WorldWideScience

Sample records for lutetia-based ceramic scintillator

  1. A new lutetia-based ceramic scintillator for X-ray imaging

    CERN Document Server

    Lempicki, A; Szupryczynski, P; Lingertat, H; Nagarkar, V V; Tipnis, S V; Miller, S R

    2002-01-01

    We report a new scintillator based on a transparent ceramic of Lu sub 2 O sub 3 :Eu. The material has an extremely high density of 9.4 g/cm sup 3 , a light output comparable to CsI:Tl, and a narrow band emission at 610 nm that falls close to the maximum of the response curve of CCDs. Pixelation of the scintillator to prevent lateral spread of light enhances the spatial and contrast resolution, providing imaging performance that equals or surpasses all other currently known scintillators. Upon further development of readout technologies to take full advantage of its transparency, the new scintillator should play a major role in digital radiographic systems.

  2. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    International Nuclear Information System (INIS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  3. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  4. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    International Nuclear Information System (INIS)

    Selling, J.

    2007-01-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl 2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI 2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu 2+ /Eu 3+ ratio in the glass ceramics should be determined and optimize favor of the Eu 2+ . We also want to distinguish between Eu 2+ in the glass matrix and Eu 2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF 2 host lattice were carried

  5. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy

    Science.gov (United States)

    Seeley, Z. M.; Cherepy, N. J.; Payne, S. A.

    2013-09-01

    Transparent polycrystalline ceramic scintillators based on the composition Gd1.49Y1.49Ce0.02Ga2.2Al2.8O12 are being developed for gamma spectroscopy detectors. Scintillator light yield and energy resolution depend on the details of various processing steps, including powder calcination, green body formation, and sintering atmosphere. We have found that gallium sublimation during vacuum sintering creates compositional gradients in the ceramic and can degrade the energy resolution. While sintering in oxygen produces ceramics with uniform composition and little afterglow, light yields are reduced, compared to vacuum sintering. By controlling the atmosphere during the various process steps, we were able to minimize the gallium sublimation, resulting in a more homogeneous composition and improved gamma spectroscopy performance.

  6. Lutetium oxide-based transparent ceramic scintillators

    Science.gov (United States)

    Seeley, Zachary; Cherepy, Nerine; Kuntz, Joshua; Payne, Stephen A.

    2016-01-19

    In one embodiment, a transparent ceramic of sintered nanoparticles includes gadolinium lutetium oxide doped with europium having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YEu.sub.YO.sub.3, where X is any value within a range from about 0.05 to about 0.45 and Y is any value within a range from about 0.01 to about 0.2, and where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm. In another embodiment, a transparent ceramic scintillator of sintered nanoparticles, includes a body of sintered nanoparticles including gadolinium lutetium oxide doped with a rare earth activator (RE) having a chemical composition (Lu.sub.1-xGd.sub.x).sub.2-YRE.sub.YO.sub.3, where RE is selected from the group consisting of: Sm, Eu, Tb, and Dy, where the transparent ceramic exhibits a transparency characterized by a scatter coefficient of less than about 10%/cm.

  7. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    International Nuclear Information System (INIS)

    Cherepy, N.J.; Kuntz, J.D.; Roberts, J.J.; Hurst, T.A.; Drury, O.B.; Sanner, R.D.; Tillotson, T.M.; Payne, S.A.

    2008-01-01

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed

  8. Scintillation properties of polycrystalline LaxY1-xO3 ceramic

    Science.gov (United States)

    Sahi, Sunil; Chen, Wei; Kenarangui, Rasool

    2015-03-01

    Scintillators are the material that absorbs the high-energy photons and emits visible photons. Scintillators are commonly used in radiation detector for security, medical imaging, industrial applications and high energy physics research. Two main types of scintillators are inorganic single crystals and organic (plastic or liquid) scintillators. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, some efficient inorganic scintillator such as NaI and CsI are not environmental friendly. But on the other hand, organic scintillators have low density and hence poor energy resolution which limits their use in gamma spectroscopy. Polycrystalline ceramic can be a cost effective alternative to expensive inorganic single crystal scintillators. Here we have fabricated La0.2Y1.8O3 ceramic scintillator and studied their luminescence and scintillation properties. Ceramic scintillators were fabricated by vacuum sintering of La0.2Y1.8O3 nanoparticles at temperature below the melting point. La0.2Y1.8O3 ceramic were characterized structurally using XRD and TEM. Photoluminescence and radioluminescence studies were done using UV and X-ray as an excitation source. We have used gamma isotopes with different energy to studies the scintillation properties of La0.2Y1.8O3 scintillator. Preliminary studies of La0.2Y1.8O3 scintillator shows promising result with energy resolution comparable to that of NaI and CsI.

  9. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show ∼80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd 3+ 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under γ-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 μs due to Nd 3+ 4f-4f transitions.

  10. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  11. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yagi, Hideki; Yanagitani, Takagimi [Konoshima Chemical Co., Ltd., 80 Kouda, Takuma, Mitoyo-gun, Kagawa 769-1103 (Japan)

    2011-03-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show {approx}80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd{sup 3+} 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under {gamma}-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 {mu}s due to Nd{sup 3+} 4f-4f transitions.

  12. ULTRAVIOLET DISCOVERIES AT ASTEROID (21) LUTETIA BY THE ROSETTA ALICE ULTRAVIOLET SPECTROGRAPH

    International Nuclear Information System (INIS)

    Stern, S. A.; Parker, J. Wm.; Steffl, A.; Birath, E.; Graps, A.; Feldman, P. D.; Weaver, H. A.; A'Hearn, M. F.; Feaga, L.; Bertaux, J.-L.; Slater, D. C.; Versteeg, M.; Scherrer, J. R.; Cunningham, N.

    2011-01-01

    The NASA Alice ultraviolet (UV) imaging spectrograph on board the ESA Rosetta comet orbiter successfully conducted a series of flyby observations of the large asteroid (21) Lutetia in the days surrounding Rosetta's closest approach on 2010 July 10. Observations included a search for emission lines from gas, and spectral observations of the Lutetia's surface reflectance. No emissions from gas around Lutetia were observed. Regarding the surface reflectance, we found that Lutetia has a distinctly different albedo and slope than both the asteroid (2867) Steins and Earth's moon, the two most analogous objects studied in the far ultraviolet (FUV). Further, Lutetia's ∼10% geometric albedo near 1800 A is significantly lower than its 16%-19% albedo near 5500 A. Moreover, the FUV albedo shows a precipitous drop (to ∼4%) between 1800 A and 1600 A, representing the strongest spectral absorption feature observed in Lutetia's spectrum at any observed wavelength. Our surface reflectance fits are not unique but are consistent with a surface dominated by an EH5 chondrite, combined with multiple other possible surface constituents, including anorthite, water frost, and SO 2 frost or a similar mid-UV absorber. The water frost identification is consistent with some data sets but inconsistent with others. The anorthite (feldspar) identification suggests that Lutetia is a differentiated body.

  13. Transitioning glass-ceramic scintillators for diagnostic x-ray imaging from the laboratory to commercial scale

    Science.gov (United States)

    Beckert, M. Brooke; Gallego, Sabrina; Elder, Eric; Nadler, Jason

    2016-10-01

    This study sought to mitigate risk in transitioning newly developed glass-ceramic scintillator technology from a laboratory concept to commercial product by identifying the most significant hurdles to increased scale. These included selection of cost effective raw material sources, investigation of process parameters with the most significant impact on performance, and synthesis steps that could see the greatest benefit from participation of an industry partner that specializes in glass or optical component manufacturing. Efforts focused on enhancing the performance of glass-ceramic nanocomposite scintillators developed specifically for medical imaging via composition and process modifications that ensured efficient capture of incident X-ray energy and emission of scintillation light. The use of cost effective raw materials and existing manufacturing methods demonstrated proof-of-concept for economical viable alternatives to existing benchmark materials, as well as possible disruptive applications afforded by novel geometries and comparatively lower cost per volume. The authors now seek the expertise of industry to effectively navigate the transition from laboratory demonstrations to pilot scale production and testing to evince the industry of the viability and usefulness of composite-based scintillators.

  14. Development plan of Pu NDA system using ZnS ceramic scintillator

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Soyama, Kazuhiko; Seya, Michio; Ohzu, Akira; Haruyama, Mitsuo; Takase, Misao; Sakasai, Kaoru; Nakamura, Tatsuya; Toh, Kentaro

    2012-01-01

    Alternative techniques to neutron detection by He-3 for nuclear security and safeguards systems are necessary to be developed since He-3 shortage is serious. With support of Japanese government (the Ministry of Education, Culture, Sports, and Technology), we have started an R and D project of Pu NDA system using ZnS ceramic scintillator. Here we present development plan, production of a new type of ZnS ceramic scintillator experimentally and basic design of a PCAS alternative Pu NDA system. We are planning the demonstration tests using the alternative NDA system comparing with the current PCAS in which the He-3 counters are installed. (author)

  15. Fabrication and scintillation performance of nonstoichiometric LuAG:Ce ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Feng, X.; Nikl, Martin; Wu, L.; Zhou, Z.; Li, J.; Kou, H.; Zeng, Y.; Shi, Y.; Pan, Y.

    2015-01-01

    Roč. 98, č. 2 (2015), s. 510-514 ISSN 0002-7820 Institutional support: RVO:68378271 Keywords : scintillator * ceramics * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.787, year: 2015

  16. Luminescence and scintillation enhancement of Y2O3:Tm transparent ceramic through post-fabrication thermal processing

    International Nuclear Information System (INIS)

    Chapman, M.G.; Marchewka, M.R.; Roberts, S.A.; Schmitt, J.M.; McMillen, C.; Kucera, C.J.; DeVol, T.A.; Ballato, J.; Jacobsohn, L.G.

    2015-01-01

    The effects of post-fabrication thermal processing in O 2 flux on the luminescence and scintillation of a Y 2 O 3 :Tm transparent ceramic were investigated. The results showed that the strategy of post-fabrication processing can be beneficial to the performance of the ceramics, depending on the cumulative processing time. After the first hour of processing, about 40% enhancement in the luminescence output together with about 20% enhancement in the scintillation light yield were obtained. The enhancements were tentatively assigned to the incorporation of oxygen into vacancy sites. Longer cumulative processing times lead to the incorporation of oxygen as interstitials that is detrimental to scintillation light yield but not to luminescence output. This work also revealed that thermoluminescence measurements are a useful tool to predict scintillation light yield of Y 2 O 3 :Tm. - Highlights: • Scintillation and PL enhancement of transparent ceramics through thermal processing. • First thermoluminescence measurements of Y 2 O 3 :Tm above room temperature. • Observation of correlation between TL and scintillation light yield results

  17. Towards Bright and Fast Lu3Al5O12:Ce,Mg Optical Ceramics Scintillators

    CERN Document Server

    Liu, Shuping; Feng, Xiqi; Vedda, Anna; Fasoli, Mauro; Shi, Yun; Kou, Huamin; Beitlerova, Alena; Wu, Lexiang; D'Ambrosio, Carmelo; Pan, Yubai; Nikl, Martin

    2016-01-01

    The recent advent of Lu 3 Al 5 O 12 :Ce optical ceramics marks a turning point in scintillator material technology. Because of their lower preparation tem-perature, brightness, and robustness such materials can now compete with single crystals. Their further scintillation effi ciency optimization includes the thorough control of the defects responsible for optical and scintillation losses. The choice of sintering agent appears critical to achieve both high optical transparency and scintillation performance. In this work, the optical investi-gations coupled with X-ray absorption near-edge spectroscopy evidence the benefi cial role of MgO sintering agent. Mg 2+ co-dopants in ceramics drive the partial conversion of Ce 3+ to Ce 4+ . The Ce 4+ center, however, does not impair the scintillation performance due to its capability to positively infl uence the scintillation process. The importance of simultaneous application of such co-doping and annealing treatment is also demonstrated. With 0.3 at% Mg, our cer...

  18. Luminescence and scintillation enhancement of Y{sub 2}O{sub 3}:Tm transparent ceramic through post-fabrication thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, M.G.; Marchewka, M.R. [Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634 (United States); Roberts, S.A.; Schmitt, J.M. [COMSET – Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC 29625 (United States); McMillen, C. [Department of Chemistry, Clemson University, Clemson, SC 29634 (United States); Kucera, C.J. [COMSET – Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC 29625 (United States); DeVol, T.A. [Environmental Engineering and Earth Sciences Department, Clemson University, Clemson, SC 29625 (United States); Ballato, J. [Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634 (United States); COMSET – Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC 29625 (United States); Jacobsohn, L.G., E-mail: luiz@clemson.edu [Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634 (United States); COMSET – Center for Optical Materials Science and Engineering Technologies, Clemson University, Anderson, SC 29625 (United States)

    2015-09-15

    The effects of post-fabrication thermal processing in O{sub 2} flux on the luminescence and scintillation of a Y{sub 2}O{sub 3}:Tm transparent ceramic were investigated. The results showed that the strategy of post-fabrication processing can be beneficial to the performance of the ceramics, depending on the cumulative processing time. After the first hour of processing, about 40% enhancement in the luminescence output together with about 20% enhancement in the scintillation light yield were obtained. The enhancements were tentatively assigned to the incorporation of oxygen into vacancy sites. Longer cumulative processing times lead to the incorporation of oxygen as interstitials that is detrimental to scintillation light yield but not to luminescence output. This work also revealed that thermoluminescence measurements are a useful tool to predict scintillation light yield of Y{sub 2}O{sub 3}:Tm. - Highlights: • Scintillation and PL enhancement of transparent ceramics through thermal processing. • First thermoluminescence measurements of Y{sub 2}O{sub 3}:Tm above room temperature. • Observation of correlation between TL and scintillation light yield results.

  19. Influence of SrF_2-doping in AlN ceramics on scintillation and dosimeter properties

    International Nuclear Information System (INIS)

    Kojima, Kaori; Okada, Go; Fukuda, Kentaro; Yanagida, Takayuki

    2016-01-01

    In this study, we synthesized undoped AlN and SrF_2-doped AlN (AlN-SrF_2) ceramics by Spark Plasma Sintering (SPS), and we characterized their optical, scintillation and dosimeter properties. The prepared undoped AlN ceramic had gray color and visually non-transparent whereas, with an addition of SrF_2, the transparency improved and became translucent. The measured in-line transmittance was approximately 0.2% at wavelengths longer than 500 nm. While the addition of SrF_2 decreased the scintillation intensity, the decay time was significantly fastened, which is a great advantage for fast photon counting-based measurements. Both the thermally-stimulated luminescence (TSL) and optically-stimulated luminescence (OSL) showed good linear response from the milli-gray range to over 10 Gy. The sensitivity seems to decrease by an addition of SrF_2 as it suppresses structural defect centers which are responsible for dosimeter properties. However, the main TSL glow peak position shifts to higher temperature with the addition of SrF_2, which indicates that inclusion of SrF_2 improves the TSL signal stability. - Highlights: • We synthesized undoped and SrF_2-doped AlN ceramics by Spark Plasma Sintering. • We evaluated scintillator and dosimeter properties of undoped and SrF_2-doped AlN. • By doping with SrF_2, the decay time is shortened. • By doping with SrF_2, the stability of TSL and OSL is improved.

  20. The Dimensions and Pole of Asteroid (21) Lutetia from Adaptive Optics Images

    Science.gov (United States)

    Drummond, Jack D.; Conrad, A.; Merline, W.; Carry, B.

    2009-09-01

    In a campaign to study the Rosetta mission target, asteroid (21) Lutetia, we obtained 81 images on December 2, 2008, at 2.12 microns with adaptive optics (AO) on the Keck-II 10 m telescope. From these nearly consecutive images obtained over a quarter of rotation, we have determined the asteroid's triaxial ellipsoid diameters to be 132x101x76 km, with formal uncertainties of 1 km for the equatorial dimensions, and 31 km for the shortest axis. This latter uncertainty occurs because the observations were made at the relatively high sub-Earth latitude of -69 degrees. From these observations we determine that Lutetia's pole lies at 2000.0 coordinates of RA=48, Dec=+9, or Ecliptic coordinates of [49;-8], with a formal uncertainty radius of 3 deg. (The other possible pole is eliminated by considering its lightcurve history.) The rotational pole derived for the lightcurve inversion model (available at http://astro.troja.mff.cuni.cz/ projects/asteroids3D/web.php), is only 5 deg from ours, but comparing our images to the lightcurve inversion model we find that Lutetia is more pointed than the model. Our technique of deriving the dimensions of asteroids from AO images has been calibrated against Pluto and 4 satellites of Saturn with precise diameters, and we find that any systematic errors can be no more than 1-3%. We acknowledge the assistance of other team members Christophe Dumas (ESO), Peter Tamblyn (SwRI), and Clark Chapman (SwRI). We also thank Hal Weaver (JHU/APL) as the lead for our collaboration with the Rosetta mission. We are grateful for telescope time made available to us by S. Kulkarni and M. Busch (Cal Tech) for a portion of our overall Lutetia effort. We also thank our collaborators on Team Keck, the Keck science staff, for making possible some of the Lutetia observations and for their participation. Additional Lutetia observations were acquired at Gemini North under NOAO time allocation.

  1. Fabrication and scintillation properties of highly transparent Pr:LuAG ceramics using Sc,La-based isovalent sintering aids

    Czech Academy of Sciences Publication Activity Database

    Shen, Y.; Feng, X.; Babin, Vladimir; Nikl, Martin; Vedda, A.; Moretti, F.; Dell'Orto, E.; Pan, Y.; Li, J.; Zeng, Y.

    2013-01-01

    Roč. 39, č. 5 (2013), s. 5985-5990 ISSN 0272-8842 R&D Projects: GA MŠk LH12185; GA AV ČR KAN300100802 Institutional support: RVO:68378271 Keywords : Pr:LuAG transparent ceramics * isovalent sintering aids * scintillation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.086, year: 2013

  2. Cerium-doped single crystal and transparent ceramic lutetium aluminum garnet scintillators

    International Nuclear Information System (INIS)

    Cherepy, Nerine J.; Kuntz, Joshua D.; Tillotson, Thomas M.; Speaks, Derrick T.; Payne, Stephen A.; Chai, B.H.T.; Porter-Chapman, Yetta; Derenzo, Stephen E.

    2007-01-01

    For rapid, unambiguous isotope identification, scintillator detectors providing high-resolution gamma ray spectra are required. We have fabricated Lutetium Aluminum Garnet (LuAG) using transparent ceramic processing, and report a 2-mm thick ceramic exhibiting 75% transmission and light yield comparable to single-crystal LuAG:Ce. The LuAG:Ce luminescence peaks at 550 nm, providing an excellent match for Silicon Photodiode readout. LuAG is dense (6.67 g/cm 3 ) and impervious to water, exhibits good proportionality and a fast decay (∼40 ns), and we measure light yields in excess of 20,000 photons/MeV

  3. Ticor-based scintillation detectors for detection of mixed radiation

    CERN Document Server

    Litvinov, L A; Kolner, V B; Ryzhikov, V D; Volkov, V G; Tarasov, V A; Zelenskaya, O V

    2002-01-01

    Detection of mixed radiation of thermal neutrons and gamma-rays have been realized using a new ceramic material based on small-crystalline long-wave scintillator alpha-Al sub 2 O sub 3 :Ti (Ticor) and lithium fluoride. Characteristics are presented for scintillators with Si-PIN-PD type photoreceivers and PMT under sup 2 sup 3 sup 9 Pu alpha-particles, sup 2 sup 0 sup 7 Bi internal conversion electrons,as well as sup 2 sup 4 sup 1 Am and sup 1 sup 3 sup 7 Cs gamma-quanta. Detection efficiency of thermal neutron is estimated for composite materials based on Ticor and lithium fluoride.

  4. Optical, luminescence and scintillation characteristics of non-stoichiometric LuAG:Ce ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Feng, X.; Mareš, Jiří A.; Babin, Vladimir; Nikl, Martin; Beitlerová, Alena; Shi, Y.; Zeng, Y.; Pan, Y.; D'Ambrosio, C.; Huang, Y.

    2016-01-01

    Roč. 169, Jan (2016), s. 72-77 ISSN 0022-2313 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : non-stoichimetric LuAG:Ce ceramic s * radioluminescence * scintillation response * anti-site defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  5. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics

    Science.gov (United States)

    Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki

    2018-04-01

    13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.

  6. Neutron-sensitive ZnS/10B2O3 ceramic scintillator detector as an alternative to a 3He-gas-based detector for a plutonium canister assay system

    International Nuclear Information System (INIS)

    Nakamura, T.; Ohzu, A.; Toh, K.; Sakasai, K.; Suzuki, H.; Honda, K.; Birumachi, A.; Ebine, M.; Yamagishi, H.; Takase, M.; Haruyama, M.; Kureta, M.; Soyama, K.; Nakamura, H.; Seya, M.

    2014-01-01

    A neutron-sensitive ZnS/ 10 B 2 O 3 ceramic scintillator detector was developed as an alternative to a 3 He-gas-based detector for use in a plutonium canister assay system. The detector has a modular structure, with a flat ZnS/ 10 B 2 O 3 ceramic scintillator strip that is installed diagonally inside a light-reflecting aluminium case with a square cross-section, and where the scintillation light is detected using two photomultiplier tubes attached at both ends of the case. The prototype detectors, which have a neutron-sensitive area of 30 mm×250 mm, exhibited a sensitivity of 21.7–23.4±0.1 cps/nv (mean±SD) for thermal neutrons, a 137 Cs gamma-ray sensitivity of 1.1–1.9±0.2×10 −7 and a count variation of less than 6% over the detector length. A trial experiment revealed a temperature coefficient of less than −0.24±0.05%/°C over the temperature range of 20–50 °C. The detector design and the experimental results are presented

  7. The harmful effects of sintering aids in Pr:LuAG optical ceramic scintillator

    Czech Academy of Sciences Publication Activity Database

    Shen, Y.; Shi, Y.; Feng, X.; Pan, Y.; Li, J.; Zeng, J.-Y.; Nikl, Martin; Krasnikov, A.; Vedda, A.; Moretti, F.

    2012-01-01

    Roč. 95, č. 7 (2012), s. 2130-2132 ISSN 0002-7820 R&D Projects: GA MŠk LH12185 Institutional research plan: CEZ:AV0Z10100521 Keywords : scintillator * optical ceramics * sintering aids * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.107, year: 2012

  8. Fundamental optical constants of Nd-doped Y.sub.2./sub.O.sub.3./sub. ceramic and its scintillation characteristics

    Czech Academy of Sciences Publication Activity Database

    Fukabori, A.; Chani, V.; Pejchal, Jan; Kamada, K.; Yoshikawa, A.; Ikegami, T.

    2011-01-01

    Roč. 34, č. 2 (2011), s. 452-456 ISSN 0925-3467 Institutional research plan: CEZ:AV0Z10100521 Keywords : Nd:Y 2 O 3 ceramic * fundamental optical constant * scintillator * scintillation properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.023, year: 2011

  9. Comparative study of transparent ceramic and single crystal Ce doped LuAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei; Yanagida, Satoko; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Transparent ceramic Ce 0.5% doped Lu 3 Al 5 O 12 (LuAG) scintillator grown by the sintering method and single crystalline Ce doped LuAG grown by the Czochralski method are prepared. They are cut to the physical dimensions 4 × 4 × 2 mm 3 . Their transmittance and radio luminescence spectra are evaluated. They are both transmissive in wavelength longer than 500 nm and intense Ce 3+ 5d–4f emission appears around 520 nm. When 137 Cs γ-ray is irradiated, 662 keV photo-absorption peaks are clearly observed in each sample. The transparent ceramic one shows higher light yield than that of the single crystalline one. The absolute light yield of the ceramic sample is turned out to be 14800 ± 1500 ph/MeV. The decay time constants are evaluated under pulse X-ray excitation. The main component of the decay time of ceramic and single crystalline one are determined as 37 and 46 ns, respectively.

  10. New heavy scintillating materials for precise heterogeneous EM-calorimeters

    International Nuclear Information System (INIS)

    Britvich, G.I.; Britvich, I.G.; Vasil'chenko, V.G.; Lishin, V.A.; Obraztsov, V.F.; Polyakov, V.A.; Solovjev, A.S.; Ryzhikov, V.D.

    2001-01-01

    This investigation shows some optical and scintillation properties of new scintillating media, based on heavy composite materials and an inorganic crystal CsI:Br, intended for the creation of precise heterogeneous EM-calorimeters with the energy resolution σ/E congruent with 4-5% E-radical. The possibility to use cheap heavy scintillating plates based on optical ceramics as active media in heterogeneous EM-calorimeters is considered

  11. Magnetic Evidence for a Partially Differentiated Carbonaceous Chondrite Parent Body and Possible Implications for Asteroid 21 Lutetia

    Science.gov (United States)

    Weiss, Benjamin; Carporzen, L.; Elkins-Tanton, L.; Shuster, D. L.; Ebel, D. S.; Gattacceca, J.; Binzel, R. P.

    2010-10-01

    The origin of remanent magnetization in the CV carbonaceous chondrite Allende has been a longstanding mystery. The possibility of a core dynamo like that known for achondrite parent bodies has been discounted because chondrite parent bodies are assumed to be undifferentiated. Here we report that Allende's magnetization was acquired over several million years (Ma) during metasomatism on the parent planetesimal in a > 20 microtesla field 8-9 Ma after solar system formation. This field was present too recently and directionally stable for too long to have been the generated by the protoplanetary disk or young Sun. The field intensity is in the range expected for planetesimal core dynamos (Weiss et al. 2010), suggesting that CV chondrites are derived from the outer, unmelted layer of a partially differentiated body with a convecting metallic core (Elkins-Tanton et al. 2010). This suggests that asteroids with differentiated interiors could be present today but masked under chondritic surfaces. In fact, CV chondrites are spectrally similar to many members of the Eos asteroid family whose spectral diversity has been interpreted as evidence for a partially differentiated parent asteroid (Mothe-Diniz et al. 2008). CV chondrite spectral and polarimetric data also resemble those of asteroid 21 Lutetia (e.g., Belskaya et al. 2010), recently encountered by the Rosetta spacecraft. Ground-based measurements of Lutetia indicate a high density of 2.4-5.1 g cm-3 (Drummond et al. 2010), while radar data seem to rule out a metallic surface composition (Shepard et al. 2008). If Rosetta spacecraft measurements confirm a high density and a CV-like surface composition for Lutetia, then we propose Lutetia may be an example of a partially differentiated carbonaceous chondrite parent body. Regardless, the very existence of primitive achondrites, which contain evidence of both relict chondrules and partial melting, are prima facie evidence for the formation of partially differentiated bodies.

  12. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    International Nuclear Information System (INIS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-01-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd 3 Ga 3 Al 2 O 12 :0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu) 3 Ga 3 Al 2 O 12 :1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce 3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce 3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137 Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for multicomponent aluminate garnets are discussed

  13. Scintillation properties of acrylate based plastic scintillator by photoploymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan [Dept. of Radiological Science, Cheongju University, Cheongju (Korea, Republic of); Lee, Joo Il [Dept. of of Radiology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    In this study, we prepared and characterized a acrylate based UV-curable plastic scintillator. It was used co-polymers TMPTA, DHPA and Ultima GoldTM LLT organic scintillator. The emission spectrum of the plastic scintillator was located in the range of 380⁓520 nm, peaking at 423 nm. And the scintillator is more than 50% transparent in the range of 400⁓ 800 nm. The emission spectrum is well match to the quantum efficiency of photo-multiplier tube and the fast decay time of the scintillation is 12 ns, approximately. This scintillation material provides the possibility of combining 3D printing technology, and then the applications of the plastic scintillator may be expected in human dosimetry etc.

  14. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    International Nuclear Information System (INIS)

    Park, J.M.; Kim, H.J.; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-01-01

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator

  15. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.M.; Kim, H.J., E-mail: hongjooknu@gmail.com; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-02-15

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator.

  16. Composition and properties tailoring in Mg.sup.2+./sup. codoped non-stoichiometric LuAG:Ce,Mg scintillation ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Mareš, Jiří A.; Babin, Vladimir; Hu, C.; Kou, H.; D'Ambrosio, C.; Li, J.; Pan, Y.; Nikl, Martin

    2017-01-01

    Roč. 37, č. 4 (2017), s. 1689-1694 ISSN 0955-2219 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : non-stoichiometric ceramic s * LuAG:Ce * Mg scintillator * Mg 2+ codopant * antisite defects * afterglow Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.411, year: 2016

  17. Towards bright and fast Lu.sub.3./sub.Al.sub.5./sub.O.sub.12./sub.:Ce,Mg optical ceramics scintillators

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Mareš, Jiří A.; Feng, X.; Vedda, A.; Fasoli, M.; Shi, Y.; Kou, H.; Beitlerová, Alena; Wu, L.; D´Ambrosio, C.; Pan, Y.; Nikl, Martin

    2016-01-01

    Roč. 4, č. 5 (2016), 731-739 ISSN 2195-1071 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : optical ceramics * Ce dopant * LuAG garnet * luminescence * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.875, year: 2016

  18. Scintillation properties of transparent Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) ceramics doped with different concentrations of Pr{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki; Fukabori, Akihiro; Fujimoto, Yutaka; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira; Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira Aoba-ku, 980-8577 Sendai (Japan); Ikesue, Akio [World Labo, Co. Ltd., Mutsuno 2-4-1, Atsuta, 456-0023 Nagoya (Japan); Kataoka, Jun [School of Advanced Science and Engineering,Waseda University, Ohkubo 3-4-1, Shinjuku, 169-0072 Tokyo (Japan)

    2011-01-15

    Transparent ceramics of Pr-doped (0.2 mol%, 0.6 mol%, 1 mol%, and 2 mol%) Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) scintillators produced by the sintering method are discussed. These materials were cut to the specimens with physical dimensions of 5 x 5 x 2 mm{sup 3}. Similar size specimens were also prepared from Czochralski grown Pr:LuAG single crystals to compare scintillation properties. Their transmittance and radio luminescence spectra were evaluated. All specimens were highly transparent in wavelength range above 300 nm, and intense Pr{sup 3+} 5d-4f emission was detected around 310 and 370 nm under excitation with X-ray. Under {sup 137}Cs {gamma}-ray is irradiation, 2 keV photo-absorption peaks were also clearly observed in each sample. The Pr 0.6 mol% doped LuAG ceramics demonstrated highest light yield achievable among the ceramics, and it was half of that observed in the single crystals. Under pulse X-ray excitation, the decay time constants became faster when Pr concentration increased, and. the fastest decay ({proportional_to}5.7 ns time constant) was noticed in the 2 mol% doped ceramic. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Yb:Lu{sub 2}O{sub 3} hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80 K

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Cheryl A. [Snake Creek Lasers LLC, 26741 State Route 267, Friendsville, PA 18818 (United States); Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634-0973 (United States); Brown, David C., E-mail: dbrown@snakecreeklasers.com [Snake Creek Lasers LLC, 26741 State Route 267, Friendsville, PA 18818 (United States); Sanjeewa, Liurukara D.; McMillen, Colin D.; Kolis, Joseph W. [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634-0973 (United States)

    2016-06-15

    The hydrothermal growth, doping, and low temperature spectral characterization of Yb doped Lu{sub 2}O{sub 3} was investigated. The absorption of the lutetia-based sesquioxide laser material Yb:Lu{sub 2}O{sub 3} at temperatures of 80, 150, 200, 250, and 298 K, in the wavelength range of 850–1100 nm are reported. Data for both single crystal and ceramic Yb:Lu{sub 2}O{sub 3} were obtained. The resulting absorption cross-section data will enable the further evaluation of Yb:Lu{sub 2}O{sub 3} as a very promising high power cryogenic laser material.

  20. Effect of Gd substitution on structure and spectroscopic properties of (Lu,Gd)2O3:Eu ceramic scintillator

    Science.gov (United States)

    Cao, Maoqing; Hu, Zewang; Ivanov, Maxim; Dai, Jiawei; Li, Chaoyu; Kou, Huamin; Shi, Yun; Chen, Haohong; Xu, Jiayue; Pan, Yubai; Li, Jiang

    2018-02-01

    In this paper, (Lu1-xGdx)2O3:Eu (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) ceramics were consolidated by the solid-state reaction method combined with vacuum sintering without sintering aids. We investigated the effect of the varying contents of Gd2O3 on the structure and spectroscopic properties of (Lu1-xGdx)2O3:Eu ceramics. X-ray diffraction (XRD) patterns indicate that proper amount of Gd2O3 can incorporate well with Lu2O3 and form Lu2O3-Gd2O3 solid solution. However, excessive Gd3+-doping in Lu2O3 will lead to the cubic phase transforming into monoclinic even hexagonal phase. The Gd3+ substitution no more than 50% of Lu2O3 enhances the radioluminescence, and reduces the fluorescence lifetime. Transmittance, photoluminescence, and radiation damage of the (Lu1-xGdx)2O3:Eu scintillation ceramics were also studied.

  1. Photometry of the bright and dark terrains of Vesta and Lutetia with comparison to other asteroids

    Science.gov (United States)

    Longobardo, A.; Palomba, E.; Capaccioni, F.; De Sanctis, M.; Tosi, F.; Schroder, S.; Li, J.; Capria, M.; Ammannito, E.; Raymond, C.; Russell, C.

    2014-07-01

    The reflectance of a planetary surface as measured at different phase angles can provide useful information about several properties, both optical (importance of multiple and single scattering, regolith shadowing) and physical (roughness and regolith grain size). In particular, disk-resolved observations allow one to monitor photometric properties variations across a planetary surface. In this work, we retrieved disk-resolved phase functions of asteroids Vesta and Lutetia, by means of hyperspectral images returned by the Visible and InfraRed (VIR) mapping spectrometer onboard NASA's Dawn spacecraft, and the Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS), onboard ESA's Rosetta spacecraft, respectively. Then we compared their photometric properties with those obtained of other asteroids closely explored by space missions (Gaspra, Ida, Eros, Annefrank, Steins, Mathilde). The trend of reflectance as a function of phase angle has been obtained by undertaking a statistical analysis, based on the empirical definition of reflectance families. For each family, the relation between reflectance and phase has been then calculated. On Vesta, we find steeper phase functions in dark material units, which become flatter with increasing albedo. This has been ascribed to a relevant role of multiple scattering in bright regions. As opposed to Vesta, Lutetia is a more homogeneous body. Hence we can consider a unique phase function for the whole asteroid surface. We chose two parameters useful to describe the photometric behavior of these asteroids: the reflectance which would be observed at a 30° phase, tagged R30, and the ''phase slope'' or the reflectance percent decrease between 20° and 60° phase, tagged PS. These two parameters have been calculated also on disk-resolved phase functions of other asteroids available in literature. We find that all S-type asteroids place in the same region of the R30-PS scatterplot, due to their similar photometric properties. C

  2. Performance comparison of scintillators for alpha particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yuki [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Yamamoto, Seiichi [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Izaki, Kenji [Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2014-11-11

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd{sub 2}Si{sub 2}O{sub 7} (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM.

  3. Development of scintillation materials for medical imaging and other applications

    International Nuclear Information System (INIS)

    Melcher, C. L.

    2013-01-01

    Scintillation materials that produce pulses of visible light in response to the absorption of energetic photons, neutrons, and charged particles, are widely used in various applications that require the detection of radiation. The discovery and development of new scintillators has accelerated in recent years, due in large part to their importance in medical imaging as well as in security and high energy physics applications. Better understanding of fundamental scintillation mechanisms as well as the roles played by defects and impurities have aided the development of new high performance scintillators for both gamma-ray and neutron detection. Although single crystals continue to dominate gamma-ray based imaging techniques, composite materials and transparent optical ceramics potentially offer advantages in terms of both synthesis processes and scintillation performance. A number of promising scintillator candidates have been identified during the last few years, and several are currently being actively developed for commercial production. Purification and control of raw materials and cost effective crystal growth processes can present significant challenges to the development of practical new scintillation materials.

  4. Scintillation counter based radiation dosimeter

    International Nuclear Information System (INIS)

    Shin, Jeong Hyun

    2009-02-01

    The average human exposure per year is about 240mrem which is come from Radon and human body and terrestrial and cosmic radiation and man-made source. Specially radiation exposure through air from environmental radiation sources is 80mrem/yr(= 0.01mR/hr) which come from Terrestrial and cosmic radiation. Radiation dose is defined as energy deposit/mass. There are two major methods to detect radiation. First method is the energy integration using Air equivalent material like GM counter wall material. Second method is the spectrum to dose conversion method using NaI(Tl), HPGe. These two methods are using generally to detect radiation. But these methods are expensive. So we need new radiation detection method. The research purpose is the development of economical environmental radiation dosimeter. This system consists of Plastic/Inorganic scintillator and Si photo-diode based detector and counting based circuitry. So count rate(cps) can be convert to air exposure rate(R/hr). There are three major advantages in this system. First advantages is no high voltage power supply like GM counter. Second advantage is simple electronics. Simple electronics system can be achieved by Air-equivalent scintillation detector with Al filter for the same detection efficiency vs E curve. From former two advantages, we can know the most important advantages of the this system. Third advantage is economical system. The price of typical GM counter is about $1000. But the price of our system is below $100 because of plastic scintillator and simple electronics. The role of scintillation material is emitting scintillation which is the flash of light produced in certain materials when they absorb ionizing radiation. Plastic scintillator is organic scintillator which is kind of hydrocarbons. The special point are cheap price, large size production(∼ton), moderate light output, fast light emission(ns). And the role of Al filter is equalizing counting efficiency of air and scintillator for

  5. Improved scintillation luminescence and thermal stability of In{sub 2}Si{sub 2}O{sub 7} ceramic phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian; Cao, Lei; Feng, Yongyi [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Huang, Yanlin, E-mail: hang@suda.edu.cn [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Wang, Yaorong [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Qin, Lin [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2017-03-15

    In{sub 2}Si{sub 2}O{sub 7} is a known indium-based scintillator with fast ultraviolet photoluminescence. Unfortunately the emission only can be detected below 200 K. the poor thermal stability limits its application at room temperature. In this work, the luminescence improvement of In{sub 2}Si{sub 2}O{sub 7} was realized by F{sup −}-ions doping in the lattices. The ceramic phosphors were via typical solid-state reaction method. The pure crystalline phase with thortveirite-type structure was confirmed by X-ray diffraction (XRD) Rietveld refinements. The photoluminescence (PL) emission and excitation spectra together with the luminescence thermal stability were tested. The fluorescence decay curves CIE emission Stokes shifts were measured. The ceramic samples could present blue luminescence with maximum wavelength at about 340 nm under the excitation of UV light or high energy X-ray irradiation. The pure sample only presents luminescence below 200 K, however, the F-doping can be greatly enhance the luminescence thermal stability. The F-doped In{sub 2}Si{sub 2}O{sub 7} could present emission signals with fast decay lifetime of 850 ns at room temperature. The luminescence transitions from the In{sup 3+}-O{sup 2−} charge transfer (CT) were discussed on the structure properties.

  6. Effect of Li.sup.+./sup. ions co-doping on luminescence, scintillation properties and defects characteristics of LuAG:Ce ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.-P.; Feng, X. Q.; Mareš, Jiří A.; Babin, Vladimir; Hu, C.; Kou, H.; D'Ambrosio, C.; Li, J.; Pan, Y.; Nikl, Martin

    2017-01-01

    Roč. 64, Feb (2017), s. 245-249 ISSN 0925-3467 R&D Projects: GA ČR GA16-15569S Grant - others:AV ČR(CZ) CAS-17-02 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : LuAG:Ce * Li ceramic s * scintillator * Li + codoping * Ce 4+ and Ce 3+ centers Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  7. Fabrication of large-volume, low-cost ceramic lanthanum halide scintillators for gamma ray detection : final report for DHS/DNDO/TRDD project TA-01-SL01.

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Yang, Pin; Chen, Ching-Fong; Sanchez, Margaret R.; Bell, Nelson Simmons

    2008-10-01

    This project uses advanced ceramic processes to fabricate large, optical-quality, polycrystalline lanthanum halide scintillators to replace small single crystals produced by the conventional Bridgman growth method. The new approach not only removes the size constraint imposed by the growth method, but also offers the potential advantages of both reducing manufacturing cost and increasing production rate. The project goal is to fabricate dense lanthanum halide ceramics with a preferred crystal orientation by applying texture engineering and solid-state conversion to reduce the thermal mechanical stress in the ceramic and minimize scintillation light scattering at grain boundaries. Ultimately, this method could deliver the sought-after high sensitivity and <3% energy resolution at 662 keV of lanthanum halide scintillators and unleash their full potential for advanced gamma ray detection, enabling rapid identification of radioactive materials in a variety of practical applications. This report documents processing details from powder synthesis, seed particle growth, to final densification and texture development of cerium doped lanthanum bromide (LaBr{sub 3}:Ce{sup +3}) ceramics. This investigation demonstrated that: (1) A rapid, flexible, cost efficient synthesis method of anhydrous lanthanum halides and their solid solutions was developed. Several batches of ultrafine LaBr{sub 3}:Ce{sup +3} powder, free of oxyhalide, were produced by a rigorously controlled process. (2) Micron size ({approx} 5 {micro}m), platelet shape LaBr{sub 3} seed particles of high purity can be synthesized by a vapor phase transport process. (3) High aspect-ratio seed particles can be effectively aligned in the shear direction in the ceramic matrix, using a rotational shear-forming process. (4) Small size, highly translucent LaBr{sub 3} (0.25-inch diameter, 0.08-inch thick) samples were successfully fabricated by the equal channel angular consolidation process. (5) Large size, high density

  8. Radiation-resistant composite scintillators based on GSO and GPS grains

    Energy Technology Data Exchange (ETDEWEB)

    Boyarintsev, A.Yu. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Galunov, N.Z. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); V.N. Karasin Kharkov National University, 4 Svobody Sq., 61022 Kharkiv (Ukraine); Gerasymov, Ia.V.; Karavaeva, N.L. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Krech, A.V., E-mail: AntonKrech@gmail.com [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Levchuk, L.G.; Popov, V.F. [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv (Ukraine); Sidletskiy, O.Ts. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine); Sorokin, P.V. [National Science Center, Kharkov Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv (Ukraine); Tarasenko, O.A. [Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauki Avenue, 61001 Kharkiv (Ukraine)

    2017-01-01

    The effect of irradiation on the scintillation light output, optical transmittance, and luminescent spectra of composite scintillators based on grains of single crystals Gd{sub 2}SiO{sub 5}:Ce (GSO) and Gd{sub 2}Si{sub 2}O{sub 7}:Ce (GPS) is studied. The dielectric gel Sylgard-184 is the base and the binder for the grains inside the composite scintillator. The paper presents and analyzes the results obtained for the scintillators exposed by 10 MeV electrons from the linear electron accelerator at room temperature. The exposure doses D≤250 Mrad. The dose rate is 0.2 or 1500 Mrad/h. The study has shown that the composite scintillators based on the grains of GSO and GPS are radiation-resistant over the range of the irradiation.

  9. Radiation damage studies on polystyrene-based scintillators

    International Nuclear Information System (INIS)

    Britvich, G.I.; Peresypkin, A.I.; Rykalin, V.I.

    1991-01-01

    The radiation resistance of polystyrene-based scintillators containing various scintillation dopes is reported. All samples were irradiated to 137 Cs gamma rays in air at room temperature. The examination of radiation resistance of about thirty fluorescence compounds has been made. The most radiation-hard fluores are X25, X31, 3HF and M3HF. 1 fig.; 6 tabs

  10. Development of new Polysiloxane Based Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M.; Quaranta, A. [Department of Industrial Engineering, University of Trento,Via Sommarive, 9, 38123 Trento (Italy); INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Gramegna, F.; Marchi, T.; Cinausero, M. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Carturan, S.; Collazuol, G.; Checchia, C. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Department of Physics and Astronomy, University of Padova, Via Marzolo, 8, 35131 Padova (Italy); Degerlier, M. [Department of Physics, Nevsehir Haci Bektas Veli University, Science and Art Faculty, 50300 Nevsehir (Turkey)

    2015-07-01

    In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worse handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non

  11. Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Directory of Open Access Journals (Sweden)

    D. Beznosko

    2014-01-01

    Full Text Available The water-based liquid scintillator (WbLS is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS. The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV for water, two different WbLS formulations (0.4% and 0.99%, and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.

