WorldWideScience

Sample records for lungfish neoceratodus forsteri

  1. Visual ecology of the Australian lungfish (Neoceratodus forsteri

    Directory of Open Access Journals (Sweden)

    Vorobyev Misha

    2008-12-01

    Full Text Available Abstract Background The transition from water to land was a key event in the evolution of vertebrates that occurred over a period of 15–20 million years towards the end of the Devonian. Tetrapods, including all land-living vertebrates, are thought to have evolved from lobe-finned (sarcopterygian fish that developed adaptations for an amphibious existence. However, while many of the biomechanical and physiological modifications necessary to achieve this feat have been studied in detail, little is known about the sensory adaptations accompanying this transition. In this study, we investigated the visual system and visual ecology of the Australian lungfish Neoceratodus forsteri, which is the most primitive of all the lungfish and possibly the closest living relative to the ancestors of tetrapods. Results Juvenile Neoceratodus have five spectrally distinct retinal visual pigments. A single type of rod photoreceptor contains a visual pigment with a wavelength of maximum absorbance (λmax at 540 nm. Four spectrally distinct single cone photoreceptors contain visual pigments with λmax at 366 (UVS, 479 (SWS, 558 (MWS and 623 nm (LWS. No double cones were found. Adult lungfish do not possess UVS cones and, unlike juveniles, have ocular media that prevent ultraviolet light from reaching the retina. Yellow ellipsoidal/paraboloidal pigments in the MWS cones and red oil droplets in the LWS cones narrow the spectral sensitivity functions of these photoreceptors and shift their peak sensitivity to 584 nm and 656 nm, respectively. Modelling of the effects of these intracellular spectral filters on the photoreceptor colour space of Neoceratodus suggests that they enhance their ability to discriminate objects, such as plants and other lungfishes, on the basis of colour. Conclusion The presence of a complex colour vision system based on multiple cone types and intracellular spectral filters in lungfishes suggests that many of the ocular characteristics seen in

  2. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri

    OpenAIRE

    Bailes, Helena J; Davies, Wayne L; Trezise, Ann EO; Collin, Shaun P

    2007-01-01

    Abstract Background One of the greatest challenges facing the early land vertebrates was the need to effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing is known about the visual pigments present in lungfish or the early tetrapods. Results Here we...

  3. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri

    Directory of Open Access Journals (Sweden)

    Davies Wayne L

    2007-10-01

    Full Text Available Abstract Background One of the greatest challenges facing the early land vertebrates was the need to effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing is known about the visual pigments present in lungfish or the early tetrapods. Results Here we identify and characterise five visual pigments (rh1, rh2, lws, sws1 and sws2 expressed in the retina of N. forsteri. Phylogenetic analysis of the molecular evolution of lungfish and other vertebrate visual pigment genes indicates a closer relationship between lungfish and amphibian pigments than to pigments in teleost fishes. However, the relationship between lungfish, the coelacanth and tetrapods could not be absolutely determined from opsin phylogeny, supporting an unresolved trichotomy between the three groups. Conclusion The presence of four cone pigments in Australian lungfish suggests that the earliest tetrapods would have had a colorful view of their terrestrial environment.

  4. Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri.

    Science.gov (United States)

    Bailes, Helena J; Davies, Wayne L; Trezise, Ann E O; Collin, Shaun P

    2007-10-25

    One of the greatest challenges facing the early land vertebrates was the need to effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing is known about the visual pigments present in lungfish or the early tetrapods. Here we identify and characterise five visual pigments (rh1, rh2, lws, sws1 and sws2) expressed in the retina of N. forsteri. Phylogenetic analysis of the molecular evolution of lungfish and other vertebrate visual pigment genes indicates a closer relationship between lungfish and amphibian pigments than to pigments in teleost fishes. However, the relationship between lungfish, the coelacanth and tetrapods could not be absolutely determined from opsin phylogeny, supporting an unresolved trichotomy between the three groups. The presence of four cone pigments in Australian lungfish suggests that the earliest tetrapods would have had a colorful view of their terrestrial environment.

  5. Brain - Endocast Relationship in the Australian Lungfish, Neoceratodus forsteri, Elucidated from Tomographic Data (Sarcopterygii: Dipnoi.

    Directory of Open Access Journals (Sweden)

    Alice M Clement

    Full Text Available Although the brains of the three extant lungfish genera have been previously described, the spatial relationship between the brain and the neurocranium has never before been fully described nor quantified. Through the application of virtual microtomography (μCT and 3D rendering software, we describe aspects of the gross anatomy of the brain and labyrinth region in the Australian lungfish, Neoceratodus forsteri and compare this to previous accounts. Unexpected characters in this specimen include short olfactory peduncles connecting the olfactory bulbs to the telencephalon, and an oblong telencephalon. Furthermore, we illustrate the endocast (the mould of the internal space of the neurocranial cavity of Neoceratodus, also describing and quantifying the brain-endocast relationship in a lungfish for the first time. Overall, the brain of the Australian lungfish closely matches the size and shape of the endocast cavity housing it, filling more than four fifths of the total volume. The forebrain and labyrinth regions of the brain correspond very well to the endocast morphology, while the midbrain and hindbrain do not fit so closely. Our results cast light on the gross neural and endocast anatomy in lungfishes, and are likely to have particular significance for palaeoneurologists studying fossil taxa.

  6. Skin structure in the snout of the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).

    Science.gov (United States)

    Kemp, A

    2014-10-01

    Many fossil lungfish have a system of mineralised tubules in the dermis of the snout, branching extensively and radiating towards the epidermis. The tubules anastomose in the superficial layer of the dermis, forming a plexus consisting of two layers of vessels, with branches that expand into pore canals and flask organs, flanked by cosmine nodules where these are present. Traces of this system are found in the Australian lungfish, Neoceratodus forsteri, consisting of branching tubules in the dermis, a double plexus below the epidermis and dermal papillae entering the epidermis without reaching the surface. In N. forsteri, the tubules, the plexus and the dermal papillae consist of thick, unmineralised connective tissue, enclosing fine blood vessels packed with lymphocytes. Tissues in the epidermis and the dermis of N. forsteri are not associated with deposits of calcium, which is below detectable limits in the skin of the snout at all stages of the life cycle. Canals of the sensory line system, with mechanoreceptors, are separate from the tubules, the plexus and the dermal papillae, as are the electroreceptors in the epidermis. The system of tubules, plexus, dermal papillae and lymphatic capillaries may function to protect the tissues of the snout from infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cranial nerves in the Australian lungfish, Neoceratodus forsteri, and in fossil relatives (Osteichthyes: Dipnoi).

    Science.gov (United States)

    Kemp, A

    2017-02-01

    Three systems, two sensory and one protective, are present in the skin of the living Australian lungfish, Neoceratodus forsteri, and in fossil lungfish, and the arrangement and innervation of the sense organs is peculiar to lungfish. Peripheral branches of nerves that innervate the sense organs are slender and unprotected, and form before any skeletal structures appear. When the olfactory capsule develops, it traps some of the anterior branches of cranial nerve V, which emerged from the chondrocranium from the lateral sphenotic foramen. Cranial nerve I innervates the olfactory organ enclosed within the olfactory capsule and cranial nerve II innervates the eye. Cranial nerve V innervates the sense organs of the snout and upper lip, and, in conjunction with nerve IX and X, the sense organs of the posterior and lateral head. Cranial nerve VII is primarily a motor nerve, and a single branch innervates sense organs in the mandible. There are no connections between nerves V and VII, although both emerge from the brain close to each other. The third associated system consists of lymphatic vessels covered by an extracellular matrix of collagen, mineralised as tubules in fossils. Innervation of the sensory organs is separate from the lymphatic system and from the tubule system of fossil lungfish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ontogenetic organization of the FMRFamide immunoreactivity in the nervus terminalis of the lungfish, Neoceratodus forsteri.

    Science.gov (United States)

    Fiorentino, Maria; D'Aniello, Biagio; Joss, Jean; Polese, Gianluca; Rastogi, Rakesh K

    2002-08-19

    The development of the nervus terminalis system in the lungfish, Neoceratodus forsteri, was investigated by using FMRFamide as a marker. FMRFamide immunoreactivity appears first within the brain, in the dorsal hypothalamus at a stage around hatching. At a slightly later stage, immunoreactivity appears in the olfactory mucosa. These immunoreactive cells move outside the olfactory organ to form the ganglion of the nervus terminalis. Immunoreactive processes emerge from the ganglion of the nervus terminalis in two directions, one which joins the olfactory nerve to travel to the brain and the other which courses below the brain to enter at the level of the preoptic nucleus. Neither the ganglion of the nervus terminalis nor the two branches of the nervus terminalis form after surgical removal of the olfactory placode at a stage before the development of FMRFamide immunoreactivity external to the brain. Because this study has confirmed that the nervus terminalis in lungfish comprises both an anterior and a posterior branch, it forms the basis for discussion of homology between these branches and the nervus terminalis of other anamniote vertebrates. Copyright 2002 Wiley-Liss, Inc.

  9. Comparative pelvic development of the axolotl (Ambystoma mexicanum) and the Australian lungfish (Neoceratodus forsteri): conservation and innovation across the fish-tetrapod transition.

    Science.gov (United States)

    Boisvert, Catherine Anne; Joss, Jean Mp; Ahlberg, Per E

    2013-01-23

    The fish-tetrapod transition was one of the major events in vertebrate evolution and was enabled by many morphological changes. Although the transformation of paired fish fins into tetrapod limbs has been a major topic of study in recent years, both from paleontological and comparative developmental perspectives, the interest has focused almost exclusively on the distal part of the appendage and in particular the origin of digits. Relatively little attention has been paid to the transformation of the pelvic girdle from a small unipartite structure to a large tripartite weight-bearing structure, allowing tetrapods to rely mostly on their hindlimbs for locomotion. In order to understand how the ischium and the ilium evolved and how the acetabulum was reoriented during this transition, growth series of the Australian lungfish Neoceratodus forsteri and the Mexican axolotl Ambystoma mexicanum were cleared and stained for cartilage and bone and immunostained for skeletal muscles. In order to understand the myological developmental data, hypotheses about the homologies of pelvic muscles in adults of Latimeria, Neoceratodus and Necturus were formulated based on descriptions from the literature of the coelacanth (Latimeria), the Australian Lungfish (Neoceratodus) and a salamander (Necturus). In the axolotl and the lungfish, the chondrification of the pelvic girdle starts at the acetabula and progresses anteriorly in the lungfish and anteriorly and posteriorly in the salamander. The ilium develops by extending dorsally to meet and connect to the sacral rib in the axolotl. Homologous muscles develop in the same order with the hypaxial musculature developing first, followed by the deep, then the superficial pelvic musculature. Development of the pelvic endoskeleton and musculature is very similar in Neoceratodus and Ambystoma. If the acetabulum is seen as being a fixed landmark, the evolution of the ischium only required pubic pre-chondrogenic cells to migrate posteriorly. It

  10. Extremely low microsatellite diversity but distinct population structure in a long-lived threatened species, the Australian lungfish Neoceratodus forsteri (Dipnoi.

    Directory of Open Access Journals (Sweden)

    Jane M Hughes

    Full Text Available The Australian lungfish is a unique living representative of an ancient dipnoan lineage, listed as 'vulnerable' to extinction under Australia's Environment Protection and Biodiversity Conservation Act 1999. Historical accounts indicate this species occurred naturally in two adjacent river systems in Australia, the Burnett and Mary. Current day populations in other rivers are thought to have arisen by translocation from these source populations. Early genetic work detected very little variation and so had limited power to answer questions relevant for management including how genetic variation is partitioned within and among sub-populations. In this study, we use newly developed microsatellite markers to examine samples from the Burnett and Mary Rivers, as well as from two populations thought to be of translocated origin, Brisbane and North Pine. We test whether there is significant genetic structure among and within river drainages; assign putatively translocated populations to potential source populations; and estimate effective population sizes. Eleven polymorphic microsatellite loci genotyped in 218 individuals gave an average within-population heterozygosity of 0.39 which is low relative to other threatened taxa and for freshwater fishes in general. Based on FST values (average over loci = 0.11 and STRUCTURE analyses, we identify three distinct populations in the natural range, one in the Burnett and two distinct populations in the Mary. These analyses also support the hypothesis that the Mary River is the likely source of translocated populations in the Brisbane and North Pine rivers, which agrees with historical published records of a translocation event giving rise to these populations. We were unable to obtain bounded estimates of effective population size, as we have too few genotype combinations, although point estimates were low, ranging from 29 - 129. We recommend that, in order to preserve any local adaptation in the three distinct

  11. Use of electroreception during foraging by the Australian lungfish.

    Science.gov (United States)

    Watt; Evans; Joss

    1999-11-01

    A diverse range of animals, including elasmobranchs and nonteleost fish, use passive electroreception to locate hidden prey. The Australian lungfish, Neoceratodus forsteri (Krefft 1870), has ampullary organs analogous in form to the electroreceptors of other nonteleost fish. Afferents from these ampullae project to regions in the brain that are known to process electrosensory information in other species, suggesting that N. forsteri possesses an electric sense that may be used during prey location. To explore this hypothesis directly, we first characterized food-locating behaviour in N. forsteri and then conducted an experiment designed to quantify the effects of manipulating electrical and olfactory stimuli from live prey. A small crayfish, Cherax destructor, was housed in a specially constructed chamber hidden beneath the substrate, which prevented emission of chemical, mechanical and visual cues, but allowed transmission of bioelectric fields. Control treatments included presentation of electrically shielded prey, a dead crayfish and an empty chamber. In some treatments, a competing olfactory signal was presented simultaneously at the other end of the test tank to assess the relative salience of this sensory modality. The lungfish responded to the crayfish in the unshielded chamber with accurate and sustained feeding movements, even with a competing olfactory signal. By contrast, the abolition of electrical cues in the three control treatments reduced the accuracy and frequency of feeding movements in the vicinity of the target chamber. These results show that N. forsteri is capable of perceiving the weak electric fields surrounding living animals, and suggest that it uses this information when foraging to locate prey hidden from view. Copyright 1999 The Association for the Study of Animal Behaviour.

  12. Central projections of the nervus terminalis and the nervus praeopticus in the lungfish brain revealed by nitric oxide synthase.

    Science.gov (United States)

    Schober, A; Meyer, D L; Von Bartheld, C S

    1994-11-01

    Lungfishes possess two cranial nerves that are associated with the olfactory system: the nervus terminalis enters the telencephalon with the olfactory nerve, and the nervus praeopticus enters the diencephalon at the level of the optic nerve. We investigated the central projections of the nervus terminalis and the nervus praeopticus in the Australian lungfish (Neoceratodus forsteri) and in the African lungfish (Protopterus dolloi) by NADPH-diaphorase histochemistry (nitric oxide synthase; NOS) and compared them with the projections of the nervus terminalis of the frog (Xenopus laevis). In Neoceratodus, NOS-positive fascicles of the nervus terminalis divide and project with a ventral component through the septum and with a dorsal component through the pallium; fibers of both trajectories extend caudally beyond the anterior commissure and join the lateral forebrain bundle. In the nervus praeopticus, about 300 fibers contain NOS; they innervate the preoptic nucleus and continue their course through the diencephalon; many fibers cross in the commissure of the posterior tuberculum. In Protopterus, ganglion cells of the nervus terminalis and of the nervus praeopticus contain NOS. NOS-positive fibers of the nervus terminalis project through the septal region but not through the pallium. Several major fascicles cross in the rostral part of the anterior commissure, where they are joined by a small number of NOS-containing fibers of the nervus praeopticus. Both nerves innervate the preoptic nucleus. The number and pathways of the fascicles of the nervus terminalis are not always symmetric between the two sides. The nervus terminalis fascicles remain in a ventral position, whereas the nervus praeopticus gives rise to the more dorsal fascicles. Many fibers of the two nerves extend throughout the diencephalon and cross in the commissure of the posterior tuberculum. These findings demonstrate many similarities but also significant differences between the contributions of the

  13. Lungfish Hearing

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Madsen, Peter Teglberg; Christensen-Dalsgaard, Jakob

    Recent research has shown that tympanic middle ears evolved independently in the major vertebrate groups and represent independent experiments in terrestrial hearing. Furthermore, the tympanic ear emerged quite late – ap - proximately 120 mya after the origin of the tetrapods and approximately 70...... my after the first truly terrestrial tetrapods emerged. One of the major challenges is to understand the transitional stages from tetrapod ancestors to the tympanic tetrapod ear, for example how a non-tympanic ear functions in terrestrial hearing. Lungfish are the closest living relatives...... and urodeles. Based on ABR and vibration measurements also on amphib - ians, lizards, snakes and alligators we can outline scenarios for the initial adaptations of the middle ear to non-tympanic hearing and assess the selection pressures later adapting the middle ear for tympanic hearing. Hearing by bone...

  14. An exceptionally preserved transitional lungfish from the lower permian of Nebraska, USA, and the origin of modern lungfishes.

    Directory of Open Access Journals (Sweden)

    Jason D Pardo

    Full Text Available Complete, exceptionally-preserved skulls of the Permian lungfish Persephonichthys chthonica gen. et sp. nov. are described. Persephonichthys chthonica is unique among post-Devonian lungfishes in preserving portions of the neurocranium, permitting description of the braincase of a stem-ceratodontiform for the first time. The completeness of P. chthonica permits robust phylogenetic analysis of the relationships of the extant lungfish lineage within the Devonian lungfish diversification for the first time. New analyses of the relationships of this new species within two published matrices using both maximum parsimony and Bayesian inference robustly place P. chthonica and modern lungfishes within dipterid-grade dipnoans rather than within a clade containing Late Devonian 'phaneropleurids' and common Late Paleozoic lungfishes such as Sagenodus. Monophyly of post-Devonian lungfishes is not supported and the Carboniferous-Permian taxon Sagenodus is found to be incidental to the origins of modern lungfishes, suggesting widespread convergence in Late Paleozoic lungfishes. Morphology of the skull, hyoid arch, and pectoral girdle suggests a deviation in feeding mechanics from that of Devonian lungfishes towards the more dynamic gape cycle and more effective buccal pumping seen in modern lungfishes. Similar anatomy observed previously in 'Rhinodipterus' kimberyensis likely represents an intermediate state between the strict durophagy observed in most Devonian lungfishes and the more dynamic buccal pump seen in Persephonichthys and modern lungfishes, rather than adaptation to air-breathing exclusively.

  15. An Exceptionally Preserved Transitional Lungfish from the Lower Permian of Nebraska, USA, and the Origin of Modern Lungfishes

    Science.gov (United States)

    Pardo, Jason D.; Huttenlocker, Adam K.; Small, Bryan J.

    2014-01-01

    Complete, exceptionally-preserved skulls of the Permian lungfish Persephonichthys chthonica gen. et sp. nov. are described. Persephonichthys chthonica is unique among post-Devonian lungfishes in preserving portions of the neurocranium, permitting description of the braincase of a stem-ceratodontiform for the first time. The completeness of P. chthonica permits robust phylogenetic analysis of the relationships of the extant lungfish lineage within the Devonian lungfish diversification for the first time. New analyses of the relationships of this new species within two published matrices using both maximum parsimony and Bayesian inference robustly place P. chthonica and modern lungfishes within dipterid-grade dipnoans rather than within a clade containing Late Devonian ‘phaneropleurids’ and common Late Paleozoic lungfishes such as Sagenodus. Monophyly of post-Devonian lungfishes is not supported and the Carboniferous-Permian taxon Sagenodus is found to be incidental to the origins of modern lungfishes, suggesting widespread convergence in Late Paleozoic lungfishes. Morphology of the skull, hyoid arch, and pectoral girdle suggests a deviation in feeding mechanics from that of Devonian lungfishes towards the more dynamic gape cycle and more effective buccal pumping seen in modern lungfishes. Similar anatomy observed previously in ‘Rhinodipterus’ kimberyensis likely represents an intermediate state between the strict durophagy observed in most Devonian lungfishes and the more dynamic buccal pump seen in Persephonichthys and modern lungfishes, rather than adaptation to air-breathing exclusively. PMID:25265394

  16. Translocation of marbled African lungfish, Protopterus aethiopicus ...

    African Journals Online (AJOL)

    Annual catch data were obtained from the District Fisheries Office, while catch and effort data of the long line fishery were recorded at one active fish-landing site between February and October 2001. Lungfish comprise a significant component of commercial landings, sometimes exceeding catches of the Baringo tilapia ...

