However, if the more valid weighted linear regression is used, it gives more weight to the smaller dependent variable values, which are more impacted by the bias. Consequently, what is 1% bias on a single high-mass value can translate into a larger bias percentage at high-mass values when performing a weighted regression on data that include a large number of low-mass values.

  19. Mass composition measurements at the Pierre Auger Observatory

    Science.gov (United States)

    Molina Bueno, L.; Pierre Auger Collaboration

    2015-11-01

    The Pierre Auger Observatory is the largest ultra-high energy cosmic ray experiment built so far. It is a hybrid detector, since it measures both the fluorescence light emitted while the air showers develop in the atmosphere and the particles reaching the ground. We present the results related to the mass composition of ultra-high energy cosmic rays as obtained from both types of measurements. The depth at which the maximum of the electromagnetic development takes place and its fluctuations are the most sensitive parameters to infer the nature of the cosmic rays. In addition, we present the latest muon measurements that can be used to test and constrain models of hadronic interactions at energies larger than those reached at LHC.

  20. Cloning and characterization of a novel hemocyanin variant LvHMCV4 from shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Lu, Xin; Lu, Hui; Guo, Lingling; Zhang, Zehui; Zhao, Xianliang; Zhong, Mingqi; Li, Shengkang; Zhang, Yueling

    2015-10-01

    Recently, we found 3 variants of hemocyanin subunit with higher molecular weight in shrimp Litopenaeus vannamei (Named as LvHMCV1-3). In this study, a novel L. vannamei hemocyanin variant (Named as LvHMCV4) was further cloned and characterized. Bioinformatic analysis predicted that LvHMCV4 contains one open reading frame of 2137 bp and encodes a polypeptide of 678 amino acids. It shares 84-99% cDNA sequences identity to that of the classical form of L. vannamei hemocyanin (LvHMC, AJ250830.1) and LvHMCV1-3. LvHMCV4 possesses a conserved structure characteristic of the hemocyanin family and can be clustered into one branch along with other arthropod hemocyanins in a phylogenetic tree. Further, the full-length DNA of LvHMCV4 contains 2660 bp and two introns, which are located at the 80-538 bp and 2063-2227 bp regions, respectively. In addition, the mRNA transcript of LvHMCV4 was expressed highly in the hepatopancreas, lymphoid, brain and hemocytes, and weakly in the heart, intestine and gill, while no expression was found in the muscle, stomach and gut. Infection by Escherichia coli K12, Vibrio parahaemolyticus, Vibrio alginolyticus, Vibrio fluvialis, Streptococcus pyogenes or Staphylococcus aureus up-regulated significantly LvHMCV4 mRNA expression in the hepatopancreas. Furthermore, the recombinant protein of LvHMCV4 (rLvHMCV4) was prepared, which showed agglutination activities against six pathogenic bacteria at concentrations ranging from 15.6 to 125 μg/ml. When co-injected with V. parahaemolyticus in L.vannamei, rLvHMCV4 significantly increased the survival rate after 48 h injection. Together, these studies suggested that hemocyanin variant, LvHMCV4, might be involved in shrimp resistance to pathogenic infection.

  1. Measurement of the charged kaon mass with the MIPP RICH

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Nicholas J. [Indiana Univ., Bloomington, IN (United States)

    2008-08-01

    The currently accepted value of the charged kaon mass is 493.677 ± 0.013 MeV (26 ppm). It is a weighted average of six measurements, most of which use kaonic atom X-ray energy techniques. The two most recent and precise results dominate the average but differ by 122 ppm. Inconsistency in the data set needs to be resolved, preferably using independent techniques. One possibility uses the Cherenkov effect. A measurement of the charged kaon mass using this technique is presented. The data was taken with the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory using a tagged beam of protons, kaons, and pions ranging in momentum from 37 GeV/c to 63 GeV/c. The measured value is 491.3 ± 1.7 MeV. This is within 1.4σ of the current value. An improvement in precision by a factor of 35 would make this technique competitive for resolving the ambiguity in the X-ray data.

  2. Measurement of the effective plasma ion mass in large tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Lister, J.B.; Villard, L.; Ridder, G. de [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-06-01

    There is not yet a straightforward method for the measurement of the D-T ratio in the centre of a tokamak plasma. One of the simpler measurements put forward in the past is the interpretation of the MHD spectrum in the frequency range of the Global Alfven Eigenmodes (GAE). However, the frequencies of these modes do not only depend on the plasma mass, but are also quite strongly dependent on the details of the current and density profiles, creating a problem of deconvolution of the estimate of the plasma mass from an implicit relationship between several measurable plasma parameters and the detected eigenmode frequencies. This method has been revised to assess its likely precision for the JET tokamak. The low n GAE modes are sometimes too close to the continuum edge to be detectable and the interpretation of the GAE spectrum is rendered less direct than had been hoped. We present a statistical study on the precision with which the D-T ratio could be estimated from the GAE spectrum on JET. (author) 4 figs., 8 refs.

  3. Plutonium measurements by accelerator mass spectrometry at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, J E; Hamilton, T F; Broan, T A; Jokela, T A; Knezovich, T J; Ognibene, T J; Proctor, I D; Roberts, M L; Southon, J R; Vogel, J S; Sideras-Haddad, E

    1999-10-26

    Mass spectrometric methods provide sensitive, routine, and cost-effective analyses of long-lived radionuclides. Here the authors report on the status of work at Lawrence Livermore National Laboratory (LLNL) to develop a capability for actinide measurements by accelerator mass spectrometry (AMS) to take advantage of the high potential of AMS for rejection of interferences. This work demonstrates that the LLNL AMS spectrometer is well-suited for providing high sensitivity, robust, high throughput measurements of plutonium concentrations and isotope ratios. Present backgrounds are {approximately}2 x 10{sup 7}atoms per sample for environmental samples prepared using standard alpha spectrometry protocols. Recent measurements of {sup 239+240}Pu and {sup 241}Pu activities and {sup 240}Pu/{sup 239}Pu isotope ratios in IAEA reference materials agree well with IAEA reference values and with alpha spectrometry and recently published ICP-MS results. Ongoing upgrades of the AMS spectrometer are expected to reduce backgrounds below 1 x 10{sup 6} atoms per sample while allowing simplifications of the sample preparation chemistry. These simplifications will lead to lower per-sample costs, higher throughput, faster turn around and, ultimately, to larger and more robust data sets.

  4. Single-reference high-precision mass measurement with a multi-reflection time-of-flight mass spectrograph

    CERN Document Server

    Ito, Y; Wada, M; Naimi, S; Sonoda, T; Mita, H; Arai, F; Takamine, A; Okada, K; Ozawa, A; Wollnik, H

    2013-01-01

    A multi-reflection time-of-flight mass spectrograph, competitive with Penning trap mass spectrometers, has been built at RIKEN. We have performed a first online mass measurement, using 8Li+ (T1/2 = 838 ms). A new analysis method has been realized, with which, using only 12C+ references, the mass excess of 8Li was accurately determined to be 20947.6(15)(34) keV (dm/m = 6.6 x 10-7). The speed, precision and accuracy of this first online measurement exemplifies the potential for using this new type of mass spectrograph for precision measurements of short-lived nuclei.

  5. Performance measures for mass customization strategies in an ETO environment

    DEFF Research Database (Denmark)

    Bonev, Martin; Hvam, Lars

    2013-01-01

    When following mass customization (MC) principles, manufacturing companies have to consider several aspects. Complexity is thereby seen as a major challenge to be handled. Especially for ETO companies the movement towards MC is much more complex, as products are not standardized, processes are se...... are seldom automated and little control over the customer portfolio is obtained. Based on case studies, this research proposes a new way of effectively and efficiently implementing MC strategies. It closely investigates deviations between contribution margins and between pre- and post......-calculations of operational measures. The results show the negative impact of high deviations on the cor-responding performance....

  6. Precision measurement of the {Sigma}{sup 0} hyperon mass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.H.; Hartouni, E.P.; Kreisler, M.N.; Uribe, J.; Church, M.D.; Gottschalk, E.E.; Knapp, B.C.; Stern, B.J.; Wiencke, L.R.; Christian, D.C.; Gutierrez, G.; Wehmann, A.; Avilez, C.; Felix, J.; Moreno, G.; Forbush, M.; Huson, F.R.; White, J.T. [BNL E766 Collaboration (United States)

    1998-10-01

    Using pp{r_arrow}p+ all charged particles at 800 GeV/c and 27.5 GeV/c incident protons at Fermilah and Brookhaven, respectively, the mass of the {Sigma}{sup 0} hyperon has been measured with an uncertainty of 7 times smaller than the best previous result. This result, M{sub {Sigma}{sup 0}}=1192.65{plus_minus}0.020{plus_minus}0.014 MeV/c{sup 2} is based on 16 times the statistics of previous results. {copyright} {ital 1998 American Institute of Physics.}

  7. Measurement of the mass of the $\\Lambda_{b}$ baryon

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Moneta, L; Oest, T; Palla, Fabrizio; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Wildish, T; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    In a data sample of four million hadronic \\Z\\ decays collected with the ALEPH detector at LEP, four $\\Lambda_b$ baryon candidates are exclusively reconstructed in the $\\Lambda_b \\rightarrow \\Lambda_c^+ \\pi^-$ channel, with the $\\Lambda_c^+$ decaying into $pK^-\\pi^+$, $p\\bar{K^0}$, or $\\Lambda\\pi^+\\pi^+\\pi^-$. The probability of the observed signal to be due to a background fluctuation is estimated to be $4.2 \\times 10^{-4}$. The mass of the $\\Lambda_b$ is measured to be $5614 \\pm 21 \\, (stat.) \\pm 4 \\, (syst.)~\\mevcc$. %$5614\\pm 21\\,(stat.) \\pm 4\\,(syst.) \\mevcc$.

  8. Thermospheric mass density measurement from precise orbit ephemeris

    Directory of Open Access Journals (Sweden)

    Junyu Chen

    2016-05-01

    Full Text Available Atmospheric drag, which can be inferred from orbit information of low-Earth orbiting (LEO satellites, provides a direct means of measuring mass density. The temporal resolution of derived mass density could be in the range from minutes to days, depending on the precision of the satellite orbit data. This paper presents two methods potentially being able to estimate thermosphere mass density from precise obit ephemeris with high temporal resolution. One method is based on the drag perturbation equation of the semi-major axis and the temporal resolution of retrieved density could be 150 s for CHAMP satellite. Another method generates corrections to densities computed from a baseline density model through a Kalman filter orbit drag coefficient determination (KFOD process and the temporal resolution of derived density could be as high as 30 s for CHAMP satellite. The densities estimated from these two methods are compared with densities obtained from accelerometer data of CHAMP satellite. When the accelerometer data based densities are used as reference values, the mean relative accuracy of the densities derived from precision orbit data using the two methods is within approximately 10%. An application of the derived densities shows that the derived densities can reduce orbit predication errors.

  9. Schwinger's Measurement Algebra, Preons and the Lepton Masses

    Science.gov (United States)

    Brannen, Carl

    2006-04-01

    In the 1950s and 1960s, Julian Schwinger developed an elegant general scheme for quantum kinematics and dynamics appropriate to systems with a finite number of dynamical variables, now knowns as ``Schwinger's Measurement Algebra'' (SMA). The SMA has seen little use, largely because it is non relativistic in that it does not allow for particle creation. In this paper, we apply the SMA to the problem of modeling tightly bound subparticles (preons) of the leptons and quarks. We discuss the structure of the ideals of Clifford algebras and, applying this to the elementary fermions, derive a preon substructure for the quarks and leptons. We show that matrices of SMA type elements can be used to model the quarks and leptons under the assumption that the preons are of such high energy that they cannot be created in normal interactions. This gives a definition of the SMA for the composite particle in terms of the SMA of its constituents. We solve the resulting matrix equation for the quarks and leptons. We show that the mass operator for the charged leptons is related to the democratic mass matrix used in the Koide mass formula.

  10. Thermospheric mass density measurement from precise orbit ephemeris

    Institute of Scientific and Technical Information of China (English)

    Junyu Chen; Jizhang Sang

    2016-01-01

    Atmospheric drag,which can be inferred from orbit information of low-Earth orbiting (LEO)satellites,provides a direct means of measuring mass density.The temporal resolution of derived mass density could be in the range from minutes to days,depending on the precision of the satellite orbit data.This paper presents two methods potentially being able to estimate thermosphere mass density from precise obit ephemeris with high temporal resolution.One method is based on the drag perturbation equation of the semi-major axis and the temporal resolution of retrieved density could be 150 s for CHAMP satellite.Another method generates corrections to densities computed from a baseline density model through a Kalman filter orbit drag coefficient determination (KFOD) process and the temporal resolution of derived density could be as high as 30 s for CHAMP satellite.The densities estimated from these two methods are compared with densities obtained from accelerometer data of CHAMP satellite.When the accelerometer data based densities are used as reference values,the mean relative accuracy of the densities derived from precision orbit data using the two methods is within approximately 10%.An application of the derived densities shows that the derived densities can reduce orbit predication errors.

  11. Mass measurements on short-lived Cd and Ag nuclides at the online mass spectrometer ISOLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Breitenfeldt, Martin

    2009-07-03

    In the present work, mass determinations of the eleven neutron-deficient nuclides {sup 99-109}Cd, of ten neutron-rich silver nuclides {sup 112,114-121,123}Ag, and seven neutron-rich cadmium nuclides {sup 114,120,122-124,126,128}Cd are reported. Due to the clean production of the neutron-deficient nuclides it was possible to reduce the experimental uncertainties down to 2 keV, whereas the measurements of neutron-rich nuclides were hampered by the presence of contaminations from more stable In and Cs nuclides. In the case of {sup 99}Cd and {sup 123}Ag the masses were determined for the first time and for the other nuclides the mass uncertainties could be reduced by up to a factor of 50 as in the case of {sup 100}Cd. In the case of a potential isomeric mixture as for {sup 115,117,119}Ag and {sup 123}Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of a potential isomeric mixture as for {sup 115,117,119}Ag and {sup 123}Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of the neutron-deficient Cd nuclides a conflict between the mass values obtained in the present work and those published by the JYFLTRAP group [EEH{sup +}] could be solved by performing an atomic-mass evaluation. Thus, it was revealed that reason for the conflict was a different value of the JYFLTRAP reference mass {sup 96}Mo. Furthermore, a reduction of the mass uncertainty and a slight increase of the mass of {sup 100}In were obtained. These mass measurements are an important step towards an understanding of the physics of

  12. Chemical abundances in the protoplanetary disc LV 2 (Orion) - II. High-dispersion VLT observations and microjet properties

    Science.gov (United States)

    Tsamis, Y. G.; Walsh, J. R.

    2011-11-01

    Integral field spectroscopy of the LV 2 proplyd is presented taken with the Very Large Telescope (VLT)/FLAMES Argus array at an angular resolution of 0.31 × 0.31 arcsec2 and velocity resolutions down to 2 km s-1 pixel-1. Following subtraction of the local M42 emission, the spectrum of LV 2 is isolated from the surrounding nebula. We measured the heliocentric velocities and widths of a number of lines detected in the intrinsic spectrum of the proplyd, as well as in the adjacent Orion nebula falling within a 6.6 × 4.2 arcsec2 field of view. It is found that far-ultraviolet to optical collisional lines with critical densities, Ncr, ranging from 103 to 109 cm-3 suffer collisional de-excitation near the rest velocity of the proplyd correlating tightly with their critical densities. Lines of low Ncr are suppressed the most. The bipolar jet arising from LV 2 is spectrally and spatially well detected in several emission lines. We compute the [O III] electron temperature profile across LV 2 in velocity space and measure steep temperature variations associated with the red-shifted lobe of the jet, possibly being due to a shock discontinuity. From the velocity-resolved analysis the ionized gas near the rest frame of LV 2 has Te= 9200 ± 800 K and Ne˜ 106 cm-3, while the red-shifted jet lobe has Te≈ 9000-104 K and Ne˜ 106-107 cm-3. The jet flow is highly ionized but contains dense semineutral clumps emitting neutral oxygen lines. The abundances of N+, O2 +, Ne2 +, Fe2 +, S+and S2 +are measured for the strong red-shifted jet lobe. Iron in the core of LV 2 is depleted by 2.54 dex with respect to solar as a result of sedimentation on dust, whereas the efficient destruction of dust grains in the fast microjet raises its Fe abundance to at least 30 per cent solar. Sulphur does not show evidence of significant depletion on dust, but its abundance both in the core and the jet is only about half solar. Based on observations made with ESO telescopes at the Paranal Observatory

  13. Peak Bone Mass Measurement in Iranian Healthy Population

    Directory of Open Access Journals (Sweden)

    B Larijani

    2007-08-01

    Full Text Available Background: Osteoporosis is a disabling disease characterized by compromised bone strength, which predisposes a patient to increased risk of fracture. The aim of this study was evaluation the pattern of bone mass in Iranian healthy population. Methods: The study was performed between December 2000 and May 2001 on one thousand three healthy Iranian sub¬jects who currently live in Tehran. They were selected randomly by cluster random sampling among men and women of 10-76 yr from 50 clusters. The volunteer people were referred to the Bone Mineral Density BMD unit of EMRC. The partici¬pants were recalled for three times and the response rate was 83%. BMD was measured by DXA using Lunar DPX-MD device. Results: Females achieved maximum lumbar BMD up to 25-35. Femur BMD maximized in 30 to 35 and after 45 the inten¬sity of bone loss increased. Female peak bone mass in lumbar region was 1.19 ± 0.12 g/cm2and in femur was 1.02±0.12 g/cm2. Male peak bone mass in lumbar region occurred between ages 25-40 yr, Male's femur BMD maximized in 20-30. In male peak lumbar bone mass was 1.22±0.16 g/cm2 and femur was 1.08±0.15 g/cm2. Osteopenia was recog¬nized in 50% and 48.8% of women above 50 in spine and total femur, respectively, however these percentages were 37.1% and 34.8% among male subjects. Conclusion: Iranian BMD values sufficiently different from other countries to warrant a separate reference sample with which to compare individuals for the purpose of diagnosing osteoporosis and osteopenia according to the WHO criteria.

  14. Precision Measurement of the Mass of the $\\tau$ Lepton

    CERN Document Server

    Ablikim, M; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, J V; Bertani, M; Bian, J M; Boger, E; Bondarenko, O; Boyko, I; Braun, S; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, J C; Chen, M L; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Chu, Y P; Cronin-Hennessy, D; Dai, H L; Dai, J P; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; Ding, W M; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Du, S X; Fan, J Z; Fang, J; Fang, S S; Fang, Y; Fava, L; Feng, C Q; Fu, C D; Fuks, O; Gao, Q; Gao, Y; Geng, C; Goetzen, K; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, T; Guo, Y P; Han, Y L; Harris, F A; He, K L; He, M; He, Z Y; Held, T; Heng, Y K; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Huang, G M; Huang, G S; Huang, H P; Huang, J S; Huang, L; Huang, X T; Huang, Y; Hussain, T; Ji, C S; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L L; Jiang, L W; Jiang, X S; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Kloss, B; Kopf, B; Kornicer, M; Kuehn, W; Kupsc, A; Lai, W; Lange, J S; Lara, M; Larin, P; Leyhe, M; Li, C H; Li, Cheng; Li, Cui; Li, D; Li, D M; Li, F; Li, G; Li, H B; Li, J C; Li, K; Li, Lei; Li, P R; Li, Q J; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Lin, D X; Liu, B J; Liu, C L; Liu, C X; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H M; Liu, J; Liu, J P; Liu, K; Liu, K Y; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Z A; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, G R; Lu, H J; Lu, H L; Lu, J G; Lu, X R; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lv, M; Ma, F C; Ma, H L; Ma, Q M; Ma, S; Ma, T; Ma, X Y; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Moeini, H; Morales, C Morales; Moriya, K; Muchnoi, N Yu; Muramatsu, H; Nefedov, Y; Nikolaev, I B; Ning, Z; Nisar, S; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pelizaeus, M; Peng, H P; Peters, K; Ping, J L; Ping, R G; Poling, R; Q., N; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, X S; Qin, Y; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Ruan, X D; Sarantsev, A; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, X Y; Sheng, H Y; Shepherd, M R; Song, W M; Song, X Y; Spataro, S; Spruck, B; Sun, G X; Sun, J F; Sun, S S; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Toth, D; Ullrich, M; Uman, I; Varner, G S; Wang, B; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Q J; Wang, S G; Wang, W; Wang, X F; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Werner, M; Wiedner, U; Wolke, M; Wu, L H; Wu, N; Wu, Z; Xia, L G; Xia, Y; Xiao, D; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Xue, Z; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H X; Yang, L; Yang, Y; Yang, Y X; Ye, H; Ye, M; Ye, M H; Yu, B X; Yu, C X; Yu, H W; Yu, J S; Yu, S P; Yuan, C Z; Yuan, W L; Yuan, Y; Zafar, A A; Zallo, A; Zang, S L; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C B; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J J; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, S H; Zhang, X J; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, X H; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, Y H; Zhong, B; Zhou, L; Zhou, Li; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zou, B S; Zou, J H

    2014-01-01

    An energy scan near the $\\tau$ pair production threshold has been performed using the BESIII detector. About $24$ pb$^{-1}$ of data, distributed over four scan points, was collected. This analysis is based on $\\tau$ pair decays to $ee$, $e\\mu$, $eh$, $\\mu\\mu$, $\\mu h$, $hh$, $e\\rho$, $\\mu\\rho$ and $\\pi\\rho$ final states, where $h$ denotes a charged $\\pi$ or $K$. The mass of the $\\tau$ lepton is measured from a maximum likelihood fit to the $\\tau$ pair production cross section data to be $m_{\\tau} = (1776.91\\pm0.12 ^{+0.10}_{-0.13}$) MeV/$c^2$, which is currently the most precise value in a single measurement.

  15. Measurement of the Top Quark Mass Using Dilepton Events

    Science.gov (United States)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grim, G.; Grinstein, S.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lan, H.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Q.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Mani, S.; Mao, H. S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-03-01

    The D0 Collaboration has performed a measurement of the top quark mass mt based on six candidate events for the process tt¯-->bW+b¯W-, where the W bosons decay to eν or μν. This sample was collected during an exposure of the D0 detector to an integrated luminosity of 125 pb-1 of s = 1.8 TeV pp¯ collisions. We obtain mt = 168.4+/-12.3\\(stat\\)+/-3.6\\(syst\\) GeV/c2, consistent with the measurement obtained using single-lepton events. Combination of the single-lepton and dilepton results yields mt = 172.0+/-7.5 GeV/c2.

  16. Top quark properties and mass measurements with the ATLAS detector

    CERN Document Server

    Moreno Llacer, Maria; The ATLAS collaboration

    2017-01-01

    ID# 104 Top quark properties and mass measurements with the ATLAS detector The top quark is unique among the known quarks in that it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. The latest measurements of these properties with the ATLAS detector at the LHC are presented using 8 TeV and 13 TeV data. Measurements of top quark spin observables in top-antitop events, each sensitive to a different coefficient of the spin density matrix, are presented and compared to the Standard Model predictions. The helicity of the W boson from the top decays and the production angles of the top quark are further discussed. Limits on the rate of flavour changing neutral currents in the production or decay of the top quark are reported. The production of top-quark pairs in association with W and Z bosons is also presented. The measurement probes the coupling between the top quark and ...