  12. Properties of the ukrainian polystyrene-based plastic scintillator UPS 923A

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Chirikov-Zorin, I.; Lyablin, M.; Chokheli, D.; Bellettini, G.; Mensione, A.; Tokar, S; Giokaris, N.; Manousakis-Katsikakis, A.

    2005-01-01

    The polystyrene-based scintillator UPS 923A was chosen for upgrading of the muon system for the CDF detector at the Fermilab Tevatron. Properties of this scintillator such as light output, light attenuation, long-term stability and also timing characteristics of the scintillator and wavelength shifting fibers were investigated. The method for the Bulk Attenuation Length measurements of the scintillator to its own light emitted was proposed. Comparative measurements of the characteristics of the UPS 923A and the polyvinyltoluene-based scintillator NE 114 were performed. It was found that natural aging of the NE 114 was two times faster than that of the UPS 923A

  13. Plastic scintillator-based hodoscope for the characterization of large ...

    Indian Academy of Sciences (India)

    Plastic scintillator-based hodoscope for the characterization of large-area resistive plate chambers. V K S KASHYAP C YADAV ... Keywords. Plastic scintillators; resistive plate chambers. ... Pramana – Journal of Physics | News. © 2017 Indian ...

  14. Microstructure, optical, and scintillation characteristics of Pr.sup.3+./sup. doped Lu.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. optical ceramics

    Czech Academy of Sciences Publication Activity Database

    Shi, Y.; Nikl, Martin; Feng, X.; Mareš, Jiří A.; Shen, Y.; Beitlerová, Alena; Kučerková, Romana; Pan, Y.; Liu, Q.

    2011-01-01

    Roč. 109, č. 1 (2011), "013522-1"-"013522-7" ISSN 0021-8979 R&D Projects: GA AV ČR KAN300100802; GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : Pr 3+ doped Lu 3 Al 5 O 12 , * optical ceramics * microstructure * radio-luminescence * scintillation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.168, year: 2011 http://link.aip.org/link/?JAP/109/013522

  15. Red Emitting Phenyl-Polysiloxane Based Scintillators for Neutron Detection

    International Nuclear Information System (INIS)

    Dalla Palma, Matteo; Quaranta, Alberto; Marchi, Tommaso; Gramegna, Fabiana; Cinausero, Marco; Carturan, Sara; Collazuol, Gianmaria

    2013-06-01

    In this work, the performances of new red emitting phenyl- substituted polysiloxane based scintillators are described. Three dyes were dispersed in a phenyl-polysiloxane matrix in order to shift the scintillation wavelength towards the red part of the visible spectrum. PPO, Lumogen Violet (BASF) and Lumogen Red (BASF) were mixed to the starting resins with different wt. % and the analysis of the different samples was performed by means of fluorescence measurements. The scintillation yield to alpha particles at the different dye ratios was monitored by detecting either the full spectrum or the red part of the emitted light. Finally, thin red scintillators with selected compositions were coupled to Avalanche Photodiode sensors, which are usually characterized by higher efficiency in the red part of the spectrum. An increased light output of about 17% has been obtained comparing the red scintillators to standard blue emitting systems. Preliminary results on the detection of fast neutrons with the APD-red scintillator system are also presented. (authors)

  16. Positron annihilation in transparent ceramics

    Science.gov (United States)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  17. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  18. Scintillator Based Coded-Aperture Imaging for Neutron Detection

    International Nuclear Information System (INIS)

    Hayes, Sean-C.; Gamage, Kelum-A-A.

    2013-06-01

    In this paper we are going to assess the variations of neutron images using a series of Monte Carlo simulations. We are going to study neutron images of the same neutron source with different source locations, using a scintillator based coded-aperture system. The Monte Carlo simulations have been conducted making use of the EJ-426 neutron scintillator detector. This type of detector has a low sensitivity to gamma rays and is therefore of particular use in a system with a source that emits a mixed radiation field. From the use of different source locations, several neutron images have been produced, compared both qualitatively and quantitatively for each case. This allows conclusions to be drawn on how suited the scintillator based coded-aperture neutron imaging system is to detecting various neutron source locations. This type of neutron imaging system can be easily used to identify and locate nuclear materials precisely. (authors)

  19. Transparent plastic scintillators for neutron detection based on lithium salicylate

    International Nuclear Information System (INIS)

    Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-01-01

    Transparent plastic scintillators with pulse shape discrimination containing "6Li salicylate have been synthesized by bulk polymerization with a maximum "6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported herein. Plastics containing "6Li salicylate exhibit higher light yields and permit a higher loading of "6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Reduction in light yield and pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts. - Highlights: • Plastic scintillator with 0.4% "6Li loading is reported using lithium salicylate. • Influence of lithium salts on the scintillation mechanism is explored. • New lithium-loaded scintillator provides improved light yield and reduced cost.

  20. Radiation-damage measurements on PVT-based plastic scintillators

    International Nuclear Information System (INIS)

    Ilie, S.; Schoenbacher, H.; Tavlet, M.

    1993-01-01

    Samples of PVT-based plastic scintillators produced by Nuclear Enterprise Technology Ltd. (NET) were irradiated up to 9 kGy, both with a gamma source and within a typical accelerator radiation field (CERN PS ACOL Irradiation Facility). The consequent reduction of scintillating efficiency and light transmission were measured, as well as subsequent recovery, over a period of several months. The main results show that irradiation affects more the light transmission than the light emission. The radiation type does not affect either the amount of transmission reduction or the recovery. Observations were also made by means of polarized light. Non-uniformities and internal stresses were observed in scintillator bulks which were polymerized too quickly. These defects influence the light transmission. (orig.)

  1. Plastic scintillators based on polymers with eliminated excimer forming

    Energy Technology Data Exchange (ETDEWEB)

    Adadurov, A.F., E-mail: adadurov@isma.kharkov.u [Institute for Scintillating Materials NAN of Ukraine, 60 Lenin Ave, 61001 Kharkov (Ukraine); Yelyseev, D.A.; Titskaya, V.D.; Lebedev, V.N.; Zhmurin, P.N. [Institute for Scintillating Materials NAN of Ukraine, 60 Lenin Ave, 61001 Kharkov (Ukraine)

    2011-05-15

    Plastic scintillators (PS) were made based on benzyl methacrylate and methyl-methacrylate P(BzMA + MMA) copolymer in which the excimer forming rate is by two order lesser than that in polystyrene-based polymer matrix. Studying of these PS light yield demonstrates the importance of migration processes comparing to excimer formation. It is found that to obtain PS with high scintillation efficiency it is necessary to use the polymer base (matrix) in which excimer forming is eliminated but the migration process along the chromophores is maximally favored. To explain the accelerated energy transfer between phenyl chromophores it is proposed to use a mechanism of exchange of that virtual excitons that can propagate along a one-dimensional back-bone of polymer molecule. Clearing the details of mechanism of interaction between chromophores of polymer molecules which is responsible for accelerated radiationless energy transfer enable will determine in future the way of effective plastic scintillators designing.

  2. Scintillation Particle Detectors Based on Plastic Optical Fibres and Microfluidics

    CERN Document Server

    Mapelli, Alessandro; Renaud, Philippe

    2011-01-01

    This thesis presents the design, development, and experimental validation of two types of scintillation particle detectors with high spatial resolution. The first one is based on the well established scintillating fibre technology. It will complement the ATLAS (A Toroidal Large ApparatuS) detector at the CERN Large Hadron Collider (LHC). The second detector consists in a microfabricated device used to demonstrate the principle of operation of a novel type of scintillation detector based on microfluidics. The first part of the thesis presents the work performed on a scintillating fibre tracking system for the ATLAS experiment. It will measure the trajectory of protons elastically scattered at very small angles to determine the absolute luminosity of the CERN LHC collider at the ATLAS interaction point. The luminosity of an accelerator characterizes its performance. It is a process-independent parameter that is completely determined by the properties of the colliding beams and it relates the cross section of a ...

  3. Long-distance transmission of light in a scintillator-based radiation detector

    Science.gov (United States)

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  4. Developments of scintillator-based soft x-ray diagnostic in LHD with CsI:Tl and P47 scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bando, T., E-mail: bando.takahiro@nifs.ac.jp [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ohdachi, S.; Suzuki, Y. [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2016-11-15

    Multi-channel soft x-ray (SX) diagnostic has been used in the large helical device (LHD) to research magnetohydrodynamic equilibria and activities. However, in the coming deuterium plasma experiments of LHD, it will be difficult to use semiconductor systems near LHD. Therefore, a new type of SX diagnostic, a scintillator-based type diagnostic, has been investigated in order to avoid damage from the radiation. A fiber optic plate coated by P47 scintillator will be used to detect SX emission. Scintillation light will be transferred by pure silica core optical fibers and detected by photomultiplier tubes. A vertically elongated section of LHD will be covered by a 13 ch. array. Effects from the Deuterium Deuterium neutrons can be negligible when the scintillator is covered by a Pb plate 4 cm in thickness to avoid gamma-rays.

  5. Scintillator-based diagnostic for fast ion loss measurements on DIII-D

    International Nuclear Information System (INIS)

    Fisher, R. K.; Van Zeeland, M. A.; Pace, D. C.; Heidbrink, W. W.; Muscatello, C. M.; Zhu, Y. B.; Garcia-Munoz, M.

    2010-01-01

    A new scintillator-based fast ion loss detector has been installed on DIII-D with the time response (>100 kHz) needed to study energetic ion losses induced by Alfven eigenmodes and other MHD instabilities. Based on the design used on ASDEX Upgrade, the diagnostic measures the pitch angle and gyroradius of ion losses based on the position of the ions striking the two-dimensional scintillator. For fast time response measurements, a beam splitter and fiberoptics couple a portion of the scintillator light to a photomultiplier. Reverse orbit following techniques trace the lost ions to their possible origin within the plasma. Initial DIII-D results showing prompt losses and energetic ion loss due to MHD instabilities are discussed.

  6. Radiation damage studies on new liquid scintillators and liquid-core scintillating fibers

    International Nuclear Information System (INIS)

    Golovkin, S.V.

    1994-01-01

    The radiation resistant of some new liquid scintillation and capillaries filled with liquid scintillators has been presented. It was found that scintillation efficiency of the scintillator based on 1-methyl naphthalene with a new R39 only by 10% at the dose of 190 Mrad and the radiation resistance of thin liquid-core scintillating was decreased fibers exceeded 60 Mrad. 35 refs

  7. The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators

    International Nuclear Information System (INIS)

    Zhu, Jun; Deng, Cheng; Jiang, Huimin; Zheng, Zhanlong; Gong, Rui; Bi, Yutie; Zhang, Lin; Lin, Runxiong

    2016-01-01

    To investigate the influence of both the first luminescent additive and the wavelength-shifter on the performance of plastic scintillator, a series of polystyrene-based scintillator had been prepared by thermal polymerization. Three first luminescent additives (PPO, p-TP and b-PBD) and four wavelength-shifters (POPOP, Bis-MSB, Me-MSB and DPA) were added to the scintillators respectively. The comparison results showed that PPO and POPOP were the most adequate fluorescent dyes for the polystyrene-based plastic scintillator. Moreover, with the increase of the concentration of PPO and POPOP, the fluorescence intensity and light yield were increased firstly and then decreased. The plastic scintillator containing 2% PPO and 0.02% POPOP had the highest fluorescence intensity and light yield.

  8. The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Deng, Cheng; Jiang, Huimin [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Zheng, Zhanlong; Gong, Rui [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Bi, Yutie [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010 (China); Zhang, Lin, E-mail: zhlmy@sina.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Lin, Runxiong, E-mail: qdlrx@qust.edu.cn [Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2016-11-01

    To investigate the influence of both the first luminescent additive and the wavelength-shifter on the performance of plastic scintillator, a series of polystyrene-based scintillator had been prepared by thermal polymerization. Three first luminescent additives (PPO, p-TP and b-PBD) and four wavelength-shifters (POPOP, Bis-MSB, Me-MSB and DPA) were added to the scintillators respectively. The comparison results showed that PPO and POPOP were the most adequate fluorescent dyes for the polystyrene-based plastic scintillator. Moreover, with the increase of the concentration of PPO and POPOP, the fluorescence intensity and light yield were increased firstly and then decreased. The plastic scintillator containing 2% PPO and 0.02% POPOP had the highest fluorescence intensity and light yield.

  9. Improved Neutron Scintillators Based on Nanomaterials

    International Nuclear Information System (INIS)

    Friesel, Dennis

    2008-01-01

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd 2 O 3 foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved 6 LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  10. Effect of reducing Lu.sup.3+./sup. content on the fabrication and scintillation properties of non-stoichiometric Lu.sub.3-x./sub.Al.sub.5./sub.O.sub.12./sub.:Ce ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Mareš, Jiří A.; Babin, Vladimir; Hu, C.; Kou, H.; D'Ambrosio, C.; Pan, Y.; Nikl, Martin

    2017-01-01

    Roč. 63, Jan-Sl (2017), s. 179-184 ISSN 0925-3467 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : LuAG:Ce ceramics * Lu 3+ deficiency * scintillation light yield * non-stoichiometry * antisite defects Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  11. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  12. Some adsorption characteristics of polysterene base scintillators

    International Nuclear Information System (INIS)

    Seredenko, T.N.; Ehkkerman, V.M.; Solomonov, V.M.; Gen, N.S.

    1980-01-01

    It is necessary to account for the adsorption on the surface of a scintillator when measuring nuclide activity in solutions by submerging into these solutions plastic scintillators. Dependences of 144 Ce, 90 Y, 137 Cs adsorption on specific activities (α) and pH value of solution were investigated. It is shown that K-α ratio is described by the equation K=Casup(p), where K is the specific surface activity of the polystyrene scintillator. Values of C and p are presented for investigated nuclides. The criterion estimating the possibility for repeated usage of scintillator are considered

  13. Timing properties and pulse shape discrimination of LAB-based liquid scintillator

    International Nuclear Information System (INIS)

    Li Xiaobo; Xiao Hualin; Cao Jun; Li Jin; Heng Yuekun; Ruan Xichao

    2011-01-01

    Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power. (authors)

  14. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    International Nuclear Information System (INIS)

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-01-01

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter

  15. Emerging ceramic-based materials for dentistry.

    Science.gov (United States)

    Denry, I; Kelly, J R

    2014-12-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. © International & American Associations for Dental Research.

  16. Development of multi-color scintillator based X-ray image intensifier

    International Nuclear Information System (INIS)

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi

    2004-01-01

    A multi-color scintillator based high-sensitive, wide dynamic range and long-life X-ray image intensifier has been developed. An europium activated Y 2 O 2 S scintillator, emitting red, green and blue photons of different intensities, is utilized as the output fluorescent screen of the intensifier. By combining this image intensifier with a suitably tuned high sensitive color CCD camera, it is possible for a sensitivity of the red color component to become six times higher than that of the conventional image intensifier. Simultaneous emission of a moderate green color and a weak blue color covers different sensitivity regions. This widens the dynamic range, by nearly two orders of ten. With this image intensifier, it is possible to image simultaneously complex objects containing various different X-ray transmission from paper, water or plastic to heavy metals. This high sensitivity intensifier, operated at lower X-ray exposure, causes less degradation of scintillator materials and less colorization of output screen glass, and thus helps achieve a longer lifetime. This color scintillator based image intensifier is being introduced for X-ray inspection in various fields

  17. Fabrication and properties of La2-xGdxHf2O7 transparent ceramics

    International Nuclear Information System (INIS)

    Wang, Zhengjuan; Zhou, Guohong; Zhang, Fang; Qin, Xianpeng; Ai, Jianping; Wang, Shiwei

    2016-01-01

    La 2-x Gd x Hf 2 O 7 (x=0–2.0) transparent ceramics were fabricated through vacuum sintering from nano-powders synthesized by a simple combustion method. The phase composition of the powders and final ceramics, the in-line transmittance, microstructures and density of the ceramics were investigated. With the increasing of Gd content, the ceramics maintained the cubic pyrochlore structure, and the lattice parameters decreased, whilst the densities increased linearly. All the ceramics were transparent. The highest in-line transmittance was 76.1% at 800 nm (x=1.2). With high density (7.91–8.88 g/cm 3 ) and effective atomic number, some of the La 2-x Gd x Hf 2 O 7 (x=0–2.0) transparent ceramics are promising candidates for scintillator hosts. - Highlights: • A new series of La 2-x Gd x Hf 2 O 7 transparent ceramics were fabricated by vacuum sintering using combustion-synthesized powders. • All the ceramics are transparent and the in-line transmittance can reach to 76.1% at 800 nm when x=1.2. • The Gd content has effects on the crystal structure, in-line transmittance, microstructures and densities of the ceramics. • With high density (7.91~8.88 g/cm3) and effective atomic number, some of the La2-xGdxHf2O7 transparent ceramics are promising candidates for scintillator hosts.

  18. Optimization of the wavelength shifter ratio in a polystyrene based plastic scintillator through energy spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye Won; Kim, Myung Soo; Yoo, Hyun Jun; Lee, Dae Hee; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Moon, Myung Kook [Neutron Instrumentation Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    The scintillation efficiency of the polystyrene based plastic scintillator depends on the ratio of the wavelength shifters, organic fluors (PPO and POPOP). Thus, 24 samples of the plastic scintillator were fabricated in order to find out the optimum ratio of the wavelength shifters in the plastic scintillator. The fabricated plastic scintillators were trimmed through a cutting and polishing process. They were used in gamma energy spectrum measurement with the {sup 137}Cs emitting monoenergy photon with 662 keV for the comparison of the scintillation efficiency. As a result, it was found out that the scintillator sample with 1.00 g of PPO (2,5-Diphenyloxazole) and 0.50 g of POPOP (1,4-Bis(5-phnyl-2oxidazolyl)benzene) dissolved in 100 g of styrene solution has the optimum ratio in terms of the light yield of the polystyrene based plastic scintillator.

  19. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    Science.gov (United States)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  20. Upconverting nanoparticles for optimizing scintillator based detection systems

    Science.gov (United States)

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  1. Acid-base properties of ceramic powders

    International Nuclear Information System (INIS)

    Bleier, A.

    1983-01-01

    This chapter addresses the fundamental aspects of potentiometric titration, electrokinetics, and conductometric titration in evaluating surface and interfacial thermodynamic behavior. Emphasizes the characterization of aqueous systems which are pertinent to the processing of ceramic powders. Attempts to clarify the role of novel analytical techniques that will increasingly contribute to the advanced characterization of ceramic powders. Evaluates recently developed acid-base and complexation concepts and their applications to the processing of oxide ceramics

  2. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    Science.gov (United States)

    Bartle, C. M.; Edgar, A.; Dixie, L.; Varoy, C.; Piltz, R.; Buchanan, S.; Rutherford, K.

    2011-09-01

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a 10B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  3. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Bartle, C.M., E-mail: m.bartle@gns.cri.nz [National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5040 (New Zealand); Edgar, A.; Dixie, L.; Varoy, C. [School of Chemistry and Physics, Victoria University of Wellington, Wellington 6140 (New Zealand); Piltz, R. [Bragg Institute, ANSTO, PMB 1, Menai NSW 2234 (Australia); Buchanan, S.; Rutherford, K. [School of Chemistry and Physics, Victoria University of Wellington, Wellington 6140 (New Zealand)

    2011-09-21

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a {sup 10}B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  4. Temperature quenching in LAB based liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, A.; Zuber, K. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); Hans, S.; Yeh, M. [Brookhaven National Laboratory, Chemistry Devision, Upton, NY (United States); Junghans, A.R.; Koegler, T.; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Krosigk, B. v. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); University of British Columbia, Department of Physics and Astronomy, Vancouver, BC (Canada); Lozza, V. [Technische Universitaet Dresden, Institute for Nuclear- and Particle Physics, Dresden (Germany); Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa (Portugal)

    2018-01-15

    The effect of temperature changes on the light output of LAB based liquid scintillator is investigated in a range from -5 to 30 C with α-particles and electrons in a small scale setup. Two PMTs observe the scintillator liquid inside a cylindrically shaped aluminum cuvette that is heated or cooled and the temperature dependent PMT sensitivity is monitored and corrected. The α-emitting isotopes in dissolved radon gas and in natural Samarium (bound to a LAB solution) excite the liquid scintillator mixtures and changes in light output with temperature variation are observed by fitting light output spectra. Furthermore, also changes in light output by compton electrons, which are generated from external calibration γ-ray sources, is analysed with varying temperature. Assuming a linear behaviour, a combined negative temperature coefficient of (-0.29 ± 0.01)%/ C is found. Considering hints for a particle type dependency, electrons show (-0.17 ± 0.02)%/ C, whereas the temperature dependency seems stronger for α-particles, with (-0.35 ± 0.03)%/ C. Due to a high sampling rate, a pulse shape analysis can be performed and shows an enhanced slow decay component at lower temperatures, pointing to reduced non-radiative triplet state de-excitations. (orig.)

  5. GNSS-based Observations and Simulations of Spectral Scintillation Indices in the Arctic Ionosphere

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Hoeg, Per; von Benzon, Hans-Henrik

    During disturbed times, ionospheric scintillations can be severe and adversely impact satellite-based positioning and radio transmissions. The scintillation occurs in the amplitude, phase, polarization, and angle of arrival of the signal. Precise observation, classification, modeling, forecasting...

  6. Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Yuki, E-mail: f.yuki@mail.tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kawaguchi, Noriaki [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research and Development Division, Tokuyama., Co. Ltd., ICR-Building, Minamiyoshinari, Aoba-ku, Sendai (Japan); Ishizu, Sumito [Research and Development Division, Tokuyama., Co. Ltd., ICR-Building, Minamiyoshinari, Aoba-ku, Sendai (Japan); Uchiyama, Koro; Mori, Kuniyoshi [Hamamatsu Photonics K.K., 325-6, Sunayama-cho, Naka-ku, Hamamatsu, Shizuoka 430-8587 (Japan); Kitano, Ken [Vacuum and Optical Instruments, 2-18-18 Shimomaruko, Ota, Tokyo 146-0092 (Japan); Nikl, Martin [Institute of Physics ASCR, Cukrovarnicka 10, Prague 6, 162-53 (Czech Republic); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-04-01

    To design new scintillating materials, it is very important to understand detailed information about the events, which occurred during the excitation and emission processes under the ionizing radiation excitation. We developed a streak camera system equipped with picosecond pulsed X-ray source to observe time- and wavelength-resolved scintillation events. In this report, we test the performance of this new system using several types of scintillators including bulk oxide/halide crystals, transparent ceramics, plastics and powders. For all samples, the results were consistent with those reported previously. The results demonstrated that the developed system is suitable for evaluation of the scintillation properties.

  7. TH-CD-207B-06: Swank Factor of Segmented Scintillators in Multi-Slice CT Detectors: Pulse Height Spectra and Light Escape

    Energy Technology Data Exchange (ETDEWEB)

    Howansky, A; Peng, B; Lubinsky, A; Zhao, W [Stony Brook University, Stony Brook, NY (United States)

    2016-06-15

    Purpose: Pulse height spectra (PHS) have been used to determine the Swank factor of a scintillator by measuring fluctuations in its light output per x-ray interaction. The Swank factor and x-ray quantum efficiency of a scintillator define the upper limit to its imaging performance, i.e. DQE(0). The Swank factor below the K-edge is dominated by optical properties, i.e. variations in light escape efficiency from different depths of interaction, denoted e(z). These variations can be optimized to improve tradeoffs in x-ray absorption, light yield, and spatial resolution. This work develops a quantitative model for interpreting measured PHS, and estimating e(z) on an absolute scale. The method is used to investigate segmented ceramic GOS scintillators used in multi-slice CT detectors. Methods: PHS of a ceramic GOS plate (1 mm thickness) and segmented GOS array (1.4 mm thick) were measured at 46 keV. Signal and noise propagation through x-ray conversion gain, light escape, detection by a photomultiplier tube and dynode amplification were modeled using a cascade of stochastic gain stages. PHS were calculated with these expressions and compared to measurements. Light escape parameters were varied until modeled PHS agreed with measurements. The resulting estimates of e(z) were used to calculate PHS without measurement noise to determine the inherent Swank factor. Results: The variation in e(z) was 67.2–89.7% in the plate and 40.2–70.8% in the segmented sample, corresponding to conversion gains of 28.6–38.1 keV{sup −1} and 17.1–30.1 keV{sup −1}, respectively. The inherent Swank factors of the plate and segmented sample were 0.99 and 0.95, respectively. Conclusion: The high light escape efficiency in the ceramic GOS samples yields high Swank factors and DQE(0) in CT applications. The PHS model allows the intrinsic optical properties of scintillators to be deduced from PHS measurements, thus it provides new insights for evaluating the imaging performance of

  8. Scintillating plate calorimeter optical design

    International Nuclear Information System (INIS)

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  9. Polycrystalline scintillators for large area detectors in HEP experiments

    Science.gov (United States)

    Dosovitskiy, G.; Fedorov, A.; Karpyuk, P.; Kuznetsova, D.; Mikhlin, A.; Kozlov, D.; Dosovitskiy, A.; Korjik, M.

    2017-06-01

    After significant increase of the accelerator luminosity throughout the High Luminosity phase of LHC, charged hadrons and neutrons with fluences higher than 1014 p/cm2 per year in the largest pseudo-rapidity regions of the detectors will cause increased radiation damage of materials. Increasing activation of the experimental equipment will make periodical maintenance and replacement of detector components difficult. Therefore, the selected materials for new detectors should be tolerant to radiation damage. Y3Al5O12:Ce (YAG:Ce) crystal was found to be one of the most radiation hard scintillation materials. However, production of YAG:Ce in a single crystalline form is costly, because crystal growth is performed at temperature near 1900°C with a very low rate of transformation of a raw material into a crystal. We propose translucent YAG:Ce ceramics as an alternative cheaper solution. Ceramic samples were sintered up to density ~98% of the theoretical value and were translucent. The samples have demonstrated light yield of 2200 phot./MeV under 662 keV γ-quanta, which gives the expected response to minimum ionizing particle around 3000 phot. for 2 mm thick plate. Scintillation light yield, registered under surface layer excitation with α-particles, was 50-70% higher than for the reference single crystal YAG:Ce.

  10. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M. [Biomedical and X-ray Physics, Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm 10691 (Sweden)

    2016-06-15

    Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.

  11. Measurement of the time resolution of small SiPM-based scintillation counters

    Science.gov (United States)

    Kravchenko, E. A.; Porosev, V. V.; Savinov, G. A.

    2017-12-01

    In this research, we evaluated the timing resolution of SiPM-based scintillation detector on a 1-GeV electron beam "extracted" from VEPP-4M. We tested small scintillation crystals of pure CsI, YAP, LYSO, and LFS-3 with HAMAMATSU S10362-33-025C and S13360-3050CS. The CsI scintillator together with HAMAMATSU S13360-3050CS demonstrated the best results. Nevertheless, the achieved time resolution of ~80 ps (RMS) relates mainly to the photodetector itself. It makes the silicon photomultiplier an attractive candidate to replace other devices in applications where sub-nanosecond accuracy is required.

  12. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  13. A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2017-06-01

    Full Text Available A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply.

  14. Positron annihilation study on ZnO-based scintillating glasses

    Science.gov (United States)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  15. Plastic scintillator

    International Nuclear Information System (INIS)

    Andreeshchev, E.A.; Kilin, S.F.; Kavyrzina, K.A.

    1978-01-01

    A plastic scintillator for ionizing radiation detectors with high time resolution is suggested. To decrease the scintillation pulse width and to maintain a high light yield, the 4 1 , 4 5 -dibromo-2 1 , 2 5 , 5 1 , 5 5 -tetramethyl-n-quinquiphenyl (Br 2 Me 4 Ph) in combination with n-terphenyl (Ph 3 ) or 2, 5-diphenyloxadiazol-1, 3, 4 (PPD) is used as a luminescent addition. Taking into consideration the results of a special study, it is shown, that the following ratio of ingradients is the optimum one: 3-4 mass% Ph 3 or 4-7 mas% PPD + 2-5 mass% Br 2 Me 4 Ph + + polymeric base. The suggested scintillator on the basis of polystyrene has the light yield of 0.23-0.26 arbitrary units and the scintillation pulse duration at half-height is 0.74-0.84 ns

  16. A theory of timing in scintillation counters based on maximum likelihood estimation

    International Nuclear Information System (INIS)

    Tomitani, Takehiro

    1982-01-01

    A theory of timing in scintillation counters based on the maximum likelihood estimation is presented. An optimum filter that minimizes the variance of timing is described. A simple formula to estimate the variance of timing is presented as a function of photoelectron number, scintillation decay constant and the single electron transit time spread in the photomultiplier. The present method was compared with the theory by E. Gatti and V. Svelto. The proposed method was applied to two simple models and rough estimations of potential time resolution of several scintillators are given. The proposed method is applicable to the timing in Cerenkov counters and semiconductor detectors as well. (author)

  17. High-symmetry organic scintillator systems

    Science.gov (United States)

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  18. High-symmetry organic scintillator systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.

    2018-03-13

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  19. High-symmetry organic scintillator systems

    Science.gov (United States)

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  20. Optimization of mass of plastic scintillator film for flow-cell based tritium monitoring: a Monte Carlo study

    International Nuclear Information System (INIS)

    Roy, Arup Singha; Palani Selvam, T.; Raman, Anand; Raja, V.; Chaudhury, Probal

    2014-01-01

    Over the years, various types of tritium-in-air monitors have been designed and developed based on different principles. Ionization chamber, proportional counter and scintillation detector systems are few among them. A plastic scintillator based, flow-cell type online tritium-in-air monitoring system was developed for online monitoring of tritium in air. The value of the scintillator mass inside the cell-volume, which maximizes the response of the detector system, should be obtained to get maximum efficiency. The present study is aimed to optimize the amount of mass of the plastic scintillator film for the flow-cell based tritium monitoring instrument so that maximum efficiency is achieved. The Monte Carlo based EGSnrc code system has been used for this purpose

  1. Positron annihilation study on ZnO-based scintillating glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nie Jiaxiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Yu Runsheng; Wang Baoyi [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Ou Yuwen [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Zhong Yurong [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Xia Fang [School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Chen Guorong, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China)

    2009-04-15

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO{sub 2}-45ZnO-xBaF{sub 2} (x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components {tau}{sub 1}, {tau}{sub 2}, and {tau}{sub 3} are {approx}0.23 ns, {approx}0.45 ns, and {approx}1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF{sub 2} concentration from 5 mol% to 10 mol%, then decreases as BaF{sub 2} further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF{sub 2} contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  2. Development of a large area thermal neutron detector based on a scintillator

    International Nuclear Information System (INIS)

    Engels, Ralf

    2012-01-01

    In the present work, the development and construction of a detector prototype based on wavelength shifting fiber in combination with a scintillator has been investigated and optimized. This development aims at an alternative for large area neutron detectors based on "3He detectors, which was the main construction in the past. After the study of the components and assemblies, such as: the scintillator, the wavelength-shifting-fibers and available photomultiplier tubes, the construction of the first prototype module begun. The neutron converter was selected as a "6LiF/ZnS scintillator, which produces a big light yield per absorbed neutron. The prototype itself is square and has an edge length of 30 cm in combination with two orthogonal layers of crossed wavelength-shifting-fibers. The top fiber layer, which is closer to the "6LiF/ZnS top scintillator produces the x-coordinates and the lower layer produces the y-coordinates for each event. In the prototype, MSJ-fibers from the company Kuraray were used with 1 mm diameter and spacing in the top layer of 1.5 mm and 1 mm in the lower layer. Due to the orthogonal arrangement of the wires in the two layers, one may identify where the neutron was absorbed in the scintillator and produced the light yield. In order to reduce the light loss of the absorbed photons inside the fibers, a bending radius of greater than 20 mm was used and achieved by warming up the fibers to 80 C during the bending process. The increased temperature reduces the crack formation in the fibers which increases the light loss. At this time it is expected that a photomultiplier from Hamamatsu with 256 individual pixels for readout will be used. This H9500 flat panel photomultiplier has the advantage of readout of all fibers of the prototype in one photomultiplier housing. In combination with integrated readout electronics one can minimize the homogeneity/gain differences of the photocathode pixels, the different light loss in each fiber, and the gain

  3. A SiPM-based scintillator prototype for the upgrade of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Johannes; Bretz, Thomas; Hebbeker, Thomas; Kemp, Julian; Meissner, Rebecca; Middendorf, Lukas; Niggemann, Tim; Peters, Christine [III. Physikalisches Institut A, RWTH Aachen University (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    Plastic scintillator-based detectors are simple and yet powerful instruments, commonly used in particle physics experiments. These detectors are also planned to be installed at the Pierre Auger Observatory as part of the upgrade called AugerPrime. Here, a single detector module will consist of several large-sized scintillator bars. Embedded wavelength shifting fibres read out the scintillation light and are coupled to a single photo-sensitive device. We investigate the application of silicon photomultipliers (SiPMs) in this scope, which benefits from high photon detection efficiency and stability. We show the performance of a SiPM-based prototype device installed in the 2 m{sup 2} detector ASCII - an early prototype of the scintillating detector planned for AugerPrime. We focus on the electronics, the optical coupling and the in situ calibration. As ASCII has been operating with SiPMs for several months now, we also highlight first high-energy events seen in coincidence with the Surface Detector of the Pierre Auger Observatory.

  4. Large surface scintillators as base of impact point detectors and their application in Space Weather

    Science.gov (United States)

    Ayuso, Sindulfo; Medina, José; Gómez-Herrero, Raul; José Blanco, Juan; García-Tejedor, Ignacio; García-Población, Oscar; Díaz-Romeral, Gonzalo

    2016-04-01

    The use of a pile of two 100 cm x 100 cm x 5 cm BC-400 organic scintillators is proposed as ground-based cosmic ray detector able to provide directional information on the incident muons. The challenge is to get in real time the muon impact point on the scintillator and its arrival direction using as few Photomultiplier Tubes (PMTs) as possible. The instrument is based on the dependence of attenuation of light with the traversed distance in each scintillator. For the time being, four photomultiplier tubes gather the light through the lateral faces (100 cm x 5 cm) of the scintillator. Several experiments have already been carried out. The results show how data contain information about the muon trajectory through the scintillator. This information can be extracted using the pulse heights collected by the PMTs working in coincidence mode. Reliability and accuracy of results strongly depend on the number of PMTs used and mainly on their appropriate geometrical arrangement with regard to the scintillator. In order to determine the optimal position and the minimum number of PMTs required, a Montecarlo simulation code has been developed. Preliminary experimental and simulation results are presented and the potential of the system for space weather monitoring is discussed.

  5. Luminescence properties of the Mg co–doped Ce:SrHfO_3 ceramics prepared by the Spark Plasma Sintering Method

    International Nuclear Information System (INIS)

    Chiba, Hiroyuki; Kurosawa, Shunsuke; Harata, Koichi; Murakami, Rikito; Yamaji, Akihiro; Ohashi, Yuji; Pejchal, Jan; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira

    2016-01-01

    1300 or 1400 °C pre–sintered Al/Ce/Mg:SrHfO_3 and Al/Ce:SrHfO_3 ceramics were prepared by the Spark Plasma Sintering (SPS) in order to search for a new scintillation material with a high–effective atomic number(Z_e_f_f) and good light output. The SrHfO_3 has a high Z_e_f_f of 60, and high gamma–ray detection efficiency is expected. Meanwhile it has a high melting point of over 2500 °C, and single crystal is hard to be grown. On the other hand, high melting materials can be prepared as ceramics, and the SPS method is a simple process to fabricate the ceramics within a few hours. Thus, we prepared the samples using the SPS method, and their optical and scintillation properties were investigated. We found that Al/Ce/Mg:SrHfO_3 and Al/Ce:SrHfO_3 ceramics had an emission wavelength at around 400 nm originating from 5d–4f transition of Ce"3"+. Moreover, Al/Ce/Mg:SrHfO_3 pre-sintered at a temperature of 1400 °C had a light output of approximately 5,000 ph/MeV. In this paper, the light output of Mg-co-doped samples was improved compared with the Mg-free ones. The light output also depends on the pre-sintering temperature. - Highlights: • Luminescence Properties of Al/Ce/Mg:SrHfO_3 ceramics scintillator was investigated. • These ceramics were prepared by the Spark Plasma Sintering Method. • Light output of the Al/Ce/Mg:SrHfO_3 ceramics was approximately 5,000 ph/MeV.

  6. Cherenkov and scintillation light separation in organic liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D. [University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-12-15

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ{sub r} = 0.72 ± 0.33 ns. (orig.)

  7. Cherenkov and scintillation light separation in organic liquid scintillators

    International Nuclear Information System (INIS)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D.; Yeh, M.

    2017-01-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns. (orig.)

  8. Regolith Properties of Asteroid 21 Lutetia Constrained by Combined Data Sets of the MIRO and VIRTIS Instruments During the Rosetta Spacecraft Flyby

    Science.gov (United States)

    Keihm, S.; Tosi, F.; Kamp, L.; Capaccioni, F.; Grassi, D.; Gulkis, S.; Coradini, A.

    2011-01-01

    During the July 10, 2010 flyby of Asteroid 21 Lutetia by the Rosetta spacecraft, maps of surface and subsurface temperatures were derived from the VIRTIS and MIRO instruments respectively. Both data sets indicated a porous surface layer with an extremely low, lunar-like thermal inertia. However, comparisons of the VIRTIS-measured and MIRO-modelled surface temperatures revealed offsets of 10- 30 K, indicative of self-heating or "beaming" effects that were not taken into account in the MIRO thermal modeling. Inclusion of a model of hemispherical craters at all scales 1 cm and larger, covering 50% of the surface, removes most of the offsets in the VIRTIS, MIRO surface temperature determinations.

  9. An Efficient Digital Pulse Shape Discrimination Technique for Scintillation Detectors Based on FPGA

    International Nuclear Information System (INIS)

    Kamel, M.S.

    2014-01-01

    Different techniques for pulse discrimination (PSD) of the scintillation pulses have been developed. The PSD of scintillation pulese can been used in several applications as Positron Emission Topography (PET) system. Each technique analyzes the resulting pulses from the absorption of radiation in the scintillation pulses were filtered and digitized then it is captured using DAQ, and it sent to the host computer for processing. The spatial resolution of images that generated in PET system can be improved by applying the proposed PSD. In this thesis various digital PSD techniques are proposed to discriminate the scintillation pulses. These techniques are based on discrete sine transform (DST). discrete cosine transform (DCT). Discrete hartley transform (DHT), Discrete Goertzel transform (DGT),and principal component analysis (PCA). Then the output coefficients of the discrete transforms are classified using one of the following classifiers T-test,tuned, or support vector machine (SVM).

  10. Fabrication and properties of La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengjuan [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Guohong, E-mail: sic_zhough@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Fang; Qin, Xianpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ai, Jianping [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Shiwei, E-mail: swwang51@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-01-15

    La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} (x=0–2.0) transparent ceramics were fabricated through vacuum sintering from nano-powders synthesized by a simple combustion method. The phase composition of the powders and final ceramics, the in-line transmittance, microstructures and density of the ceramics were investigated. With the increasing of Gd content, the ceramics maintained the cubic pyrochlore structure, and the lattice parameters decreased, whilst the densities increased linearly. All the ceramics were transparent. The highest in-line transmittance was 76.1% at 800 nm (x=1.2). With high density (7.91–8.88 g/cm{sup 3}) and effective atomic number, some of the La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} (x=0–2.0) transparent ceramics are promising candidates for scintillator hosts. - Highlights: • A new series of La{sub 2-x}Gd{sub x}Hf{sub 2}O{sub 7} transparent ceramics were fabricated by vacuum sintering using combustion-synthesized powders. • All the ceramics are transparent and the in-line transmittance can reach to 76.1% at 800 nm when x=1.2. • The Gd content has effects on the crystal structure, in-line transmittance, microstructures and densities of the ceramics. • With high density (7.91~8.88 g/cm3) and effective atomic number, some of the La2-xGdxHf2O7 transparent ceramics are promising candidates for scintillator hosts.

  11. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    International Nuclear Information System (INIS)

    Santiago, L.M.; Bagán, H.; Tarancón, A.; Garcia, J.F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3 H, 51.2% for 14 C, 180.6% for 90 Sr/ 90 Y and 76.7% for 241 Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition

  12. Set of counts by scintillations for atmospheric samplings; Ensemble de comptages par scintillations pour prelevements atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Appriou, D.; Doury, A.

    1962-07-01

    The author reports the development of a scintillation-based counting assembly with the following characteristics: a photo-multiplier with a wide photo-cathode, a thin plastic scintillator for the counting of beta + alpha (and possibility of mounting an alpha scintillator), a relatively small own motion with respect to activities to be counted, a weakly varying efficiency. The authors discuss the counting objective, present equipment tests (counter, proportional amplifier and pre-amplifier, input drawer). They describe the apparatus operation, discuss the selection of scintillators, report the study of the own movement (electron-based background noise, total background noise, background noise reduction), discuss counts (influence of the external source, sensitivity to alpha radiations, counting homogeneity, minimum detectable activity) and efficiencies.

  13. Two-coordinate scintillation hodoscope based on hodoscopical photomultipliers

    International Nuclear Information System (INIS)

    Vishnevskij, N.K.; Ronzhin, A.I.; Semenov, V.K.; Khachaturov, B.A.

    1982-01-01

    The results of investigations of scintillation hodoscope on the basis of hodoscopic photomultipliers (HPM) for simultaneous measuring two coordinates (x and y) of a particle. The hodoscope consists of scintillation electrodes bent at the angle of 135 deg C and made an angle of 90 deg with each other. For measuring X-coordinate the half part of the photocathode is used, the second part is used for measuring Y-coordinate. HPM provides for simultaneous measuring two coordinates of a particle in the working region of 90 mm at using the photocathode with 180 mm long working region along the photocathode. The discrete separation of neighbouring positions in relation to the photocathode is possible at the minimum size of scintillation electrode being equil to >= 2 mm. For suppression of multiparticle background at the information output from the hodoscope as well as for simultaneous observation at the amplitude analyser of spectra of reference signals or X and Y profiles a fast processor cicuit has been developed. High detecting efficiency (about 90%) and low background level have been observed at the processor operation where the presence only of one signal in each of X- or Y projections is required. The two-coordinate hodoscope based on HPM due to its compactness and mobility may be used for expedient and precision beam guidance onto a target, its position control, shape and dimensions directly in the region of a polarized target location

  14. Effects of Starch on Properties of Alumina-based Ceramic Cores

    Directory of Open Access Journals (Sweden)

    LI Fengguang

    2016-12-01

    Full Text Available In order to improve the poor leachability of alumina-based ceramic cores, different amount of starch was added to the specimens as pore former. Alumina-based ceramic cores were prepared by hot injection technology using corundum powder as base material, paraffin wax and beeswax as plasticizer, silica powder and magnesium oxide powder as mineralizing agent, wherein the parameters of the hot injection process were as follows:temperature of the slurry was 90℃, hot injection pressure was 0.5 MPa and holding time was 25 s. The effects of starch content on the properties of alumina-based ceramic cores were studied and discussed. The results indicate that during sintering period, the loss of starch in the specimens makes porosity of the alumina-based ceramic cores increase. When starch content increases, the room-temperature flexural strength of the ceramic cores reduces and the apparent porosity increases; the volatile solvent increases and the bulk density decreases. After being sintered at 1560℃ for 2.5 h, room-temperature flexural strength of the alumina-based ceramic cores with starch content of 8%(mass fraction is 24.8 MPa, apparent porosity is 47.98% when the volatile solvent is 1.92 g/h and bulk density is 1.88 g/cm3, the complex properties are optimal.

  15. Study of micro pixel photon counters for a high granularity scintillator-based hadron calorimeter

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Eggemann, A.; Garutti, E.