  17. Aspects of the biology of the African lungfish, Protopterus annectens ...

    African Journals Online (AJOL)

    Aspects of the biology of the African lungfish, Protopterus annectens (Owen, 1839) from Orashi and Sombreiro Rivers in Rivers State, Nigeria were investigated using routine biological approaches. Samples were collected between October 2012 and September 2013. The analysis of the stomach content showed that the ...

  18. Short communications : Are wild African lungfish obligate air ...

    African Journals Online (AJOL)

    Laboratory studies have resulted in classification of the marbled African lungfish, Protopterus aethiopicus, as an obligate air-breather. However, there have been no investigations of the extent of dependence on aerial respiration by this species in the wild. We used radio telemetry to obtain quantitative information on the ...

  19. Hearing in the African lungfish (Protopterus annectens): pre-adaptation to pressure hearing in tetrapods?

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Brandt, Christian; Wilson, Maria

    2010-01-01

    Lungfishes are the closest living relatives of the tetrapods, and the ear of recent lungfishes resembles the tetrapod ear more than the ear of ray-finned fishes and is therefore of interest for understanding the evolution of hearing in the early tetrapods. The water-to-land transition resulted...... shows measurable vibrations above 100 Hz when stimulated by air-borne sound, but the ear is apparently insensitive at these frequencies, suggesting that the lungfish ear is neither adapted nor pre-adapted for aerial hearing. Thus, if the lungfish ear is a model of the ear of early tetrapods...

  20. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods.

    Science.gov (United States)

    Christensen, Christian Bech; Christensen-Dalsgaard, Jakob; Madsen, Peter Teglberg

    2015-02-01

    In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of lungfish may shed light on the possible hearing capabilities of early tetrapods and broaden our understanding of hearing across the water-to-land transition. Here, we tested the hypotheses that (i) lungfish are sensitive to underwater pressure using their lungs as pressure-to-particle motion transducers and (ii) lungfish can detect airborne sound. To do so, we used neurophysiological recordings to estimate the vibration and pressure sensitivity of African lungfish (Protopterus annectens) in both water and air. We show that lungfish detect underwater sound pressure via pressure-to-particle motion transduction by air volumes in their lungs. The morphology of lungfish shows no specialized connection between these air volumes and the inner ears, and so our results imply that air breathing may have enabled rudimentary pressure detection as early as the Devonian era. Additionally, we demonstrate that lungfish in spite of their atympanic middle ear can detect airborne sound through detection of sound-induced head vibrations. This strongly suggests that even vertebrates with no middle ear adaptations for aerial hearing, such as the first tetrapods, had rudimentary aerial hearing that may have led to the evolution of tympanic middle ears in recent tetrapods. © 2015. Published by The Company of Biologists Ltd.

  1. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods

    OpenAIRE

    Christensen, Christian Bech; Christensen-Dalsgaard, Jakob; Madsen, Peter Teglberg

    2015-01-01

    In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of lungfish may shed light on the possible hearing capabilities of early tetrapods and broaden our under...

  2. Habitat Use and Spatial Variability of Hawkfishes with a Focus on Colour Polymorphism in Paracirrhites forsteri

    KAUST Repository

    Coker, Darren James

    2017-01-26

    Identifying relationships between fishes and their environment is an integral part of understanding coral reef ecosystems. However, this information is lacking for many species, particularly in understudied and remote regions. With coral reefs continuing to face environmental pressures, insight into abundance and distribution patterns along with resource use of fish communities will aid in advancing our ecological understanding and management processes. Based on ecological surveys of hawkfish assemblages (Family: Cirrhitidae) in the Red Sea, we reveal distinct patterns in the distribution and abundance across the continental shelf, wave exposure, and with depth, particularly in the four colour morphs of Paracirrhites forsteri. Distinct patterns were observed among hawkfishes, with higher abundance of all species recorded on reefs farther from shore and on wave exposed reef zones. Cirrhitus spilotoceps was only recorded on the exposed crest, but unlike the other species, did not associate with live coral colonies. Overall, the most abundant species was P. forsteri. This species exploited a variety of habitats but showed an affinity for complex habitats provided by live and dead coral colonies. No difference in habitat use was observed among the four colour morphs, but distinct patterns were apparent in distribution and abundance with depth. This study suggests that in addition to P. forsteri exhibiting diverse colour morphologies, these various morphotypes appear to have corresponding ecological differences in the Red Sea. To better understand this, further studies are needed to identify what these differences extend to and the mechanisms involved.

  3. Cross Shelf Patterns in Habitat Selectivity of Hawkfish (Family: Cirrhitidae) in the Red Sea; with a Special Case of Varying Color Morphs in Paracirrhites forsteri.

    KAUST Repository

    Chaidez, Veronica

    2015-01-01

    and between continental shelf positions. Cirrhitichthys oxycephalus only occurs at the reef slope and Cirrhitus spilotoceps is only found on reef crests. Paracirrhites forsteri was the most abundant species across all reefs and was found in four varying color

  4. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available The evolutionary trajectories of growth hormone-releasing hormone (GHRH receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP receptor (PRPR. In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2 had the highest expression in brain, and interestingly, X. laevis(GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  5. The myoglobin of Emperor penguin (Aptenodytes forsteri): amino acid sequence and functional adaptation to extreme conditions.

    Science.gov (United States)

    Tamburrini, M; Romano, M; Giardina, B; di Prisco, G

    1999-02-01

    In the framework of a study on molecular adaptations of the oxygen-transport and storage systems to extreme conditions in Antarctic marine organisms, we have investigated the structure/function relationship in Emperor penguin (Aptenodytes forsteri) myoglobin, in search of correlation with the bird life style. In contrast with previous reports, the revised amino acid sequence contains one additional residue and 15 differences. The oxygen-binding parameters seem well adapted to the diving behaviour of the penguin and to the environmental conditions of the Antarctic habitat. Addition of lactate has no major effect on myoglobin oxygenation over a large temperature range. Therefore, metabolic acidosis does not impair myoglobin function under conditions of prolonged physical effort, such as diving.

  6. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Christensen-Dalsgaard, Jakob; Madsen, Professor Peter Teglberg

    2015-01-01

    of early tetrapods such as Acanthostega. Therefore, experimental studies on the hearing capabilities of lungfish may shed light on the possible hearing capabilities of early tetrapods and broaden our understanding of hearing across the water-to-land transition. Here, we tested the hypotheses that (i......In the transition from an aquatic to a terrestrial lifestyle, vertebrate auditory systems have undergone major changes while adapting to aerial hearing. Lungfish are the closest living relatives of tetrapods and their auditory system may therefore be a suitable model of the auditory systems...... for aerial hearing, such as the first tetrapods, had rudimentary aerial hearing that may have led to the evolution of tympanic middle ears in recent tetrapods....

  7. Structural and biochemical characteristics of locomotory muscles of emperor penguins, Aptenodytes forsteri.

    Science.gov (United States)

    Ponganis, P J; Costello, M L; Starke, L N; Mathieu-Costello, O; Kooyman, G L

    1997-07-01

    Structural and biochemical characteristics of the primary muscles used for swimming (pectoralis, PEC and supracoracoideus, SC) were compared to those of leg muscles in emperor penguins (Aptenodytes forsteri). The mass of PEC-SC was four times that of the leg musculature, and mitochondrial volume density in PEC and SC (4%) was two-thirds that in sartorius (S) and gastrocnemius. The differences in muscle mass and mitochondrial density yielded a 2.2-fold greater total mitochondrial content in PEC-SC than leg muscles, which appears to account for the 1.8-fold greater whole-body highest oxygen consumption previously recorded in emperor penguins during swimming compared to walking. Calculation of maximal mitochondrial O2 consumption in PEC-SC and leg muscle yielded value of 5.8-6.9 ml O2 ml-1 min-1, which are similar to those in locomotory muscles of most mammals and birds. A distinct feature of emperor penguin muscle was its myoglobin content, with concentrations in PEC-SC (6.4 g 100 g-1 among the highest measured in any species. This resulted in a PEC-SC O2 store greater than that of the entire blood. In addition, ratios of myoglobin content to mitochondrial volume density and to citrate synthase activity were 4.4 and 2.5 times greater in PEC than in S, indicative of the significant role of myoglobin in the adaptation of muscle to cardiovascular adjustments during diving.

  8. Low Spatial Genetic Differentiation Associated with Rapid Recolonization in the New Zealand Fur Seal Arctocephalus forsteri.

    Science.gov (United States)

    Dussex, Nicolas; Robertson, Bruce C; Salis, Alexander T; Kalinin, Aleksandr; Best, Hugh; Gemmell, Neil J

    2016-01-01

    Population declines resulting from anthropogenic activities are of major consequence for the long-term survival of species because the resulting loss of genetic diversity can lead to extinction via the effects of inbreeding depression, fixation of deleterious mutations, and loss of adaptive potential. Otariid pinnipeds have been exploited commercially to near extinction with some species showing higher demographic resilience and recolonization potential than others. The New Zealand fur seal (NZFS) was heavily impacted by commercial sealing between the late 18th and early 19th centuries, but has recolonized its former range in southern Australia. The species has also recolonized its former range in New Zealand, yet little is known about the pattern of recolonization. Here, we first used 11 microsatellite markers (n = 383) to investigate the contemporary population structure and dispersal patterns in the NZFS (Arctocephalus forsteri). Secondly, we model postsealing recolonization with 1 additional mtDNA cytochrome b (n = 261) marker. Our data identified 3 genetic clusters: an Australian, a subantarctic, and a New Zealand one, with a weak and probably transient subdivision within the latter cluster. Demographic history scenarios supported a recolonization of the New Zealand coastline from remote west coast colonies, which is consistent with contemporary gene flow and with the species' high resilience. The present data suggest the management of distinct genetic units in the North and South of New Zealand along a genetic gradient. Assignment of individuals to their colony of origin was limited (32%) with the present data indicating the current microsatellite markers are unlikely sufficient to assign fisheries bycatch of NZFSs to colonies. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish.

    Science.gov (United States)

    Monteiro, Diana A; Taylor, Edwin W; Sartori, Marina R; Cruz, André L; Rantin, Francisco T; Leite, Cleo A C

    2018-02-01

    The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems.

  10. Control of breathing in African lungfish (Protopterus dolloi): A comparison of aquatic and cocooned (terrestrialized) animals

    DEFF Research Database (Denmark)

    Perry, S.F.; Euverman, R.; Wang, Tobias

    2008-01-01

    in terrestrialized fish consisted of multiple bouts of inspiration and expiration in rapid succession, the mean frequency of pulmonary breathing events was unaltered in the terrestrialized fish (16.7 ± 1.4 h-1 versus 20.1 ± 4.9 h-1 in the aquatic and terrestrialized fish, respectively). Hypoxia ( 20 mmHg) increased...... the frequency of breathing events by 16 and 23 h-1 in the aquatic and terrestrialized fish, respectively. Hyperoxia ( 550 mmHg) decreased breathing event frequency by 10 and 15 h-1 in the aquatic and terrestrialized animals. Aquatic hypercapnia ( 37.5 mmHg) increased pulmonary breathing frequency (from 15......African lungfish, Protopterus dolloi exhibited constant rates of O2 consumption before (0.95 ± 0.07 mmol kg-1 h-1), during (1.21 ± 0.32 mmol kg-1 h-1) and after (1.14 ± 0.14 mmol kg-1 h-1) extended periods (1-2 months) of terrestrialization while cocooned. Although a breathing event...

  11. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish

    Science.gov (United States)

    Monteiro, Diana A.; Taylor, Edwin W.; Sartori, Marina R.; Cruz, André L.; Rantin, Francisco T.; Leite, Cleo A. C.

    2018-01-01

    The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems. PMID:29507882

  12. Discovery of J chain in African lungfish (Protopterus dolloi, Sarcopterygii using high throughput transcriptome sequencing: implications in mucosal immunity.

    Directory of Open Access Journals (Sweden)

    Luca Tacchi

    Full Text Available J chain is a small polypeptide responsible for immunoglobulin (Ig polymerization and transport of Igs across mucosal surfaces in higher vertebrates. We identified a J chain in dipnoid fish, the African lungfish (Protopterus dolloi by high throughput sequencing of the transcriptome. P. dolloi J chain is 161 aa long and contains six of the eight Cys residues present in mammalian J chain. Phylogenetic studies place the lungfish J chain closer to tetrapod J chain than to the coelacanth or nurse shark sequences. J chain expression occurs in all P. dolloi immune tissues examined and it increases in the gut and kidney in response to an experimental bacterial infection. Double fluorescent in-situ hybridization shows that 88.5% of IgM⁺ cells in the gut co-express J chain, a significantly higher percentage than in the pre-pyloric spleen. Importantly, J chain expression is not restricted to the B-cell compartment since gut epithelial cells also express J chain. These results improve our current view of J chain from a phylogenetic perspective.

  13. Developmental stages of fish blood flukes, Cardicola forsteri and Cardicola opisthorchis (Trematoda: Aporocotylidae), in their polychaete intermediate hosts collected at Pacific bluefin tuna culture sites in Japan.

    Science.gov (United States)

    Ogawa, Kazuo; Shirakashi, Sho; Tani, Kazuki; Shin, Sang Phil; Ishimaru, Katsuya; Honryo, Tomoki; Sugihara, Yukitaka; Uchida, Hiro'omi

    2017-02-01

    Farming of Pacific bluefin tuna (PBT), Thunnus orientalis, is a rapidly growing industry in Japan. Aporocotylid blood flukes of the genus Cardicola comprising C. orientalis, C. opisthorchis and C. forsteri are parasites of economic importance for PBT farming. Recently, terebellid polychaetes have been identified as the intermediate hosts for all these parasites. We collected infected polychaetes, Terebella sp., the intermediate host of C. opisthorchis, from ropes and floats attached to tuna cages in Tsushima, Nagasaki Prefecture, Japan. Also, Neoamphitrite vigintipes (formerly as Amphitrite sp. sensu Shirakashi et al., 2016), the intermediate host of C. forsteri, were collected from culture cages in Kushimoto, Wakayama Prefecture, Japan. The terebellid intermediate hosts harbored the sporocysts and cercariae in their body cavity. Developmental stages of these blood flukes were molecularly identified using species specific PCR primers. In this paper, we describe the cercaria and sporocyst stages of C. opisthorchis and C. forsteri and compare their morphological characteristics among three Cardicola blood flukes infecting PBT. We also discuss phylogenetic relations of the six genera of the terebellid intermediate hosts (Artacama, Lanassa, Longicarpus, Terebella, Nicolea and Neoamphitrite) of blood flukes infecting marine fishes, based on their morphological characters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    Science.gov (United States)

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  15. Osmoregulation during Long-Term Fasting in Lungfish and Elephant Seal: Old and New Lessons for the Nephrologist.

    Science.gov (United States)

    Rossier, Bernard C

    2016-01-01

    Vertebrates control the osmolality of their extra- and intra-cellular compartments despite large variations in salt and water intake. Aldosterone-dependent sodium reabsorption and vasopressin-dependent water transport in the distal nephron and collecting duct play a critical role in the final control of sodium and water balance. Long-term fasting (no eating, no drinking) represents an osmotic challenge for survival. Evolution has found very different solutions to meet this challenge. To illustrate this point, I will discuss osmoregulation of a mammal (elephant seal pup) and of a fish (lungfish) that are able to survive long-term fasting for months or even years. Homer W. Smith taught us how informative comparative anatomy and physiology of the kidney could help physiologists and nephrologists to better understand how the kidney works. In recent years, comparative genomics, transcriptomics and proteomics across the tree of life have led to the emergence of a new discipline, evolutionary medicine. In the near future, physiologists and nephrologists will benefit from this new field of investigation, thanks to its potential for the identification of novel drug targets and therapies. © 2016 S. Karger AG, Basel.

  16. Primary olfactory projections and the nervus terminalis in the African lungfish: implications for the phylogeny of cranial nerves.

    Science.gov (United States)

    von Bartheld, C S; Claas, B; Münz, H; Meyer, D L

    1988-08-01

    Primary olfactory and central projections of the nervus terminalis were investigated by injections of horseradish peroxidase into the olfactory epithelium in the African lungfish. In addition, gonadotropin-releasing hormone (GnRH) immunoreactivity of the nervus terminalis system was investigated. The primary olfactory projections are restricted to the olfactory bulb located at the rostral pole of the telencephalon; they do not extend into caudal parts of the telencephalon. A vomeronasal nerve and an accessory olfactory bulb could not be identified. The nervus terminalis courses through the dorsomedial telencephalon. Major targets include the nucleus of the anterior commissure and the nucleus praeopticus pars superior. some fibers cross to the contralateral side. A few fibers reach the diencephalon and mesencephalon. No label is present in the "posterior root of the nervus terminalis" (= "Pinkus's nerve" or "nervus praeopticus"). GnRH immunoreactivity is lacking in the "anterior root of the nervus terminalis," whereas it is abundant in nervus praeopticus (Pinkus's nerve). These findings may suggest that the nervus terminalis system originally consisted of two distinct cranial nerves, which have fused-in evolution-in most vertebrates. Theories of cranial nerve phylogeny are discussed in the light of the assumed "binerval origin" of the nervus terminalis system.

  17. Cross Shelf Patterns in Habitat Selectivity of Hawkfish (Family: Cirrhitidae) in the Red Sea; with a Special Case of Varying Color Morphs in Paracirrhites forsteri.

    KAUST Repository

    Chaidez, Veronica

    2015-01-01

    Not much is known about hawkfish worldwide including those that occur in the understudied Red Sea reef system. Hawkfishes are small reef predators that perch in ambush-ready positions and shelter within or on various substrates including live and dead coral. The aim of this study was to look at the distribution and abundance patterns of Red Sea hawkfishes across an inshore and offshore gradient and to investigate the use of benthic habitats. This study was conducted on three inshore, four midshore, and two offshore reefs with surveys at 8 meters and along the reef crest. In total, three species were documented: Paracirrhites forsteri, Cirrhitichthys oxycephalus, and Cirrhitus spilotoceps. We found clear distinctions between depth zones and between continental shelf positions. Cirrhitichthys oxycephalus only occurs at the reef slope and Cirrhitus spilotoceps is only found on reef crests. Paracirrhites forsteri was the most abundant species across all reefs and was found in four varying color morphs. Morph 1 showed the most evidence of being a generalist as it utilized the greatest number of substrates. All three species were more abundant on midshore and offshore reefs which have healthier, intact coral communities. Coral cover is a good indicator of hawkfish abundance even when the species in question does not utilize live coral directly.

  18. Acute effects of temperature and hypercarbia on cutaneous and branchial gas exchange in the South American lungfish, Lepidosiren paradoxa.

    Science.gov (United States)

    Zena, Lucas A; Bícego, Kênia C; da Silva, Glauber S F; Giusti, Humberto; Glass, Mogens L; Sanchez, Adriana P

    2017-01-01

    The South American lungfish, Lepidosiren paradoxa inhabits seasonal environments in the Central Amazon and Paraná-Paraguay basins that undergo significant oscillations in temperature throughout the year. They rely on different gas exchange organs, such as gills and skin for aquatic gas exchange while their truly bilateral lungs are responsible for aerial gas exchange; however, there are no data available on the individual contributions of the skin and the gills to total aquatic gas exchange in L. paradoxa. Thus, in the present study we quantify the relative contributions of skin and gills on total aquatic gas exchange during warm (35°C) and cold exposure (20°C) in addition to the effects of aerial and aquatic hypercarbia on aquatic gas exchange and gill ventilation rate (f G ; 25°C), respectively. Elevated temperature (35°C) caused a significant increase in the contribution of cutaneous (from 0.61±0.13 to 1.34±0.26ml. STPD.h -1 kg -1 ) and branchial (from 0.54±0.17 to 1.73±0.53ml. STPD.h -1 kg -1 ) gas exchange for V̇CO 2 relative to the lower temperature (20°C), while V̇O 2 remained relatively unchanged. L. paradoxa exhibited a greater branchial contribution in relation to total aquatic gas exchange at lower temperatures (20 and 25°C) for oxygen uptake. Aerial hypercarbia decreased branchial V̇O 2 whereas branchial V̇CO 2 was significantly increased. Progressive increases in aquatic hypercarbia did not affect f G . This response is in contrast to increases in pulmonary ventilation that may offset any increase in arterial partial pressure of CO 2 owing to CO 2 loading through the animals' branchial surface. Thus, despite their reduced contribution to total gas exchange, cutaneous and branchial gas exchange in L. paradoxa can be significantly affected by temperature and aerial hypercarbia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Oxidative stress response of Forster's terns (Sterna forsteri) and Caspian terns (Hydroprogne caspia) to mercury and selenium bioaccumulation in liver, kidney, and brain

    Science.gov (United States)

    Hoffman, David J.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Adelsbach, Terrence L.; Stebbins, Katherine R.

