WorldWideScience

Sample records for lung tumor segmentation

  1. Lung tumor segmentation in PET images using graph cuts.

    Science.gov (United States)

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Automatic segmentation of tumor-laden lung volumes from the LIDC database

    Science.gov (United States)

    O'Dell, Walter G.

    2012-03-01

    The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.

  3. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    Science.gov (United States)

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  4. Automatic Lung Tumor Segmentation on PET/CT Images Using Fuzzy Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Yu Guo

    2014-01-01

    Full Text Available The combination of positron emission tomography (PET and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice’s similarity coefficient (DSC was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  5. Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing

    Science.gov (United States)

    Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2010-03-01

    We propose an automated lung tumor segmentation method for whole body PET images based on a novel downhill region growing (DRG) technique, which regards homogeneous tumor hotspots as 3D monotonically decreasing functions. The method has three major steps: thoracic slice extraction with K-means clustering of the slice features; hotspot segmentation with DRG; and decision tree analysis based hotspot classification. To overcome the common problem of leakage into adjacent hotspots in automated lung tumor segmentation, DRG employs the tumors' SUV monotonicity features. DRG also uses gradient magnitude of tumors' SUV to improve tumor boundary definition. We used 14 PET volumes from patients with primary NSCLC for validation. The thoracic region extraction step achieved good and consistent results for all patients despite marked differences in size and shape of the lungs and the presence of large tumors. The DRG technique was able to avoid the problem of leakage into adjacent hotspots and produced a volumetric overlap fraction of 0.61 +/- 0.13 which outperformed four other methods where the overlap fraction varied from 0.40 +/- 0.24 to 0.59 +/- 0.14. Of the 18 tumors in 14 NSCLC studies, 15 lesions were classified correctly, 2 were false negative and 15 were false positive.

  6. Lung Tumor Segmentation Using Electric Flow Lines for Graph Cuts

    DEFF Research Database (Denmark)

    Hollensen, Christian; Cannon, George; Cannon, Donald

    2012-01-01

    are normally only used for correction of movements. The method uses graphs based on electric flow lines. The method offers several advantages when trying to replicate manual segmentations. The method gave a dice coefficient of 0.85 and performed better than level set methods and deformable registration....

  7. A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.

    Science.gov (United States)

    Zheng, Chaojie; Wang, Xiuying; Feng, Dagan

    2015-01-01

    PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.

  8. Automated segmentation of murine lung tumors in x-ray micro-CT images

    Science.gov (United States)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  9. Multi-phase simultaneous segmentation of tumor in lung 4D-CT data with context information.

    Directory of Open Access Journals (Sweden)

    Zhengwen Shen

    Full Text Available Lung 4D computed tomography (4D-CT plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.

  10. A Method to Automate the Segmentation of the GTV and ITV for Lung Tumors

    International Nuclear Information System (INIS)

    Ehler, Eric D.; Bzdusek, Karl; Tome, Wolfgang A.

    2009-01-01

    Four-dimensional computed tomography (4D-CT) is a useful tool in the treatment of tumors that undergo significant motion. To fully utilize 4D-CT motion information in the treatment of mobile tumors such as lung cancer, autosegmentation methods will need to be developed. Using autosegmentation tools in the Pinnacle 3 v8.1t treatment planning system, 6 anonymized 4D-CT data sets were contoured. Two test indices were developed that can be used to evaluate which autosegmentation tools to apply to a given gross tumor volume (GTV) region of interest (ROI). The 4D-CT data sets had various phase binning error levels ranging from 3% to 29%. The appropriate autosegmentation method (rigid translational image registration and deformable surface mesh) was determined to properly delineate the GTV in all of the 4D-CT phases for the 4D-CT data sets with binning errors of up to 15%. The ITV was defined by 2 methods: a mask of the GTV in all 4D-CT phases and the maximum intensity projection. The differences in centroid position and volume were compared with manual segmentation studies in literature. The indices developed in this study, along with the autosegmentation tools in the treatment planning system, were able to automatically segment the GTV in the four 4D-CTs with phase binning errors of up to 15%.