    2007-11-01

    A new Geiger mode avalanche photodiode, the Micro Pixel Photon Counter (MPPC), was recently released by Hamamatsu. It has a high photo-detection efficiency in the 420 nm spectral region. This product can represent an elegant candidate for the design of a high granularity scintillator based hadron calorimeter for the International Linear Collider. In fact, the direct readout of the blue scintillation photons with a MPPC is a feasible techological solution. The readout of a plastic scintillator by a MPPC, both mediated by the traditional wavelength shifting fiber, and directly coupled, has been systematically studied. (orig.)

  16. Scintillation response of organic and inorganic scintillators

    CERN Document Server

    Papadopoulos, L M

    1999-01-01

    A method to evaluate the scintillation response of organic and inorganic scintillators to different heavy ionizing particles is suggested. A function describing the rate of the energy consumed as fluorescence emission is derived, i.e., the differential response with respect to time. This function is then integrated for each ion and scintillator (anthracene, stilbene and CsI(Tl)) to determine scintillation response. The resulting scintillation responses are compared to the previously reported measured responses. Agreement to within 2.5% is observed when these data are normalized to each other. In addition, conclusions regarding the quenching parameter kB dependence on the type of the particle and the computed values of kB for certain ions are included. (author)

  17. Next Generation Neutron Scintillators Based On Semiconductor Nanostructures

    International Nuclear Information System (INIS)

    Wang, Cai-Lin

    2008-01-01

    The results reported here successfully demonstrate the technical feasibility of ZnS QDs/ 6 LiF/polymer composites as thermal neutron scintillators. PartTec has obtained stable ZnS QDs with a quantum yield of 17% induced by UV light, and light pulse decay lifetimes of 10-30 ns induced by both UV and neutrons. These lifetime values are much shorter than those of commercial ZnS microparticle and 6 Li-glass scintillators. Clear pulse height peaks induced by neutron irradiation were seen for PartTec's ZnS nanocomposites. By adjusting the concentrations, particle size and degree of dispersion of ZnS QD/ 6 LiF in a PVA matrix, the light absorption and light yield of films at 420-440 nm can be optimized. PartTec's novel scintillators will replace traditional 6 Li-glass and ZnS/ 6 LiF:Ag scintillators if the PL quantum yield can be improved above 30%, and/or increase the transparency of present nanoscintillators. Time and resources inhibited PartTec's total success in Phase I. For example, bulk doping preparations of ZnS QDs with Ag + , Eu 3+ or Ce 3+ QDs was impractical given those constraints, nor did they permit PartTec to measure systematically the change of PL decay lifetimes in different samples. PartTec will pursue these studies in the current proposal, as well as develop a better capping and dopant along with developing brighter and faster ZnS QD scintillators.

  18. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  19. Scintillator Based Energetic Ion Loss Diagnostic for the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Darrow, D.S.

    2007-01-01

    A scintillator based energetic ion loss detector has been built and installed on the National Spherical Torus Experiment (NSTX) to measure the loss of neutral beam ions. The detector is able to resolve the pitch angle and gyroradius of the lost energetic ions. It has a wide acceptance range in pitch angle and energy, and is able to resolve the full, one-half, and one-third energy components of the 80 keV D neutral beams up to the maximum toroidal magnetic field of NSTX. Multiple Faraday cups have been embedded behind the scintillator to allow easy absolute calibration of the diagnostic and to measure the energetic ion loss to several ranges of pitch angle with good time resolution. Several small, vacuum compatible lamps allow simple calibration of the scintillator position within the field of view of the diagnostic's video camera

  20. Scintillator Based Energetic Ion Loss Diagnostic for the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Darrow

    2007-07-02

    A scintillator based energetic ion loss detector has been built and installed on the National Spherical Torus Experiment (NSTX) to measure the loss of neutral beam ions. The detector is able to resolve the pitch angle and gyroradius of the lost energetic ions. It has a wide acceptance range in pitch angle and energy, and is able to resolve the full, one-half, and one-third energy components of the 80 keV D neutral beams up to the maximum toroidal magnetic field of NSTX. Multiple Faraday cups have been embedded behind the scintillator to allow easy absolute calibration of the diagnostic and to measure the energetic ion loss to several ranges of pitch angle with good time resolution. Several small, vacuum compatible lamps allow simple calibration of the scintillator position within the field of view of the diagnostic's video camera.

  1. Scintillator structures

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1978-01-01

    Distributed phosphor scintillator structures providing superior optical coupling to photoelectrically responsive devices together with methods for fabricating said scintillator structures are disclosed. In accordance with one embodiment of the invention relating to scintillator structures, the phosphor is distributed in a 'layered' fashion with certain layers being optically transparent so that the visible wavelength output of the scintillator is better directed to detecting devices. In accordance with another embodiment of the invention relating to scintillator structures, the phosphor is distributed throughout a transparent matrix in a continuous fashion whereby emitted light is more readily transmitted to a photodetector. Methods for fabricating said distributed phosphor scintillator structures are also disclosed. (Auth.)

  2. Electrostatic micromotor based on ferroelectric ceramics

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2004-11-01

    A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.

  3. Novel scintillating material 2-(4-styrylphenyl)benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators.

    Science.gov (United States)

    Wieczorek, Anna; Dulski, Kamil; Niedźwiecki, Szymon; Alfs, Dominika; Białas, Piotr; Curceanu, Catalina; Czerwiński, Eryk; Danel, Andrzej; Gajos, Aleksander; Głowacz, Bartosz; Gorgol, Marek; Hiesmayr, Beatrix; Jasińska, Bożena; Kacprzak, Krzysztof; Kamińska, Daria; Kapłon, Łukasz; Kochanowski, Andrzej; Korcyl, Grzegorz; Kowalski, Paweł; Kozik, Tomasz; Krzemień, Wojciech; Kubicz, Ewelina; Kucharek, Mateusz; Mohammed, Muhsin; Pawlik-Niedźwiecka, Monika; Pałka, Marek; Raczyński, Lech; Rudy, Zbigniew; Rundel, Oleksandr; Sharma, Neha G; Silarski, Michał; Uchacz, Tomasz; Wiślicki, Wojciech; Zgardzińska, Bożena; Zieliński, Marcin; Moskal, Paweł

    2017-01-01

    A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm.

  4. Crystallization behaviors and seal application of basalt based glass-ceramics

    Science.gov (United States)

    Ateş, A.; Önen, U.; Ercenk, E.; Yılmaz, Ş.

    2017-02-01

    Basalt based glass-ceramics were prepared by conventional melt-quenching technique and subsequently converted to glass-ceramics by a controlled nucleation and crystallization process. Glass materials were obtained by melt at 1500°C and quenched in cold water. The powder materials were made by milling and spin coating. The powders were applied on the 430 stainless steel interconnector material, and heat treatment was carried out. The interface characteristics between the glass-ceramic layer and interconnector were investigated by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The results showed that the basalt base glass-ceramic sealant material exhibited promising properties to use for SOFC.

  5. Research Progress on Preparation for Biomass-based SiC Ceramic

    Directory of Open Access Journals (Sweden)

    CUI He-shuai

    2017-08-01

    Full Text Available Silicon carbide (SiC ceramics prepared by the conventional process has excellent properties and wide application prospects, but the increased cost of high-temperature preparation process restricts its further development. In contrast, the abundant porous structure of biomass makes itself to be ideal replacement of SiC ceramic prepared at low temperature. This paper reviewed the structure characteristics, preparation methods, pyrolysis mechanism and influence parameters of biomass-based SiC ceramic, and eventually explored the current problems and development trends of the pretreatment of carbon source and silicon source, the pyrolysis process and the application research on the preparation for biomass-based SiC ceramic.

  6. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  7. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  8. Modern trends in engineering ceramics: review of transformation toughening in zirconia based ceramics

    International Nuclear Information System (INIS)

    Khan, A.A.

    1998-01-01

    The investigation of zirconia has continued to attract the interest of ever increasing number of scientists and solid evidence of commercial applications for the engineering ceramic is now available. To use zirconia to its full potential, the properties of the oxide have been modified extensively by the addition of cubic stabilizing oxides. These can be added in amounts sufficient to form a partially stabilized zirconia (PSZ) or to form a fully stabilized zirconia, which has a cubic structure at room temperature. The addition of varying amounts of cubic oxides, particularly MgO, CaO, Y sub 2 O sub 3, has allowed the development of novel and innovative ceramic materials. In this article an overview of the recent advances in zirconia based engineering materials is presented. It is shown that intelligent control of the composition and microstructure can lead the the production of extremely though ceramic materials, a property which is generally thought to be the major weak point of ceramics vis a vis other class of materials. (author)

  9. Correct liquid scintillation counting of steroids and glycosides in RIA samples: a comparison of xylene-based, dioxane-based and colloidal counting systems. Chapter 14

    International Nuclear Information System (INIS)

    Spolders, H.

    1977-01-01

    In RIA, the following parameters are important for accurate liquid scintillation counting. (1) Absence of chemiluminescence. (2) Stability of count rate. (3) Dissolving properties for the sample. For samples with varying colours, a quench correction must be applied. For any type of accurate quench correction, a homogeneous sample is necessary. This can be obtained if proteins and the buffer can be dissolved completely in the scintillator solution. In this paper, these criteria are compared in xylene-based, dioxane-based and colloidal scintillation solutions for either bound or free antigens of different polarity. The labelling radioisotope used was 3 H. Using colloidal scintillators with plasma and buffer samples, phasing or sedimentation of salt or proteins sometimes occurs. The influence of sedimentation or phasing on count rate stability and correct quench correction is illustrated by varying the ratio between the scintillator solution and a RIA sample containing a semi-polar steroid aldosterone. (author)

  10. A new plastic scintillator with large Stokes shift

    International Nuclear Information System (INIS)

    Destruel, P.; Taufer, M.

    1989-01-01

    We have developed a new plastic scintillator with the novel characteristic of highly localized light emission; scintillation and wavelength shifting take place within a few tens of micrometers of the primary ionization. The new scintillator consists of a scintillating polymer base [polyvinyl toluene (PVT) or polystyrene (PS)] doped with a single wavelength shifter, 1-phenyl-3-mesityl-2-pyrazoline (PMP), which has an exceptionally large Stokes shift and therefore a comparatively small self-absorption of its emitted light. In other characteristics (e.g. scintillation efficiency and decay time) the performance of the new scintillator is similar to a good quality commercial plastic scintillator such as NE110. (orig.)

  11. Progress in the development of LuAlO3 based scintillators

    CERN Document Server

    Belsky, A; Lecoq, P; Dujardin, C; Garnier, N; Canibano, H; Pédrini, C; Petrosian, A

    2000-01-01

    LuAlO3:Ce3+ (LuAP) and LuxY1-xAlO3:Ce3+ (LuYAP) crystals are the promote scintillation materials for Positron Emission Tomography. Actual study of these scintillators develops in the tree directions: (i) growth of large size LuAP crystals with stable properties, (ii) relationship between composition of LuYAP crystals and scintillation properties, and (iii) scintillation mechanisms in lutetium compounds. After improving of growth conditions a large size samples (length greater than 40 mm) have been prepared. Crystals show a good correlation between growth parameters, light yield and transmission spectra. We performed a series of samples with calibrated size (2x2x10 mm3) and compare the light yield with a standard BGO and LSO samples. Mixed crystals with composition of 0.6 less than x less than 0.8 show a significant increase of light yield. We suggest that the short order clusterisation in mixed crystals may by playing an important role in governing the scintillation efficiency. In order to clarify the scintil...

  12. Scintillation properties and X-ray irradiation hardness of Ce3+-doped Gd2O3-based scintillation glass

    International Nuclear Information System (INIS)

    Liu, Liwan; Shao, Chongyun; Zhang, Yu; Liao, Xili; Yang, Qiuhong; Hu, Lili; Chen, Danping

    2016-01-01

    Ce 3+ -doped Gd 2 O 3 -based scintillation glasses are prepared within an air or CO atmosphere. The effects of fluorine, lutetium, barium, and the melting atmosphere on the optical properties, scintillation properties and irradiation hardness are studied. Absorption spectra, luminescence spectra under UV and X-ray excitation, and the X-ray radiation-induced spectra are presented. The results show that the density can be increased by doping with fluorine, lutetium and barium. The luminescence intensity decreases after X-ray irradiation. Because of charge transfer quenching, fluorine and lutetium enhance the UV-excited and X-ray excited luminescence intensity, but barium decreases. Moreover, fluorine and lutetium are advantageous to irradiation hardness while barium is not. In addition, a non-reducing atmosphere provides a higher irradiation hardness than a reducing atmosphere. Fluorine-doped glass is promising to enhance luminescence intensity, promote irradiation hardness, and increase the density.

  13. Scintillation Counters

    Science.gov (United States)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  14. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    Science.gov (United States)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  15. Fabrication of polycrystalline scintillators for the positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Karim, Kamran Said

    2010-01-01

    Transparent ceramics are becoming more and more important for two new types of applications. On the one hand in cases where high mechanical and thermal demands in combination with optical properties are required, on the other hand where the optical properties of transparent materials like glass are not sufficient e.g. in positron-emission-tomography (PET) diagnostics. Most state of the art PET-scanners are using high-priced single crystals as scintillator material. The technological challenge is to replace single crystal by cost-efficient transparent ceramics. Producing transparent ceramics is ordered in synthesis of the powders and in manufacturing of these into transparent ceramics. The aim of this work was to synthesize single phase yttrium-alumina-and Luthetiumalumina-garnet (YAG, LuAG) powders partially doped with neodymium or praseodymium by four different synthesis routes (Pechini-synthesis, sol-gel-route, coprecipitation and solid state reactions). Additionally industrial LuAG and LuPO 4 powders were characterized and manufactured. The powders were processed as submicron- and nanopowders. The compaction of nanopowder greenbodies sintered at high temperatures leads to a ''cross-over'' between both manufacturing route. Newly produced single-phase powders were homogenized with additions of sintering additives like tetraethyl orthosilicate (TEOS) and binders like polyvinyl alcohol (PVA). Moulding the powders were carried out by uniaxial pressing, cold isostatic pressing and in individual cases also by slip casting. The achieved green densities were in a range of 25-42 %. Examination of calcination behaviour leads to a calcination temperature of 1000 C with 2 hours dwell time in air atmosphere. Only solid state reactions resulted into transparent YAG, YAG:Pr, LuAG, LuAG:Pr ceramics. Solid state reactions of nanopowders resulted in heterogeneously transparent samples. Ceramics made by powders of other synthetic routes gave nontransparent ceramics due to porosity

  16. A Review of Ionospheric Scintillation Models.

    Science.gov (United States)

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  17. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  18. Ion induced scintillation in organic solids: development of an average track model,degradation of the scintillation intensity and dosimetric applications

    International Nuclear Information System (INIS)

    Broggio, D.

    2004-12-01

    This work deals with a specific aspect of the ion-matter interaction: the scintillation induced by ions in organic materials. In the first chapter we tackle the issue in a theoretical way by proposing a method to compute the radial doses within the framework of the mean track model. We have developed a model based on the Lewis transport equation and on the Spencer distribution of the loss energy in order to take into account the transport of secondary electrons in a more realistic way. In the second chapter we study the physical mechanisms that trigger ion-induced scintillation. Ion-induced scintillation is featured by the dependence in charge number of the intensity of scintillation for ions with same energy loss and by the saturation of the scintillation efficiency for ions with high stopping-power. We have applied our model of radial doses to ion-induced scintillation. In the third chapter we study the gradual degradation of the scintillation intensity and ion-induced chemical damages. In the last chapter we propose a prototype of dosimeters based on the combination of scintillators and optical fibers that allows the real-time measurement of the dose delivered by a carbon ion beam in therapeutical use conditions. This dosimeter gives the relationship between the dose and the scintillation intensity but its accuracy is not yet sufficient for uses in radiotherapy. (A.C.)

  19. Test of a Fiber Optic-Based LYSO Scintillator Dosimeter in a 60Co Irradiation Chamber

    International Nuclear Information System (INIS)

    Kim, Tae Hyoung; Kim, Jae Kyung; Park, Jae Woo

    2010-01-01

    Due to its excellent remote measurability and high spatial resolution, the fiber optic-based radiation dosimeter has been extensively explored for its usability in medical applications by several researchers. In the previous work, we reported the result of our investigation on feasibility of a photon dosimeter constructed with a BGO(Bi 4 Ge 3 O 12 ) or GSO(Gd 2 SiO 5 ) scintillator piece coupled to a plastic optical fiber. The plastic optical fiber had a diameter of 3mm and the scintillator piece was in a cylindrical form with 5mm diameter. The size of the scitillator piece as well as the fiber should be as small as possible for higher spatial resolution, and the radiation hardness should be high enough for stable operation in strong radiation fields. Recently, LYSO(Cerium-doped Lutetium Yttrium Orthosilicate) scintillators, which have much higher light yield and radiation hardness than BGO and GSO, have been commercially available. This paper reports the result of our investigation on dosimetric characteristics of a fiber optic-based dosimeter employing a smaller LYSO scintillator piece with 2mm diameter coupled to a silica optical fiber with 1mm core diameter

  20. Comparative properties of ceramic-based roofing sheets from local ...

    African Journals Online (AJOL)

    Ceramic roofing sheets were fabricated in the laboratory by using ideal raw materials. The fabricating materials are coiled coconut fibre, palm fruit fibre, fresh water, river sand, polymeric dust, saw dust and cement. The resulting product was compared with factory -produced ceramic-based roofing sheets that are easily ...

  1. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes

    Directory of Open Access Journals (Sweden)

    Shinichiro Kawada

    2015-11-01

    Full Text Available Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.

  2. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  3. Polishing of silicon based advanced ceramics

    Science.gov (United States)

    Klocke, Fritz; Dambon, Olaf; Zunke, Richard; Waechter, D.

    2009-05-01

    Silicon based advanced ceramics show advantages in comparison to other materials due to their extreme hardness, wear and creep resistance, low density and low coefficient of thermal expansion. As a matter of course, machining requires high efforts. In order to reach demanded low roughness for optical or tribological applications a defect free surface is indispensable. In this paper, polishing of silicon nitride and silicon carbide is investigated. The objective is to elaborate scientific understanding of the process interactions. Based on this knowledge, the optimization of removal rate, surface quality and form accuracy can be realized. For this purpose, fundamental investigations of polishing silicon based ceramics are undertaken and evaluated. Former scientific publications discuss removal mechanisms and wear behavior, but the scientific insight is mainly based on investigations in grinding and lapping. The removal mechanisms in polishing are not fully understood due to complexity of interactions. The role of, e.g., process parameters, slurry and abrasives, and their influence on the output parameters is still uncertain. Extensive technological investigations demonstrate the influence of the polishing system and the machining parameters on the stability and the reproducibility. It is shown that the interactions between the advanced ceramics and the polishing systems is of great relevance. Depending on the kind of slurry and polishing agent the material removal mechanisms differ. The observed effects can be explained by dominating mechanical or chemo-mechanical removal mechanisms. Therefore, hypotheses to state adequate explanations are presented and validated by advanced metrology devices, such as SEM, AFM and TEM.

  4. Scintillators

    International Nuclear Information System (INIS)

    Cusano, D.A.; Holub, F.F.; Prochazka, S.

    1979-01-01

    Scintillator bodies comprising phosphor materials and having high optical translucency with low light absorption, and methods of making the scintillator bodies, are described. Fabrication methods include (a) a hot-pressing process, (b) cold-pressing followed by sintering, (c) controlled cooling from a melt, and (d) hot-forging. The scintillator bodies that result are easily machined to desired shapes and sizes. Suitable phosphors include BaFCl:Eu, LaOBr:Tb, CsI:Tl, CaWO 4 and CdWO 4 . (U.K.)

  5. A scintillating fibre-based profiler for low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Finocchiaro, P. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Amato, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Ciavola, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gu, M. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Raia, G. [Istituto Nazionale di Fisica Nucleare, Catania (Italy); Rovelli, A. [Istituto Nazionale di Fisica Nucleare, Catania (Italy)

    1997-01-11

    In the framework of the EXCYT radioactive ion beam facility, now under development at LNS Catania, we have developed a new beam profile monitor based on a scintillating fibre and a photodetector. Its sensitivity allows the detection of single beam particles in pulse mode, thus representing a useful tool for diagnostics of low and very low intensity beams. (orig.).

  6. A scintillating fibre-based profiler for low intensity ion beams

    International Nuclear Information System (INIS)

    Finocchiaro, P.; Amato, A.; Ciavola, G.; Cuttone, G.; Gu, M.; Raia, G.; Rovelli, A.

    1997-01-01

    In the framework of the EXCYT radioactive ion beam facility, now under development at LNS Catania, we have developed a new beam profile monitor based on a scintillating fibre and a photodetector. Its sensitivity allows the detection of single beam particles in pulse mode, thus representing a useful tool for diagnostics of low and very low intensity beams. (orig.)

  7. Scintillation scanner

    International Nuclear Information System (INIS)

    Mehrbrodt, A.W.; Mog, W.F.; Brunnett, C.J.

    1977-01-01

    A scintillation scanner having a visual image producing means coupled through a lost motion connection to the boom which supports the scintillation detector is described. The lost motion connection is adjustable to compensate for such delays as may occur between sensing and recording scintillations. 13 claims, 5 figures

  8. PREFACE: Applications of Novel Scintillators for Research and Industry (ANSRI 2015)

    Science.gov (United States)

    Roberts, O. J.

    2015-06-01

    Scintillator detectors are used widely in the field of γ- and X-ray spectroscopy, particularly in the mid 1900s when the invention of NaI(Tl) by nobel laureate Robert Hofstadter in 1948, spurred the creation of new scintillator materials. In the development of such new scintillators, important characteristics such as its intrinsic efficiency, position sensitivity, robustness, energy and timing response, light output, etc, need to be addressed. To date, these requirements cannot be met by a single type of scintillator alone and therefore the development of an ''ideal'' scintillator remains the holy grail of nuclear instrumentation. Consequently, the last two decades have seen significant progress in the development of scintillator crystals, driven largely by technological advances. Conventional inorganic scintillators such as NaI(Tl) and BGO are now being replaced with better, novel organic, inorganic, ceramic and plastic scintillators offering a wider variety of options for many applications. The workshop on the Applications of Novel Scintillators in Research and Industry was held at University College Dublin in January 2015 and covered a wide range of topics that characterise modern advances in the field of scintillator technology. This set of proceedings covers areas including the growth, production and characterisation of such contemporary scintillators, along with their applications in various fields, such as; Medical Imaging; Defence/Security; Astrophysics; and Nuclear/Particle Physics. We would like to thank all those who presented their recent results on their research at the workshop. These proceedings atest to the excitement and interest in such a broad field, that pervades the pursuit of the development of novel materials for future applications. We would also like to thank Professor Luigi Piro, for giving an interesting public talk during the conference, and to the Institute of Physics Ireland Group for supporting the event. We thank ORTEC for

  9. Examination of the Properties of a Spent Fuel based Electricity Generation System - Scintillator Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Gammavoltaic was proposed by Karl Scharf in 1960. The low efficiency resulted in gammavoltaic being used as a radiation detector. In the 1990s the efficiency of gammavoltaic increased by the use of a scintillator. Gammavoltaic was further studied as a power source for spent fuel transportation and a nuclear battery in the 2000s Haneol Lee and Man-Sung Yim also suggested electricity generation system based on spent fuel stored inside the fuel pool of a nuclear power plant. This study proposed the systematic design of an electricity conversion system using CsI(Tl) scintillator and a-Si photovoltaic cell. As such, this study is selected to be a reference paper. The results of this paper indicate a self-absorption effect from the reference model. This effect is negligible while the irradiation degradation has to be considered. Two main ways to reduce radiation induced degradation are scintillator shielding and replacing scintillator material with a material having higher radiation resistance. The analysis of the scintillator used in the 'electricity generation system using gamma radiation from spent fuel' was performed to evaluate the ideal electricity generation in the reference research.

  10. Examination of the Properties of a Spent Fuel based Electricity Generation System - Scintillator Performance Analysis

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung

    2016-01-01

    Gammavoltaic was proposed by Karl Scharf in 1960. The low efficiency resulted in gammavoltaic being used as a radiation detector. In the 1990s the efficiency of gammavoltaic increased by the use of a scintillator. Gammavoltaic was further studied as a power source for spent fuel transportation and a nuclear battery in the 2000s Haneol Lee and Man-Sung Yim also suggested electricity generation system based on spent fuel stored inside the fuel pool of a nuclear power plant. This study proposed the systematic design of an electricity conversion system using CsI(Tl) scintillator and a-Si photovoltaic cell. As such, this study is selected to be a reference paper. The results of this paper indicate a self-absorption effect from the reference model. This effect is negligible while the irradiation degradation has to be considered. Two main ways to reduce radiation induced degradation are scintillator shielding and replacing scintillator material with a material having higher radiation resistance. The analysis of the scintillator used in the 'electricity generation system using gamma radiation from spent fuel' was performed to evaluate the ideal electricity generation in the reference research

  11. Development of a Liquid Scintillator-Based Active Interrogation System for LEU Fuel Assemblies

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Plenteda, Romano; Mascahrenas, Nicholas; Cronholm, L. Marie; Aspinall, Michael; Joyce, Malcolm; Tomanin, Alice; Peerani, Paolo

    2013-06-01

    The IAEA, in collaboration with the Joint Research Center (Ispra, IT) and Hybrid Instruments (Lancaster, UK), has developed a full scale, liquid scintillator-based active interrogation system to determine uranium (U) mass in fresh fuel assemblies. The system implements an array of moderate volume (∼1000 ml) liquid scintillator detectors, a multichannel pulse shape discrimination (PSD) system, and a high-speed data acquisition and signal processing system to assess the U content of fresh fuel assemblies. Extensive MCNPX-PoliMi modelling has been carried out to refine the system design and optimize the detector performance. These measurements, traditionally performed with 3 He-based assay systems (e.g., Uranium Neutron Coincidence Collar [UNCL], Active Well Coincidence Collar [AWCC]), can now be performed with higher precision in a fraction of the acquisition time. The system uses a high-flash point, non-hazardous scintillating fluid (EJ309) enabling their use in commercial nuclear facilities and achieves significantly enhanced performance and capabilities through the combination of extremely short gate times, adjustable energy detection threshold, real-time PSD electronics, and high-speed, FPGA-based data acquisition. Given the possible applications, this technology is also an excellent candidate for the replacement of select 3 He-based systems. Comparisons to existing 3 He-based active interrogation systems are presented where possible to provide a baseline performance reference. This paper will describe the laboratory experiments and associated modelling activities undertaken to develop and initially test the prototype detection system. (authors)

  12. Gamma spectrometry and plastic-scintillator inherent background

    International Nuclear Information System (INIS)

    Pomerantsev, V.V.; Gagauz, I.B.; Mitsai, L.I.; Pilipenko, V.S.; Solomonov, V.M.; Chernikov, V.V.; Tsirlin, Y.A.

    1988-01-01

    The authors measured the energy resolution for a linear dependence of light yield on gamma radiation energy of gamma spectrometers based on plastic scintillation detectors for several plastic scintillators. If there were several gamma lines from the source the line with the highest energy was used to eliminate distortion due to overlap from the Compton background from gamma radiation of higher energy. Attenuation lengths were calculated. The tests were based on three modes of interaction between the gamma radiation and the scintillator: Compton scattering, the photoelectric effect, and pair formation. The contribution from light collection was also considered. The scintillators tested included polystyrene, polymethyl methacrylate, cesium iodide, and sodium iodide. Gamma sources included cesium 137, sodium 22, potassium 40, yttrium 88, thorium 232, and plutonium-beryllium

  13. Indirect X-ray Detectors Based on Inkjet-Printed Photodetectors with a Screen-Printed Scintillator Layer.

    Science.gov (United States)

    Oliveira, Juliana; Correia, Vitor; Sowade, Enrico; Etxebarria, Ikerne; Rodriguez, Raul D; Mitra, Kalyan Y; Baumann, Reinhard R; Lanceros-Mendez, Senentxu

    2018-04-18

    Organic photodetectors (PDs) based on printing technologies will allow to expand the current field of PD applications toward large-area and flexible applications in areas such as medical imaging, security, and quality control, among others. Inkjet printing is a powerful digital tool for the deposition of smart and functional materials on various substrates, allowing the development of electronic devices such as PDs on various substrates. In this work, inkjet-printed PD arrays, based on the organic thin-film transistor architecture, have been developed and applied for the indirect detection of X-ray radiation using a scintillator ink as an X-ray absorber. The >90% increase of the photocurrent of the PDs under X-ray radiation, from about 53 nA without the scintillator film to about 102 nA with the scintillator located on top of the PD, proves the suitability of the developed printed device for X-ray detection applications.

  14. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1977-01-01

    A liquid scintillation solution is described which includes (1) a scintillation solvent (toluene and xylene), (2) a primary scintillation solute (PPO and Butyl PBD), (3) a secondary scintillation solute (POPOP and Dimethyl POPOP), (4) a plurality of substantially different surfactants and (5) a filter dissolving and/or transparentizing agent. 8 claims

  15. Modelling of scintillator based flat-panel detectors with Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Reims, N; Sukowski, F; Uhlmann, N

    2011-01-01

    Scintillator based flat panel detectors are state of the art in the field of industrial X-ray imaging applications. Choosing the proper system and setup parameters for the vast range of different applications can be a time consuming task, especially when developing new detector systems. Since the system behaviour cannot always be foreseen easily, Monte-Carlo (MC) simulations are keys to gain further knowledge of system components and their behaviour for different imaging conditions. In this work we used two Monte-Carlo based models to examine an indirect converting flat panel detector, specifically the Hamamatsu C9312SK. We focused on the signal generation in the scintillation layer and its influence on the spatial resolution of the whole system. The models differ significantly in their level of complexity. The first model gives a global description of the detector based on different parameters characterizing the spatial resolution. With relatively small effort a simulation model can be developed which equates the real detector regarding signal transfer. The second model allows a more detailed insight of the system. It is based on the well established cascade theory, i.e. describing the detector as a cascade of elemental gain and scattering stages, which represent the built in components and their signal transfer behaviour. In comparison to the first model the influence of single components especially the important light spread behaviour in the scintillator can be analysed in a more differentiated way. Although the implementation of the second model is more time consuming both models have in common that a relatively small amount of system manufacturer parameters are needed. The results of both models were in good agreement with the measured parameters of the real system.

  16. Scintillation camera

    International Nuclear Information System (INIS)

    Zioni, J.; Klein, Y.; Inbar, D.

    1975-01-01

    The scintillation camera is to make pictures of the density distribution of radiation fields created by the injection or administration radioactive medicaments into the body of the patient. It contains a scintillation crystal, several photomultipliers and computer circuits to obtain an analytical function at the exits of the photomultiplier which is dependent on the position of the scintillations at the time in the crystal. The scintillation crystal is flat and spatially corresponds to the production site of radiation. The photomultipliers form a pattern whose basic form consists of at least three photomultipliers. They are assigned to at least two crossing parallel series groups where a vertical running reference axis in the crystal plane belongs to each series group. The computer circuits are each assigned to a reference axis. Each series of a series group assigned to one of the reference axes in the computer circuit has an adder to produce a scintillation dependent series signal. Furthermore, the projection of the scintillation on this reference axis is calculated. A series signal is used for this which originates from a series chosen from two neighbouring photomultiplier series of this group. The scintillation must have appeared between these chosen series. They are termed as basic series. The photomultiplier can be arranged hexagonally or rectangularly. (GG/LH) [de

  17. Automation of a Beckman liquid scintillation counter for data capture and data-base management

    International Nuclear Information System (INIS)

    Neil, W.; Irwin, T.J.; Yang, J.J.

    1988-01-01

    A software package for the automation of a Beckman LS9000 liquid scintillation counter is presented. The package provides effective on-line data capture (with a Perkin Elmer 3230 32-bit minicomputer), data-base management, audit trail and archiving facilities. Key features of the package are rapid and flexible data entry, background subtraction, half-life correction, ability to queue several sample sets pending scintillation counting, and formatted report generation. A brief discussion is given on the development of customized data processing programs. (author)

  18. Ionospheric scintillation forecasting model based on NN-PSO technique

    Science.gov (United States)

    Sridhar, M.; Venkata Ratnam, D.; Padma Raju, K.; Sai Praharsha, D.; Saathvika, K.

    2017-09-01

    The forecasting and modeling of ionospheric scintillation effects are crucial for precise satellite positioning and navigation applications. In this paper, a Neural Network model, trained using Particle Swarm Optimization (PSO) algorithm, has been implemented for the prediction of amplitude scintillation index (S4) observations. The Global Positioning System (GPS) and Ionosonde data available at Darwin, Australia (12.4634° S, 130.8456° E) during 2013 has been considered. The correlation analysis between GPS S4 and Ionosonde drift velocities (hmf2 and fof2) data has been conducted for forecasting the S4 values. The results indicate that forecasted S4 values closely follow the measured S4 values for both the quiet and disturbed conditions. The outcome of this work will be useful for understanding the ionospheric scintillation phenomena over low latitude regions.

  19. Photonic Crystals: Enhancing the Light Output of Scintillation Based Detectors

    CERN Document Server

    Knapitsch, Arno Richard

    A scintillator is a material which emits light when excited by ionizing radiation. Such materials are used in a diverse range of applications; From high energy particle physics experiments, X-ray security, to nuclear cameras or positron emission tomography. Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent developments in the area of nanophotonics were showing now that those limitations can be overcome by introducing a photonic crystal (PhC) slab at the outcoupling surface of the substrate. P...

  20. New scintillating media based on liquid crystals for particle detectors

    International Nuclear Information System (INIS)

    Barnik, M.I.; Yudin, S.G.; Vasil'chenko, V.G.; Golovkin, S.V.; Medvedkov, A.M.; Solovjev, A.S.

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors

  1. New scintillating media based on liquid crystals for particle detectors

    CERN Document Server

    Barnik, M I; Vasilchenko, V G; Golovkin, S V; Medvedkov, A M; Soloviev, A S

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors.

  2. [Preliminary study of bonding strength between diatomite-based dental ceramic and veneering porcelains].

    Science.gov (United States)

    Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min

    2015-04-01

    In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(P<0.05). SEM and EDS showed that the interface of group C sintered tightly and elements permeated on both sides of the interface. The diatomite-based substrate ceramics combines better with E-max porcelain veneer.

  3. A new scintillation proximity assay-based approach for the detection of KRAS mutations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Young; Lim, Jae-Cheong; Cho, Eun-Ha; Jung, Sung-Hee [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of). Radioisotope Research Div.

    2016-04-01

    KRAS is very commonly mutated resulting in a constitutively activated protein, which is independent of epidermal growth factor receptor (EGFR) ligand binding and resistant to anti-EGFR therapy. Although KRAS is frequently studied, there is still no uniform standard for detecting of KRAS mutations. In this report, a new scintillation proximity assay-based approach is described that determines the relative affinities of wild-type and mutated KRAS to the anti-KRAS antibody. We performed in vitro experiments using normal human colonic cells (CCD18Co), KRAS wild type (Caco-2) and KRAS mutant (HCT 116) cell lines to determine the relative affinities of wild type or mutated KRAS toward an anti-KRAS monoclonal antibody. The process consists of two primary steps: immunoprecipitation from cell lysate to enrich the KRAS protein and the scintillation proximity assay of the immunoprecipitant to determine the relative affinity against the antibody. A fixed concentration of cell lysates was purified by the immunoprecipitation method. The expressions of the KRAS protein in all cell lines was quantitatively confirmed by western blot analysis. For the scintillation proximity assay, the KRAS standard protein was radiolabeled with {sup 125}I by a simple mixing process in the iodogen tube immediately at room temperature immediately before use. The obtained CPM (count per minute) values of were used to calculate the KRAS concentration using purified KRAS as the standard. The calculated relative affinities of 7 μg of Caco-2 and HCT 116 immunoprecipitants for the anti-KRAS antibody were 77 and 0%, respectively. The newly developed scintillation proximity assay-based strategy determines the relative affinities of wild-type or mutated KRAS towards the anti-KRAS monoclonal antibody. This determination can help distinguish mutated KRAS from the wild type protein. The new SPA based approach for detecting KRAS mutations is applicable to many other cancer-related mutations.

  4. A new scintillation proximity assay-based approach for the detection of KRAS mutations

    International Nuclear Information System (INIS)

    Lee, So-Young; Lim, Jae-Cheong; Cho, Eun-Ha; Jung, Sung-Hee

    2016-01-01

    KRAS is very commonly mutated resulting in a constitutively activated protein, which is independent of epidermal growth factor receptor (EGFR) ligand binding and resistant to anti-EGFR therapy. Although KRAS is frequently studied, there is still no uniform standard for detecting of KRAS mutations. In this report, a new scintillation proximity assay-based approach is described that determines the relative affinities of wild-type and mutated KRAS to the anti-KRAS antibody. We performed in vitro experiments using normal human colonic cells (CCD18Co), KRAS wild type (Caco-2) and KRAS mutant (HCT 116) cell lines to determine the relative affinities of wild type or mutated KRAS toward an anti-KRAS monoclonal antibody. The process consists of two primary steps: immunoprecipitation from cell lysate to enrich the KRAS protein and the scintillation proximity assay of the immunoprecipitant to determine the relative affinity against the antibody. A fixed concentration of cell lysates was purified by the immunoprecipitation method. The expressions of the KRAS protein in all cell lines was quantitatively confirmed by western blot analysis. For the scintillation proximity assay, the KRAS standard protein was radiolabeled with 125 I by a simple mixing process in the iodogen tube immediately at room temperature immediately before use. The obtained CPM (count per minute) values of were used to calculate the KRAS concentration using purified KRAS as the standard. The calculated relative affinities of 7 μg of Caco-2 and HCT 116 immunoprecipitants for the anti-KRAS antibody were 77 and 0%, respectively. The newly developed scintillation proximity assay-based strategy determines the relative affinities of wild-type or mutated KRAS towards the anti-KRAS monoclonal antibody. This determination can help distinguish mutated KRAS from the wild type protein. The new SPA based approach for detecting KRAS mutations is applicable to many other cancer-related mutations.

  5. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  6. Highly textured KNN-based piezoelectric ceramics by conventional sintering

    International Nuclear Information System (INIS)

    Zapata, Angelica Maria Mazuera; Silva Junior, Paulo Sergio da; Zambrano, Michel Venet

    2016-01-01

    Full text: Texturing in ferroelectric ceramics has played an important role in the enhancement of their piezoelectric properties. Common methods for ceramic texturing are hot pressing and template grain ground; nevertheless, the needed facilities to apply hot pressing and the processing of single crystal make the texture of ceramics expensive and very difficult. In this study, a novel method was investigated to obtain highly textured lead-free ceramics. A (K 0.5 Na 0.5 ) 0.97 Li 0. 0 3 Nb 0.8 Ta 0. 2 matrix (KNLNT), with CuO excess was sintered between 1070 and 1110 °C following a solid state reaction procedure. The CuO excess promotes liquid phase formation and a partial melting of the material. XRD patterns showed the intensity of (100) family peaks became much stronger with the increasing of sintering temperature and CuO. In addition, Lotgering factor was calculated and exhibited a texture degree between 40 % and 70 % for sintered samples having 13 and 16 wt. % CuO, respectively. These, highly textured ceramics, with adequate cut, can be used as substitutes single crystals for texturing of KNN-based lead-free ceramics. (author)

  7. Fine grained hodoscopes based on scintillating optical fibres

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1985-01-01

    This is a description of the development and testing of scintillating optical fibers for use in a fine grained hodoscope for experiments in High Energy Physics. After a brief discussion of the need for such a device in experiments in high rate environments, a description is given of the process of drawing and cladding plastic scintillator to form scintillating optical fibers. This is followed by a description of the test procedures used to evaluate the resultant fibers both in the laboratory and at the accelerator. A discussion of three possible readout schemes then follows. These are individual photomultiplier tubes, avalanche photo-diodes and microchannel plates with segmented anodes. The results of this study are then presented. The present status of the project is then summarized, in which it is pointed out that significant improvement in useful fiber length has been achieved as a result of this development program. The difficulty of quality control in fiber production remains a serious limitation, and a satisfactory readout scheme with good optical coupling between many hodoscope elements and photodetectors has yet to be achieved. (orig.)

  8. Progress in the development of LuAlO$_{3}$ based scintillators

    CERN Document Server

    Belsky, A; Lecoq, P; Dujardin, C; Garnier, N; Canibano, H; Pédrini, C; Petrosian, A

    2000-01-01

    LuAlO/sub 3/:Ce/sup 3+/ (LuAP) and Lu/sub x/Y/sub 1/-xAlO/sub 3/:Ce /sup 3+/ (LuYAP) crystals are used as scintillation materials for positron emission tomography. The actual study of these scintillators develops in three directions: (i) growth of large size LuAP crystals with stable properties, (ii) the relationship between the composition of LuYAP crystals and scintillation properties, and (iii) scintillation mechanisms in lutetium compounds. After improving of growth conditions a large size samples (length >40 mm) have been prepared. Crystals show a good correlation between growth parameters, light yield and transmission spectra. We studied a series of samples with calibrated size (2*2*10 mm3) and compare the light yield with standard BGO and LSO samples. Mixed crystals with composition of 0.6scintillation efficiency. In order to clarify the s...

  9. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly.

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO(2) (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO(2). To determine the optimum addition levels for nano-ZrO(2), ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO(2) were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO(2) resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.

  10. Cherenkov and scintillation light separation on the CheSS experiment

    Science.gov (United States)

    Caravaca, Javier; Land, Benjamin; Descamps, Freija; Orebi Gann, Gabriel D.

    2016-09-01

    Separation of the scintillation and Cherenkov light produced in liquid scintillators enables outstanding capabilities for future particle detectors, the most relevant being: particle directionality information in a low energy threshold detector and improved particle identification. The CheSS experiment uses an array of small, fast photomultipliers (PMTs) and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in liquid scintillator using two techniques: based on the photon density and using the photon hit time information. A charged particle ionizing a scintillation medium produces a prompt Cherenkov cone and late isotropic scintillation light, typically delayed by several ns. The fast response of our PMTs and DAQ provides a precision well below the ns level, making possible the time separation. Furthermore, the usage of the new developed water-based liquid scintillators (WbLS) enhances the separation since it allows tuning of the Cherenkov/Scintillation ratio. Latest results on the separation for pure liquid scintillators and WbLS will be presented.

  11. Tribological properties of toughened zirconia-based ceramics

    International Nuclear Information System (INIS)

    Stachowiak, G.W.; Stachowiak, G.B.

    1991-01-01

    The physical and mechanical properties of toughened zirconia ceramics are briefly characterized and described with a special emphasis on their tribological behaviour. The wear and friction properties of PSZ and TZP ceramics at room and elevated temperatures are described. The influence of the environment on the tribological characteristics of zirconia ceramics is discussed. Both lubricated and unlubricated conditions for ceramic/ceramic and metal/ceramic sliding contacts are analysed. One of the main, and as yet unresolved problems, lubrication of ceramic at elevated temperatures and/or space environment, is addressed and the possible solutions to the problem are suggested. The critical needs in the research and development area of improving the tribological properties of zirconia ceramics are defined and its future market potentials stated. 30 refs., 2 tabs., 4 figs

  12. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The invention deals with a liquid scintillation solution which contains 1) a scintillation solvent (toluol), 2) a primary scintillation solute (PPO), 3) a secondary scintillation solute (dimethyl POPOP), 4) several surfactants (iso-octyl-phenol polyethoxy-ethanol and sodium di-hexyl sulfosuccinate) essentially different from one another and 5) a filter resolution and/or transparent-making agent (cyclic ether, especially tetrahydrofuran). (HP) [de

  13. Development of SiPM-based scintillator tile detectors for a multi-layer fast neutron tracker

    Directory of Open Access Journals (Sweden)

    Jakubek J.