    2011-01-01

    Bioindicators of oxidative stress were examined in prebreeding and breeding adult and chick Forster's terns (Sterna forsteri) and in prebreeding adult Caspian terns (Hydroprogne caspia) in San Francisco Bay, California. Highest total mercury (THg) concentrations (mean±standard error;μg/g dry wt) in liver (17.7±1.7), kidney (20.5±1.9), and brain (3.0±0.3) occurred in breeding adult Forster's terns. The THg concentrations in liver were significantly correlated with hepatic depletion of reduced glutathione (GSH), increased oxidized glutathione (GSSG):GSH ratio, and decreased hepatic gamma-glutamyl transferase (GGT) activity in adults of both tern species. Prefledging Forster's tern chicks with one-fourth the hepatic THg concentration of breeding adults exhibited effects similar to adults. Total mercury-related renal GSSG increased in adults and chicks. In brains of prebreeding adults, THg was correlated with a small increase in glucose-6-phosphate dehydrogenase (G-6-PDH) activity, suggestive of a compensatory response. Brain THg concentrations were highest in breeding adult Forster's terns and brain tissue exhibited increased lipid peroxidation as thiobarbituric acid-reactive substances, loss of protein bound thiols (PBSH), and decreased activity of antioxidant enzymes, GSSG reductase (GSSGrd), and G-6-PDH. In brains of Forster's tern chicks there was a decrease in total reduced thiols and PBSH. Multiple indicator responses also pointed to greater oxidative stress in breeding Forster's terns relative to prebreeding terns, attributable to the physiological stress of reproduction. Some biondicators also were related to age and species, including thiol concentrations. Enzymes GGT, G-6-PDH, and GSSGred activities were related to species. Our results indicate that THg concentrations induced oxidative stress in terns, and suggest that histopathological, immunological, and behavioral effects may occur in terns as reported in other species.

  20. Molecular Characterization of Aquaporin 1 and Aquaporin 3 from the Gills of the African Lungfish, Protopterus annectens, and Changes in Their Branchial mRNA Expression Levels and Protein Abundance during Three Phases of Aestivation.

    Science.gov (United States)

    Chng, You R; Ong, Jasmine L Y; Ching, Biyun; Chen, Xiu L; Hiong, Kum C; Wong, Wai P; Chew, Shit F; Lam, Siew H; Ip, Yuen K

    2016-01-01

    African lungfishes can undergo long periods of aestivation on land during drought. During aestivation, lungfishes are confronted with desiccation and dehydration, and their gills become non-functional and covered with a thick layer of dried mucus. Aquaporins (Aqps) are a superfamily of integral membrane proteins which generally facilitate the permeation of water through plasma membranes. This study aimed to obtain the complete cDNA coding sequences of aqp1 and aqp3 from the gills of Protopterus annectens , and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Dendrogramic analyses of the deduced Aqp1 and Aqp3 amino acid sequences of P. annectens revealed their close relationships with those of Latimeria chalumnae and tetrapods. During the induction phase, there were significant decreases in the transcript levels of aqp1 and aqp3 in the gills of P. annectens , but the branchial Aqp1 and Aqp3 protein abundance remained unchanged. As changes in transcription might precede changes in translation, this could be regarded as an adaptive response to decrease the protein abundance of Aqp1 and Aqp3 in the subsequent maintenance phase of aestivation. As expected, the branchial transcript levels and protein abundance of aqp1 /Aqp1 and aqp3 /Aqp3 were significantly down-regulated during the maintenance phase, probably attributable to the shutdown of branchial functions and the cessation of volume regulation of branchial epithelial cells. Additionally, these changes could reduce the loss of water through branchial epithelial surfaces, supplementing the anti-desiccating property of the dried mucus. Upon arousal, it was essential for the lungfish to restore branchial functions. Indeed, the protein abundance of Aqp1 recovered partially, with complete recovery of mRNA expression level and protein abundance of Aqp3, in the gills of P. annectens after 3 days of arousal. These results provide insights

  1. Molecular characterization of three Rhesus glycoproteins from the gills of the African lungfish, Protopterus annectens, and effects of aestivation on their mRNA expression levels and protein abundance.

    Directory of Open Access Journals (Sweden)

    You R Chng

    Full Text Available African lungfishes are ammonotelic in water. They can aestivate for long periods on land during drought. During aestivation, the gills are covered with dried mucus and ammonia excretion ceases. In fishes, ammonia excretion through the gills involves Rhesus glycoproteins (RhGP/Rhgp. This study aimed to obtain the complete cDNA coding sequences of rhgp from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Three isoforms of rhgp (rhag, rhbg and rhcg were obtained in the gills of P. annectens. Their complete cDNA coding sequences ranged between 1311 and 1398 bp, coding for 436 to 465 amino acids with estimated molecular masses between 46.8 and 50.9 kDa. Dendrogramic analyses indicated that Rhag was grouped closer to fishes, while Rhbg and Rhcg were grouped closer to tetrapods. During the induction phase, the protein abundance of Rhag, but not its transcript level, was down-regulated in the gills, suggesting that there could be a decrease in the release of ammonia from the erythrocytes to the plasma. Furthermore, the branchial transcript levels of rhbg and rhcg decreased significantly, in preparation for the subsequent shutdown of gill functions. During the maintenance phase, the branchial expression levels of rhag/Rhag, rhbg/Rhbg and rhcg/Rhcg decreased significantly, indicating that their transcription and translation were down-regulated. This could be part of an overall mechanism to shut down branchial functions and save metabolic energy used for transcription and translation. It could also be regarded as an adaptive response to stop ammonia excretion. During the arousal phase, it is essential for the lungfish to regain the ability to excrete ammonia. Indeed, the protein abundance of Rhag, Rhbg and Rhcg recovered to the corresponding control levels after 1 day or 3 days of recovery from 6 months of aestivation.

  2. Differential gene expression in the liver of the African lungfish, Protopterus annectens, after 6 months of aestivation in air or 1 day of arousal from 6 months of aestivation.

    Directory of Open Access Journals (Sweden)

    Kum C Hiong

    Full Text Available The African lungfish, Protopterus annectens, can undergo aestivation during drought. Aestivation has three phases: induction, maintenance and arousal. The objective of this study was to examine the differential gene expression in the liver of P. annectens after 6 months (the maintenance phase of aestivation as compared with the freshwater control, or after 1 day of arousal from 6 months aestivation as compared with 6 months of aestivation using suppression subtractive hybridization. During the maintenance phase of aestivation, the mRNA expression of argininosuccinate synthetase 1 and carbamoyl phosphate synthetase III were up-regulated, indicating an increase in the ornithine-urea cycle capacity to detoxify ammonia to urea. There was also an increase in the expression of betaine homocysteine-S-transferase 1 which could reduce and prevent the accumulation of hepatic homocysteine. On the other hand, the down-regulation of superoxide dismutase 1 expression could signify a decrease in ROS production during the maintenance phase of aestivation. In addition, the maintenance phase was marked by decreases in expressions of genes related to blood coagulation, complement fixation and iron and copper metabolism, which could be strategies used to prevent thrombosis and to conserve energy. Unlike the maintenance phase of aestivation, there were increases in expressions of genes related to nitrogen, carbohydrate and lipid metabolism and fatty acid transport after 1 day of arousal from 6 months aestivation. There were also up-regulation in expressions of genes that were involved in the electron transport system and ATP synthesis, indicating a greater demand for metabolic energy during arousal. Overall, our results signify the importance of sustaining a low rate of waste production and conservation of energy store during the maintenance phase, and the dependence on internal energy store for repair and structural modification during the arousal phase, of

  3. Evaluation of social attraction measures to establish Forster’s tern (Sterna forsteri) nesting colonies for the South Bay Salt Pond Restoration Project, San Francisco Bay, California—2017 Annual Report

    Science.gov (United States)

    Hartman, C. Alex; Ackerman, Joshua T.; Herzog, Mark P.; Wang, Yiwei; Strong, Cheryl

    2018-05-31

    Forster’s terns (Sterna forsteri), historically one of the most numerous colonial-breeding waterbirds in South San Francisco Bay, California, have had recent decreases in the number of nesting colonies and overall breeding population size. The South Bay Salt Pond (SBSP) Restoration Project aims to restore 50–90 percent of former salt evaporation ponds to tidal marsh habitat in South San Francisco Bay. This restoration will remove much of the historical island nesting habitat used by Forster’s terns, American avocets (Recurvirostra americana), and other waterbirds. To address this issue, the SBSP Restoration Project organized the construction of new nesting islands in managed ponds that will not be restored to tidal marsh, thereby providing enduring island nesting habitat for waterbirds. In 2012, 16 new islands were constructed in Pond A16 in the Alviso complex of the Don Edwards San Francisco Bay National Wildlife Refuge, increasing the number of islands in this pond from 4 to 20. However, despite a history of nesting on the four historical islands in Pond A16 before 2012, no Forster’s terns have nested in Pond A16 since the new islands were constructed.In 2017, we used social attraction measures (decoys and electronic call systems) to attract Forster’s terns to islands within Pond A16 to re-establish nesting colonies. We maintained these systems from March through August 2017. To evaluate the effect of these social attraction measures, we also completed waterbird surveys between April and August, where we recorded the number and location of all Forster’s terns and other waterbirds using Pond A16, and monitored waterbird nests. We compared bird survey and nest monitoring data collected in 2017 to data collected in 2015 and 2016, prior to the implementation of social attraction measures, allowing for direct evaluation of social attraction efforts on Forster’s terns.To increase the visibility and stakeholder involvement of this project, we engaged in

  4. Habitat Use and Spatial Variability of Hawkfishes with a Focus on Colour Polymorphism in Paracirrhites forsteri

    KAUST Repository

    Coker, Darren James; Chaidez, Veronica; Berumen, Michael L.

    2017-01-01

    continuing to face environmental pressures, insight into abundance and distribution patterns along with resource use of fish communities will aid in advancing our ecological understanding and management processes. Based on ecological surveys of hawkfish

  5. [Use of energy reserves during the breeding fast of the emperor penguin, Aptenodvtes forsteri].

    Science.gov (United States)

    Groscolas, R; Clément, C

    1976-01-19

    During the breeding fasting of the emperor penguin, the lipid and protein stores are steadily used to meet the metabolic needs; they represent respectively 93 and 7% of the energy production in the animal. The role of the glucid stores are quantitively negligible. Loss of tissue water represents 35,3% of body weight loss. Increased weight loss below 20 kg a "critical weight", is associated with a conversion to protein catabolism when lipid supplies are exhausted. These results allow the estimation of the metabolism when the body weight loss is considered in this antartic penguin.

  6. Diversity "down under": monogeneans in the Antipodes (Australia) with a prediction of monogenean biodiversity worldwide.

    Science.gov (United States)

    Whittington, I D

    1998-10-01

    There are approximately 25,000 species of fishes known in the world. The Monogenea are believed to be among the most host-specific of parasites and if each species of fish is host to a different species of monogenean, there could be almost 25,000 monogenean species on Earth. Currently, I estimate that between 3000 and 4000 of these are described. Australia has a rich marine fish fauna with approximately 3500 species of teleosts. If the same formula of one monogenean species per host fish species is applied, Australia marine fishes could host potentially 3500 species of monogeneans. The first monogenean species described from Australia was Encotyllabe pagrosomi MacCallum, 1917 and approximately 300 more species have since been described from the continent. Even in a region of Australia such as Heron Island on the Great Barrier Reef that has been a focus of sustained research on these parasites, only about 85 species are described from 40 of the most common, easily-caught species of fish. Reasons are discussed for the relatively small numbers of monogenean species described so far from Australia. Endemicity is difficult to judge, but only one is certain: Concinnocotyla australensis (Polystomatidae) from Neoceratodus forsteri (Dipnoi). Despite reductions in research funding, the value of parasite taxonomy must not be underestimated, particularly in regions of the world that have a rich diversity of potential hosts.

  7. The effects of vessel approaches on the New Zealand fur seal (Arctocepahlus forsteri) in the Bay of Plenty, New Zealand

    NARCIS (Netherlands)

    Cowling, M.; Kirkwood, R.J.; Boren, L.; Sutherland, D.; Scarpaci, C.

    2015-01-01

    Animals that establish new sites near the edge of the species' range may be vulnerable to disturbance as they are low in numbers and are not tied to the sites. Pinniped distributions world-wide are changing as many species are recolonizing areas of their former ranges and establishing new colonies.

  8. The relationship between temperature and standard rate of ...

    African Journals Online (AJOL)

    teleost) fishes, while largely unknown, is essential to an understanding of the effects of temperature on fish energetics. This study quantifies the effect of temperature on the standard rate of metabolism in the African lungfish, Protopterus aethiopicus.

  9. Trematodes of fishes of the Indo-west Pacific: told and untold richness

    Czech Academy of Sciences Publication Activity Database

    Cribb, T.H.; Bray, R. A.; Diaz, P.E.; Huston, D.C.; Kudlai, Olena; Martin, S.B.; Yong, R.Q.-Y.; Cutmore, S.C.

    2016-01-01

    Roč. 93, č. 3 (2016), s. 237-247 ISSN 0165-5752 Institutional support: RVO:60077344 Keywords : Great Barrier reef * French Polynesia * Cardicola forsteri Subject RIV: EH - Ecology, Behaviour Impact factor: 1.181, year: 2016

  10. Walakira culturing.pmd

    African Journals Online (AJOL)

    ACSS

    1, diet-2, diet-3) fed to wild caught lungfish fingerlings reared in indoor tanks for ... gradually accepted sinking pellets, and marginal increases in average body .... under 6 hr of light with an 18 hr dark photo ..... Asian sea bass, Latescalcarifer.

  11. Fatty acids of polar lipids in heart tissue are good taxonomic markers ...

    African Journals Online (AJOL)

    The fatty acid profiles in total, neutral and polar lipids in the heart tissues of five freshwater fish species (Nile perch Lates niloticus, Nile tilapia Oreochromis niloticus, marbled lungfish Protopterus aethiopicus, Bagrus docmak and African catfish Clarias gariepinus) from Lakes Victoria and Kyoga were determined ...

  12. Patterns of distribution and conservation status of freshwater fishes ...

    African Journals Online (AJOL)

    1995-02-15

    Feb 15, 1995 ... Treur River barb Barhus treurensis in the Blyde River; orange-fringed largemouth Chetia brevis in the Komati-. Incomati and Incomati suckermouth ChiJogJanis blfurcus in the Crocodile-Incomati River) (Table I). In addition to the endemic species there are 15 or 16 species like the lungfish. Protopterus ...

  13. Latency transition of plasminogen activator inhibitor type 1 is evolutionarily conserved

    DEFF Research Database (Denmark)

    Jendroszek, Agnieszka; Sønnichsen, Malene; Chana Munoz, Andres

    2017-01-01

    relevance of latency transition. In order to study the origin of PAI-1 latency transition, we produced PAI-1 from Spiny dogfish shark (Squalus acanthias) and African lungfish (Protopterus sp.), which represent central species in the evolution of vertebrates. Although human PAI-1 and the non-mammalian PAI-1...

  14. Visualisation of animal anatomy using MRI and CT

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Hansen, Kasper; Pedersen, Michael

    imaging (MRI) and CT. Various species (tarantula, horseshoe crab, carp, haddock, lungfish, axolotl) were subjected to multi-slice MRI and CT protocols to produce 2D images of body slices, followed by volume rendering producing 3D digital models of animal anatomy with applications for visualising specific...

  15. The Effect Of Salinity Stress On Buccal Ventilatory Rate In The ...

    African Journals Online (AJOL)

    The Effect Of Salinity Stress On Buccal Ventilatory Rate In The African Lungfish, Protopterus annectens Owen. AI Okafor, LO Chukwu, LO Chukwu. Abstract. No Abstract. Animal Research International Vol. 2 (1) 2005 pp. 252-254. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  16. 76 FR 9681 - Endangered and Threatened Wildlife and Plants; Determination of Threatened Status for the New...

    Science.gov (United States)

    2011-02-22

    ... species under the Act: emperor penguin (Aptenodytes forsteri), southern rockhopper penguin (Eudyptes... emperor penguin (73 FR 77264). We finalized the actions listed in (1) and (2) above on September 28, 2010... little as 6 miles (mi) (10 kilometers (km)) of the colony (as at the Crozet Archipelago in the Indian...

  17. Projected continent-wide declines of the emperor penguin under climate change

    NARCIS (Netherlands)

    Jenouvrier, S.; Holland, M.; Stroeve, J.; Serreze, M.; Barbraud, C.; Weimerskirch, H.; Caswell, H.

    2014-01-01

    Climate change has been projected to affect species distribution1 and future trends of local populations2, 3, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence

  18. MRI zoo

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    The basic idea was to use MRI to produce a sequence of 3D gray scale image slices of various animals, subsequentlyimaged with a clinical CT system. For this purpose, these animals were used: toad, lungfish, python snake and a horseshoe crab. Each animal was sacrificed according to standard...... visually inspected, both in 2D and 3D, and compared with photographs and anatomy atlases found at library and on the internet....

  19. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit

    Science.gov (United States)

    2015-09-30

    highly variable. Venous oxygen content can actually increase during short duration dives. This suggests very little muscle blood flow and evven the use...the sea lion, the emperor penguin (Aptenodytes forsteri), another animal that dives on inspiration with a large respiratory O2 store, also can...in deep-diving emperor penguins (Wright et al. 2014), and in deep-diving bottlenose dolphins (Tursiops truncatus), which also dive on inspiration

  20. Are environmental factors responsible for changed breeding behaviour in emperor penguins?

    OpenAIRE

    Zitterbart, Daniel; Richter, Sebastian; Spiekermann, Georg; Behrens, Lisa Katharina; Regnery, Julia; Fontes, René Pascal; Hänssler, Thedda; König-Langlo, Gert; Weller, Rolf; Fabry, Ben

    2014-01-01

    Emperor penguins (Aptenodytes forsteri Gray) are the only vertebrate species that breed during the Antarctic winter. From the beginning of the breeding season in April until fledging of the chicks in January, emperor penguins rely on the stability of sea (fast) ice. The International Union for Conservation of Nature (IUCN) has recently listed the species as ‘near threatened’ because the habitat of emperor penguins may deteriorate significantly over the coming years with the anticipated change...

  1. Changes in pulmonary blood flow do not affect gas exchange during intermittent ventilation in resting turtles

    DEFF Research Database (Denmark)

    Wang, Tobias; Hicks, James W.

    2008-01-01

    The breathing pattern of many different air-breathing vertebrates, including lungfish, anuran amphibians, turtles, crocodiles and snakes, is characterized by brief periods of lung ventilation interspersed among apnoeas of variable duration. These intermittent ventilatory cycles are associated...... experimentally. The present study measured pulmonary gas exchange in fully recovered, freely diving turtles, where changes in pulmonary blood flow were prevented by partial occlusion of the pulmonary artery. Prevention of L-R shunt during ventilation did not impair CO2 excretion and overall, oxygen uptake and CO...

  2. On causal roles and selected effects: our genome is mostly junk.

    Science.gov (United States)

    Doolittle, W Ford; Brunet, Tyler D P

    2017-12-05

    The idea that much of our genome is irrelevant to fitness-is not the product of positive natural selection at the organismal level-remains viable. Claims to the contrary, and specifically that the notion of "junk DNA" should be abandoned, are based on conflating meanings of the word "function". Recent estimates suggest that perhaps 90% of our DNA, though biochemically active, does not contribute to fitness in any sequence-dependent way, and possibly in no way at all. Comparisons to vertebrates with much larger and smaller genomes (the lungfish and the pufferfish) strongly align with such a conclusion, as they have done for the last half-century.