  11. A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists' delineations and with the surgical specimen.

    Science.gov (United States)

    Rios Velazquez, Emmanuel; Aerts, Hugo J W L; Gu, Yuhua; Goldgof, Dmitry B; De Ruysscher, Dirk; Dekker, Andre; Korn, René; Gillies, Robert J; Lambin, Philippe

    2012-11-01

    To assess the clinical relevance of a semiautomatic CT-based ensemble segmentation method, by comparing it to pathology and to CT/PET manual delineations by five independent radiation oncologists in non-small cell lung cancer (NSCLC). For 20 NSCLC patients (stages Ib-IIIb) the primary tumor was delineated manually on CT/PET scans by five independent radiation oncologists and segmented using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and semiautomatic-segmented volumes were compared. All measurements were correlated with the maximal diameter on macroscopic examination of the surgical specimen. Imaging data are available on www.cancerdata.org. High overlap fractions were observed between the semi-automatically segmented volumes and the intersection (92.5±9.0, mean±SD) and union (94.2±6.8) of the manual delineations. No statistically significant differences in tumor volume were observed between the semiautomatic segmentation (71.4±83.2 cm(3), mean±SD) and manual delineations (81.9±94.1 cm(3); p=0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated strongly with the macroscopic diameter of the primary tumor (r=0.96). Semiautomatic segmentation of the primary tumor on CT demonstrated high agreement with CT/PET manual delineations and strongly correlated with the macroscopic diameter considered as the "gold standard". This method may be used routinely in clinical practice and could be employed as a starting point for treatment planning, target definition in multi-center clinical trials or for high throughput data mining research. This method is particularly suitable for peripherally located tumors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models.

    Science.gov (United States)

    Awad, Joseph; Owrangi, Amir; Villemaire, Lauren; O'Riordan, Elaine; Parraga, Grace; Fenster, Aaron

    2012-02-01

    Manual segmentation of lung tumors is observer dependent and time-consuming but an important component of radiology and radiation oncology workflow. The objective of this study was to generate an automated lung tumor measurement tool for segmentation of pulmonary metastatic tumors from x-ray computed tomography (CT) images to improve reproducibility and decrease the time required to segment tumor boundaries. The authors developed an automated lung tumor segmentation algorithm for volumetric image analysis of chest CT images using shape constrained Otsu multithresholding (SCOMT) and sparse field active surface (SFAS) algorithms. The observer was required to select the tumor center and the SCOMT algorithm subsequently created an initial surface that was deformed using level set SFAS to minimize the total energy consisting of mean separation, edge, partial volume, rolling, distribution, background, shape, volume, smoothness, and curvature energies. The proposed segmentation algorithm was compared to manual segmentation whereby 21 tumors were evaluated using one-dimensional (1D) response evaluation criteria in solid tumors (RECIST), two-dimensional (2D) World Health Organization (WHO), and 3D volume measurements. Linear regression goodness-of-fit measures (r(2) = 0.63, p < 0.0001; r(2) = 0.87, p < 0.0001; and r(2) = 0.96, p < 0.0001), and Pearson correlation coefficients (r = 0.79, p < 0.0001; r = 0.93, p < 0.0001; and r = 0.98, p < 0.0001) for 1D, 2D, and 3D measurements, respectively, showed significant correlations between manual and algorithm results. Intra-observer intraclass correlation coefficients (ICC) demonstrated high reproducibility for algorithm (0.989-0.995, 0.996-0.997, and 0.999-0.999) and manual measurements (0.975-0.993, 0.985-0.993, and 0.980-0.992) for 1D, 2D, and 3D measurements, respectively. The intra-observer coefficient of variation (CV%) was low for algorithm (3.09%-4.67%, 4.85%-5.84%, and 5

  13. Roentgenological diagnoss of central segmental lung cancer

    International Nuclear Information System (INIS)

    Gurevich, L.A.; Fedchenko, G.G.