    2012-10-01

    Full Text Available We are developing thin tile scintillator detectors with silicon photomultiplier (SiPM readout for use in a multi-layer fast-neutron tracker. The tracker is based on interleaved Timepix and plastic scintillator layers. The thin 15 × 15 × 2 mm plastic scintillators require suitable optical readout in order to detect and measure the energy lost by energetic protons that have been recoiled by fast neutrons. Our first prototype used dual SiPMs, coupled to opposite edges of the scintillator tile using light-guides. An alternative readout geometry was designed in an effort to increase the fraction of scintillation light detected by the SiPMs. The new prototype uses a larger SiPM array to cover the entire top face of the tile. This paper details the comparative performance of the two prototype designs. A deuterium-tritium (DT fast-neutron source was used to compare the relative light collection efficiency of the two designs. A collimated UV light source was scanned across the detector face to map the uniformity. The new prototype was found to have 9.5 times better light collection efficiency over the original design. Both prototypes exhibit spatial non-uniformity in their response. Methods of correcting this non-uniformity are discussed.

  14. Set of counts by scintillations for atmospheric samplings

    International Nuclear Information System (INIS)

    Appriou, D.; Doury, A.

    1962-01-01

    The author reports the development of a scintillation-based counting assembly with the following characteristics: a photo-multiplier with a wide photo-cathode, a thin plastic scintillator for the counting of beta + alpha (and possibility of mounting an alpha scintillator), a relatively small own motion with respect to activities to be counted, a weakly varying efficiency. The authors discuss the counting objective, present equipment tests (counter, proportional amplifier and pre-amplifier, input drawer). They describe the apparatus operation, discuss the selection of scintillators, report the study of the own movement (electron-based background noise, total background noise, background noise reduction), discuss counts (influence of the external source, sensitivity to alpha radiations, counting homogeneity, minimum detectable activity) and efficiencies

  15. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551

  16. Photon statistics in scintillation crystals

    Science.gov (United States)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  17. Biomimetic synthesis of cellular SiC based ceramics from plant ...

    Indian Academy of Sciences (India)

    Unknown

    SiC based materials so derived can be used in structural applications and in designing high temperature filters and catalyst supports. Keywords. Biomimetic synthesis; carbonaceous biopreform; biomorphic Si–SiC ceramic composites; porous cellular SiC ceramics. 1. Introduction. In recent years, there has been tremendous ...

  18. Scintillator based detector for fast-ion losses induced by magnetohydrodynamic instabilities in the ASDEX upgrade tokamak.

    Science.gov (United States)

    García-Muñoz, M; Fahrbach, H-U; Zohm, H

    2009-05-01

    A scintillator based detector for fast-ion losses has been designed and installed on the ASDEX upgrade (AUG) tokamak [A. Herrmann and O. Gruber, Fusion Sci. Technol. 44, 569 (2003)]. The detector resolves in time the energy and pitch angle of fast-ion losses induced by magnetohydrodynamics (MHD) fluctuations. The use of a novel scintillator material with a very short decay time and high quantum efficiency allows to identify the MHD fluctuations responsible for the ion losses through Fourier analysis. A Faraday cup (secondary scintillator plate) has been embedded behind the scintillator plate for an absolute calibration of the detector. The detector is mounted on a manipulator to vary its radial position with respect to the plasma. A thermocouple on the inner side of the graphite protection enables the safety search for the most adequate radial position. To align the scintillator light pattern with the light detectors a system composed by a lens and a vacuum-compatible halogen lamp has been allocated within the detector head. In this paper, the design of the scintillator probe, as well as the new technique used to analyze the data through spectrograms will be described. A last section is devoted to discuss the diagnosis prospects of this method for ITER [M. Shimada et al., Nucl. Fusion 47, S1 (2007)].

  19. A new water-based liquid scintillator and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, M., E-mail: yeh@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R.L. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Diwan, M.V.; Jaffe, D.E.; Kettell, S.H.; Littenberg, L. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-12-21

    In this paper we describe a new type of scintillating liquid based on water. We describe the concept, preparation, and properties of this liquid, and how it could be used for a very large, but economical detector. The applications of such a detector range from fundamental physics such as nucleon decay and neutrino physics to physics with broader application such as neutron detection. We briefly describe the scientific requirements of these applications, and how they can be satisfied by the new material.

  20. Methacrylate based cross-linkers for improved thermomechanical properties and retention of radiation detection response in plastic scintillators

    Science.gov (United States)

    Mahl, Adam; Lim, Allison; Latta, Joseph; Yemam, Henok A.; Greife, Uwe; Sellinger, Alan

    2018-03-01

    Pulse shape discrimination (PSD) is an important method that can efficiently sort and separate neutron and gamma radiation signals. PSD is currently achieved in plastic scintillators by over-doping poly(vinyl toluene) (PVT) matrices with fluorescent molecules. Meaningful separation of the signals requires addition of >20 wt% 2,5-diphenyloxazole (PPO) fluor in PVT. At these concentrations PPO acts as a plasticizer, negatively affecting the physical properties of the final plastic such as hardness, machinability, and thermomechanical stability. This work addresses these issues by implementing a cost-effective solution using cross-linking chemistry via commercially available bisphenol A dimethacrylate (BPA-DM), and a synthesized fluorinated analogue. Both improve the physical properties of over-doped PPO based plastic scintillators without degrading the measured light yield or PSD and Figure of Merit (FoM). In addition, the fluorinated analogue appears to enhance the hydrophobicity of the surface of the plastic scintillators, which may improve the scintillators' resistance to water diffusion and subsequent radiation response degradation. The new formulations improve the feasibility of widely deploying long lifetime PSD capable plastic scintillators in large area coverage assemblies.

  1. Solid scintillator 'Ready Cap' for measurement with a liquid scintillation counter

    International Nuclear Information System (INIS)

    Ijiri, Kenichi; Endo, Masashi; Nogawa, Norio; Tsuda, Shoko; Nakamura, Aiko; Morikawa, Naotake; Osaki, Susumu.

    1990-01-01

    'Ready Cap', a small plastic container coated with solid scintillator has recently been introduced (Beckman Instruments, Inc.). Pulse height spectra and counting efficiencies obtained with a liquid scintillator and Ready Cap using a liquid scintillation counter were compared for 15 different radionuclides. For radionuclides emitting low-energy β-rays or characteristic X-rays, the spectra for Ready Cap shifted toward the higher energy side compared with the spectra for the liquid scintillator. This tendency was reversed for the nuclides emitting higher-energy β-radiations ( 36 Cl and 32 P). Generally, counting efficiencies both in Ready Cap and in liquid scintillator increased with increase in the energy of β- or X-rays. For some nuclides, Ready Cap gave higher counting efficiencies and for others it gave lower values than in the liquid scintillator. However, the differences were not large within each nuclide. The use of Ready Cap is recommended for measurements of radionuclides when liquid scintillation cocktails have no means of waste disposal under the present Japanese radioisotope regulation. (author)

  2. Improvement of an X-ray imaging detector based on a scintillating guides screen

    CERN Document Server

    Badel, X; Linnros, J; Kleimann, P; Froejdh, C; Petersson, C S

    2002-01-01

    An X-ray imaging detector has been developed for dental applications. The principle of this detector is based on application of a silicon charge coupled device covered by a scintillating wave-guide screen. Previous studies of such a detector showed promising results concerning the spatial resolution but low performance in terms of signal to noise ratio (SNR) and sensitivity. Recent results confirm the wave-guiding properties of the matrix and show improvement of the detector in terms of response uniformity, sensitivity and SNR. The present study is focussed on the fabrication of the scintillating screen where the principal idea is to fill a matrix of Si pores with a CsI scintillator. The photoluminescence technique was used to prove the wave-guiding property of the matrix and to inspect the filling uniformity of the pores. The final detector was characterized by X-ray evaluation in terms of spatial resolution, light output and SNR. A sensor with a spatial resolution of 9 LP/mm and a SNR over 50 has been achie...

  3. Development of scintillation materials for PET scanners

    CERN Document Server

    Korzhik, Mikhail; Annenkov, Alexander N; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-01-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  4. Optical and scintillation characteristics of Y.sub.2./sub.O.sub.3./sub. transparent ceramic

    Czech Academy of Sciences Publication Activity Database

    Fukabori, A.; Yanagida, T.; Pejchal, Jan; Maeo, S.; Yokota, Y.; Yoshikawa, A.; Ikegami, T.; Moretti, F.; Kamada, K.

    2010-01-01

    Roč. 107, č. 7 (2010), "073501-1"-"073501-6" ISSN 0021-8979 Institutional research plan: CEZ:AV0Z10100521 Keywords : yttrium oxide * luminescence * scintillation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.064, year: 2010

  5. Factors determining radiation stability of plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, N.N. [Texas Univ., Richardson, TX (United States). Dept. of Chemistry; Gunder, O.A.; Voronkina, N.I. [National Ukrainian Academy of Science, Kharkov (Ukraine). Inst. for Single Crystals; Milinchuk, V.K. [Karpov Inst. of Physical Chemistry, Moscow (Russian Federation)

    1996-11-01

    Polystyrene (PS) and polyvinylxylene (PVX) are the base materials for plastic scintillators u.v.-Vis spectrophotometry, luminescence and ESR spectroscopy were performed on irradiated samples of PS and PVX with the p-terphenyl (TP) as the primary luminophore and 1,4-di-2(5-phenyloxazolyl-1,3) benzene (POPOP) as the secondary one. Dependence of the radioluminescence intensity of the scintillators on the concentration of the macroradicals formed by irradiation was investigated. Dose dependence of the radiation stability of scintillators is discussed. (author).

  6. Factors determining radiation stability of plastic scintillators

    International Nuclear Information System (INIS)

    Barashkov, N.N.

    1996-01-01

    Polystyrene (PS) and polyvinylxylene (PVX) are the base materials for plastic scintillators u.v.-Vis spectrophotometry, luminescence and ESR spectroscopy were performed on irradiated samples of PS and PVX with the p-terphenyl (TP) as the primary luminophore and 1,4-di-2(5-phenyloxazolyl-1,3) benzene (POPOP) as the secondary one. Dependence of the radioluminescence intensity of the scintillators on the concentration of the macroradicals formed by irradiation was investigated. Dose dependence of the radiation stability of scintillators is discussed. (author)

  7. Enhanced electrocaloric effect in La-based PZT antiferroelectric ceramics

    Science.gov (United States)

    Mendez-González, Y.; Peláiz-Barranco, A.; Yang, Tongqing; Guerra, J. D. S.

    2018-03-01

    The electrocaloric effect (ECE) has been investigated in (Pb0.98La0.02)(Zr0.95Ti0.05)0.995O3 antiferroelectric ceramics obtained via the solid-state reaction method. The results from indirect measurements across the temperature range considered reveal a large electrocaloric temperature change (ΔT) of approximately 5 K at 373 K. The enhanced ECE, which is significantly higher than those reported for some lead-free and lead-based electro-ceramics, was obtained by applying an electric field of 60 kV/cm lower than what has been reported for commonly studied ceramic systems. This result suggests that this system is a potential candidate for practical electrocaloric device applications.

  8. Design of Fluorescent Compounds for Scintillation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Pla-Dalmau, Anna [Northern Illinois U.

    1990-01-01

    Plastic scintillation detectors for high energy physics applications require the development of new fluorescent compounds to meet the demands set by the future generation of particle accelerators such as the Superconducting Supercollider (SSe). Plastic scintillators are commonly based on a polymer matrix doped with two fluorescent compounds: the primary dopant and the wavelength shifter. Their main characteristics are fast response time and high quantum efficiency. The exposure to larger radiation doses and demands for larger light output questions their survivability in the future experiments. A new type of plastic scintillator - intrinsic scintillator - has been suggested. It uses a single dopant as primary and wavelength shifter, and should be less susceptible to radiation damage....

  9. Response of gadolinium doped liquid scintillator to charged particles: measurement based on intrinsic U/Th contamination

    Science.gov (United States)

    Du, Q.; Lin, S. T.; He, H. T.; Liu, S. K.; Tang, C. J.; Wang, L.; Wong, H. T.; Xing, H. Y.; Yue, Q.; Zhu, J. J.

    2018-04-01

    A measurement is reported for the response to charged particles of a liquid scintillator named EJ-335 doped with 0.5% gadolinium by weight. This liquid scintillator was used as the detection medium in a neutron detector. The measurement is based on the in-situ α-particles from the intrinsic Uranium and Thorium contamination in the scintillator. The β–α and the α–α cascade decays from the U/Th decay chains were used to select α-particles. The contamination levels of U/Th were consequently measured to be (5.54±0.15)× 10‑11 g/g, (1.45±0.01)× 10‑10 g/g and (1.07±0.01)× 10‑11 g/g for 232Th, 238U and 235U, respectively, assuming secular equilibrium. The stopping power of α-particles in the liquid scintillator was simulated by the TRIM software. Then the Birks constant, kB, of the scintillator for α-particles was determined to be (7.28±0.23) mg/(cm2ṡMeV) by Birks' formulation. The response for protons is also presented assuming the kB constant is the same as for α-particles.

  10. Fen+ beam profile diagnostics based on Al2O3: Cr scintillating screen

    International Nuclear Information System (INIS)

    He Tie; Lei Jiarong; Liu Meng; An Li; Wang Xinhua; Zheng Pu

    2013-01-01

    Some techniques of beam profile measurements such as wire rotating scan, Faraday cups array and infrared imaging were investigated. A measurement device was built based on scintillating screen to cater for the demand of accelerator beam profile diagnostics. The device was bombarded under several tens to hundred nanoampere Fe n+ (n=5-12) ion beam. The Fe n+ ion beam experiment shows that the imaging saturation is mainly caused by light intensity rather than scintillating screen. A way to solve the saturation problem with a specially developed lens was mentioned. The grayscale of beam profile imaging is approximately linear with respect to the beam intensity, and the reason for formation of this relationship was analyzed. (authors)

  11. (Alpha-) quenching temperature dependence in liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Arnd; Lozza, Valentina; Krosigk, Belina von; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2015-07-01

    Liquid scintillator (LS) is an effective and promising detector material, which is and will be used by many small and large scale experiments. In order to perform correct signal identification and background suppression, a very good knowledge of LS properties is crucial. One of those is the light yield from alpha particles in liquid scintillator. This light output strongly quenched, approx. 10 times compared to that of electrons, and has been precisely studied at room temperature for various LS. Big scintillator experiments, such as SNO+ and maybe future large scale detectors, will operate at different temperatures. While a strong temperature dependence is well known for solid state scintillators, due to the different scintillation process, a quenching temperature dependence in LS is usually assumed negligible. On the other hand, inconsistencies in between measurements are often explained by potential temperature effects. This study investigates LAB based liquid scintillator with an intrinsic, dissolved alpha emitter and its behaviour with temperature change. In a small, cooled and heated setup, a stabilized read-out with two PMTs is realised. First results are presented.

  12. Predicting ionospheric scintillation: Recent advancements and future challenges

    Science.gov (United States)

    Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.

    2017-12-01

    Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.

  13. Zirconia-based colors for ceramic glazes

    International Nuclear Information System (INIS)

    Eppler, R.A.

    1977-01-01

    The history of color development for use in ceramic glazes is outlined. The most significant modern development is based on zirconia and zircon. These materials have gained increasing acceptance in the industry since their introduction in the late 1950's and early 1960's, due to their superior stability during firing of the glaze

  14. Study of the correlation of scintillation decay and emission wavelength

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yamaji, Akihiro; Kawaguchi, Noriaki; Kamada, Kei; Totsuka, Daisuke; Fukuda, Kentaro; Yamanoi, Kohei; Nishi, Ryosuke; Kurosawa, Shunsuke; Shimizu, Toshihiko; Sarukura, Nobuhiko

    2013-01-01

    In photoluminescence which directly excites the emission center of phosphor material is known to have a correlation between the emission wavelength and the decay time based on quantum mechanics. In scintillation phenomenon, host lattice of the material is first excited by ionizing radiation and then the excitation energy is transferred to emission centers. For the first time, we investigated the correlation between the scintillation decay and the emission wavelength by using pulse X-ray equipped streak camera system which could observe time and wavelength resolved scintillation phenomenon. Investigated materials were Ce 3+ , Pr 3+ and Nd 3+ doped oxides and fluorides which all showed 5d-4f transition based emission. As a result, we obtained the relation that τ (scintillation decay time) was proportional to the λ 2.15 (emission wavelength). -- Highlights: ► The correlation between emission wavelength and scintillation decay time is investigated. ► Photoluminescence decay times are also evaluated and compared with scintillation decay times. ► It is proved the relaxation process in emission center is dominant even in scintillation decay

  15. Factors determining radiation stability of plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Gunder, O.A.; Voronkina, N.I. [National Ukranian Academy of Science, Kharkov (Ukraine). Inst. for Single Crystals; Barashkov, N.N.; Milinchuk, V.K.; Jdanov, G.S. [Karpov Inst. of Physical Chemistry, Moscow (Russian Federation)

    1995-07-01

    Polystyrene (PS) and polyvinylxylene (PVX) are the base materials for plastic scintillators. UV-Vis spectrophotometry, luminescence and EPR spectroscopy were performed on irradiated samples of PS and PVX with the p-terphenyl (TP) as primary luminophore and 1,4-di-2(5-phenyloxazolyl-1,3)benzene (POPOP) as secondary one. Dependence of the radioluminescence intensity of the scintillators on the concentration of the macroradicals formed in them in the process of irradiation was investigated. Dose dependence of the radiation stability of scintillators is discussed. (Author).

  16. Factors determining radiation stability of plastic scintillators

    Science.gov (United States)

    Gunder, O. A.; Voronkina, N. I.; Barashkov, N. N.; Milinchuk, V. K.; Jdanov, G. S.

    1995-07-01

    Polystyrene (PS) and polyvinylxylene (PVX) are the base materials for plastic scintillators. UV-Vis spectrophotometry, luminescence and EPR spectroscopy were performed on irradiated samples of PS and PVX with the p-terphenyl (TP) as primary luminophore and 1,4-di-2(5-phenyloxazolyl-1,3)benzene (POPOP) as secondary one. Dependence of the radioluminescence intensity of the scintillators on the concentration of the macroradicals formed in them in the process of irradiation was investigated. Dose dependence of the radiation stability of scintillators is discussed.

  17. Factors determining radiation stability of plastic scintillators

    International Nuclear Information System (INIS)

    Gunder, O.A.; Voronkina, N.I.

    1995-01-01

    Polystyrene (PS) and polyvinylxylene (PVX) are the base materials for plastic scintillators. UV-Vis spectrophotometry, luminescence and EPR spectroscopy were performed on irradiated samples of PS and PVX with the p-terphenyl (TP) as primary luminophore and 1,4-di-2(5-phenyloxazolyl-1,3)benzene (POPOP) as secondary one. Dependence of the radioluminescence intensity of the scintillators on the concentration of the macroradicals formed in them in the process of irradiation was investigated. Dose dependence of the radiation stability of scintillators is discussed. (Author)

  18. Development of an application specific scintimammography detector based on a crystal scintillator array and a PSPMT

    CERN Document Server

    Majewski, S; Goode, A; Kross, B J; Steinbach, D; Weisenberger, A; Williams, M; Wojci, R

    1998-01-01

    We report the results of studies conducted with small field of view scintimammography camera based on a position-sensitive photomultiplier tube (5'' Hamamatsu R3292) and several pixelized crystal scintillator arrays made of YAP, CsI(Na) and NaI(Tl) scintillators. Laboratory tests and pre-clinical phantom studies were conducted to compare and optimize the performances of the prototypes with special emphasis on spatial resolution (approx 2-3mm) and sufficient energy resolution for scatter rejection.

  19. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  20. Role of hot electron transport in scintillators: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huihui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Univ. (China); Li, Qi [Physical Sciences Division, IBM TJ Watson Research Center, Yorktown Heights, NY (United States); Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Lu, Xinfu; Williams, R.T. [Department of Physics, Wake Forest University, Winston Salem, NC (United States); Qian, Yiyang [College of Engineering and Applied Science, Nanjing University (China); Wu, Yuntao [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States)

    2016-10-15

    Despite recent intensive study on scintillators, several fundamental questions on scintillator properties are still unknown. In this work, we use ab-initio calculations to determine the energy dependent group velocity of the hot electrons from the electronic structures of several typical scintillators. Based on the calculated group velocities and optical phonon frequencies, a Monte-Carlo simulation of hot electron transport in scintillators is carried out to calculate the thermalization time and diffusion range in selected scintillators. Our simulations provide physical insights on a recent trend of improved proportionality and light yield from mixed halide scintillators. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A region segmentation based algorithm for building a crystal position lookup table in a scintillation detector

    International Nuclear Information System (INIS)

    Wang Haipeng; Fan Xin; Yun Mingkai; Liu Shuangquan; Cao Xuexiang; Chai Pei; Shan Baoci

    2015-01-01

    In a scintillation detector, scintillation crystals are typically made into a 2-dimensional modular array. The location of incident gamma-ray needs be calibrated due to spatial response nonlinearity. Generally, position histograms-the characteristic flood response of scintillation detectors-are used for position calibration. In this paper, a position calibration method based on a crystal position lookup table which maps the inaccurate location calculated by Anger logic to the exact hitting crystal position has been proposed. Firstly, the position histogram is preprocessed, such as noise reduction and image enhancement. Then the processed position histogram is segmented into disconnected regions, and crystal marking points are labeled by finding the centroids of regions. Finally, crystal boundaries are determined and the crystal position lookup table is generated. The scheme is evaluated by the whole-body positron emission tomography (PET) scanner and breast dedicated single photon emission computed tomography scanner developed by the Institute of High Energy Physics, Chinese Academy of Sciences. The results demonstrate that the algorithm is accurate, efficient, robust and applicable to any configurations of scintillation detector. (authors)

  2. Mo-Si-B-Based Coatings for Ceramic Base Substrates

    Science.gov (United States)

    Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)

    2015-01-01

    Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.

  3. An Experimental Study on Mechanical Modeling of Ceramics Based on Microstructure

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhang

    2015-11-01

    Full Text Available The actual grinding result of ceramics has not been well predicted by the present mechanical models. No allowance is made for direct effects of materials microstructure and almost all the mechanical models were obtained based on crystalline ceramics. In order to improve the mechanical models of ceramics, surface grinding experiments on crystalline ceramics and non-crystalline ceramics were conducted in this research. The normal and tangential grinding forces were measured to calculate single grit force and specific grinding energy. Grinding surfaces were observed. For crystalline alumina ceramics, the predictive modeling of normal force per grit fits well with the experimental result, when the maximum undeformed chip thickness is less than a critical depth, which turns out to be close to the grain size of alumina. Meanwhile, there is a negative correlation between the specific grinding energy and the maximum undeformed chip thickness. With the decreasing maximum undeformed chip thickness, the proportions of ductile removal and transgranular fracture increase. However, the grinding force models are not applicable for non-crystalline ceramic fused silica and the specific grinding energy fluctuates irregularly as a function of maximum undeformed chip thickness seen from the experiment.

  4. Neutron-gamma discrimination based on pulse shape discrimination in a Ce:LiCaAlF{sub 6} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Atsushi, E-mail: a-yamazaki@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University (Japan); Watanabe, Kenichi; Uritani, Akira [Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University (Japan); Iguchi, Tetsuo [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University (Japan); Kawaguchi, Noriaki [Tokuyama Corporation (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University (Japan); Fukuda, Kentaro; Suyama, Toshihisa [Tokuyama Corporation (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University (Japan)

    2011-10-01

    We demonstrate neutron-gamma discrimination based on a pulse shape discrimination method in a Ce:LiCAF scintillator. We have tried neutron-gamma discrimination using a difference in the pulse shape or the decay time of the scintillation light pulse. The decay time is converted into the rise time through an integrating circuit. A {sup 252}Cf enclosed in a polyethylene container is used as the source of thermal neutrons and prompt gamma-rays. Obvious separation of neutron and gamma-ray events is achieved using the information of the rise time of the scintillation light pulse. In the separated neutron spectrum, the gamma-ray events are effectively suppressed with little loss of neutron events. The pulse shape discrimination is confirmed to be useful to detect neutrons with the Ce:LiCAF scintillator under an intense high-energy gamma-ray condition.

  5. Manufacturing of Porous Ceramic Preforms Based on Halloysite Nanotubes (Hnts

    Directory of Open Access Journals (Sweden)

    Kujawa M.

    2016-06-01

    Full Text Available The aim of this study was to determine the influence of manufacturing conditions on the structure and properties of porous halloysite preforms, which during pressure infiltration were soaked with a liquid alloy to obtain a metal matrix composite reinforced by ceramic, and also to find innovative possibilities for the application of mineral nanotubes obtained from halloysite. The method of manufacturing porous ceramic preforms (based on halloysite nanotubes as semi-finished products that are applicable to modern infiltrated metal matrix composites was shown. The ceramic preforms were manufactured by sintering of halloysite nanotubes (HNT, Natural Nano Company (USA, with the addition of pores and canals forming agent in the form of carbon fibres (Sigrafil C10 M250 UNS SGL Group, the Carbon Company. The resulting porous ceramic skeletons, suggest innovative application capabilities mineral nanotubes obtained from halloysite.

  6. Central Tracking Detector Based on Scintillating Fibres

    CERN Multimedia

    2002-01-01

    Scintillating fibres form a reasonable compromise for central tracking detectors in terms of price, resolution, response time, occupancy and heat production. \\\\ \\\\ New fluorescents with large Stokes shifts have been produced, capable of working without wavelength shifters. Coherent multibundles have been developed to achieve high packing fractions. Small segments of tracker shell have been assembled and beam tests have confirmed expectations on spatial resolution. An opto-electronic delay line has been designed to delay the track patterns and enable coincidences with a first level trigger. Replacement of the conventional phosphor screen anode with a Si pixel chip is achieved. This tube is called ISPA-tube and has already been operated in beam tests with a scintillating fibres tracker. \\\\ \\\\ The aim of the proposal is to improve hit densities for small diameter fibres by increasing the fraction of trapped light, by reducing absorption and reflection losses, by reflecting light at the free fibre end, and by inc...

  7. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Directory of Open Access Journals (Sweden)

    Lu X

    2012-04-01

    Full Text Available Xiaoli Lu1,2, Yang Xia1, Mei Liu1, Yunzhu Qian3, Xuefeng Zhou4, Ning Gu4, Feimin Zhang1,41Institute of Stomatology, Nanjing Medical University, Nanjing, 2Nantong Stomatological Hospital, Nantong, 3Center of Stomatology, The Second Affiliated Hospital of Suzhou University, Suzhou, 4Suzhou Institute, Southeast University, Suzhou, People's Republic of ChinaAbstract: To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride] and anionic [poly(sodium 4-styrenesulfonate] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05. Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.Keywords: layer-by-layer, diatomite, nanoceramics, zirconia (ZrO2, dental materials

  8. Functional possibilities of organosilicon coatings on the surface of CsI-based scintillators

    CERN Document Server

    Andryustchenko, L A; Goriletsky, V I; Zaslavsky, B G; Zosim, D I; Charkina, T A; Trefilova, L N; Renker, D; Ritt, S; Mzhavia, D A

    2002-01-01

    It has been shown that a thin film (15+-5 mu m) based on organosilicon coating applied to all surface of CsI and CsI(Tl) scintillators excluding the output window, can combine the following functions: (1) covering from atmospheric effects; (2) scintillation light convertor of luminescence towards the region of higher spectral sensitivity of the photoreceiver and (3) ancillary surface for performance of operations on changing the light collection coefficient without the risk to exceed limited size tolerations. Wavelength-shifting coating effect on radiation hardness of pure CsI is discussed. After irradiation a new absorption bands appear in the range 250-300 nm mainly. So, contrary to the 310 nm emission, the energy losses for converted light remain the same.

  9. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chang-Zhong [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Tang, Yuanyuan [School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Lee, Po-Heng [Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (China); Liu, Chengshuai, E-mail: csliu@soil.gd.cn [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550009 (China); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region (China); Li, Fangbai [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China)

    2017-01-05

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4} spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr{sub 1.32}Fe{sub 0.19}Al{sub 0.49}O{sub 4}. Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr{sub 2}O{sub 3} and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the

  10. Detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic

    International Nuclear Information System (INIS)

    Liao, Chang-Zhong; Tang, Yuanyuan; Lee, Po-Heng; Liu, Chengshuai; Shih, Kaimin; Li, Fangbai

    2017-01-01

    Graphical abstract: Schematic illustration of detoxification and immobilization of chromite ore processing residue in spinel-based glass-ceramic matrix. All Cr(VI) species is reduced to Cr(III) and most chromium contents are incorporated into spinel structure where the residual chromium are resided in the glass networks. - Highlights: • COPR was detoxified and immobilized in a spinel-based glass-ceramic matrix. • Cr-rich crystalline phase was determined to be MgCr 1.32 Fe 0.19 Al 0.49 O 4 spinel. • The partitioning ratio of Cr into spinel in the glass-ceramic can be up to 77%. • No Cr(VI) was observed after conversion of COPR into a glass-ceramic. • TCLP results demonstrate the superiority of the final product in immobilizing Cr. - Abstract: A promising strategy for the detoxification and immobilization of chromite ore processing residue (COPR) in a spinel-based glass-ceramic matrix is reported in this study. In the search for a more chemically durable matrix for COPR, the most critical crystalline phase for Cr immobilization was found to be a spinel solid solution with a chemical composition of MgCr 1.32 Fe 0.19 Al 0.49 O 4 . Using Rietveld quantitative X-ray diffraction analysis, we identified this final product is with the phases of spinel (3.5 wt.%), diopside (5.2 wt.%), and some amorphous contents (91.2 wt.%). The partitioning ratio of Cr reveals that about 77% of the Cr was incorporated into the more chemically durable spinel phase. The results of Cr K-edge X-ray absorption near-edge spectroscopy show that no Cr(VI) was observed after conversion of COPR into a glass-ceramic, which indicates successful detoxification of Cr(VI) into Cr(III) in the COPR-incorporated glass-ceramic. The leaching performances of Cr 2 O 3 and COPR-incorporated glass-ceramic were compared with a prolonged acid-leaching test, and the results demonstrate the superiority of the COPR-incorporated glass-ceramic matrix in the immobilization of Cr. The overall results suggest that

  11. Control of Grain Boundaries and Defects in Nano-Engineered Transparent Scintillator Ceramics

    Science.gov (United States)

    2013-03-01

    milled   rather   than   mixed   with   a   mortar   and   pestle   before   sintering,   these   particulates   were   not...Technology   for   Advanced  Ceramics  (STAC),  Yokohama,   Japan  (Jun.  2010).     S.  R.  Podowitz,  N.  Haegel,  R

  12. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  13. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  14. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    International Nuclear Information System (INIS)

    Jing, T.; Lawrence Berkeley Lab., CA

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ∼20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 micros. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth

  15. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Tao [Univ. of California, Berkeley, CA (United States). Dept. of Engineering-Nuclear Engineering

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ~20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 {micro}s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  16. Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1989-01-01

    During the past year, considerable effort has been applied to the development of scintillating fiber detectors in several areas: new scintillation liquids and studies of their fluorescence properties; new fluorescent dyes based on non-intramolecular proton transfer; new dyes based on intramolecular proton transfer; incorporation of these new dyes in plastic (polystyrene) and liquid scintillation solutions; development of small cross section glass capillaries for the containment of liquid scintillators; studies of waveguide characteristics; studies of image intensifier phosphor screen characteristics; initial steps to form a collaboration to study and develop appropriate new properties of the Solid State Photomultiplier; construction of a new laboratory at Notre Dame to enhance our capabilities for further measurements and studies; and organization of and execution of a Workshop on Scintillating Fiber Detector Development for the SSC, held at Fermilab, November 14--16, 1988

  17. A comparison of different discrimination parameters for the DFT-based PSD method in fast scintillators

    International Nuclear Information System (INIS)

    Liu, G.; Yang, J.; Luo, X.L.; Lin, C.B.; Peng, J.X.; Yang, Y.

    2013-01-01

    Although the discrete Fourier transform (DFT) based pulse shape discrimination (PSD) method, realized by transforming the digitized scintillation pulses into frequency coefficients by using DFT, has been proven to effectively discriminate neutrons and γ rays, its discrimination performance depends strongly on the selection of the discrimination parameter obtained by the combination of these frequency coefficients. In order to thoroughly understand and apply the DFT-based PSD in organic scintillation detectors, a comparison of three different discrimination parameters, i.e. the amplitude of zero-frequency component, the amplitude difference between the amplitude of zero-frequency component and the amplitude of base-frequency component, and the ratio of the amplitude of base-frequency component to the amplitude of zero-frequency component, is described in this paper. An experimental setup consisting of an Americium–Beryllium (Am–Be) source, a BC501A liquid scintillator detector, and a 5Gsample/s 8-bit oscilloscope was built to assess the performance of the DFT-based PSD with each of these discrimination parameters in terms of the figure-of-merit (based on the separation of the event distributions). The third technique, which uses the ratio of the amplitude of base-frequency component to the amplitude of zero-frequency component as the discrimination parameter, is observed to provide the best discrimination performance in this research. - Highlights: • The spectrum difference between neutron pulse and γ-ray pulse was investigated. • The DFT-based PSD with different parameter definitions was assessed. • The way of using the ratio of magnitude spectrum provides the best performance. • The performance differences were explained from noise suppression features

  18. Time resolution measurements with an improved discriminator and conical scintillators

    International Nuclear Information System (INIS)

    McGervey, J.D.; Vogel, J.; Sen, P.; Knox, C.

    1977-01-01

    A new constant fraction discriminator with improved stability and walk characteristics is described. The discriminator was used with RCA C31024 photomultiplier tubes to test scintillators of conical and cylindrical shapes. Conical scintillators of 2.54 cm base diameter, 1.0 cm top diameter, and 2.54 cm height gave a fwhm of 155 ps for 60 Co gamma rays; larger conical scintillators gave an improvement of 10-15% in fwhm over cylindrical scintillators of equal volume. (Auth.)

  19. Preparation and leaching property of Nd-doped zirconolite-based glass-ceramic

    International Nuclear Information System (INIS)

    Wu Lang; Xu Dong; Teng Yuancheng; Li Yuxiang; Liu Zongqiang

    2014-01-01

    Nd-doped zirconolite-based glass-ceramics were prepared by melting-heat treatment technique. The effects of heat treatment processing on phase structure of the glass-ceramics were investigated. The leaching properties of the glass-ceramics were also evaluated by static leaching experiments (product consistency test, PCT). The results show that glass transformation temperature (T g ) and crystallization temperature of the glass-ceramics are about 580℃ and 740℃, respectively. CaTiO 3 phase forms easily when the glass-ceramics were prepared by two-step method, i.e. the glass was prepared first, and then it was heat-treated at the crystallization temperatures. 2M-zirconolite phase can be obtained by one-step method, i.e. the heat-treatment immediately followed by the melting process. In addition, the zirconolite crystals exhibit a dendritic shape. The normalized mass loss of B and Na in the glass-ceramics remains almost unchanged (about 1 mg/m 2 ) after 14 days, while the normalized mass loss of Nd reaches stable value (about 0.2 mg/m 2 ) after 28 days. The normalized mass loss of B, Na, and Nd in the glass-ceramics is an order of magnitude lower than that of borosilicate glasses, respectively. (authors)

  20. Scintillator device using a combined organic-inorganic scintillator as dose ratemeter

    International Nuclear Information System (INIS)

    Kolb, W.; Lauterbach, U.

    1974-01-01

    The dose ratemeter independent of energy in the energy region 17 keV to 3 MeV consists of an organic and an inorganic scintillator. The organic scintillation material of an anthracene monocrystal is surrounded by ZnS surface coating. The coating thickness of the inorganic scintillator ZnS is measured in such a manner for gamma and X-radiation below 100 keV that the light produced due to the incident radiation compensates for the decrease of light produced in the organic scintillator. The whole energy and dose rate region of interest for radiation protection can thus be measured with a detector volume of 135 cm 3 . (DG) [de

  1. Performance and characteristics of a new scintillator

    CERN Document Server

    Czirr, J B; MacGillivray, R R; Seddon, P J

    1999-01-01

    A new class of scintillators for neutron imaging, based upon lithium gadolinium borate, is described. These scintillators offer the ability to tailor their response to the neutron spectrum by varying the relative absorption of neutrons by the key constituents (lithium, gadolinium and boron). The isotopic compositions of each constituent can be varied in order to change the spectral response.

  2. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  3. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  5. Development of a two-dimensional imaging detector based on a neutron scintillator with wavelength-shifting fibers

    CERN Document Server

    Sakai, K; Oku, T; Morimoto, K; Shimizu, H M; Tokanai, F; Gorin, A; Manuilov, I V; Ryazantsev, A; Ino, T; Kuroda, K; Suzuki, J

    2002-01-01

    For evaluating neutron optical devices, a two-dimensional (2D) detector based on a neutron scintillator with wavelength-shifting fibers has been developed at RIKEN. We have investigated a ZnS(Ag)+LiF and a Li glass plate as neutron scintillators with the coding technique for realizing the large sensitive area of 50 x 50 mm sup 2. After fabricating the 2D detector, its performance was tested using cold neutrons at JAERI. As a result, a spatial resolution of propor to 1.0 mm was obtained. (orig.)

  6. Scintillation hodoscopes on the basis of hodoscopic photomultipliers using scintillation fibers

    International Nuclear Information System (INIS)

    Alimova, T.V.; Vasil'chenko, V.G.; Vechkanov, G.N.

    1986-01-01

    Scintillation hodoscopes characteristics and their design features have been considered. The space resolution for hodoscopes consisting of 4 layers of scintillation fibres 200 mm long and 1 mm in diameter is 0.4-0.6 mm. With 2 fibres layer 1 m long and 3.8 mm in diameter the space resolution 3 mm has been obtained. A possibility to construct 0.1 mm resolution scintillation hodoscopes is discussed

  7. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    Science.gov (United States)

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn; Paviet, Patricia Denise; Drigert, Mark William

    2016-11-29

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution of the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.

  8. A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    Science.gov (United States)

    Kamińska, D.; Gajos, A.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-08-01

    We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the { o-Ps }→ 3γ decays with angular and energy resolution equal to σ (θ ) ≈ {0.4°} and σ (E) ≈ 4.1 {keV}, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities.

  9. Plastic scintillators with {beta}-diketone Eu complexes for high ionizing radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Adadurov, A.F., E-mail: adadurov@isma.kharkov.ua [Institute for Scintillating Materials, NAN of Ukraine, Lenin Avenue 60, 61001 Kharkov (Ukraine); Zhmurin, P.N.; Lebedev, V.N.; Kovalenko, V.N. [Institute for Scintillating Materials, NAN of Ukraine, Lenin Avenue 60, 61001 Kharkov (Ukraine)

    2011-10-15

    Luminescent and scintillation properties of polystyrene-based plastic scintillators with {beta}-diketone Eu complexes are investigated. A scintillator with dibenzoylmethane Eu complex containing two phenyl groups demonstrates the maximum scintillating efficiency. It is shown that plastic scintillators efficiency is dramatically decreased if {beta}-diketone derivatives contain no phenyl groups as substituents. This fact can be explained by exciplex mechanism of energy transfer from a matrix to Eu complex. - Highlights: > Fluorescent properties of polystyrene scintillators with {beta}-diketone complexes of Eu were studied. > Scintillating efficiency is increased with the number of phenyl groups in Eu complex. > This is related to exciplex mechanism of energy transfer from a polymer matrix to Eu complex.

  10. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  11. New semiconductor scintillators ZnSe(Te,O) and integrated radiation detectors based thereon

    NARCIS (Netherlands)

    Ryzhikov, [No Value; Starzhinskiy, N; Gal'chinetskii, L; Gashin, P; Kozin, D; Danshin, E

    Data are presented on properties of a new type of scintillator based on isovalently doped crystals of zinc selenide. Depending upon concentration of activating dopants Te and O, the wavelength of the luminescence maximum is 590-640 nm, response time is 1-50 mus, and afterglow level after 5 ms is not

  12. Scale up issues involved with the ceramic waste form: ceramic-container interactions and ceramic cracking quantification

    International Nuclear Information System (INIS)

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T.; Riley, W. P. Jr.

    1999-01-01

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits

  13. Ceramic strengthening by tuning the elastic moduli of resin-based luting agents.

    Science.gov (United States)

    Spazzin, Aloísio O; Bacchi, Ataís; Alessandretti, Rodrigo; Santos, Mateus B; Basso, Gabriela R; Griggs, Jason; Moraes, Rafael R

    2017-03-01

    Resin-based luting agents (RBLAs) with tuned elastic moduli (E) were prepared and their influence on the strengthening, reliability, and mode of failure of luted feldspar ceramic was investigated. RBLAs with low E (2.6GPa), intermediate E (6.6GPa), and high E (13.3GPa) were prepared and used to coat acid-etched ceramic disks. Positive (untreated ceramic) and negative (acid-etched ceramic) control groups were tested. The response variables (n=30) were biaxial flexural strength (σ bf , MPa), characteristic strength (σ 0 , MPa), and Weibull modulus at the ceramic surface (z=0) and luting agent surface (z=-t 2 ). A 3D finite element analysis simulated the biaxial flexural test. Fractographic analysis and morphology of the bonded interfaces were analyzed using scanning electron microscopy. The RBLAs improved σ bf and σ 0 at z=0, particularly those with intermediate and high E, whereas the mechanical reliability was only affected in the negative control. At z=-t 2 , differences between all RBLAs were observed but the structural reliability was independent of the RBLA tested. Increasing E of the RBLA was associated with increased stress concentration at the RBLA and reduced stresses reaching the ceramic. Failures originated on the ceramic surface at the ceramic-cement interface. In the high E group, failure sometimes originated from the RBLA free surface. All RBLAs completely filled the ceramic irregularities. Increased E of the RBLA reduced the variability of strength, the stress reaching the ceramic structure, and sometimes altered the origin of failure. The use of high E RBLAs seems beneficial for luting feldspar ceramics. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. TECHNOLOGY OF PRODUCTION OF CERAMIC TILES BASED ON DOLERITE AND FUSIBLE CLAY

    Directory of Open Access Journals (Sweden)

    Pleshko Marianna Viktorovna

    2018-02-01

    Full Text Available The paper presents a completely new composition of the ceramic mass for production of ceramic tiles for interior lining of walls, on the basis of fusible clay. The optimal compositions of jade engobe and glossy glaze, the most suitable for this composition, are determined. A new technological scheme is developed for production of ceramic tiles for interior lining based on dolerite and fusible clay. The curve of firing, which is the most suitable for charge masses and decorative coating compositions being used, has been constructed. Subject: ceramic mass for the production of ceramic facing tiles. Ceramic tiles are the most popular building material in Russia. The most promising technology for its production from the standpoint of technical and economic efficiency is the technology of rapid single firing, which is rarely used at the plants of our country. In this regard, the development and implementation of new effective compositions of ceramic masses and decorative coatings that are the most compatible with the specifics of rapid single firing technology, based on new unconventional raw materials, are very relevant and promising. Research objectives: development of technological parameters, compositions of ceramic masses and decorative coatings of ceramic tiles for the internal wall lining that provide an increase in tiles production efficiency using the technology of rapid single firing through the use of non-traditional plagioclase-pyroxene raw materials: dolerites, loam and technogenic raw materials. Materials and methods: technological, numerical and experimental studies were conducted. To select the optimal composition of the ceramic mass, the method of mathematical planning was used, namely the simplex-centroid design of Scheffe. To identify the scientific foundations of the energy-efficient production technology being developed, differential thermal and X-ray phase, optical, electron microscopic and dilatometric studies were applied

  15. Radioactive flow detectors: liquid or solid scintillators

    International Nuclear Information System (INIS)

    Reich, A.R.