  17. [Mass spectrometry assay for denitrifying enzyme activity measurement].

    Science.gov (United States)

    Zhang, Li-li; Wu, Zhi-jie; Song, Yu-chao

    2010-07-01

    Nitrification inhibitors exert inhibition function in soil nitrification process (NH4(+)-N to NO3(-)-N) and are widely applied in order to improve N fertilizer use efficiency. Before the new nitrification inhibitor is used, its effects on denitrification process must be investigated and denitrifying enzyme activity (DEA) is an effective indicator to show this process. In the present paper, a mass spectrometery (MS) method was taken to measure the denitrifying enzyme activity in the new nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) incubation system. The results showed that the method measured the concentration of N2O in the incubation system accurately and the concentration measured by MS had marked correlation with that measured by gas chromatogram (GC) (MS(N2O) = -0.45 + 1.03GC(N2O, R2 = 0.995). At the same time, enrichment of 15 N2O and 15 N2 was measured to discriminate the nitrate reductase and N2O reductase. Differed with traditional method, the enzymatic inhibitor-acetylene was not appended. The results showed that DMPP had no influence on the denitrifying enzyme activity and indicated that the denitrification process was not influenced by DMPP.

  18. Efficient Control of Active Transformers for Increasing the PV Hosting Capacity of LV Grids

    DEFF Research Database (Denmark)

    Hashemi Toghroljerdi, Seyedmostafa; Østergaard, Jacob; Degner, Thomas

    2016-01-01

    on decreasing the voltage rise along LV feeders, and the potential of active medium voltage to low voltage (MV/LV) transformers for overvoltage prevention has not been thoroughly investigated. This paper presents the application of active MV/LV transformers for increasing the PV hosting capacity of LV grids...... increase the PV hosting capacity of the grid, while eliminating the need for a complex and centralized controller. The voltages of specific locations or the grid state estimations provide adequate data for adjustments of the droop parameters. The simulations and field test results associated...

  19. Regarding the detectability and measurement of coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Howard Timothy A.

    2015-01-01

    Full Text Available In this review I discuss the problems associated with the detection and measurement of coronal mass ejections (CMEs. CMEs are important phenomena both scientifically, as they play a crucial role in the evolution of the solar corona, and technologically, as their impact with the Earth leads to severe space weather activity in the form of magnetic storms. I focus on the observation of CMEs using visible white light imagers (coronagraphs and heliospheric imagers, as they may be regarded as the binding agents between different datasets and different models that are used to reconstruct them. Our ability to accurately measure CMEs observed by these imagers is hampered by many factors, from instrumental to geometrical to physical. Following a brief review of the history of CME observation and measurement, I explore the impediments to our ability to measure them and describe possible means for which we may be able to mitigate those impediments. I conclude with a discussion of the claim that we have reached the limit of the information that we can extract from the current generation of white light imagers, and discuss possible ways forward regarding future instrument capabilities.

  20. Using Energy Peaks to Measure New Particle Masses

    CERN Document Server

    Agashe, Kaustubh; Kim, Doojin

    2014-01-01

    We discussed in arXiv:1209.0772 that the laboratory frame distribution of the energy of a massless particle from a two-body decay at a hadron collider has a peak whose location is identical to the value of this daughter's (fixed) energy in the rest frame of the corresponding mother particle. For that result to hold we assumed that the mother is unpolarized and has a generic boost distribution in the laboratory frame. In this work we discuss how this observation can be applied for determination of masses of new particles, without requiring a full reconstruction of their decay chains or information about the rest of the event. We focus on a two-step cascade decay of a massive particle that has one invisible particle in the final state: C -> Bb -> Aab, where C, B and A are new particles of which A is invisible and a, b are visible particles. Combining the measurements of the peaks of energy distributions of a and b with that of the edge in their invariant mass distribution, we demonstrate that it is in principle...

  1. Assessment of the LV-S2 & LV-S3 Stack Sampling Probe Locations for Compliance with ANSI/HPS N13.1-1999

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.; Amidan, Brett G.

    2014-09-30

    This document reports on a series of tests conducted to assess the proposed air sampling locations for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Group 1-2A exhaust stacks with respect to the applicable criteria regarding the placement of an air sampling probe. The LV-C2, LV-S2, and LV-S3 exhaust stacks were tested together as a group (Test Group 1-2A). This report only covers the results of LV-S2 and LV-S3; LV-C2 will be reported on separately. Federal regulations1 require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. 2 These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.

  2. Prediction of the left ventricular mass from the electrocardiogram in systemic hypertension

    NARCIS (Netherlands)

    deVries, SO; Heesen, WF; Beltman, FW; Kroese, AH; May, JF; Smit, AJ; Lie, KI

    1996-01-01

    Although echocardiography provides a reliable method to determine left ventricular (LV) mass, it may not be available in all settings. Numerous electrocardiographic (EGG) criteria for the detection of LV hypertrophy have been developed, but few attempts have been made to predict the LV mass itself f

  3. Prediction of the left ventricular mass from the electrocardiogram in systemic hypertension

    NARCIS (Netherlands)

    deVries, SO; Heesen, WF; Beltman, FW; Kroese, AH; May, JF; Smit, AJ; Lie, KI

    1996-01-01

    Although echocardiography provides a reliable method to determine left ventricular (LV) mass, it may not be available in all settings. Numerous electrocardiographic (EGG) criteria for the detection of LV hypertrophy have been developed, but few attempts have been made to predict the LV mass itself

  4. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  5. Pinning down the superfluid and measuring masses using pulsar glitches

    CERN Document Server

    Ho, Wynn C G; Antonopoulou, Danai; Andersson, Nils

    2015-01-01

    Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and X-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.

  6. Top-quark mass measurements: review and perspectives

    CERN Document Server

    Cortiana, Giorgio

    2015-01-01

    The top quark is the heaviest elementary particle known and its mass ($m_{\\rm top}$) is a fundamental parameter of the Standard Model (SM). The $m_{\\rm top}$ value affects theory predictions of particle production cross-sections required for exploring Higgs-boson properties and searching for New Physics (NP). Its precise determination is essential for testing the overall consistency of the SM, to constrain NP models, through precision electroweak fits, and has an extraordinary impact on the Higgs sector, and on the SM extrapolation to high-energies. The methodologies, the results, and the main theoretical and experimental challenges related to the $m_{\\rm top}$ measurements and combinations at the Large Hadron Collider (LHC) and at the Tevatron are reviewed and discussed. Finally, the prospects for the improvement of the $m_{\\rm top}$ precision during the upcoming LHC runs are briefly outlined.

  7. LvDJ-1 plays an important role in resistance against Vibrio alginolyticus in Litopenaeus vannamei.

    Science.gov (United States)

    Huang, Mingzhu; Liu, Yuan; Xie, Chenying; Wang, Wei-Na

    2015-05-01

    DJ-1 was first identified as an oncogene that transformed mouse NIH3T3 cells in cooperation with activated Ras. It has since exhibited a variety of functions in a range of organisms. In this study, the DJ-1 gene in Litopenaeus vannamei (LvDJ-1) was identified and characterized. A recombinant protein LvDJ-1 was produced in Pichia pastoris. LvDJ-1 expression in vivo was knocked down by dsRNA-mediated RNA interference (RNAi), which led to significantly decreased levels of LvDJ-1 mRNA and protein. When the L. vannamei were challenged with RNAi and Vibrio alginolyticus, the transcription and expression of copper zinc superoxide dismutase (LvCZSOD) in the hepatopancreas were dramatically lower in shrimp with knocked down LvDJ-1 than in controls. Transcription and expression of P53 (LvP53) were significantly higher in shrimp lacking LvDJ-1 than in controls. Hepatopancreas samples were analyzed using real time polymerase chain reaction and Western blot. Moreover, blood samples from the shrimp, assessed with flow cytometry, showed significant increases in respiratory burst and apoptosis in those lacking LvDJ-1 compared to the controls. Cumulative mortality in the shrimp lacking LvDJ-1 was significantly different from that in the control group after challenge with V. alginolyticus. Altogether, the results prove that LvDJ-1 regulates apoptosis and antioxidant activity, and that these functions play an important role in L. vannamei resistance against V. alginolyticus.

  8. A Precision Measurement of the Top Quark Mass

    Energy Technology Data Exchange (ETDEWEB)

    Black, Kevin Matthew

    2005-05-01

    This dissertation describes the measurement of the top quark mass using events recorded during a {approx} 230 pb{sup -1} exposure of the D0 detector to proton-anti-proton (p{bar p}) collisions at a center of mass energy of 1.96 TeV. The Standard Model of particle physics predicts that the top quark will decay into a bottom quark and a W boson close to 100% of the time. The bottom quark will hadronize (bind with another quark) and produce a jet of hadronic particles. The W bosons can decay either into a charged lepton and a neutrino or a pair of quarks. this dissertation focuses on the top quark (t{bar t}) events in which one W decays hadronically and the other decays leptonically. Two methods of identifying t{bar t} events from the large number of events produced are used. The first is based on the unique topology of the final state particles of a heavy particle. By using the topological information of the event, the t{bar t} events can be efficiently extracted from the background. The second method relies on the identification of the remnants of the long lived bottom quarks that are expected to be produced in the decay of almost every top quark. Because the largest background processes do not contain bottom quarks, this is an extremely efficient way to select the events retaining about 60% of the t{bar t} events and removing almost 90% of the background. A kinematic fit to the top quark mass is performed on the t{bar t} candidate events using the final state particles that are seen in the detector. A likelihood technique is then used to extract the most likely value of the top quark mass, m{sub t}, and signal fraction. The result for the topological selection is m{sub t} = 169.9 {+-} 5.8(statistical){sub -7.8}{sup +8.0}(systematic) GeV while the results on the sample selected from identification of a b quark in the event is m{sub t} = 170.6 {+-} 4.2(statistical){sub -6.8}{sup +6.3}(systematic) GeV.

  9. A Precision Measurement of the Top Quark Mass

    Energy Technology Data Exchange (ETDEWEB)

    Black, Kevin Matthew [Boston Univ., MA (United States)

    2005-01-01

    This dissertation describes the measurement of the top quark mass using events recorded during a ~ 230 pb-1 exposure of the D0 detector to proton-anti-proton (p$\\bar{p}$) collisions at a center of mass energy of 1.96 TeV. The Standard Model of particle physics predicts that the top quark will decay into a bottom quark and a W boson close to 100% of the time. The bottom quark will hadronize (bind with another quark) and produce a jet of hadronic particles. The W bosons can decay either into a charged lepton and a neutrino or a pair of quarks. this dissertation focuses on the top quark (t$\\bar{t}$) events in which one W decays hadronically and the other decays leptonically. Two methods of identifying t$\\bar{t}$ events from the large number of events produced are used. The first is based on the unique topology of the final state particles of a heavy particle. By using the topological information of the event, the t$\\bar{t}$ events can be efficiently extracted from the background. The second method relies on the identification of the remnants of the long lived bottom quarks that are expected to be produced in the decay of almost every top quark. Because the largest background processes do not contain bottom quarks, this is an extremely efficient way to select the events retaining about 60% of the t$\\bar{t}$ events and removing almost 90% of the background. A kinematic fit to the top quark mass is performed on the t$\\bar{t}$ candidate events using the final state particles that are seen in the detector. A likelihood technique is then used to extract the most likely value of the top quark mass, mt, and signal fraction. The result for the topological selection is mt = 169.9 ± 5.8(statistical)$+8.0\\atop{-7.8}$(systematic) GeV while the results on the sample selected from identification of a b quark in the event is mt = 170.6 ± 4.2(statistical)$+6.3\\atop{-6.8}$(systematic) GeV.

  10. Impact of Distributed Generation Grid Code Requirements on Islanding Detection in LV Networks

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-01-01

    Full Text Available The recent growing diffusion of dispersed generation in low voltage (LV distribution networks is entailing new rules to make local generators participate in network stability. Consequently, national and international grid codes, which define the connection rules for stability and safety of electrical power systems, have been updated requiring distributed generators and electrical storage systems to supply stabilizing contributions. In this scenario, specific attention to the uncontrolled islanding issue has to be addressed since currently required anti-islanding protection systems, based on relays locally measuring voltage and frequency, could no longer be suitable. In this paper, the effects on the interface protection performance of different LV generators’ stabilizing functions are analysed. The study takes into account existing requirements, such as the generators’ active power regulation (according to the measured frequency and reactive power regulation (depending on the local measured voltage. In addition, the paper focuses on other stabilizing features under discussion, derived from the medium voltage (MV distribution network grid codes or proposed in the literature, such as fast voltage support (FVS and inertia emulation. Stabilizing functions have been reproduced in the DIgSILENT PowerFactory 2016 software environment, making use of its native programming language. Later, they are tested both alone and together, aiming to obtain a comprehensive analysis on their impact on the anti-islanding protection effectiveness. Through dynamic simulations in several network scenarios the paper demonstrates the detrimental impact that such stabilizing regulations may have on loss-of-main protection effectiveness, leading to an increased risk of unintentional islanding.

  11. Relationship of basal-septal fibrosis with LV outflow tract obstruction in hypertrophic cardiomyopathy: insights from cardiac magnetic resonance analysis.

    Science.gov (United States)

    Nakamura, Takashi; Iwanaga, Yoshitaka; Yasuda, Masakazu; Kawamura, Takayuki; Miyaji, Yuki; Morooka, Hanako; Miyazaki, Shunichi

    2016-04-01

    Myocardial fibrosis is frequently observed and may be associated with the prognosis in patients with hypertrophic cardiomyopathy (HCM); however, the clinical pathophysiological features, particularly in terms of fibrosis, of hypertrophic obstructive cardiomyopathy (HOCM) remain unclear. This study aimed to determine a role of local fibrosis in HOCM using cardiac magnetic resonance (CMR). 108 consecutive HCM patients underwent CMR. HOCM was defined as a left ventricular outflow tract (LVOT) pressure gradient ≥30 mmHg at rest. Myocardial mass and fibrosis mass by late gadolinium-enhancement CMR (LGE-CMR) were calculated and the distribution/pattern was analyzed using the AHA 17-segment model. LV ejection fraction (LVEF) was significantly higher in patients with HOCM (n = 19) than in those with nonobstructive HCM (n = 89) (P < 0.05). Both total myocardial and fibrosis masses in LV were similar in the two groups (P = 0.385 and P = 0.859, respectively). However, fibrosis in the basal septum was significantly less frequent in the HOCM group than in the nonobstructive HCM group (P < 0.01). The LVOT pressure gradient was significantly higher in the basal-septal non-fibrosis group than in the fibrosis group (23.6 ± 37.3 vs. 4.8 ± 11.4 mmHg, P < 0.01). Multivariate analysis revealed that basal-septal fibrosis was an independent negative predictor of LVOT obstruction in addition to the local wall thickness and LVEF as positive predictors in HCM patients. In conclusion, a significant association was observed between LVOT obstruction and basal septal fibrosis by LGE-CMR in HCM patients. In addition to negative impact of basal-septal fibrosis, basal-septal hypertrophy and preserved global LV contractility may be associated with the pathophysiological features of LVOT obstruction.

  12. Top quark mass measurements with the CMS experiment at the LHC

    CERN Document Server

    Spannagel, Simon

    2016-01-01

    Measurements of the top quark mass are presented, obtained from CMS data collected in proton proton collisions at the LHC at centre-of-mass energies of 7 TeV and 8 TeV. The mass of the top quark is measured using several methods and channels, including the reconstructed invariant mass distribution of the top quark as well as measurements based on charged particle information. The dependence of the mass measurement on the kinematic phase space is investigated. The results of the various channels are combined and compared to the world average. The top mass is extracted from the inclusive top quark pair production cross section measured at CMS.

  13. FemtoMolar measurements using accelerator mass spectrometry.

    Science.gov (United States)

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2009-03-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive analytical method suitable for the detection of sub-nM concentrations of labeled biological substances such as pharmaceutical drugs in body fluids. A limiting factor in extending the concentration measurements to the sub-pM range is the natural (14)C content in living tissues. This was circumvented by separating the labeled drug from the tissue matrix, using standard high-performance liquid chromatography (HPLC) procedures. As the separated total drug amount is in the few fg range, it is not possible to use a standard AMS sample preparation method, where mg sizes are required. We have utilized a sensitive carbon carrier method where a (14)C-deficient compound is added to the HPLC fractions and the composite sample is prepared and analyzed by AMS. Using 50 microL human blood plasma aliquots, we have demonstrated concentration measurements below 20 fM, containing sub-amol amounts of the labeled drug. The method has the immediate potential of operating in the sub-fM region.

  14. Application of SPCALC for chemical and thermodynamic speciation of fluids -example for wells LV-4A, LV-11 and LV-13, Las Tres Virgenes geothermal field, BCS; Aplicacion del SPCALC en la especiacion quimica y termodinamica de fluidos: ejemplo del caso de los pozos LV-4A, LV-11 y LV-13, del campo geotermico de Las Tres Virgenes, BCS

    Energy Technology Data Exchange (ETDEWEB)

    Viggiano Guerra, J.C.; Sandoval Medina, F.; Flores Armenta, M.C. [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: fernando.sandoval@cfe.gob.mx, E-mail: magaly.flores@cfe.gob.mx; Perez, R.J. [Universidad de Calgary (Canada); Gonzalez Partida, E. [Universidad Nacional Autonoma de Mexico, Centro de Geociencias, Mexico, D.F. (Mexico)

    2009-01-15

    SPCALC is an excellent software application providing chemical and multi-phase speciation for geothermal fluids. Recently it was acquired by the Comision Federal de Electricidad (CFE) through a contract with the National Autonomous University of Mexico (UNAM) and the University of Calgary, Canada. Software methodology consists of calculating thermodynamic variables, such as activity (a) and fugacity (f) of chemical species, as well as the saturation indices (log Q/K) of mineral phases of the reservoir. In other words, it models the thermodynamic conditions of the reservoir (pH among other) and simulates the fluid-corrosion rate. This allows the software to foresee scaling and corrosion. In this paper, pervasive fluids in Cretaceous granitic rocks penetrated by wells LV-4A, LV-11 and LV-13 in Las Tres Virgenes geothermal field, BCS, are modeled, starting with chemical analyses. The more important ratios among activities [those which influence the fluid-rock interaction (i.e. {sup a}K{sup +}/{sup a}H{sup +}, {sup a}Ca{sup ++}/{sup a}H{sup +}, {sup a}Na{sup +}/{sup a}H{sup +}, {sup a}Mg{sup ++}/{sup a}H{sup +}) and whose results are the minerals visible under a microscope] are graphed in balance diagrams compatible with the pressure (P) and temperature (T) conditions in the reservoir. Epidote (zoisite) is the mineral found in congruent equilibrium with the system. The main mineral association at those conditions (200-250 degrees Celsius and {approx}18 bar), as observed in the well cuttings, is calcite+illite-quartz{+-}epidote, which is explained by the hydrolithic reactions that form replacement calcite in the presence of CO{sub 2}, thus restricting the formation of epidote and eventually eliminating it. The process enhances the CO{sub 2} molarity in the residual fluid, even up to {sup m}CO{sub 2} 1, which means the CO{sub 2} can be diluted back into fluid and intervene again in the process of calcite formation (2HCO{sub 3}{sup -} + Ca{sup ++} = calcite + H{sub 2}O

  15. Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Sikler, G. [MPI fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany) and TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 (Canada)]. E-mail: g.sikler@mpi-hd.mpg.de; Audi, G. [CSNSM-IN2P3-CNRS, Batiment 108, 91405 Orsay-Campus (France); Beck, D. [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Blaum, K. [Johannes Gutenberg-Universitaet Mainz, Staudingerweg 7, 55128 Mainz (Germany); Bollen, G. [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Herfurth, F. [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Kellerbauer, A. [CERN, 1211 Geneva 23 (Switzerland); Kluge, H.-J. [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Lunney, D. [CSNSM-IN2P3-CNRS, Batiment 108, 91405 Orsay-Campus (France); Oinonen, M. [Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki (Finland); Scheidenberger, C. [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Schwarz, S. [NSCL, Michigan State University, East Lansing, MI 48824-1321 (United States); Szerypo, J. [LMU Muenchen, Am Coulombwall 1, 85748 Garching (Germany)

    2005-12-26

    The atomic masses of {sup 76,77,80,81,86,88}Sr and {sup 124,129,130,131,132}Sn were measured by means of the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. {sup 76}Sr is now the heaviest N=Z nucleus for which the mass is measured to a precision better than 35 keV. For the tin isotopes in the close vicinity of the doubly magic nucleus {sup 132}Sn, mass uncertainties below 20 keV were achieved. An atomic mass evaluation was carried out taking other experimental mass values into account by performing a least-squares adjustment. Some discrepancies between older experimental values and the ones reported here emerged and were resolved. The results of the new adjustment and their impact will be presented.

  16. Mass measurements on neutron-deficient Sr and neutron-rich Sn isotopes with the ISOLTRAP mass spectrometer

    CERN Document Server

    Sikler, G; Beck, D; Blaum, K; Bollen, G; Herfurth, F; Kellerbauer, A G; Kluge, H J; Lunney, M D; Oinonen, M; Scheidenberger, C; Schwarz, S; Szerypo, J

    2005-01-01

    The atomic masses of $^{76,77,80,81,86,88}$Sr and $^{124,129,130,131,132}$Sn were measured by means of the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. $^{76}$Sr is now the heaviest N=Z nucleus for which the mass is measured to a precision better than 35 keV. For the tin isotopes in the close vicinity of the doubly magic nucleus $^{132}$Sn, mass uncertainties below 20 keV were achieved. An atomic mass evaluation was carried out taking other experimental mass values into account by performing a least-squares adjustment. Some discrepancies between older experimental values and the ones reported here emerged and were resolved. The results of the new adjustment and their impact will be presented.

  17. The association of metabolic syndrome with left ventricular mass and geometry in community-based hypertensive patients among Han Chinese

    Directory of Open Access Journals (Sweden)

    Shuxia Wang

    2015-01-01

    Full Text Available Background: The association of metabolic syndrome (MS with left ventricular (LV hypertrophy is controversial. The objective of our study was to investigate the influence of MS on LV mass and geometry in community-based hypertensive patients among Han Chinese. Materials and Methods: This study included 1733 metabolic syndrome patients according to the International Diabetes Federation (IDF definition and 2373 non-MS hypertension patients. LV hypertrophy was diagnosed by the criteria of LV mass ≥49.2 g/m 2.7 for men and 46.7 g/m 2.7 for women. LV geometric patterns (normal, concentric remodeling, concentric or eccentric hypertrophy were calculated according to LV hypertrophy and relative wall thickness. Logistic regression analysis was used to determine odds ratio (OR and 95% confidence interval (CI of MS for LV hypertrophy and LV geometry abnormality. Results: The LV mass and LV mass index were higher in the MS group than in the non-MS group. In multiple adjusted models. LV mass index, LV mass, interventricular septum, and post wall were raised with the increased number of MS disorders. MS was associated with increased LV hypertrophy risk (unadjusted OR 1.38; 95% CI 1.21-1.57; age, sex, and blood pressure (BP; adjusted OR 1.39; 95% CI 1.22-1.59. MS was also associated with increased risk of eccentric hypertrophy in male and female patients. MS was only associated with increased risk of concentric hypertrophy in female patients; and MS was not associated with concentric remodeling. Conclusion: LV mass and LV mass index were associated with the increased number of MS disorders in the Chinese community-based hypertensive population. MS was not only associated with increased LV hypertrophy risk, but also associated with concentric and eccentric LV geometry abnormality, especially in females.