  3. A general scenario of Hox gene inventory variation among major sarcopterygian lineages

    Directory of Open Access Journals (Sweden)

    Wang Chaolin

    2011-01-01

    Full Text Available Abstract Background Hox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the Hox genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how Hox gene inventory varied along the sarcopterygian lineage. Results We determined the Hox gene inventory for six sarcopterygian groups: lungfishes, caecilians, salamanders, snakes, turtles and crocodiles by comprehensive PCR survey and genome walking. Variable Hox genes in each of the six sarcopterygian group representatives, compared to the human Hox gene inventory, were further validated for their presence/absence by PCR survey in a number of related species representing a broad evolutionary coverage of the group. Turtles, crocodiles, birds and placental mammals possess the same 39 Hox genes. HoxD12 is absent in snakes, amphibians and probably lungfishes. HoxB13 is lost in frogs and caecilians. Lobe-finned fishes, amphibians and squamate reptiles possess HoxC3. HoxC1 is only present in caecilians and lobe-finned fishes. Similar to coelacanths, lungfishes also possess HoxA14, which is only found in lobe-finned fishes to date. Our Hox gene variation data favor the lungfish-tetrapod, turtle-archosaur and frog-salamander relationships and imply that the loss of HoxD12 is not directly related to digit reduction. Conclusions Our newly determined Hox inventory data provide a more complete scenario for evolutionary dynamics of Hox genes along the sarcopterygian lineage. Limbless, worm-like caecilians and snakes possess similar Hox gene inventories to animals with

  4. Impact of North Mara gold mine on the element contents in fish from the river Mara, Tanzania

    Czech Academy of Sciences Publication Activity Database

    Mohamed, N. K.; Ntarisa, A. V. R.; Makundi, I. N.; Kučera, Jan

    2016-01-01

    Roč. 309, č. 1 (2016), s. 421-427 ISSN 0236-5731. [14th International Conference on Modern Trends in Activation Analysis (MTAA) / 11th International conference on Nuclear Analytical Methods in the Life Science (NAMLS). Delft, 23.08.2015-23.08.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : gold mining * contamination * lungfish * catfisch * INAA * EDXRF Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.282, year: 2016

  5. Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage.

  6. Musculoskeletal anatomy of the pelvic fin of Polypterus: implications for phylogenetic distribution and homology of pre- and postaxial pelvic appendicular muscles.

    Science.gov (United States)

    Molnar, Julia L; Johnston, Peter S; Esteve-Altava, Borja; Diogo, Rui

    2017-04-01

    As a member of the most basal clade of extant ray-finned fishes (actinopterygians) and of one of the most basal clades of osteichthyans (bony fishes + tetrapods), Polypterus can provide insights into the ancestral anatomy of both ray-finned and lobe-finned fishes, including those that gave rise to tetrapods. The pectoral fin of Polypterus has been well described but, surprisingly, neither the bones nor the muscles of the pelvic fin are well known. We stained and dissected the pelvic fin of Polypterus senegalus and Polypterus delhezi to offer a detailed description of its musculoskeletal anatomy. In addition to the previously described adductor and abductor muscles, we found preaxial and postaxial muscles similar to those in the pectoral fin of members of this genus. The presence of pre- and postaxial muscles in both the pectoral and pelvic fins of Polypterus, combined with recent descriptions of similar muscles in the lobe-finned fishes Latimeria and Neoceratodus, suggests that they were present in the most recent common ancestor of bony fishes. These results have crucial implications for the evolution of appendicular muscles in both fish and tetrapods. © 2016 Anatomical Society.

  7. Avian IgY antibodies: characteristics and applications in immunodiagnostic

    Directory of Open Access Journals (Sweden)

    Lívia Silveira Munhoz

    2014-01-01

    Full Text Available Immunoglobulin Y (IgY is the major antibody isotype in birds, reptiles, amphibia, and lungfish, playing a similar biological role as mammal IgG. Due to its phylogenetic distance, immune diversification and presence in the egg yolk, IgY provide a number of advantages in immunodiagnostic compared to IgG from mammals. Moreover, IgY production is in agreement with international efforts to reduce, refine and if possible, to replace animals in experimentation, contributing substantially in favor of animal welfare. This article presents an overview about structural and functional features, production and applications of IgY in immunodiagnostic, as well as the advantages of chicken antibodies use.

  8. The Late Devonian Gogo Formation Lägerstatte of Western Australia: Exceptional Early Vertebrate Preservation and Diversity

    Science.gov (United States)

    Long, John A.; Trinajstic, Kate

    2010-05-01

    The Gogo Formation of Western Australia preserves a unique Late Devonian (Frasnian) reef fauna. The exceptional three-dimensional preservation of macrofossils combined with unprecedented soft-tissue preservation (including muscle bundles, nerve cells, and umbilical structures) has yielded a particularly rich assemblage with almost 50 species of fishes described. The most significant discoveries have contributed to resolving placoderm phylogeny and elucidating their reproductive physiology. Specifically, these discoveries have produced data on the oldest known vertebrate embryos; the anatomy of the primitive actinopterygian neurocranium and phylogeny of the earliest actinopterygians; the histology, radiation, and plasticity of dipnoan (lungfish) dental and cranial structures; the anatomy and functional morphology of the extinct onychodonts; and the anatomy of the primitive tetrapodomorph head and pectoral fin.

  9. Hemoglobins: models of physiological adaptation, with special reference to O2 availability and temperature

    DEFF Research Database (Denmark)

    Weber, Roy E.

    In transporting O2 from the respiratory surfaces to the respiring tissues of animals, hemoglobin (Hb) directly links aerobic metabolism with O2 availability and is a paradigm for studying mechanisms of molecular adaptations. Hb-O2 binding is cooperative (described by sigmoid O2 binding curves......) and decreased by allosteric effectors (protons, CO2, lactate, organic phosphates and chloride ions) that modulate O2 binding in response to changes in environmental and metabolic dictates. Hb-O2 affinity moreover decreases with rising temperature. This increases O2 unloading in warm tissues that consume more O2......, but may be maladaptive – and thus is reduced - in regional heterothermic animals where it may hamper O2 unloading (in cold extremities of Artic mammals) or cause excessive O2 release (in warm organs of fast-swimming fish). Illustrated with case studies (estivating lungfish, high altitude frogs, birds...

  10. Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods

    Science.gov (United States)

    Graham, Jeffrey B.; Wegner, Nicholas C.; Miller, Lauren A.; Jew, Corey J.; Lai, N. Chin; Berquist, Rachel M.; Frank, Lawrence R.; Long, John A.

    2014-01-01

    The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations. Here we resolve the 100-year-old mystery by presenting structural, behavioural, video, kinematic and pressure data that show spiracle-mediated aspiration accounts for up to 93% of all air breaths in four species of Polypterus. Similarity in the size and position of polypterid spiracles with those of some stem tetrapods suggests that spiracular air breathing may have been an important respiratory strategy during the fish-tetrapod transition from water to land.

  11. Molecular evolution of proopiomelanocortin in early vertebrates; Gensakudobutsu hoya no shinkeisen ni saguru fukujinhishitsu sigeki horumon no kigen to bunshi shinka

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akiyoshi [Kitasato University, Tokyo (Japan). School of Fishieries Sciences

    1998-12-16

    Proolpiomelanocortin (POMC) is a precursor for melanotrophin (MSH) and {beta}-endorphin that regulate stress and environmental adaptation. The present study was undertaken to provide insight into the molecular evolution of POMC in the early vertebrates by examining structures of POMCs in protochordates and in ancient and advanced fishes. Lungfish POMC is similar to tetrapods because they include three MSHs ({alpha}, {beta} and {gamma}) and {beta}-endorphin. In contrast to the consistent occurrence of three MSHs in tetrapods and dipnoans, fish POMC varies in the number of MSH types it contains. POMCs of tuna and sturgeon lack {gamma}-MSH whereas POMC of dogfish has a forth ({delta}) MSH in addition to {alpha}-, {beta}- and {gamma}-MSH. b-endorphin, however, occurs in all vertebrates. These results suggest that POMC has evolved by duplication, insertion and deletion of MSH genomic segments. The diversity of MSH may have contributed to development of the ability to adapt to different conditions. (author)

  12. Taxonomic composition and trophic structure of the continental bony fish assemblage from the early late cretaceous of Southeastern Morocco.

    Science.gov (United States)

    Cavin, Lionel; Boudad, Larbi; Tong, Haiyan; Läng, Emilie; Tabouelle, Jérôme; Vullo, Romain

    2015-01-01

    The mid-Cretaceous vertebrate assemblage from south-eastern Morocco is one of the most diversified continental vertebrate assemblages of this time worldwide. The bony fish component (coelacanths, lungfishes and ray-finned fishes) is represented by relatively complete specimens and, mostly, by fragmentary elements scattered along 250 kilometres of outcrops. Here we revisit the bony fish assemblage by studying both isolated remains collected during several fieldtrips and more complete material kept in public collections. The assemblage comprises several lungfish taxa, with the first mention of the occurrence of Arganodus tiguidiensis, and possibly two mawsoniid coelacanths. A large bichir cf. Bawitius, is recorded and corresponds to cranial elements initially referred to 'Stromerichthys' from coeval deposits in Egypt. The ginglymodians were diversified with a large 'Lepidotes' plus two obaichthyids and a gar. We confirm here that this gar belongs to a genus distinctive from Recent gars, contrary to what was suggested recently. Teleosteans comprise a poorly known ichthyodectiform, a notopterid, a probable osteoglossomorph and a large tselfatiiform, whose cranial anatomy is detailed. The body size and trophic level for each taxon are estimated on the basis of comparison with extant closely related taxa. We plotted the average body size versus average trophic level for the Kem Kem assemblage, together with extant marine and freshwater assemblages. The Kem Kem assemblage is characterized by taxa of proportionally large body size, and by a higher average trophic level than the trophic level of the extant compared freshwater ecosystems, but lower than for the extant marine ecosystems. These results should be regarded with caution because they rest on a reconstructed assemblage known mostly by fragmentary remains. They reinforce, however, the ecological oddities already noticed for this mid-Cretaceous vertebrate ecosystem in North Africa.

  13. Mercury in birds of San Francisco Bay-Delta, California: trophic pathways, bioaccumulation, and ecotoxicological risk to avian reproduction

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Heinz, Gary; De La Cruz, Susan E. W.; Takekawa, John Y.; Miles, A. Keith; Adelsbach, Terrence L.; Herzog, Mark P.; Bluso-Demers, Jill D.; Demers, Scott A.; Herring, Garth; Hoffman, David J.; Hartman, Christopher A.; Willacker, James J.; Suchanek, Thomas H.; Schwarzbach, Steven E.; Maurer, Thomas C.

    2014-01-01

    San Francisco Bay Estuary in northern California has a legacy of mercury contamination, which could reduce the health and reproductive success of waterbirds in the estuary. The goal of this study was to use an integrated field and laboratory approach to evaluate the risks of mercury exposure to birds in the estuary. We examined mercury bioaccumulation, and other contaminants of concern, in five waterbird species that depend heavily on San Francisco Bay Estuary for foraging and breeding habitat: American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), Caspian terns (Hydroprogne caspia), and surf scoters (Melanitta perspicillata). These species have different foraging habitats and diets that represent three distinct foraging guilds within the estuary’s food web. In this report, we provide an integrated synthesis of the primary findings from this study and results are synthesized from 54 peer-reviewed publications generated to date with other unpublished results.

  14. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae)

    KAUST Repository

    Coker, Darren James

    2015-11-03

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  15. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae)

    KAUST Repository

    Coker, Darren James; Hoey, Andrew S.; Wilson, Shaun K.; Depczynski, Martial; Graham, Nicholas A. J.; Hobbs, Jean-Paul A.; Holmes, Thomas H.; Pratchett, Morgan S.

    2015-01-01

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  16. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae.

    Directory of Open Access Journals (Sweden)

    Darren J Coker

    Full Text Available Hawkfishes (family: Cirrhitidae are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  17. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae).

    Science.gov (United States)

    Coker, Darren J; Hoey, Andrew S; Wilson, Shaun K; Depczynski, Martial; Graham, Nicholas A J; Hobbs, Jean-Paul A; Holmes, Thomas H; Pratchett, Morgan S

    2015-01-01

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  18. Diversity and repertoire of IgW and IgM VH families in the newborn nurse shark.

    Science.gov (United States)

    Rumfelt, Lynn L; Lohr, Rebecca L; Dooley, Helen; Flajnik, Martin F

    2004-05-06

    Adult cartilaginous fish express three immunoglobulin (Ig) isotypes, IgM, IgNAR and IgW. Newborn nurse sharks, Ginglymostoma cirratum, produce 19S (multimeric) IgM and monomeric/dimeric IgM1gj, a germline-joined, IgM-related VH, and very low amounts of 7S (monomeric) IgM and IgNAR proteins. Newborn IgNAR VH mRNAs are diverse in the complementarity-determining region 3 (CDR3) with non-templated nucleotide (N-region) addition, which suggests that, unlike in many other vertebrates, terminal deoxynucleotidyl transferase (TdT) expressed at birth is functional. IgW is present in the lungfish, a bony fish sharing a common ancestor with sharks 460 million years ago, implying that the IgW VH family is as old as the IgM VH family. This nurse shark study examined the IgM and IgW VH repertoire from birth through adult life, and analyzed the phylogenetic relationships of these gene families. IgM and IgW VH cDNA clones isolated from newborn nurse shark primary and secondary lymphoid tissues had highly diverse and unique CDR3 with N-region addition and VDJ gene rearrangement, implicating functional TdT and RAG gene activity. Despite the clear presence of N-region additions, newborn CDR3 were significantly shorter than those of adults. The IgM clones are all included in a conventional VH family that can be classified into five discrete groups, none of which is orthologous to IgM VH genes in other elasmobranchs. In addition, a novel divergent VH family was orthologous to a published monotypic VH horn shark family. IgW VH genes have diverged sufficiently to form three families. IgM and IgW VH serine codons using the potential somatic hypermutation hotspot sequence occur mainly in VH framework 1 (FR1) and CDR1. Phylogenetic analysis of cartilaginous fish and lungfish IgM and IgW demonstrated they form two major ancient gene groups; furthermore, these VH genes generally diversify (duplicate and diverge) within a species. As in ratfish, sandbar and horn sharks, most nurse shark IgM VH

  19. Diversity and repertoire of IgW and IgM VH families in the newborn nurse shark

    Directory of Open Access Journals (Sweden)

    Dooley Helen

    2004-05-01

    Full Text Available Abstract Background Adult cartilaginous fish express three immunoglobulin (Ig isotypes, IgM, IgNAR and IgW. Newborn nurse sharks, Ginglymostoma cirratum, produce 19S (multimeric IgM and monomeric/dimeric IgM1gj, a germline-joined, IgM-related VH, and very low amounts of 7S (monomeric IgM and IgNAR proteins. Newborn IgNAR VH mRNAs are diverse in the complementarity-determining region 3 (CDR3 with non-templated nucleotide (N-region addition, which suggests that, unlike in many other vertebrates, terminal deoxynucleotidyl transferase (TdT expressed at birth is functional. IgW is present in the lungfish, a bony fish sharing a common ancestor with sharks 460 million years ago, implying that the IgW VH family is as old as the IgM VH family. This nurse shark study examined the IgM and IgW VH repertoire from birth through adult life, and analyzed the phylogenetic relationships of these gene families. Results IgM and IgW VH cDNA clones isolated from newborn nurse shark primary and secondary lymphoid tissues had highly diverse and unique CDR3 with N-region addition and VDJ gene rearrangement, implicating functional TdT and RAG gene activity. Despite the clear presence of N-region additions, newborn CDR3 were significantly shorter than those of adults. The IgM clones are all included in a conventional VH family that can be classified into five discrete groups, none of which is orthologous to IgM VH genes in other elasmobranchs. In addition, a novel divergent VH family was orthologous to a published monotypic VH horn shark family. IgW VH genes have diverged sufficiently to form three families. IgM and IgW VH serine codons using the potential somatic hypermutation hotspot sequence occur mainly in VH framework 1 (FR1 and CDR1. Phylogenetic analysis of cartilaginous fish and lungfish IgM and IgW demonstrated they form two major ancient gene groups; furthermore, these VH genes generally diversify (duplicate and diverge within a species. Conclusion As in ratfish

  20. Waterbirds (other than Laridae nesting in the middle section of Laguna Cuyutlán, Colima, México

    Directory of Open Access Journals (Sweden)

    Eric Mellink

    2008-03-01

    Full Text Available Laguna de Cuyutlán, in the state of Colima, Mexico, is the only large coastal wetland in a span of roughly 1150 km. Despite this, the study of its birds has been largely neglected. Between 2003 and 2006 we assessed the waterbirds nesting in the middle portion of Laguna Cuyutlán, a large tropical coastal lagoon, through field visits. We documented the nesting of 15 species of non-Laridae waterbirds: Neotropic Cormorant (Phalacrocorax brasilianus, Tricolored Egret (Egretta tricolor, Snowy Egret (Egretta thula, Little Blue Heron (Egretta caerulea, Great Egret (Ardea alba, Cattle Egret (Bubulcus ibis, Black-crowned Nightheron (Nycticorax nycticorax, Yellow-crowned Night-heron (Nyctanassa violacea, Green Heron (Butorides virescens, Roseate Spoonbill (Platalea ajaja, White Ibis (Eudocimus albus, Black-bellied Whistling-duck (Dendrocygna autumnalis, Clapper Rail (Rallus longirostris, Snowy Plover (Charadrius alexandrinus, and Black-necked Stilt (Himantopus mexicanus. These add to six species of Laridae known to nest in that area: Laughing Gulls (Larus atricilla, Royal Terns (Thalasseus maximus, Gull-billed Terns (Gelochelidon nilotica, Forster’s Terns (S. forsteri, Least Terns (Sternula antillarum, and Black Skimmer (Rynchops niger, and to at least 57 species using it during the non-breeding season. With such bird assemblages, Laguna Cuyutlán is an important site for waterbirds, which should be given conservation status. Rev. Biol. Trop. 56 (1: 391-397. Epub 2008 March 31.Durante la prospección de la parte media de la Laguna Cuyutlán, una gran laguna costera en Colima, México, entre 2003 y 2006, documentamos la anidación de 15 especies de aves acuáticas que no pertenecer a la familia Laridae: Phalacrocorax brasilianus, Egretta tricolor, Egretta thula, Egretta caerulea, Ardea alba, Bubulcus ibis, Nycticorax nycticorax, Nyctanassa violacea, Butorides virescens, Platalea ajaja, Eudocimus albus, Dendrocygna autumnalis, Rallus longirostris

  1. REE compositions in fossil vertebrate dental tissues indicate biomineral preservation

    Science.gov (United States)

    Žigaite, Ž.; Kear, B.; Pérez-Huerta, A.; Jeffries, T.; Blom, H.

    2012-04-01

    Rare earth element (REE) abundances have been measured in a number of Palaeozoic and Mesozoic dental tissues using Laser Ablation Inductively Coupled Plasma Mass-spectrometry (LA-ICP-MS). Fossil vertebrates analysed comprise scales and tesserae of Silurian and Devonian acanthodians, chondrichthyans, galeaspids, mongolepids, thelodonts, as well as teeth of Cretaceous lungfish and marine reptiles. The evaluation of fossil preservation level has been made by semi-quantitative spot geochemistry analyses on fine polished teeth and scale thin sections, using Energy Dispersive X-ray Spectroscopy (EDS). Fossil teeth and scales with significant structure and colour alteration have shown elevated heavy element concentrations, and the silicification of bioapatite has been common in their tissues. Stable oxygen isotope measurements (δ18O) of bulk biomineral have been conducted in parallel, and showed comparatively lower heavy oxygen values in the same fossil tissues with stronger visible alteration. Significant difference in REE concentrations has been observed between the dentine and enamel of Cretaceous plesiosaurs, suggesting the enamel to be more geochemically resistant to diagenetic overprint.

  2. Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited.