    1983-01-01

    During the past five years, two schools of thought have emerged producing two different types of radio-HPLC detectors. Based on the naphthalene-in-the-vial principle, manufacturers have developed heterogeneous scintillation detectors. In these detectors the anthracene or naphthalene crystals are replaced by other scintillators. In order to avoid dead space and turbulence, a narrow diameter tube is used, either straight, or more popularly formed into a coil or a 'U' as the cell. To optimize light transmission to the photomultiplier tubes, mirrors are used. Due to limiting factors in this technique the counting efficiency for tritium is below the 10 percent level. The other school of radio-HPLC detectors based their design on classical liquid scintillation counting technology. In a homogeneous detector, the effluent from the HPLC system is mixed with a suitable liquid scintillator before entering the counting cell. The cell design is typically a flat glass or Teflon coil tightly sandwiched between two photomultiplier tubes, making good optical contact without the use of mirrors. Depending on the chromatographic effluent, 3 H efficiencies between 25 to 50 percent, and 14 C counting efficiencies up to 85 percent can be achieved

  16. Plastic scintillators with β-diketone Eu complexes for high ionizing radiation detection

    International Nuclear Information System (INIS)

    Adadurov, A.F.; Zhmurin, P.N.; Lebedev, V.N.; Kovalenko, V.N.

    2011-01-01

    Luminescent and scintillation properties of polystyrene-based plastic scintillators with β-diketone Eu complexes are investigated. A scintillator with dibenzoylmethane Eu complex containing two phenyl groups demonstrates the maximum scintillating efficiency. It is shown that plastic scintillators efficiency is dramatically decreased if β-diketone derivatives contain no phenyl groups as substituents. This fact can be explained by exciplex mechanism of energy transfer from a matrix to Eu complex. - Highlights: → Fluorescent properties of polystyrene scintillators with β-diketone complexes of Eu were studied. → Scintillating efficiency is increased with the number of phenyl groups in Eu complex. → This is related to exciplex mechanism of energy transfer from a polymer matrix to Eu complex.

  17. A new anti-neutrino detection technique based on positronium tagging with plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Consolati, G. [Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa 34, 20156 Milano (Italy); Franco, D., E-mail: dfranco@in2p3.fr [APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, Sorbonne Paris Cité, 75205 Paris (France); Jollet, C. [IPHC, Université de Strasbourg, CNRS/IN2P3, 67037 Strasbourg (France); Meregaglia, A., E-mail: amerega@in2p3.fr [IPHC, Université de Strasbourg, CNRS/IN2P3, 67037 Strasbourg (France); Minotti, A. [IPHC, Université de Strasbourg, CNRS/IN2P3, 67037 Strasbourg (France); Perasso, S.; Tonazzo, A. [APC, Univ. Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs. de Paris, Sorbonne Paris Cité, 75205 Paris (France)

    2015-09-21

    The main signature for anti-neutrino detection in reactor and geo-neutrino experiments based on scintillators is provided by the space–time coincidence of positron and neutron produced in the Inverse Beta Decay reaction. Such a signature strongly suppresses backgrounds and allows for measurements performed underground with a relatively high signal-to-background ratio. In an aboveground environment, however, the twofold coincidence technique is not sufficient to efficiently reject the high background rate induced by cosmogenic events. Enhancing the positron–neutron twofold coincidence efficiency may pave the way to future aboveground detectors for reactor monitoring. We propose a new detection scheme based on a threefold coincidence, among the positron ionization, the ortho-positronium (o-Ps) decay, and the neutron capture, in a sandwich detector with alternated layers of plastic scintillator and aerogel powder. We present the results of a set of dedicated measurements on the achievable light yield and on the o-Ps formation and lifetime. The efficiencies for signal detection and background rejection of a preliminary detector design are also discussed.

  18. Fine-grained hodoscopes based on scintillating optical fibers

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    In order to exploit the high event rates at ISABELLE, it will be necessary to have fast detection with fine spatial resolution. The authors are currently constructing a prototype fine-grained hodoscope, the elements of which are scintillating optical fibers. The fibers have been drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. So far it has been demonstrated with one mm diameter fibers, that with a photodetector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes used either in the linear or Geiger mode. The program of fiber development and evaluation is described. The status of the APD as a readout element is discussed, and an optical encoding readout scheme is described for events of low multiplicity

  19. Theoretical analysis of stack gas emission velocity measurement by optical scintillation

    International Nuclear Information System (INIS)

    Yang Yang; Dong Feng-Zhong; Ni Zhi-Bo; Pang Tao; Zeng Zong-Yong; Wu Bian; Zhang Zhi-Rong

    2014-01-01

    Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously. (general)

  20. Photonic crystals: A novel approach to enhance the light output of scintillation based detectors

    CERN Document Server

    Knapitsch, A; Leclercq, J L; Letartre, X; Auffray, E; Fabjan, C W

    2011-01-01

    Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high electronic density, resulting in a large index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent studies have shown that those limits can be overcome by means of light scattering effects of photonic crystals (PhCs). In our simulations we could show light yield improvements between 90\\% and 110\\% when applying PhC structures to different scintillator materials. To evaluate the results, a PhC modified scintillator was produced in cooperation with the NIL (Nanotechnology Institute of Lyon). By using s...

  1. ESR and TSL study of hole and electron traps in LuAG:Ce,Mg ceramic scintillator

    Czech Academy of Sciences Publication Activity Database

    Hu, C.; Liu, S.-P.; Fasoli, M.; Vedda, A.; Nikl, Martin; Feng, X. Q.; Pan, Y.B.

    2015-01-01

    Roč. 45, Jul (2015), s. 252-257 ISSN 0925-3467 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : LuAG * scintillator * codoping * Ce3+ * O- center Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  2. Scintillating properties of frozen new liquid scintillators

    CERN Document Server

    Britvich, G I; Golovkin, S V; Martellotti, G; Medvedkov, A M; Penso, G; Soloviev, A S; Vasilchenko, V G

    1999-01-01

    The light emission from scintillators which are liquid at room temperature was studied in the interval between $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C, where the phase transition from liquid to solid takes place. The light yield measured at $-120$~$^{\\circ}$C is about twice as much as that observed at $+20$~$^{\\circ}$C. By cooling the scintillator from $+20$~$^{\\circ}$C to $-120$~$^{\\circ}$C and then heating it from $-120$~$^{\\circ}$C to $+20$~$^{\\circ}$C, the light yield varies in steps at well defined temperatures, which are different for the cooling and heating processes. These hysteresis phenomena appear to be related to the solvent rather than to the dopant. The decay time of scintillation light was measured at $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C. Whilst at room temperature most of the light is emitted with a decay time of 6--8 ns, at $-120$~$^{\\circ}$C a slower component, with a decay time of 25--35 ns, becomes important.

  3. Scintillator manufacture at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  4. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  5. Aqueous dispersion of red clay-based ceramic powder with the addition of starch

    Directory of Open Access Journals (Sweden)

    Maria Victoria Alcantar Umaran

    2013-04-01

    Full Text Available The optimum dispersion and rheological properties of red clay-based ceramic suspension loaded with unary and binary starch were investigated in aqueous medium. The aqueous ceramic suspension was prepared consisting of red clay, quartz, feldspar, and distilled water. Using a polyelectrolyte dispersant (Darvan 821A, the ternary ceramic powder was initially optimized to give the smallest average particle size at 0.8 wt. (% dispersant dosage as supported by sedimentation test. This resulted into an optimum high solid loading of 55 wt. (%. The addition of either unary or binary starches to the optimized ceramic slurry increased the viscosity but maintained an acceptable fluidity. The mechanism of such viscosity increase was found to be due to an adsorption of starch granules onto ceramic surfaces causing tolerable agglomeration. Correspondingly, the rheological evaluations showed that the flow behaviors of all starch-loaded ceramic slurries can be described using Herschel-Bulkley model. The parameters from this model indicated that all ceramic slurries loaded with starch are shear thinning that is required for direct casting process.

  6. A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    International Nuclear Information System (INIS)

    Kaminska, D.; Gajos, A.; Czerwinski, E.; Alfs, D.; Bednarski, T.; Bialas, P.; Dulski, K.; Glowacz, B.; Gupta-Sharma, N.; Korcyl, G.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedzwiecki, Sz.; Pawlik-Niedzwiecka, M.; Rudy, Z.; Wieczorek, A.; Zielinski, M.; Moskal, P.; Curceanu, C.; Silarski, M.; Gorgol, M.; Jasinska, B.; Zgardzinska, B.; Hiesmayr, B.C.; Kowalski, P.; Raczynski, L.; Wislicki, W.; Krzemien, W.

    2016-01-01

    We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the o-Ps → 3γ decays with angular and energy resolution equal to σ(θ) ∼ 0.4 circle and σ(E) ∼ 4.1 keV, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities. (orig.)

  7. A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Kaminska, D.; Gajos, A.; Czerwinski, E.; Alfs, D.; Bednarski, T.; Bialas, P.; Dulski, K.; Glowacz, B.; Gupta-Sharma, N.; Korcyl, G.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedzwiecki, Sz.; Pawlik-Niedzwiecka, M.; Rudy, Z.; Wieczorek, A.; Zielinski, M.; Moskal, P. [Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Krakow (Poland); Curceanu, C.; Silarski, M. [INFN, Laboratori Nazionali di Frascati, CP 13, Frascati (Italy); Gorgol, M.; Jasinska, B.; Zgardzinska, B. [Maria Curie-Sklodowska University, Department of Nuclear Methods, Institute of Physics, Lublin (Poland); Hiesmayr, B.C. [University of Vienna, Faculty of Physics, Vienna (Austria); Kowalski, P.; Raczynski, L.; Wislicki, W. [Swierk Computing Centre, National Centre for Nuclear Research, Otwock-Swierk (Poland); Krzemien, W. [National Centre for Nuclear Research, High Energy Department, Otwock-Swierk (Poland)

    2016-08-15

    We present a study of the application of the Jagiellonian positron emission tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the o-Ps → 3γ decays with angular and energy resolution equal to σ(θ) ∼ 0.4 {sup circle} and σ(E) ∼ 4.1 keV, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pile-ups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities. (orig.)

  8. Characterizing the response of a scintillator-based detector to single electrons

    International Nuclear Information System (INIS)

    Sang, Xiahan; LeBeau, James M.

    2016-01-01

    Here we report the response of a high angle annular dark field scintillator-based detector to single electrons. We demonstrate that care must be taken when determining the single electron intensity as significant discrepancies can occur when quantifying STEM images with different methods. To account for the detector response, we first image the detector using very low beam currents (∼8 fA), and subsequently model the interval between consecutive single electrons events. We find that single electrons striking the detector present a wide distribution of intensities, which we show is not described by a simple function. Further, we present a method to accurately account for the electrons within the incident probe when conducting quantitative imaging. The role detector settings play on determining the single electron intensity is also explored. Finally, we extend our analysis to describe the response of the detector to multiple electron events within the dwell interval of each pixel. - Highlights: • We show that the statistical description of single electron response of scintillator based detectors can be measured using a combination of small beam currents and short dwell times. • The average intensity from the probability distribution function can be used to normalize STEM images regardless of beam current and contrast settings. • We obtain consistent QSTEM normalization results from the single electron method and the conventional detector scan method.

  9. Scintillation counting apparatus

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1978-01-01

    Apparatus is described for the accurate measurement of radiation by means of scintillation counters and in particular for the liquid scintillation counting of both soft beta radiation and gamma radiation. Full constructional and operating details are given. (UK)

  10. An ideal scintillator – ZnO:Sc for sub-nanosecond pulsed radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kan, E-mail: zhangkan8414@163.com [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Ouyang, Xiaoping [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Xi’an Jiaotong University, Xi’an 710049 (China); Song, Zhaohui; Han, Hetong [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Zuo, Yanbin [China Nonferrous Metal Guilin Research Institute of Geology for Mineral Resource, Guilin 541004 (China); Guan, Xingyin [Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Xi’an Jiaotong University, Xi’an 710049 (China); Tan, Xinjian; Zhang, Zichuan; Liu, Junhong [Northwest Institute of Nuclear Technology, Xi’an 710024 (China)

    2014-08-21

    ZnO-based scintillators are particularly well suited for use as ultrafast pulsed radiation detectors which have shown broad application prospects in various fields such as the inertial confinement fusion (ICF) diagnosis, the nuclear reaction mechanism, etc. Using the hydro-thermal method, a ZnO single-crystal doped with Scandium (ZnO:Sc) sample was prepared. As a new ZnO-based scintillator, the scintillation characteristics of ZnO:Sc have not been reported previously. In this paper, optical and scintillation characteristics of ZnO:Sc single-crystal were studied. Also a scintillation detector based on ZnO:Sc was designed. Excited by the alpha-particle, the rise time of ZnO:Sc detectors was from 162.5 to 170.7 ps, and the fall time was from 300.4 to 328.8 ps.

  11. An ideal scintillator – ZnO:Sc for sub-nanosecond pulsed radiation detection

    International Nuclear Information System (INIS)

    Zhang, Kan; Ouyang, Xiaoping; Song, Zhaohui; Han, Hetong; Zuo, Yanbin; Guan, Xingyin; Tan, Xinjian; Zhang, Zichuan; Liu, Junhong

    2014-01-01

    ZnO-based scintillators are particularly well suited for use as ultrafast pulsed radiation detectors which have shown broad application prospects in various fields such as the inertial confinement fusion (ICF) diagnosis, the nuclear reaction mechanism, etc. Using the hydro-thermal method, a ZnO single-crystal doped with Scandium (ZnO:Sc) sample was prepared. As a new ZnO-based scintillator, the scintillation characteristics of ZnO:Sc have not been reported previously. In this paper, optical and scintillation characteristics of ZnO:Sc single-crystal were studied. Also a scintillation detector based on ZnO:Sc was designed. Excited by the alpha-particle, the rise time of ZnO:Sc detectors was from 162.5 to 170.7 ps, and the fall time was from 300.4 to 328.8 ps

  12. Ionospheric scintillation monitoring and modelling

    Directory of Open Access Journals (Sweden)

    Mariusz Pozoga

    2009-06-01

    Full Text Available

    This paper presents a review of the ionospheric scintillation monitoring and modelling by the European groups

    involved in COST 296. Several of these groups have organized scintillation measurement campaigns at low and

    high latitudes. Some characteristic results obtained from the measured data are presented. The paper also addresses the modeling activities: four models, based on phase screen techniques, with different options and application domains are detailed. Finally some new trends for research topics are given. This includes the wavelet analysis, the high latitudes analysis, the construction of scintillation maps and the mitigation techniques.


  13. Development of gamma-ray-suppression type of small-sized neutron detector based on a 6Li-glass scintillator

    International Nuclear Information System (INIS)

    Matsumoto, T.; Harano, H.; Shimoyama, T.; Kudo, K.; Uritani, A.

    2005-01-01

    A small-sized thermal neutron detector based on a 6 Li-glass scintillator and a plastic optical fiber was developed for measurement of a dose distribution of thermal neutrons in a thermal neutron standard field. A contribution of gamma rays can not be neglected in the neutron measurement with this detector, although the 6 Li-glass scintillator can be distinguishable for the neutrons and the gamma rays by difference of each pulse height. Moreover, to reduce an uncertainty of neutron counts caused by the gamma ray background around a discrimination level, we suggested a gamma-ray-suppression type of small-sized thermal neutron detector with a 6 Li-glass scintillator, a hollow CsI(Tl) scintillator and plastic optical fibers. The detector can reject signals due to the gamma rays with an anti-coincidence method. In the present paper, we evaluated an ability of a gamma-ray suppression of the detector using the EGS4 electron-photon transport Monte-Carlo code with the PRESTA routine. As the results, the sufficient gamma-ray suppression effect was shown. (author)

  14. Assessment of full ceramic solid oxide fuel cells based on modified strontium titanates

    DEFF Research Database (Denmark)

    Holtappels, Peter; Ramos, Tania; Sudireddy, Bhaskar Reddy

    2014-01-01

    stimulated the development for full ceramic anodes based on strontium titanates. Furthermore, the Ni-cermet is primarily a hydrogen oxidation electrode and efficiency losses might occur when operating on carbon containing fuels. In the European project SCOTAS-SOFC full ceramic cells comprising CGO...

  15. Properties and shaping of lightweight ceramics based on phosphate-bonded hollow silica microspheres

    NARCIS (Netherlands)

    With, de G.; Verweij, H.

    1986-01-01

    The values for the Young's modulus, strength, fracture toughness and thermal conductivity of lightweight ceramics based on phosphate-bonded hollow silica microspheres are reported as a function of the processing conditions. They are compared with the relevant data for other lightweight ceramic

  16. A novel epitaxially grown LSO-based thin-film scintillator for micro-imaging using hard synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Douissard, P.A.; Martin, T.; Chevalier, V.; Rack, A. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Cecilia, A.; Baumbach, T.; Rack, A. [Karlsruhe Inst Technol ANKA, D-76021 Karlsruhe, (Germany); Couchaud, M. [CEA LETI, F-38054 Grenoble, (France); Dupre, K. [FEE GmbH, D-55743 Idar Oberstein, (Germany); Kuhbacher, M. [Helmholtz Zentrum Berlin Mat and Energie, D-14109 Berlin, (Germany)

    2010-07-01

    The efficiency of high-resolution pixel detectors for hard X-rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron-based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency a novel scintillator based on doped Lu{sub 2}SiO{sub 5} (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO-based thin crystal together with the high stopping power of the material allows for high-performance indirect X-ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible-light and the afterglow are investigated. A set-up to study the effect of the thin-film scintillator's temperature on its conversion efficiency is described as well it delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X-ray imaging systems based on different diffraction-limited visible-light optics and CCD cameras using among others LSO-based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high-resolution computed tomography for life sciences. (authors)

  17. Liquid scintillation measurement. I

    International Nuclear Information System (INIS)

    Rexa, R.; Tykva, R.

    1983-01-01

    The individual components of scintillation solutions and their tasks are listed. Explained briefly is the scintillation process in a liquid scintillator. Factors are discussed which influence this process as are methods applied to supress their influence. They include: ionization quenching, quenching by dilution and concentration, chemical, colour, phase and photon quenching and single-photon events causing an undesirable backgorund. (M.D.)

  18. New, dense, and fast scintillators based on rare-earth tantalo-niobates

    International Nuclear Information System (INIS)

    Voloshyna, O.V.; Boiaryntseva, I.A.; Baumer, V.N.; Ivanov, A.I.; Korjik, M.V.; Sidletskiy, O.Ts.

    2014-01-01

    Samples of undoped yttrium and gadolinium tantalo-niobates with common formulae RE(Nb x Ta 1−x )O 4 , where RE=Y or Gd and x=0–1, have been obtained by solid-state reaction. Systematic study of structural, luminescent, and scintillation properties of these compounds was carried out. Lattice parameters and space groups of the mixed compounds were identified. UV- and X-ray luminescence spectra, as well as relative light outputs and scintillation decay times are measured. Gadolinium tantalo-niobate with the formulae GdNb 0.2 Ta 0.8 O 4 showed the light output around 13 times larger than PbWO 4 and fast decay with time constant 12 ns without additional slow component. Gadolinium tantalo-niobates may be considered as promising materials for high energy physics due to extremely high density, substantial light output, and fast decay. -- Highlights: •Structural, optical and scintillation properties of the rare earth tantalo-niobates were studied. •Light output shows about gradual increase with Nb content in GdTa x Nb 1−x O 4 . •Light output increases by 2–7 times relatively to yttrium tantalate and niobate in YTa x Nb 1−x O 4 . •GdTa 0.8 Nb 0.2 O 4 demonstrates the most promising scintillation parameters

  19. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics

    Science.gov (United States)

    Varghese, Jobin; Vahera, Timo; Ohsato, Hitoshi; Iwata, Makoto; Jantunen, Heli

    2017-10-01

    In this paper, a novel low-temperature sintering substrate for low temperature co-fired ceramic applications based on indialite/cordierite glass ceramics with Bi2O3 as a sintering aid showing low permittivity (εr) and ultralow dielectric loss (tan δ) is described. The fine powder of indialite was prepared by the crystallization of cordierite glass at 1000 °C/1 h. The optimized sintering temperature was 900 °C with 10 wt % Bi2O3 addition. The relative density achieved was 97%, and εr and tan δ were 6.10 and 0.0001 at 1 MHz, respectively. The composition also showed a moderately low temperature coefficient of relative permittivity of 118 ppm/°C at 1 MHz. The obtained linear coefficient of thermal expansion was 3.5 ppm/°C in the measured temperature range of 100 to 600 °C. The decreasing trend in dielectric loss, the low relative permittivity at 1 MHz, and the low thermal expansion of the newly developed composition make it an ideal choice for radio frequency applications.

  20. Development of tungsten coatings for the corrosion protection of alumina-based ceramics

    International Nuclear Information System (INIS)

    Arons, R.M.; Dusek, J.T.; Hafstrom, J.W.

    1979-01-01

    A means of applying tungsten coatings to an alumina based ceramic is described. A slurry of pure tungsten was prepared and applied by brush coating or slip casting on the alumina-3 wt % Yt small crucible. The composite was fired and a very dense ceramic crucible with a crack free tungsten coating was produced

  1. Influence of clay mineralogy on clay based ceramic products

    International Nuclear Information System (INIS)

    Radzali Othman; Tuan Besar Tuan Sarif; Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Abu Bakar Aramjat

    1996-01-01

    Clay-based ceramic products can either be produced directly from a suitable clay source without the need further addition or such products can be produced from a ceramic body formulated by additions of other raw materials such as feldspar and silica sand. In either case, the mineralogical make-up of the clay component plays a dominating role in the fabrication and properties of the ceramic product. This study was sparked off by a peculiar result observed in one of five local ball clay samples that were used to reformulate a ceramic body. Initial characterisation tests conducted on the clays indicated that these clays can be classified as kaolinitic. However, one of these clays produced a ceramic body that is distinctively different in terms of whiteness, smoothness and density as compared to the other four clays. Careful re-examination of other characterisation data, such as particle size distribution and chemical analysis, failed to offer any plausible explanation. Consequently, the mineralogical analysis by x-ray diffraction was repeated by paying meticulous attention to specimen preparation. Diffraction data for the clay with anomalous behaviour indicated the presence of a ∼ 10A peak that diminished when the same specimen was re-tested after heating in an oven at 12O degree C whilst the other four clays only exhibit the characteristic kaolinite (Al sub 2 O sub 3. 2SiO sub 2. 2H sub 2 0) and muscovite peaks at ∼ 7A and ∼ 10A before and after heat treatment. This suggests the presence of the mineral halloysite (A1 sub 2 0 sub 3. 2SiO sub 2.4H sub 2 0) in that particular clay. This difference in mineralogy can be attributed to account for the variations in physical properties of the final product. Consequently, this paper reviews in general the precautionary measures that must be adhered to during any mineralogical investigation of clay minerals or clay-based materials. The common pitfalls during specimen preparation, machine settings and interpretation of

  2. Preparation of affordable and multifunctional clay-based ceramic filter matrix for treatment of drinking water.

    Science.gov (United States)

    Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G

    2018-02-01

    Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3  g -1 ), surface area (124.61 m 2  g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.

  3. Lithography-based ceramic manufacture (LCM) of auxetic structures: present capabilities and challenges

    International Nuclear Information System (INIS)

    Lantada, Andrés Díaz; De Blas Romero, Adrián; Schwentenwein, Martin; Jellinek, Christopher; Homa, Johannes

    2016-01-01

    Auxetic metamaterials are known for having a negative Poisson’s ratio (NPR) and for displaying the unexpected properties of lateral expansion when stretched and densification when compressed. Even though a wide set of micro-manufacturing resources have been used for the development of auxetic metamaterials and related devices, additional precision and an extension to other families of materials is needed for their industrial expansion. In addition, their manufacture using ceramic materials is still challenging. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of lithography-based ceramic manufacturing. The process stands out for its precision and complex three-dimensional geometries attainable, without the need of supporting structures, and for enabling the manufacture of ceramic auxetics with their geometry controlled from the design stage with micrometric precision. To our knowledge it represents the first example of application of this technology to the manufacture of auxetic geometries using ceramic materials. We have used a special three-dimensional auxetic design whose remarkable NPR has been previously highlighted. (paper)

  4. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    Science.gov (United States)

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns

  5. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  6. Study on optical properties of ceramics scintillator for X-ray CT equipment. (Pt. 2)

    International Nuclear Information System (INIS)

    Nakamura, Ryouhei; Tsukuda, Yasuo; Nitanda, Humio

    1993-01-01

    The scintillator elements in X-ray CT equipment of the third generation type require high uniformity of distribution of light output as well as quality response characteristic. Parameters responsible for the distribution of light output were studied using the Monte Carlo method. Although the scattering coefficient was neglected, close agreement was obtained between calculated and experimental results. Calculated results indicated that relative output drop at both ends decreased with increasing optical absorption coefficient and was constant for X-ray absorption factor. (author)

  7. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  8. Development of ceramic support the base of cordierite for one-side welding

    International Nuclear Information System (INIS)

    Almeida, L.L.P. de; Vieira, C.M.F.; Paranhos, R.P.R.; Tatagiba, L.C.S.

    2009-01-01

    This work has as objective develops ceramic backing for the execution of one side welds in steel. The backing consists the mixture of refractory mineral (Cordierite), adhesive (sodium silicate) and water. Test coupons produced by uniaxial pressing and burned to 1100 deg C they were submitted to physical and mechanical tests for determination the water absorption and flexion strength, respectively. The microstructure of ceramics produced was evaluated by diffraction of X-Ray, scanning electron microscopy and optical microscopy. After the production of the ceramic backing, welding tests were accomplished by the process MIG-MAG to evaluate the format of the weld bead. Based on the results obtained, during and after the welding accomplished with the employment of the ceramic backing, has shown that it is technically feasible for one-side welding. (author)

  9. Basic study of Eu.sup.2+./sup.-doped garnet ceramic scintillator produced by spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Sugiyama, K.; Yanagida, T.; Fujimoto, Y.; Yokota, Y.; Ito, A.; Nikl, Martin; Goto, T.; Yoshikawa, A.

    2012-01-01

    Roč. 35, č. 2 (2012), s. 222-226 ISSN 0925-3467 R&D Projects: GA MŠk LH12150 Institutional research plan: CEZ:AV0Z10100521 Keywords : Eu 2+ 5d–4f transition * scintillator * spark plasma sintering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.918, year: 2012

  10. Electron traps and scintillation mechanism in YAlO3:Ce and LuAlO3:Ce scintillators

    International Nuclear Information System (INIS)

    Wojtowicz, A.J.; Glodo, J.; Drozdowski, W.; Przegietka, K.R.

    1998-01-01

    In this paper we present the results of thermoluminescence, isothermal decay and scintillation light yield measurements on two isostructural scintillator materials, YAlO 3 :Ce and LuAlO 3 :Ce. In addition to the variety of deep traps identified by thermoluminescence and isothermal decays, scintillation light yield experiments demonstrate the presence in both materials of a number of relatively shallow traps. While the deep traps may reduce the scintillation light yield, they do not influence the kinetics of the process. The shallow traps, on the other hand, by interfering with the process of radiative recombination of charge carriers via Ce 3+ ions, can strongly affect not only the yield of the scintillation process but its kinetics as well. The presence of shallow traps provides a consistent explanation for a number of poorly understood relationships between the two scintillator materials, including a higher room temperature scintillation light yield and longer scintillation decay time in YAlO 3 :Ce, and a longer scintillation rise time in LuAlO 3 :Ce. Theoretical analysis indicates that elimination of these traps would make the two materials nearly identical in scintillator performance. Although the specific identity of all traps remains elusive, the performance of both scintillator materials is now, in practical terms, fully understood. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Test of a single module of the J-PET scanner based on plastic scintillators

    International Nuclear Information System (INIS)

    Moskal, P.; Niedźwiecki, Sz.; Bednarski, T.; Czerwiński, E.; Kapłon, Ł.; Kubicz, E.; Moskal, I.; Pawlik-Niedźwiecka, M.; Sharma, N.G.; Silarski, M.; Zieliński, M.; Zoń, N.; Białas, P.; Gajos, A.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.

    2014-01-01

    A Time of Flight Positron Emission Tomography scanner based on plastic scintillators is being developed at the Jagiellonian University by the J-PET collaboration. The main challenge of the conducted research lies in the elaboration of a method allowing application of plastic scintillators for the detection of low energy gamma quanta. In this paper we report on tests of a single detection module built out from the BC-420 plastic scintillator strip (with dimensions of 5×19×300 mm 3 ) read out at two ends by Hamamatsu R5320 photomultipliers. The measurements were performed using collimated beam of annihilation quanta from the 68 Ge isotope and applying the Serial Data Analyzer (Lecroy SDA6000A) which enabled sampling of signals with 50 ps intervals. The time resolution of the prototype module was established to be better than 80 ps (σ) for a single level discrimination. The spatial resolution of the determination of the hit position along the strip was determined to be about 0.93 cm (σ) for the annihilation quanta. The fractional energy resolution for the energy E deposited by the annihilation quanta via the Compton scattering amounts to σ(E)/E≈0.044/√(E(MeV)) and corresponds to the σ(E)/E of 7.5% at the Compton edge

  12. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  13. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  14. Synthesis, characterization and potential utility of doped ceramics based catalysts

    Science.gov (United States)

    Sharma, Ritika; Yadav, Deepshikha; Singh, G. P.; Vyas, G.; Bhojak, N.

    2018-05-01

    Excessive utilization of petrol, diesel and other fossil fuels, continuous increase in their prices, and the big problem of carbon dioxide mission have encouraged scientists and technologist to find either new sources of energy or to develop technologies for the sustainable utilization of fuel. Biofuels are the only energy technologies that can resolve the problem of carbon dioxide emission in the atmosphere as well as reduce the amount of fossil fuel burned. Bio ethanol and biodiesel are the most common types of biofuel which are being used at present. Biodiesel has become more interesting for all the researchers in present scenario. Various feedstock viz. edible, nonedible oils, waste cooking oil, animal fat, algae etc, are using for the production of biodiesel worldwide according to their availability. Selection of efficient heterogeneous catalysts for biodiesel preparation still needs more attention of researchers. The present investigation deals with determination of synthesis, characterization and applications of doped ceramic based materials in different medium. Two of doped ceramic based catalysts which has been potentially used for the production of biodiesel. The Engine performance of biodiesel samples, made from industrial waste oils and ceramic based catalyst, have also been investigated and found up to satisfactory levels.

  15. Optimum plastic scintillator and optical fiber combination for brachytherapy dosimetry

    International Nuclear Information System (INIS)

    Arnfield, Mark R.; Gaballa, Hani E.; Zwicker, Robert D.; Islam, Quazi; Schmidt-Ullrich, Rupert

    1995-01-01

    Purpose/Objective: There have been several recent reports using plastic scintillators to measure dose in photon and electron beams. External beam measurements agreed well with standard ion chamber dosimetry. This was implemented by using two identical, parallel optical fibers with a small piece of plastic scintillator attached to one. We have constructed a similar device for application to brachytherapy. Brachytherapy dosimetry is a more difficult problem than external beam because of high dose gradients and widely ranging photon energies. Based on detailed spectral measurements, we have designed a dosimeter specifically to meet the unique, stringent needs of brachytherapy. Materials and Methods: The work consisted of two stages. In the first stage, we measured the optical spectra emitted by commercial plastic scintillators and silica core optical fibers in the presence of a 10 Curie iridium 192 HDR source. In the second stage, the spectral information was used to select an optimum combination of scintillator and fiber which were incorporated in the dosimeter. Equipment for the spectral measurements included a 0.1 meter monochromator with a sensitive photomultiplier (PMT) with flat response across the visible. The resolution of spectral scans was 4 nm. The dosimeter was constructed with a 1mm x 3mm piece of plastic scintillator bonded with optical cement to a 0.6 mm diameter silica core optical fiber. A second, identical optical fiber running alongside the first, with no scintillator attached, was used for background subtraction. Two PMTs with high sensitivity in the visible were used at the fiber distal ends. There was a space for an optical filter between the fiber and the PMTs, whose purpose is described below. The PMTs were connected to a differential pair whose output was transferred to a current source for measurement by a standard electrometer. Results: The scintillation spectra of six different types of silica core optical fibers in the presence of the

  16. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    International Nuclear Information System (INIS)

    Stumpf, Aisha S.G.; Bergmann, Carlos P.; Vicenzi, Juliane; Fetter, Rebecca; Mundstock, Karina S.

    2009-01-01

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 o C. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, K IC , and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 o C, feldspar content up to 10% improved flexural strength and K IC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 o C but a beneficial effect on K IC of ceramics sintered at 1600 o C. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  17. Theoretical and experimental determination of mass attenuation coefficients of lead-based ceramics and their comparison with simulation

    Directory of Open Access Journals (Sweden)

    Vejdani-Noghreiyan Alireza

    2016-01-01

    Full Text Available Mass attenuation coefficient of lead-based ceramics have been measured by experimental methods and compared with theoretical and Monte Carlo simulation results. Lead-based ceramics were prepared using mixed oxide method and the X-ray diffraction analysis was done to evaluate the crystal structure of the produced handmade ceramics. The experimental results show good agreement with theoretical and simulation results. However at two gamma ray energies, small differences between experimental and theoretical results have been observed. By adding other additives to ceramics and observing the changes in the shielding properties such as flexibility, one can synthesize and optimize ceramics as a neutron shield.

  18. Construction and Testing of a 21 GHz Ceramic Based Power Extractor

    CERN Document Server

    Newsham, D; Carron, G; Döbert, Steffen; Gai, W; Konecny, R; Liu, W; Smirnov, A Yu; Thorndahl, L; Wilson, Ian H; Wuensch, Walter; Yu, D

    2003-01-01

    A ceramic based power extractor [1] operating at 21 GHz was built by DULY Research Inc. and tested at CTF2, the CERN Linear Collider (CLIC) Test Facility. The structure includes a ceramic extractor section, a 2-output-port, circular-to-rectangular waveguide coupler, and a 3-port rectangular waveguide combiner that provides for a single output waveguide. Results of cold tests and full beam tests are presented and compared with theoretical and numerical models.

  19. Long-term operation of a multi-channel cosmic muon system based on scintillation counters with MRS APD light readout

    CERN Document Server

    Akindinov, A.; Grigoriev, E.; Grishuk, Yu.; Kuleshov, S.; Mal'kevich, D.; Martemiyanov, A.; Nedosekin, A.; Ryabinin, M.; Voloshin, K.

    2009-01-01

    A Cosmic Ray Test Facility (CRTF) is the first large-scale implementation of a scintillation triggering system based on a new scintillation technique known as START. In START, the scintillation light is collected and transported by WLS optical fibers, while light detection is performed by pairs of avalanche photodiodes with the Metal-Resistor-Semiconductor structure operated in the Geiger mode (MRS APD). START delivers 100% efficiency of cosmic muon detection, while its intrinsic noise level is less than 10^{-2} Hz. CRTF, consisting of 160 START channels, has been continuously operated by the ALICE TOF collaboration for more than 25 000 hours, and has demonstrated a high level of stability. Fewer than 10% of MRS APDs had to be replaced during this period.

  20. Design and Prototyping of a High Granularity Scintillator Calorimeter

    International Nuclear Information System (INIS)

    Zutshi, Vishnu

    2016-01-01

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  1. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  2. Uranium-scintillator device

    International Nuclear Information System (INIS)

    Smith, S.D.

    1979-01-01

    The calorimeter subgroup of the 1977 ISABELLE Summer Workshop strongly recommended investigation of the uranium-scintillator device because of its several attractive features: (1) increased resolution for hadronic energy, (2) fast time response, (3) high density (i.e., 16 cm of calorimeter per interaction length), and, in comparison with uranium--liquid argon detectors, (4) ease of construction, (5) simple electronics, and (6) lower cost. The AFM group at the CERN ISR became interested in such a calorimeter for substantially the same reasons, and in the fall of 1977 carried out tests on a uranium-scintillator (U-Sc) calorimeter with the same uranium plates used in their 1974 studies of the uranium--liquid argon (U-LA) calorimeter. The chief disadvantage of the scintillator test was that the uranium plates were too small to fully contain the hadronic showers. However, since the scintillator and liquid argon tests were made with the plates, direct comparison of the two types of devices could be made

  3. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients

    OpenAIRE

    Hernigou, Philippe; Roubineau, Fran?ois; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-01-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantages CoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion. However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with...

  4. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).

    Science.gov (United States)

    Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2017-11-28

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.

  5. Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites

    Science.gov (United States)

    Lee, Kang N.

    2004-01-01

    The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.

  6. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  7. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  8. Scintillators and other particle optical detectors

    International Nuclear Information System (INIS)

    Chipaux, R.

    2011-01-01

    The author reports and comments his researcher career in the field of particle optical detectors. He addresses the cases of organic scintillators (scintillating fibers, liquid scintillators), inorganic scintillators (crystals for electromagnetic calorimetry, crystals for solar neutrino spectroscopy), and Cherenkov Effect detectors. He also reports his works on Cd Te detectors and their modelling

  9. Fracture Toughness (KIC) of Lithography Based Manufactured Alumina Ceramic

    Science.gov (United States)

    Nindhia, T. G. T.; Schlacher, J.; Lube, T.

    2018-04-01

    Precision shaped ceramic components can be obtained by an emerging technique called Lithography based Ceramic Manufacturing (LCM). A green part is made from a slurry consisting of a ceramic powder in a photocurable binder with addition of dispersant and plasticizer. Components are built in a layer–by-layer way by exposing the desired cross- sections to light. The parts are subsequently sintered to their final density. It is a challenge to produce ceramic component with this method that yield the same mechanical properties in all direction. The fracture toughness (KIc) of of LCM-alumina (prepared at LITHOZ GmbH, Austria) was tested by using the Single-Edge-V-Notched Beam (SEVNB) method. Notches are made into prismatic bend-bars in all three direction X, Y and Z to recognize the value of fracture toughness of the material in all three directions. The microstructure was revealed with optical microscopy as well as Scanning Electron Microscopy (SEM). The results indicate that the fracture toughness in Y-direction has the highest value (3.10 MPam1/2) that is followed by the one in X-direction which is just a bit lower (2.90 MPam1/2). The Z-direction is found to have a similar fracture toughness (2.95 MPam1/2). This is supported by a homogeneous microstructure showing no hint of the layers used during production.

  10. Scintillation detectors based on poly-2,4-dimethylstyrene: Structure peculiarities and radiation damage

    International Nuclear Information System (INIS)

    Gunder, O.A.; Voronkina, N.I.; Kopina, I.V.

    1995-01-01

    Scintillation detectors based on poly-2,4-dimethyl styrene (P-2,4-DMS) are studied. Investigated is the influence of two methyl groups present in the benzene ring on the energy, spectral and structural characteristics of the polymer. The said factors are assumed to result in the detectors high light output and radiation resistance. It is shown that under radiolysis (77 K) the radiation yield of the paramagnetic centers of P-2,4-DMS exceeds that of polystyrene (PST) by ∼ 1.5. Unlike PST film, the luminescence spectra of P-2,4-DMS are characterized by the presence of both excimer (320-340 nm) and monomer (292 nm) bands. Revealed are the distinction in the nature of the optical characteristics of macroradicals and the efficiency of energy transfer in gamma-irradiated PST and P-2,4-DMS scintillators. The relation between the super-molecular structure of the polymers and the interaction of their macroradicals with molecular O 2 is stated

  11. Measurement system for nuclear safeguards based on bismuth-germanate scintillators

    International Nuclear Information System (INIS)

    Moss, C.E.; Dowdy, E.J.; Evans, A.E.; Hamm, M.E.; Lucas, M.C.; Shunk, E.R.

    1983-01-01

    To determine gamma-ray flux spectra, with high efficiency as the foremost objective, we constructed a system that uses bismuth-germanage scintillators as sensors. The system, consisting of eight scintillators and a LeCroy 3500 data acquisition system, has been calibrated and characterized from 0.06 to 8.29 MeV. By fitting the calibration spectra with a function containing 17 parameters, we were able to construct theoretical response functions, which we then used to obtain the gamma-ray flux spectra at multiple space points resulting from a variety of radioactive objects of interest in nuclear safeguards. The results of our procedure agree with calculated values to within less than 10%. 6 figures

  12. Scintillator material. Szintillatormaterial

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, M; Bendig, J; Regenstein, W

    1987-11-25

    A scintillator material for detection and quantitative determination of ionizing radiation is discussed consisting of an acridone dissolved in a fluid or solid medium. Solvent mixtures with at least one protogenic component or polymers and copolymers are used. The scintillator material is distinguished by an excellent stability at high energy doses.

  13. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  14. Scintillation hodoscope with working area of 50 x 50 cm based on hodoscopic photomultipliers

    International Nuclear Information System (INIS)

    Borog, V.V.; Vasil'chenko, V.G.; Demekhin, A.V.; Dronov, V.V.; Rykalin, V.I.

    1987-01-01

    The choice of optimum designs for the sensitive elements of large hodoscopes based on hodoscopic photomultipliers is examined. The results of numerical calculations are confirmed by measurement results. The measured space resolution of one of the scintillation-hodoscope designs (with two hodoscopic photomultipliers) with a sensitive volume of 50 x 50 x 2 mm is ≤ +3 mm

  15. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    Science.gov (United States)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  16. Measurement of gamma quantum interaction point in plastic scintillator with WLS strips

    Energy Technology Data Exchange (ETDEWEB)

    Smyrski, J., E-mail: smyrski@if.uj.edu.pl [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); Gorgol, M.; Jasińska, B. [Department of Nuclear Methods, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin (Poland); Kajetanowicz, M.; Kamińska, D.; Korcyl, G. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); Kowalski, P. [Świerk Computing Centre, National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Krzemień, W. [High Energy Department, National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); and others

    2017-04-11

    The feasibility of measuring the aśxial coordinate of a gamma quantum interaction point in a plastic scintillator bar via the detection of scintillation photons escaping from the scintillator with an array of wavelength-shifting (WLS) strips is demonstrated. Using a test set-up comprising a BC-420 scintillator bar and an array of sixteen BC-482A WLS strips we achieved a spatial resolution of 5 mm (σ) for annihilation photons from a {sup 22}Na isotope. The studied method can be used to improve the spatial resolution of a plastic-scintillator-based PET scanner which is being developed by the J-PET collaboration.

  17. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  18. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy

    International Nuclear Information System (INIS)

    Scott Ingram, W.; Robertson, Daniel; Beddar, Sam

    2015-01-01

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent

  19. Analysis of strong scintillation events by using GPS data at low latitudes

    Science.gov (United States)

    Forte, Biagio; Jakowski, Norbert; Wilken, Volker

    2010-05-01

    Drifting structures charaterised by inhomogeneities in the spatial electron density distribution at ionospheric heights originate scintillation of radio waves propagating through. The fractional electron density fluctuations and the corresponding scintillation levels may reach extreme values at low latitudes during high solar activity. Strong scintillation events have disruptive effects on a number of technological applications. In particular, operations and services based on GPS signals and receivers may experience severe disruption due to a significant degradation of the signal-to-noise ratio, eventually leading to signal loss of lock. Experimental scintillation data collected in the Asian sector at low latitudes by means of a GPS dual frequency receiver under moderate solar activity (2006) have been analysed. The GPS receiver is particularly modified in firmware in order to record power estimates on the C/A code as well as on the carriers L1 and L2. Strong scintillation activity is recorded in the post-sunset period (saturating S4 and SI as high as 20 dB). An overview of these events is presented, by taking into account scintillation impact on the signal intensity, phase, and dynamics. In particular, the interpretation of these events based on a refined scattering theory is provided with possible consequences for standard scintillation models.

  20. Natural radioactivity in zirconia-based dental ceramics

    International Nuclear Information System (INIS)

    Giussani, Augusto; Gerstmann, Udo; La Porta, Caterina; Cantone, Marie C.; Veronese, Ivan

    2008-01-01

    Zirconia-based ceramics are being increasingly used in dental prosthetics in substitution of metal cores, which are known to induce local toxic reactions and delayed allergic responses in the oral tissues. Some concerns have been however raised about the use of zirconia, since it is known that unpurified zirconia materials may contain non negligible levels of natural radionuclides of the U/Th series. Combined measurements of alpha and gamma spectrometry as well as beta dosimetry were conducted on zirconia samples used for dental applications. Samples were available in form of powder and/or solid blocks. The results showed that the beta dose rate in zirconia ceramics was on average only slightly higher than the levels measured in natural teeth, and generally lower than the values measured in feldspatic and glass ceramics. These materials are indeed known to deliver a beta dose significantly higher than that measured from natural teeth, due to the relatively high levels of 40 K (between 2 and 3 kBq·kg -1 ). The content of radionuclides of the U/Th series in the zirconia sample was estimated to be lower than 15 Bq·kg -1 , i.e. doubtlessly below the exclusion level of 1 kBq·kg -1 recommended by IAEA in the Safety Standard Series. Beta dosimetry measurements, however, gave indications of possible inhomogeneous clusters of radioactivity, which might give rise to local doses above the background. (author)

  1. A different approach to the analysis of GPS scintillations data

    International Nuclear Information System (INIS)

    Forte, B.; Radicella, S.M.; Ezquer, R.G.