  18. Penning trap mass measurements of $^{99-109}$Cd with the ISOLTRAP mass spectrometer, and implications for the rp process

    CERN Document Server

    Breitenfeldt, M; Beck, D; Blaum, K; George, S; Herfurth, F; Herlert, A; Kellerbauer, A G; Kluge, H-J; Kowalska, M; Lunney, D; Naimi, S; Neidherr, D; Schatz, H; Schwarz, S; Schweikhard, L

    2009-01-01

    Penning trap mass measurements on neutron-deficient Cd isotopes $^{99-109}$Cd have been performed with the ISOLTRAP mass spectrometer at ISOLDE/CERN, all with relative mass uncertainties below $3 \\times 10^{-8}$. A new mass evaluation has been performed. The mass of $^{99}$Cd has been determined for the first time which extends the region of accurately known mass values towards the doubly magic nucleus $^{100}$Sn. The implication of the results on the reaction path of the $rp$ process in stellar X-ray bursts is discussed. In particular, the uncertainty of the abundance and the overproduction created by the $rp$-process for the mass A = 99 is demonstrated by reducing the uncertainty of the proton-separation energy of $^{100}$In $S_{p}(^{100}$In) by a factor of 2.5.

  19. Ambient Ionization Mass Spectrometry Measurement of Aminotransferase Activity

    Science.gov (United States)

    Yan, Xin; Li, Xin; Zhang, Chengsen; Xu, Yang; Cooks, R. Graham

    2017-06-01

    A change in enzyme activity has been used as a clinical biomarker for diagnosis and is useful in evaluating patient prognosis. Current laboratory measurements of enzyme activity involve multi-step derivatization of the reaction products followed by quantitative analysis of these derivatives. This study simplified the reaction systems by using only the target enzymatic reaction and directly detecting its product. A protocol using paper spray mass spectrometry for identifying and quantifying the reaction product has been developed. Evaluation of the activity of aspartate aminotransferase (AST) was chosen as a proof-of-principle. The volume of sample needed is greatly reduced compared with the traditional method. Paper spray has a desalting effect that avoids sprayer clogging problems seen when examining serum samples by nanoESI. This very simple method does not require sample pretreatment and additional derivatization reactions, yet it gives high quality kinetic data, excellent limits of detection (60 ppb from serum), and coefficients of variation <10% in quantitation. [Figure not available: see fulltext.

  20. Mass flow and its pulsation measurements in supersonic wing wake

    Science.gov (United States)

    Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.

    2016-10-01

    The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.

  1. Research of connection between mass audience and new media. Approaches to new model of mass communication measurement

    OpenAIRE

    Sibiriakova Olena Oleksandrivna

    2015-01-01

    In this research the author examines changes to approaches of observation of mass communication. As a result of systemization of key theoretical models of communication, the author comes to conclusion of evolution of ideas about the process of mass communication measurement from linear to multisided and multiple.

  2. Measurement of Density Inhomogeneity for Source Masses in Time-of-Swing Method of Measuring G

    Institute of Scientific and Technical Information of China (English)

    LIU Lin-Xia; SHAO Cheng-Gang; TU Liang-Cheng; LUO Jun

    2009-01-01

    A method with scanning electron microscopy (SEM) is presented to measure the density inhomogeneity of the stainless steel (SS316) sphere prepared for measuring G using time-of-swing method. The experimental result shows that the relative density inhomogeneity of the sphere is better than 5.9 × 10-4 over the volume of 0.272 × 0.234 × 0.005 mm3. If we assume that the density inhomogeneity of the spheres used in our G measurement is the same as that of the sphere destroyed in testing, it will contribute to G value with an uncertainty of less than O.034 ppm in our G measurement. Furthermore, the mass centre offset from the geometric centre of the sphere will be less than 4.3 × 10-4 μm due to this inhomogeneity.

  3. {sup 26}Al interferences in accelerator mass spectrometry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Sheng, E-mail: s.xu@suerc.gla.ac.uk; Freeman, Stewart P.H.T.; Rood, Dylan H.; Shanks, Richard P.

    2014-08-15

    Highlights: •We identified multi-interferences to {sup 26}Al{sup 3+}, {sup 26}Al{sup 5+} and {sup 26}Al{sup 7+} with SUERC 5 MV accelerator mass spectrometer. •{sup 37}Cl{sup 4+} as continuum events is the most significant interference to {sup 26}Al{sup 3+}. •The problem of interferences is generic in different charge states. -- Abstract: The identification of interferences to {sup 26}Al was conducted with a 5 MV tandem accelerator mass spectrometer. In addition to {sup 9}Be{sup 1+}, {sup 17}O{sup 2+} and {sup 35}Cl{sup 4+} ions observed previously, this study confirmed existence of the most significant interference {sup 37}Cl{sup 4+} continuum ion to 16 MeV {sup 26}Al{sup 3+} by measuring primary standard mixed with Cl with various {sup 37}Cl/{sup 35}Cl ratios. The {sup 37}Cl{sup −} ions were formed by {sup 37}Cl{sup 16}O{sup −} molecular-dissociation before the injection magnet, resulting in −0.7% of {sup 26}Al{sup −} magnetic rigidity. Subsequently, the {sup 37}Cl{sup 4+} ions have ME/q{sup 2} value that differ from {sup 26}Al{sup 3+} by −0.1%. These allow the {sup 37}Cl{sup −} and {sup 37}Cl{sup 4+} to simultaneously pass through injection magnet, analytical magnet and high-energy analyser, and finally reach the detector with {sup 26}Al{sup 3+}. Further investigations on high charge states ({sup 26}Al{sup 5+} and {sup 26}Al{sup 7+}) indicate that the problem of interferences is generic. That is, interferences closest to 24 MeV {sup 26}Al{sup 5+} ions include {sup 10}B{sup 2+}, {sup 16}O{sup 3+}, {sup 35}Cl{sup 7+} and {sup 37}Cl{sup 7+} ions, while 32 MeV {sup 26}Al{sup 7+} ions may be interfered by {sup 7}Li{sup 2+}, {sup 16}O{sup 4+}, {sup 18}O{sup 5+}, {sup 35}Cl{sup 9+} and {sup 37}Cl{sup 9+}. However, it remains unclear that {sup 37}Cl continuum events observed in {sup 26}Al{sup 3+}-AMS do not exist in {sup 26}Al{sup 5+} and {sup 26}Al{sup 7+}-AMS operations.

  4. Measuring neutrino masses with a future galaxy survey

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y. Y.

    2012-01-01

    the persistent degeneracies between the neutrino mass, the physical matter density, and the Hubble parameter. Notwithstanding this remarkable sensitivity to sum m_nu, Euclid-like shear and galaxy data will not be sensitive to the exact mass spectrum of the neutrino sector; no significant bias (

  5. Introduction to direct neutrino mass measurements and KATRIN

    CERN Document Server

    Thümmler, Thomas

    2010-01-01

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of beta-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an i...

  6. Single microparticles mass measurement using an AFM cantilever resonator

    CERN Document Server

    Mauro, Marco; Ferrini, Gianluca; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea

    2014-01-01

    In this work is presented a microbalance for single microparticle sensing based on resonating AFM cantilever. The variation of the resonator eigenfrequency is related to the particle mass positioned at the free apex of the cantilever. An all-digital phase locked loop (PLL) control system is developed to detect the variations in cantilever eigenfrequency. Two particle populations of different materials are used in the experimental test, demonstrating a mass sensitivity of 15 Hz/pg in ambient conditions. Thereby it is validated the possibility of developing an inexpensive, portable and sensitive microbalance for point-mass sensing.

  7. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: Measuring Mass

    Science.gov (United States)

    Tsionsky, Vladimir

    2007-01-01

    The study explains the quartz-crystal microbalance (QCM) technique, which is often used as an undergraduate laboratory experiment for measuring the mass of a system. QCM can be used as a mass sensor only when the measured mass is rigidly attached to the surface.

  8. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells.

    Directory of Open Access Journals (Sweden)

    Francisco Feijó Delgado

    Full Text Available We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein, we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.

  9. A Physics Case for SHIPTRAP: Measuring the Masses of Transuranium Elements

    Energy Technology Data Exchange (ETDEWEB)

    Dilling, J., E-mail: J.Dilling@gsi.de; Ackermann, D.; Hessberger, F. P.; Hofmann, S.; Kluge, H.-J.; Marx, G.; Muenzenberg, G. [GSI Darmstadt (Germany); Patyk, Z. [Soltan Institute for Nuclear Studies (Poland); Quint, W.; Rodriguez, D.; Scheidenberger, C.; Schoenfelder, J.; Sikler, G. [GSI Darmstadt (Germany); Sobiczewski, A. [Soltan Institute for Nuclear Studies (Poland); Toader, C.; Weber, C. [GSI Darmstadt (Germany)

    2001-01-15

    SHIPTRAP will allow direct measurement of masses of transuranium nuclides. The method of choice is a Penning trap spectrometer coupled to the SHIP (Separator for Heavy Ion Products) facility at GSI, Darmstadt. In this paper the impact of the SHIPTRAP facility, with its capability of systematic mass measurements with high precision, is explored. Rather few masses of nuclides above uranium are presently known experimentally. In the region of nuclides above Z=100 no ground state masses were measured directly. SHIPTRAP will play an important role in systematically mapping out this area. Possible candidates for direct mass measurements, even with small or very small production cross sections, are presented.

  10. Measurements of the top quark mass using the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387486; The ATLAS collaboration

    2016-01-01

    The latest measurements of the top quark mass using the ATLAS experiment at the LHC are presented. A measurement based on a multidimensional template fit that can constrain the uncer- tainties on the energy measurements of jets is presented and combined with a measurement using dilepton events. Also measurements of the top quark mass in the fully hadronic decay channel, as well as in t-channel enhanced topologies are shown. In addition, measurements are presented that use precision theoretical QCD calculations for both inclusive tt production and tt production with an additional jet to extract the top quark mass in the pole mass scheme.

  11. Top-quark mass measurements at the LHC: alternative methods

    CERN Document Server

    Vos, Marcel

    2016-01-01

    Alternative top quark mass determinations can provide inputs to the world average with orthogonal systematic uncertainties and may help to refine the interpretation of the standard method. Among a number of recent results I focus on the extractions by ATLAS and CMS of the top quark pole mass from the top quark pair and tt + 1 jet production cross-section, which have now reached a precision of 1%.

  12. Top-quark mass measurements at the LHC: alternative methods

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00240580; The ATLAS collaboration

    2016-01-01

    Alternative top quark mass determinations can provide inputs to the world average with orthogonal systematic uncertainties and may help to refine the interpretation of the standard method. Among a number of recent results I focus on the extractions by ATLAS and CMS of the top quark pole mass from the \\ttbar{} pair and \\ttbar{} + 1 jet production cross-section, which have now reached a precision of 1\\%.

  13. Introduction to direct neutrino mass measurements and KATRIN

    Science.gov (United States)

    Thümmler, T.; Katrin Collaboration

    2012-08-01

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow β spectroscopy close to the T endpoint at 18.6 keV with unprecedented precision.

  14. Calculation of smoke plume mass from passive UV satellite measurements by GOME-2 polarization measurement devices

    Science.gov (United States)

    Penning de Vries, M. J. M.; Tuinder, O. N. E.; Wagner, T.; Fromm, M.

    2012-04-01

    The Wallow wildfire of 2011 was one of the most devastating fires ever in Arizona, burning over 2,000 km2 in the states of Arizona and New Mexico. The fire originated in the Bear Wallow Wilderness area in June, 2011, and raged for more than a month. The intense heat of the fire caused the formation of a pyro-convective cloud. The resulting smoke plume, partially located above low-lying clouds, was detected by several satellite instruments, including GOME-2 on June 2. The UV Aerosol Index, indicative of aerosol absorption, reached a maximum of 12 on that day, pointing to an elevated plume with moderately absorbing aerosols. We have performed extensive model calculations assuming different aerosol optical properties to determine the total aerosol optical depth of the plume. The plume altitude, needed to constrain the aerosol optical depth, was obtained from independent satellite measurements. The model results were compared with UV Aerosol Index and UV reflectances measured by the GOME-2 polarization measurement devices, which have a spatial resolution of roughly 10x40 km2. Although neither the exact aerosol optical properties nor optical depth can be obtained with this method, the range in aerosol optical depth values that we calculate, combined with the assumed specific extinction mass factor of 5 m2/kg lead us to a rough estimate of the smoke plume mass that cannot, at present, be assessed in another way.

  15. ISOLTRAP mass measurements of exotic nuclides at $\\delta$m/m=10$^{-8}$

    CERN Document Server

    Blaum, K; Beck, D; Bollen, G; Delahaye, P; George, S; Guénaut, C; Herfurth, S; Herlert, Alexander; Kellerbauer, A G; Kluge, H J; Lunney, M D; Mukherjee, M; Schwarz, S; Schweikhard, L; Yazidjian, C

    2005-01-01

    The ISOLTRAP experiment at the ISOLDE facility at CERN is a Penning trap mass spectrometer for on-line mass measurements on short-lived radionuclides. It allows the determination of atomic masses of exotic nuclides with a relative uncertainty of only 10$^{-8}$. The results provide important information for, for example, weak interaction studies and nuclear models. Recent ISOLTRAP investigations and applications of high-precision mass measurements are discussed.

  16. High-accuracy mass measurements of neutron-rich Kr isotopes

    CERN Document Server

    Delahaye, P; Blaum, K; Carrel, F; George, S; Herfurth, F; Herlert, A; Kellerbauer, A G; Kluge, H J; Lunney, D; Schweikhard, L; Yazidjian, C

    2006-01-01

    The atomic masses of the neutron-rich krypton isotopes 84,86-95Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes 94Kr and 95Kr were measured for the first time. The masses of the radioactive nuclides 89Kr and 91Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  17. Measuring the Initial Mass Function of Low Mass Stars and Brown Dwarfs

    CERN Document Server

    Jeffries, R D

    2012-01-01

    I review efforts to determine the form and any lower limit to the initial mass function in the Galactic disk, using observations of low-mass stars and brown dwarfs in the field, young clusters and star forming regions. I focus on the methodologies that have been used and the uncertainties that exist due to observational limitations and to systematic uncertainties in calibrations and theoretical models. I conclude that whilst it is possible that the low-mass IMFs deduced from the field and most young clusters are similar, there are too many problems to be sure; there are examples of low-mass cluster IMFs that appear to be very discrepant and the IMFs for brown dwarfs in the field and young clusters have yet to be reconciled convincingly.

  18. Molecular characterizations of a novel putative DNA-binding protein LvDBP23 in marine shrimp L. vannamei tissues and molting stages.

    Directory of Open Access Journals (Sweden)

    Yanisa Laoong-u-thai

    Full Text Available BACKGROUND: Litopenaeus Vannamei, well known as pacific white shrimp, is the most popular shrimp in the world shrimp market. Identification and characterization of shrimp muscle regulatory genes are not only important for shrimp genetic improvement, but also facilitate comparative genomic tools for understanding of muscle development and regeneration. METHODOLOGY/PRINCIPAL FINDINGS: A novel mRNA encoding for a putative DNA-binding protein LvDBP23 was identified from Litopenaeus vannamei abdominal muscle cDNA library. The LvDBP23 cDNA contains 639 nucleotides of protein-coding sequence with deduced 212 amino acids of predicted molecular mass 23.32 kDa with glycine-rich domain at amino acid position 94-130. The mRNA sequence is successfully used for producing LvDBP23 recombinant protein in sf9 insect cell expression system. The expression of LvDBP23 mRNA is presented in abdominal muscle and swimming leg muscle, as well as other tissues including intestine, lymphoid and gill. The mRNA expression has the highest level in abdominal muscle in all tested tissues. LVDBP23 transcript during the molt cycle is highly expressed in the intermolt stage. In vitro nucleic acid-binding assays reveal that LvDBP23 protein can bind to both ssDNA and dsDNA, indicating its possible role of regulation of gene transcription. CONCLUSIONS/SIGNIFICANCE: We are the first to report a DNA-binding protein identified from the abdominal muscle tissue of marine shrimp L. Vannamei. Its high-level specific expression during the intermot stage suggests its role in the regulation of muscle buildup during the growth phase of shrimp molt cycle.

  19. Test of pressure transducer for measuring cotton-mass flow

    Science.gov (United States)

    In this study, a cotton harvester yield monitor was developed based on the relationship between air pressure and the mass of seed cotton conveyed. The sensor theory was verified by laboratory tests. The sensor was tested on a cotton picker with seed cotton at two moisture contents, 5.9% and 8.5% we...

  20. Measurements of the top quark mass using the ATLAS detector at the LHC

    CERN Document Server

    Bender, Michael; The ATLAS collaboration

    2016-01-01

    The latest measurements of the top quark mass using the ATLAS experiment are presented. A measurement based on a multi­dimensional template fit that can constrain the uncertainties on the energy measurements of jets is presented and combined with a measurement using dilepton events. A new measurement of the top quark mass using leptonic kinematic variables is presented. The measurement uses a novel technique to measure the top quark mass with minimal dependence on hadronic jets. In addition, measurements are presented that use precision theoretical QCD calculations for both inclusive ttbar production and ttbar production with an additional jet to extract the top quark mass in the pole­mass scheme.

  1. Modelling wetland-groundwater interactions in the boreal Kälväsvaara esker, Northern Finland

    Science.gov (United States)

    Jaros, Anna; Rossi, Pekka; Ronkanen, Anna-Kaisa; Kløve, Bjørn

    2016-04-01

    Many types of boreal peatland ecosystems such as alkaline fens, aapa mires and Fennoscandia spring fens rely on the presence of groundwater. In these ecosystems groundwater creates unique conditions for flora and fauna by providing water, nutrients and constant water temperature enriching local biodiversity. The groundwater-peatland interactions and their dynamics are not, however, in many cases fully understood and their measurement and quantification is difficult due to highly heterogeneous structure of peatlands and large spatial extend of these ecosystems. Understanding of these interactions and their changes due to anthropogenic impact on groundwater resources would benefit the protection of the groundwater dependent peatlands. The groundwater-peatland interactions were investigated using the fully-integrated physically-based groundwater-surface water code HydroGeoSphere in a case study of the Kälväsvaara esker aquifer, Northern Finland. The Kälväsvaara is a geologically complex esker and it is surrounded by vast aapa mire system including alkaline and springs fens. In addition, numerous small springs occur in the discharge zone of the esker. In order to quantify groundwater-peatland interactions a simple steady-state model was built and results were evaluated using expected trends and field measurements. The employed model reproduced relatively well spatially distributed hydrological variables such as soil water content, water depths and groundwater-surface water exchange fluxes within the wetland and esker areas. The wetlands emerged in simulations as a result of geological and topographical conditions. They could be identified by high saturation levels at ground surface and by presence of shallow ponded water over some areas. The model outputs exhibited also strong surface water-groundwater interactions in some parts of the aapa system. These areas were noted to be regions of substantial diffusive groundwater discharge by the earlier studies. In

  2. A novel ion source for the calibration of an MRTOF Mass Spectrograph to be used in superheavy elements mass measurements

    CERN Document Server

    Naimi, S; Ito, Y; Mita, H; Okada, K; Ozawa, A; Schury, P; Sonoda, T; Takamine, A; Wada, M; Wollnik, H

    2012-01-01

    A novel ion source based on electrospray ionization and radiofrequency carpet technique has been built. This ion source is designed to deliver relatively heavy molecules for the calibration of a multi reflection time-of-flight mass spectrograph (MRTOF-MS) that will be used for direct mass measurements of superheavy elements. The operation of the ion source as well as the analysis by the MRTOF-MS with heavy molecular ions is described.

  3. 16 CFR 500.8 - Units of weight or mass and measure.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Units of weight or mass and measure. 500.8... SECTION 4 OF THE FAIR PACKAGING AND LABELING ACT § 500.8 Units of weight or mass and measure. (a... (15 oz)” or “Net Mass 680 g (11/2 lbs)” or “100 g e (3.5 oz).”) (b) Statements of fluid measure shall...

  4. Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized

    Directory of Open Access Journals (Sweden)

    Siu H. Chan

    2012-02-01

    Full Text Available Vascular stiffness has been proposed as a simple method to assess arterial loading conditions of the heart which induce left ventricular hypertrophy (LVH. There is some controversy as to whether the relationship of vascular stiffness to LVH is independent of blood pressure, and which measurement of arterial stiffness, augmentation index (AI or pulse wave velocity (PWV is best. Carotid pulse wave contor and pulse wave velocity of patients (n=20 with hypertension whose blood pressure (BP was under control (<140/90 mmHg with antihypertensive drug treatment medications, and without valvular heart disease, were measured. Left ventricular mass, calculated from 2D echocardiogram, was adjusted for body size using two different methods: body surface area and height. There was a significant (P<0.05 linear correlation between LV mass index and pulse wave velocity. This was not explained by BP level or lower LV mass in women, as there was no significant difference in PWV according to gender (1140.1+67.8 vs 1110.6+57.7 cm/s. In contrast to PWV, there was no significant correlation between LV mass and AI. In summary, these data suggest that aortic vascular stiffness is an indicator of LV mass even when blood pressure is controlled to less than 140/90 mmHg in hypertensive patients. The data further suggest that PWV is a better proxy or surrogate marker for LV mass than AI and the measurement of PWV may be useful as a rapid and less expensive assessment of the presence of LVH in this patient population.

  5. Measurements of the top quark mass using the ATLAS detector at the LHC

    CERN Document Server

    Melini, Davide; The ATLAS collaboration

    2017-01-01

    The top quark mass is a fundamental parameter of the Standard Model (SM). Thus measuring its value with the highest possible precision is important. The latest top quark mass measurements performed on data collected with the ATLAS detector are presented. In particular, results on standard top mass measurements are presented for the fully hadronic and fully leptonic $t\\bar t\\ $ decay modes. Also top quark pole mass measurements from $t\\bar t\\ $ inclusive cross section and $t\\bar t\\ $ + 1 jet differential cross section are shown.

  6. Quality management in clinical application of mass spectrometry measurement systems.

    Science.gov (United States)

    Vogeser, Michael; Seger, Christoph

    2016-09-01

    Thanks to highly specific analyte detection and potentially complete compensation for matrix variables based on the principle of stable isotope derivative internal standardisation, mass spectrometry methods allow the development of diagnostic tests of outstanding analytical quality. However, these features per se do not guarantee reliability of tests. A wide range of factors can introduce analytical errors and inaccuracy due to the extreme complexity of the methods involved. Furthermore, it can be expected that the application patterns of MS methods in diagnostic laboratories will change substantially during the coming years - with presumably less specialised laboratories implementing mass spectrometry. Introduction of highly automated test solutions by manufacturers will require some trade-off between operation convenience, sample throughput and analytical performance. Structured and careful quality and risk management is therefore crucial to translate the analytical power of mass spectrometry into actionable and reliable results for individual patients' care and to maintain the degree of reliability that is expected from MS methods in clinical pathology. This reflection review discusses whether particular quality assurance tools have to be applied for MS-based diagnostic tests and whether these tools are different from those applied for optical- and affinity-based standard tests. Both pre-implementation strategies and surveillance of assays with assessment of metadata in routine testing are addressed. The release of the CLSI guideline C62-A in 2014 was a substantial achievement in this context because it addresses a wide spectrum of relevant issues in quality assurance of mass spectrometry-based clinical tests. However, the translation of this best practice document into individual laboratory settings is likely to be heterogeneous.