    Science.gov (United States)

    Rossier, Bernard C; Baker, Michael E; Studer, Romain A

    2015-01-01

    Transcription and translation require a high concentration of potassium across the entire tree of life. The conservation of a high intracellular potassium was an absolute requirement for the evolution of life on Earth. This was achieved by the interplay of P- and V-ATPases that can set up electrochemical gradients across the cell membrane, an energetically costly process requiring the synthesis of ATP by F-ATPases. In animals, the control of an extracellular compartment was achieved by the emergence of multicellular organisms able to produce tight epithelial barriers creating a stable extracellular milieu. Finally, the adaptation to a terrestrian environment was achieved by the evolution of distinct regulatory pathways allowing salt and water conservation. In this review we emphasize the critical and dual role of Na(+)-K(+)-ATPase in the control of the ionic composition of the extracellular fluid and the renin-angiotensin-aldosterone system (RAAS) in salt and water conservation in vertebrates. The action of aldosterone on transepithelial sodium transport by activation of the epithelial sodium channel (ENaC) at the apical membrane and that of Na(+)-K(+)-ATPase at the basolateral membrane may have evolved in lungfish before the emergence of tetrapods. Finally, we discuss the implication of RAAS in the origin of the present pandemia of hypertension and its associated cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  3. Generation and Characterization of Polyclonal Antibody Against Part of Immunoglobulin Constant Heavy υ Chain of Goose

    Science.gov (United States)

    Zhao, Panpan; Guo, Yongli; Ma, Bo; Wang, Junwei

    2014-01-01

    Immunoglobulin Y (abbreviated as IgY) is a type of immunoglobulin that is the major antibody in bird, reptile, and lungfish blood. IgY consists of two light (λ) and two heavy (υ) chains. In the present study, polyclonal antibody against IgYFc was generated and evaluated. rIgYCυ3/Cυ4 was expressed in Escherichia coli, purified and utilized to raise polyclonal antibody in rabbit. High affinity antisera were obtained, which successfully detected the antigen at a dilution of 1:204,800 for ELISA assay. The antibody can specifically recognize both rIgYCυ3/Cυ4 and native IgY by Western bolt analysis. Furthermore, the serum of Grus japonensis or immunoglobulin of chicken, duck, turkey, and silkie samples and dynamic changes of serum GoIgY after immunogenicity with GPV-VP3-virus-like particles (GPV-VP3-VLPs) can be detected with the anti-GoIgYFc polyclonal antibody. These results suggested that the antibody is valuable for the investigation of biochemical properties and biological functions of GoIgY. PMID:25171010

  4. The role of the nervous system in fish evolution

    Directory of Open Access Journals (Sweden)

    Michael H Hofmann

    2015-12-01

    Full Text Available The nervous system plays an important role in the evolution and adaptation of animals. All sensory and motor functions as well as cognitive abilities are organized in the brain and spinal cord. Volumetric measurements of different brain regions were made in more than 150 species of ray finned fishes as well as in several outgroups. In Actanthopterygii, the hypothalamus shows greatest enlargement most likely due to an enormous visual input via the nucleus glomerulosos. The telencephalon is highly differentiated in many acanthopterygii, mostly coral reef species, but its relative size is not much effected. There is, however, a clear shift from olfactory to visual functions in ray finned fishes. In species with a highly differentiated telencephalon, the area where place memory may be located is very prominent. In basal ray finned fishes, lungfish, amphibia and elasmobranchs, the olfactory bulb is relatively large and the ratio of the olfactory bulb and telencephalon large as well. This holds also for elopomorpha and spiny eels, but in most other groups vision dominates. Apart from differences between larger clades, variation in brain architecture are also seen in closely related species and even between sexes of the same species. Profound differences are present in the cerebellum between male and female swordtails and in the telencephalon of sticklebacks. Morphometric analysis of brain architecture turned out to be an important tool to study the evolution and adaptations of the brain in fishes.

  5. Evolution and Diversity of Transposable Elements in Vertebrate Genomes.

    Science.gov (United States)

    Sotero-Caio, Cibele G; Platt, Roy N; Suh, Alexander; Ray, David A

    2017-01-01

    Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Polypteridae (Actinopterygii: Cladistia) and DANA-SINEs insertions.

    Science.gov (United States)

    Morescalchi, Maria Alessandra; Barucca, Marco; Stingo, Vincenzo; Capriglione, Teresa

    2010-06-01

    SINE sequences are interspersed throughout virtually all eukaryotic genomes and greatly outnumber the other repetitive elements. These sequences are of increasing interest for phylogenetic studies because of their diagnostic power for establishing common ancestry among taxa, once properly characterized. We identified and characterized a peculiar family of composite tRNA-derived short interspersed SINEs, DANA-SINEs, associated with mutational activities in Danio rerio, in a group of species belonging to one of the most basal bony fish families, the Polypteridae, in order to investigate their own inner specific phylogenetic relationships. DANA sequences were identified, sequenced and then localized, by means of fluorescent in situ hybridization (FISH), in six Polypteridae species (Polypterus delhezi, P. ornatipinnis, P. palmas, P. buettikoferi P. senegalus and Erpetoichthys calabaricus) After cloning, the sequences obtained were aligned for phylogenetic analysis, comparing them with three Dipnoan lungfish species (Protopterus annectens, P. aethiopicus, Lepidosiren paradoxa), and Lethenteron reissneri (Petromyzontidae)was used as outgroup. The obtained overlapping MP, ML and NJ tree clustered together the species belonging to the two taxonomically different Osteichthyans groups: the Polypteridae, by one side, and the Protopteridae by the other, with the monotypic genus Erpetoichthys more distantly related to the Polypterus genus comprising three distinct groups: P. palmas and P. buettikoferi, P. delhezi and P. ornatipinnis and P. senegalus. In situ hybridization with DANA probes marked along the whole chromosome arms in the metaphases of all the Polypteridae species examined. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Defences against ammonia toxicity in tropical air-breathing fishes exposed to high concentrations of environmental ammonia: a review.

    Science.gov (United States)

    Ip, Y K; Chew, S F; Wilson, J M; Randall, D J

    2004-10-01

    In the tropics, air-breathing fishes can be exposed to environmental ammonia when stranded in puddles of water during the dry season, during a stay inside a burrow, or after agricultural fertilization. At low concentrations of environmental ammonia, NH(3) excretion is impeded, as in aerial exposure, leading to the accumulation of endogenous ammonia. At high concentrations of environmental ammonia, which results in a reversed NH(3) partial pressure gradient (DeltaP(NH3)), there is retention of endogenous ammonia and uptake of exogenous ammonia. In this review, several tropical air-breathing fishes (giant mudskipper, African catfish, oriental weatherloach, swamp eel, four-eyed sleeper, abehaze and slender African lungfish), which can tolerate high environmental ammonia exposure, are used as examples to demonstrate how eight different adaptations can be involved in defence against ammonia toxicity. Four of these adaptations deal with ammonia toxicity at branchial and/or epithelial surfaces: (1) active excretion of NH(4)(+); (2) lowering of environmental pH; (3) low NH(3) permeability of epithelial surfaces; and (4) volatilization of NH(3), while another four adaptations ameliorate ammonia toxicity at the cellular and subcellular levels: (5) high tolerance of ammonia at the cellular and subcellular levels; (6) reduction in ammonia production; (7) glutamine synthesis; and (8) urea synthesis. The responses of tropical air-breathing fishes to high environmental ammonia are determined apparently by behavioural adaptations and the nature of their natural environments.

  8. Mercury exposure may influence fluctuating asymmetry in waterbirds.

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-06-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds. Environ Toxicol Chem 2017;36:1599-1605. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  9. Mercury exposure may influence fluctuating asymmetry in waterbirds

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2017-01-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds.

  10. Ultraviolet reflecting photonic microstructures in the King Penguin beak.

    Science.gov (United States)

    Dresp, Birgitta; Jouventin, Pierre; Langley, Keith

    2005-09-22

    King and emperor penguins (Aptenodytes patagonicus and Aptenodytes forsteri) are the only species of marine birds so far known to reflect ultraviolet (UV) light from their beaks. Unlike humans, most birds perceive UV light and several species communicate using the near UV spectrum. Indeed, UV reflectance in addition to the colour of songbird feathers has been recognized as an important signal when choosing a mate. The king penguin is endowed with several highly coloured ornaments, notably its beak horn and breast and auricular plumage, but only its beak reflects UV, a property considered to influence its sexual attraction. Because no avian UV-reflecting pigments have yet been identified, the origin of such reflections is probably structural. In an attempt to identify the structures that give rise to UV reflectance, we combined reflectance spectrophotometry and morphological analysis by both light and electron microscopy, after experimental removal of surface layers of the beak horn. Here, we characterize for the first time a multilayer reflector photonic microstructure that produces the UV reflections in the king penguin beak.

  11. Geochemical record of high emperor penguin populations during the Little Ice Age at Amanda Bay, Antarctica

    International Nuclear Information System (INIS)

    Huang, Tao; Yang, Lianjiao; Chu, Zhuding; Sun, Liguang; Yin, Xijie

    2016-01-01

    Emperor penguins (Aptenodytes forsteri) are sensitive to the Antarctic climate change because they breed on the fast sea ice. Studies of paleohistory for the emperor penguin are rare, due to the lack of archives on land. In this study, we obtained an emperor penguin ornithogenic sediment profile (PI) and performed geochronological, geochemical and stable isotope analyses on the sediments and feather remains. Two radiocarbon dates of penguin feathers in PI indicate that emperor penguins colonized Amanda Bay as early as CE 1540. By using the bio-elements (P, Se, Hg, Zn and Cd) in sediments and stable isotope values (δ"1"5N and δ"1"3C) in feathers, we inferred relative population size and dietary change of emperor penguins during the period of CE 1540–2008, respectively. An increase in population size with depleted N isotope ratios for emperor penguins on N island at Amanda Bay during the Little Ice Age (CE 1540–1866) was observed, suggesting that cold climate affected the penguin's breeding habitat, prey availability and thus their population and dietary composition. - Highlights: • Emperor penguin colonized at Amanda Bay, East Antarctic as early as AD 1540. • Populations of emperor penguin at Amanda Bay increase during the little ice age. • Depleted N isotope ratios of Emperor penguins during the LIA were observed.

  12. Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Isanhart, John P.; Herring, Garth; Vaughn, Sharon; Cavitt, John F.; Eagles-Smith, Collin A.; Browers, Howard; Cline, Chris; Vest, Josh

    2015-01-01

    The wetlands of the Great Salt Lake ecosystem are recognized regionally, nationally, and hemispherically for their importance as breeding, wintering, and migratory habitat for diverse groups of waterbirds. Bear River Migratory Bird Refuge is the largest freshwater component of the Great Salt Lake ecosystem and provides critical breeding habitat for more than 60 bird species. However, the Great Salt Lake ecosystem also has a history of both mercury and selenium contamination, and this pollution could reduce the health and reproductive success of waterbirds. The overall objective of this study was to evaluate the risk of mercury and selenium contamination to birds breeding within Great Salt Lake, especially at Bear River Migratory Bird Refuge, and to identify the waterbird species and areas at greatest risk to contamination. We sampled eggs from 33 species of birds breeding within wetlands of Great Salt Lake during 2010 ̶ 2012 and focused on American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), white-faced ibis (Plegadis chihi), and marsh wrens (Cistothorus palustris) for additional studies of the effects of contaminants on reproduction.

  13. Rapid changes in small fish mercury concentrations in estuarine wetlands: Implications for wildlife risk and monitoring programs

    Science.gov (United States)

    Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2009-01-01

    Small fish are commonly used to assess mercury (Hg) risk to wildlife and monitor Hg in wetlands. However, limited research has evaluated short-term Hg variability in small fish, which can have important implications for monitoring programs and risk assessment. We conducted a time-series study of Hg concentrations in two small fish species representing benthic (longjaw mudsuckers [Gillichthys mirabilis]) and pelagic (threespine sticklebacks [Gasterosteus aculeatus]) food-webs within three wetland habitats in San Francisco Bay Estuary. We simultaneously monitored prey deliveries, nest initiation, and chick hatching dates of breeding Forster's terns (Sterna forsteri), the most abundant nesting piscivore in the region. Mudsuckers and sticklebacks were the predominant prey fish, comprising 36% and 25% of tern diet, and Hg concentrations averaged (geometric mean ?? SE, ??g/g dw) 0.44 ?? 0.01 and 0.68 ?? 0.03, respectively. Fish Hg concentrations varied substantially over time following a quadratic form in both species, increasing 40% between March and May then decreasing 40% between May and July. Importantly, Forster's terns initiated 68% of nests and 31% of chicks hatched during the period of peak Hg concentrations in prey fish. These results illustrate the importance of short-term temporal variation in small fish Hg concentrations for both Hg monitoring programs and assessing wildlife risk.

  14. Embryo malposition as a potential mechanism for mercury-induced hatching failure in bird eggs

    Science.gov (United States)

    Herring, G.; Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    We examined the prevalence of embryo malpositions and deformities in relation to total mercury (THg) and selenium (Se) concentrations in American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster's tern (Sterna forsteri) eggs in San Francisco Bay (CA, USA) during 2005 to 2007. Overall, 11% of embryos were malpositioned in eggs ???18 d of age (n=282) and 2% of embryos were deformed in eggs ???13 d of age (n=470). Considering only those eggs that failed to hatch (n=62), malpositions occurred in 24% of eggs ???18 d of age and deformities occurred in 7% of eggs ???13 d of age. The probability of an embryo being malpositioned increased with egg THg concentrations in Forster's terns, but not in avocets or stilts. The probability of embryo deformity was not related to egg THg concentrations in any species. Using a reduced dataset with both Se and THg concentrations measured in eggs (n=87), we found no interaction between Se and THg on the probability of an embryo being malpositioned or deformed. Results of the present study indicate that embryo malpositions were prevalent in waterbird eggs that failed to hatch and the likelihood of an embryo being malpositioned increased with egg THg concentrations in Forster's terns. We hypothesize that malpositioning of avian embryos may be one reason for mercury-related hatching failure that occurs late in incubation, but further research is needed to elucidate this potential mechanism. ?? 2010 SETAC.

  15. Geochemical record of high emperor penguin populations during the Little Ice Age at Amanda Bay, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tao, E-mail: huangt@ahu.edu.cn [School of Resources and Environmental Engineering, Anhui University, Hefei 230601 (China); School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Yang, Lianjiao; Chu, Zhuding [School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Sun, Liguang, E-mail: slg@ustc.edu.cn [School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Yin, Xijie [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 (China)

    2016-09-15

    Emperor penguins (Aptenodytes forsteri) are sensitive to the Antarctic climate change because they breed on the fast sea ice. Studies of paleohistory for the emperor penguin are rare, due to the lack of archives on land. In this study, we obtained an emperor penguin ornithogenic sediment profile (PI) and performed geochronological, geochemical and stable isotope analyses on the sediments and feather remains. Two radiocarbon dates of penguin feathers in PI indicate that emperor penguins colonized Amanda Bay as early as CE 1540. By using the bio-elements (P, Se, Hg, Zn and Cd) in sediments and stable isotope values (δ{sup 15}N and δ{sup 13}C) in feathers, we inferred relative population size and dietary change of emperor penguins during the period of CE 1540–2008, respectively. An increase in population size with depleted N isotope ratios for emperor penguins on N island at Amanda Bay during the Little Ice Age (CE 1540–1866) was observed, suggesting that cold climate affected the penguin's breeding habitat, prey availability and thus their population and dietary composition. - Highlights: • Emperor penguin colonized at Amanda Bay, East Antarctic as early as AD 1540. • Populations of emperor penguin at Amanda Bay increase during the little ice age. • Depleted N isotope ratios of Emperor penguins during the LIA were observed.

  16. Egg turning behavior and incubation temperature in Forster’s terns in relation to mercury contamination

    Science.gov (United States)

    Taylor, Gregory T.; Ackerman, Joshua T.; Shaffer, Scott A.

    2018-01-01

    Egg turning behavior is an important determinant of egg hatchability, but it remains relatively understudied. Here, we examined egg turning rates and egg temperatures in Forster’s terns (Sterna forsteri). We used artificial eggs containing a data logger with a 3-D accelerometer, a magnetometer, and a temperature thermistor to monitor parental incubation behavior of 131 tern nests. Overall, adults turned their eggs an average (±SD) of 3.8 ± 0.8 turns h-1, which is nearly two times higher than that of other seabirds. Egg turning rates increased with nest initiation date. We also examined egg turning rates and egg temperatures in relation to egg mercury contamination. Mercury contamination has been shown to be associated with reduced egg hatchability, and we hypothesized that mercury may decrease egg hatchability via altered egg turning behavior by parents. Despite the high variability in egg turning rates among individuals, the rate of egg turning was not related to mercury concentrations in sibling eggs. These findings highlight the need for further study concerning the potential determinants of egg turning behavior.

  17. First recorded loss of an emperor penguin colony in the recent period of Antarctic regional warming: implications for other colonies.

    Directory of Open Access Journals (Sweden)

    Philip N Trathan

    Full Text Available In 1948, a small colony of emperor penguins Aptenodytes forsteri was discovered breeding on Emperor Island (67° 51' 52″ S, 68° 42' 20″ W, in the Dion Islands, close to the West Antarctic Peninsula (Stonehouse 1952. When discovered, the colony comprised approximately 150 breeding pairs; these numbers were maintained until 1970, after which time the colony showed a continuous decline. By 1999 there were fewer than 20 pairs, and in 2009 high-resolution aerial photography revealed no remaining trace of the colony. Here we relate the decline and loss of the Emperor Island colony to a well-documented rise in local mean annual air temperature and coincident decline in seasonal sea ice duration. The loss of this colony provides empirical support for recent studies (Barbraud & Weimerskirch 2001; Jenouvrier et al 2005, 2009; Ainley et al 2010; Barber-Meyer et al 2005 that have highlighted the vulnerability of emperor penguins to changes in sea ice duration and distribution. These studies suggest that continued climate change is likely to impact upon future breeding success and colony viability for this species. Furthermore, a recent circumpolar study by Fretwell & Trathan (2009 highlighted those Antarctic coastal regions where colonies appear most vulnerable to such changes. Here we examine which other colonies might be at risk, discussing various ecological factors, some previously unexplored, that may also contribute to future declines. The implications of this are important for future modelling work and for understanding which colonies actually are most vulnerable.

  18. Vocal activity as a low cost and scalable index of seabird colony size.

    Science.gov (United States)

    Borker, Abraham L; McKown, Matthew W; Ackerman, Joshua T; Eagles-Smith, Collin A; Tershy, Bernie R; Croll, Donald A

    2014-08-01

    Although wildlife conservation actions have increased globally in number and complexity, the lack of scalable, cost-effective monitoring methods limits adaptive management and the evaluation of conservation efficacy. Automated sensors and computer-aided analyses provide a scalable and increasingly cost-effective tool for conservation monitoring. A key assumption of automated acoustic monitoring of birds is that measures of acoustic activity at colony sites are correlated with the relative abundance of nesting birds. We tested this assumption for nesting Forster's terns (Sterna forsteri) in San Francisco Bay for 2 breeding seasons. Sensors recorded ambient sound at 7 colonies that had 15-111 nests in 2009 and 2010. Colonies were spaced at least 250 m apart and ranged from 36 to 2,571 m(2) . We used spectrogram cross-correlation to automate the detection of tern calls from recordings. We calculated mean seasonal call rate and compared it with mean active nest count at each colony. Acoustic activity explained 71% of the variation in nest abundance between breeding sites and 88% of the change in colony size between years. These results validate a primary assumption of acoustic indices; that is, for terns, acoustic activity is correlated to relative abundance, a fundamental step toward designing rigorous and scalable acoustic monitoring programs to measure the effectiveness of conservation actions for colonial birds and other acoustically active wildlife. © 2014 Society for Conservation Biology.

  19. Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment.

    Science.gov (United States)

    Li, Cai; Zhang, Yong; Li, Jianwen; Kong, Lesheng; Hu, Haofu; Pan, Hailin; Xu, Luohao; Deng, Yuan; Li, Qiye; Jin, Lijun; Yu, Hao; Chen, Yan; Liu, Binghang; Yang, Linfeng; Liu, Shiping; Zhang, Yan; Lang, Yongshan; Xia, Jinquan; He, Weiming; Shi, Qiong; Subramanian, Sankar; Millar, Craig D; Meader, Stephen; Rands, Chris M; Fujita, Matthew K; Greenwold, Matthew J; Castoe, Todd A; Pollock, David D; Gu, Wanjun; Nam, Kiwoong; Ellegren, Hans; Ho, Simon Yw; Burt, David W; Ponting, Chris P; Jarvis, Erich D; Gilbert, M Thomas P; Yang, Huanming; Wang, Jian; Lambert, David M; Wang, Jun; Zhang, Guojie

    2014-01-01

    Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.