    2001-09-01

    Amplitude scintillations data from GPS have been analyzed. The objective is to estimate the impact of ionospheric scintillations at Satellite-Based Augmentation System (SBAS) Ranging and Integrity Monitoring Station (RIMS) level and at GPS user level. For this purpose a new approach to the problem has been considered. Data have been studied from the point of view of the impact of scintillations on the calculation of VTEC at pierce points and ionospheric grid points. An ionospheric grid of 5 deg. by 5 deg. surface squares has been assumed. From geometrical considerations and taking into account the basic principle to compute VTEC at grid points, with the data analyzed it is shown that very seldom scintillations can affect the calculation of a grid point VTEC. Data from all the RIMS and for the entire GPS satellites network must be analyzed simultaneously to describe a realistic scenario for the impact of scintillations on SBAS. Finally, GPS scintillation data have been analyzed at user level: service availability problems have been encountered. (author)

  2. A new tritium process monitor based on scintillating fibres

    International Nuclear Information System (INIS)

    Pacenti, P.; Edwards, R.A.H.; Monte, A. de; Campi, F.

    1998-01-01

    The main requirements for tritium monitoring in processes related with fusion fuel cycle are low tritium memory, fast response and accuracy, in decreasing order of importance. At present, in-line tritium monitoring in such tritium processing is done mostly using ionization chambers, which suffer a number of drawbacks: output and sensitivity depends on total gas pressure, composition and flow, etc., and have problems such as tritium memory and generally of saturation effect at high tritium concentrations. Solid scintillators can only work well with tritium if they offer a large surface area, because tritium is absorbed within the first microns of material. The present design uses entirely inorganic scintillator and construction materials, chosen to minimize tritium memory. The described on line and real time tritium detector presents some advantages in comparison with well established flow-through tritium process monitors, such as ionization chambers and thermal conductivity detectors. (authors)

  3. Ionospheric Scintillation Effects on GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  4. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  5. Test of a single module of the J-PET scanner based on plastic scintillators

    Science.gov (United States)

    Moskal, P.; Niedźwiecki, Sz.; Bednarski, T.; Czerwiński, E.; Kapłon, Ł.; Kubicz, E.; Moskal, I.; Pawlik-Niedźwiecka, M.; Sharma, N. G.; Silarski, M.; Zieliński, M.; Zoń, N.; Białas, P.; Gajos, A.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.; Molenda, M.; Pałka, M.; Raczyński, L.; Rudy, Z.; Salabura, P.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.

    2014-11-01

    A Time of Flight Positron Emission Tomography scanner based on plastic scintillators is being developed at the Jagiellonian University by the J-PET collaboration. The main challenge of the conducted research lies in the elaboration of a method allowing application of plastic scintillators for the detection of low energy gamma quanta. In this paper we report on tests of a single detection module built out from the BC-420 plastic scintillator strip (with dimensions of 5×19×300 mm3) read out at two ends by Hamamatsu R5320 photomultipliers. The measurements were performed using collimated beam of annihilation quanta from the 68Ge isotope and applying the Serial Data Analyzer (Lecroy SDA6000A) which enabled sampling of signals with 50 ps intervals. The time resolution of the prototype module was established to be better than 80 ps (σ) for a single level discrimination. The spatial resolution of the determination of the hit position along the strip was determined to be about 0.93 cm (σ) for the annihilation quanta. The fractional energy resolution for the energy E deposited by the annihilation quanta via the Compton scattering amounts to σ(E) / E ≈ 0.044 /√{ E(MeV) } and corresponds to the σ(E) / E of 7.5% at the Compton edge.

  6. Detection of ionospheric scintillation effects using LMD-DFA

    Science.gov (United States)

    Tadivaka, Raghavendra Vishnu; Paruchuri, Bhanu Priyanka; Miriyala, Sridhar; Koppireddi, Padma Raju; Devanaboyina, Venkata Ratnam

    2017-08-01

    The performance and measurement accuracy of global navigation satellite system (GNSS) receivers is greatly affected by ionospheric scintillations. Rapid amplitude and phase variations in the received GPS signal, known as ionospheric scintillation, affects the tracking of signals by GNSS receivers. Hence, there is a need to investigate the monitoring of various activities of the ionosphere and to develop a novel approach for mitigation of ionospheric scintillation effects. A method based on Local Mean Decomposition (LMD)-Detrended Fluctuation Analysis (DFA) has been proposed. The GNSS data recorded at Koneru Lakshmaiah (K L) University, Guntur, India were considered for analysis. The carrier to noise ratio (C/N0) of GNSS satellite vehicles were decomposed into several product functions (PF) using LMD to extract the intrinsic features in the signal. Scintillation noise was removed by the DFA algorithm by selecting a suitable threshold. It was observed that the performance of the proposed LMD-DFA was better than that of empirical mode decomposition (EMD)-DFA.

  7. Multisector scintillation detector with fiber-optic light collection

    Science.gov (United States)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  8. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  9. Tribology of ceramics: Report of the Committee on Tribology of Ceramics

    Science.gov (United States)

    1988-01-01

    The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.

  10. Search for new scintillators for high-energy resolution electromagnetic calorimeters

    International Nuclear Information System (INIS)

    Britvich, G.I.; Britvich, I.G.; Vasil'chenko, V.G.; Lishin, V.A.; Obraztsov, V.F.; Polyakov, V.A.; Solovjev, A.S.

    1999-01-01

    Some opportunities of creation of radiation-resistant heterogeneous electro-magnetic-calorimeters with an energy resolution of about σ/E≅4-5%/√E is given in this article. Investigation results of 2scintillation and radiation characteristics for thin molded plates and new heavy scintillators based on the polystyrene and containing metalloorganic additives are presented. The radiation resistance of thin molded scintillator plates of about 1.1 mm thick containing 2% pTP+0.05% POPOP has reached a level of about 15-20 kGy

  11. Liquid scintillation, counting, and compositions

    International Nuclear Information System (INIS)

    Sena, E.A.; Tolbert, B.M.; Sutula, C.L.

    1975-01-01

    The emissions of radioactive isotopes in both aqueous and organic samples can be measured by liquid scintillation counting in micellar systems. The micellar systems are made up of scintillation solvent, scintillation solute and a mixture of surfactants, preferably at least one of which is relatively oil-soluble water-insoluble and another which is relatively water-soluble oil-insoluble

  12. Characterization of the Ionospheric Scintillations at High Latitude using GPS Signal

    Science.gov (United States)

    Mezaoui, H.; Hamza, A. M.; Jayachandran, P. T.

    2013-12-01

    Transionospheric radio signals experience both amplitude and phase variations as a result of propagation through a turbulent ionosphere; this phenomenon is known as ionospheric scintillations. As a result of these fluctuations, Global Positioning System (GPS) receivers lose track of signals and consequently induce position and navigational errors. Therefore, there is a need to study these scintillations and their causes in order to not only resolve the navigational problem but in addition develop analytical and numerical radio propagation models. In order to quantify and qualify these scintillations, we analyze the probability distribution functions (PDFs) of L1 GPS signals at 50 Hz sampling rate using the Canadian High arctic Ionospheric Network (CHAIN) measurements. The raw GPS signal is detrended using a wavelet-based technique and the detrended amplitude and phase of the signal are used to construct probability distribution functions (PDFs) of the scintillating signal. The resulting PDFs are non-Gaussian. From the PDF functional fits, the moments are estimated. The results reveal a general non-trivial parabolic relationship between the normalized fourth and third moments for both the phase and amplitude of the signal. The calculated higher-order moments of the amplitude and phase distribution functions will help quantify some of the scintillation characteristics and in the process provide a base for forecasting, i.e. develop a scintillation climatology model. This statistical analysis, including power spectra, along with a numerical simulation will constitute the backbone of a high latitude scintillation model.

  13. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    International Nuclear Information System (INIS)

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-01-01

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored

  14. Low-latitude scintillation occurrences around the equatorial anomaly crest over Indonesia

    Directory of Open Access Journals (Sweden)

    P. Abadi

    2014-01-01

    Full Text Available We investigated low-latitude ionospheric scintillation in Indonesia using two GPS receivers installed at Bandung (107.6° E, 6.9° S; magnetic latitude 17.5° S and Pontianak (109.3° E, 0.02° S; magnetic latitude 8.9° S. This study aimed to characterise climatological and directional ionospheric scintillation occurrences, which are useful not only for the physics of ionospheric irregularities but also for practical use in GNSS (global navigation satellite system-based navigation. We used the deployed instrument's amplitude scintillation (S4 index data from 2009, 2010, and 2011; the yearly SSN (sunspot-smoothed numbers were 3.1, 16.5, and 55.9, respectively. In summary, (1 scintillation occurrences in the post-sunset period (18:00–01:00 LT during equinox months (plasma bubble season at the two sites can be ascribed to the plasma bubble; (2 using directional analyses of the two sites, we found that the distribution of scintillation occurrences is generally concentrated between the two sites, indicating the average location of the EIA (equatorial ionisation anomaly crest; (3 scintillation occurrence enhancements for the two sites in field-aligned directions are herein reported for the first time by ground-based observation in a low-latitude region; (4 distribution of scintillation occurrences at Pontianak are concentrated in the southern sky, especially in the southwest direction, which is very likely associated with the plasma bubble tilted westward with increasing latitude; and (5 scintillation occurrence in the post-midnight period in the non-plasma-bubble season is the most intriguing variable occurring between the two sites (i.e. post-midnight scintillations are observed more at Bandung than Pontianak. Most of the post-midnight scintillations observed at Bandung are concentrated in the northern sky, with low elevation angles. This might be due to the amplitude of irregularities in certain directions, which may be effectively enhanced by

  15. Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials

    Science.gov (United States)

    Singh, M.

    2001-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.

  16. A self-calibrating ion beam profiler based on a CsI scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Finocchiaro, P. E-mail: finocchiaro@lns.infn.it; Ciavola, G.; Cosentino, L.; Gu, M.; Raia, G.; Rovelli, A

    1999-11-21

    We report on the test results obtained with a prototype beam profiler based on a thin slit and a CsI scintillator, read out by means of a compact photomultiplier. Such a device has proven to be suitable to perform ion beam diagnostics at low and very low intensities. In particular, our device is suitable for being used in the energy and intensity ranges expected at the EXCYT radioactive ion beam facility, that is currently under development at LNS Catania.

  17. A self-calibrating ion beam profiler based on a CsI scintillator

    International Nuclear Information System (INIS)

    Finocchiaro, P.; Ciavola, G.; Cosentino, L.; Gu, M.; Raia, G.; Rovelli, A.

    1999-01-01

    We report on the test results obtained with a prototype beam profiler based on a thin slit and a CsI scintillator, read out by means of a compact photomultiplier. Such a device has proven to be suitable to perform ion beam diagnostics at low and very low intensities. In particular, our device is suitable for being used in the energy and intensity ranges expected at the EXCYT radioactive ion beam facility, that is currently under development at LNS Catania

  18. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  19. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  20. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  1. Long wavelength scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lyons, P.B.; Franks, L.; Lutz, S.; Flournoy, J.; Fullman, E.

    1980-01-01

    The use of fiber optics in plasma diagnostics has spurred the development of long wavelength scintillators with fast temporal characteristics. In this paper we describe several new liquid scintillator systems with fluorescent emissions maxima up to 730 nm. Subnanosecond scintillator FWHM response times have been obtained by the operation of liquid scintillators at elevated temperatures. Data on fiber system sensitivity versus fiber length and scintillator emission wavelength will be presented

  2. Asteroid (21) Lutetia: Disk-resolved photometric analysis of Baetica region

    Science.gov (United States)

    Hasselmann, P. H.; Barucci, M. A.; Fornasier, S.; Leyrat, C.; Carvano, J. M.; Lazzaro, D.; Sierks, H.

    2016-03-01

    (21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15° to 156.8°. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) of the OSIRIS system on-board Rosetta taken during the fly-by. Then, we photometrically modeled the region using Minnaert disk-function and Akimov phase function to obtain a resolved spectral slope map at phase angles of 5 ° and 20 ° . We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening (- 0.04 ± 0.045 % μm-1deg-1). In the next step, we applied the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm) and we obtained normal albedo maps and Hapke parameter maps for NAC F82+F22. On Baetica, at 649.2 nm, the geometric albedo is 0.205 ± 0.005 , the average single-scattering albedo is 0.181 ± 0.005 , the average asymmetric factor is - 0.342 ± 0.003 , the average shadow-hiding opposition effect amplitude and width are 0.824 ± 0.002 and 0.040 ± 0.0007 , the average roughness slope is 11.45 ° ± 3 ° and the average porosity is 0.85 ± 0.002 . We are unable to confirm the presence of coherent-backscattering mechanism. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor

  3. The quest for the ideal inorganic scintillator

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Weber, M.J.; Bourret-Courchesne, E.; Klintenberg, M.K.

    2002-01-01

    The past half century has witnessed the discovery of many new inorganic scintillator materials and numerous advances in our understanding of the basic physical processes governing the transformation of ionizing radiation into scintillation light. Whereas scintillators are available with a good combination of physical properties, none provides the desired combination of stopping power, light output, and decay time. A review of the numerous scintillation mechanisms of known inorganic scintillators reveals why none of them is both bright and fast. The mechanisms of radiative recombination in wide-bandgap direct semiconductors, however, remain relatively unexploited for scintillators. We describe how suitably doped semiconductor scintillators could provide a combination of high light output, short decay time, and linearity of response that approach fundamental limits

  4. Scintillation Reduction using Conjugate-Plane Imaging (Abstract)

    Science.gov (United States)

    Vander Haagen, G. A.

    2017-12-01

    (Abstract only) All observatories are plagued by atmospheric turbulence exhibited as star scintillation or "twinkle" whether a high altitude adaptive optics research or a 30-cm amateur telescope. It is well known that these disturbances are caused by wind and temperature-driven refractive gradients in the atmosphere and limit the ultimate photometric resolution of land-based facilities. One approach identified by Fuchs (1998) for scintillation noise reduction was to create a conjugate image space at the telescope and focus on the dominant conjugate turbulent layer within that space. When focused on the turbulent layer little or no scintillation exists. This technique is described whereby noise reductions of 6 to 11/1 have been experienced with mathematical and optical bench simulations. Discussed is a proof-of-principle conjugate optical train design for an 80-mm, f7 telescope.

  5. Multi element high resolution scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.

    1980-01-01

    A gamma camera scintillator structure, suitable for detecting high energy gamma photons which, in a single scintillator camera, would require a comparatively thick scintillator crystal, so resulting in unacceptable dispersion of light photons, comprises a collimator array of a high Z material with elongated, parallel wall channels with the scintillator material being disposed in one end of the channels so as to form an integrated collimator/scintillator structure. The collimator channel walls are preferably coated with light reflective material and further light reflective surfaces being translucent to gamma photons, may be provided in each channel. The scintillators may be single crystals or preferably comprise a phosphor dispersed in a thermosetting translucent matrix as disclosed in GB2012800A. The light detectors of the assembled camera may be photomultiplier tubes charge coupled devices or charge injection devices. (author)

  6. Extruded plastic scintillator for MINERvA

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alan D.; FermilabRykalin, Victor V.; Wood, Brian M.; NICADD, DeKalb

    2005-01-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here

  7. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    Science.gov (United States)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  8. Real-time volumetric scintillation dosimetry

    International Nuclear Information System (INIS)

    Beddar, S

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential

  9. Digital decoration by continuous ink jet system for ceramic products based in water inks

    International Nuclear Information System (INIS)

    Colores Ceramicos, S. A.; Talleres Foro, S. L.

    2010-01-01

    A new continuous ink jet system for digital ceramic decoration using water based dispersed ceramic pigment has been developed, that increases drastically the sustainability of the process. During the development of this work, different equipment for any application and the consumables and design tools have been also developed. (Author)

  10. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  11. Waveshifting fiber readout of lanthanum halide scintillators

    International Nuclear Information System (INIS)

    Case, G.L.; Cherry, M.L.; Stacy, J.G.

    2006-01-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6-8 m 2 hard X-ray coded aperture imaging telescope operating in the 20-600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr 3 and LaCl 3 ) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr 3 or LaCl 3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance

  12. Neutron crosstalk between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Prasad, M.K., E-mail: prasad1@llnl.gov; Snyderman, N.J., E-mail: snyderman1@llnl.gov

    2015-09-11

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  13. Neutron crosstalk between liquid scintillators

    International Nuclear Information System (INIS)

    Verbeke, J.M.; Prasad, M.K.; Snyderman, N.J.

    2015-01-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction

  14. Temperature dependence of plastic scintillators

    Science.gov (United States)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  15. Scintillating glasses for total absorption dual readout calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bonvicini, V. [INFN, Trieste; Driutti, A. [Udine U.; Cauz, D. [Udine U.; Pauletta, G. [Udine U.; Rubinov, P. [Fermilab; Santi, L. [Udine U.; Wenzel, H. [Fermilab

    2012-01-01

    Scintillating glasses are a potentially cheaper alternative to crystal - based calorimetry with common problems related to light collection, detection and processing. As such, their use and development are part of more extensive R&D aimed at investigating the potential of total absorption, combined with the readout (DR) technique, for hadron calorimetry. A recent series of measurements, using cosmic and particle beams from the Fermilab test beam facility and scintillating glass with the characteristics required for application of the DR technique, serve to illustrate the problems addressed and the progress achieved by this R&D. Alternative solutions for light collection (conventional and silicon photomultipliers) and signal processing are compared, the separate contributions of scintillation and Cherenkov processes to the signal are evaluated and results are compared to simulation.

  16. New-generation large-area muon scintillation counters with wavelength shifter fiber readout for CDF II

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Chirikov-Zorin, I.

    2006-01-01

    New scintillation counters have been designed and constructed for upgrading of the CDF detector at the Fermilab Tevatron. A novel light collection technique using wavelength shifting fibers, together with a high-quality polystyrene-based scintillator UPS 923A, has resulted in compact counters with good and stable light collection efficiency over their lengths extending up to 320 cm. Design, construction and performance of counters are presented. Properties of the fibers and the scintillator, such as light output, light attenuation, decay time and long-term stability, are investigated. It is found that the polystyrene-based scintillator, unlike the polyvinyltoluene-based one, has better properties adequate for long-term experiments

  17. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  18. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O. [Institute for Scintillation Materials of the NAS of Ukraine, Kharkov, (Ukraine); Naydenov, S. [Institute for Single Crystals of the National Academy of Sciences of Ukraine, Kharkov, (Ukraine); Pochet, T. [DETEC-Europe, Vannes (France); Smith, C. [Naval Postgraduate School, Monterey, CA (United States)

    2015-07-01

    'γ) reactions towards lower energies and the isotropic character of scattering of the secondary neutrons may lead to the observed limitation of the length of effective interaction, since a fraction of the secondary neutrons that propagate in the forward direction are not subject to further inelastic scattering because of their substantially lower energy. At these reduced energies, it is the capture cross-section (n, γ) that becomes predominant, resulting in lower detection efficiency. Based on these results, several types of detectors have been envisioned for application in detection systems for nuclear materials. The testing results for one such detector are presented in this work. We have studied the possibility of creation of a composite detector with scintillator granules placed inside a transparent polymer material. Because of the low transparency of such a dispersed scintillator, better light collection conditions are ensured by incorporation of a light guide between the scintillator layers. This guide is made of highly transparent polymer material. The use of a high-transparency hydrogen-containing polymer material for light guides not only ensures optimum conditions of light collection in the detector, but also allows certain deceleration of neutron radiation, increasing its interaction efficiency with the composite scintillation panels; accordingly, the detector signal is increased by 5-8%. When fast neutrons interact with the scintillator material, the resulting inelastic scattering gamma-quanta emerge, having different energies and different delay times with respect to the moment of the neutron interaction with the nucleus of the scintillator material (delay times ranging from 1x10{sup -9} to 1.3x10{sup -6} s). These internally generated gamma-quanta interact with the scintillator, and the resulting scintillation light is recorded by the photo-receiver. Since neutron sources are also strong sources of low-energy gamma-radiation, the use of dispersed Zn

  19. Single-photoelectron noise reduction in scintillation detectors

    International Nuclear Information System (INIS)

    Marvin, T.P.

    1995-10-01

    The 1994--95 search at SLAC for mulicharged particles used four 21 x 21 x 130-cm 3 Bicron 408 scintillation counters to detect a signal at the single-photoelectron level. The competing noise requiring minimization was due to a combination of PM tube (8-inch Thorne EMI 9353KA) afterpulsing and ambient radiation-induced scintillator luminescence. A very slow decay (> 30 μs) component was observed and received particular attention. Efforts to reduce the SPE noise included photomultiplier tube base modifications, detector shielding and cooling, signal amplification, and veto procedures

  20. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.

    Science.gov (United States)

    Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert

    2016-12-06

    Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.

  1. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    International Nuclear Information System (INIS)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-01-01

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT 'dark current' background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or 'Back' detector, to both (1) minimize Compton background in the low-energy portion of the 'Front' scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as implemented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors

  2. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    International Nuclear Information System (INIS)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2016-01-01

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT

  3. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT.

  4. Determination of low tritium activities, selection of suitable scintillator and measuring vials

    International Nuclear Information System (INIS)

    Tomasek, M.

    1996-01-01

    The scintillator cocktails tested were limited to scintillators highly miscible with water and included alkylnaphthalene-based scintillators exhibiting low toxicity and easy biodegradability. The following vials were tested: a vial of glass with reduced potassium content, a conventional polyethylene vial, and a teflon-coated polyethylene vial. Each combination was measured in triplicate: two samples of tritium-free water as the background and one sample with the standard tritium content. The best results were obtained when using a combination of the Ultima Gold LLT scintillator and the polyethylene vial. (M.D.) 2 tabs., 2 figs., 6 refs

  5. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Science.gov (United States)

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation. © 2014 Eur J Oral Sci.

  6. An organic scintillator neutron spectrometer suitable for in-phantom studies

    International Nuclear Information System (INIS)

    Harrison, K.G.

    1981-07-01

    A transportable organic scintillator spectrometry system based on a 1 cm high x 1 cm dia. cylindrical stilbene scintillator with a 30 cm light-pipe has been developed for neutron spectrometry inside anthropomorphic phantoms in order to improve knowledge of dose and dose-equivalent distributions in the body. Electronic pulse-shape discrimination is used to discriminate between neutron and gamma-ray events in the scintillator. The spectrometer is shown to give excellent results in the range of neutron energies from 1.5 to 7 MeV when used with an unfolding program based on differentiation of the pulse-height distribution. Below 1 MeV problems are experienced with pulse-shape discrimination, and below 2 MeV there are found to be some shortcomings in the differentiation method for this size of scintillator. Above about 9 MeV more sophisticated unfolding methods are shown to be desirable. Problems of stability of the system, difficulties in the measurement and calculation of the response functions, and disadvantages of using stilbene are discussed. (author)

  7. High-efficiency organic glass scintillators

    Science.gov (United States)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  8. Scintillators for fiber optics: system sensitivity and bandwidth as a function of fiber length

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Fluornoy, J.M.; Lyons, P.B.

    1981-01-01

    Scintillators have been employed for several years as ionizing radiation-to-light converters in plasma diagnostic experiments that utilize fiber optics. Until recently, nanosecond and subnanosecond scintillators were available only in the near ultraviolet. However, the bandwidth and transmission properties of fiber optics both strongly favor operation at longer wavelengths. More recently, nanosecond and subnanosecond scintillators with emission peaks around 480 nm have been reported. A time-resolved plasma-imaging experiment using one of these scintillators and 100 channels of graded-index fiber, each 500 m long, has been successfully tested on a nuclear event at the Nevada Test Site. During the past year we have developed several new scintillator systems with emission wavelengths more compatible with fiber optics and with response times in the nanosecond and subnanosecond time region. One scintillator, based on Kodak dye 14567 (DCM), has an emission maximum at 650 nm and a response time (FWHM) of 1.2 ns. Experimental data on system sensitivity and bandwidth versus fiber length are presented for three fluor-fiber systems. Data on fluor formulation, response time, and linearity-of-response are given, and a model for scintillator nonlinearity, based on solvent, radiation-induced, transient absorption, is presented

  9. Scintillation counting: an extrapolation into the future

    International Nuclear Information System (INIS)

    Ross, H.H.

    1983-01-01

    Progress in scintillation counting is intimately related to advances in a variety of other disciplines such as photochemistry, photophysics, and instrumentation. And while there is steady progress in the understanding of luminescent phenomena, there is a virtual explosion in the application of semiconductor technology to detectors, counting systems, and data processing. The exponential growth of this technology has had, and will continue to have, a profound effect on the art of scintillation spectroscopy. This paper will review key events in technology that have had an impact on the development of scintillation science (solid and liquid) and will attempt to extrapolate future directions based on existing and projected capability in associated fields. Along the way there have been occasional pitfalls and several false starts; these too will be discussed as a reminder that if you want the future to be different than the past, study the past

  10. Lower bounds on scintillation detector timing performance

    International Nuclear Information System (INIS)

    Clinthorne, N.H.; Rogers, W.L.; Hero, A.O. III.; Petrick, N.A.

    1990-01-01

    Fundamental method-independent limits on the timing performance of scintillation detectors are useful for identifying regimes in which either present timing methods are nearly optimal or where a considerable performance gain might be realized using better pulse processing techniques. Several types of lower bounds on mean-squared timing error (MSE) performance have been developed and applied to scintillation detectors. The simple Cramer-Rao (CR) bound can be useful in determining the limiting MSE for scintillators having a relatively high rate of photon problction such as BaF 2 and NaI(Tl); however, it tends to overestimate the achievalbe performance for scintillators with lower rates such as BGO. For this reason, alternative bounds have been developed using rate-distortion theory or by assuming that the conversion of energy to scintillation light must pass through excited states which have exponential lifetime densities. The bounds are functions of the mean scintillation pulse shape, the scintillation intensity, and photodetector characteristics; they are simple to evaluate and can be used to conveniently assess the limiting timing performance of scintillation detectors. (orig.)

  11. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    Science.gov (United States)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  12. A time - zero detector based on thin film plastic scintillator

    International Nuclear Information System (INIS)

    Petrovici, M.; Simion, V.; Pagano, A.; Urso, S.; Geraci, E.

    1998-01-01

    Thin film scintillator used as a fast time-zero detector exhibits some advantages: fast response, small energy loss of transmitted particles, insensitivity to radiation damage, high efficiency and high counting rate capability. In order to increase the efficiency of the light collection, the scintillating plastic foil is housed in a reflecting body having an ellipsoidal geometry. A concave ellipsoidal mirror has the property that the geometrical foci are optically conjugate points and consequently, all optical path lengths from one focus to the other via a single reflection are equal. With the thin scintillator foil situated at one focal point and the PM's photocathode at the other one, an excellent light collection can be obtained. The principle of detector and the main components are presented. For our purposes we constructed the detector in two variants: glass mirror and polished aluminium mirror. The semi-axes of the ellipsoidal profile are: a 49.8 mm, b = 34.2 mm for the glass mirror and a = 35 mm, b = 26.5 mm for the aluminium mirror, respectively. The diameter of the beam access hole on the both mirrors is 12 mm. The detectors are foreseen to be used at 4π detecting system CHIMERA for experiments with heavy ion beams at intermediate energies delivered by Superconducting Cyclotron from LNS - Catania. Presently, the performance of these detectors are tested using alpha radioactive sources and in-beam measurements. (authors)

  13. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  14. Designing an optimally proportional inorganic scintillator

    International Nuclear Information System (INIS)

    Singh, Jai; Koblov, Alexander

    2012-01-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  15. Random wave fields and scintillated beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available F. Stef Roux CSIR National Laser Centre PO Box 395, Pretoria 0001, South Africa CSIR National Laser Centre – p.1/29 Contents . Scintillated beams and adaptive optics . Detecting a vortex — Shack-Hartmann . Remove optical vortices . Random vortex... beam. CSIR National Laser Centre – p.3/29 Weak scintillation If the scintillation is weak the resulting phase function of the optical beam is still continuous. Such a weakly scintillated beam can be corrected by an adaptive optical system. CSIR National...

  16. Detector construction for a scintillation camera

    International Nuclear Information System (INIS)

    Ashe, J.B.

    1977-01-01

    An improved transducer construction for a scintillation camera in which a light conducting element is equipped with a layer of moisture impervious material is described. A scintillation crystal is thereafter positioned in optical communication with the moisture impervious layer and the remaining surfaces of the scintillation crystal are encompassed by a moisture shield. Affixing the moisture impervious layer to the light conducting element prior to attachment of the scintillation crystal reduces the requirement for mechanical strength in the moisture impervious layer and thereby allows a layer of reduced thickness to be utilized. Preferably, photodetectors are also positioned in optical communication with the light conducting element prior to positioning the scintillation crystal in contact with the impervious layer. 13 claims, 4 figures

  17. Development of plastic scintillator based food radioactivity contamination monitoring system

    International Nuclear Information System (INIS)

    Parihar, A.; Sahani, R.M.; Mahala, V.K.; Vaijapurkar, S.G.

    2016-01-01

    Radioactivity is naturally present in soil, water and food stuffs. Food can be contaminated after discharge of radioactivity into the environment from industries that concentrate natural radionuclide and from civil or military nuclear operations. The contamination can be in three ways; by direct deposition, through the food chain and induced radioactivity due to exposure of high neutron flux. The health effects on human depend on the type of radionuclide and the length of time people are exposed to it. The studies of fission product behaviour in the food chain have revealed radionuclide Strontium-90, Caesium 137 and Iodine-131 are of major concern. Plastic scintillator is already developed indigenously at Defence Laboratory, Jodhpur. Efforts has been made to develop a portable field instrument using plastic scintillator for assessment of beta ( 90 Sr) and gamma ( 137 Cs and 131 I) radioactivity in food

  18. Ceramic Defects in Metal-Ceramic Fixed Dental Prostheses Made from Co-Cr and Au-Pt Alloys: A Retrospective Study.

    Science.gov (United States)

    Mikeli, Aikaterini; Boening, Klaus W; Lißke, Benjamin

    2015-01-01

    Ceramic defects in porcelain-fused-to-metal (PFM) restorations may depend on framework alloy type. This study assessed ceramic defects on cobalt-chromium- (Co-Cr-) and gold-platinum- (Au-Pt-) based PFM restorations. In this study, 147 Co-Cr-based and 168 Au-Pt-based PFM restorations inserted between 1998 and 2010 (139 patients) were examined for ceramic defects. Detected defects were assigned to three groups according to clinical defect relevance. Ceramic defect rates (Co-Cr-based: 12.9%; Au-Pt-based: 7.2%) revealed no significant difference but a strong statistical trend (U test, P = .082). Most defects were of little clinical relevance. Co-Cr PFM restorations may be at higher risk for ceramic defects compared to Au-Pt-based restorations.

  19. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  20. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  1. Scanning Auger microscopy study of lanthanum partitioning in sphene-based glass-ceramics

    International Nuclear Information System (INIS)

    Hocking, W.H.; Hayward, P.J.; Watson, D.G.; Allen, G.C.

    1984-01-01

    Glass-ceramics are being investigated as possible hosts for the radioactive wastes that would result from recycling irradiated nuclear fuels. The partitioning of lanthanum in sphene-based glass-ceramics has been studied by scanning Auger electron microscopy for lanthanum concentrations from 0.2 to 2.0 mol.%. Sphene crystals (CaTiSiO 5 ) were located in the silica-rich glass matrix by recording digital Auger images of the calcium and titanium distributions. The sphene crystals were typically 0.5 to 5 μm in size and occupied approximately 40% of the total specimen volume. Auger spot analyses revealed that lanthanum was strongly partitioned into the sphene phase of phosphorus-free glass-ceramics; however, when a small amount of phosphorus was included in the glass-ceramic composition as a crystal nucleating agent, the lanthanum was concentrated in a third minor phase which also contained calcium, phosphorus and oxygen. Chemical shift effects in the Auger spectra of silicon, titanium and phosphorus showed evidence for electron-stimulated desorption of oxygen. (author)

  2. Fabrication of polycrystalline scintillators for the positron emission tomography (PET); Herstellung polykristalliner Szintillatoren fuer die Positronen-Emissions-Tomographie (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Kamran Said

    2010-07-01

    Transparent ceramics are becoming more and more important for two new types of applications. On the one hand in cases where high mechanical and thermal demands in combination with optical properties are required, on the other hand where the optical properties of transparent materials like glass are not sufficient e.g. in positron-emission-tomography (PET) diagnostics. Most state of the art PET-scanners are using high-priced single crystals as scintillator material. The technological challenge is to replace single crystal by cost-efficient transparent ceramics. Producing transparent ceramics is ordered in synthesis of the powders and in manufacturing of these into transparent ceramics. The aim of this work was to synthesize single phase yttrium-alumina-and Luthetiumalumina-garnet (YAG, LuAG) powders partially doped with neodymium or praseodymium by four different synthesis routes (Pechini-synthesis, sol-gel-route, coprecipitation and solid state reactions). Additionally industrial LuAG and LuPO{sub 4} powders were characterized and manufactured. The powders were processed as submicron- and nanopowders. The compaction of nanopowder greenbodies sintered at high temperatures leads to a ''cross-over'' between both manufacturing route. Newly produced single-phase powders were homogenized with additions of sintering additives like tetraethyl orthosilicate (TEOS) and binders like polyvinyl alcohol (PVA). Moulding the powders were carried out by uniaxial pressing, cold isostatic pressing and in individual cases also by slip casting. The achieved green densities were in a range of 25-42 %. Examination of calcination behaviour leads to a calcination temperature of 1000 C with 2 hours dwell time in air atmosphere. Only solid state reactions resulted into transparent YAG, YAG:Pr, LuAG, LuAG:Pr ceramics. Solid state reactions of nanopowders resulted in heterogeneously transparent samples. Ceramics made by powders of other synthetic routes gave nontransparent

  3. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    Science.gov (United States)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  4. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    Franke, B.

    2003-01-01

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 o F while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  5. A HPMT based set-up to characterize scintillating crystals

    International Nuclear Information System (INIS)

    D'Ambrosio, C.; Ercoli, C.; Jaaskelainen, S.; Lecoeur, G.; Leutz, H.; Loos, R.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R.

    1999-01-01

    We have developed a fully automatic measurement set-up, capable of measuring light yields arising from scintillating crystals in a linear range of about four orders of magnitude. The photodetector is a hybrid photomultiplier tube specially developed to optimize linear range and photon detection. Crystal and photodetector are temperature controlled by a closed water circuit, as this is essential when measuring low light yield scintillating crystals with a marked temperature dependence of their light yield. Gamma sources can be placed either on top or on the side of the crystal. In this latter case, the source can be automatically moved by a computer-controlled step motor to provide a uniformity profile of the light yield along the crystal. Tagged and not-tagged operation modes are possible. The whole set-up is computer-controlled in an effort to provide fast and reliable measurements, to characterize many crystals per day. This is important for the quality control of the lead tungstate crystals that will be applied in the electromagnetic calorimeter of the CMS-detector at the LHC at CERN. (author)

  6. A HPMT based set-up to characterize scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambrosio, C.; Ercoli, C.; Jaaskelainen, S.; Lecoeur, G.; Leutz, H.; Loos, R.; Piedigrossi, D.; Puertolas, D.; Rosso, E.; Schomaker, R

    1999-09-21

    We have developed a fully automatic measurement set-up, capable of measuring light yields arising from scintillating crystals in a linear range of about four orders of magnitude. The photodetector is a hybrid photomultiplier tube specially developed to optimize linear range and photon detection. Crystal and photodetector are temperature controlled by a closed water circuit, as this is essential when measuring low light yield scintillating crystals with a marked temperature dependence of their light yield. Gamma sources can be placed either on top or on the side of the crystal. In this latter case, the source can be automatically moved by a computer-controlled step motor to provide a uniformity profile of the light yield along the crystal. Tagged and not-tagged operation modes are possible. The whole set-up is computer-controlled in an effort to provide fast and reliable measurements, to characterize many crystals per day. This is important for the quality control of the lead tungstate crystals that will be applied in the electromagnetic calorimeter of the CMS-detector at the LHC at CERN. (author)

  7. Toward the Probabilistic Forecasting of High-latitude GPS Phase Scintillation

    Science.gov (United States)

    Prikryl, P.; Jayachandran, P.T.; Mushini, S. C.; Richardson, I. G.

    2012-01-01

    The phase scintillation index was obtained from L1 GPS data collected with the Canadian High Arctic Ionospheric Network (CHAIN) during years of extended solar minimum 2008-2010. Phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. We set forth a probabilistic forecast method of phase scintillation in the cusp based on the arrival time of either solar wind corotating interaction regions (CIRs) or interplanetary coronal mass ejections (ICMEs). CIRs on the leading edge of high-speed streams (HSS) from coronal holes are known to cause recurrent geomagnetic and ionospheric disturbances that can be forecast one or several solar rotations in advance. Superposed epoch analysis of phase scintillation occurrence showed a sharp increase in scintillation occurrence just after the arrival of high-speed solar wind and a peak associated with weak to moderate CMEs during the solar minimum. Cumulative probability distribution functions for the phase scintillation occurrence in the cusp are obtained from statistical data for days before and after CIR and ICME arrivals. The probability curves are also specified for low and high (below and above median) values of various solar wind plasma parameters. The initial results are used to demonstrate a forecasting technique on two example periods of CIRs and ICMEs.

  8. Phosphor scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1980-01-01

    A method of fabricating scintillators is described in which the phosphor is distributed within the structure in such a way as to enhance the escape of the visible wavelength radiation that would otherwise be dissipated within the scintillator body. Two embodiments of the present invention are disclosed: one in which the phosphor is distributed in a layered structure and another in which the phosphor is dispersed throughout a transparent matrix. (U.K.)

  9. Studies of scintillator-based muon triggers in CMS

    Energy Technology Data Exchange (ETDEWEB)

    Scheuch, Florian

    2017-03-16

    The CMS experiment at the LHC will face challenges due to upgrades and improvements of the LHC in future. Especially, the upgrade towards the high luminosity LHC in 2025 with a foreseen center of mass energy of 14 TeV, an instantaneous luminosity of O(10{sup 35} cm{sup -2} s{sup -1}) and the concurrent aging of and radiation damage to the detectors will have an impact on the fast CMS trigger system and the CMS sub-detectors. Especially, the impact on the CMS muon system - and more particular on the drift tube (DT) system - is of vital interest. In order to respond to these challenges the performance of the DT system as part of the L1 muon trigger and the use of a scintillator-based muon trigger as supportive detector are analyzed in this thesis. First, the concept of such a scintillator-based muon trigger, the Muon Track fast Tag (MTT), as support for the DT trigger system, is presented. The conducted related R and D is described. Exploiting the similarity of the MTT concept and the existing hadron outer calorimeter (HO), studies are presented that evaluate the impact of the challenges on the L1 Trigger as well as the potential of the HO detector as a possible response to these challenges. It is shown that the HO detector can be of help in case of DT detector failures and it is able to improve the muon recognition of the DT detector in the L1 Trigger. The reduction of L1 muon ambiguities with the HO detector is found to be not feasible. The results, that were obtained using HO, are extrapolated towards the MTT concept. The MTT concept is rated as valuable backup solution that, however, will not increase the benefit above the HO detector in the presented application scenarios. After a summary of the performed analyses, the conclusion is drawn, that the HO detector should be included into the L1 Trigger decision. The initiated upgrade process of the HO integration into the L1 muon trigger, that was motivated by these studies, is presented. The preceding upgrade of HO

  10. Ceramic Technology Project data base: September 1992 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, B.L.P.

    1993-06-01

    Data presented in this report represent an intense effort to improve processing methods, testing methods, and general mechanical properties (rupture modulus, tensile, creep, stress-rupture, dynamic and cyclic fatigue, fracture toughness) of candidate ceramics for use in advanced heat engines. This work was performed by many facilities and represents only a small part of the data generated by the Ceramic Technology Project (CTP) since 1986. Materials discussed include GTE PY6, GN-10, NT-154, NT-164, SN-260, SN-251, SN-252, AY6, silicon nitride combined with rare-earth oxides, Y-TZP, ZTA, NC-433, NT-230, Hexoloy SA, MgO-PSZ-to-MgO-PSZ joints, MgO-PSZ-to-cast iron, and a few whisker/fiber-reinforced ceramics. Information in this report was taken from the project`s semiannual and bimonthly progress reports and from final reports summarizing the results of individual studies. Test results are presented in tabular form and in graphs. All data, including test rig descriptions and material characterizations, are stored in the CTP data base and are available to all project participants on request. The objective of this report is to make available the test results from these studies but not to draw conclusions from those data.

  11. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients.

    Science.gov (United States)

    Hernigou, Philippe; Roubineau, François; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-04-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantagesCoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion.However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with fracture of a component.We recommend that surgeons weigh the potential advantages and disadvantages of current CoC THA in comparison with other bearing surfaces when considering young very active patients who are candidates for THA. Cite this article: Hernigou P, Roubineau F, Bouthors C, Flouzat-Lachaniette C-H. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients. EFORT Open Rev 2016;1:107-111. DOI: 10.1302/2058-5241.1.000027.

  12. Nanophosphor composite scintillator with a liquid matrix

    Science.gov (United States)

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  13. Development and sintering of alumina based mixed oxide ceramic products for sensor applications in petroleum industries

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, Y.P.; Muniz, L.B.; Aguiar, L.A.R.; Sanguinetti Ferreira, R.A. [Departamento de Engenharia Mecanica, Universidade Federal de Pernambuco, CEP 50741-530, Recife-PE (Brazil); Albino Aguiar, J. [Departamento de Fisica, Universidade Federal de Pernambuco, CEP 50670-901 Recife-PE (Brazil)

    2005-07-01

    In petroleum production, different types of sensors are required to monitor temperature, pressure, leakage of inflammable gases, etc. These sensors work in very hostile environmental conditions and frequently suffer from abrasion and corrosion problems. Presently perovskite oxide based ceramic materials are increasingly being used for such purposes, due to their highly inert behavior in hostile environment. In the present work, we have developed and characterized alumina based complex perovskite oxide ceramics, Ba{sub 2}AlSnO{sub 5.5}. These ceramics were prepared by solid state reaction process and produced in the form of circular discs by uniaxial pressure compaction technique. Green ceramic bodies were sintered at different sintering temperatures (1200 to 1500 deg. C) in air atmosphere. Structural and microstructural characteristics of sintered Ba{sub 2}AlMO{sub 5.5} were studied by XRD and SEM techniques. Mechanical properties were tested by Vickers microhardness tests. Ceramics sintered in the temperature range 1300 deg. C 1400 deg. C presented best results in terms of microstructural characteristics and mechanical performance. (authors)

  14. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  15. On the use of single large-area photodiodes in scintillation counters

    International Nuclear Information System (INIS)

    Morrell, C.