    1984-01-01

    Basing on an analysis of the results of clinicoroentgenological examination of 268 patments roentgenological semiotics of segmental lung cancer is presented. Some peculiarities of the X-ray picture of cancer of different segments of the lungs were revealed depending on tumor site and growth type. For the syndrome of segmental darkening the comprehensive X-ray methods where the chief method is tomography of the segmental bronchi are proposed

  14. Radiofrequency Ablation of Lung Tumors

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors ... and Microwave Ablation of Lung Tumors? What are Radiofrequency and Microwave Ablation of Lung Tumors? Radiofrequency ablation, ...

  15. Tumorous interstitial lung disease

    International Nuclear Information System (INIS)

    Dinkel, E.; Meyer, E.; Mundinger, A.; Helwig, A.; Blum, U.; Wuertemberger, G.

    1990-01-01

    The radiological findings in pulmonary lymphangitic carcinomatosis and in leukemic pulmonary infiltrates mirror the tumor-dependent monomorphic interstitial pathology of lung parenchyma. It is a proven fact that pulmonary lymphangitic carcinomatosis is caused by hematogenous tumor embolization to the lungs; pathogenesis by contiguous lymphangitic spread is the exception. High-resolution CT performed as a supplement to the radiological work-up improves the sensitivity for pulmonary infiltrates in general and thus makes the differential diagnosis decided easier. Radiological criteria cannot discriminate the different forms of leukemia. Plain chest X-ray allows the diagnosis of pulmonary involvement in leukemia due to tumorous infiltrates and of tumor- or therapy-induced complications. It is essential that the radiological findings be interpreted with reference to the stage of tumor disease and the clinical parameters to make the radiological differential diagnosis of opportunistic infections more reliable. (orig.) [de

  16. Disentegrating lung tumor

    International Nuclear Information System (INIS)

    Mamedbekov, Eh.N.; Kyazimova, L.G.; Mamed''yarova, F.A.

    1992-01-01

    Clinical and roentgenological appearances of tuberculosis and tumoral lesions of bronchi and lungs are similar. It makes possible of wrong diagnosis of disease. Complications in diagnosis are connected with that fact that increase of frequency of pulmonary carcinoma both in patients with active tuberculosis and in persons with residual posttuberculous changes in respiratory organs is observed. Patients with specific processes in the lungs was presented. Additional X-ray examination was carried out on the base of clinical symptoms and results of X-ray examination. The diagnosis was established: disintegrating blastoma of the right lung with metastases to mediastinum lymph nodes

  17. Lung inflammatory pseudo tumor

    International Nuclear Information System (INIS)

    Veliz, Elizabeth; Leone, Gaetano; Cano, Fernando; Sanchez, Jaime

    2005-01-01

    The inflammatory pseudo tumor is a non neoplastic process characterized by an irregular growth of inflammatory cells. We described the case of a 38 year-old patient, she went to our institute for a in situ cervix cancer and left lung nodule without breathing symptoms; valued by neumology who did bronchoscopy with biopsy whose result was negative for malignancy. She went to surgery in where we find intraparenquima nodule in felt lingula of approximately 4 cms, we remove it; the result was: Inflammatory pseudotumor. This pathology is a not very frequent, it can develop in diverse regions of the organism, it is frequent in lung. The image tests are not specific for the diagnose, which it is possible only with the biopsy. The treatment is the complete resection. (The author)

  18. Brain Tumor Image Segmentation in MRI Image

    Science.gov (United States)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  19. Metastatic tumors of lungs

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.C.; Rybakova, N.I.; Vinner, M.G.

    1987-01-01

    Roentgenologic semiotics of lung metastases and their complications, as well as peculiarities of lung metastases of separate localization tumours are presented. Definition table for primary tumour by roentgenologic aspect of lung metastases is given

  20. MRI Brain Tumor Segmentation Methods- A Review

    OpenAIRE

    Gursangeet, Kaur; Jyoti, Rani

    2016-01-01

    Medical image processing and its segmentation is an active and interesting area for researchers. It has reached at the tremendous place in diagnosing tumors after the discovery of CT and MRI. MRI is an useful tool to detect the brain tumor and segmentation is performed to carry out the useful portion from an image. The purpose of this paper is to provide an overview of different image segmentation methods like watershed algorithm, morphological operations, neutrosophic sets, thresholding, K-...