  20. Adaptation to extreme environments: structure-function relationships in Emperor penguin haemoglobin.

    Science.gov (United States)

    Tamburrini, M; Condò, S G; di Prisco, G; Giardina, B

    1994-04-15

    The functional properties of the single haemoglobin (Hb) of Emperor penguin (Aptenodytes forsteri) have been investigated at different temperatures as a function of proton and organic phosphate concentration. The complete amino acid sequence has been established. Comparison with that of human HbA shows 12 substitutions in the contact regions of alpha beta dimers. In addition to overall similarities shared with most of the avian Hbs previously described, this Hb shows significant differences, which could be related to the peculiar behaviour of this penguin. In particular we may consider that: (1) the shape of the Bohr effect curve seems well adapted for gas exchange during very prolonged dives, preserving penguin Hb from a sudden and not controlled stripping of oxygen; (2) the very minor enthalpy change observed at lower pH could be an example of molecular adaptation, through which oxygen delivery becomes essentially insensitive to exposure to the extremely low temperatures of the environment. Moreover, the small alkaline Bohr effect has been found to be only chloride-linked, since the pH dependence of the oxygen affinity is totally abolished in the absence of this ion. These functional characteristics are discussed on the basis of the primary structure of alpha and beta-chains.

  1. Demographic models and IPCC climate projections predict the decline of an emperor penguin population

    Science.gov (United States)

    Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Strœve, Julienne; Weimerskirch, Henri

    2009-01-01

    Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962–2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from ≈6,000 to ≈400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth. PMID:19171908

  2. Kidnapping of chicks in emperor penguins: a hormonal by-product?

    Science.gov (United States)

    Angelier, Frédéric; Barbraud, Christophe; Lormée, Hervé; Prud'homme, François; Chastel, Olivier

    2006-04-01

    The function and causes of kidnapping juveniles are little understood because individuals sustain some breeding costs to rear an unrelated offspring. Here we focus on the proximal causes of this behaviour in emperor penguins (Aptenodytes forsteri), whose failed breeders often kidnap chicks. We experimentally tested the hypothesis that kidnapping behaviour was the result of high residual levels of prolactin (PRL), a hormone involved in parental behaviour. Penguins with artificially decreased PRL levels by bromocriptine administration kidnapped chicks less often than control penguins. Within the bromocriptine treated group, kidnapping behaviour was not totally suppressed and the probability of kidnapping a chick was positively correlated to PRL levels measured before treatment. During breeding, emperor penguins have to forage in remote ice-free areas. In these birds, PRL secretion is poorly influenced by chick stimuli and has probably evolved to maintain a willingness to return to the colony after a long absence at sea. Therefore, penguins that have lost their chick during a foraging trip still maintain high residual PRL levels and this, combined with colonial breeding, probably facilitates kidnapping. We suggest that kidnapping in non-cooperative systems may result from a hormonal byproduct of a reproductive adaptation to extreme conditions.

  3. Maternal transfer of contaminants in birds: Mercury and selenium concentrations in parents and their eggs

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.; Hartman, C. Alex

    2016-01-01

    We conducted a detailed assessment of the maternal transfer of mercury and selenium to eggs in three bird species (n = 107 parents and n = 339 eggs), and developed predictive equations linking contaminant concentrations in eggs to those in six tissues of the mother (blood, muscle, liver, kidney, breast feathers, and head feathers). Mercury concentrations in eggs were positively correlated with mercury concentrations in each of the mother's internal tissues (R2 ≥ 0.95), but generally not with feathers. For each species, the proportion of mercury transferred to eggs decreased as mercury concentrations in the mother increased. At the same maternal mercury concentration, the proportion of mercury transferred to eggs differed among species, such that Forster's tern (Sterna forsteri) and black-necked stilt (Himantopus mexicanus) females transferred more methylmercury to their eggs than American avocet (Recurvirostra americana) females. Selenium concentrations in eggs also were correlated with selenium concentrations in the mother's liver (R2 = 0.87). Furthermore, mercury and selenium concentrations in tern eggs were positively correlated with those in the father (R2 = 0.84). Incubating male terns had 21% higher mercury concentrations in blood compared to incubating females at the same egg mercury concentration. We provide equations to predict contaminant concentrations in eggs from each of the commonly sampled bird tissues.

  4. Enamel ultrastructure of fossil and modern pinnipeds: evaluating hypotheses of feeding adaptations in the extinct walrus Pelagiarctos

    Science.gov (United States)

    Loch, Carolina; Boessenecker, Robert W.; Churchill, Morgan; Kieser, Jules

    2016-06-01

    This study aimed to assess the enamel ultrastructure in modern otariid pinnipeds and in the extinct walrus Pelagiarctos. Teeth of the New Zealand fur seal ( Arctocephalus forsteri), sea lion ( Phocarctos hookeri), and fossil walrus Pelagiarctos thomasi were embedded, sectioned, etched, and analyzed via scanning electron microscopy. The enamel of NZ otariids and Pelagiarctos was prismatic and moderately thick, measuring 150-450 μm on average. It consisted of transversely oriented Hunter-Schreger bands (HSBs) from the enamel-dentine junction (EDJ) to near the outer surface, where it faded into prismless enamel less than 10 μm thick. The width of HSB was variable and averaged between 6 and 10 prisms, and they presented an undulating course both in longitudinal and cross sections. The overall organization of the enamel was similar in all teeth sampled; however, the enamel was thicker in canines and postcanines than in incisors. The crowns of all teeth sampled were uniformly covered by enamel; however, the grooved incisors lacked an enamel cover on the posterior side of the buccal face. Large tubules and tuft-like structures were seen at the EDJ. HSB enamel as well as tubules and tufts at the EDJ suggest increased occlusal loads during feeding, a biomechanical adaptation to avoid enamel cracking and failure. Despite overall simplification in tooth morphology and reduced mastication, the fossil and modern pinnipeds analyzed here retained the complex undulating HSB structure of other fossils and living Carnivora, while other marine mammals such as cetaceans developed simplified radial enamel.

  5. Effects of the presence of official-looking volunteers on harassment of New Zealand fur seals.

    Science.gov (United States)

    Acevedo-Gutiérrez, Alejandro; Acevedo, Lisa; Boren, Laura

    2011-06-01

    An increased number of tourists viewing animals in the wild have increased stress on these animals (hereafter wildlife). Many wildlife-viewing locations rely on voluntary compliance with posted regulations to protect animals from tourists because of the expense of employing on-site enforcement personnel. Voluntary compliance, however, is ineffective. The presence of official-looking volunteers may decrease the incidence of wildlife harassment by tourists. To test this possibility, we observed tourists interacting with 5- to 12-month-old New Zealand fur seals (Arctocephalus forsteri) at the popular Ohau Stream waterfall while in the absence or presence of a young woman in plain sight wearing a neon vest (i.e., observer) and when an observer was not present. We observed 254 tourist groups at the waterfall when young seals were present. The percentage of groups in which at least one person harassed (approached, touched, or threw objects) a young seal was two-thirds lower when the official-looking observer was present. Frequency of harassment was inversely related to observer presence. Programs in which volunteers work at tourist sites are popular in countries with high tourism rates, such as New Zealand. Our results show that a relatively inexpensive and effective tourism-management strategy may be to post such volunteers as observers at sites where tourists view wildlife. ©2010 Society for Conservation Biology.

  6. Survival of postfledging Forster's terns in relation to mercury exposure in San Francisco Bay

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Takekawa, John Y.; Iverson, S.A.

    2008-01-01

    We examined factors influencing mercury concentrations in 90 fledgling Forster's terns (Sterna forsteri) and evaluated whether mercury influenced postfledging survival in San Francisco Bay, California. Mercury concentrations (??SE) in chicks 21-29 days old (just before fledging) were 0.33 ?? 0.01 ??g g-1 ww for blood and 6.44 ?? 0.28 ??g g -1 fw for breast feathers. Colony site had an overriding influence on fledgling contamination, however hatching date and age also affected blood, but not feather, mercury concentrations. Blood mercury concentrations decreased by 28% during the 50-day hatching period and increased with chick age by 30% during the last week prior to fledging. Using radio-telemetry, we calculated that cumulative survival during the 35-day postfledging time period was 0.81 ?? 0.09 (SE). Postfledging survival rates increased with size-adjusted mass, and cumulative survival probability was 61% lower for terns with the lowest, compared to the highest, observed masses. Conversely, survival was not influenced by blood mercury concentration, time since fledging, sex, or hatch date. Mercury concentrations in breast feathers of fledglings found dead at nesting colonies also were no different than those in live chicks. Our results indicate that colony site, hatching date, and age influenced mercury concentrations in fledgling Forster's terns, but that mercury did not influence postfledging survival. ?? 2008 Springer Science+Business Media, LLC.

  7. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria

    Directory of Open Access Journals (Sweden)

    Chiari Ylenia

    2012-07-01

    Full Text Available Abstract Background The morphological peculiarities of turtles have, for a long time, impeded their accurate placement in the phylogeny of amniotes. Molecular data used to address this major evolutionary question have so far been limited to a handful of markers and/or taxa. These studies have supported conflicting topologies, positioning turtles as either the sister group to all other reptiles, to lepidosaurs (tuatara, lizards and snakes, to archosaurs (birds and crocodiles, or to crocodilians. Genome-scale data have been shown to be useful in resolving other debated phylogenies, but no such adequate dataset is yet available for amniotes. Results In this study, we used next-generation sequencing to obtain seven new transcriptomes from the blood, liver, or jaws of four turtles, a caiman, a lizard, and a lungfish. We used a phylogenomic dataset based on 248 nuclear genes (187,026 nucleotide sites for 16 vertebrate taxa to resolve the origins of turtles. Maximum likelihood and Bayesian concatenation analyses and species tree approaches performed under the most realistic models of the nucleotide and amino acid substitution processes unambiguously support turtles as a sister group to birds and crocodiles. The use of more simplistic models of nucleotide substitution for both concatenation and species tree reconstruction methods leads to the artefactual grouping of turtles and crocodiles, most likely because of substitution saturation at third codon positions. Relaxed molecular clock methods estimate the divergence between turtles and archosaurs around 255 million years ago. The most recent common ancestor of living turtles, corresponding to the split between Pleurodira and Cryptodira, is estimated to have occurred around 157 million years ago, in the Upper Jurassic period. This is a more recent estimate than previously reported, and questions the interpretation of controversial Lower Jurassic fossils as being part of the extant turtles radiation

  8. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria)

    Science.gov (United States)

    2012-01-01

    Background The morphological peculiarities of turtles have, for a long time, impeded their accurate placement in the phylogeny of amniotes. Molecular data used to address this major evolutionary question have so far been limited to a handful of markers and/or taxa. These studies have supported conflicting topologies, positioning turtles as either the sister group to all other reptiles, to lepidosaurs (tuatara, lizards and snakes), to archosaurs (birds and crocodiles), or to crocodilians. Genome-scale data have been shown to be useful in resolving other debated phylogenies, but no such adequate dataset is yet available for amniotes. Results In this study, we used next-generation sequencing to obtain seven new transcriptomes from the blood, liver, or jaws of four turtles, a caiman, a lizard, and a lungfish. We used a phylogenomic dataset based on 248 nuclear genes (187,026 nucleotide sites) for 16 vertebrate taxa to resolve the origins of turtles. Maximum likelihood and Bayesian concatenation analyses and species tree approaches performed under the most realistic models of the nucleotide and amino acid substitution processes unambiguously support turtles as a sister group to birds and crocodiles. The use of more simplistic models of nucleotide substitution for both concatenation and species tree reconstruction methods leads to the artefactual grouping of turtles and crocodiles, most likely because of substitution saturation at third codon positions. Relaxed molecular clock methods estimate the divergence between turtles and archosaurs around 255 million years ago. The most recent common ancestor of living turtles, corresponding to the split between Pleurodira and Cryptodira, is estimated to have occurred around 157 million years ago, in the Upper Jurassic period. This is a more recent estimate than previously reported, and questions the interpretation of controversial Lower Jurassic fossils as being part of the extant turtles radiation. Conclusions These results

  9. The origin of vertebrate limbs.

    Science.gov (United States)

    Coates, M I

    1994-01-01

    The earliest tetrapod limbs are polydactylous, morphologically varied and do not conform to an archetypal pattern. These discoveries, combined with the unravelling of limb developmental morphogenetic and regulatory mechanisms, have prompted a re-examination of vertebrate limb evolution. The rich fossil record of vertebrate fins/limbs, although restricted to skeletal tissues, exceeds the morphological diversity of the extant biota, and a systematic approach to limb evolution produces an informative picture of evolutionary change. A composite framework of several phylogenetic hypotheses is presented incorporating living and fossil taxa, including the first report of an acanthodian metapterygium and a new reconstruction of the axial skeleton and caudal fin of Acanthostega gunnari. Although significant nodes in vertebrate phylogeny remain poorly resolved, clear patterns of morphogenetic evolution emerge: median fin origination and elaboration initially precedes that of paired fins; pectoral fins initially precede pelvic fin development; evolving patterns of fin distribution, skeletal tissue diversity and structural complexity become decoupled with increased taxonomic divergence. Transformational sequences apparent from the fish-tetrapod transition are reiterated among extant lungfishes, indicating further directions for comparative experimental research. The evolutionary diversification of vertebrate fin and limb patterns challenges a simple linkage between Hox gene conservation, expression and morphology. A phylogenetic framework is necessary in order to distinguish shared from derived characters in experimental model regulatory systems. Hox and related genomic evolution may include convergent patterns underlying functional and morphological diversification. Brachydanio is suggested as an example where tail-drive patterning demands may have converged with the regulation of highly differentiated limbs in tetrapods.

  10. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    Science.gov (United States)

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  11. Extreme variation in the atrial septation of caecilians (Amphibia: Gymnophiona)

    Science.gov (United States)

    de Bakker, Desiderius M; Wilkinson, Mark; Jensen, Bjarke

    2015-01-01

    Caecilians (order Gymnophiona) are elongate, limbless, snake-like amphibians that are the sister-group (closest relatives) of all other recent amphibians (frogs and salamanders). Little is known of their cardiovascular anatomy and physiology, but one nearly century old study suggests that Hypogeophis (family Indotyphlidae), commonly relied upon as a representative caecilian species, has atrial septation in the frontal plane and more than one septum. In contrast, in other vertebrates there generally is one atrial septum in the sagittal plane. We studied the adult heart of Idiocranium (also Indotyphlidae) using immunohistochemistry and confirm that the interatrial septum is close to the frontal plane. Additionally, a parallel right atrial septum divides three-fourths of the right atrial cavity of this species. Idiocranium embryos in the Hill collection reveal that atrial septation initiates in the sagittal plane as in other tetrapods. Late developmental stages, however, see a left-ward shift of visceral organs and a concordant rotation of the atria that reorients the atrial septa towards the frontal plane. The gross anatomies of species from six other caecilian families reveal that (i) the right atrial septum developed early in caecilian evolution (only absent in Rhinatrematidae) and that (ii) rotation of the atria evolved later and its degree varies between families. In most vertebrates a prominent atrial trabeculation associates with the sinuatrial valve, the so-called septum spurium, and the right atrial septum seems homologous to this trabeculation but much more developed. The right atrial septum does not appear to be a consequence of body elongation because it is absent in some caecilians and in snakes. The interatrial septum of caecilians shares multiple characters with the atrial septum of lungfishes, salamanders and the embryonic septum primum of amniotes. In conclusion, atrial septation in caecilians is based on evolutionarily conserved structures but

  12. Analyzing the evolution of beta-endorphin post-translational processing events: studies on reptiles.

    Science.gov (United States)

    Shoureshi, Pezhman; Baron, Andrea; Szynskie, Laura; Dores, Robert M

    2007-01-01

    In many cartilaginous fishes, most ray-finned fishes, lungfishes, and amphibians, the post-translational processing of POMC includes the monobasic cleavage of beta-endorphin to yield an opioid that is eight to ten amino acids in length. The amino acid motif within the beta-endorphin sequence required for a monobasic cleavage event is -E-R-(S/G)-Q-. Mammals and birds lack this motif and as a result beta-endorphin(1-8) is a not an end-product in either group. Since both mammals and birds were derived from ancestors with reptilian origins, an analysis of beta-endorphin sequences from extant groups of reptiles should provide insights into the manner in which beta-endorphin post-translational processing mechanisms have evolved in amniotes. To this end a POMC cDNA was cloned from the pituitary of the turtle, Chrysemys scripta. The beta-endorphin sequence in this species was compared to other reptile beta-endorphin sequences (i.e., Chinese soft shell turtle and gecko) and to known bird and mammal sequences. This analysis indicated that either the loss of the arginine residue at the cleavage site (the two turtle species, chick, and human) or a substitution at the glutamine position in the consensus sequence (gecko and ostrich) would account for the loss of the monobasic cleavage reaction in that species. Since amphibians are capable of performing the beta-endorphin monobasic reaction, it would appear that the amino acid substitutions that eliminated this post-translational process event in reptilian-related tetrapods must have occurred in the ancestral amniotes.

  13. OCCURRENCE OF PHYTOPHAGOUS SCARABAEIDAE (INSECTA: COLEOPTERA LARVAE IN DIFFERENT SUCCESSION CROP SYSTEMS OCORRÊNCIA DE LARVAS DE SCARABAEIDAE FITÓFAGOS (INSECTA: COLEOPTERA EM DIFERENTES SISTEMAS DE SUCESSÃO DE CULTURAS

    Directory of Open Access Journals (Sweden)

    Elison Floriano Tiago

    2011-01-01

    Full Text Available Information about Scarabaeidae phytophagous are still rare for the Center-West Region of Brazil. Thus, in the experimental area of the Universidade Estadual do Mato Grosso do Sul, in Aquidauana, Mato Grosso do Sul State, Brazil, the succession of soybean, maize, and forage turnip was sowed from February 2004 to October 2005, when the larvae population dynamics was evaluated. From October 2006 to May 2008, nine succession systems were sowed, the larval density evaluated, and the identification of the current species was carried out. When the larvae were sampled for soybean, in January 2005 and 2006, the highest densities were found in the field (3.44 larvae m-2 and 4.19 larvae m-2, respectively. The forage turnip, sampled in October 2004 and 2005, showed the lowest densities (0.03 larvae m-2 and 0.02 larvae m-2, respectively. In the crop succession systems, the following species were found: Liogenys fuscus Blanchard (highest amount, Liogenys bidenticeps Moser, Anomala testaceipennis Blanchard, Paranomala inconstans (Burmeister, Geniates borelli Camerano, Cyclocephala forsteri Endrodi, Cyclocephala verticalis Burmeister, and Phyllophaga sp. For the succession systems with maize sowed at the traditional season, the highest larval densities were found, specially favoring the development of L. fuscus, while the succession systems with soybean, maize, and under fallow, and soybean, crotalaria, and forage turnip, as well as the three systems with cotton-plant, did not favor it.

    KEY-WORDS: Zea mays; Glycine max; Raphanus sativus; soil pests; larvae density.Informações sobre Scarabaeidae fitófagos são ainda escassas para a região Centro-Oeste do Brasil. Por esta razão, na área experimental da Universidade Estadual do Mato Grosso do Sul, em Aquidauana (MS, foi semeada, de fevereiro de 2004 a outubro de 2005, a sucessão de culturas soja, milho e nabo forrageiro, onde se avaliou a dinâmica da densidade larval. De outubro de 2006 a maio

  14. Diving physiology of seabirds and marine mammals: Relevance, challenges and some solutions for field studies.

    Science.gov (United States)

    Andrews, Russel D; Enstipp, Manfred R

    2016-12-01

    To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Uptake of planar polychlorinated biphenyls and 2,3,7,8-substituted polychlorinated dibenzofurans and dibenzo-p-dioxins by birds nesting in the lower Fox River and Green Bay, Wisconsin, USA

    Science.gov (United States)

    Ankley, Gerald T.; Niemi, Gerald J.; Lodge, Keith B.; Harris, Hallett J.; Beaver, Donald L.; Tillitt, Donald E.; Schwartz, Ted R.; Giesy, John P.; Jones, Paul D.; Hagley, Cynthia

    1993-01-01

    The uptake of persistent polychlorinated hydrocarbons (PCHs) by four avian species was investigated at upper trophic levels of two aquatic food chains of the lower Fox River and Green Bay, Wisconsin. Accumulation of total and specific planar polychlorinated biphenyls (PCBs), polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxin (PCDDs), and H411E rat hepatoma cell bioassay-derived 2,37,8-tetrachlorodibenzop-dioxin equivalents (TCDD-EQ) was evaluated in Forster's tern (Sterna forsteri) and common tern (Sterna hirundo) chicks, and in tree swallow (Tachycineta bicolor) and red-winged blackbird (Agelaius phoeniceus) nestlings from colonies nesting in several locations within the watershed. Concentrations of the PCHs were greatest in eggs and chicks of the two tern species, less in the tree swallows and least in the red-winged blackbirds. Young of all four species accumulated total PCBs, PCB congeners 77, 105, 126, and 169, and TCDD-EQ. The young birds also accumulated small concentrations of several 2,3,7,8-sbustituted PCDF and PCDD congeners. Uptake rates for certain of the PCHs for the Forster's tern chicks were: 15 μg/day for total PCBs, 70, 200, 6.5, and 0.14 ng/day for PCB congeners 77, 105, 126, and 169, respectively, and 270 μg/day for TCDD-EQ. Principal components analysis revealed that the patterns of PCH concentrations in the samples were influenced by species of bird, their age (or length of exposure) and nesting location. Collectively, our findings demonstrate that exposure of avian species to contaminants derived from aquatic food chains can be characterized and quantified for the purposes of ecological risk assessment.