  7. Mass measurements in protoplanetary disks from hydrogen deuteride

    CERN Document Server

    McClure, Melissa; Cleeves, Ilse; van Dishoeck, Ewine; Blake, Geoff; Evans, Neal; Green, Joel; Henning, Thomas; Öberg, Karin; Pontoppidan, Klaus; Salyk, Colette

    2016-01-01

    The total gas mass of a protoplanetary disk is a fundamental, but poorly determined, quantity. A new technique \\citep{bergin+13} has been demonstrated to assess directly the bulk molecular gas reservoir of molecular hydrogen using the HD J=1-0 line at 112 $\\mu$m. In this work we present a {\\it Herschel} Space Observatory\\footnote{Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.} survey of six additional T Tauri disks in the HD line. Line emission is detected at $>$3$\\sigma$ significance in two cases: DM Tau and GM Aur. For the other four disks, we establish upper limits to the line flux. Using detailed disk structure and ray tracing models, we calculate the temperature structure and dust mass from modeling the observed spectral energy distributions, and include the effect of UV gas heating to determine the amount of gas required to fit the HD line. The range of gas masses are 1.0-4.7$\\times10^{-2...

  8. On the Uncertainties of Stellar Mass Estimates via Colour Measurements

    CERN Document Server

    Roediger, Joel C

    2015-01-01

    Mass-to-light versus colour relations (MLCRs), derived from stellar population synthesis models, are widely used to estimate galaxy stellar masses (M$_*$) yet a detailed investigation of their inherent biases and limitations is still lacking. We quantify several potential sources of uncertainty, using optical and near-infrared (NIR) photometry for a representative sample of nearby galaxies from the Virgo cluster. Our method for combining multi-band photometry with MLCRs yields robust stellar masses, while errors in M$_*$ decrease as more bands are simultaneously considered. The prior assumptions in one's stellar population modelling dominate the error budget, creating a colour-dependent bias of up to 0.6 dex if NIR fluxes are used (0.3 dex otherwise). This matches the systematic errors associated with the method of spectral energy distribution (SED) fitting, indicating that MLCRs do not suffer from much additional bias. Moreover, MLCRs and SED fitting yield similar degrees of random error ($\\sim$0.1-0.14 dex)...

  9. Interpretation of the top-quark mass measurements: a theory overview

    CERN Document Server

    Corcella, Gennaro

    2015-01-01

    I discuss the theoretical interpretation of the top-quark mass, which is extracted in standard and alternative measurements at the LHC. In particular, I point out that the top mass extracted in analyses relying on the use of Monte Carlo event generators must be close to the pole mass and review recent work aiming at estimating the theoretical uncertainty.

  10. A direct measurement of the baryonic mass function of galaxies & implications for the galactic baryon fraction

    NARCIS (Netherlands)

    Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.

    2012-01-01

    We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are

  11. A direct measurement of the baryonic mass function of galaxies & implications for the galactic baryon fraction

    NARCIS (Netherlands)

    Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.

    2012-01-01

    We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are calcula

  12. HD 98800: An Opportunity to Measure True Masses for Low-Mass PMS Stars

    Science.gov (United States)

    Soderblom, David

    1999-07-01

    HD 98800 became interesting when IRAS found it to have a large infrared excess, indicating a substantial dust disk. But ``HD 98800'' is, in fact, a quadruple system consisting of four K and M stars, and its Hipparcos parallax has now shown that this is a pre-main sequence system. The four stars are in two visible objects, each of which is a spectroscopic binary with a period of about one year. In particular, the Ba-Bb pair is an SB2 with an estimated semi-major axis of about 20 milliarcsec. In TRANS mode, FGS1R can cleanly resolve the Ba-Bb pair and can determine the relative orbit and luminosities for the two components. POS mode observations lead to an absolute orbit and a more precise parallax than is currently available. In this program we propose to follow the HD 98800 Ba-Bb pair over the course of a full orbit during Cycle 8. The combination of FGS1R-TRANS and FGS1R-POS observations will provide gravitational masses for two low-mass PMS stars. In addition, the co nstraints of coevality and knowled ge of the astrophysical properties of the components {temperatures, luminosities, composition} make these observations a crucial test of our models of pre-main sequence evolution. These may be the first true masses determined for low-mass PMS objects, and so can provide a fundamental test of PMS evolutionary tracks.

  13. Worsening diastolic function is associated with elevated fasting plasma glucose and increased left ventricular mass in a supra-additive fashion in an elderly, healthy, Swedish population

    DEFF Research Database (Denmark)

    Pareek, Manan; Nielsen, Mette Lundgren; Gerke, Oke;

    2015-01-01

    AIMS: To examine whether increasing fasting plasma glucose (FPG) levels were associated with worsening left ventricular (LV) diastolic function, independently of LV mass index (LVMI) in elderly, otherwise healthy subjects. METHODS AND RESULTS: We tested cross-sectional associations between...

  14. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    Science.gov (United States)

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  15. Munition Mass Properties Measurement Procedures Using a Spin Balance Machine

    Science.gov (United States)

    2015-03-09

    alignment fixtures, and the calibration tools (fixtures, laser alignment/pointing device, mechanical dial indicator, etc). There should be a crane hoist ...the measured quantity which consistently causes the output of the measuring machine to change. It is largely a function of friction in mechanical

  16. Measuring intermediate mass black hole binaries with advanced gravitational wave detectors

    CERN Document Server

    Veitch, John; Mandel, Ilya

    2015-01-01

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger and ringdown signals of aligned-spin effective-one-body waveforms (SEOBNR) to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50 and 500 $M_\\odot$ and mass ratios between 0.1 and 1. We find that (i) at total masses below ~200 $M_\\odot$, where the signal-to-noise-ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; (iv) sp...

  17. Direct Measurement of the Top Quark Mass at D0

    CERN Document Server

    Abbott, B; Acharya, B S; Adam, I; Adams, D L; Adams, M; Ahn, S; Aihara, H; Alves, G A; Amos, N; Anderson, E W; Astur, R; Baarmand, M M; Baden, A; Balamurali, V; Balderston, J; Baldin, B Yu; Banerjee, S; Bantly, J; Barberis, E; Bartlett, J F; Bazizi, K; Belyaev, A; Beri, S B; Bertram, I; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Biswas, N; Blazey, G C; Blessing, S K; Bloom, P; Böhnlein, A; Bozhko, N; Borcherding, F O; Boswell, C; Brandt, A; Brock, R L; Bross, A D; Buchholz, D A; Burtovoi, V S; Butler, J M; Carvalho, W S; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chang, S M; Chekulaev, S V; Chen, L P; Chen, W; Choi, S; Chopra, S; Choudhary, B C; Christenson, J H; Chung, M; Claes, D; Clark, A R; Cobau, W G; Cochran, J; Coney, L; Cooper, W E; Cretsinger, C E; Cullen-Vidal, D E; Cummings, M A C; Cutts, D; Dahl, O I; Davis, K; De, K; Del Signore, K; Demarteau, M; Denisov, D S; Denisov, S P; Diehl, H T; Diesburg, M; DiLoreto, G; Draper, P; Ducros, Y; Dudko, L V; Dugad, S R; Edmunds, D L; Ellison, J; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Evdokimov, V N; Fahland, T; Fatyga, M K; Fehér, S; Fein, D K; Ferbel, T; Finocchiaro, G; Fisk, H E; Fisyak, Yu; Flattum, E M; Forden, G E; Fortner, M R; Frame, K C; Fuess, S; Gallas, E J; Galjaev, A N; Gartung, P E; Geld, T L; Genik, R J; Genser, K; Gerber, C E; Gibbard, B; Glenn, S; Gobbi, B; Goldschmidt, A; Gómez, B; Gómez, G; Goncharov, P I; González-Solis, J L; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Grannis, P D; Green, D R; Greenlee, H; Grim, G P; Grinstein, S; Grossman, N L; Grudberg, P M; Grünendahl, S; Guglielmo, G; Guida, J A; Guida, J M; Sen-Gupta, A; Gurzhev, S N; Gutíerrez, P; Gutnikov, Yu E; Hadley, N J; Haggerty, H; Hagopian, S L; Hagopian, V; Hahn, K S; Hall, R E; Hanlet, P; Hansen, S; Hauptman, J M; Hedin, D; Heinson, A P; Heintz, U; Hernández-Montoya, R; Heuring, T C; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoftun, J S; Hsieh, F; Ting Hu Tong Hu; Hühn, T; Ito, A S; James, E; Jaques, J; Jerger, S A; Jesik, R; Jiang, J Z Y; Joffe-Minor, T M; Johns, K; Johnson, M; Jonckheere, A M; Jones, M; Jöstlein, H; Jun, S Y; Jung, C K; Kahn, S; Kalbfleisch, G R; Kang, J S; Karmanov, D E; Karmgard, D J; Kehoe, R; Kelly, M L; Kim, C L; Kim, S K; Klatchko, A; Klima, B; Klopfenstein, C; Klioukhine, V I; Kochetkov, V I; Kohli, J M; Koltick, D S; Kostritskii, A V; Kotcher, J; Kotwal, A V; Kourlas, J; Kozelov, A V; Kozlovskii, E A; Krane, J; Krishnaswamy, M R; Krzywdzinski, S; Kunori, S; Lami, S; Lander, R; Landry, F J; Landsberg, G L; Lauer, B M; Leflat, A; Li, H; Li, J; Li-Demarteau, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J T; Lipton, R; Liu, Y C; Lobkowicz, F; Loken, S C; Lökös, S; Lueking, L H; Lyon, A L; Maciel, A K A; Madaras, R J; Madden, R; Magana-Mendoza, L; Manankov, V; Mani, S; Mao, H S; Markeloff, R; Marshall, T; Martin, M I; Mauritz, K M; May, B; Mayorov, A A; McCarthy, R; McDonald, J; McKibben, T; McKinley, J; McMahon, T; Melanson, H L; Merkin, M; Merritt, K W B; Miettinen, H; Mincer, A; Mishra, C S; Mokhov, N V; Mondal, N K; Montgomery, H E; Mooney, P; Da Motta, H; Murphy, C; Nang, F; Narain, M; Narasimham, V S; Narayanan, A; Neal, H A; Negret, J P; Némethy, P; Norman, D; Oesch, L H; Oguri, V; Oliveira, E; Oltman, E; Oshima, N; Owen, D; Padley, P; Para, A; Park, Y M; Partridge, R; Parua, N; Paterno, M; Pawlik, B; Perkins, J; Peters, M; Piegaia, R; Piekarz, H; Pishchalnikov, Yu M; Podstavkov, V M; Pope, B G; Prosper, H B; Protopopescu, S D; Qian, J; Quintas, P Z; Raja, R; Rajagopalan, S; Ramírez, O; Rasmussen, L; Reucroft, S; Rijssenbeek, M; Rockwell, T; Roco, M T; Roe, N A; Rubinov, P M; Ruchti, R C; Rutherfoord, John P; Sánchez-Hernández, A; Santoro, A F S; Sawyer, L; Schamberger, R D; Schellman, H; Scully, J R; Shabalina, E; Shaffer, C; Shankar, H C; Shivpuri, R K; Shupe, M A; Singh, H; Singh, J B; Sirotenko, V I; Smart, W; Smith, E; Smith, R P; Snihur, R; Snow, G A; Snow, J; Snyder, S; Solomon, J; Sood, P M; Sosebee, M; Sotnikova, N; Souza, M; Spadafora, A L; Steinbruck, G; Stephens, R W; Stevenson, M L; Stewart, D; Stichelbaut, F; Stoyanova, D A; Stoker, D; Strauss, M; Streets, K; Strovink, M; Sznajder, A; Tamburello, P D; Tarazi, J; Tartaglia, M; Thomas, T L T; Thompson, J; Trippe, T G; Tuts, P M; Varelas, N; Varnes, E W; Vititoe, D L; Volkov, A A; Vorobev, A P; Wahl, H D; Wang, G; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Wightman, J A; Willis, S; Wimpenny, S J; Wirjawan, J V D; Womersley, J; Won, E; Wood, D R; Xu, H; Yamada, R; Yamin, P; Yang, J; Yasuda, T; Yepes, P; Yoshikawa, C; Youssef, S; Yu, J; Yu, Y; Zhu, Z H; Zieminska, D; Zieminski, A; Zverev, E G; Zylberstejn, A

    1998-01-01

    We determine the top quark mass m_t using t-tbar pairs produced in the D0 detector by \\sqrt{s} = 1.8 TeV p-pbar collisions in a 125 pb^-1 exposure at the Fermilab Tevatron. We make a two constraint fit to m_t in t-tbar -> b W^+bbar W^- final states with one W boson decaying to q-qbar and the other to e-nu or mu-nu. Likelihood fits to the data yield m_t(l+jets) = 173.3 +- 5.6 (stat) +- 5.5 (syst) GeV/c^2. When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m_t = 172.1 +- 5.2 (stat) +- 4.9 (syst) GeV/c^2. An alternate analysis, using three constraint fits to fixed top quark masses, gives m_t(l+jets) = 176.0 +- 7.9 (stat) +- 4.8 (syst) GeV/C^2, consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented.

  18. Mass measurement on the rp-process waiting point {sup 72}Kr

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Kolhinen, V.S. [Jyvaeskylae Univ. (Finland); Audi, G. [CSNSM-IN2P3-Centre National de la Recherche Scientifique (CNRS), 91 - Orsay (FR)] [and others

    2004-06-01

    The mass of one of the three major waiting points in the astrophysical rp-process {sup 72}Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of {delta}m/m=1.2 x 10{sup -7} ({delta}m=8 keV). Other Kr isotopes, also needed for astrophysical calculations, were measured with more than one order of magnitude improved accuracy. We use the ISOLTRAP masses of{sup 72-74}Kr to reanalyze the role of the {sup 72}Kr waiting point in the rp-process during X-ray bursts. (orig.)

  19. Mass Measurement on the rp-Process Waiting Point 72Kr

    CERN Document Server

    Rodríguez, D; Audi, G; Äystö, J; Beck, D; Blaum, K; Bollen, G; Herfurth, F; Jokinen, A; Kellerbauer, A G; Kluge, H J; Oinonen, M; Schatz, H; Sauvan, E; Schwarz, S

    2004-01-01

    The mass of one of the three major waiting points in the astrophysical rp-process 72Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of delta m/m = 1.2x10-7 (delta m=8keV). Other Kr isotopes, also needed for astrophysical calculations, were measured with more than one order of magnitude improved accuracy. We use the ISOLTRAP masses of 72-74Kr to reanalyse the role of the 72Kr waiting point in the rp-process during X-ray bursts.

  20. Direct measurement of the mass difference between top and antitop quarks.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Andeen, T; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Atramentov, O; Avila, C; Backusmayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calfayan, P; Calpas, B; Calvet, S; Cammin, J; Carrasco-Lizarraga, M A; Carrera, E; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; Devaughan, K; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Escalier, M; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gómez, B; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jamin, D; Jesik, R; Johns, K; Johnson, C; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kozelov, A V; Kraus, J; Kuhl, T; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Mättig, P; Magaña-Villalba, R; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Maravin, Y; Martin, B; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Mitrevski, J; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Neal, H A; Negret, J P; Neustroev, P; Nikolaev, I; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; Obrant, G; Ochando, C; Onoprienko, D; Orduna, J; Oshima, N; Osman, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Popov, A V; Prado da Silva, W L; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Tiller, B; Titov, M; Tokmenin, V V; Torchiani, I; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vilanova, D; Vint, P; Vokac, P; Voutilainen, M; Wagner, R; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zeitnitz, C; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zutshi, V; Zverev, E G

    2009-09-25

    We present a measurement of the mass difference between t and t[over] quarks in lepton + jets final states of tt[over] events in 1 fb;{-1} of data collected with the D0 detector from Fermilab Tevatron Collider pp[over] collisions at sqrt[s] = 1.96 TeV. The measured mass difference of 3.8 +/- 3.7 GeV is consistent with the equality of t and t[over ] masses. This is the first direct measurement of a mass difference between a quark and its antiquark partner.

  1. Point measurements of surface mass balance, Eklutna Glacier, Alaska, 2008-2015

    Science.gov (United States)

    Sass, Louis; Loso, Michael G; Geck, Jason

    2017-01-01

    This data set consists of a time-series of direct measurements of glacier surface mass balance, at Eklutna Glacier, Alaska. It includes seasonal measurements of winter snow accumulation and summer snow and ice ablation.

  2. Precision mass measurements of short-lived nuclides for nuclear structure studies at TITAN

    Directory of Open Access Journals (Sweden)

    Chaudhuri A.

    2014-03-01

    Full Text Available TITAN (TRIUMF’s Ion Trap for Atomic and Nuclear science at TRIUMF’s rare isotope beam facility ISAC is an advanced Penning trap based mass spectrometer dedicated to precise and accurate mass determinations. An overview of TITAN, the measurement technique and a highlight of recent mass measurements of the short-lived nuclides important to the nuclear structure program at TITAN are presented.

  3. Screening-level estimates of mass discharge uncertainty from point measurement methods

    Science.gov (United States)

    The uncertainty of mass discharge measurements associated with point-scale measurement techniques was investigated by deriving analytical solutions for the mass discharge coefficient of variation for two simplified, conceptual models. In the first case, a depth-averaged domain w...

  4. Precision mass measurements at THe-trap and the FSU trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoecker, Martin Juergen

    2016-07-26

    THe-Trap is a Penning-trap mass spectrometer at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, that aims to measure the T/{sup 3}He mass ratio with a relative uncertainty of 10{sup -11}. Improvements of the measurement technique, in particular the measurement of systematic shifts, enabled measurements of mass ratios with relative uncertainties of 7.10{sup -11}, as demonstrated by a cyclotron frequency ratio determination on {sup 12}C{sup 4+}/{sup 16}O{sup 5+}. This uncertainty was limited by the lineshape. An improved theoretical model based on a rotating wave approximation can be used to describe dynamical interactions between the detection system and the ion, in order to better understand the lineshape and to further reduce the uncertainty. The Florida State University trap is a Penning-trap mass spectrometer located in Tallahassee, Florida (USA). In the context of this thesis, three mass ratios were measured, and further 20 mass ratio measurements analyzed, which resulted in the publication of the masses of {sup 82,83}Kr, {sup 131,134}Xe, {sup 86-88}Sr, and {sup 170-174,176}Yb with relative uncertainties between (0.9 - 1.3).10{sup -10}. These masses serve as reference masses for other experiments and have applications in the determination of the fine-structure constant alpha via the photon-recoil method.

  5. Importance of epicardial adipose tissue thickness measurement in obese adolescents, its relationship with carotid intima-media thickness, and echocardiographic findings.

    Science.gov (United States)

    Boyraz, M; Pirgon, O; Akyol, B; Dundar, B; Cekmez, F; Eren, N

    2013-12-01

    The aim of the present study was to analyze the relationship between epicardial adipose tissue thickness (EATT) and echocardiographic parameters, such as carotid intima-media thickness (cIMT), myocardial performance index (MPI), left ventricular (LV) systolic and diastolic function, and LV mass index in adolescents with obesity. One hundred and thirty eight obese adolescents and 63 lean subjects were enrolled in the study. The body mass index standard deviation scores (BMI-SDS) between 1.65-2.49 and 2.50-2.99 were considered as mild-moderate and severe obesity, respectively. All of the subjects underwent transthoracic echocardiographic examination for determination of LV function, LV structure, LV mass index, and MPI. Epicardial adipose tissue thickness and cIMT were also measured during echocardiography. The EATT measurements were increased significantly in patients with severe obesity compared to lean subjects (7.38±1.76 vs 4.28±0.79 mm, respectively; p = 0.001), but there was no significant difference between the obesity groups. The average LV mass index measurements were higher in both mild-moderately and severely obese patients in comparison with the lean children (87.5±34.8, 88.5±23.0, and 62.4±18.2 g/m2, respectively; p mass index, and MPI in the severe obesity group. EATT was the only independent predictor of cIMT in the multivariate analysis (standardized β coefficient = 0.70, p mass index in obese adolescents. Assessments of EATT and cIMT in particular during routine echocardiographic examinations might be used as a feasible and reliable method for the evaluation of obesity and its related cardiovascular risks during childhood.

  6. TOF-Brho Mass Measurements of Very Exotic Nuclides for Astrophysical Calculations at the NSCL

    CERN Document Server

    Matos, M; Amthor, M; Aprahamian, A; Bazin, D; Becerril, A; Elliot, T; Galaviz, D; Gade, A; Gupta, S; Lorusso, G; Montes, F; Pereira, J; Portillo, M; Rogers, A M; Schatz, H; Shapira, D; Smith, E; Stolz, A; Wallace, M

    2008-01-01

    Atomic masses play a crucial role in many nuclear astrophysics calculations. The lack of experimental values for relevant exotic nuclides triggered a rapid development of new mass measurement devices around the world. The Time-of-Flight (TOF) mass measurements offer a complementary technique to the most precise one, Penning trap measurements, the latter being limited by the rate and half-lives of the ions of interest. The NSCL facility provides a well-suited infrastructure for TOF mass measurements of very exotic nuclei. At this facility, we have recently implemented a TOF-Brho technique and performed mass measurements of neutron-rich nuclides in the Fe region, important for r-process calculations and for calculations of processes occurring in the crust of accreting neutron stars.

  7. TOF-Bρ mass measurements of very exotic nuclides for astrophysical calculations at the NSCL

    Science.gov (United States)

    Matoš, M.; Estrade, A.; Amthor, M.; Aprahamian, A.; Bazin, D.; Becerril, A.; Elliot, T.; Galaviz, D.; Gade, A.; Gupta, S.; Lorusso, G.; Montes, F.; Pereira, J.; Portillo, M.; Rogers, A. M.; Schatz, H.; Shapira, D.; Smith, E.; Stolz, A.; Wallace, M.

    2008-01-01

    Atomic masses play a crucial role in many nuclear astrophysics calculations. The lack of experimental values for relevant exotic nuclides triggered a rapid development of new mass measurement devices around the world. The time-of-flight (TOF) mass measurements offer a complementary technique to the most precise one, Penning trap measurements (Blaum 2006 Phys. Rep. 425 1), the latter being limited by the rate and half-lives of the ions of interest. The NSCL facility provides a well-suited infrastructure for the TOF mass measurements of very exotic nuclei. At this facility, we have recently implemented a TOF-Bρ technique and performed mass measurements of neutron-rich nuclides in the Fe region, important for r-process calculations and for calculations of processes occurring in the crust of accreting neutron stars.

  8. Quality assurance for CMS Tracker LV and HV Power Supplies

    CERN Document Server

    Costa, Marco; Sertoli, M; Trapani, P; Periale, L; Isabella, L; Landi, C; Lucchesi, A

    2007-01-01

    This work describes the quality assurance measurements that have been carried out on about 2000 Power Supply Units produced in CAEN technology for the CMS Silicon Tracker Detector. The automate procedure and the characteristics of the dedicated Test Fixture developed for this activity are described in details. Magnetic field tolerance and radiation hardness of Tracker power supply units is also discussed at length.