    1989-12-01

    The compilation of this review was originally intended to assess the possibility of using photodiode-based scintillation counters in fluorescence EXAFS (or FLEXAFS) systems as a low-cost alternative to photomultiplier-based counters. The X-ray energies encountered in FLEXAFS experiments range from a few keV to a few tens of keV, and detectors are required to have some energy resolution and/or high count-rate capability in order to optimize the quality of data collected. The results presented in the reviewed literature imply strongly that photodiodes do not compete successfully with photomultipliers in scintillation counting systems for X-ray energies below the order of 100keV, at least at the present stage of photodiode technology. Nevertheless it is likely that there are other applications requiring X-ray detectors for which a photodiode-based scintillation counter may be perfectly adequate, and it is therefore felt that such a review is still useful. In addition, large-area single photodiodes have much to offer as X-ray detectors in their own right, and several of the considerations regarding their use in scintillation counters are highly relevant to this application. (author)

  16. Scintillating fiber detection development for the SSC

    International Nuclear Information System (INIS)

    Ruchti, R.

    1993-01-01

    SSC Detector Program at Notre Dame has been concentrating on the development of scintillating fiber detectors for tracking applications. Initial work has focused on the development of new scintillation materials for micro-tracking and central tracking detectors based on organic plastics and liquids, This effort has included studies of solvents, solutes and waveguides. Techniques capable of providing the detection of single photons from fibers, are also being developed, leading to a collaboration with Rockwell, UCLA, and UTexas-Dallas groups on the development and application of the Solid State Photomultiplier (SSPM). This initial collaboration has been strengthened and expanded to the formation of a larger collaboration whose goal is to develop a fiber tracking subsystem for SSC, incorporating scintillating fibers and solid state photodetectors. The major subsystem proposal submitted to SSCL by this new collaboration, known at the Fiber Tracking Group (FTG), has been approved and funding is being put in place. The collaboration consists of 12 institutions and Notre Dame is a spokesman group

  17. Efficiency and yield spectra of inorganic scintillates

    International Nuclear Information System (INIS)

    Rodnyi, P.A.

    1998-01-01

    Recent developments in the field of energy loss in inorganic scintillators are reviewed. The main parameters, which control the fundamental limit of the scintillator energy efficiency, are determined. It is shown that together with simple cascade processes one should take into account the production of plasmons to estimate the energy efficiency of scintillators or other phosphors excited by an ionizing radiation. Core-to-valence luminescence related to 5pCs→3pCl transitions is investigated in some chlorides: CsCl, KCl, RbCl, NaCl, KCaCl 3 , RbCaCl 3 . The yield spectra of the crystals in the VUV and X-ray regions are also studied. It is shown that the 4pRb-core states are involved in the process of creation of holes in the 5pCs-core band in Rb-based crystals. The formation of holes in the potassium core band acts as a competing process and suppresses the radiative core-to-valence transitions

  18. Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3 -Based Lead-Free Ceramics.

    Science.gov (United States)

    Li, Peng; Zhai, Jiwei; Shen, Bo; Zhang, Shujun; Li, Xiaolong; Zhu, Fangyuan; Zhang, Xingmin

    2018-02-01

    High-performance lead-free piezoelectric materials are in great demand for next-generation electronic devices to meet the requirement of environmentally sustainable society. Here, ultrahigh piezoelectric properties with piezoelectric coefficients (d 33 ≈700 pC N -1 , d 33 * ≈980 pm V -1 ) and planar electromechanical coupling factor (k p ≈76%) are achieved in highly textured (K,Na)NbO 3 (KNN)-based ceramics. The excellent piezoelectric properties can be explained by the strong anisotropic feature, optimized engineered domain configuration in the textured ceramics, and facilitated polarization rotation induced by the intermediate phase. In addition, the nanodomain structures with decreased domain wall energy and increased domain wall mobility also contribute to the ultrahigh piezoelectric properties. This work not only demonstrates the tremendous potential of KNN-based ceramics to replace lead-based piezoelectrics but also provides a good strategy to design high-performance piezoelectrics by controlling appropriate phase and crystallographic orientation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ceramic materials based on synthetic calcium phosphate for medical uses

    OpenAIRE

    Toropkov, N. E.; Antonkin, N. S.

    2016-01-01

    This article discusses the different methods of synthesis of hydroxyapatite and receiving on its base of ceramic materials in various ways. We have also developed our own technology. The conditions of compatibility and saddle the assumption and the suitability of the material for implantation.

  20. Liquid scintillation counting of chlorophyll

    International Nuclear Information System (INIS)

    Fric, F.; Horickova, B.; Haspel-Horvatovic, E.

    1975-01-01

    A precise and reproducible method of liquid scintillation counting was worked out for measuring the radioactivity of 14 C-labelled chlorophyll a and chlorophyll b solutions without previous bleaching. The spurious count rate caused by luminescence of the scintillant-chlorophyll system is eliminated by using a suitable scintillant and by measuring the radioactivity at 4 to 8 0 C after an appropriate time of dark adaptation. Bleaching of the chlorophyll solutions is necessary only for measuring of very low radioactivity. (author)

  1. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Science.gov (United States)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2017-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  2. Ceramic thermal wind sensor based on advanced direct chip attaching package

    International Nuclear Information System (INIS)

    Zhou Lin; Qin Ming; Chen Shengqi; Chen Bei

    2014-01-01

    An advanced direct chip attaching packaged two-dimensional ceramic thermal wind sensor is studied. The thermal wind sensor chip is fabricated by metal lift-off processes on the ceramic substrate. An advanced direct chip attaching (DCA) packaging is adopted and this new packaged method simplifies the processes of packaging further. Simulations of the advanced DCA packaged sensor based on computational fluid dynamics (CFD) model show the sensor can detect wind speed and direction effectively. The wind tunnel testing results show the advanced DCA packaged sensor can detect the wind direction from 0° to 360° and wind speed from 0 to 20 m/s with the error less than 0.5 m/s. The nonlinear fitting based least square method in Matlab is used to analyze the performance of the sensor. (semiconductor devices)

  3. Scintillation properties of GSO

    International Nuclear Information System (INIS)

    Melcher, C.L.; Schweitzer, J.S.; Utsu, T.; Akiyama, S.

    1990-01-01

    The timing properties of Gd 2 SiO 5 :Ce (GSO) single crystal scintillators have previously been evaluated for positron emission tomography applications. The measured time resolution, however, was worse than expected from calculations based on photoelectron yield and a 60 nanosecond exponential decay constant, leading us to further investigate GSO's basic properties. With a time-correlated-single-photon technique, the authors have found two decay components, one of 56 ns and one of 600 ns, the latter containing 10--15% of the total scintillation output. This may explain the difference between the experimental and theoretical time resolutions and confirms a previous hypothesis of a long decay component. In addition, the authors have found that each component's decay constant strongly depends on the cerium concentration. The primary component varies from ∼ 20 ns to ∼ 190 ns and the secondary component varies from ∼ 70 ns to ∼ 1200 ns as the cerium concentration is varied from 5.0 mol% to 0.1 mol%

  4. Flattening the Energy Response of a Scintillator Based Gamma Dose Rate Meter Coupled to SiPM

    International Nuclear Information System (INIS)

    Knafo, Y.; Manor, A.; Ginzburg, D.; Ellenbogen, M.; Osovizky, A.; Wengrowicz, U.; Ghelman, M.; Seif, R.; Mazor, T.; Kadmon, Y.; Cohen, Y.

    2014-01-01

    Among the newest emerging technologies that are used in the design of personal gamma radiation detection instruments, the silicon photomultiplier (SiPM) light sensor is playing an important role. This type of photo sensor is characterized by low power consumption, small dimensions and high gain. These special characteristics present applicable alternatives for the replacement of traditional gamma sensors based on scintillator coupled to Photomultiplier tubes (PMT) or on Geiger-Muller(G.M.) sensors. For health physics applications, flat energy response is required for a wide range of radio-nuclides emitting gamma rays of different energies. Scintillation based radiation instrumentation provides count rate and amplitude of the measured pulses. These pulses can be split in different bins corresponding to the energy of the measured isotopes and their intensity. The count rate and the energy of the measured events are related to the dose rate. The conversion algorithm applys a different calibration factor for each energy bin in order to provide an accurate dose rate response for a wide range of gamma energies. This work describes the utilization of an innovative approach for dose rate conversion by using the abilities of newest 32-bit microcontroller based ARM core architecture

  5. Monte Carlo simulation of the imaging properties of scintillator-coated X-ray pixel detectors

    International Nuclear Information System (INIS)

    Hjelm, M.; Norlin, B.; Nilsson, H.-E.; Froejdh, C.; Badel, X.

    2003-01-01

    The spatial resolution of scintillator-coated X-ray pixel detectors is usually limited by the isotropic light spread in the scintillator. One way to overcome this limitation is to use a pixellated scintillating layer on top of the semiconductor pixel detector. Using advanced etching and filling techniques, arrays of CsI columns have been successfully fabricated and characterized. Each CsI waveguide matches one pixel of the semiconductor detector, limiting the spatial spread of light. Another concept considered in this study is to detect the light emitted from the scintillator by diodes formed in the silicon pore walls. There is so far no knowledge regarding the theoretical limits for these two approaches, which makes the evaluation of the fabrication process difficult. In this work we present numerical calculations of the signal-to-noise ratio (SNR) for detector designs based on scintillator-filled pores in silicon. The calculations are based on separate Monte Carlo (MC) simulations of X-ray absorption and light transport in scintillator waveguides. The resulting data are used in global MC simulations of flood exposures of the detector array, from which the SNR values are obtained. Results are presented for two scintillator materials, namely CsI(Tl) and GADOX

  6. Construction and response of a highly granular scintillator-based electromagnetic calorimeter

    Science.gov (United States)

    Repond, J.; Xia, L.; Eigen, G.; Price, T.; Watson, N. K.; Winter, A.; Thomson, M. A.; Cârloganu, C.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Gadow, K.; Göttlicher, P.; Hartbrich, O.; Kotera, K.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Reinecke, M.; Sefkow, F.; Sudo, Y.; Tran, H. L.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Bilki, B.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sekiya, I.; Suehara, T.; Yamashiro, H.; Yoshioka, T.; Alamillo, E. Calvo; Fouz, M. C.; Marin, J.; Navarrete, J.; Pelayo, J. Puerta; Verdugo, A.; Chadeeva, M.; Danilov, M.; Gabriel, M.; Goecke, P.; Graf, C.; Israeli, Y.; Kolk, N. Van Der; Simon, F.; Szalay, M.; Windel, H.; Bilokin, S.; Bonis, J.; Pöschl, R.; Thiebault, A.; Richard, F.; Zerwas, D.; Balagura, V.; Boudry, V.; Brient, J.-C.; Cornat, R.; Cvach, J.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Polak, I.; Smolik, J.; Vrba, V.; Zalesak, J.; Zuklin, J.; Choi, W.; Kotera, K.; Nishiyama, M.; Sakuma, T.; Takeshita, T.; Tozuka, S.; Tsubokawa, T.; Uozumi, S.; Jeans, D.; Ootani, W.; Liu, L.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Ikuno, T.; Sudo, Y.; Takahashi, Y.; Götze, M.; Calice Collaboration

    2018-04-01

    A highly granular electromagnetic calorimeter with scintillator strip readout is being developed for future linear collider experiments. A prototype of 21.5 X0 depth and 180 × 180mm2 transverse dimensions was constructed, consisting of 2160 individually read out 10 × 45 × 3mm3 scintillator strips. This prototype was tested using electrons of 2-32 GeV at the Fermilab Test Beam Facility in 2009. Deviations from linear energy response were less than 1.1%, and the intrinsic energy resolution was determined to be (12 . 5 ± 0 . 1(stat.) ± 0 . 4(syst.)) % /√{ E [ GeV ] } ⊕(1.2 ± 0.1 (stat.)-0.7+0.6 (syst.)) %, where the uncertainties correspond to statistical and systematic sources, respectively.

  7. Radiation Damage in Scintillating Crystals

    CERN Document Server

    Zhu Ren Yuan

    1998-01-01

    Crystal Calorimetry in future high energy physics experiments faces a new challenge to maintain its precision in a hostile radiation environment. This paper discusses the effects of radiation damage in scintillating crystals, and concludes that the predominant radiation damage effect in crystal scintillators is the radiation induced absorption, or color center formation, not the loss of the scintillation light yield. The importance of maintaining crystal's light response uniformity and the feasibility to build a precision crystal calorimeter under radiation are elaborated. The mechanism of the radiation damage in scintillating crystals is also discussed. While the damage in alkali halides is found to be caused by the oxygen or hydroxyl contamination, it is the structure defects, such as oxygen vacancies, cause damage in oxides. Material analysis methods used to reach these conclusions are presented in details.

  8. First scintillating bolometer tests of a CLYMENE R&D on Li2MoO4 scintillators towards a large-scale double-beta decay experiment

    Science.gov (United States)

    Buşe, G.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Poda, D. V.; Redon, T.; Sand, J.-B.; Veber, P.; Velázquez, M.; Zolotarova, A. S.

    2018-05-01

    A new R&D on lithium molybdate scintillators has begun within a project CLYMENE (Czochralski growth of Li2MoO4 crYstals for the scintillating boloMeters used in the rare EveNts sEarches). One of the main goals of the CLYMENE is a realization of a Li2MoO4 crystal growth line to be complementary to the one recently developed by LUMINEU in view of a mass production capacity for CUPID, a next-generation tonne-scale bolometric experiment to search for neutrinoless double-beta decay. In the present paper we report the investigation of performance and radiopurity of 158-g and 13.5-g scintillating bolometers based on a first large-mass (230 g) Li2MoO4 crystal scintillator developed within the CLYMENE project. In particular, a good energy resolution (2-7 keV FWHM in the energy range of 0.2-5 MeV), one of the highest light yield (0.97 keV/MeV) amongst Li2MoO4 scintillating bolometers, an efficient alpha particles discrimination (10 σ) and potentially low internal radioactive contamination (below 0.2-0.3 mBq/kg of U/Th, but 1.4 mBq/kg of 210Po) demonstrate prospects of the CLYMENE in the development of high quality and radiopure Li2MoO4 scintillators for CUPID.

  9. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe 3 O 4 ) and haematite (Fe 2 O 3 ). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350 degrees C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy's mixed waste streams

  10. Shock-resistant scintillation detector

    International Nuclear Information System (INIS)

    Novak, W.P.

    1979-01-01

    A unique scintillation detector unit is disclosed which employs a special light transfer and reflector means that encases and protects the scintillator crystal against high g forces. The light transfer means comprises a flexible silicon rubber optical material bonded between the crystal and the optical window and having an axial thickness sufficient to allow the scintillator to move axially inside the container under high g forces without destroying the bonds. The reflector means comprises a soft elastic silicone rubber sleeve having a multiplicity of closely arranged tapered protrusions radiating toward and engaging the periphery of the scintillator crystal to cushion shocks effectively and having a reflective material, such as aluminum oxide powder, in the spaces between the protrusions. The reflector means provides improved shock absorption because of the uniform support and cushioning action of the protrusions and also provides the detector with high efficiency. The silicon rubber composition is specially compounded to include a large amount of aluminum oxide which enables the rubber to function effectively as a light reflector

  11. Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: a review.

    Science.gov (United States)

    Gallo, Jiri; Goodman, Stuart Barry; Lostak, Jiri; Janout, Martin

    2012-09-01

    Ceramic on ceramic (COC) total hip arthroplasty (THA) was developed to reduce wear debris and accordingly, the occurrence of osteolysis and aseptic loosening especially in younger patients. Based on the excellent tribological behavior of current COC bearings and the relatively low biological activity of ceramic particles, significant improvement in survivorship of these implants is expected. We used manual search to identify all relevant studies reporting clinical data on COC THAs in PubMed. The objective was to determine whether current COC THA offers a better clinical outcome and survivorship than non-COC THA. Studies with early generation ceramic bearings yielded 68% to 84% mean survivorship at 20 years follow-up which is comparable with the survivorship of non-COC THAs. Studies on current ceramic bearings report a 10-year revision-free interval of 92% to 99%. These outcomes are comparable to the survivorship of the best non-COC THAs. However, there are still concerns regarding fracture of sandwich ceramic liners, squeaking, and impingement of the femoral neck on the rim of the ceramic liner leading to chipping, especially in younger and physically active patients. Current COC THA leads to equivalent but not improved survivorship at 10 years follow-up in comparison to the best non-COC THA. Based on this review, we recommend that surgeons weigh the potential advantages and disadvantages of current COC THA in comparison to other bearing surfaces when considering young very active patients who are candidates for THA.

  12. Scintillating fiber detector performance, detector geometries, trigger, and electronics issues for scintillating fiber tracking

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.

    1994-06-01

    Scintillating Fiber tracking technology has made great advances and has demonstrated great potential for high speed charged particle tracking and triggering. The small detector sizes and fast scintillation fluors available make them very promising for use at high luminosity experiments at today's and tomorrow's colliding and fixed target experiments where high rate capability is essential. This talk will discuss the current state of Scintillating fiber performance and current Visual Light Photon Counter (VLPC) characteristics. The primary topic will be some of the system design and integration issues which should be considered by anyone attempting to design a scintillating fiber tracking system which includes a high speed tracking trigger. Design. constraints placed upon the detector system by the electronics and mechanical sub-systems will be discussed. Seemingly simple and unrelated decisions can have far reaching effects on overall system performance. SDC and DO example system designs will be discussed

  13. Iterative Monte Carlo simulation with the Compton kinematics-based GEB in a plastic scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chankyu; Kim, Yewon [Department of Nuclear and Quantum Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Moon, Myungkook [Neutron Instrumentation Division, KAERI, Daejeon 305-353 (Korea, Republic of); Cho, Gyuseong, E-mail: gscho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-09-21

    Plastic scintillators have been used for gamma ray detection in the fields of dosimetry and homeland security because of their desired characteristics such as a fast decay time, a low production cost, availability in a large-scale, and a tissue-equivalence. Gaussian energy broadening (GEB) in MCNP simulation is an effective treatment for tallies to calculate the broadened response function of a detector similarly to measured spectra. The full width at half maximum (FWHM) of a photopeak has been generally used to compute input parameters required for the GEB treatment. However, it is hard to find the photopeak in measured gamma spectra with plastic scintillators so that computation of the input parameters for the GEB has to be taken with another way. In this study, an iterative method for the GEB treated MCNP simulation to calculate the response function of a plastic scintillator is suggested. Instead of the photopeak, Compton maximum and Compton edge were used to estimate energy broadening in the measured spectra and to determine the GEB parameters. In a demonstration with a CsI(Tl) scintillator, the proposed iterative simulation showed the similar gamma spectra to the existing method using photopeaks. The proposed method was then applied to a polystyrene scintillator, and the simulation result were in agreement with the measured spectra with only a little iteration.

  14. The Effect of Water or Wax-based Binders on the Chemical and Morphological Characteristics of the Margin Ceramic-Framework Interface.

    Science.gov (United States)

    Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu

    2015-09-01

    This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.

  15. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  16. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.

    Science.gov (United States)

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-11-29

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced ( p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  17. Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders

    International Nuclear Information System (INIS)

    Khattab, R.M.; Wahsh, M.M.S.; Khalil, N.M.

    2015-01-01

    According to the wide applications in the field of chemical and engineering industries, forsterite (Mg_2SiO_4)/spinel (MgAl_2O_4) ceramic compositions were the matter of interest of several research works during the last three decades. This work aims at preparation and characterization of improved ceramic bodies based on forsterite and spinel nano powders through controlling the forsterite and spinel contents in the prepared mixes. These prepared ceramic compositions have been investigated through measuring the densification parameters, cold crushing strength as well as volume resistively. Nano spinel was added from 0 to 30 mass% on expense of nano forsterite matrix and fired at 1550 °C for 2 h. The phase composition of the fired samples was examined using x-ray diffraction (XRD) technique. The microstructure of some selected samples was shown using scanning electron microscope (SEM). A pronounced improvement in the sintering, mechanical properties and volume resistively were achieved with increasing of nano spinel addition up to 15 mass%. This is due to the improvement in the matrix of the prepared forsterite/spinel bodies as a result of well distribution of spinel in the forsterite matrix as depicted by SEM analysis. - Highlights: • Ceramic compositions based on nano forsterite/nano-MgAl_2O_4 spinel were synthesized. • CCS was improved (333.78 MPa) through 15 mass% of nano-MgAl_2O_4 spinel addition. • Volume resistivity was enhanced to 203*10"1"3 Ohm cm with 15 mass% of spinel addition. • Beyond 15 mass% spinel, CCS and volume resistivity were decreased.

  18. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    Energy Technology Data Exchange (ETDEWEB)

    Prange, Micah P. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Xie, YuLong [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Campbell, Luke W. [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA; Kerisit, Sebastien [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

    2017-12-21

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.

  19. Luminescence and scintillation properties of rare-earth-doped LuF.sub.3./sub. scintillation crystals

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.

    2015-01-01

    Roč. 41, Mar SI (2015), s. 58-62 ISSN 0925-3467 Institutional support: RVO:68378271 Keywords : lutetium fluoride * scintillator * scintillator * VUV luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  20. Improved organic scintillation detectors; Possibilites de perfectionnement des detecteurs organiques a scintillations; Usovershenstvovannye organicheskie stsintillyatsionnye detektory; Detectores organicos de centelleo perfeccionados

    Energy Technology Data Exchange (ETDEWEB)

    Birks, J B [University of Manchester, Manchester (United Kingdom)

    1962-04-15

    Equations have been derived for the practical scintillation efficiency (photo-electrons/MeV) of organic crystals and solutions in terms of molecular parameters and these have been applied to the more important scintillator systems, for photomultipliers with S11 (glass window) and S13 (quartz window) responses. The results suggest several improvements in current organic scintillation detector practice: the use of binary rather than ternary solutions; the use of quartz rather than glass windows; and the reconsideration of mixed crystal scintillators based on naphthalene. Improvements by factors of 2 or more in the figure of merit (practical efficiency/decay time) for fast-scintillation counting can be obtained. (author) [French] L'auteur a etabli des equations pour determiner le rendement de scintillation (photoelectrons/MeV) de cristaux et solutions organiques, en faisant intervenir des parametres moleculaires. Il a applique ces equations a des appareils a scintillations plus importantes pour determiner la reponse des photomultiplicateurs a fenetre en verre (S11) et a fenetre en quartz (S13). Les resultats obtenus ont fait apparaitre la possibilite d'ameliorer, a plusieurs egards, les detecteurs organiques a scintillations du type courant, par exemple en remplacant les solutions ternaires par des solutions binaires, les fenetres en verre par des fenetres en quartz, ou en reexaminant les possibilites offertes par les scintillateurs a cristaux mixtes a base de naphtalene. L'introduction de ces perfectionnements conduirait a une amelioration, du simple au double ou plus, du facteur de qualite (efficacite/temps de decroissance) des dispositifs de comptage a scintillations. (author) [Spanish] Se han establecido ecuaciones que permiten calcular el rendimiento practico de centelleo (fotoelectrones/MeV) de los cristales y soluciones organicos en funcion de parametros moleculares; estas ecuaciones han sido aplicadas a los sistemas de centelleo mas importantes, para

  1. Strength and corrosion behavior of SiC - based ceramics in hot coal combustion environments

    Energy Technology Data Exchange (ETDEWEB)

    Breder, K.; Parten, R.J. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    As part of an effort to evaluate the use of advanced ceramics in a new generation of coal-fired power plants, four SiC-based ceramics have been exposed to corrosive coal slag in a laboratory furnace and two pilot scale combustors. Initial results indicate that the laboratory experiments are valuable additions to more expensive pilot plant experiments. The results show increased corrosive attack with increased temperature, and that only slight changes in temperature may significantly alter the degree of strength degradation due to corrosive attack. The present results are part of a larger experimental matrix evaluating the behavior of ceramics in the coal combustion environment.

  2. Dynamic fatigue on repolarization of lead zirconate-titanate base ceramics with various ferroelectric hardness

    International Nuclear Information System (INIS)

    Gavrilyachenko, V.G.; Semenchev, A.F.; Sklyarova, E.N.; Kuznetsova, E.M.

    2006-01-01

    One studied experimentally changes of the residual polarization in lead zirconate-titanate base ceramics with various ferroelectric hardness under the effect of a strong varying field. The twinning and untwinning of crystallites accompanying repolarization is assumed to be the basic mechanism of propagation of the crystalline structure defects governing the fatigue rates of the ferroelectric-soft ceramics. In ferroelectric-hard ceramics crystallites the stable configurations of mechanical twins, the result of the secondary twinning, are formed when the hysteresis loop is formed. At repolarization in the mentioned structures one observes no motion of the twin boundaries, and the fatigue rates are low ones [ru

  3. Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment

    Science.gov (United States)

    Link, Jason

    2011-01-01

    We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.

  4. Is the holy grail plastic? Radiation identification from plastic scintillators

    International Nuclear Information System (INIS)

    Butchins, L. J. C.; Gosling, J. M.; Hogbin, M. R. W.; Jones, D. C.; Lacey, R. J.; Stearn, J. G.

    2009-01-01

    Thousands of shipping containers containing Naturally Occurring Radioactive Materials (NORM) made from ceramics, stoneware and other natural products are transported worldwide on a daily basis. Some of these NORM loads are sufficiently radioactive to trigger alarms from plastic scintillator detectors which have limited ability to also identify the radionuclides present thus necessitating secondary inspection which increases the operational overhead. Previous studies have been carried out to ascertain if radionuclide discrimination using plastic scintillators is possible with a variety of approaches including deconvolution and computer learning. In this paper, a two stage algorithm is described. An example implementation of the algorithm is presented, applied to operational data, and has been installed in real time operation on a polyvinyl-toluene (PVT) detector. The approach requires the collection of a large library of spectra using examples of the detectors to be deployed. In this study, data from both actual freight loads passing through a port and predefined freight containing various radionuclides were collected. The library represents freight loads that may contain industrial, medical, nuclear, and NORM radionuclides. The radionuclides in the predefined freight were placed in various orientations and in various amounts of shielding to mimic many different scenarios. Preliminary results on an initial subset of data containing industrial and NORM sources show the number of mis-classifications to be less than 1% of the total test data. Good initial results were obtained even for low energy radionuclides such as 241 Am. Where discrimination is not possible, and principle components overlap, this region or 'cloud' of the n-dimensional plot can be put aside. Those spectra that fall in the 'cloud' can be regarded as suspect and in these cases, some secondary screening will still be necessary. It is predicted that the algorithm will enable recognition of NORM loads

  5. Scintillator plate calorimetry

    International Nuclear Information System (INIS)

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin

  6. Luminescence and scintillation properties of Ce-doped Cs2ZnCl4 crystals

    Science.gov (United States)

    Sugawara, K.; Koshimizu, M.; Yanagida, T.; Fujimoto, Y.; Haruki, R.; Nishikido, F.; Kishimoto, S.; Asai, K.

    2015-03-01

    In this study, we have synthesized scintillation materials based on Ce-doped Cs2ZnCl4 crystals. The light yield was enhanced by up to 20% by doping Cs2ZnCl4 with Ce3+ ions. In the scintillation time profiles, fast components exhibited decay time constants on the order of nanoseconds, which was ascribed to Auger-free luminescence (AFL). The light yield of the AFL component decreased at 10 mol% Ce3+ concentration, which is mainly attributed to the reabsorption of AFL photons inside the crystals by Ce3+ ions, as seen in the scintillation spectra. Long components had decay time constants of approximately 30 ns. In addition, at 10 mol% Ce3+ concentration, a prominent band appeared at approximately 500 nm in the scintillation spectrum, which was not observed in the photoluminescence spectra. The long components in the scintillation time profiles and the 500 nm band in the scintillation spectra were tentatively attributed to self-trapped excitons perturbed by Ce3+ ions.

  7. PMP, a novel solute for liquid and plastic scintillation counting

    International Nuclear Information System (INIS)

    Gusten, Hans

    1983-01-01

    The excellent fluorescence properties of PMP ( 11-phenyl-3-mesityl-2-pyrazoline) such as long wavelength emission of over 400 nm, and high fluorescence quantum yield with a short decay time together with a solubility of more than one Mol/L in toluene make this compound a promising solute for scintillation counting. The Stokes' shift of PMP of over 10,000 cm -1 is twice as large as that of the commonly used PPO. Due to this unusually large Stokes' shift PMP can be used as a primary solute without requiring a secondary solute as wavelength shifter. A comparison of the scintillation properties of PMP and PPO in toluene reveals that the counting efficiency for 14 C is better for PMP while the 3 H efficiency is equally good. Due to the large Stokes' shift, PMP is about 50 percent less sensitive to color quenching than PPO. Compared to the solute combinations PPO/secondary solutes, the scintillation counting efficiency of PMP for 14 C in toluene or xylene is the same, while the absolute 3 H efficiency of PPO/secondary solutes in cocktails with emulsifiers is about 10 percent higher. The PMP scintillation efficiency for 14 C as well as 3 H in chemical quenching by urine is more or less the same as for PPO/dimethyl-POPOP. PMP is more sensitive to quenching by halogenated solvents. In the dioxane-based scintillation, this sensitivity to chemical quenching by CHCl 3 vanishes and the counting efficiencies for 14 C and 3 H are as good as for PPO/dimethyl-POPOP or PPO/bis-MSB. Due to the large Stokes' shift, the self-absorption of the scintillation light by PMP is lower than in conventional scintillators. This offers good possibilities in very large-volume applications of liquid as well as plastic scintillators

  8. Scintillating bolometers: A promising tool for rare decays search

    Energy Technology Data Exchange (ETDEWEB)

    Pattavina, L., E-mail: luca.pattavina@mib.infn.it

    2013-12-21

    The idea of using a scintillating bolometer was first suggested for solar neutrino experiments in 1989. After many years of developments, now we are able to exploit this experimental technique, based on the calorimetric approach with cryogenic particle detectors, to investigate rare events such as Neutrinoless Double Beta Decay and interaction of Dark Matter candidates. The possibility to have high resolution detectors in which a very large part of the natural background can be discriminated with respect to the weak expected signal is very appealing. The goal to distinguish the different types of interactions in the detector can be achieved by means of scintillating bolometer. The simultaneous read-out of the heat and scintillation signals made with two independent bolometers enable this precious feature leading to possible background free experiment. In the frame of the LUCIFER project we report on how exploiting this technique to investigate Double Beta Decay for different isotope candidates. Moreover we demonstrate how scintillating bolometers are suited for investigating other rare events such as α decays of long living isotopes of lead and bismuth.

  9. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    Science.gov (United States)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  10. Plastic scintillator detector for pulsed flux measurements

    Science.gov (United States)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  11. Luminescence properties of the Mg co-doped Ce:SrHfO.sub.3./sub. ceramics prepared by the Spark Plasma Sintering Method

    Czech Academy of Sciences Publication Activity Database

    Chiba, H.; Kurosawa, S.; Harata, K.; Murakami, R.; Yamaji, A.; Ohashi, Y.; Pejchal, Jan; Kamada, K.; Yokota, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 90, Jul (2016), s. 287-291 ISSN 1350-4487. [International Conference on Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR). Tartu (Estonsko), 20.09.2015-25.09.2015] R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : ceramics scintillator * high effective atomic number material Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  12. Liquid scintillation counting system with automatic gain correction

    International Nuclear Information System (INIS)

    Frank, R.B.

    1976-01-01

    An automatic liquid scintillation counting apparatus is described including a scintillating medium in the elevator ram of the sample changing apparatus. An appropriate source of radiation, which may be the external source for standardizing samples, produces reference scintillations in the scintillating medium which may be used for correction of the gain of the counting system

  13. Performance evaluation of GPS receiver under equatorial scintillation

    Directory of Open Access Journals (Sweden)

    Alison de Oliveira Moraes

    2009-06-01

    Full Text Available Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS. This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received.

  14. Liquid-helium scintillation detection with germanium photodiodes

    International Nuclear Information System (INIS)

    Luke, P.N.; Haller, E.E.; Steiner, H.M.

    1982-05-01

    Special high-purity germanium photodiodes have been developed for the direct detection of vacuum ultraviolet scintillations in liquid helium. The photodiodes are immersed in the liquid helium, and scintillations are detected through one of the bare sides of the photodiodes. Test results with scintillation photons produced by 5.3-MeV α particles are presented. The use of these photodiodes as liquid-helium scintillation detectors may offer substantial improvements over the alternate detection method requiring the use of wavelength shifters and photomultiplier tubes

  15. Scintillation light transport and detection

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.

    1986-08-01

    The MORSE neutron gamma-ray transport code has been modified to allow for the transport of scintillation light. This modified code is used to analyze the light collection characteristics of a large liquid scintillator module (18 x 18 x 350 cm 3 )

  16. Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface.

    Science.gov (United States)

    Neumann, Andreas; Unkel, Claus; Werry, Christoph; Herborn, Christoh U; Maier, Horst R; Ragoss, Christian; Jahnke, Klaus

    2006-06-01

    The favorable properties of silicon nitride (Si3N4) ceramics, such as high mean strength level and fracture toughness, suggest biomedical use as an implant material. Minor reservations about the biocompatibility of Si3N4 ceramics were cleared up by previous in vitro and in vivo investigations. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in 3 minipigs. After 3 months, histological sections, computed tomography (CT) scans, and magnetic resonance imaging (MRI) scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfying intraoperative workability. There was no implant loss, displacement, or fracture. Bone healing was complete in all animals. The formation of new bone was observed in direct contact to the implants. The implants showed no artifacts on CT and MRI scanning. FEM simulation confirmed the mechanical reliability of the screws, whereas simulated plate geometries regarding pullout forces at maximum load showed limited safety in a bending situation. Si3N4 ceramics show a good biocompatibility outcome both in vitro and in vivo. In ENT surgery, this ceramic may serve as a biomaterial for osteosynthesis (eg, of the midface including reconstruction the floor of the orbit and the skull base). To our knowledge, this is the first introduction of a ceramic-based miniplate-osteofixation system. Advantages compared with titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, and no interference with radiologic imaging. Disadvantages include the impossibility of individual bending of the miniplates.

  17. Evaluation of characteristics of x-ray phosphors and hybrid scintillators

    International Nuclear Information System (INIS)

    Winter, John M. Jr.; Jones, Thomas S.

    1999-01-01

    Glass x-ray scintillators produce very high resolution images but suffer diminished brightness at x-ray energies below about 150 kV. This produces a loss in effective imaging due to the very low light flux, just at energies where many high resolution applications require the maximum image fidelity. Many phosphors produce substantially more light at these energy levels, but lack the resolution needed for critical industrial applications. A family of hybrid scintillators consisting of a scintillating fiber-optic base coupled to a thin coating of a high resolution phosphor is being developed. To facilitate evaluation of these hybrids and to measure their performance compared to other alternatives, a specialized real time x-ray imaging system was constructed and integrated with a microfocus x-ray source. This imaging system is described, and the results of a program to evaluate the brightness, resolution, and contrast sensitivity of a number of glass scintillators, phosphors, and hybrid imaging screens is presented

  18. Comparison of the methods for determination of scintillation light yield

    CERN Document Server

    Sysoeva, E; Zelenskaya, O

    2002-01-01

    One of the most important characteristics of scintillators is the light yield. It depends not only on the properties of scintillators, but also on the conditions of measurements. Even for widely used crystals, such as alkali halide scintillators NaI(Tl) and CsI(Tl), light yield data, obtained by various authors, are different. Therefore, it is very important to choose the convenient method of the light yield measurements. In the present work, methods for the determination of the physical light yield, based on measurements of pulse amplitude, single-electron pulses and intrinsic photomultiplier resolution are discussed. These methods have been used for the measurements of light yield of alkali halide crystals and oxide scintillators. Repeatability and reproducibility of results were determined. All these methods are rather complicated in use, not for measurements, but for further data processing. Besides that, they demand a precise determination of photoreceiver's parameters, as well as determination of light ...

  19. Simulation of light collection in calcium tungstate scintillation detectors

    Directory of Open Access Journals (Sweden)

    F. A. Danevich

    2015-12-01

    Full Text Available Due to high operational properties, the oxide scintillators are perspective for cryogenic scintillation experiments with aim of study rare nuclear processes. In order to optimize light yield and the energy resolution we performed calculations of the efficiency of light collection for different geometries of scintillation detector with CaWO4 crystal by Monte-Carlo method using Litrani, Geant4 and Zemax packages. The calculations were compared with experimental data in the same configurations, depending on the crystal shape, surface treatment, material and shape of the reflector and presence of optical contact. The best results were obtained with crystals shaped as the right prism with triangle base, with completely diffused surfaces, using mirror reflector shaped as a truncated cone. Simulations by using Litrani have shown the best agreement with experimental results.

  20. 4 GHz ionospheric scintillations observed at Taipei

    International Nuclear Information System (INIS)

    Huang, Y.N.; Jeng, B.S.

    1978-01-01

    In a study of ionospheric scintillations 3950 MHz beacon signals from geostationary communication satellites Intelsat-IV-F8 and Intelsat-IV-F1 were recorded on a strip chart and magnetic tape at the Taipei Earth Station. While the strip charts were used to monitor the occurrence of the scintillation, the magnetic tape output was digitized and processed by a computerized system to yield a detailed analysis of scintillation events. It was found that diurnal variations were similar to the diurnal patterns of sporadic E at greater than 5 MHz and VHF band ionospheric scintillations during daytime as reported by Huang (1978). Eight typical scintillation events were selected for the calculation of the scintillation index, S4, and other parameters. The mean S4 index for the 8 events was found to be 0.15. Numerical and graphic results are presented for the cumulative amplitude distributions, message reliability, autocorrelation functions and power spectra

  1. Morphology of auroral zone radio wave scintillation

    International Nuclear Information System (INIS)

    Rino, C.L.; Matthews, S.J.

    1980-01-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation

  2. Test bench for measurements of NOvA scintillator properties at JINR

    Science.gov (United States)

    Velikanova, D. S.; Antoshkin, A. I.; Anfimov, N. V.; Samoylov, O. B.

    2018-04-01

    The NOvA experiment was built to study oscillation parameters, mass hierarchy, CP- violation phase in the lepton sector and θ23 octant, via vɛ appearance and vμ disappearance modes in both neutrino and antineutrino beams. These scientific goals require good knowledge about NOvA scintillator basic properties. The new test bench was constructed and upgraded at JINR. The main goal of this bench is to measure scintillator properties (for solid and liquid scintillators), namely α/β discrimination and Birk's coefficients for protons and other hadrons (quenching factors). This knowledge will be crucial for recovering the energy of the hadronic part of neutrino interactions with scintillator nuclei. α/β discrimination was performed on the first version of the bench for LAB-based and NOvA scintillators. It was performed again on the upgraded version of the bench with higher statistic and precision level. Preliminary result of quenching factors for protons was obtained. A technical description of both versions of the bench and current results of the measurements and analysis are presented in this work.

  3. Fine-granularity electromagnetic calorimeter using plastic scintillator strip-array

    International Nuclear Information System (INIS)

    Nagano, A.; Yamauchi, S.; Matsunaga, H.; Kim, S.; Matsumoto, T.; Sekiguchi, K.; Uchida, N.; Yamada, Y.; Yamamoto, S.; Evtoukhovitch, P.; Fujii, Y.; Garutti, E.; Iba, S.; Itoh, S.; Kajino, F.; Kalinnikov, V.; Kallies, W.; Kanzaki, J.; Kawagoe, K.; Kishimoto, S.; Miyata, H.; Mzavia, D.; Nakajima, N.; Nakamura, R.; Ono, H.; Samoilov, V.; Sanchez, A.L.C.; Takeshita, T.; Tamura, Y.; Tsamalaidze, Z.

    2006-01-01

    For the future linear collider calorimetry, fine-granularity is indispensable for energy measurements based on particle flow algorithm, which could achieve better energy resolution for jets than the conventional method. To explore the possibility for such a calorimeter using scintillator, an electromagnetic calorimeter test module, made of scintillator-strips and lead plates, was constructed and tested with test beams. Performance of the test module is presented in this article, in terms of the shower profile studies as well as energy and spatial measurements

  4. Method of depositing thin films of high temperature Bi-Sr-Ca-Cu-O-based ceramic oxide superconductors

    International Nuclear Information System (INIS)

    Budd, K.D.

    1991-01-01

    This patent describes a method. It comprises preparing a liquid precursor of a Bi-Sr-Ca-Cu-O- based ceramic oxide superconductor phase, wherein the liquid precursor comprises an alkoxyalkanol, copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate, wherein the liquid precursor has a cation ratio sufficient to form the desired stoichiometry in the ceramic oxide superconductor phase when the liquid precursor is heated to a temperature and for a time sufficient to provide the desired ceramic oxide superconductor phase, and wherein the copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate are mutually soluble in the alkoxyalkanol; applying the liquid precursor to a substrate, wherein the substrate is one of an oxide ceramic, a metal selected from the group consisting of Ag and Ni, and Si; and heating the substrate in an oxygen-containing atmosphere with the liquid precursor applied thereon to a temperature and for a time sufficient to form a thin film comprising at least one Bi-Sr- Ca-Cu-O-based high temperature ceramic oxide superconductor phase

  5. A gamma-ray discriminating neutron scintillator

    International Nuclear Information System (INIS)

    Eschbach, P.A.; Miller, S.D.; Cole, M.C.

    1994-01-01

    A neutron scintillator has been developed at Pacific Northwest Laboratory which responds directly to as little as 10 mrem/hour dose equivalent rate fast neutron fields. The scintillator is composed of CaF 2 :Eu or of NaI grains within a silicone rubber or polystyrene matrix, respectively. Neutrons colliding with the plastic matrix provide knockon protons, which in turn deposit energy within the grains of phosphor to produce pulses of light. Neutron interactions are discriminated from gamma-ray events on the basis of pulse height. Unlike NE-213 liquid scintillators, this solid scintillator requires no pulseshape discrimination and therefore requires less hardware. Neutron events are anywhere from two to three times larger than the gamma-ray exposures are compared to 0.7 MeV gamma-ray exposures. The CaF 2 :Eu/silicone rubber scintillator is nearly optically transparent, and can be made into a very sizable detector (4 cm x 1.5 cm) without degrading pulse height. This CaF 2 :Eu scintillator has been observed to have an absolute efficiency of 0.1% when exposed to 5-MeV accelerator-generated neutrons (where the absolute efficiency is the ratio of observed neutron events divided by the number of fast neutrons striking the detector)

  6. Survey meter using novel inorganic scintillators

    International Nuclear Information System (INIS)

    Yoshikawa, Akira; Fukuda, Kentaro; Kawaguchi, Noriaki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Kurosawa, Shunsuke; Yanagida, Takayuki

    2012-01-01

    Single crystal scintillator materials are widely used for detection of high-energy photons and particles. There is continuous demand for new scintillator materials with higher performance because of increasing number of medical, industrial, security and other applications. This article presents the recent development of three novel inorganic scintillators; Pr-doped Lu 3 Al 5 O 12 (Pr:LuAG), Ce doped Gd 3 (Al, Ga) 5 O 12 (Ce:GAGG) and Ce or Eu-doped 6 LiCaAlF 6 (Ce:LiCAF, Eu:LiCAF). Pr:LuAG shows very interesting scintillation properties including very fast decay time, high light yield and excellent energy resolution. Taking the advantage of these properties, positron emission mammography (PEM) equipped with Pr:LuAG were developed. Ce:GAGG shows very high light yield, which is much higher than that of Ce:LYSO. Survey meter using Ce:GAGG is developed using this scintillator. Ce:LiCAF and Eu:LiCAF were developed for neutron detection. The advantage and disadvantage are discussed comparing with halide scintillators. Eu-doped LiCAF indicated five times higher light yield than that of existing Li-glass. It is expected to be used as the alternative of 3 He. (author)

  7. Tritium activity in milk by liquid scintillation counting

    International Nuclear Information System (INIS)

    Zheng Huang

    1993-01-01

    This paper estimates the total tritium content of both the organic and aqueous fractions simultaneously. To fulfill these conditions, the chosen scintillator should be able to accept large sample loadings and display the same counting efficiency for the organic as well as aqueous fractions of the whole milk. In an attempt to establish this method, samples from four different brands of milk were analysed using the pseudocumence based Picofluor 30 (Canberra Packard) and the di-isopropyl naphthalene based Aquasafe 500 (Zinser Analytic) scintillator solution. Glass vials were used thus enabling visual observation to be made. The tritium activities of four different brands of milks were estimated to be very low and at, or near, the detection level of the system

  8. Novel fabrication of silicon carbide based ceramics for nuclear applications

    Science.gov (United States)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  9. Status of timing with plastic scintillation detectors

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1979-01-01

    Timing properties of scintillators and photomultipliers as well as theoretical and experimental studies of time resolution of scintillation counters are reviewed. Predictions of the theory of the scintillation pulse generation processes are compared with the data on the light pulse shape from small samples, in which the light pulse shape depends only on the composition of the scintillator. For larger samples the influence of the light collection process and the self-absorption process on the light pulse shape are discussed. The data on rise times, fwhm's, decay times and light yield of several commercial scintillators used in timing are collected. The next part of the paper deals with the properties of photomultipliers. The sources of time uncertainties in photomultipliers as a spread of the initial velocity of photoelectrons, emission of photoelectrons under different angles and from different points at the photocathode, the time spread and the gain dispersion introduced by electron photomultiplier are reviewed. The experimental data on the time jitter, single electron response and photoelectron yield of some fast photomultipliers are collected. As the time resolution of the timing systems with scintillation counters depends also on time pick-off units, a short presentation of the timing methods is given. The discussion of timing theories is followed by a review of experimental studies of the time resolution of scintillation counters. The paper is ended by an analysis of prospects on further progress of the subnanosecond timing with scintillation counters. (Auth.)