  1. Segmentation of Lung Structures in CT

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau

    This thesis proposes and evaluates new algorithms for segmenting various lung structures in computed tomography (CT) images, namely the lungs, airway trees and vessel trees. The main objective of these algorithms is to facilitate a better platform for studying Chronic Obstructive Pulmonary Disease......, 200 randomly selected CT scans were manually evaluated by medical experts, and only negligible or minor errors were found in nine scans. The proposed algorithm has been used to study how changes in smoking behavior affect CT based emphysema quantification. The algorithms for segmenting the airway...

  2. Segmentation of liver tumors on CT images

    International Nuclear Information System (INIS)

    Pescia, D.

    2011-01-01

    This thesis is dedicated to 3D segmentation of liver tumors in CT images. This is a task of great clinical interest since it allows physicians benefiting from reproducible and reliable methods for segmenting such lesions. Accurate segmentation would indeed help them during the evaluation of the lesions, the choice of treatment and treatment planning. Such a complex segmentation task should cope with three main scientific challenges: (i) the highly variable shape of the structures being sought, (ii) their similarity of appearance compared with their surrounding medium and finally (iii) the low signal to noise ratio being observed in these images. This problem is addressed in a clinical context through a two step approach, consisting of the segmentation of the entire liver envelope, before segmenting the tumors which are present within the envelope. We begin by proposing an atlas-based approach for computing pathological liver envelopes. Initially images are pre-processed to compute the envelopes that wrap around binary masks in an attempt to obtain liver envelopes from estimated segmentation of healthy liver parenchyma. A new statistical atlas is then introduced and used to segmentation through its diffeomorphic registration to the new image. This segmentation is achieved through the combination of image matching costs as well as spatial and appearance prior using a multi-scale approach with MRF. The second step of our approach is dedicated to lesions segmentation contained within the envelopes using a combination of machine learning techniques and graph based methods. First, an appropriate feature space is considered that involves texture descriptors being determined through filtering using various scales and orientations. Then, state of the art machine learning techniques are used to determine the most relevant features, as well as the hyper plane that separates the feature space of tumoral voxels to the ones corresponding to healthy tissues. Segmentation is then

  3. Automatic lung segmentation in the presence of alveolar collapse

    Directory of Open Access Journals (Sweden)

    Noshadi Areg

    2017-09-01

    Full Text Available Lung ventilation and perfusion analyses using chest imaging methods require a correct segmentation of the lung to offer anatomical landmarks for the physiological data. An automatic segmentation approach simplifies and accelerates the analysis. However, the segmentation of the lungs has shown to be difficult if collapsed areas are present that tend to share similar gray values with surrounding non-pulmonary tissue. Our goal was to develop an automatic segmentation algorithm that is able to approximate dorsal lung boundaries even if alveolar collapse is present in the dependent lung areas adjacent to the pleura. Computed tomography data acquired in five supine pigs with injured lungs were used for this purpose. First, healthy lung tissue was segmented using a standard 3D region growing algorithm. Further, the bones in the chest wall surrounding the lungs were segmented to find the contact points of ribs and pleura. Artificial boundaries of the dorsal lung were set by spline interpolation through these contact points. Segmentation masks of the entire lung including the collapsed regions were created by combining the splines with the segmentation masks of the healthy lung tissue through multiple morphological operations. The automatically segmented images were then evaluated by comparing them to manual segmentations and determining the Dice similarity coefficients (DSC as a similarity measure. The developed method was able to accurately segment the lungs including the collapsed regions (DSCs over 0.96.