  9. Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

    Energy Technology Data Exchange (ETDEWEB)

    Fedorko, Wojciech T. [Univ. of Chicago, IL (United States)

    2008-12-01

    The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of √s = 1.96 TeV collisions with integrated luminosity of 1.9 fb-1 collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t$\\bar{t}$ pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: Mtop = 171.9 ± 1.7 (stat. + JES) ± 1.1 (other sys.) GeV/c2 = 171.9 ± 2.0 GeV/c2. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.

  10. Top quark properties and mass measurements with the ATLAS detector

    CERN Document Server

    Dado, Tomas; The ATLAS collaboration

    2017-01-01

    The top quark is unique among the known quarks in that it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. The latest measurements of these properties with the ATLAS detector at the LHC are presented. Measurements of top quark spin observables in top-antitop events, each sensitive to a different coefficient of the spin density matrix, are presented and compared to the Standard Model predictions. The helicity of the W boson from the top decays and the production angles of the top quark are further discussed. Limits on the rate of flavour changing neutral currents in the production or decay of the top quark are reported. The production of top-quark pairs in association with W and Z bosons is also presented. The measurement probes the coupling between the top quark and the Z boson. The cross-section measurement of photons produced in association with top-quark pairs is a...

  11. Mass measurement on the rp-process waiting point {sup 72}Kr

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Beck, D.; Herfurth, F.; Kluge, H.-J. [GSI, Darmstadt (Germany); Kolhinen, V.S.; Aeystoe, J.; Jokinen, A. [University of Jyvaeskylae, Jyvaeskylae (Finland); Audi, G. [CSNSM-IN2P3-CNRS, Orsay-Campus (France); Blaum, K. [GSI, Darmstadt (Germany); University of Mainz, Institute of Physics, Mainz (Germany); Bollen, G.; Schwarz, S. [Michigan State University, NSCL, East Lansing, MI (United States); Kellerbauer, A.; Sauvan, E. [CERN, Physics Department, Geneva (Switzerland); Oinonen, M. [University of Helsinki, Helsinki Institute of Physics, Helsinki (Finland); Schatz, H. [Michigan State University, NSCL, East Lansing, MI (United States); Michigan State University, Joint Institute for Nuclear Astrophysics, East Lansing, MI (United States)

    2005-09-01

    With the aim of improving nucleosynthesis calculations, we performed for the first time, a direct high-precision mass measurement on the waiting point in the astrophysical rp-process {sup 72}Kr. We used the ISOLTRAP Penning trap mass spectrometer located at ISOLDE/CERN. The measurement yielded a relative mass uncertainty of {delta}m/m=1.2 x 10{sup -7}. In addition, the masses of {sup 73}Kr and {sup 74}Kr were measured directly with relative mass uncertainties of 1.0 x 10{sup -7} and 3 x 10{sup -8}, respectively. We analyzed the role of {sup 72}Kr in the rp-process during X-ray bursts using the ISOLTRAP and previous mass values of {sup 72-74}Kr. (orig.)

  12. Measurement of the mass difference between $t$ and $\\bar{t}$ quarks

    CERN Document Server

    ,

    2011-01-01

    We present a direct measurement of the mass difference between $t$ and $\\bar{t}$ quarks using $\\ttbar$ candidate events in the lepton+jets channel, collected with the CDF II detector at Fermilab's 1.96 TeV Tevatron \\ppbar Collider. We make an event by event estimate of the mass difference to construct templates for top quark pair signal events and background events. The resulting mass difference distribution of data is compared to templates of signals and background using a maximum likelihood fit. From a sample corresponding to an integrated luminosity of \\invfb{5.6}, we measure a mass difference, $\\dmt = \\mathrm{M}_{t} - \\mathrm{M}_{\\bar{t}} = -3.3 \\pm 1.4(stat) \\pm 1.0(syst)}$, approximately two standard deviations away from the CPT hypothesis of zero mass difference. This is the most precise measurement of a mass difference between $t$ and its $\\bar{t}$ partner to date.

  13. Measurements of the transport efficiency of the fragment mass analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Davids, C.N. [and others

    1995-08-01

    Extensive calculations of the transport of reaction products were carried out during the design phase of the instrument using the computer code GIOS. These show that the energy acceptance depends strongly on the angular deviation from the optical axis of the instrument. In order to reliably measure cross sections using this instrument it is therefore necessary to verify these calculations empirically.

  14. Cross-section-constrained top-quark mass measurement from dilepton events at the Tevatron.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; DeCecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-02-15

    We report the first top-quark mass measurement that uses a cross-section constraint to improve the mass determination. This measurement is made with a dilepton tt event candidate sample collected with the Collider Detector II at Fermilab. From a data sample corresponding to an integrated luminosity of 1.2 fb(-1), we measure a top-quark mass of 170.7(-3.9)(+4.2)(stat)+/-2.6(syst)+/-2.4(theory) GeV/c(2). The measurement without the cross-section constraint is 169.7(-4.9)(+5.2)(stat)+/-3.1(syst) GeV/c(2).

  15. VLA Measurements of Faraday Rotation through Coronal Mass Ejections

    CERN Document Server

    Kooi, Jason E; Buffo, Jacob J; Spangler, Steven R

    2016-01-01

    Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the Sun that play an important role in space weather. Faraday rotation (FR) is the rotation of the plane of polarization that results when a linearly polarized signal passes through a magnetized plasma such as a CME. FR observations of a source near the Sun can provide information on the plasma structure of a CME shortly after launch. We report on simultaneous white-light and radio observations made of three CMEs in August 2012. We made sensitive Very Large Array (VLA) full-polarization observations using 1 - 2 GHz frequencies of a "constellation" of radio sources through the solar corona at heliocentric distances that ranged from 6 - 15 solar radii. Of the nine sources observed, three were occulted by CMEs: two sources (0842+1835 and 0900+1832) were occulted by a single CME and one source (0843+1547) was occulted by two CMEs. In addition to our radioastronomical observations, which represent one of the first active hunts for CME Faraday r...

  16. Innovative Operations Measures and Nutritional Support for Mass Endurance Events.

    Science.gov (United States)

    Chiampas, George T; Goyal, Anita V

    2015-11-01

    Endurance and sporting events have increased in popularity and participation in recent years worldwide, and with this comes the need for medical directors to apply innovative operational strategies and nutritional support to meet such demands. Mass endurance events include sports such as cycling and running half, full and ultra-marathons with over 1000 participants. Athletes, trainers and health care providers can all agree that both participant outcomes and safety are of the utmost importance for any race or sporting event. While demand has increased, there is relatively less published guidance in this area of sports medicine. This review addresses public safety, operational systems, nutritional support and provision of medical care at endurance events. Significant medical conditions in endurance sports include heat illness, hyponatraemia and cardiac incidents. These conditions can differ from those typically encountered by clinicians or in the setting of low-endurance sports, and best practices in their management are discussed. Hydration and nutrition are critical in preventing these and other race-related morbidities, as they can impact both performance and medical outcomes on race day. Finally, the command and communication structures of an organized endurance event are vital to its safety and success, and such strategies and concepts are reviewed for implementation. The nature of endurance events increasingly relies on medical leaders to balance safety and prevention of morbidity while trying to help optimize athlete performance.

  17. Measurement of the Top Quark Mass Using the Invariant Mass of Lepton Pairs in Soft Muon b-tagged Events

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, Jahred A.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Alvarez Gonzalez, B.; /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, Dante E.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, Alberto; /Frascati; Antos, Jaroslav; /Comenius U.; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U.

    2009-06-01

    We present the first measurement of the mass of the top quark in a sample of t{bar t} {yields} {ell}{bar {nu}}b{bar b}q{bar q} events (where {ell} = e, {mu}) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons (soft muon b-tagging). The p{bar p} collision data used corresponds to an integrated luminosity of 2 fb{sup -1} and was collected by the CDF II detector at the Fermilab Tevatron. The measurement is based on a novel technique exploiting the invariant mass of a subset of the decay particles, specifically the lepton from the W boson of the t {yields} Wb decay, and the muon from a semileptonic b decay. We fit template histograms, derived from simulation of t{bar t} events and a modeling of the background, to the mass distribution observed in the data and measure a top quark mass of 180.5 {+-} 12.0(stat.) {+-} 3.6(syst.) GeV/c{sup 2}, consistent with the current world average.

  18. Measurement of the W mass in e+e- collisions at 183 GeV

    Science.gov (United States)

    ALEPH Collaboration; Barate, R.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Alemany, R.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Morawitz, P.; Pacheco, A.; Park, I. C.; Riu, I.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Halley, A. W.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Loomis, C.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Tournefier, E.; Vreeswijk, M.; Wright, A. E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Swynghedauw, M.; Tanaka, R.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Curtis, L.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raeven, B.; Raine, C.; Smith, D.; Teixeira-Dias, P.; Thompson, A. S.; Ward, J. J.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Marinelli, N.; Martin, E. B.; Nash, J.; Nowell, J.; Sedgbeer, J. K.; Spagnolo, P.; Thomson, E.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Williams, M. I.; van Gemmeren, P.; Giehl, I.; Hölldorfer, F.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Kröcker, M.; Nürnberger, H.-A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Ealet, A.; Fouchez, D.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Tilquin, A.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Büscher, V.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Kado, M.; Lefrançois, J.; Serin, L.; Veillet, J.-J.; Videau, I.; de Vivie de Régie, J.-B.; Zerwas, D.; Bagliesi, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; dell'Orso, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Coles, J.; Cowan, G.; Green, M. G.; Hutchcroft, D. E.; Jones, L. T.; Medcalf, T.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Faïf, G.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Przysiezniak, H.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Hodgson, P. N.; Kelly, M. S.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1999-04-01

    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 57 pb-1 collected with the ALEPH detector in 1997 at a centre-of-mass energy of 183 GeV. The invariant mass distributions of reweighted Monte Carlo events are fitted separately to the experimental distributions in the qq¯qq¯ and all lνqq¯ channels to give the following W masses:where the theory error represents the possible effects of final state interactions. The combination of these two measurements, including the LEP energy calibration uncertainty, gives

  19. Method for Single-Cell Mass and Electrophoretic Mobility Measurement

    Science.gov (United States)

    2010-02-01

    determining cell behavior is indicated by the finding that approximately a third of yeast genes encode a membrane protein, and that this fraction is even higher...cellular EPM measurement in vitro generally consists of an electrically insulating chamber filled with a cell suspension across which an electric...etched into the device layer of an SOI wafer (6.5 tm device layer, 2 tm insulator ) using a reactive ion etch (RIE), and a 5000 A thermal oxide is grown

  20. Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator

    Science.gov (United States)

    Godin, Michel; Bryan, Andrea K.; Burg, Thomas P.; Babcock, Ken; Manalis, Scott R.

    2007-09-01

    We demonstrate the measurement of mass, density, and size of cells and nanoparticles using suspended microchannel resonators. The masses of individual particles are quantified as transient frequency shifts, while the particles transit a microfluidic channel embedded in the resonating cantilever. Mass histograms resulting from these data reveal the distribution of a population of heterogeneously sized particles. Particle density is inferred from measurements made in different carrier fluids since the frequency shift for a particle is proportional to the mass difference relative to the displaced solution. We have characterized the density of polystyrene particles, Escherichia coli, and human red blood cells with a resolution down to 10-4g/cm3.

  1. A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses

    Science.gov (United States)

    Schmöle, Jonas; Dragosits, Mathias; Hepach, Hans; Aspelmeyer, Markus

    2016-06-01

    This paper addresses a simple question: how small can one make a gravitational source mass and still detect its gravitational coupling to a nearby test mass? We describe an experimental scheme based on micromechanical sensing to observe gravity between milligram-scale source masses, thereby improving the current smallest source mass values by three orders of magnitude and possibly even more. We also discuss the implications of such measurements both for improved precision measurements of Newton’s constant and for a new generation of experiments at the interface between quantum physics and gravity.

  2. A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses

    CERN Document Server

    Schmöle, Jonas; Hepach, Hans; Aspelmeyer, Markus

    2016-01-01

    This paper addresses a simple question: how small can one make a gravitational source mass and still detect its gravitational coupling to a nearby test mass? We describe an experimental scheme based on micromechanical sensing that should allow to observe gravity between milligram-scale source masses, thereby improving the current smallest source mass values by three orders of magnitude and possibly even more. We also discuss the implications of such measurements both for improved precision measurements of Newton's constant and for a new generation of experiments at the interface between quantum physics and gravity.

  3. Investigation of the proton-neutron interaction by high-precision nuclear mass measurements

    CERN Multimedia

    Savreux, R P; Akkus, B

    2007-01-01

    We propose to measure the atomic masses of a series of short-lived nuclides, including $^{70}$Ni, $^{122-130}$Cd, $^{134}$Sn, $^{138,140}$Xe, $^{207-210}$Hg, and $^{223-225}$Rn, that contribute to the investigation of the proton-neutron interaction and its role in nuclear structure. The high-precision mass measurements are planned for the Penning trap mass spectrometer ISOLTRAP that reaches the required precision of 10 keV in the nuclear mass determination.

  4. A novel concept of measuring mass flow rates using flow induced stresses

    Indian Academy of Sciences (India)

    P I Jagad; B P Puranik; A W Date

    2015-08-01

    Measurement of mass flow rate is important for automatic control of the mass flow rate in many industries such as semiconductor manufacturing and chemical industry (for supply of catalyst to a reaction). In the present work, a new concept for direct measurement of mass flow rates which does not depend on the volumetric flow rate measurement and obviates the need for the knowledge of density is proposed from the measurement of the flow induced stresses in a substrate. The concept is formulated by establishing the relationship between the mass flow rate and the stress in the substrate. To this end, the flow field and the stress field in the substrate are evaluated simultaneously using a numerical procedure and the necessary correlations are derived. A least squares based procedure is used to derive the mass flow rate from the correlations as a function of the stress in the substrate.

  5. 三洋推出Easy Radio IC系列LV24000PL

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    三洋(Sanyo)公司日前推出Easy Radio IC系列LV24000PL。LV24000PL是一款不需要使用外部元器件的便携式Device用FM调谐器芯片,尺寸仅约5mm×5mm×0.8mm,尺寸缩减为原来的六分之一,适用于手机、PDA等便携式产品。

  6. La piattaforma POS/LV di Applanix nelle applicazioni di laser scanner cinematico

    Directory of Open Access Journals (Sweden)

    Domenico Santarsiero

    2008-03-01

    Full Text Available The Applanix POS/LV platform in cinematic laser scanner applicationsOn the 11th of march the GEOmedia editorial unit had the pleasure of hosting a technical meeting dedicated to the Applanix LANDMark new Position and Orientation System for Land Vehicles (POS/LVfield test. The meeting, which is part of an italian tour organized by Louis Nastro (Applanix Director of Land Products and Terenzio Mariani (Sales manager for Italy, helped to test the functionalities of a complete POS/LV system equipped with a laser and an imaging acquisition software installed on board of a SUV.

  7. Validity of Ski Skating Center-of-Mass Displacement Measured by a Single Inertial Measurement Unit.

    Science.gov (United States)

    Myklebust, Håvard; Gløersen, Øyvind; Hallén, Jostein

    2015-12-01

    In regard to simplifying motion analysis and estimating center of mass (COM) in ski skating, this study addressed 3 main questions concerning the use of inertial measurement units (IMU): (1) How accurately can a single IMU estimate displacement of os sacrum (S1) on a person during ski skating? (2) Does incorporating gyroscope and accelerometer data increase accuracy and precision? (3) Moreover, how accurately does S1 determine COM displacement? Six world-class skiers roller-ski skated on a treadmill using 2 different subtechniques. An IMU including accelerometers alone (IMU-A) or in combination with gyroscopes (IMU-G) were mounted on the S1. A reflective marker at S1, and COM calculated from 3D full-body optical analysis, were used to provide reference values. IMU-A provided an accurate and precise estimate of vertical S1 displacement, but IMU-G was required to attain accuracy and precision of < 8 mm (root-mean-squared error and range of displacement deviation) in all directions and with both subtechniques. Further, arm and torso movements affected COM, but not the S1. Hence, S1 displacement was valid for estimating sideways COM displacement, but the systematic amplitude and timing difference between S1 and COM displacement in the anteroposterior and vertical directions inhibits exact calculation of energy fluctuations.

  8. Precision Mass Property Measurements Using a Five-Wire Torsion Pendulum

    Science.gov (United States)

    Swank, Aaron J.

    2012-01-01

    A method for measuring the moment of inertia of an object using a five-wire torsion pendulum design is described here. Typical moment of inertia measurement devices are capable of 1 part in 10(exp 3) accuracy and current state of the art techniques have capabilities of about one part in 10(exp 4). The five-wire apparatus design shows the prospect of improving on current state of the art. Current measurements using a laboratory prototype indicate a moment of inertia measurement precision better than a part in 10(exp 4). In addition, the apparatus is shown to be capable of measuring the mass center offset from the geometric center. Typical mass center measurement devices exhibit a measurement precision up to approximately 1 micrometer. Although the five-wire pendulum was not originally designed for mass center measurements, preliminary results indicate an apparatus with a similar design may have the potential of achieving state of the art precision.

  9. An Improved W Boson Mass Measurement Using the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yu [Duke Univ., Durham, NC (United States)

    2012-01-01

    The mass of the W boson is one of the most important parameters in the Standard Model. A precise measurement of the W boson mass, together with a precise measurement of the top quark mass, can constrain the mass of the undiscovered Higgs boson within the Standard Model framework or give a hint for physics beyond the Standard Model. This dissertation describes a measurement of the W boson mass through its decay into a muon and a neutrino using ~ 2.2 fb-1 of √ s = 1.96 TeV p$\\bar{p}$ data taken with the CDF II detector at Fermilab. We measure the W boson mass to be (80.374 ± 0.015stat. ± 0.016syst.) GeV/c2. This result, when combined with the W mass measurement in the electron channel, leads to the single most precise mW value and greatly constrains the possible mass range of the undiscovered Higgs boson. iv

  10. Sensitivity bias in the mass-radius distribution from Transit Timing Variations and Radial Velocity measurements

    CERN Document Server

    Steffen, Jason H

    2015-01-01

    Motivated by recent discussions, both in private and in the literature, we use a Monte Carlo simulation of planetary systems to investigate sources of bias in determining the mass-radius distribution of exoplanets for the two primary techniques used to measure planetary masses---Radial Velocities (RVs) and Transit Timing Variations (TTVs). We assert that mass measurements derived from these two methods are comparably reliable---as the physics underlying their respective signals is well understood. Nevertheless, their sensitivity to planet mass varies with the properties of the planets themselves. We find that for a given planet size, the RV method tends to find planets with higher mass while the sensitivity of TTVs is more uniform. This ``sensitivity bias'' implies that a complete census of TTV systems is likely to yield a more robust estimate of the mass-radius distribution provided there are not important physical differences between planets near and far from mean-motion resonance. We discuss differences in...

  11. Helium mass flow measurement in the International Fusion Superconducting Magnet Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R.

    1986-08-01

    The measurement of helium mass flow in the International Fusion Superconducting Magnet Test Facility (IFSMTF) is an important aspect in the operation of the facility's cryogenic system. Data interpretation methods that lead to inaccurate results can cause severe difficulty in controlling the experimental superconducting coils being tested in the facility. This technical memorandum documents the methods of helium mass flow measurement used in the IFSMTF for all participants of the Large Coil Program and for other cryogenic experimentalists needing information on mass flow measurements. Examples of experimental data taken and calculations made are included to illustrate the applicability of the methods used.

  12. Measurement of the electron antineutrino mass from the beta spectrum of gaseous tritium

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, D.A.

    1986-12-01

    A measurement has been made of the mass of the electron antineutrino using the beta spectrum from a source of gaseous molecular tritium, and an upper limit of 36 eV/c/sup 2/ has been set on this mass. This measurement is the first upper limit on neutrino mass that does not rely on assumptions about the atomic configuration after the beta decay, and it has significantly smaller systematic errors associated with it than do previous measurements. 130 refs., 83 figs., 8 tabs.

  13. Time-of-Flight Mass Measurements and Their Importance for Nuclear Astrophysics

    Science.gov (United States)

    Matoš, M.; Estrade, A.; Amthor, A. M.; Bazin, D.; Becerril, A.; Elliot, T.; Famiano, M.; Gade, A.; Galaviz, D.; Lorusso, G.; Pereira, J.; Portillo, M.; Rogers, A.; Schatz, H.; Shapira, D.; Smith, E.; Stolz, A.; Wallace, M.

    2009-03-01

    Atomic masses play an important role in nuclear astrophysics. The lack of experimental values for nuclides of interest has triggered a rapid development of new mass measurement devices around the world, including Time-of-Flight (TOF) mass measurements offering an access to the most exotic nuclides. Recently, the TOF-Brho technique that includes a position measurement for magnetic rigidity correction has been implemented at the NSCL. An experiment with a similar TOF-Brho technique is approved and planned at the next generation radioactive beam facility (RIBF) at RIKEN.

  14. Mass measurements of neutron-deficient nuclides close to A=80 with a Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Kankainen, A.; Elomaa, V.-V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Moore, I.; Penttilae, H.; Peraejaervi, K.; Rahaman, S.; Rinta-Antila, S.; Ronkanen, P.; Saastamoinen, A.; Sonoda, T.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35 (Finland); Batist, L.; Novikov, Yu.N.; Popov, A.V.; Seliverstov, D.M. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Eliseev, S.A.; Vorobjev, G.K. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); GSI, Darmstadt (Germany)

    2006-09-15

    The masses of {sup 80,} {sup 81,} {sup 82,} {sup 83}Y, {sup 83,} {sup 84,} {sup 85,} {sup 86,} {sup 88}Zr and {sup 85,} {sup 86,} {sup 87,} {sup 88}Nb have been measured with a typical precision of 7keV by using the Penning trap setup at IGISOL. The mass of {sup 84}Zr has been measured for the first time. These precise mass measurements have improved S{sub p} and Q{sub EC} values for astrophysically important nuclides. (orig.)

  15. Assessment of Longitudinal Reproducibility of Mice LV Function Parameters at 11.7 T Derived from Self-Gated CINE MRI

    Science.gov (United States)

    Zuo, Zhi; Subgang, Anne; Abaei, Alireza; Rottbauer, Wolfgang; Stiller, Detlef; Ma, Genshan

    2017-01-01

    The objective of this work was the assessment of the reproducibility of self-gated cardiac MRI in mice at ultra-high-field strength. A group of adult mice (n = 5) was followed over 360 days with a standardized MR protocol including reproducible animal position and standardized planning of the scan planes. From the resulting CINE MRI data, global left ventricular (LV) function parameters including end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and left ventricular mass (LVM) were quantified. The reproducibility of the self-gated technique as well as the intragroup variability and longitudinal changes of the investigated parameters was assessed. Self-gated cardiac MRI proved excellent reproducibility of the global LV function parameters, which was in the order of the intragroup variability. Longitudinal assessment did not reveal any significant variations for EDV, ESV, SV, and EF but an expected increase of the LVM with increasing age. In summary, self-gated MRI in combination with a standardized protocol for animal positioning and scan plane planning ensures reproducible assessment of global LV function parameters. PMID:28321415

  16. Assessment of Longitudinal Reproducibility of Mice LV Function Parameters at 11.7 T Derived from Self-Gated CINE MRI.