  10. Climatology of the scintillation onset over southern Brazil

    Science.gov (United States)

    Sousasantos, Jonas; de Oliveira Moraes, Alison; Sobral, José H. A.; Muella, Marcio T. A. H.; de Paula, Eurico R.; Paolini, Rafael S.

    2018-04-01

    This work presents an analysis of the climatology of the onset time of ionospheric scintillations at low latitude over the southern Brazilian territory near the peak of the equatorial ionization anomaly (EIA). Data from L1 frequency GPS receiver located in Cachoeira Paulista (22.4° S, 45.0° W; dip latitude 16.9° S), from September 1998 to November 2014, covering a period between solar cycles 23 and 24, were used in the present analysis of the scintillation onset time. The results show that the start time of the ionospheric scintillation follows a pattern, starting about 40 min earlier, in the months of November and December, when compared to January and February. The analyses presented here show that such temporal behavior seems to be associated with the ionospheric prereversal vertical drift (PRVD) magnitude and time. The influence of solar activity in the percentage of GPS links affected is also addressed together with the respective ionospheric prereversal vertical drift behavior. Based on this climatological study a set of empirical equations is proposed to be used for a GNSS alert about the scintillation prediction. The identification of this kind of pattern may support GNSS applications for aviation and oil extraction maritime stations positioning.

  11. Waveshifters and Scintillators for Ionizing Radiation Detection

    International Nuclear Information System (INIS)

    Baumgaugh, B.; Bishop, J.; Karmgard, D.; Marchant, J.; McKenna, M.; Ruchti, R.; Vigneault, M.; Hernandez, L.; Hurlbut, C.

    2007-01-01

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments

  12. Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C

    Science.gov (United States)

    Hooker, Matthew W.

    1998-01-01

    The properties of three PZT-based piezoelectric ceramics and one PLZT electrostrictive ceramic were measured as a function of temperature. In this work, the dielectric, ferroelectric polarization versus electric field, and piezoelectric properties of PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/35 were measured over a temperature range of -150 to 250 C. In addition to these measurements, the relative thermal expansion of each composition was measured from 25 to 600 C and the modulus of rupture of each material was measured at room temperature. This report describes the experimental results and compares and contrasts the properties of these materials with respect to their applicability to intelligent aerospace systems.

  13. On the ionization scintillation calorimeter based on KMgF3 crystal

    International Nuclear Information System (INIS)

    Buzulutskov, A.F.

    1990-01-01

    The development of the ionization scintillation calorimeter, using KMgF 3 crystals and high efficiency photocathodes, is proposed. Some characteristics of such calorimeter are compared with those of the high pressure gas one. 6 refs.; 2 figs.; 2 tabs

  14. Ionospheric scintillation observations over Kenyan region - Preliminary results

    Science.gov (United States)

    Olwendo, O. J.; Xiao, Yu; Ming, Ou

    2016-11-01

    Ionospheric scintillation refers to the rapid fluctuations in the amplitude and phase of a satellite signal as it passes through small-scale plasma density irregularities in the ionosphere. By analyzing ionospheric scintillation observation datasets from satellite signals such as GPS signals we can study the morphology of ionospheric bubbles. At low latitudes, the diurnal behavior of scintillation is driven by the formation of large-scale equatorial density depletions which form one to two hours after sunset via the Rayleigh-Taylor instability mechanism near the magnetic equator. In this work we present ionospheric scintillation activity over Kenya using data derived from a newly installed scintillation monitor developed by CRIRP at Pwani University (39.78°E, 3.24°S) during the period August to December, 2014. The results reveal the scintillation activity mainly occurs from post-sunset to post-midnight hours, and ceases around 04:00 LT. We also found that the ionospheric scintillation tends to appear at the southwest and northwest of the station. These locations coincide with the southern part of the Equatorial Ionization Anomaly crest over Kenya region. The occurrence of post-midnight L-band scintillation events which are not linked to pre-midnight scintillation observations raises fundamental question on the mechanism and source of electric fields driving the plasma depletion under conditions of very low background electron density.

  15. Development of LuAG-based scintillator crystals - A review

    Czech Academy of Sciences Publication Activity Database

    Nikl, Martin; Yoshikawa, A.; Kamada, K.; Nejezchleb, K.; Stanek, C.R.; Mareš, Jiří A.; Blazek, K.

    2013-01-01

    Roč. 59, č. 2 (2013), s. 47-72 ISSN 0960-8974 R&D Projects: GA ČR GAP204/12/0805; GA AV ČR KAN300100802 Grant - others:GA AV(CZ) M100100910 Institutional support: RVO:68378271 Keywords : garnet * scintillator * Lu 3 Al 5 O 12 * Ce 3+ * Pr 3+ * Sc 3+ * Yb 3+ Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.476, year: 2013

  16. Machining of scintillator tiles for the SDC calorimeter

    International Nuclear Information System (INIS)

    Bertoldi, M.; Bartosz, E.; Davis, C.; Hagopian, V.; Hernandez, E.; Hu, K.; Immer, C.; Thomaston, J.

    1992-01-01

    This research and development on the grooving methods for the scintillating tiles of the SDC calorimeter was done to maximize the light output of scintillator plates and improve the uniformity among tiles through machining procedures. Grooves for wavelength shifting fibers in SCSN-81 can be machined from 10,000 to 60,000 RPM with a feed rate of more than 30cm/min if the plate is kept cool and the chips are removed quickly by blowing dry, cold, clean air over the cutting tool. BC499-27, a polystyrene-based scintillator, is softer and more difficult to machine. It allows a maximum rotation speed of 20,000 RPM and a maximum feed rate of 15 cm/min. A new half-keyhole shape was used for grooves, allowing safer, faster top-loading of the fibers. Three hundred tiles were machined, achieving a standard deviation of the light output of less than 7%. (Author)

  17. Scintillating-fibre calorimetry

    International Nuclear Information System (INIS)

    Livan, M.; Vercesi, V.; Wigmans, R.

    1995-01-01

    In the past decade, calorimetry based on scintillating plastic fibres as active elements was developed from a conceptual idea to a mature detector technology, which is nowadays widely applied in particle physics experiments. This development and the performance characteristics of representative calorimeters, both for the detection of electromagnetic and hadronic showers, are reviewed. We also discuss new information on shower development processes in dense matter and its application to calorimetric principles that has emerged from some very thorough studies that were performed in the framework of this development. (orig.)

  18. Design, building and evaluation of a neutron detection device based on boron loaded plastic scintillator

    International Nuclear Information System (INIS)

    Normand, St.

    2001-10-01

    This work focuses on the study, the characterization and the fabrication of Boron-loaded plastic scintillators. Their use in thermal and fast neutron detection devices is also investigated. Fabrication process, especially boron doping, is explained in the first part of this work. Several FTIR, UV-visible and NMR analysis methods were used in order to characterize the material and to check its structure and stoichiometry. Experiences were done using alpha particles and proton beams to measure the scintillation characteristics. Light emission could therefore be completely determined by the Birks semi-empirical relation. In the second part, the whole detector simulation is undergone: interaction between material and radiation, light generation, paths and signal generation. Neutron simulation by MCNP (Monte Carlo N-Particles) is coupled to a light generation and propagation code developed especially during this work. These simulation tools allow us to optimize the detector geometry for neutron detection and to determine the geometry influence to the photon collection efficiency. Neutron detection efficiency and mean lifetime in this scintillator are also simulated. The close fit obtained between experimental measurements and simulations demonstrate the reliability of the method used. The third part deals with the discrimination methods between neutron and gamma, such as analog (zero crossing) and digital (charge comparison) ones. Their performances were explained and compared. The last part of this work reports on few applications where neutron detection is essential and can be improved with the use of boron loaded plastic scintillators. In particular, the cases of doped scintillation fibers, neutron spectrometry devices and more over neutron multiplicity counting devices are presented. (author)

  19. Randomized clinical trial of implant-supported ceramic-ceramic and metal-ceramic fixed dental prostheses: preliminary results.

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J

    2014-02-01

    The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0

  20. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    This paper presents the initial findings of field testing of 2 low-cost membrane filters, viz. 30 ìm polymeric mesh and 2–6 ìm macroporous waste-ash based ceramic filter, in a submerged membrane bioreactor (MBR) employing batch anoxic and aerobic conditions. The influent was raw wastewater from a residential complex ...

  1. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Science.gov (United States)

    Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  2. Systematic studies of small scintillators for new sampling calorimeter

    International Nuclear Information System (INIS)

    Jacosalem, E.P.; Sanchez, A.L.C.; Bacala, A.M.; Iba, S.; Nakajima, N.; Ono, H.; Miyata, H.

    2007-01-01

    A new sampling calorimeter using very thin scintillators and the multi-pixel photon counter (MPPC) has been proposed to produce better position resolution for the international linear collider (ILC) experiment. As part of this R and D study, small plastic scintillators of different sizes, thickness and wrapping reflectors are systematically studied. The scintillation light due to beta rays from a collimated 90 Sr source are collected from the scintillator by wavelength-shifting (WLS) fiber and converted into electrical signals at the PMT. The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 x 40 x 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an average of 9.2 photoelectrons. It is observed that light yield slightly increases with scintillator length, but increases to about 100% when WLS fiber diameter is increased from 1.0 mm to 1.6 mm. The position dependence measurement along the strip scintillator showed the uniformity of light transmission from the sensor to the PMT. A dip across the strip is observed which is 40% of the maximum pulse height. The block type scintillator pulse height, on the other hand, is found to be almost proportional to scintillator thickness. (author)

  3. Scintillator studies for the HPD-PET concept

    CERN Document Server

    Braem, D; Ciocia, F; De Leo, R; Joram, C; Lagamba, L; Nappi, E; Séguinot, Jacques; Vilardi, I; Weilhammer, P

    2007-01-01

    The spatial, energy, and time resolutions of 10 cm long polished YAP:Ce and LYSO:Ce crystals have been measured. The work is part of the novel HPD-PET concept, based on a full three-dimensional, free of parallax errors, reconstruction of the γ-ray interaction point in 10–15 cm long scintillators. The effective light attenuation length, a key parameter of the HPD-PET concept, and the resolutions have been measured for various wrappings and coatings of the crystal lateral surfaces. Even if the final HPD-PET prototype could use scintillators and/or wrappings different from those tested, the results here presented prove the feasibility of the concept and provide hints on its potential capabilities.

  4. Plastic scintillator detector for pulsed flux measurements

    International Nuclear Information System (INIS)

    Kadilin, V V; Kaplun, A A; Taraskin, A A

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6 LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results. (paper)

  5. Acquiring beam data for a flattening-filter free linear accelerator using organic scintillators

    International Nuclear Information System (INIS)

    Beierholm, A.R.; Behrens, C.F.; Hoffmann, L.; Andersen, C.E.

    2013-01-01

    Fibre-coupled organic scintillators have been proven a credible alternative to clinically implemented methods for radiotherapy dosimetry, primarily due to their water equivalence and good spatial resolution. Furthermore, the fast response of the scintillators can be exploited to perform time-resolved dosimetry on a highly detailed level. In this study, we present beam data for a Varian TrueBeam linear accelerator, which is capable of delivering flattening-filter free (FFF 1 ) clinical X-ray beams. The beam data have been acquired using an in-house developed dosimetry system based on fibre-coupled organic scintillators. The presented data exhibit high accuracy and precision when compared with data obtained using commercial dosimetry methods, and agree well with results published in the literature. -- Highlights: •A dosimetry system based on fibre-coupled organic scintillators is presented. •The system is used for radiotherapy beams with and without flattening filter. •Measurements show good agreement with various commercial dosimeters

  6. Porosity and biocompatibility study of ceramic implants based on ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Litvinova, Larisa; Shupletsova, Valeria; Leitsin, Vladimir; Vasyliev, Roman; Zubov, Dmitry; Buyakov, Ales; Kulkov, Sergey

    2014-01-01

    The work studies ZrO 2 (Me x O y )-based porous ceramics produced from the powders consisting of hollow spherical particles. It was shown that the structure is represented by a cellular framework with bimodal porosity consisting of sphere-like large pores and pores that were not filled with the powder particles during the compaction. For such ceramics, the increase of pore volume is accompanied by the increased strain in an elastic area. It was also shown that the porous ZrO 2 ceramics had no acute or chronic cytotoxicity. At the same time, ceramics possess the following osteoconductive properties: adhesion support, spreading, proliferation and osteogenic differentiation of MSCs

  7. Effect of silica fiber on the mechanical and chemical behavior of alumina-based ceramic core material

    OpenAIRE

    Weiguo Jiang; Kaiwen Li; Jiuhan Xiao; Langhong Lou

    2017-01-01

    In order to improve the chemical leachability, the alumina-based ceramic core material with the silica fiber was injected and sintered at 1100 °C/4 h, 1200 °C/4 h, 1300 °C/4 h and 1400 °C/4 h, respectively. The micrographs of ceramic core materials at sintered and leached state were characterized by scanning electron microscopy (SEM). The phase composition of ceramic core material after sintering and the leaching product after leaching were detected by X-ray diffraction (XRD). The porosity, r...

  8. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  9. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  10. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  11. Radiation damage in plastic scintillators

    International Nuclear Information System (INIS)

    Majewski, S.

    1990-01-01

    Results of radiation damage studies in plastic scintillators are reviewed and critically analyzed from the point of view of applications of plastic scintillators in calorimetric detectors for the SSC. Damage to transmission and to fluorescent yield in different conditions is discussed. New directions in R ampersand D are outlined. Several examples are given of the most recent data on the new scintillating materials made with old and new plastics and fluors, which are exhibiting significantly improved radiation resistance. With a present rate of a vigorous R D programme, the survival limits in the vicinity of 100 MRad seem to be feasible within a couple of years

  12. Applications of liquid scintillation tubes

    International Nuclear Information System (INIS)

    Broga, D.W.

    1977-01-01

    A new cocktail containing device for liquid scintillation counting, the scintillation tube, consists of a two-layered plastic bag which is heatsealed after the cocktail and sample have been placed in it. It is then placed in a carrying vial and counted in a conventional liquid scintillation counter. These tubes have proved to be a practical and economical alternative to vials. Some of their advantages are elimination of absorption problems, transparency, lower background and higher counting efficiency, low breakage danger and savings in waste disposal costs. Two applications for which the tubes are particularly suitable are the counting of laboratory swipes and urine analysis. (author)

  13. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  14. A high-resolution detector based on liquid-core scintillating fibres with readout via an electron-bombarded charge-coupled device

    International Nuclear Information System (INIS)

    Cianfarani, C.; Duane, A.; Fabre, J.P.; Frenkel, A.; Golovkin, S.V.; Gorin, A.M.; Harrison, K.; Kozarenko, E.N.; Kushnirenko, A.E.; Ladygin, E.A.; Martellotti, G.; Medvedkov, A.M.; Nass, P.A.; Obudovski, V.P.; Penso, G.; Petukhov, Yu.P.; Siegmund, W.P.; Tyukov, V.E.; Vasilchenko, V.G.

    1994-01-01

    This paper is a presentation of results from tests in a 5 GeV/c hadron beam of detectors based on liquid-core scintillating fibres, each fibre consisting of a glass capillary filled with organic liquid scintillator. Fibre readout was performed via an Electron-Bombarded Charge-Coupled Device (EBCCD) image tube, a novel instrument that combines the functions of a high-gain, gated image intensifier and a Charge-Coupled Device. Using 1-methylnaphthalene doped with 3 g/l of R45 as liquid scintillator, the attenuation lengths obtained for light propagation over distances greater than 16 cm were 1.5 m in fibres of 20 μm core and 1.0 m in fibres of 16 μm core. For particles that crossed the fibres of 20 μm core at distances of ∼1.8 cm and ∼95 cm from the fibres' readout ends, the recorded hit densities were 5.3 mm -1 and 2.5 mm -1 respectively. Using 1-methylnaphthalene doped with 3.6 g/l of R39 as liquid scintillator and fibres of 75 μm core, the hit density obtained for particles that crossed the fibres at a distance of ∼1.8 cm from their readout ends was 8.5 mm -1 . With a specially designed bundle of tapered fibres, having core diameters that smoothly increase from 16 μm to 75 μm, a spatial precision of 6 μm was measured. (orig.)

  15. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  16. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    Energy Technology Data Exchange (ETDEWEB)

    Paff, Marc Gerrit, E-mail: mpaff@umich.edu; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-21

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  17. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    Science.gov (United States)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  18. New liquid scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Flournoy, J.M.; Lyons, P.B.

    1981-01-01

    New long-wavelength-emitting, high-speed, liquid scintillators have been developed and tailored specifically for plasma diagnostic experiments employing fiber optics. These scintillators offer significant advantages over commercially available plastic scintillators in terms of sensitivity and bandwidth. FWHM response times as fast as 350 ps have been measured. Emission spectra, time response data, and relative sensitivity information are presented

  19. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  20. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Science.gov (United States)

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  1. Temperature stability and electrical properties in La-doped KNN-based ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Zhu, Jianguo; Xiao, Dingquan; Zhang, Xixiang

    2018-01-01

    To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.

  2. Temperature stability and electrical properties in La-doped KNN-based ceramics

    KAUST Repository

    Lv, Xiang

    2018-04-16

    To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.

  3. Metal-ceramic joint assembly

    Science.gov (United States)

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  4. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  5. Radiation-induced chemical processes in polystyrene scintillators

    International Nuclear Information System (INIS)

    Milinchuk, V.K.; Bolbit, N.M.; Klinshpont, E.R.; Tupikov, V.I.; Zhdanov, G.S.; Taraban, S.B.; Shelukhov, I.P.; Smoljanskii, A.S.

    1999-01-01

    The regularities established for macroradical accumulation and intensity of radioluminescence under γ-irradiation of a polystyrene scintillator prove benzyl macroradicals to be efficient quenchers of the excited scintillator molecules. Dissolved oxygen was determined to have a constant of the quenching rate 100 times lower than that of macroradicals. Oxygen is an efficient antirad because of participating in oxidation reactions and subsequent recombination of macroradicals. The method was developed to obtain a polymeric scintillator with a polystyrene matrix containing a dispersed system of pores and channels. Radiation resistance of such a scintillator is 5-10 times higher than that of standard types

  6. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  7. Masking ability of bi- and tri- laminate all-ceramic veneers on tooth-colored ceramic discs.

    Science.gov (United States)

    Farhan, Daniel; Sukumar, Smitha; von Stein-Lausnitz, Axel; Aarabi, Ghazal; Alawneh, Ahmad; Reissmann, Daniel R

    2014-01-01

    A predictable esthetic outcome is imperative when placing ceramic veneers. Discolored teeth pose a major challenge as sufficient material thickness is required to achieve a good esthetic result. There is limited evidence in the literature that compares the masking ability of multi-laminate veneers. The aim of this in-vitro study was to compare the masking ability of bi-laminate (BL) and tri-laminate (TL) all-ceramic veneers cemented on tooth-colored ceramic discs. A total of 40 veneers (shade A1, 10-mm diameter, 0.8-mm thick) were manufactured-20 BL veneers (0.4-mm pressable ceramic coping veneered with 0.4-mm thick enamel layer) and 20 TL veneers (0.4-mm coping veneered with 0.2-mm thick opaque interlayer and 0.2-mm thick enamel layer). A bonding apparatus was utilized to adhesively cement all veneers on the ceramic discs (shade A1), simulating teeth of light and dark color. The resulting groups (N = 10 each) were the reference groups (shade A1 ceramic base) BL-1 and TL-1 veneers, and the test groups (shade A4 ceramic base) BL-4 and TL-4 veneers. The color of the cemented veneers was measured using a spectrophotometer. The data were converted to CIE L*a*b* coordinates, and ΔE* were calculated to allow for statistical analysis. The color differences between the samples with the A1 and A4 ceramic bases were significantly lower when covered with TL veneers (mean ΔE*: 3.2 units) than with BL veneers (mean ΔE*: 4.0 units: p bi-laminate veneers. Patients with discolored/darker teeth may benefit from a more predictable esthetic result when teeth restored with tri-laminate rather than bi-laminate veneers. © 2014 Wiley Periodicals, Inc.

  8. Comparison of plastic scintillating fibres and capillaries filled with liquid scintillator

    International Nuclear Information System (INIS)

    Cardini, A.; Cavasinni, V.; Girolamo, B. di; Flaminio, V.; Golovkin, S.V.; Gorin, A.M.; Kulichenko, A.V.; Kushnirenko, A.E.; Pyshev, A.I.; Manuilov, I.; Vasilchenko, V.G.

    1994-01-01

    A comparison is made between the light yield, attenuation length, time response and light propagation speed in plastic scintillating fibres (SCSF-38 and Kuraray-3HF) and quartz capillaries filled with liquid scintillator (LS) 1-methilnaphthalene (1MN) doped with new dyes R45 and R39. The inner diameter of capillaries and diameter of plastic fibres is 0.5 mm. The number of photoelectrons detected at the far end (2 m) was 2.9 for capillaries filled with 1MN+3 g/l R45 while it was 1.8 times smaller in the case of SCSF-38 and 3 times smaller in the case of Kuraray 3HF plastic fibres. Taking into account the quantum efficiency of the photodetector used these reduction factors became 3.0 and 2.0, respectively. Good attenuation length, high light output and also excellent radiation resistance of capillaries filled with LS (>60 Mrad, measured elsewhere) show that they are a very promising alternative to plastic scintillating fibres for future applications in tracking detectors and calorimeters. ((orig.))

  9. Optimization of the injection molding process for development of high performance calcium oxide -based ceramic cores

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    The binder composition used for ceramic injection molding plays a crucial role on the final properties of sintered ceramic and to avoid defects on green parts. In this study, the effects of binder compositions on the rheological, microstructures and the mechanical properties of CaO based ceramic cores were investigated. It was found that the optimized formulation for dispersant, solid loading was 1.5 wt% and 84 wt%, respectively. The microstructures, such as porosity, pore size distribution and grain boundary density were closely related to the plasticizer contents. The decrease of plasticizer contents can enhance the strength of the ceramic cores but with decreased shrinkage. Meanwhile, the creep resistance of ceramic cores was enhanced by decreasing of plasticizer contents. The flexural strength of the core was found to decrease with the increase of the porosity, the improvement of creep resistance is closely related to the decrease of porosity and grain boundary density.

  10. Scintillation proximity assay

    International Nuclear Information System (INIS)

    Hart, H.

    1980-01-01

    In a method of immunological assay two different classes of particles which interact at short distances to produce characteristic detectable signals are employed in a modification of the usual latex fixation test. In one embodiment an aqueous suspension of antigen coated tritiated latex particles (LH) and antigen coated polystyrene scintillant particles (L*) is employed to assay antibody in the aqueous medium. The amount of (LH) (L*) dimer formation and higher order aggregation induced and therefore the concentration of antibody (or antigen) present which caused the aggregation can be determined by using standard liquid scintillation counting equipment. (author)

  11. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  12. Fiber scintillator/streak camera detector for burn history measurement in inertial confinement fusion experiment

    International Nuclear Information System (INIS)

    Miyanaga, N.; Ohba, N.; Fujimoto, K.

    1997-01-01

    To measure the burn history in an inertial confinement fusion experiment, we have developed a new neutron detector based on plastic scintillation fibers. Twenty-five fiber scintillators were arranged in a geometry compensation configuration by which the time-of-flight difference of the neutrons is compensated by the transit time difference of light passing through the fibers. Each fiber scintillator is spliced individually to an ultraviolet optical fiber that is coupled to a streak camera. We have demonstrated a significant improvement of sensitivity compared with the usual bulk scintillator coupled to a bundle of the same ultraviolet fibers. copyright 1997 American Institute of Physics

  13. Influence of dissolved gas and temperature on the light yield of new liquid scintillators

    CERN Document Server

    Buontempo, S; Golovkin, S V; Martellotti, G; Medvedkov, A M; Penso, G; Soloviev, A S; Vasilchenko, V G

    1999-01-01

    Sixteen new liquid scintillators, emitting green light, were studied. They are based on four solvents combined with four dopants. The influence of different gas atmospheres was studied. In particular it was shown that by keeping these liquid scintillators in vacuum or in a neutral gas, the light yield increases up to 32~\\% at 20 $^{\\circ}$C and for the best solvent-dopant combinations. The dependance of the light yield on temperature was also studied for these scintillators. In the 20--60 $^{\\circ}$C interval, some exhibit a light yield variation of $\\sim$ 3 \\% which is smaller than that of the NE 102A plastic scintillator.

  14. Estimation of Fano factor in inorganic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Vaibhav, E-mail: bora.vaibhav@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Barrett, Harrison H., E-mail: barrett@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Fastje, David, E-mail: dfastje@gmail.com [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Clarkson, Eric, E-mail: clarkson@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Furenlid, Lars, E-mail: furen@radiology.arizona.edu [Center for Gamma-Ray Imaging, Department of Medical Imaging, University of Arizona and College of Optical Sciences, University of Arizona, Tucson, AZ 85724 (United States); Bousselham, Abdelkader, E-mail: abousselham@qf.org.qa [Qatar Foundation, QEERI, P.O. Box 5825, Doha (Qatar); Shah, Kanai S., E-mail: kanaishah@yahoo.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States); Glodo, Jarek, E-mail: jglodo@rmdinc.com [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States)

    2016-01-01

    The Fano factor of an integer-valued random variable is defined as the ratio of its variance to its mean. Correlation between the outputs of two photomultiplier tubes on opposite faces of a scintillation crystal was used to estimate the Fano factor of photoelectrons and scintillation photons. Correlations between the integrals of the detector outputs were used to estimate the photoelectron and photon Fano factor for YAP:Ce, SrI{sub 2}:Eu and CsI:Na scintillator crystals. At 662 keV, SrI{sub 2}:Eu was found to be sub-Poisson, while CsI:Na and YAP:Ce were found to be super-Poisson. An experiment setup inspired from the Hanbury Brown and Twiss experiment was used to measure the correlations as a function of time between the outputs of two photomultiplier tubes looking at the same scintillation event. A model of the scintillation and the detection processes was used to generate simulated detector outputs as a function of time for different values of Fano factor. The simulated outputs from the model for different Fano factors was compared to the experimentally measured detector outputs to estimate the Fano factor of the scintillation photons for YAP:Ce, LaBr{sub 3}:Ce scintillator crystals. At 662 keV, LaBr{sub 3}:Ce was found to be sub-Poisson, while YAP:Ce was found to be close to Poisson.

  15. Geophysical analysis of coherent satellite scintillation data

    Science.gov (United States)

    Fremouw, E. J.; Lansinger, J. M.; Miller, D. A.

    1981-11-01

    In May of 1976, Air Force Satellite P76-5 was launched with the Defense Nuclear Agency's Wideband beacon, DNA-002, as its sole payload. Several researchers have employed the resulting data in studies of ionospheric structure and its effect on transionospheric radio communications. In the present work, recordings of amplitude and phase scintillation imposed on Wideband's VHF and UHF signals by the ionosphere have been used to study medium-scale structures in the auroral-zone F layer. Results include quantitative identification of a very close relationship between scintillation and solar/geomagnetic activity, together with lack of a seasonal variation in scintillation activity in the Alaskan sector. A surprisingly high correlation (90%) was found between monthly means of phase-scintillation index, on the one hand, and sunspot number and 10-cm solar radio flux, on the other. The high-latitude scintillation boundary was found to be very similar to the soft-electron precipitation boundary, including similarity in expansion rates with increasing magnetic activity. Interestingly, it is systematically shifted poleward of the precipitation boundary on the day side of the earth and equatorward on the night side. Taken together, the results of this research disclose a rather direct relationship between scintillation and soft-electron precipitation, with plasma convection likely playing an important role in generation of the scintillation-producing irregularities.

  16. [The effect of core veneer thickness ratio on the flexural strength of diatomite-based dental ceramic].

    Science.gov (United States)

    Jiang, Jie; Zhang, Xin; Gao, Mei-qin; Zhang, Fei-min; Lu, Xiao-li

    2015-06-01

    To evaluate the effect of different core veneer thickness ratios on the flexural strength and failure mode of bilayered diatomite-based dental ceramics. Diatomite-based dental ceramics blocks (16 mm×5.4 mm×1 mm) were sintered with different thickness of veneer porcelains: 0 mm (group A), 0.6 mm (group B), 0.8 mm (group C) and 1.0 mm (group D). Flexural strength was detected and scanning electron microscope was used to observe the interface microstructure. Statistical analysis was performed using SPSS 17.0 software package. With the increase of the thickness of the veneer porcelain, flexural strength of group C showed highest flexural strength up to (277.24±5.47) MPa. Different core veneer thickness ratios can significantly influence the flexural strength of bilayered diatomite-based dental ceramics. Supported by Science and Technology Projects of Nantong City (HS2013010).

  17. Transparent Lu 2 O 3 :Eu ceramics by sinter and HIP optimization

    Science.gov (United States)

    Seeley, Z. M.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.

    2011-09-01

    Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu 2O 3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP'ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 °C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 °C to reach full density. Vacuum sintering above 1650 °C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 °C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP'ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu 2O 3:Eu showed ˜4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices.

  18. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  19. Conference on Engineering of Scintillation Materials and Radiation Technologies

    CERN Document Server

    Gektin, Alexander

    2017-01-01

    This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of  garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.

  20. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  1. Measurements of energy resolution with hemispheric scintillators

    International Nuclear Information System (INIS)

    Mendonca, A.C.S.; Binns, D.A.C.; Tauhata, L.; Poledna, R.

    1980-01-01

    The hemispheric configuration is used for plastic scintillators type NE 102 with the aiming to optimize the light collect. Scintillators at this configuration, with radii of 3,81 cm and 2,54 cm, are showing improvement about 16-17% in the energy resolution, on cilyndric scintillators with the same volume, for gamma rays of 511-1275 KeV. (E.G.) [pt

  2. Time resolution research in liquid scintillating detection

    International Nuclear Information System (INIS)

    He Hongkun; Shi Haoshan

    2006-01-01

    The signal processing design method is introduced into liquid scintillating detection system design. By analyzing the signal of liquid scintillating detection, improving time resolution is propitious to upgrade efficiency of detecting. The scheme of realization and satisfactory experiment data is demonstrated. Besides other types of liquid scintillating detection is the same, just using more high speed data signal processing techniques and elements. (authors)

  3. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  4. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  5. Calibration of LiBaF sub 3 Ce scintillator for fission spectrum neutrons

    CERN Document Server

    Reeder, P L

    2002-01-01

    The scintillator LiBaF sub 3 doped with small amounts of Ce sup + sup 3 has the ability to distinguish heavy charged particles (p, d, t, or alpha) from beta and/or gamma radiation based on the presence or absence of nanosecond components in the scintillation light output. Since the neutron capture reaction on sup 6 Li produces recoil alphas and tritons, this scintillator also discriminates between neutron induced events and beta or gamma interactions. An experimental technique using a time-tagged sup 2 sup 5 sup 2 Cf source has been used to measure the efficiency of this scintillator for neutron capture, the calibration of neutron capture pulse height, and the pulse height resolution--all as a function of incident neutron energy.

  6. Scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1979-01-01

    A scintillator structure comprises at least one layer of transparent fused quartz with a phosphor coating on one or both sides adjacent to at least one transparent layer of epoxy resin which directs light from the phosphor to a detector. The phosphor layer may be formed from a powder optionally with a binder, a single crystal or a melt, or by evaporation or sintering. A plurality of multiple layers may be used or the structure tilted for greater absorption. The structure may be surrounded by another such structure optionally operating in cascade with the first. Many phosphors are specified. A scintillator structure comprises phosphor particles dispersed in epoxy resin or copoly imide-silicone and cast in a multi-compartment box with long sides transparent to X-rays and dividers opaque to X-rays. (UK)

  7. Preparation and microstructure of ZrO2- and LaGaO3-based high-porosity ceramics

    International Nuclear Information System (INIS)

    Kaleva, G.M.; Golubko, N.V.; Suvorkin, S.V.; Kosarev, G.V.; Sukhareva, I.P.; Avetisov, A.K.; Politova, E.D.

    2006-01-01

    The morphology and concentration of pore formers are studied for their effect on the microstructure and gas permeability of porous zirconia- and lanthanum-gallate-based oxygen-ion-conducting ceramics. The results have been used to optimize the preparation conditions and composition of the ceramics. The resultant dense, fine-grained materials have porosities of up to ∼56% [ru

  8. Separators - Technology review: Ceramic based separators for secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Meyer, Dirk C. [Technische Universität Bergakademie Freiberg, Institut für Experimentelle Physik, Leipziger Str. 23, 09596 Freiberg (Germany); Schilm, Jochen [Fraunhofer-Institut für Keramische Technologien und Systeme IKTS, Winterbergstraße 28, 01277 Dresden (Germany); Leisegang, Tilmann [Fraunhofer-Technologiezentrum Halbleitermaterialien THM, Am St.-Niclas-Schacht 13, 09599 Freiberg (Germany)

    2014-06-16

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based

  9. Separators - Technology review: Ceramic based separators for secondary batteries

    Science.gov (United States)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.

    2014-06-01

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators

  10. High-resolution tracking using large capillary bundles filled with liquid scintillator

    CERN Document Server

    Annis, P; Benussi, L; Bruski, N; Buontempo, S; Currat, C; D'Ambrosio, N; Van Dantzig, R; Dupraz, J P; Ereditato, A; Fabre, Jean-Paul; Fanti, V; Feyt, J; Frekers, D; Frenkel, A; Galeazzi, F; Garufi, F; Goldberg, J; Golovkin, S V; Gorin, A M; Grégoire, G; Harrison, K; Höpfner, K; Holtz, K; Konijn, J; Kozarenko, E N; Kreslo, I E; Kushnirenko, A E; Liberti, B; Martellotti, G; Medvedkov, A M; Michel, L; Migliozzi, P; Mommaert, C; Mondardini, M R; Panman, J; Penso, G; Petukhov, Yu P; Rondeshagen, D; Siegmund, W P; Tyukov, V E; Van Beek, G; Vasilchenko, V G; Vilain, P; Visschers, J L; Wilquet, G; Winter, Klaus; Wolff, T; Wörtche, H J; Wong, H; Zimyn, K V

    2000-01-01

    We have developed large high-resolution tracking detectors based on glass capillaries filled with organic liquid scintillator of high refractive index. These liquid-core scintillating optical fibres act simultaneously as detectors of charged particles and as image guides. Track images projected onto the readout end of a capillary bundle are visualized by an optoelectronic chain consisting of a set of image-intensifier tubes followed by a photosensitive CCD or by an EBCCD camera. Two prototype detectors, each composed of \\hbox{$\\approx 10^6$} capillaries with \\hbox{20$-$25 $\\mu$m} diameter and \\hbox{0.9$-$1.8 m} length, have been tested, and a spatial resolution of the order of \\hbox{20$-$40 $\\mu$m} has been attained. A high scintillation efficiency and a large light-attenuation length, in excess of 3 m, was achieved through special purification of the liquid scintillator. Along the tracks of minimum-ionizing particles, the hit densities obtained were $\\sim$ 8 hits/mm at the readout window, and \\hbox{$\\sim$ 3 ...

  11. High Resolution Tracking Devices Based on Capillaries Filled with Liquid Scintillator

    CERN Multimedia

    Bonekamper, D; Vassiltchenko, V; Wolff, T

    2002-01-01

    %RD46 %title\\\\ \\\\The aim of the project is to develop high resolution tracking devices based on thin glass capillary arrays filled with liquid scintillator. This technique provides high hit densities and a position resolution better than 20 $\\mu$m. Further, their radiation hardness makes them superior to other types of tracking devices with comparable performance. Therefore, the technique is attractive for inner tracking in collider experiments, microvertex devices, or active targets for short-lived particle detection. High integration levels in the read-out based on the use of multi-pixel photon detectors and the possibility of optical multiplexing allow to reduce considerably the number of output channels, and, thus, the cost for the detector.\\\\ \\\\New optoelectronic devices have been developed and tested: the megapixel Electron Bombarded CCD (EBCCD), a high resolution image-detector having an outstanding capability of single photo-electron detection; the Vacuum Image Pipeline (VIP), a high-speed gateable pi...

  12. High-power electro-optic switch technology based on novel transparent ceramic

    International Nuclear Information System (INIS)

    Zhang Xue-Jiao; Ye Qing; Qu Rong-Hui; Cai Hai-wen

    2016-01-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. (paper)

  13. Scintillating screens study for LEIR/LHC heavy ion beams

    CERN Document Server

    Bal, C; Lefèvre, T; Scrivens, R; Taborelli, M

    2005-01-01

    It has been observed on different machines that scintillating ceramic screens (like chromium doped alumina) are quickly damaged by low energy ion beams. These particles are completely stopped on the surface of the screens, inducing both a high local temperature increase and the electrical charging of the material. A study has been initiated to understand the limiting factors and the damage mechanisms. Several materials, ZrO2, BN and Al2O3, have been tested at CERN on LINAC3 with 4.2MeV/u lead ions. Alumina (Al2O3) is used as the reference material as it is extensively used in beam imaging systems. Boron nitride (BN) has better thermal properties than Alumina and Zirconium oxide (ZrO2). BN has in fact the advantage of increasing its electrical conductivity when heated. This contribution presents the results of the beam tests, including the post-mortem analysis of the screens and the outlook for further measurements. The strategy for the choice of the screens for the Low Energy Ion Ring (LEIR), currently under ...

  14. Elaboration of porous gehlenite and anorthite based ceramics using low price raw materials

    Directory of Open Access Journals (Sweden)

    F. Zenikheri

    Full Text Available Abstract Porous ceramics of good quality cost a lot in the world market, which has limited their use in developing countries. This is why this work was mainly devoted to prepare low-cost and good quality ceramics, using kaolin (DD2 type and calcite (CaCO3 available in abundance in Algeria. Based on previous results, 28 wt% CaCO3 ceramic was selected. The presence of CaCO3 favors to achieve porous samples characterized by a high percentage of porosity due to the CO2 release and CaO formation during its calcination at about 700 °C. The choice of these raw materials is based on their natural abundance (low price. It has been found that the samples had interesting characteristics: average pore size between 2.87 and 6.50 μm and porosity between 53 and 57%. It has also been found that the manufactured membrane supports are mainly constituted of gehlenite and anorthite phases. Moreover, the pore size distribution was mono-modal type. The surface and cross-section morphologies observed through a scanning electron microscope were also homogeneous and do not present any possible macro-defects (cracks, etc..

  15. Perspectives on the future development of new scintillators

    International Nuclear Information System (INIS)

    Melcher, C.L.

    2005-01-01

    The search for new scintillators has become increasingly sophisticated and increasingly successful in recent years, driven to a large degree by the rapidly growing needs of medical imaging and high energy physics. Better understanding of the various scintillation mechanisms has led to innovative new materials for both gamma-ray and neutron detection, and the concept of scintillator design and engineering has emerged, whereby materials are optimized according to the scintillation properties needed by specific applications. Numerous promising candidates have been identified during the last few years, and several are currently being actively developed for commercial production. Economical crystal growth often represents a significant challenge in the practical application of new scintillation materials

  16. A user's guide to scintillation

    International Nuclear Information System (INIS)

    Hewish, A.

    1989-01-01

    During the past four decades scintillation methods have been used for remote-sensing distant plasmas and for providing high angular resolution in radioastronomy. This brief review illustrates some of the techniques employed and explains the underlying theory in simple physical terms; it is not intended to be a complete survey of all applications of scintillation. (author)

  17. Laser Beam Scintillation with Applications

    CERN Document Server

    Andrews, Larry C; Young, Cynthia

    2001-01-01

    Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.

  18. Simulation and optimisation of a position sensitive scintillation detector with wavelength shifting fibers for thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Herzkamp, Matthias; Engels, Ralf; Kemmerling, Guenter [ZEA-2, Forschungszentrum Juelich (Germany); Brueckel, Thomas [JCNS, Forschungszentrum Juelich (Germany); Stahl, Achim [III. Physikalisches Institut B, RWTH Aachen (Germany); Waasen, Stefan van [ZEA-2, Forschungszentrum Juelich (Germany); Faculty of Engineering, University of Duisburg-Essen (Germany)

    2015-07-01

    In neutron scattering experiments it is important to have position sensitive large scale detectors for thermal neutrons. A detector based on a neutron scintillator with wave length shifting fibers is a new kind of such a detector. We present the simulation of the detector based on the microscopic structure of the scintillation material of the mentioned detector. It consists of a converter and a scintillation powder bound in a matrix. The converter in our case is lithium fluoride with enriched lithium 6, to convert thermal neutrons into high energetic alpha and triton particles. The scintillation material is silver doped zinc sulfide. We show that pulse height spectra obtained by these scintillators can be be explained by the simple model of randomly distributed spheres of zinc sulfide and lithium fluoride. With this model, it is possible to optimise the mass ratio of zinc sulfide to lithium fluoride with respect to detection efficiency and/or energy deposition in zinc sulfide.

  19. Comparative characteristics of polystyrene scintillation strips

    International Nuclear Information System (INIS)

    Gapienko, V.A.; Denisov, A.G.; Mel'nikov, E.A.

    1992-01-01

    Results are provided for a study of the main characteristics of polystyrene scintillation strips with a cross-section of 200 x 10 mm with two different scintillation-additive compositions: 1.5% p-terphenyl + 0.01% POPOP and 1.5% p-terphenyl + 0.01% DBP. The mean light-attenuation lengths are 180 cm and 260 cm, respectively, for strips with POPOP and DBP. The emittances of the polystyrene scintillators with DBP and POPOP additives have a ratio of 0.8:1.0 as recorded by an FEU-110 photomultiplier. 2 refs., 1 fig., 2 tabs

  20. Multi-frequency GNSS robust carrier tracking for ionospheric scintillation mitigation

    Science.gov (United States)

    Vilà-Valls, Jordi; Closas, Pau; Curran, James T.

    2017-10-01

    Ionospheric scintillation is the physical phenomena affecting radio waves propagating from the space through the ionosphere to earth. The signal distortion induced by scintillation can pose a major threat to some GNSS application. Scintillation is one of the more challenging propagation scenarios, particularly affecting high-precision GNSS receivers which require high quality carrier phase measurements; and safety critical applications which have strict accuracy, availability and integrity requirements. Under ionospheric scintillation conditions, GNSS signals are affected by fast amplitude and phase variations, which can compromise the receiver synchronization. To take into account the underlying correlation among different frequency bands, we propose a new multivariate autoregressive model (MAR) for the multi-frequency ionospheric scintillation process. Multi-frequency GNSS observations and the scintillation MAR are modeled in state-space, allowing independent tracking of both line-of-sight phase variations and complex gain scintillation components. The resulting joint synchronization and scintillation mitigation problem is solved using a robust nonlinear Kalman filter, validated using real multi-frequency scintillation data with encouraging results.