  4. SU-E-J-123: Assessing Segmentation Accuracy of Internal Volumes and Sub-Volumes in 4D PET/CT of Lung Tumors Using a Novel 3D Printed Phantom

    International Nuclear Information System (INIS)

    Soultan, D; Murphy, J; James, C; Hoh, C; Moiseenko, V; Cervino, L; Gill, B

    2015-01-01

    Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images were binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing

  5. Neuroendocrine Tumors of the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Fisseler-Eckhoff, Annette, E-mail: Annette.Fisseler-Eckhoff@hsk-wiesbaden.de; Demes, Melanie [Department of Pathology und Cytology, Dr. Horst-Schmidt-Kliniken (HSK), Wiesbaden 65199 (Germany)

    2012-07-31

    Neuroendocrine tumors may develop throughout the human body with the majority being found in the gastrointestinal tract and bronchopulmonary system. Neuroendocrine tumors are classified according to the grade of biological aggressiveness (G1–G3) and the extent of differentiation (well-differentiated/poorly-differentiated). The well-differentiated neoplasms comprise typical (G1) and atypical (G2) carcinoids. Large cell neuroendocrine carcinomas as well as small cell carcinomas (G3) are poorly-differentiated. The identification and differentiation of atypical from typical carcinoids or large cell neuroendocrine carcinomas and small cell carcinomas is essential for treatment options and prognosis. Pulmonary neuroendocrine tumors are characterized according to the proportion of necrosis, the mitotic activity, palisading, rosette-like structure, trabecular pattern and organoid nesting. The given information about the histopathological assessment, classification, prognosis, genetic aberration as well as treatment options of pulmonary neuroendocrine tumors are based on own experiences and reviewing the current literature available. Most disagreements among the classification of neuroendocrine tumor entities exist in the identification of typical versus atypical carcinoids, atypical versus large cell neuroendocrine carcinomas and large cell neuroendocrine carcinomas versus small cell carcinomas. Additionally, the classification is restricted in terms of limited specificity of immunohistochemical markers and possible artifacts in small biopsies which can be compressed in cytological specimens. Until now, pulmonary neuroendocrine tumors have been increasing in incidence. As compared to NSCLCs, only little research has been done with respect to new molecular targets as well as improving the classification and differential diagnosis of neuroendocrine tumors of the lung.

  6. Factors affecting the local control of stereotactic body radiotherapy for lung tumors including primary lung cancer and metastatic lung tumors

    International Nuclear Information System (INIS)

    Hamamoto, Yasushi; Kataoka, Masaaki; Yamashita, Motohiro

    2012-01-01

    The purpose of this study was to identify factors affecting local control of stereotactic body radiotherapy (SBRT) for lung tumors including primary lung cancer and metastatic lung tumors. Between June 2006 and June 2009, 159 lung tumors in 144 patients (primary lung cancer, 128; metastatic lung tumor, 31) were treated with SBRT with 48-60 Gy (mean 50.1 Gy) in 4-5 fractions. Higher doses were given to larger tumors and metastatic tumors in principle. Assessed factors were age, gender, tumor origin (primary vs. metastatic), histological subtype, tumor size, tumor appearance (solid vs. ground glass opacity), maximum standardized uptake value of positron emission tomography using 18 F-fluoro-2-deoxy-D-glucose, and SBRT doses. Follow-up time was 1-60 months (median 18 months). The 1-, 2-, and 3-year local failure-free rates of all lesions were 90, 80, and 77%, respectively. On univariate analysis, metastatic tumors (p<0.0001), solid tumors (p=0.0246), and higher SBRT doses (p=0.0334) were the statistically significant unfavorable factors for local control. On multivariate analysis, only tumor origin was statistically significant (p=0.0027). The 2-year local failure-free rates of primary lung cancer and metastatic lung tumors were 87 and 50%, respectively. A metastatic tumor was the only independently significant unfavorable factor for local control after SBRT. (author)

  7. [Malignant nonepithelial tumors of the lung].