    Science.gov (United States)

    Zuo, Zhi; Subgang, Anne; Abaei, Alireza; Rottbauer, Wolfgang; Stiller, Detlef; Ma, Genshan; Rasche, Volker

    2017-01-01

    The objective of this work was the assessment of the reproducibility of self-gated cardiac MRI in mice at ultra-high-field strength. A group of adult mice (n = 5) was followed over 360 days with a standardized MR protocol including reproducible animal position and standardized planning of the scan planes. From the resulting CINE MRI data, global left ventricular (LV) function parameters including end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and left ventricular mass (LVM) were quantified. The reproducibility of the self-gated technique as well as the intragroup variability and longitudinal changes of the investigated parameters was assessed. Self-gated cardiac MRI proved excellent reproducibility of the global LV function parameters, which was in the order of the intragroup variability. Longitudinal assessment did not reveal any significant variations for EDV, ESV, SV, and EF but an expected increase of the LVM with increasing age. In summary, self-gated MRI in combination with a standardized protocol for animal positioning and scan plane planning ensures reproducible assessment of global LV function parameters.

  17. Mass measurements of $^{56-57}$Cr and the question of shell reincarnation at $N = 32$

    CERN Document Server

    Guenaut, Celine; Beck, D; Blaum, Klaus; Bollen, Georg; Delahaye, P; Herfurth, F; Kellerbauer, A G; Kluge, H J; Lunney, M D; Schwarz, S; Schweikhard, L; Yazidjian, C

    2005-01-01

    Binding energies determined with high accuracy provide smooth derivatives of the mass surface for analysis of shell and pairing effects. Measurements with the Penning trap mass spectrometer ISOLTRAP at CERN-ISOLDE were made for $^{56-57}$Cr for which an accuracy of $4 \\times 10^{-8}$ was achieved. Analysis of the mass surface for the supposed new $N = 32$ shell closure rather indicates a sub-shell closure, but of a different nature than known cases such as $^{94}$Sr.

  18. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    Science.gov (United States)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  19. TOF-Bρ Mass Measurement of Neutron Rich Nuclei at the NSCL

    Science.gov (United States)

    Estradé, Alfredo; Matoš, Milan; Amthor, Matthew A.; Bazin, Daniel; Becerril, Ana D.; Elliot, Thom J.; Gade, Alexandra; Galaviz, Daniel; Lorusso, Giuseppe; Pereira, Jorge; Portillo, Mauricio; Rogers, Andrew; Schatz, Hendrik; Shapira, Dan; Smith, Edward; Stolz, Andreas; Wallace, Mark S.

    2007-10-01

    Experimental knowledge of nuclear masses of exotic nuclei is important for understanding nuclear structure far from the valley of β-stability, and as a direct input into astrophysical models. In the case of astrophysical processes involving neutron rich nuclei, such as nucleosynthesis during the r-process and the evolution of matter in the crust of an accreting neutron star, we are mostly limited to using theoretical mass models. The time of flight (TOF) mass measurement technique allows measuring very short-lived nuclei. It has been effectively applied using the fast fragment beams produced at the A1900 fragment separator at the National Superconducting Cyclotron Lab (NSCL) to reach masses very far from stability. We describe a recent mass measurement experiment in the neutron rich Fe region performed at the NSCL, and present preliminary results.

  20. Conceptual Design and Demonstration of Space Scale for Measuring Mass in Microgravity Environment

    Science.gov (United States)

    Kim, Youn-Kyu; Lee, Joo-Hee; Choi, Gi-Hyuk; Choi, Ik-Hyeon

    2015-12-01

    In this study, a new idea for developing a space scale for measuring mass in a microgravity environment was proposed by using the inertial force properties of an object to measure its mass. The space scale detected the momentum change of the specimen and reference masses by using a load-cell sensor as the force transducer based on Newton's laws of motion. In addition, the space scale calculated the specimen mass by comparing the inertial forces of the specimen and reference masses in the same acceleration field. By using this concept, a space scale with a capacity of 3 kg based on the law of momentum conservation was implemented and demonstrated under microgravity conditions onboard International Space Station (ISS) with an accuracy of ±1 g. By the performance analysis on the space scale, it was verified that an instrument with a compact size could be implemented and be quickly measured with a reasonable accuracy under microgravity conditions.

  1. First results from the CARIBU facility: mass measurements on the r-process path.

    Science.gov (United States)

    Van Schelt, J; Lascar, D; Savard, G; Clark, J A; Bertone, P F; Caldwell, S; Chaudhuri, A; Levand, A F; Li, G; Morgan, G E; Orford, R; Segel, R E; Sharma, K S; Sternberg, M G

    2013-08-09

    The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade facility at Argonne National Laboratory. The studied region includes the 132Sn double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A=135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.

  2. The Top Quark Mass, Systematic Limitations, and my Tracker-Driven Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Garberson, Ford [Univ. of California, Santa Barbara, CA (United States)

    2008-08-01

    Top quark mass measurements have achieved an unexpected level of accu- racy in the last several years. This accuracy is only possible because of a new procedure that calibrates away the dominant jet energy uncertainty of past mea- surements. In this thesis I present some studies illustrating my suspicions that this procedure is leading them to claim overly optimistic results. Additionally, I present three measurements of the top quark mass that will be almost entirely independent of jet energies, and will thus serve as important cross checks of the standard measurements once enough statistics have been collected. I perform my measurements of the top quark mass in the lepton plus jets channel with approximately 1.9 fb-1 of integrated luminosity collected with the CDF detector using quantities with minimal dependence on the jet energies. One measurement exploits the transverse decay length of b-tagged jets to determine a top quark mass of 166.9+9.5 (stat)±2.9 (syst) GeV/c2, and another the transverse momentum of electrons and muons from W decays to determine a top quark mass of 173.5+8.8 - (stat) ± 3.8 (syst) GeV/c2. I combine these quantities in a vi third, simultaneous mass measurement to determine a top quark mass of 170.7 ± 6.3 (stat) ± 2.6 (syst) GeV/c2.

  3. Characterization and DNA sequence of the mobilization region of pLV22a from Bacteroides fragilis.

    OpenAIRE

    Novicki, T. J.; Hecht, D. W.

    1995-01-01

    A 4.2-kb plasmid (pLV22a) native to Bacteroides fragilis LV22 became fused to a transfer-deficient Bacteroides spp.-Escherichia coli shuttle vector by an inverse transposition event, resulting in a transferrable phenotype. The transfer phenotype was attributable to pLV22a, which was also capable of mobilization within E. coli when coresident with the IncP beta R751 plasmid. Transposon mutagenesis with Tn1000 localized the mobilization region to a 1.5-kb DNA segment in pLV22a. The mobilization...

  4. Thermodynamics of Cerebral Cortex Assayed by Measures of Mass Action

    Science.gov (United States)

    Freeman, Walter J.

    2014-12-01

    The term criticality has multiple meanings in different contexts. For interpretation of recordings of electroencephalographic (EEG) and electrocorticographic (ECoG) potentials from sensory cortices of humans and animals we adopt the convention established in thermodynamics for the critical point that terminates the boundary between gaseous and liquid states, and the region beyond the point. Our recordings reveal intermittent bursts of beta and gamma oscillations. In doing so we define state variables to replace the conventional variables of pressure, volume and temperature with measures of ECoG power, entropy, and feedback gain. Each burst of oscillation has a narrow distribution of frequencies that carries a spatial pattern of amplitude modulation (AM), but only when the subjects hold themselves in a stance of expectancy, waiting for one of multiple conditioned stimuli (CS) that will direct them into one of several actions (CR), and then only when they receive an expected CS. Local 1/f fluctuations have the form of phase modulation (PM) patterns that resemble fog in vapor. Large-scale, spatially coherent AM patterns emerge from and dissolve into this random background activity but only on receiving a CS. They do so by spontaneous symmetry breaking in a phase transition that resembles the condensation of a raindrop, in that it requires a large distribution of components, a source of transition energy, a singularity in the dynamics, and a connectivity that can sustain interaction over relatively immense correlation distances with respect to particle size. We conclude that the background activity at the pseudoequilibrium state conforms to fractal distributions of phase patterns corresponding to a phase transition from a gas-like, disorganized, lowdensity phase to a liquid-like high-density, more organized phase, that the activation of a Hebbian assembly is required for the phase transition, that a singularity is required to initiate and terminate a phase transition

  5. Towards high-precision mass measurements of neutron-rich fission products at TRIGA-SPEC

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Szilard [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2010-07-01

    TRIGA-TRAP, the only Penning trap mass spectrometer worldwide at a nuclear research reactor, is installed at TRIGA Mainz as part of the TRIGA-SPEC experiment. The scientific goal is to perform high-precision mass measurements on lanthanoids, actinoids and neutron-rich fission products produced by thermal neutron induced fission of a target inside the reactor. High-precision mass data are scarce in this region of the nuclear chart, and further experimental data are needed for nuclear structure studies of heavy elements, to test the predictive power of nuclear mass models, or as input to nucleosynthesis calculations of the astrophysical r-process. Ions of certain lanthanoids and most actinoids as well as carbon clusters for calibration purposes can be routinely produced by a newly developed non-resonant laser ablation ion source, allowing off-line mass measurements. Besides fundamental research, TRIGA-TRAP serves as a test bench for the development of efficient ion detection techniques, which will enable mass measurements ultimately on a single ion with a half-life of the order of one second. To this end, a unique combination of the commonly used time-of-flight technique and the non-destructive image current detection method is realized in an on-line mass spectrometer. The first mass measurement results are reported.

  6. Sensitivity bias in the mass-radius distribution from transit timing variations and radial velocity measurements

    Science.gov (United States)

    Steffen, Jason H.

    2016-04-01

    Motivated by recent discussions, both in private and in the literature, we use a Monte Carlo simulation of planetary systems to investigate sources of bias in determining the mass-radius distribution of exoplanets for the two primary techniques used to measure planetary masses - radial velocities (RVs) and transit timing variations (TTVs). We assert that mass measurements derived from these two methods are comparably reliable - as the physics underlying their respective signals is well understood. Nevertheless, their sensitivity to planet mass varies with the properties of the planets themselves. We find that for a given planet size, the RV method tends to find planets with higher mass while the sensitivity of TTVs is more uniform. This `sensitivity bias' implies that a complete census of TTV systems is likely to yield a more robust estimate of the mass-radius distribution provided there are not important physical differences between planets near and far from mean-motion resonance. We discuss differences in the sensitivity of the two methods with orbital period and system architecture, which may compound the discrepancies between them (e.g. short-period planets detectable by RVs may be more dense due to atmospheric loss). We advocate for continued mass measurements using both approaches as a means both to measure the masses of more planets and to identify potential differences in planet structure that may result from their dynamical and environmental histories.

  7. Extinction in the Galaxy from surface brightnesses of ESO-LV galaxies : Testing "standard" extinction maps

    NARCIS (Netherlands)

    Choloniewski, J.; Valentijn, E. A.

    2003-01-01

    A new method for the determination of the extinction in the Galaxy is proposed. The method uses surface brightnesses of external galaxies in the B and R-bands. The observational data have been taken from the ESO-LV galaxy catalog. As a first application of our model we derive the ratio of R-band to

  8. Revisión diagramas de equilibrio Txy (LV y LLV)

    OpenAIRE

    Reyes Labarta, Juan Antonio

    2007-01-01

    Este tema se encarca en el contexto del estudio del equilibrio entre fases líquido-vapor. Se muestra de forma cualitativa diferentes ejemplos de diagramas de equilibrio LV, temperatura-composición (a presión constante), así como bibliografía relacionada. Universidad de Alicante. Dpto. Ingeniería Química

  9. Voltage unbalance mitigation in LV networks using three-phase PV systems

    DEFF Research Database (Denmark)

    Garcia Bajo, Cristina; Hashemi Toghroljerdi, Seyedmostafa; Bækhøj Kjær, Søren;

    2015-01-01

    In this paper a new method is proposed to mitigate voltage unbalance caused by single-phase solar inverters in low voltage (LV) networks. The method is based on uneven reactive power absorption and injection by three-phase solar inverters. Independent control of each phase is performed to achieve...

  10. Single Cell Mass Measurement Using Drag Force Inside Lab-on-Chip Microfluidics System.

    Science.gov (United States)

    Rahman, Md Habibur; Ahmad, Mohd Ridzuan; Takeuchi, Masaru; Nakajima, Masahiro; Hasegawa, Yasuhisa; Fukuda, Toshio

    2015-12-01

    Single cell mass (SCM) is an intrinsic property of single cell, it arouses a great interest among scientists as cell mass depends on the synthesis of proteins, DNA replication, cell wall stiffness, cell cytoplasm density, cell growth, ribosome, and other analogous of organisms. To date, several great strides have been taken to the advancements of SCM measurement techniques. Nevertheless, more works are required to enable the technology to push frontier in deep analysis of SCM measurement, hence to elucidate intracellular properties. In this paper, we present a lab-on-chip microfluidics system for SCM measurement, related with the force required to drag a single cell and Newton's law of motion inside microfluidics channel. Drag force on the cell was generated by a pressure driven syringe micropump and the motion of the cell was measured using optical observation under an inverted microscope. This approach of measuring SCM was calibrated using known mass (77.3 pg) of a polystyrene particle of 5.2 μm diameter. Furthermore, we used Saccharomyces cerevisiae baker's yeast cells of different sizes ([Formula: see text] diameter) for SCM measurement. Mass of 4.4 μm diameter of single yeast cell was measured as 2.12 pg which is in the range of previously reported single yeast cell mass (2-3 pg). In addition, we also studied the relation between SCM and single cell size. Results showed that single yeast cell mass increases exponentially with the increasing of single cell size.

  11. Mass balance re-analysis of Findelengletscher, Switzerland; benefits of extensive snow accumulation measurements

    Directory of Open Access Journals (Sweden)

    Leo eSold

    2016-02-01

    Full Text Available A re-analysis is presented here of a 10-year mass balance series at Findelengletscher, a temperate mountain glacier in Switzerland. Calculating glacier-wide mass balance from the set of glaciological point balance observations using conventional approaches, such as the profile or contour method, resulted in significant deviations from the reference value given by the geodetic mass change over a five-year period. This is attributed to the sparsity of observations at high elevations and to the inability of the evaluation schemes to adequately estimate accumulation in unmeasured areas. However, measurements of winter mass balance were available for large parts of the study period from snow probings and density pits. Complementary surveys by helicopter-borne ground-penetrating radar (GPR were conducted in three consecutive years. The complete set of seasonal observations was assimilated using a distributed mass balance model. This model-based extrapolation revealed a substantial mass loss at Findelengletscher of -0.43m w.e. a^-1 between 2004 and 2014, while the loss was less pronounced for its former tributary, Adlergletscher (-0.30m w.e. a^-1. For both glaciers, the resulting time series were within the uncertainty bounds of the geodetic mass change. We show that the model benefited strongly from the ability to integrate seasonal observations. If no winter mass balance measurements were available and snow cover was represented by a linear precipitation gradient, the geodetic mass balance was not matched. If winter balance measurements by snow probings and snow density pits were taken into account, the model performance was substantially improved but still showed a significant bias relative to the geodetic mass change. Thus the excellent agreement of the model-based extrapolation with the geodetic mass change was owed to an adequate representation of winter accumulation distribution by means of extensive GPR measurements.

  12. Cross Section Constrained Top Quark Mass Measurement from Dilepton Events at the Tevatron

    CERN Document Server

    Aaltonen, T; Akimoto, T; Albrow, M G; Alvarez-Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, Mauro; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; García, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtälä, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobuev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2007-01-01

    We report the first top quark mass measurement that uses a cross section constraint to improve the mass determination. This measurement is made with a dilepton $t\\bar{t}$ event sample collected with the CDF II detector. From a data sample corresponding to an integrated luminosity of 1.2 fb$^{-1}$, we measure a top quark mass of $\\rm{170.7^{+4.2}_{-3.9}(stat)\\pm2.6(syst)}$ $\\rm{\\pm2.4(theory) GeV/{\\it{c}}^{2}}$. The measurement without the cross section constraint results in a top quark mass of $\\rm{169.7^{+5.2}_{-4.9}(stat)\\pm3.1(syst) GeV/{\\it{c}}^{2}}$.

  13. Measuring the Mass Hierarchy with Muon and Hadron Events in Atmospheric Neutrino Experiments

    CERN Document Server

    Ghosh, Anushree

    2013-01-01

    Neutrino mass hierarchy can be measured in atmospheric neutrino experiments through the observation of earth matter effects. Magnetized iron calorimeters have been shown to be good in this regard due to their charge identification capabilities. The charged current interaction of $\

  14. SMILETRAP - A Penning trap facility for precision mass measurements using highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, I.; Carlberg, C.; Fritioff, T.; Douysset, G.; Schoenfelder, J.; Schuch, R. E-mail: schuch@physto.se

    2002-07-21

    The precision of mass measurements in a Penning trap increases linearly with the charge of the ion. Therefore we have attached a Penning trap, named SMILETRAP, to the electron beam ion source CRYSIS at MSL. CRYSIS is via an isotope separator connected to an ion source that can deliver singly charged ions of practically any element. In CRYSIS charge state breeding occurs by intense electron bombardment. We have shown that it is possible to produce, catch and measure the cyclotron frequencies of ions in the charge region 1+ to 52+. The relevant observable in mass measurements using a Penning trap is the ratio of the cyclotron frequencies of the ion of interest and ion used as a mass reference. High precision requires that the two frequencies are measured after one another in the shortest possible time. For reasons of convenience the precision trap operates at room temperature. So far it has been believed that warm traps working at 4 K are required for high mass precision with exactly one ion in the trap at a time. In this paper we demonstrate that mass precision of a few parts in 10{sup 10} also can be obtained in a warm trap at a pressure of about 5x10{sup -12} mbar by stabilizing the pressure in the He-dewar, the trap temperature and the frequency synthesizer. In order to reduce the influence of changes of the magnetic field to a level below 10{sup -10}, the scanning of the frequencies close to the resonances of both the ion of interest and the reference ion is done in a total time <2 min. Trapping of ions is a statistical procedure, allowing more than one ion to be trapped in each measurement cycle. However, after completing the measurements it is possible to reject all information except for events based on 1 and 2 trapped ions. The procedures of producing, transporting, catching, exciting and measuring the cyclotron resonance frequencies of highly charged ions and the mass reference ions with the time-of-flight method are described. In routine measurements with

  15. Extraction of left ventricular myocardial mass from dynamic 11C-acetate PET

    DEFF Research Database (Denmark)

    Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik;

    wall was defined automatically using obtained parametric images and myocardial mass was derived from the volumes of the obtained myocardial segments. LV myocardial mass derived from CMR was used as gold standard reference. Results: A good agreement between LV mass derived using PET and CMR was found...

  16. Overview of the JYFLTRAP mass measurements and high-precision -values for weak interaction studies

    Indian Academy of Sciences (India)

    T Eronen; Jyfltrap

    2010-08-01

    The JYFLTRAP Penning trap set-up at the University of Jyväskylä, Finland, is a Penning trap facility that has provided high-precision atomic mass values for short-lived nuclides since 2003. Until now, masses of more than 250 short-lived nuclides have been measured. Since JYFLTRAP is coupled to the chemically insensitive IGISOL mass separator, any element can be accessed. So far, a huge mass surface extending from magnesium ( = 12) to lead ( = 82) has been covered.