  16. Accuracy of egg flotation throughout incubation to determine embryo age and incubation day in waterbird nests

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Floating bird eggs to estimate their age is a widely used technique, but few studies have examined its accuracy throughout incubation. We assessed egg flotation for estimating hatch date, day of incubation, and the embryo's developmental age in eggs of the American Avocet (Recurvirostra americana), Black-necked Stilt (Himantopus mexicanus), and Forster's Tern (Sterna forsteri). Predicted hatch dates based on egg flotation during our first visit to a nest were highly correlated with actual hatch dates (r = 0.99) and accurate within 2.3 ± 1.7 (SD) days. Age estimates based on flotation were correlated with both day of incubation (r = 0.96) and the embryo's developmental age (r = 0.86) and accurate within 1.3 ± 1.6 days and 1.9 ± 1.6 days, respectively. However, the technique's accuracy varied substantially throughout incubation. Flotation overestimated the embryo's developmental age between 3 and 9 days, underestimated age between 12 and 21 days, and was most accurate between 0 and 3 days and 9 and 12 days. Age estimates based on egg flotation were generally accurate within 3 days until day 15 but later in incubation were biased progressively lower. Egg flotation was inaccurate and overestimated embryo age in abandoned nests (mean error: 7.5 ± 6.0 days). The embryo's developmental age and day of incubation were highly correlated (r = 0.94), differed by 2.1 ± 1.6 days, and resulted in similar assessments of the egg-flotation technique. Floating every egg in the clutch and refloating eggs at subsequent visits to a nest can refine age estimates.

  17. Prey fish returned to Forster's tern colonies suggest spatial and temporal differences in fish composition and availability.

    Science.gov (United States)

    Peterson, Sarah H; Ackerman, Joshua T; Eagles-Smith, Collin A; Herzog, Mark P; Hartman, C Alex

    2018-01-01

    Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster's tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster's terns are limited in the distance they forage; thus, changes in the prey species returned to Forster's tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available habitat.

  18. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions.

    Directory of Open Access Journals (Sweden)

    John Y Takekawa

    Full Text Available Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus, and chick survival of Forster's Tern (Sterna forsteri. Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction

  19. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions

    Science.gov (United States)

    Takekawa, John Y.; Ackerman, Joshua T.; Brand, Arriana; Graham, Tanya R.; Eagles-Smith, Collin A.; Herzog, Mark; Topping, Brent R.; Shellenbarger, Gregory; Kuwabara, James S.; Mruz, Eric; Piotter, Sara L.; Athearn, Nicole D.

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  20. Comparative embryotoxicity of a pentabrominated diphenyl ether mixture to common terns (Sterna hirundo) and American kestrels (Falco sparverius)

    Science.gov (United States)

    Rattner, Barnett A.; Lazarus, Rebecca S.; Heinz, Gary H.; Karouna-Reiner, Natalie K.; Schultz, Sandra L.; Hale, Robert C.

    2013-01-01

    Concentrations of polybrominated diphenyl ethers (PBDEs) in Forster’s tern (Sterna forsteri) eggs from San Francisco Bay have been reported to range up to 63 μg g−1 lipid weight. This value exceeds the lowest-observed-adverse-effect level (1.8 μg g−1 egg wet weight; ∼32 μg−1 lipid weight) reported in an embryotoxicity study with American kestrels (Falco sparverius). As a surrogate for Forster’s terns, common tern (Sterna hirundo) eggs were treated by air cell injection with corn oil vehicle (control) or a commercial penta-BDE formulation (DE-71) at nominal concentrations of 0.2, 2, and 20 μg g−1 egg. As a positive control, kestrel eggs received vehicle or 20 μg DE-71 g−1 egg. In terns, there were no effects of DE-71 on embryonic survival, and pipping or hatching success; however, treated eggs hatched later (0.44 d) than controls. Organ weights, organ-to-body weight ratios, and bone lengths did not differ, and histopathological observations were unremarkable. Several measures of hepatic oxidative stress in hatchling terns were not affected by DE-71, although there was some evidence of oxidative DNA damage (8-hydroxy-deoxyguanosine; 8-OH-dG). Although DE-71 did not impair pipping and hatching of kestrels, it did result in a delay in hatch, shorter humerus length, and reduced total thyroid weight. Concentrations of oxidized glutathione, reduced glutathione, thiobarbituric acid reactive substances, and 8-OH-dG in liver were greater in DE-71-treated kestrels compared to controls. Our findings suggest common tern embryos, and perhaps other tern species, are less sensitive to PBDEs than kestrel embryos.

  1. VORICONAZOLE TOXICITY IN MULTIPLE PENGUIN SPECIES.

    Science.gov (United States)

    Hyatt, Michael W; Georoff, Timothy A; Nollens, Hendrik H; Wells, Rebecca L; Clauss, Tonya M; Ialeggio, Donna M; Harms, Craig A; Wack, Allison N

    2015-12-01

    Aspergillosis is a common respiratory fungal disease in penguins managed under human care. Triazole antifungal drugs, including itraconazole, are most commonly used for treatment; however, itraconazole treatment failures from drug resistance are becoming more common, requiring newer treatment options. Voriconazole, a newer triazole, is being used more often. Until recently, no voriconazole pharmacokinetic studies had been performed in penguins, leading to empiric dosing based on other avian studies. This has led to increased anecdotal reporting of apparent voriconazole toxicity in penguins. This report describes 18 probable and 6 suspected cases of voriconazole toxicity in six penguin species from nine institutions: 12 African penguins (Spheniscus demersus), 5 Humboldt penguins (Spheniscus humboldti), 3 Magellanic penguins (Spheniscus magellanicus), 2 gentoo penguins (Pygoscelis papua papua), 1 macaroni penguin (Eudyptes chrysolophus), and 1 emperor penguin (Aptenodytes forsteri). Observed clinical signs of toxicity included anorexia, lethargy, weakness, ataxia, paresis, apparent vision changes, seizure-like activity, and generalized seizures. Similar signs of toxicity have also been reported in humans, in whom voriconazole therapeutic plasma concentration for Aspergillus spp. infections is 2-6 μg/ml. Plasma voriconazole concentrations were measured in 18 samples from penguins showing clinical signs suggestive of voriconazole toxicity. The concentrations ranged from 8.12 to 64.17 μg/ml, with penguins having plasma concentrations above 30 μg/ml exhibiting moderate to severe neurologic signs, including ataxia, paresis, and seizures. These concentrations were well above those known to result in central nervous system toxicity, including encephalopathy, in humans. This case series highlights the importance of species-specific dosing of voriconazole in penguins and plasma therapeutic drug monitoring. Further investigation, including pharmacokinetic studies, is

  2. Prey fish returned to Forster’s tern colonies suggest spatial and temporal differences in fish composition and availability

    Science.gov (United States)

    Peterson, Sarah; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark; Hartman, C. Alex

    2018-01-01

    Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster’s tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster’s terns are limited in the distance they forage; thus, changes in the prey species returned to Forster’s tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available

  3. Myoglobin production in emperor penguins.

    Science.gov (United States)

    Ponganis, P J; Welch, T J; Welch, L S; Stockard, T K

    2010-06-01

    Increased oxygen storage is essential to the diving capacities of marine mammals and seabirds. However, the molecular mechanisms underlying this adaptation are unknown. Myoglobin (Mb) and Mb mRNA concentrations were analyzed in emperor penguin (Aptenodytes forsteri) adults and chicks with spectrophotometric and RNase protection assays to evaluate production of their large Mb-bound O(2) stores. Mean pectoral Mb concentration and Mb mRNA content increased throughout the pre-fledging period and were 15-fold and 3-fold greater, respectively, in adults than in 3.5 month old chicks. Mean Mb concentration in 5.9 month old juveniles was 2.7+/-0.4 g 100 g(-1) muscle (44% that of wild adults), and in adults that had been captive all their lives it was 3.7+/-0.1 g 100 g(-1) muscle. The Mb and Mb mRNA data are consistent with regulation of Mb production at the level of transcription as in other animals. Significant Mb and Mb mRNA production occurred in chicks and young juveniles even without any diving activity. The further increase in adult Mb concentrations appears to require the exercise/hypoxia of diving because Mb concentration in captive, non-diving adults only reached 60% of that of wild adults. The much greater relative increase in Mb concentration than in Mb mRNA content between young chicks and adults suggests that there is not a simple 1:1 relationship between Mb mRNA content and Mb concentration. Nutritional limitation in young chicks and post-transcriptional regulation of Mb concentration may also be involved.

  4. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins.

    Science.gov (United States)

    Meir, Jessica U; Ponganis, Paul J

    2009-10-01

    The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb-O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.

  5. Poly-brominated diphenyl-ethers (PBDEs) and other persistent organic pollutants in blood of penguins from the Ross Sea (Antarctica)

    Energy Technology Data Exchange (ETDEWEB)

    Corsolini, S.; Ademollo, N.; Mariottini, M.; Focardi, S. [Universita degli Studi di Siena, Siena (Italy)

    2004-09-15

    Polychlorobiphenyls (PCBs), hexachlorobenzene (HCB), polybrominated diphenyl ethers (PBDEs) and dichlorodiphenyl-dichloro ethane (pp'-DDE) including its isomers and metabolites are known as POPs very well. POPs are particularly hazardous to wildlife not only because they are toxic but because they are persistent and distributed on global scale. Polybrominated diphenyl ethers (PBDEs) are a class of POPs used worldwide as flame retardants with an increasing trend in the market demand (67.4 ktons in 2001), but with some restrictions in their usage in Europe. PBDEs are hydrophobic, highly soluble in lipids, resistant to biodegradation and have similar behavior to polychlorinated biphenyls (PCBs) in aquatic and terrestrial ecosystems. Their bioaccumulation and biomagnification properties, as well their global increasing presence, have already been reported by many authors. PBDEs have been detected in remote Arctic regions10 that seem to be their final sink. PBDEs show acute toxicity and a prolonged exposure can affect the function of thyroid and cause neurodevelopmental disorders and estrogenic and hepatic effects. Furthermore, a synergic effect with dioxin-like compounds or other POPs cannot be excluded. The two aims of this study are: (1) to evaluate accumulation levels and patterns of PCBs, PBDEs and chlorinated pesticides in blood samples of the Adelie penguin, Pygoscelis adeliae, the Emperor penguin, Aptenodytes forsteri and the South Polar skua, Cataracta maccormicki from three sites in the Ross Sea (Antarctica); (2) to assess the suitability of blood for the detection of POP residues in supposedly low contaminated organisms that live in protected/ecologically sensitive areas.

  6. Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions.

    Science.gov (United States)

    Takekawa, John Y; Ackerman, Joshua T; Brand, L Arriana; Graham, Tanya R; Eagles-Smith, Collin A; Herzog, Mark P; Topping, Brent R; Shellenbarger, Gregory G; Kuwabara, James S; Mruz, Eric; Piotter, Sara L; Athearn, Nicole D

    2015-01-01

    Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality

  7. Accuracy of egg flotation throughout incubation to determine embryo age and incubation day in water bird nests

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Floating bird eggs to estimate their age is a widely used technique, but few studies have examined its accuracy throughout incubation. We assessed egg flotation for estimating hatch date, day of incubation, and the embryo's developmental age in eggs of the American Avocet (Recurvirostra americana), Black-necked Stilt (Himantopus mexicanus), and Forster's Tern (Sterna forsteri). Predicted hatch dates based on egg flotation during our first visit to a nest were highly correlated with actual hatch dates (r = 0.99) and accurate within 2.3 ?? 1.7 (SD) days. Age estimates based on flotation were correlated with both day of incubation (r = 0.96) and the embryo's developmental age (r = 0.86) and accurate within 1.3 ?? 1.6 days and 1.9 ?? 1.6 days, respectively. However, the technique's accuracy varied substantially throughout incubation. Flotation overestimated the embryo's developmental age between 3 and 9 days, underestimated age between 12 and 21 days, and was most accurate between 0 and 3 days and 9 and 12 days. Age estimates based on egg flotation were generally accurate within 3 days until day 15 but later in incubation were biased progressively lower. Egg flotation was inaccurate and overestimated embryo age in abandoned nests (mean error: 7.5 ?? 6.0 days). The embryo's developmental age and day of incubation were highly correlated (r = 0.94), differed by 2.1 ?? 1.6 days, and resulted in similar assessments of the egg-flotation technique. Floating every egg in the clutch and refloating eggs at subsequent visits to a nest can refine age estimates. ?? The Cooper Ornithological Society 2010.

  8. Phase transitions in huddling emperor penguins

    Science.gov (United States)

    Richter, S.; Gerum, R.; Winterl, A.; Houstin, A.; Seifert, M.; Peschel, J.; Fabry, B.; Le Bohec, C.; Zitterbart, D. P.

    2018-05-01

    Emperor penguins (Aptenodytes forsteri) are highly adapted to the harsh conditions of the Antarctic winter: they are able to fast for up to 134 days during breeding. To conserve energy, emperor penguins form tight groups (huddles), which is key for their reproductive success. The effect of different meteorological factors on the huddling behaviour, however, is not well understood. Using time-lapse image recordings of an emperor penguin colony, we show that huddling can be described as a phase transition from a fluid to a solid state. We use the colony density as order parameter, and an apparent temperature that is perceived by the penguins as the thermodynamic variable. We approximate the apparent temperature as a linear combination of four meteorological parameters: ambient temperature, wind speed, global radiation and relative humidity. We find a wind chill factor of  ‑2.9 , a humidity chill factor of  ‑0.5 rel. humidity, and a solar radiation heating factor of 0.3 . In the absence of wind, humidity and solar radiation, the phase transition temperature (50% huddling probability) is  ‑48.2 °C for the investigated time period (May 2014). We propose that higher phase transition temperatures indicate a shrinking thermal insulation and thus can serve as a proxy for lower energy reserves of the colony, integrating pre-breeding foraging success at sea and energy expenditure at land due to environmental conditions. As current global change is predicted to have strong detrimental effects on emperor penguins within the next decades, our approach may thus contribute towards an urgently needed long-term monitoring system for assessing colony health.

  9. Fish diets in a freshwater-deprived semiarid estuary (The Coorong, Australia) as inferred by stable isotope analysis

    Science.gov (United States)

    Lamontagne, S.; Deegan, B. M.; Aldridge, K. T.; Brookes, J. D.; Geddes, M. C.

    2016-09-01

    In 2007, high rates of water extraction combined with a regional drought stopped freshwater discharge to the Coorong, a ∼120 km estuarine and coastal lagoon system at the outlet of the River Murray (Australia). The sources of organic matter sustaining the Coorong food web in the absence of river-borne organic matter and nutrient inputs were evaluated by measuring δ13C, δ15N and δ34S in large-bodied fish and their prey. In general, the δ34S of the food web (mean = 11.3‰; range = 4.32-18.9‰) suggested a comparable contribution from autochthonous pelagic (∼21‰) and benthic (<5‰) primary production. A relatively high δ13C in all organisms (-20 to -9.2‰) was also consistent with a dominant contribution from autochtonous sources to the food web. A Bayesian mixing model framework (SIMMR) was used to estimate the diet of large-bodied fish for statistically-determined prey groups based on their similarity in isotopic composition. Argyrosomus japonicus preyed primarily on Fish Group 1 (small pelagic fish like galaxiids and Hyperlophus vittatus), Rhombosolea tapirina on Invertebrate Group 2 (polychaetes like Capitella spp.) but Acanthopagrus butcheri fed on a wide variety of fish and invertebrate groups. A partial switch in diet to other prey groups suggested larger Ar. japonicus fed on larger prey, such as crabs and adult Aldrichetta forsteri. Despite being numerically abundant at the time, Fish Group 2 (benthic species) was a relatively low proportion of large-bodied fish diets. This probably reflected the tendency of some salt-tolerant members of this group (such as Atherinosoma microstoma) to prefer hypersaline habitats, which the large-bodied fish avoided. As the heavily preyed-on Fish Group 1 included species with a marine component to their life-cycle, marine productivity may also help to maintain this estuarine ecosystem in the absence of river-borne organic matter inputs.

  10. Maternal transfer of contaminants in birds: Mercury and selenium concentrations in parents and their eggs

    International Nuclear Information System (INIS)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.; Hartman, C. Alex

    2016-01-01

    We conducted a detailed assessment of the maternal transfer of mercury and selenium to eggs in three bird species (n = 107 parents and n = 339 eggs), and developed predictive equations linking contaminant concentrations in eggs to those in six tissues of the mother (blood, muscle, liver, kidney, breast feathers, and head feathers). Mercury concentrations in eggs were positively correlated with mercury concentrations in each of the mother's internal tissues (R"2 ≥ 0.95), but generally not with feathers. For each species, the proportion of mercury transferred to eggs decreased as mercury concentrations in the mother increased. At the same maternal mercury concentration, the proportion of mercury transferred to eggs differed among species, such that Forster's tern (Sterna forsteri) and black-necked stilt (Himantopus mexicanus) females transferred more methylmercury to their eggs than American avocet (Recurvirostra americana) females. Selenium concentrations in eggs also were correlated with selenium concentrations in the mother's liver (R"2 = 0.87). Furthermore, mercury and selenium concentrations in tern eggs were positively correlated with those in the father (R"2 = 0.84). Incubating male terns had 21% higher mercury concentrations in blood compared to incubating females at the same egg mercury concentration. We provide equations to predict contaminant concentrations in eggs from each of the commonly sampled bird tissues. - Highlights: • We developed predictive equations linking contaminant concentrations in eggs to those in the mother. • Mercury concentrations in eggs were positively correlated with those in the mother. • The proportion of mercury transferred to eggs decreased as mercury in the mother increased. • The proportion of mercury transferred to eggs differed among species. • Selenium concentrations in eggs also were correlated with those in the mother's liver. - We examined the maternal transfer of mercury and selenium to eggs in

  11. Multiple thyrotropin β-subunit and thyrotropin receptor-related genes arose during vertebrate evolution.

    Directory of Open Access Journals (Sweden)

    Gersende Maugars

    Full Text Available Thyroid-stimulating hormone (TSH is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.

  12. Development and evolution of the vertebrate primary mouth

    Science.gov (United States)

    Soukup, Vladimír; Horácek, Ivan; Cerny, Robert

    2013-01-01

    The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary–developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during

  13. Evolutionary processes involved in the diversification of chelonian and mammal polystomatid parasites (Platyhelminthes, Monogenea, Polystomatidae) revealed by palaeoecology of their hosts.