    Science.gov (United States)

    Trakhtenberg, A Kh; Biriukov, Iu V; Frank, G A; Kunitsyn, A G; Grigor'eva, S P; Aĭtakov, Z N; Korenev, S V; Efimova, O Iu; Vial'tsev, N V

    1990-01-01

    The main peculiarities of the clinical course of lung sarcoma were determined from representative material of 134 patients. The main features differentiating malignant nonepithelial tumors from carcinoma of the lung are: younger age (average age 45.5 years), predominantly peripheral clinico-anatomical form (82.8%), and prevalent hematogenic metastasis. Five-year survival in the whole group of patients after surgical treatment was 54%. The size and histological form of the tumor are the main factors of prognosis. The degree of differentiation acquires prognostic significance in tumors measuring more than 3 cm in diameter.

  8. Brain tumor segmentation with Deep Neural Networks.

    Science.gov (United States)

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Stereotactic Body Radiotherapy for Oligometastatic Lung Tumors

    International Nuclear Information System (INIS)

    Norihisa, Yoshiki; Nagata, Yasushi; Takayama, Kenji; Matsuo, Yukinori; Sakamoto, Takashi; Sakamoto, Masato; Mizowaki, Takashi; Yano, Shinsuke; Hiraoka, Masahiro

    2008-01-01

    Purpose: Since 1998, we have treated primary and oligometastatic lung tumors with stereotactic body radiotherapy (SBRT). The term 'oligometastasis' is used to indicate a small number of metastases limited to an organ. We evaluated our clinical experience of SBRT for oligometastatic lung tumors. Methods and Materials: A total of 34 patients with oligometastatic lung tumors were included in this study. The primary involved organs were the lung (n = 15), colorectum (n = 9), head and neck (n = 5), kidney (n = 3), breast (n = 1), and bone (n = 1). Five to seven, noncoplanar, static 6-MV photon beams were used to deliver 48 Gy (n = 18) or 60 Gy (n = 16) at the isocenter, with 12 Gy/fraction within 4-18 days (median, 12 days). Results: The overall survival rate, local relapse-free rate, and progression-free rate at 2 years was 84.3%, 90.0%, and 34.8%, respectively. No local progression was observed in tumors irradiated with 60 Gy. SBRT-related pulmonary toxicities were observed in 4 (12%) Grade 2 cases and 1 (3%) Grade 3 case. Patients with a longer disease-free interval had a greater overall survival rate. Conclusion: The clinical result of SBRT for oligometastatic lung tumors in our institute was comparable to that after surgical metastasectomy; thus, SBRT could be an effective treatment of pulmonary oligometastases

  10. Experimental rat lung tumor model with intrabronchial tumor cell implantation.

    Science.gov (United States)

    Gomes Neto, Antero; Simão, Antônio Felipe Leite; Miranda, Samuel de Paula; Mourão, Lívia Talita Cajaseiras; Bezerra, Nilfácio Prado; Almeida, Paulo Roberto Carvalho de; Ribeiro, Ronaldo de Albuquerque

    2008-01-01

    The objective of this study was to develop a rat lung tumor model for anticancer drug testing. Sixty-two female Wistar rats weighing 208 +/- 20 g were anesthetized intraperitoneally with 2.5% tribromoethanol (1 ml/100 g live weight), tracheotomized and intubated with an ultrafine catheter for inoculation with Walker's tumor cells. In the first step of the experiment, a technique was established for intrabronchial implantation of 10(5) to 5 x 10(5) tumor cells, and the tumor take rate was determined. The second stage consisted of determining tumor volume, correlating findings from high-resolution computed tomography (HRCT) with findings from necropsia and determining time of survival. The tumor take rate was 94.7% for implants with 4 x 10(5) tumor cells, HRCT and necropsia findings matched closely (r=0.953; p<0.0001), the median time of survival was 11 days, and surgical mortality was 4.8%. The present rat lung tumor model was shown to be feasible: the take rate was high, surgical mortality was negligible and the procedure was simple to perform and easily reproduced. HRCT was found to be a highly accurate tool for tumor diagnosis, localization and measurement and may be recommended for monitoring tumor growth in this model.