  17. Measurement of the Mass Difference m(D_s^+) - m(D^+) at CDF II

    CERN Document Server

    Acosta, D; Ahn, M H; Akimoto, T; Albrow, M G; Alcorn, B; Alexander, C; Allen, D; Allspach, D H; Amaral, P; Ambrose, D; Amendolia, S R; Amidei, D; Amundson, J F; Anastassov, A; Anderson, J; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J F; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Attal, A; Avanzini, C; Azfar, F; Azzi-Bacchetta, P; Babik, M; Bacchetta, N; Bachacou, H; Badgett, W F; Bailey, S; Bakken, J; Barbaro-Galtieri, A; Bardi, A; Bari, M; Barker, G; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Barsotti, E; Basti, A; Bauer, G; Beckner, D; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellendir, G; Bellettini, Giorgio; Bellinger, J; Benjamin, D; Beretvas, A; Berg, B; Bhatti, A A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bogdan, M; Bölla, G; Bolshov, A; Booth, P S L; Bortoletto, Daniela; Boudreau, J; Bourov, S; Bowden, M; Box, D; Bromberg, C; Brown, W; Brozovic, M; Brubaker, E; Buckley-Geer, L; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byon-Wagner, A; Byrum, K L; Cabrera, S; Calafiura, P; Campanelli, M; Campbell, M; Canal, P; Canepa, A; Carithers, W C; Carlsmith, D; Carosi, R; Carrell, K; Carter, H; Caskey, W; Castro, A; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chandler, J T; Chapman, J; Chappa, S; Chen, C; Chen, Y C; Cheng, M T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I E; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chu, M L; Chung, J Y; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Cisko, S; Clark, A G; Coca, M; Coiley, K; Colijn, A P; Colombo, R M; Connolly, A; Convery, M; Conway, J; Cooper, G; Cordelli, M; Cortiana, G; Cranshaw, J; Cudzewicz, R; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Dal Monte, L; Da Ronco, S; D'Auria, S; Davila, R; Dawson, J; Dawson, T; De Barbaro, P; De Baun, C; De Cecco, S; Dell'Agnello, S; Dell'Orso, Mauro; De Maat, R; Demar, P; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Derylo, G; Devlin, T; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donno, F; D'Onofrio, M; Dorigo, T; Downing, R; Drake, G; Drennan, C; Drollinger, V; Dunietz, Isard; Dyer, A; Ebina, K; Eddy, N; Ely, R; Engels, E; Erbacher, R D; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Feild, R G; Feindt, M; Fernández, J P; Ferretti, C; Field, R D; Fiori, I; Fischler, M; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A D; Forrester, S; Foster, G W; Franklin, M; Frisch, H; Fromm, J; Fujii, Y; Furic, I; Galeotti, S; Galet, G; Gallas, A; Gallinaro, M; Ganel, O; García, C; García-Sciveres, M; Garfinkel, A F; Garwacki, M; Garzoglio, G; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Gerstenslager, J; Giacchetti, L; Giagu, S; Giannetti, P; Gibson, A; Gillespie, G; Gingu, C; Ginsburg, C; Giolo, K; Giordani, M; Glagolev, V; Glenzinski, D A; Glossen, R; Gold, M; Goldschmidt, N; Goldstein, D B; Goldstein, J; Gómez, G; Goncharov, M; González, H; Gordon, S; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Grado, J; Gregori, M; Gresele, A; Griffin, T; Grim, G; Grimm, C; Gromoll, S; Grosso-Pilcher, C; Gu, C; Guarino, V; Günther, M; Guimarães da Costa, J; Haber, C; Hahn, A; Hahn, K; Hahn, S R; Halkiadakis, E; Hall, C; Handler, R; Haney, M; Hao, W; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington, J; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hawke, T; Hays, C; Heider, E; Heinemann, B; Heinrich, J; Heiss, A; Hennecke, M; Herber, R; Herndon, M; Herren, M; Hicks, D; Hill, C; Hirschbuehl, D; Höcker, A; Hoff, J; Hoffman, K D; Hoftiezer, J H; Holloway, A; Holloway, L E; Holm, S; Holmgren, D; Hou, S; Houlden, M A; Howell, J; Hrycyk, M; Hubbard, P; Hughes, R E; Huffman, B T; Humbert, J; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, I; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jetton, R; Johnson, M; Jones, M; Jones, T; Jun, S Y; Junk, T R; Kallenbach, Jeff; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kartal, S; Kasha, H; Kasten, M; Kato, Y; Kemp, Y; Kennedy, R D; Kephart, K; Kephart, R D; Khazins, D; Khotilovich, V; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, J; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirk, M; Kirsch, L; Klein, R; Klimenko, S; Knapp, M; Knoblauch, D; Knuteson, B; Kobayashi, H; Koehn, P; Kondo, K; Kong, D J; Konigsberg, J; Kononenko, W; Kordas, K; Korn, A J; Korytov, A; Kotelnikov, K A; Kotwal, A; Kovalev, A; Kowalkowski, J B; Kraus, J; Kravchenko, I V; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kumar, A; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lamore, D; Lancaster, J; Lancaster, M; Lander, R; Lanfranco, G; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; LeCompte, T J; Lee, J; Lee, K; Lee, S W; Lei, C M; Leininger, M; Leonardi, G L; Leonardo, N; Leone, S; Levshina, T; Lewis, F; Lewis, J D; Li, K; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lobban, O; Lockyer, N S; Loginov, A; Loken, J; Loreti, M; Loskot, J; Loverre, P F; Lucchesi, D; Lukens, P; Lutz, P; Lyons, L; Lys, J; MacNerland, J; MacQueen, D; Madorsky, A; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mammini, P; Manca, G; Mandrichenko, I V; Manea, C; Marginean, R; Marrafino, J; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mayer, J; Mayers, G M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Meyer, A; Miao, T; Michael, N; Miller, J S; Miller, L; Miller, R; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Mizicko, D; Moccia, S; Moggi, A; Moggi, N; Montero, S; Moore, R; Moore, T; Morris, L; Morsani, F; Moulik, T; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Necula, V; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Neuberger, D; Newby, W; Newcomer, F M; Newman-Holmes, C; Niell, F; Nielsen, J; Nicollerat, A S; Nigmanov, T; Niu, H; Nodulman, L; Noe, W; Österberg, K; Ogawa, T; Oh, S; Oh, Y D; Ohl, K; Ohsugi, T; Oishi, R; Okusawa, T; Oldeman, R G C; Orava, Risto; Orejudos, W; Orr, S; Pagani, G; Pagliarone, C; Palmonari, F; Ramos, I; Panacek, S; Pantano, D; Paoletti, R; Papadimitriou, V; Pasetes, R; Pashapour, S; Passuello, D; Paterno, M; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pavlicek, V; Pavlon, S; Pellett, D; Penzo, Aldo L; Perington, B; Petragnani, G; Petravick, D; Phillips, T J; Photos, F; Piacentino, G; Picciolo, C; Piccoli, L; Piedra, J; Pitts, K T; Plunkett, R; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Profeti, A; Pronko, A G; Proudfoot, J; Punzi, G; Rademacker, J; Rafaelli, F; Rakitine, A; Rappoccio, S; Ratnikov, F; Rauch, J; Ray, H; Rechenmacher, R; Reia, S; Reichold, A; Rekovic, V; Renton, P B; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Riveline, M; Rivetta, C; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Román, M; Rosenberg, S I; Rosenson, L; Roser, R; Rossin, R; Rott, C; Ruiz, A; Russ, J; Ryan, D; Saarikko, H; Sabik, S; Sadler, L; Safonov, A; Saint-Denis, R; Sakumoto, W K; Saltzberg, D; Sánchez, C; Sanders, H; Sanders, R; Sandrew, M; Sansoni, A; Santi, L; Sarkar, S; Sarraj, H; Sarraj, J; Sato, H; Savard, P; Schemitz, P; Schlabach, P; Schmidt, E E; Schmidt, J; Schmidt, M P; Schmitt, M; Schmitt, R; Schmitz, M; Schofield, G L; Schuh, K; Schultz, K; Scodellaro, L; Scott, L; Scribano, A; Scuri, F; Sedov, A; Segler, S; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shallenberger, J; Shapiro, M D; Shaw, T; Shears, T G; Shenai, A; Shepard, P F; Shimojima, M; Shochet, M J; Shon, Y; Shoun, M; Sidoti, A; Siegrist, J L; Sieh, C; Siket, M; Sill, A; Silva, R; Simaitis, V; Sinervo, P; Sirotenko, V I; Sissakian, A N; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Stadie, H; Stanek, R; Stanfield, N; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Stuermer, W; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Syu, J; Szymulanski, A; Taffard, A C; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tamburello, P; Tanaka, M; Tanaka, R; Tang, D; Tanimoto, N; Tannenbaum, B; Tapprogge, Stefan; Taylor, R D; Teafoe, G; Tecchio, M; Teng, P K; Terashi, K; Terentieva, T; Tesarek, R J; Tether, S; Thom, J; Thomas, A; Thompson, A S; Thomson, E; Thurman-Keup, R M; Timm, S; Tipton, P; Tkaczyk, S M; Toback, D; Tollefson, K; Tonelli, D; Tonnesmann, M; Torretta, D; Trimby, C; Trischuk, W; Trumbo, J; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, T; Van Berg, R; Varganov, A V; Vataga, E; Vejcik, S; Velev, G V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vittone, M; Voirin, J; Vollmer, B; Vollrath, I; Volobuev, I P; Von der Mey, M; Votava, M; Wagner, R G; Wagner, R L; Wagner, W; Wallace, N; Walter, T; Walters, A; Wan, Z; Wandersee, A; Wang, M J; Wang, S M; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Weems, L; Wenzel, H; Wester, W; Whitehouse, B; Wickenberg, W; Wicklund, A B; Wicklund, E; Wigmans, R; Wike, C; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Wong, M; Worcester, M; Worland, R; Worm, S; Wright, T; Wu, J; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamamoto, K; Yamashita, T; Yang, U K; Yao, W; Yarema, R J; Yeh, G P; Yi, K; Yocum, D R; Yoh, J K; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zalokar, M; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zimmerman, T; Zsenei, A; Zucchelli, S

    2003-01-01

    We present a measurement of the mass difference m(D+_s) - m(D+), where both the D+_s and D+ are reconstructed in the phi pi+ decay channel. This measurement uses 11.6 pb-1 of data collected by CDF II using the new displaced-track trigger. The mass difference is found to be: 99.41 +- 0.38 (stat) +- 0.21 (syst) MeV/c^2.

  18. Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility

    Energy Technology Data Exchange (ETDEWEB)

    Litvinov, Yu.A.; Geissel, H. [Giessen Univ. (Germany); Radon, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (DE)] [and others

    2005-06-01

    Masses of 582 neutron-deficient nuclides (30{<=}Z{<=}85) were measured with time-resolved Schottky mass spectrometry at the FRS-ESR facility at GSI, 117 were used for calibration. The masses of 71 nuclides were obtained for the first time. A typical mass accuracy of 30 {mu}u was achieved. These data have entered the latest atomic mass evaluation. The mass determination of about 140 additional nuclides was possible via known energies (Q-values) of {alpha}-, {beta}-, or proton decays. The obtained results are compared with the results of other measurements. (orig.)

  19. The NANOGrav Nine-year Data Set: Mass and Geometric Measurements of Binary Millisecond Pulsars

    Science.gov (United States)

    Fonseca, Emmanuel; Pennucci, Timothy T.; Ellis, Justin A.; Stairs, Ingrid H.; Nice, David J.; Ransom, Scott M.; Demorest, Paul B.; Arzoumanian, Zaven; Crowter, Kathryn; Dolch, Timothy; Ferdman, Robert D.; Gonzalez, Marjorie E.; Jones, Glenn; Jones, Megan L.; Lam, Michael T.; Levin, Lina; McLaughlin, Maura A.; Stovall, Kevin; Swiggum, Joseph K.; Zhu, Weiwei

    2016-12-01

    We analyze 24 binary radio pulsars in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) nine-year data set. We make 14 significant measurements of the Shapiro delay, including new detections in four pulsar-binary systems (PSRs J0613-0200, J2017+0603, J2302+4442, and J2317+1439), and derive estimates of the binary-component masses and orbital inclination for these MSP-binary systems. We find a wide range of binary pulsar masses, with values as low as {m}{{p}}={1.18}-0.09+0.10 {M}⊙ for PSR J1918-0642 and as high as {m}{{p}}={1.928}-0.017+0.017 {M}⊙ for PSR J1614-2230 (both 68.3% credibility). We make an improved measurement of the Shapiro timing delay in the PSR J1918-0642 and J2043+1711 systems, measuring the pulsar mass in the latter system to be {m}{{p}}={1.41}-0.18+0.21 {M}⊙ (68.3% credibility) for the first time. We measure secular variations of one or more orbital elements in many systems, and use these measurements to further constrain our estimates of the pulsar and companion masses whenever possible. In particular, we used the observed Shapiro delay and periastron advance due to relativistic gravity in the PSR J1903+0327 system to derive a pulsar mass of {m}{{p}}={1.65}-0.02+0.02 {M}⊙ (68.3% credibility). We discuss the implications that our mass measurements have on the overall neutron-star mass distribution, and on the “mass/orbital-period” correlation due to extended mass transfer.

  20. Do digestive contents confound body mass as a measure of relative condition in nestling songbirds?

    Science.gov (United States)

    Streby, Henry M.; Peterson, Sean M.; Lehman, Justin A.; Kramer, Gunnar R.; Vernasco, Ben J.; Andersen, David E.

    2014-01-01

    Relative nestling condition, typically measured as nestling mass or as an index including nestling mass, is commonly purported to correlate with fledgling songbird survival. However, most studies directly investigating fledgling survival have found no such relationship. We weighed feces and stomach contents of nestling golden-winged warblers (Vermivora chrysoptera) to investigate the potential contribution of variation in digestive contents to differences in nestling mass. We estimated that the mass of a seventh-day (near fledging) nestling golden-winged warbler varies by 0.65 g (approx. 9% of mean nestling mass) depending on the contents of the nestling's digestive system at the time of weighing, and that digestive contents are dissimilar among nestlings at any moment the brood is removed from the nest for weighing. Our conservative estimate of within-individual variation in digestive contents equals 72% and 24% of the mean within-brood and population-wide range in nestling mass, respectively. Based on our results, a substantive but typically unknown amount of the variation in body mass among nestlings is confounded by differences in digestive contents. We conclude that short-term variation in digestive contents likely precludes the use of body mass, and therefore any mass-dependent index, as a measure of relative nestling condition or as a predictor of survival in golden-winged warblers and likely in many other songbirds of similar size.

  1. Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests.

    Science.gov (United States)

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D B; Criddle, C S; Kitanidis, P K; Brooks, S C; Jardine, P M; Luo, J

    2010-09-20

    Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.

  2. Effect of Papillary Muscles and Trabeculae on Left Ventricular Measurement Using Cardiovascular Magnetic Resonance Imaging in Patients with Hypertrophic Cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Ah; Lee, Whal [Department of Radiology, Cardiovascular Division, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Kim, Hyung-Kwan [Department of Internal Medicine, Cardiovascular Division, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Chung, Jin Wook [Department of Radiology, Cardiovascular Division, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-11-01

    To evaluate the influence of papillary muscles and trabeculae on left ventricular (LV) cardiovascular magnetic resonance (CMR) analysis using three methods of cavity delineation (classic or modified inclusion methods, and the exclusion method) in patients with hypertrophic cardiomyopathy (HCM). This retrospective study included 20 consecutive HCM patients who underwent 1.5-T CMR imaging with short-axis cine stacks of the entire LV. LV measurements were performed using three different methods of manual cavity delineation of the endocardial and epicardial contours: method A, presumed endocardial boundary as seen on short-axis cine images; method B, including solely the cavity and closely adjacent trabeculae; or method C, excluding papillary muscles and trabeculae. Ascending aorta forward flow was measured as reference for LV-stroke volume (SV). Interobserver reproducibility was assessed using intraclass correlation coefficients. Method A showed larger end-diastole and end-systole volumes (largest percentage differences of 25% and 68%, respectively, p < 0.05), compared with method C. The ejection fraction was 55.7 ± 6.9% for method A, 68.6 ± 8.4% for B, and 71.7 ± 7.0% for C (p < 0.001). Mean mass was also significantly different: 164.6 ± 47.4 g for A, 176.5 ± 50.5 g for B, and 199.6 ± 53.2 g for C (p < 0.001). LV-SV error was largest with method B (p < 0.001). No difference in interobserver agreement was observed (p > 0.05). In HCM patients, LV measurements are strikingly different dependent on whether papillary muscles and trabeculae are included or excluded. Therefore, a consistent method of LV cavity delineation may be crucial during longitudinal follow-up to avoid misinterpretation and erroneous clinical decision-making.

  3. Identification and function analysis of a novel vascular endothelial growth factor, LvVEGF3, in the Pacific whiteleg shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Wang, Zhiwei; Li, Shihao; Li, Fuhua; Xie, Shijun; Xiang, Jianhai

    2016-10-01

    VEGF signaling pathway is first discovered in mammals and proved to play important roles in the biological processes of angiogenesis, tumor migration, cell differentiation, apoptosis, host-virus interaction etc. Three members in the VEGF signaling pathway, including LvVEGFR, LvVEGF1 and LvVEGF2 in shrimp have been proved to be related with WSSV infection in our previous studies. Currently, another member of VEGF family, LvVEGF3, was isolated and its function during the WSSV infection of shrimp was studied. The deduced amino acid sequence of LvVEGF3 contained a signal peptide, a typical PDGF/VEGF domain and a cysteine-knot motif (CXCXC). Tissue distribution analysis showed that LvVEGF3 was predominantly expressed in hemocytes. The transcriptional level of LvVEGF3 in hemocytes was apparently up-regulated during WSSV infection. Silencing of LvVEGF3 with double-stranded RNA caused a reduction of the cumulative mortality rate of shrimp during WSSV infection. The expression of LvVEGFR was apparently down-regulated after LvVEGF3 silencing and up-regulated after injection of recombinant LvVEGF3 protein, suggesting an interaction between LvVEGF3 and LvVEGFR. Furthermore, the interaction between LvVEGFR and LvVEGF3 was confirmed using the yeast two-hybrid system. The results provided new insights into understanding the role of VEGF signaling pathway during virus infection.

  4. Precise measurement of the top quark mass in the lepton+jets topology at CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; /Illinois U., Urbana; Adelman, J.; /Chicago U.; Affolder, T.; /UC, Santa Barbara; Akimoto, T.; /Tsukuba U.; Albrow, M.G.; /Fermilab; Amerio, S.; /Padua U.; Amidei, D.; /Michigan U.; Anastassov, A.; /Rutgers U., Piscataway; Anikeev, K.; /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U. /Tsukuba U.

    2007-03-01

    The authors present a measurement of the mass of the top quark from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. They analyze events from the single lepton plus jets final state (t{bar t} {yields} W{sup +}bW{sup -}{bar b} {yields} lvbq{bar q}{bar b}). The top quark mass is extracted using a direct calculation of the probability density that each event corresponds to the t{bar t} final state. The probability is a function of both the mass of the top quark and the energy scale of the calorimeter jets, which is constrained in situ by the hadronic W boson mass. Using 167 events observed in 955 pb{sup -1} of integrated luminosity, they achieve the single most precise measurement of the top quark mass, 170.8 {+-} 2.2(stat.) {+-} 1.4(syst.) GeV/c{sup 2}.

  5. A new observable to measure the top-quark mass at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, S. [Lawrence Berkeley National Lab., CA (United States); California Univ., Berkeley, CA (United States); Fernandez, P.; Fuster, J.; Irles, A.; Vos, M. [Valencia Univ. (Spain). IFIC; CSIC, Paterna (Spain); Moch, S. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Humboldt-Universitaet, Berlin (Germany)

    2013-03-15

    A new method to measure the top-quark mass in high energetic hadron collisions is presented. We use theoretical predictions calculated at next-to-leading order accuracy in quantum chromodynamics to study the (normalized) differential distribution of the t anti t+1-jet cross section with respect to its invariant mass {radical}(s{sub t} {sub anti} {sub tj}). The sensitivity of the method to the top-quark mass together with the impact of various theoretical and experimental uncertainties has been investigated and quantified. The new method allows for a complementary measurement of the top-quark mass parameter and has a high potential to become competitive in precision with respect to established approaches. Furthermore we emphasize that in the proposed method the mass parameter is uniquely defined through one-loop renormalization.

  6. Correlating molar masses of nitrocelluloses with their intrinsic viscosities measured using capillary electrophoresis instrumentation.

    Science.gov (United States)

    Alinat, Elodie; Delaunay, Nathalie; Archer, Xavier; Gareil, Pierre

    2015-09-05

    Specific viscosities for a set of six nitrocellulose (NC) standards comprising three different mass-average molar masses (between 20,000 and 300,000 g mol(-1)) of two different nitrogen contents (11.2 and 12.1%) were measured at 20 °C in tetrahydrofuran, using capillary electrophoresis instrumentation as a bench-top viscometer in frontal mode. Intrinsic viscosities were derived applying Huggins' and Kraemer's models, showing excellent convergence of both models at infinitely diluted polymer concentration. Good overall consistency was shown between viscosity data experimentally acquired by this new protocol and the mass-average molar masses provided by the manufacturers. This simple protocol should be of interest for a better understanding of the solvent interaction given by this complex polymer, and beyond this, for tailoring NC solutions devoted to film deposition, and for the determination of mass-average molar masses of unknown NC samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Measuring the Ultimate Mass of Galaxy Clusters: Redshifts and Mass Profiles from the Hectospec Cluster Survey (HeCS)

    CERN Document Server

    Rines, Kenneth; Diaferio, Antonaldo; Kurtz, Michael J

    2012-01-01

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a $\\Lambda$CDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these haloes. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1$<$$z$$<$0.3. The survey includes 21,314 unique MMT/Hectospec redshifts for individual galaxies; 10,275 of these galaxies are cluster members. For each cluster we acquired high signal-to-noise spectra for $\\sim 200$ cluster members and a comparable number of foreground/background galaxies. The cluster members trace out infall patterns around the clusters. The members define a very narrow red sequence. The velocity dispersions decline with radius; we demonstrate that the determination of the velocity dispersion is inse...

  8. Measurement of the top quark mass from leptonic observables in pp collisions

    CERN Document Server

    Mantilla Suarez, Cristina Ana

    2016-01-01

    A novel technique for measuring the top quark mass using only leptonic observables is discussed. Top and anti-top quark decays with one electron and one muon and at least one jet in the final state are selected in proton-proton collision data collected by the CMS experiment at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. Several variables are studied and the transverse momentum distribution of the charged lepton pair originated from the top quark decay is chosen to extract the top quark mass. The measurement is calibrated using simulated events.

  9. TOF Mass Measurements of Very Exotic Nuclides: an Input for Astrophysical Calculations

    Science.gov (United States)

    Matoš, M.; Estrade, A.; Amthor, M.; Bazin, D.; Becerril, A.; Elliot, T.; Galaviz, D.; Gade, A.; Lorusso, G.; Montes, F.; Pereira, J.; Portillo, M.; Rogers, A. M.; Schatz, H.; Stolz, A.; Aprahamian, A.; Shapira, D.; Smith, E.; Gupta, S.; Wallace, M.

    2007-10-01

    Atomic masses play a crucial role in many nuclear astrophysics calculations. Very exotic nuclei can be accessed by time-of- flight techniques at radioactive beam facilities. The NSCL facility provides a well-suited infrastructure for TOF mass measurements of very exotic nuclei. At this facility, we have recently implemented a TOF-Bρ technique and performed mass measurements of neutron-rich nuclides in the Fe region, important for calculations of the r-process and processes occurring in the crust of accreting neutron stars. Description of the TOF technique, results and future plans related to nuclear astrophysics will be presented.

  10. New Measurement of the Top Quark Mass in Lepton+Jets ttbar Events at DO

    CERN Document Server

    Abazov, V M; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Arnoud, Y; Avila, C; Babintsev, V V; Babukhadia, L; Bacon, Trevor C; Baden, A; Baffioni, S; Baldin, B Yu; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Böhnlein, A; Bozhko, N; Bolton, T A; Borcherding, F; Bos, K; Bose, T; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Bühler, M; Büscher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Claes, D; Clark, A R; Connolly, B; Cooper, W E; Coppage, D; Crepe-Renaudin, S; Cummings, M A C; Cutts, D; Da Motta, H; Davis, G A; De Jong, S J; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Eltzroth, J T; Elvira, V D; Engelmann, R; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Ferbel, T; Filthaut, F; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gallas, E; Galjaev, A N; Gao, M; Gavrilov, V; Genser, K; Gerber, C E; Gershtein, Yu; Ginther, G; Gómez, B; Goncharov, P I; Gounder, K; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L S; Grünendahl, S; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Hadley, N J; Haggerty, H; Hagopian, S L; Hagopian, V; Hall, R E; Han, C; Hansen, S; Hauptman, J M; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jain, V; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Kesisoglou, S; Khanov, A; Kharchilava, A I; Klima, B; Kohli, J M; Kostritskii, A V; Kotcher, J; Kothari, B; Kozelov, A V; Kozlovskii, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G L; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J T; Lipton, R; Lueking, L H; Lundstedt, C; Luo, C; Maciel, A K A; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mattingly, S E K; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Melnitchouk, A S; Merkin, M; Merritt, K W B; Miao, C; Miettinen, H; Mihalcea, D; Mokhov, N V; Mondal, N K; Montgomery, H E; Moore, R W; Mutaf, Y D; Nagy, E; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Nomerotski, A; Nunnemann, T; O'Neil, D; Oguri, V; Oshima, N; Padley, P; Parashar, N; Partridge, R; Parua, N; Patwa, A; Peters, O; Petroff, P; Piegaia, R; Pope, B G; Prosper, H B; Protopopescu, S D; Przybycien, M B; Qian, J; Quadt, A; Rajagopalan, S; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F K; Rockwell, T; Royon, C; Rubinov, P; Ruchti, R; Sabirov, B M; Sajot, G; Santoro, A F S; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M A; Sidwell, R A; Simák, V; Sirotenko, V I; Slattery, P F; Smith, R P; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorin, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbruck, G; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Trippe, T G; Turcot, A S; Tuts, P M; Van Kooten, R; Vaniev, V; Varelas, N; Villeneuve-Séguier, F; Volkov, A A; Vorobev, A P; Wahl, H D; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; Whiteson, D; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yasuda, T; Yatsunenko, Y A; Yip, K; Yu, J; Zanabria, M; Zhang, X; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2004-01-01

    We present a new measurement of the mass of the top quark using lepton + jets ttbar events collected by the DO experiment in Run I of the Fermilab Tevatron Collider. The mass is extracted through a comparison of each event with a leading-order matrix element that depends on the top quark mass. The result is M_t=180.1 +/- 3.6 (stat) +/- 3.9 (sys) GeV/c^2. Combining this improved measurement with our previous value from dilepton channels yields the new DO result M_t=179.0 +/- 3.5 (stat) +/- 3.8 (sys) GeV/c^2.