    Science.gov (United States)

    Héritier, Laurent; Badets, Mathieu; Du Preez, Louis H; Aisien, Martins S O; Lixian, Fan; Combes, Claude; Verneau, Olivier

    2015-11-01

    Polystomatid flatworms (Platyhelminthes) are monogenean parasites that infect exclusively aquatic or semi-aquatic sarcopterygians such as the Australian lungfish, amphibians, freshwater turtles and the African common hippopotamus. Previous studies on the phylogenetic relationships of these parasites, excluding Oculotrema hippopotami infecting common hippos, showed a global coevolution between hosts and their parasites at a macroevolutionary scale. These studies also demonstrated a strong correlation between the diversification of early neobatrachian polystomes and Gondwana breakup in the Mesozoic period. However the origin of chelonian polystomes is still in question as a switch from presumably primitive aquatic amniotes to turtles at the time of their first appearance, or soon after during their radiation, was assumed. In order to resolve this sticking point, we extended the phylogeny of polystomes with broader parasite sampling, i.e. 55 polystome species including Nanopolystoma tinsleyi a polystome infecting caecilians and O. hippopotami, and larger set of sequence data covering two nuclear and two mitochondrial genes coding for the ribosomal RNA 18S and 28S, the Cytochrome c Oxidase I and the ribosomal RNA 12S, respectively. The secondary structure of nuclear rRNAs genes (stems and loops) was taken into account for sequence alignments and Bayesian analyses were performed based on the appropriate models of evolution selected independently for the four designed partitions. Molecular calibrations were also conducted for dating the main speciation events in the polystome tree. The phylogenetic position of chelonian parasites that are phylogenetically closer to N. tinsleyi than all other amphibian polystomes and molecular time estimates suggest that these parasites originated following a switch from caecilians, at a geological period when primitive turtles may already have adapted to an aquatic life style, i.e. at about 178Million years ago, or a little later when

  14. How insights from cardiovascular developmental biology have impacted the care of infants and children with congenital heart disease

    Science.gov (United States)

    Chin, Alvin J.; Saint-Jeannet, Jean-Pierre; Lo, Cecilia W.

    2012-01-01

    To illustrate the impact developmental biology and genetics have already had on the clinical management of the million infants born worldwide each year with CHD, we have chosen three stories which have had particular relevance for pediatric cardiologists, cardiothoracic surgeons, cardiac anesthesiologists, and cardiac nurses. First, we show how Margaret Kirby’s finding of the unexpected contribution of an ectodermal cell population – the cranial neural crest – to the aortic arch arteries and arterial pole of the embryonic avian heart provided a key impetus to the field of cardiovascular patterning. Recognition that a majority of patients affected by the neurocristopathy DiGeorge syndrome have a chromosome 22q11 deletion, have also spurred tremendous efforts to characterize the molecular mechanisms contributing to this pathology, assigning a major role to the transcription factor Tbx1. Second, synthesizing the work of the last two decades by many laboratories on a wide gamut of metazoans (invertebrates, tunicates, agnathans, teleosts, lungfish, amphibians, and amniotes), we review the >20 major modifications and additions to the ancient circulatory arrangement composed solely of a unicameral (one-chambered), contractile myocardial tube and a short proximal aorta. Two changes will be discussed in detail – the interposition of a second cardiac chamber in the circulation and the septation of the cardiac ventricle. By comparing the developmental genetic data of several model organisms, we can better understand the origin of the various components of the multicameral (multi-chambered) heart seen in humans. Third, Martina Brueckner’s discovery that a faulty axonemal dynein was responsible for the phenotype of the iv/iv mouse (the first mammalian model of human heterotaxy) focused attention on the biology of cilia. We discuss how even the care of the complex cardiac and non-cardiac anomalies seen in heterotaxy syndrome, which have long seemed impervious to

  15. Comparative morphology, histology and growth of the dental plates of the Devonian dipnoan Chirodipterus.

    Science.gov (United States)

    Smith, M M; Campbell, K S

    1987-10-14

    The dental plates of the Devonian lungfish Chirodipterus australis Miles (Osteichthyes; Dipnoi) are shown to have achieved their characteristic morphology by a growth process different from that assumed for the plates of genera such as Dipterus. Each plate was thickened by the addition of layers of bone that also extended the plate labially, thus providing the base on which and into which dentine grew. Distinctive features of the dentition are: (a) labial increase of the dentine mass by the addition of blister-like denticles of simple enamel-covered dentine, which is initially ingrown by pleromic dentine and subsequently resorbed and replaced by petrodentine; (b) increase in the midline by a similar process that results in the addition of one (or possibly two) new ridges; (c) resorption of the posterior edge of the pterygoid plates and the posterior and posteromedial edges of the prearticular plates, with subsequent development over the resorbed surfaces of several generations of simple regenerative dentine; (d) resorption and redeposition of pleromic dentine and bone in a triangular region posteromedially on the pterygoid plates; (e) the formation of tuberosities that simulate teeth at a short distance in from the labial edge, by four processes: formation of an undulating plate margin, differential growth of petrodentine (hard compact dentine) within the pulp cavity, differential wear of the petrodentine and the adjacent bone plus pleromic dentine, and slightly greater growth of the petrodentine towards the occlusal surface relative to the adjacent bone and dentine; (f) expansion of the large flat surfaces of the plates by gradual replacement of the bone and dentine at the proximal ends of the furrows and also by the development of linkages of petrodentine across the furrows; (g) development of isolated tuberosities on the flat posterolateral parts of the plates. The petrodentine of the ridges, tuberosities and plateaus of the plates is indistinguishable

  16. Collision and displacement vulnerability among marine birds of the California Current System associated with offshore wind energy infrastructure

    Science.gov (United States)

    Adams, Josh; Kelsey, Emily C.; Felis, Jonathan J.; Pereksta, David M.

    2016-10-27

    With growing climate change concerns and energy constraints, there is an increasing need for renewable energy sources within the United States and globally. Looking forward, offshore wind-energy infrastructure (OWEI) has the potential to produce a significant proportion of the power needed to reach our Nation’s renewable energy goal. Offshore wind-energy sites can capitalize open areas within Federal waters that have persistent, high winds with large energy production potential. Although there are few locations in the California Current System (CCS) where it would be acceptable to build pile-mounted wind turbines in waters less than 50 m deep, the development of technology able to support deep-water OWEI (>200 m depth) could enable wind-energy production in the CCS. As with all human-use of the marine environment, understanding the potential impacts of wind-energy infrastructure on the marine ecosystem is an integral part of offshore wind-energy research and planning. Herein, we present a comprehensive database to quantify marine bird vulnerability to potential OWEI in the CCS (see https://doi.org/10.5066/F79C6VJ0). These data were used to quantify marine bird vulnerabilities at the population level. For 81 marine bird species present in the CCS, we created three vulnerability indices: Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability. Population Vulnerability was used as a scaling factor to generate two comprehensive indicies: Population Collision Vulnerability (PCV) and Population Displacement Vulnerability (PDV). Within the CCS, pelicans, terns (Forster’s [Sterna forsteri], Caspian [Hydroprogne caspia], Elegant [Thalasseus elegans], and Least Tern [Sternula antillarum]), gulls (Western [Larus occidentalis] and Bonaparte’s Gull [Chroicocephalus philadelphia]), South Polar Skua (Stercorarius maccormicki), and Brandt’s Cormorant (Phalacrocorax penicillatus) had the greatest PCV scores. Brown Pelican (Pelicanus occidentalis

  17. It's what's inside that counts: egg contaminant concentrations are influenced by estimates of egg density, egg volume, and fresh egg mass.

    Science.gov (United States)

    Herzog, Mark P; Ackerman, Joshua T; Eagles-Smith, Collin A; Hartman, C Alex

    2016-05-01

    In egg contaminant studies, it is necessary to calculate egg contaminant concentrations on a fresh wet weight basis and this requires accurate estimates of egg density and egg volume. We show that the inclusion or exclusion of the eggshell can influence egg contaminant concentrations, and we provide estimates of egg density (both with and without the eggshell) and egg-shape coefficients (used to estimate egg volume from egg morphometrics) for American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster's tern (Sterna forsteri). Egg densities (g/cm(3)) estimated for whole eggs (1.056 ± 0.003) were higher than egg densities estimated for egg contents (1.024 ± 0.001), and were 1.059 ± 0.001 and 1.025 ± 0.001 for avocets, 1.056 ± 0.001 and 1.023 ± 0.001 for stilts, and 1.053 ± 0.002 and 1.025 ± 0.002 for terns. The egg-shape coefficients for egg volume (K v ) and egg mass (K w ) also differed depending on whether the eggshell was included (K v  = 0.491 ± 0.001; K w  = 0.518 ± 0.001) or excluded (K v  = 0.493 ± 0.001; K w  = 0.505 ± 0.001), and varied among species. Although egg contaminant concentrations are rarely meant to include the eggshell, we show that the typical inclusion of the eggshell in egg density and egg volume estimates results in egg contaminant concentrations being underestimated by 6-13 %. Our results demonstrate that the inclusion of the eggshell significantly influences estimates of egg density, egg volume, and fresh egg mass, which leads to egg contaminant concentrations that are biased low. We suggest that egg contaminant concentrations be calculated on a fresh wet weight basis using only internal egg-content densities, volumes, and masses appropriate for the species. For the three waterbirds in our study, these corrected coefficients are 1.024 ± 0.001 for egg density, 0.493 ± 0.001 for K v , and 0.505 ± 0.001 for K w .

  18. Chlorinated biphenyls and pesticides in migrating and resident seabirds from East and West Antarctica.

    Science.gov (United States)

    Corsolini, Simonetta; Borghesi, Nicoletta; Ademollo, Nicoletta; Focardi, Silvano

    2011-11-01

    The unhatched eggs of the following seabirds were analyzed to quantify PCBs, hexachlorobenzene (HCB), α-, β-, γ-, δ-hexachlorocyclohexanes (HCHs), o,p' and p,p' isomers of DDT, DDD and DDE: resident Adèlie (Pygoscelis adèliae, ADPE) and Emperor (Aptenodytes forsteri, EMPE) penguins, migrating snow petrel (Pagodroma nivea, SNPT) and South Polar skua (Catharacta maccormicki, SPSK) from the Ross Sea (East Antarctica); and migrating Brown skua (Catharacta antartica, BRSK) and resident ADPE from the Brainsfield Strait (West Antarctica). The general aims were to evaluate the contaminant accumulation in eggs of migrating and resident species in the two study areas, and to compare levels in penguins and skuas nesting in East and West Antarctica. PCB congener and HCH and DDT isomer profiles were also assessed. Comparisons were evaluated using seven PCB congeners (IUPAC nos. 28, 52, 101, 118+149, 138, 153, and 180), p,p'-DDE, ΣDDTs, and ΣHCHs. Higher contaminant concentrations were detected in migrating seabirds (South polar skua and brown skua)>sub-Antarctic species (snow petrel)>Antarctic species (penguins) from both the sampling sites, suggesting contamination events at lower latitudes for those birds migrating northward. HCHs showed the lowest concentrations in all species (from 0.03±0.03 ng/g wet wt in SPSK to 1.81±1.23 ng/g wet wt in ADPE from West Antarctica), and PCBs were the most abundant contaminants (from 4.34±2.15 ng/g wet wt. in EMPE to 53.41±19.61 ng/g wet wt. in brown skua). Among pesticides, it is relevant the detection of p,p'-DDT in Adèlie penguin from West Antarctica and in both species of skua; the detection of this pesticide can confirm its actual use in certain malaria-endemic countries from where it is transferred through the long range transport to the polar regions. Contaminants did not show any significant temporal trend during a ten year time span, from 1994/95 to 2004/05, in organisms collected in East Antarctica and they did not

  19. [Morphologic-functional study of the locomotor system of penguins as a general model of movement in under-water flight. I].

    Science.gov (United States)

    Bannasch, R

    1986-01-01

    Regarding several theories of the evolution of the Sphenisciformes the specific morpho-physiological alterations for the changeover from aerial to underwater life are discussed. The peculiarities in the Penguin's "construction" become comprehensible as strong adjustments to the subaquatic locomotion. Surely they took their origin from the equipment of flying birds. The present data of the kinematics of the underwater locomotion show, that propulsion is produced in the same principal way by the flapping wings as in aerial flight. Therefore the short term "underwater flight" for the Penguin's style of locomotion is justified. Known data of swimming performance suggest that its essential adaptation is not that to top achievements but more to an economical use of energy budget. The favourable hydrodynamic characteristics of the Penguin body may be well interpreted from this point of view. The peculiarity of underwater flight is the absence of the necessity to produce a weight-compensating force. In order to create thrust forces in an appropriate magnitude during up- and downstroke of the beating cycle the upstroke must be powered. The anatomical architecture and the mode of operation of the parts of the muscle system must be adjusted to this demand. Based on these statements, the anatomy of active and passive apparatus of movement was studied by dissection of 26 individuals of Pygoscelis papua, P. antarctica, P. adeliae, Eudyptes chrysolophus, and Aptenodytes forsteri. Besides the functional explanation of the Articulatio sternocoracoidea (diverging considerably from the usual type in birds), a new interpretation is given for the structures of the Articulatio humeri. In this context, the role of the Ligamentum acrocoracohumerale as an important element for coordination of the motion processes in the shoulder joint is elucidated. The essential curvature of the Caput humeri is found to be satisfactorily approximated by a logarithmic spiral. The understanding of the

  20. Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to waterbirds

    Science.gov (United States)

    Erwin, R. Michael; Cahoon, Donald R.; Prosser, Diann J.; Sanders, Geoffrey; Hensel, Philippe

    2006-01-01

    -dependent seaside sparrows Ammodramus maritimus, saltmarsh sharp-tailed sparrows A. caudacutus, black rails Laterallus jamaicensis, clapper rails Rallus longirostris, Forster's terns Sterna forsteri, common terns Sterna hirundo, and gull-billed terns Sterna nilotica. Although short-term inundation of many lagoonal marshes may benefit some open-water feeding ducks, geese, and swans during winter, the long-term ecosystem effects may be detrimental, as wildlife resources will be lost or displaced. With the reduction in area of emergent marsh, estuarine secondary productivity and biotic diversity will also be reduced.

  1. A micropalaeontological and palynological insight into Early Carboniferous floodplain environments

    Science.gov (United States)

    Bennett, Carys; Kearsey, Timothy; Davies, Sarah; Millward, David; Marshall, John; Reeves, Emma

    2016-04-01

    -marine bivalves, chondrichthyan teeth and denticles. Conglomerates have a microfauna of fragments of lungfish, rhizodonts and chondrichthyans, with rarer ostracods and an absence of megaspores or arthropod cuticle. The dominance in abundance of the most common fishes (actinopterygians and rhizodonts) varies between successive beds. Rhizodonts occur in a range of environments, while acinopterygians are most common in facies representing short-lived shallow lakes or ponds. Chondrichthyans are most abundant within conglomerate lags and this may represent either a habitat preference for rivers or potential anadromous behaviour. Palynological analysis of sediments from Burnmouth, and a correlative borehole section, reveals common miospores and megaspores. A preliminary analysis of data from over 100 samples throughout the formation indicates significant fluctuation in the relative abundance of dry and humid-tolerant species. It would appear that there were successive times when a largely lycopod scrub and/or arborescent vegetation dominated the system. Between these episodes the vegetation degenerated to dry-tolerant species. The upper part of the formation is dominated by humid-tolerant species. The sandy siltstones contain a higher proportion of humid tolerant species compared to the other two tetrapod-bearing sediments. This, in combination with the common occurrence of palaeosols, desiccation cracks and evaporites, indicates that a seasonally wet to dry climate with monsoonal rains was operating. Our results open a window into the redevelopment of the earliest freshwater ecosystems and are helping us to elucidate the character of these new habitats and ecosystems.

  2. Fundamental structural aspects and features in the bioengineering of the gas exchangers: comparative perspectives.

    Science.gov (United States)

    Maina, J N

    2002-01-01

    the ubiquitous method of transfer of O2 across biological tissues. Gills, evaginated gas exchangers, were the primordial respiratory organs that evolved for water breathing, whereas lungs (invaginated gas exchangers) developed for terrestrial (air) breathing. Transitional (= bimodal = amphibious) breathing has evolved in animals with specialized organs that extract O2 from both water and air. Lungs are tidally (= bidirectionally) ventilated, while gills are unidirectionally ventilated, a feature that allows the highly efficient counter-current disposition between blood and water. Since animals occupy inconstant environmental milieus and their metabolic states vary, gas exchangers are designed to operate optimally across a spectrum of conditions that range from resting to exercise and even under hypoxia. Inbuilt structural and functional flexibility provides the requisite safety factors that allow adjustments to modest pressures. The fundamental structural features that determine the respiratory function of a gas exchanger are respiratory surface area, thickness of the blood-water/gas (tissue) barrier and volume of the pulmonary capillary blood. The diffusing capacity of a gas exchanger correlates directly with the surface area and inversely with the thickness of the blood-water/gas (tissue) barrier. An extensive surface area is generated in gills by extensive stratification of the gas exchanger and in lungs by profuse internal subdivision. Compartmentalization yields small terminal gas exchange compartments that compel greater commitment of energy to ventilate. The surfactant, a phospholipid lining, reduces the forces of surface tension at the air-water interface. This attenuates the propensity of physical collapse of the minute gas exchange units and minimizes the cost of ventilation. The surfactant characterizes all the gas exchangers derived from the piscine air bladder. In the lower air-breathing vertebrates, such as the lungfishes (Dipnoi), amphibians and certain

  3. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.

    Science.gov (United States)

    Ponganis, P J; St Leger, J; Scadeng, M

    2015-03-01

    The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are

  4. Waterbird nest monitoring program in San Francisco Bay (2005-10)

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.

    2012-01-01

    Historically, Forster’s Terns (Sterna forsteri), American Avocets (Recurvirostra americana), and Black-necked Stilts (Himantopus mexicanus) were uncommon residents of San Francisco Bay, California (Grinnell and others, 1918; Grinnell and Wythe, 1927; Sibley, 1952). Presently, however, avocets and stilts are the two most abundant breeding shorebirds in San Francisco Bay (Stenzel and others, 2002; Rintoul and others, 2003). More than 4,000 avocets and 1,000 stilts, roughly 20 percent of their San Francisco Bay wintering populations, breed within the estuary, making San Francisco Bay the largest breeding area for these species on the Pacific Coast (Stenzel and others, 2002; Rintoul and others, 2003). Forster’s Terns were first observed breeding in the San Francisco Bay in 1948 (110 nests); they had increased to over 4000 individuals by the 1980s (Sibley, 1952; Gill, 1977; Harvey and others, 1992; Carter and others, 1990) and were estimated at 2000–3000 for 1998–2002; (Strong and others, 2004).It is hypothesized that the relatively large size of the current waterbird breeding populations is a result of the creation of artificial salt evaporation ponds from the 1930s through the 1950s (Gill, 1977; Goals Project, 1999). Until recently, these salt ponds and associated islands used by waterbirds for nesting have been managed relatively similarly and have supported large breeding waterbird populations. Recently, the South Bay Salt Pond Restoration Project has implemented plans to convert 50–90 percent of the 15,000 acres of salt ponds in the South San Francisco Bay back to tidal marsh habitat. Therefore, there is concern that the Restoration Project, while benefiting other native species, could negatively influence local breeding populations of waterbirds that are reliant on salt pond habitats for both breeding and foraging. A primary goal of the South Bay Salt Pond Restoration Project is to maintain current breeding waterbird populations (South Bay Salt Pond Long

  5. Evaluation of Caspian tern (Hydroprogne caspia) and snowy plover (Charadrius alexandrinus nivosus) nesting on modified islands at the Don Edwards San Francisco Bay National Wildlife Refuge, California—2016 Annual Report

    Science.gov (United States)

    Hartman, C. Alex; Ackerman, Joshua T.; Herzog, Mark P.; Strong, Cheryl; Trachtenbarg, David; Shore, Crystal A.

    2017-05-08

    attraction measures were successful in establishing Caspian tern breeding colonies at Ponds A16 and SF2 of DENWR. The success of 2015 continued in 2016, the second year of the study. In 2016, Caspian terns nested on two of the five islands modified for Caspian terns (one island in Pond A16 and one island in Pond SF2). Caspian terns initiated at least 317 nests, fledged at least 158 chicks, and had a breeding success rate of 0.50 fledged chicks per breeding pair. This represents a 42 percent increase in nests initiated, a 9 percent decrease in the number of fledged chicks, and a 36 percent decrease in the number of chicks fledged per breeding pair in 2016 compared to 2015. Although overall productivity decreased from 2015, these results indicate that the Caspian tern breeding population on modified islands of the DENWR is increasing relative to 2015, the first year of the effort, and relative to years prior to 2015 when no breeding colonies of Caspian terns existed in Ponds A16 or SF2. These results indicate the effectiveness of social attraction measures in helping to establish tern nesting colonies in San Francisco Bay. Conversely, for the second year in a row, snowy plovers did not attempt to nest on any island in Ponds A16 and SF2. Social attraction measures similar to those used in this study, but targeting other colonial species such as Forster’s terns (Sterna forsteri) and American avocets (Recurvirostra americana), may help to establish waterbird breeding colonies at wetlands enhanced as part of the SBSP Restoration Project.