  11. Lung tumor tracking in fluoroscopic video based on optical flow

    International Nuclear Information System (INIS)

    Xu Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied.

  12. Lung segmentation from HRCT using united geometric active contours

    Science.gov (United States)

    Liu, Junwei; Li, Chuanfu; Xiong, Jin; Feng, Huanqing

    2007-12-01

    Accurate lung segmentation from high resolution CT images is a challenging task due to various detail tracheal structures, missing boundary segments and complex lung anatomy. One popular method is based on gray-level threshold, however its results are usually rough. A united geometric active contours model based on level set is proposed for lung segmentation in this paper. Particularly, this method combines local boundary information and region statistical-based model synchronously: 1) Boundary term ensures the integrality of lung tissue.2) Region term makes the level set function evolve with global characteristic and independent on initial settings. A penalizing energy term is introduced into the model, which forces the level set function evolving without re-initialization. The method is found to be much more efficient in lung segmentation than other methods that are only based on boundary or region. Results are shown by 3D lung surface reconstruction, which indicates that the method will play an important role in the design of computer-aided diagnostic (CAD) system.

  13. Holistic segmentation of the lung in cine MRI.

    Science.gov (United States)

    Kovacs, William; Hsieh, Nathan; Roth, Holger; Nnamdi-Emeratom, Chioma; Bandettini, W Patricia; Arai, Andrew; Mankodi, Ami; Summers, Ronald M; Yao, Jianhua

    2017-10-01

    Duchenne muscular dystrophy (DMD) is a childhood-onset neuromuscular disease that results in the degeneration of muscle, starting in the extremities, before progressing to more vital areas, such as the lungs. Respiratory failure and pneumonia due to respiratory muscle weakness lead to hospitalization and early mortality. However, tracking the disease in this region can be difficult, as current methods are based on breathing tests and are incapable of distinguishing between muscle involvements. Cine MRI scans give insight into respiratory muscle movements, but the images suffer due to low spatial resolution and poor signal-to-noise ratio. Thus, a robust lung segmentation method is required for accurate analysis of the lung and respiratory muscle movement. We deployed a deep learning approach that utilizes sequence-specific prior information to assist the segmentation of lung in cine MRI. More specifically, we adopt a holistically nested network to conduct image-to-image holistic training and prediction. One frame of the cine MRI is used in the training and applied to the remainder of the sequence ([Formula: see text] frames). We applied this method to cine MRIs of the lung in the axial, sagittal, and coronal planes. Characteristic lung motion patterns during the breathing cycle were then derived from the segmentations and used for diagnosis. Our data set consisted of 31 young boys, age [Formula: see text] years, 15 of whom suffered from DMD. The remaining 16 subjects were age-matched healthy volunteers. For validation, slices from inspiratory and expiratory cycles were manually segmented and compared with results obtained from our method. The Dice similarity coefficient for the deep learning-based method was [Formula: see text] for the sagittal view, [Formula: see text] for the axial view, and [Formula: see text] for the coronal view. The holistic neural network approach was compared with an approach using Demon's registration and showed superior performance. These

  14. Thoracoscopic lung lobectomy for treatment of lung tumors in dogs.

    Science.gov (United States)