  11. Onsets of nuclear deformation from measurements with the Isoltrap mass spectrometer

    CERN Document Server

    Naimi, Sarah

    Mass measurements provide important information concerning nuclear structure. This work presents results from the pioneering Penning trap spectrometer ISOLTRAP at CERN-ISOLDE. High-precision mass measurements of neutron-rich manganese ($^{58−66}$Mn) and krypton isotopes ($^{96,97}$Kr) are presented, of which the $^{66}$Mn and $^{96,97}$Kr masses are measured for the first time. In particular, the mass of $^{97}$Kr was measured using the preparation trap and required the definition of a new fit function. In the case of the manganese isotopes, the N = 40 shell closure is addressed. The two-neutron-separation energies calculated from the new masses show no shell closure at N = 40 but give an estimation of the proton-neutron interaction (around 0.5 MeV) responsible for the increase of collectivity and nuclear deformation in this mass region. The new krypton masses show behavior in sharp contrast with heavier neighbors where sudden and intense deformation is present, interpreted as the establishment of a nuclea...

  12. Precise measurement of the W-boson mass with the CDF II detector

    CERN Document Server

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K.R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H.S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W.H.; Chung, Y.S.; Ciocci, M.A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M.E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.A.; Cox, D.J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J.P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M.J.; Franklin, M.; Freeman, J.C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J.E.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Hahn, S.R.; Halkiadakis, E.; Hamaguchi, A.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R.F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R.E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jindariani, S.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kamon, T.; Karchin, P.E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.K.; Kim, Y.J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A.T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R.L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H.S.; Lee, J.S.; Lee, S.W.; Leo, S.; Leone, S.; Lewis, J.D.; Limosani, A.; Lin, C.J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D.O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martinez, M.; Mastrandrea, P.; Matera, K.; Mattson, M.E.; Mazzacane, A.; Mazzanti, P.; McFarland, K.S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M.N.; Moon, C.S.; Moore, R.; Morello, M.J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M.S.; Nielsen, J.; Nodulman, L.; Noh, S.Y.; Norniella, O.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A.A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D.E.; Penzo, A.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W.K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.

    2012-01-01

    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined.

  13. Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (VALsartan In Acute myocardial iNfarcTion) Echocardiographic Study

    DEFF Research Database (Denmark)

    Verma, Anil; Meris, Alessandra; Skali, Hicham

    2008-01-01

    OBJECTIVES: This study sought to understand prognostic implications of increased baseline left ventricular (LV) mass and geometric patterns in a high risk acute myocardial infarction. BACKGROUND: The LV hypertrophy and alterations in LV geometry are associated with an increased risk of adverse ca...

  14. Landslide risk assessment in the Göta Älv river valley to limit consequences of climate change on society

    Science.gov (United States)

    Hedlund, Jonas; Lind, Bo; Tremblay, Marius; Zackrisson, Peter; Cederbom, Charlotte

    2010-05-01

    Higher temperatures, higher average precipitation and increased occurrence of extreme rainfall events are some expected climate changes in Sweden during the coming 70-100 years. Due to the changing climate the risk for floods, erosion and landslides are expected to increase. in large parts of the country. To prevent extensive floodings and damages of cities and infrastructure around Lake Vänern, it is necessary to allow controlled overflow from Lake Vänern through the river Göta Älv. An overflow in the river, in turn, leads to increased risk for erosion and landslides along the Göta Älv valley. In order to meet the upcoming climate changes and to handle the increasing flows through the river, we need to improve the knowledge of the stability of the entire river bank. The Swedish Government has commissioned the Swedish Geotechnical Institute (SGI) to investigate the landslide potential of the Göta Älv valley, taking the predicted climate changes into consideration. The investigated area includes the parts of Göta Älv that could be affected by the increased flows from Lake Vänern; areas where the increased flow will affect stability and where landslides could cause serious damages or damming of the river. The investigation area includes c. 90 km of the Göta Älv river plus tributaries in connection to Göta Älv. In the landslide risk analyses developed for Göta Älv, the likelihood of landslides and estimation of the subsequent consequences are included. The methodology involves mapping of landslide hazards and a judgement of the risk area on the basis of a risk matrix. The landslide risk analysis allows for an assessment of where geotechnical reinforcements would be necessary. A cost estimation for the required reinforcement measures is also provided. In areas where the estimated risk for a landslide is low (e.g. limited consequences), stability mapping in accordance with the model used by the Swedish Civil Contingencies Agency (MSB) is developed

  15. An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shuai, P. [Research Center for Hadron Physics, National Laboratory of Heavy Ion Accelerator Facility in Lanzhou and University of Science and Technology of China, Hefei 230026 (China); Key Laboratory of High Precision Nuclear Spectroscopy, Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xu, X., E-mail: xuxing@impcas.ac.cn [Key Laboratory of High Precision Nuclear Spectroscopy, Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Y.H., E-mail: yhzhang@impcas.ac.cn [Key Laboratory of High Precision Nuclear Spectroscopy, Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xu, H.S. [Key Laboratory of High Precision Nuclear Spectroscopy, Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Litvinov, Yu. A. [Key Laboratory of High Precision Nuclear Spectroscopy, Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Wang, M. [Key Laboratory of High Precision Nuclear Spectroscopy, Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); and others

    2016-06-01

    Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nuclei with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam separated in-flight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS. Therefore, the momentum measurement in addition to the revolution period of stored ions is crucial to reduce the influence of the momentum spread on the standard deviation of the revolution period, which would lead to a much improved mass resolving power of IMS. One of the proposals to upgrade IMS is that the velocity of secondary ions could be directly measured by using two time-of-flight (double TOF) detectors installed in a straight section of a storage ring. In this paper, we outline the principle of IMS with double TOF detectors and the method to correct the momentum spread of stored ions.

  16. An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors

    CERN Document Server

    Shuai, P; Zhang, Y H; Xu, H S; Litvinov, Yu A; Wang, M; Tu, X L; Blaum, K; Zhou, X H; Yuan, Y J; Yan, X L; Chen, X C; Chen, R J; Fu, C Y; Ge, Z; Huang, W J; Xing, Y M; Zeng, Q

    2016-01-01

    Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nuclei with very short half-lives down to several tens of microseconds, using the cocktail beam separated in-flight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS. Therefore, the momentum measurement in addition to the revolution period of stored ions is crucial to reduce the influence of momentum spread on the standard deviation of the revolution period, which would lead to a much improved mass resolving power of IMS. One of the proposals to upgrade IMS is that the velocity of secondary ions could be directly measured by using two time-of-flight (double TOF) detectors installed in the straight section of storage ring. In this paper, we outline the principle of IMS with double TOF detectors and the method to correct the momentum spread of stored ions.

  17. A Measurement of the Top Quark Mass in the Dilepton Decay Channel at CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Jayatilaka, Bodhitha A. [Univ. of Michigan, Ann Arbor, MI (United States)

    2006-01-01

    The top quark, the most recently discovered quark, is the most massive known fundamental fermion. Precision measurements of its mass, a free parameter in the Standard Model of particle physics, can be used to constrain the mass of the Higgs Boson. In addition, deviations in the mass as measured in different channels can provide possible evidence for new physics. We describe a measurement of the top quark mass in the decay channel with two charged leptons, known as the dilepton channel, using data collected by the CDF II detector from p$\\bar{p}$ collisions with √s = 1.96 TeV at the Fermilab Tevatron. The likelihood in top mass is calculated for each event by convolving the leading order matrix element describing q$\\bar{q}$ → t$\\bar{t}$ → bℓv$\\bar{b}$ℓ'vℓ' with detector resolution functions. The presence of background events in the data sample is modeled using similar calculations involving the matrix elements for major background processes. In a data sample with integrated luminosity of 1.0 fb-1, we observe 78 candidate events and measure Mt = 164.5 ± 3.9(stat.) ± 3.9(syst.) GeV/c2, the most precise measurement of the top quark mass in this channel to date.

  18. Reduced global longitudinal strain in association to increased left ventricular mass in patients with aortic valve stenosis and normal ejection fraction: a hybrid study combining echocardiography and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Scheffold Thomas

    2010-07-01

    Full Text Available Abstract Background Increased muscle mass index of the left ventricle (LVMi is an independent predictor for the development of symptoms in patients with asymptomatic aortic stenosis (AS. While the onset of clinical symptoms and left ventricular systolic dysfunction determines a poor prognosis, the standard echocardiographic evaluation of LV dysfunction, only based on measurements of the LV ejection fraction (EF, may be insufficient for an early assessment of imminent heart failure. Contrary, 2-dimensional speckle tracking (2DS seems to be superior in detecting subtle changes in myocardial function. The aim of the study was to assess these LV function deteriorations with global longitudinal strain (GLS analysis and the relations to LVMi in patients with AS and normal EF. Methods 50 patients with moderate to severe AS and 31 controls were enrolled. All patients underwent echocardiography, including 2DS imaging. LVMi measures were performed with magnetic resonance imaging in 38 patients with AS and indexed for body surface area. Results The total group of patients with AST showed a GLS of -15,2 ± 3,6% while the control group reached -19,5 ± 2,7% (p Conclusions In conclusion, increased LVMi is reflected in abnormalities of GLS and the proportion of GLS impairment depends on the extent of LV hypertrophy. Therefore, simultaneous measurement of LVMi and GLS might be useful to identify patients at high risk for transition into heart failure who would benefit from aortic valve replacement irrespectively of LV EF.

  19. The immune responses triggered by CpG ODNs in shrimp Litopenaeus vannamei are associated with LvTolls.

    Science.gov (United States)

    Sun, Rui; Wang, Mengqiang; Wang, Lingling; Yue, Feng; Yi, Qilin; Huang, Mengmeng; Liu, Rui; Qiu, Limei; Song, Linsheng

    2014-03-01

    CpG oligodeoxynucleotides (ODNs) represent a kind of pathogen-associated molecular patterns (PAMPs) as well as a novel adjuvant that activate the innate immune system through interaction with Toll-like receptor 9 (TLR9) in mammals. In the present study, the synthetic oligodeoxynucleotides, CpG ODN 2395, was employed to investigate the interactive mode of CpG ODNs with three known Tolls (LvToll1-3) from shrimp Litopenaeus vannamei. The mature peptides of extracellular domains of LvTolls (LvToll-ECDs) were recombinant expressed and their binding activities to CpG ODN 2395 were further examined by ELISA. rLvToll1-ECD and rLvToll3-ECD exhibited affinity to CpG ODN 2395 in a dose-dependent manner when their concentrations ranged from 0.25 to 2.00 μmol/L, while rLvToll2-ECD did not show any binding activities to CpG ODN 2395 in tested concentrations. Additionally, after the stimulation of CpG ODN 2395, the luciferase activities of HEK293T cells transfected with LvToll1-mosaic or LvToll3-mosaic were significantly increased to 2.38-fold (pvannamei were indispensable for the triggering of immune responses by CpG ODNs, and the results provided a foundation for the application of CpG ODNs as the novel immunostimulants in aquaculture.

  20. Precision measurement of the mass and width of the W boson at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Sarah Alam [Univ. College London, Bloomsbury (United Kingdom)

    2009-09-01

    A precision measurement of the mass and width of the W boson is presented. The W bosons are produced in proton antiproton collisions occurring at a centre of mass energy of 1.96 TeV at the Tevatron accelerator. The data used for the analyses is collected by the Collider Detector at Fermilab (CDF) and corresponds to an average integrated luminosity of 350 pb-1 for the W width analysis for the electron and muon channels and an average integrated luminosity of 2350 pb-1 for the W mass analysis. The mass and width of the W boson is extracted by fitting to the transverse mass distribution, with the peak of the distribution being most sensitive to the mass and the tail of the distribution sensitive to the width. The W width measurement in the electron and muon channels is combined to give a final result of 2032 ± 73 MeV. The systematic uncertainty on the W mass from the recoil of the W boson against the initial state gluon radiation is discussed. A systematic study of the recoil in Z → e+e- events where one electron is reconstructed in the central calorimeter and the other in the plug calorimeter and its effect on the W mass is presented for the first time in this thesis.

  1. The Missing Link: Bayesian Detection and Measurement of Intermediate-Mass Black-Hole Binaries

    CERN Document Server

    Graff, Philip B; Sathyaprakash, B S

    2015-01-01

    We perform Bayesian analysis of gravitational-wave signals from non-spinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, $M_{\\mathrm{obs}}$, from $50\\mathrm{M}_{\\odot}$ to $500\\mathrm{M}_{\\odot}$ and mass ratio $1\\mbox{--}4$ using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading $(2,2)$ mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of extrinsic parameter degeneracies. For low total masses, $M_{\\mathrm{obs}} \\lesssim 50 \\mathrm{M}_{\\odot}$, the observed chirp mass $\\mathcal{M}_{\\rm obs} = M_{\\mathrm{obs}}\\,\\eta^{3/5}$ ($\\eta$ being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass $M_{\\mathrm{obs}}$ has better relative prec...

  2. A direct measurement of the baryonic mass function of galaxies & implications for the galactic baryon fraction

    CERN Document Server

    Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P

    2012-01-01

    We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are calculated using atomic hydrogen (HI) emission line data from the Arecibo Legacy Fast ALFA (ALFALFA) survey. By using the technique of abundance matching, we combine the measured baryonic function (BMF) of galaxies with the dark matter halo mass function in a LCDM universe, in order to determine the galactic baryon fraction as a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon...

  3. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy

    Science.gov (United States)

    Nordmann, S.; Birmili, W.; Weinhold, K.; Müller, K.; Spindler, G.; Wiedensohler, A.

    2013-11-01

    Soot particles are a major absorber of shortwave radiation in the atmosphere. The mass absorption cross section is an essential quantity to describe this light absorption process. This work presents new experimental data on the mass absorption cross section of soot particles in the troposphere over Central Europe. Mass absorption cross sections were derived as the ratio between the light absorption coefficient determined by multiangle absorption photometry (MAAP) and the soot mass concentration determined by Raman spectroscopy. The Raman method is sensitive to graphitic structures present in the particle samples and was calibrated in the laboratory using Printex®90 model particles. Mass absorption cross sections were determined for a number of seven observation sites, ranging between 3.9 and 7.4 m2 g-1depending on measurement site and observational period. The highest values were found in a continentally aged air mass in winter, where soot particles were assumed to be mainly internally mixed. Our values are in the lower range of previously reported values, possibly due to instrumental differences to the former photometer and mass measurements. Overall, a value of 5.3m2 g-1from orthogonal regression over all samples is considered to be representative for the soot mass absorption cross section in the troposphere over Central Europe.

  4. Compact Sensitive Piezoelectric Mass Balance for Measurement of Unconsolidated Materials in Space

    Science.gov (United States)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert; Bar-Cohen, Yoseph; Yen, Jesse T.

    2010-01-01

    In many in-situ instruments information about the mass of the sample could aid in the interpretation of the data and portioning instruments might require an accurate sizing of the sample mass before dispensing the sample. In addition, on potential sample return missions a method to directly assess the captured sample size would be required to determine if the sampler could return or needs to continue attempting to acquire sample. In an effort to meet these requirements piezoelectric balances were developed using flextensional actuators which are capable of monitoring the mass using two methods. A piezoelectric balance could be used to measure mass directly by monitoring the voltage developed across the piezoelectric which is linear with force, or it could be used in resonance to produce a frequency change proportional to the mass change. In this case of the latter, the piezoelectric actuator/balance would be swept in frequency through its fundamental resonance. If a mass is added to the balance the resonance frequency would shift down proportionally to the mass. By monitoring the frequency shift the mass could be determined. This design would allow for two independent measurements of the mass. In microgravity environments spacecraft thrusters could be used to provide acceleration in order to produce the required force for the first technique or to bring the mass into contact with the balance in the second approach. In addition, the measuring actuators, if driven at higher voltages, could be used to fluidize the powder to aid sample movement. In this paper, we outline some of our design considerations and present the results of a few prototype balances that we have developed.

  5. Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries

    Science.gov (United States)

    Graff, Philip B.; Buonanno, Alessandra; Sathyaprakash, B. S.

    2015-07-01

    We perform Bayesian analysis of gravitational-wave signals from nonspinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, Mobs, from 50 M⊙ to 500 M⊙ and mass ratio 1-4 using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading (2,2) mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of degeneracies in distance, orientation and polarization. For low total masses, Mobs≲50 M⊙ , for which the inspiral signal dominates, the observed chirp mass Mobs=Mobsη3 /5 (η being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass Mobs has better relative precision than Mobs. Indeed, at high Mobs (≥300 M⊙ ), the signal resembles a burst and the measurement thus extracts the dominant frequency of the signal that depends on Mobs. Depending on the binary's inclination, at signal-to-noise ratio (SNR) of 12, uncertainties in Mobs can be as large as ˜20 - 25 % while uncertainties in Mobs are ˜50 - 60 % in binaries with unequal masses (those numbers become ˜17 % vs. ˜22 % in more symmetric mass-ratio binaries). Although large, those uncertainties in Mobs will establish the existence of IMBHs. We find that effective-one-body waveforms with subleading modes are essential to confirm a signal's presence in the data, with calculated Bayesian evidences yielding a false alarm probability below 10-5 for SNR ≳9 in Gaussian noise. Our results show that gravitational-wave observations can offer a unique tool to observe and understand the formation, evolution and demographics of IMBHs, which are difficult to observe in the electromagnetic window.

  6. Time-of-flight mass measurements for nuclear processes in neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, Alfredo [National Superconducting Cyclotron Laboratory (NSCL); Matos, M. [Louisiana State University; Schatz, Hendrik [Michigan State University, East Lansing; Amthor, A. M. [National Superconducting Cyclotron Laboratory (NSCL); Bazin, D. [National Superconducting Cyclotron Laboratory (NSCL); Beard, Mary [University of Notre Dame, IN; Becerril, A. [National Superconducting Cyclotron Laboratory (NSCL); Brown, Edward [Michigan State University, East Lansing; Elliot, T [National Superconducting Cyclotron Laboratory (NSCL); Gade, A. [National Superconducting Cyclotron Laboratory (NSCL); Galaviz, D. [National Superconducting Cyclotron Laboratory (NSCL); George, S. [National Superconducting Cyclotron Laboratory (NSCL); Gupta, Sanjib [Indian Institute of Technology, Kanpur; Hix, William Raphael [ORNL; Lau, Rita [National Superconducting Cyclotron Laboratory (NSCL); Moeller, Peter [Los Alamos National Laboratory (LANL); Pereira, J. [National Superconducting Cyclotron Laboratory (NSCL); Portillo, M. [National Superconducting Cyclotron Laboratory (NSCL); Rogers, A. M. [National Superconducting Cyclotron Laboratory (NSCL); Shapira, Dan [ORNL; Smith, E. [Ohio State University; Stolz, A. [Michigan State University, East Lansing; Wallace, M. [Los Alamos National Laboratory (LANL); Wiescher, Michael [University of Notre Dame, IN

    2011-01-01

    The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Supercon- ducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the Sc Ni element range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of 61V, 63Cr, 66Mn, and 74Ni were measured for the first time with mass excesses of 30.510(890) MeV, 35.280(650) MeV, 36.900(790) MeV, and 49.210(990) MeV, respectively. With the measurement of the 66Mn mass, the location of the two dominant heat sources in the outer crust of accreting neutron stars, which exhibit so called superbursts, is now experimentally constrained. We find that the location of the 66Fe 66Mn electron capture transition occurs sig- nificantly closer to the surface than previously assumed because our new experimental Q-value is 2.1 MeV smaller than predicted by the FRDM mass model. The results also provide new insights into the structure of neutron-rich nuclei around N = 40.

  7. Accuracy in measuring the neutron star mass in gravitational wave parameter estimates for nonspinning compact binaries

    Science.gov (United States)

    Cho, Hee-Suk

    2015-09-01

    In gravitational wave (GW) data analysis, the parameter estimate is performed to find the physical parameters of GW sources. The result of the parameter estimate is given by a posterior probability density function, and the measurement errors can be computed by using the Fisher matrix method. Using this method, we investigate the accuracy in estimates of neutron star (NS) masses ( M NS) for GWs emitted from merging compact binaries. As GW sources, we consider nonspinning binaries in which the primary component is assumed to be a NS and the companion is assumed to be a NS or a stellar-mass black hole (BH). Adopting GW signals with a signal-to-noise ratio of 10 for Advanced LIGO (Laser Interferometer Gravitational wave Observatory) sensitivity, we calculate measurement errors (σ) of M NS. We find that the errors strongly depend on the mass ratio of the companion mass ( M com) to the NS mass ( M NS). For NS-NS binaries, the fractional errors (σ/ M NS) are larger than 10% only in the symmetric mass region. For BH-NS binaries, the fractional errors tend to decrease with increasing mass ratio ( M com/ M NS), and the measurement accuracies are better than those for NS-NS binaries. In this case, the errors are always smaller than ~ 3%.

  8. Measurement of the Top Quark Mass with the Collider Detector at Fermilab

    CERN Document Server

    Affolder, T; Akopian, A M; Albrow, Michael G; Amaral, P; Amendolia, S R; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Asakawa, T; Ashmanskas, W J; Atac, Muzaffer; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bailey, M W; Bailey, S; De Barbaro, P; Barbaro-Galtieri, A; Barnes, Virgil E; Barnett, B A; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bellettini, Giorgio; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Bergé, J P; Berryhill, J W; Bevensee, B; Bhatti, A A; Binkley, M; Bisello, D; Blair, R E; Blocker, C A; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, Arie; Bokhari, W; Bölla, G; Bonushkin, Yu; Bortoletto, Daniela; Boudreau, J; Brandl, A; van den Brink, S C; Bromberg, C; Brozovic, M; Bruner, N L; Buckley-Geer, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Calafiura, P; Campbell, M; Carithers, W C; Carlson, J; Carlsmith, D; Cassada, J A; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I E; Chlachidze, G; Chlebana, F S; Christofek, L S; Chu, M L; Chung, Y S; Ciobanu, C I; Clark, A G; Connolly, A; Conway, J; Cooper, J; Cordelli, M; Cranshaw, J; Cronin-Hennessy, D; Cropp, R; Culbertson, R J; Dagenhart, D; De Jongh, F; Dell'Agnello, S; Dell'Orso, Mauro; Demina, R; Demortier, L; Deninno, M M; Derwent, P F; Devlin, T; Dittmann, J R; Donati, S; Done, J; Dorigo, T; Eddy, N; Einsweiler, Kevin F; Elias, J E; Engels, E; Erdmann, W; Errede, D; Errede, S; Fan, Q; Feild, R G; Ferretti, C; Field, R D; Fiori, I; Flaugher, B L; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I K; Galeotti, S; Gallinaro, M; Gao, T; García-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Geer, S; Gerdes, D W; Giannetti, P; Giromini, P; Glagolev, V; Gold, M; Goldstein, J; Gordon, A; Goshaw, A T; Gotra, Yu; Goulianos, K; Green, C; Groer, L S; Grosso-Pilcher, C; Günther, M; Guillian, G; Guimarães da Costa, J; Guo, R S; Haas, R M; Haber, C; Hafen, E S; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hinrichsen, B; Hoffman, K D; Holck, C; Hollebeek, R J; Holloway, L E; Hughes, R; Huston, J; Huth, J E; Ikeda, H; Incandela, J R; Introzzi, G; I