    Lansdowne, Jennifer L; Monnet, Eric; Twedt, David C; Dernell, William S

    2005-01-01

    To report use of thoracoscopic lung lobectomy (TLL) for treatment of lung tumors (LT) in dogs. Retrospective study. Nine dogs. Dogs that had TLL for tumor removal were included. Using general anesthesia and 1-lung ventilation, TLL was performed using a 30-60 mm endoscopic gastrointestinal anastomosis stapler. If the visual field was obscured, lobe resection was completed via thoracotomy. Metastatic and primary LT were resected by thoracoscopic lobectomy in 9 dogs (6 male, 3 female; mean (+/-SD) weight, 29+/-7 kg; mean age, 10.7+/-1.9 years). Six dogs had a solitary mass and 3 dogs had 2 masses within a single lobe. The left caudal lobe was removed in 3 dogs. In 5 dogs, TLL was used alone whereas conversion to thoracotomy was required in 4 dogs because of poor visibility. There were 7 metastatic LT and 2 primary LT. Mean duration of thoracoscopic surgery was 108.8+/-30.3 minutes compared with 150.75+/-55.4 minutes in dogs requiring conversion to thoracotomy. Mean hospitalization was 3.1+/-1.3 days. Provided the visual field is not obscured, TLL can be performed effectively in dogs. Dogs with metastatic or primary LTs should be considered for TLL, particularly for small masses positioned away from the hilus in the left caudal lung lobe.

  15. A lung segmental model of chronic Pseudomonas infection in sheep.

    Directory of Open Access Journals (Sweden)

    David Collie

    Full Text Available Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep.Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>10(4 cfu/g.The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches.

  16. A lung segmental model of chronic Pseudomonas infection in sheep.

    Science.gov (United States)

    Collie, David; Govan, John; Wright, Steven; Thornton, Elisabeth; Tennant, Peter; Smith, Sionagh; Doherty, Catherine; McLachlan, Gerry

    2013-01-01

    Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep. Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>10(4) cfu/g). The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches.

  17. Brain tumor segmentation based on a hybrid clustering technique

    Directory of Open Access Journals (Sweden)

    Eman Abdel-Maksoud

    2015-03-01

    This paper presents an efficient image segmentation approach using K-means clustering technique integrated with Fuzzy C-means algorithm. It is followed by thresholding and level set segmentation stages to provide an accurate brain tumor detection. The proposed technique can get benefits of the K-means clustering for image segmentation in the aspects of minimal computation time. In addition, it can get advantages of the Fuzzy C-means in the aspects of accuracy. The performance of the proposed image segmentation approach was evaluated by comparing it with some state of the art segmentation algorithms in case of accuracy, processing time, and performance. The accuracy was evaluated by comparing the results with the ground truth of each processed image. The experimental results clarify the effectiveness of our proposed approach to deal with a higher number of segmentation problems via improving the segmentation quality and accuracy in minimal execution time.

  18. Audiovisual Biofeedback Improves Cine–Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Danny [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Greer, Peter B. [School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle, NSW (Australia); Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Ludbrook, Joanna; Arm, Jameen; Hunter, Perry [Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Pollock, Sean; Makhija, Kuldeep; O' brien, Ricky T. [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Kim, Taeho [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Keall, Paul, E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia)

    2016-03-01

    Purpose: To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. Methods and Materials: Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. Results: Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). Conclusions: These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures.

  19. Audiovisual Biofeedback Improves Cine–Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency

    International Nuclear Information System (INIS)

    Lee, Danny; Greer, Peter B.; Ludbrook, Joanna; Arm, Jameen; Hunter, Perry; Pollock, Sean; Makhija, Kuldeep; O'brien, Ricky T.; Kim, Taeho; Keall, Paul

    2016-01-01

    Purpose: To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. Methods and Materials: Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. Results: Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). Conclusions: These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures.

  20. Lung segment geometry study: simulation of largest possible tumours that fit into bronchopulmonary segments.

    Science.gov (United States)

    Welter, S; Stöcker, C; Dicken, V; Kühl, H; Krass, S; Stamatis, G

    2012-03-01

    Segmental resection in stage I non-small cell lung cancer (NSCLC) has been well described and is considered to have similar survival rates as lobectomy but with increased rates of local tumour recurrence due to inadequate parenchymal margins. In consequence, today segmentectomy is only performed when the tumour is smaller than 2 cm. Three-dimensional reconstructions from 11 thin-slice CT scans of bronchopulmonary segments were generated, and virtual spherical tumours were placed over the segments, respecting all segmental borders. As a next step, virtual parenchymal safety margins of 2 cm and 3 cm were subtracted and the size of the remaining tumour calculated. The maximum tumour diameters with a 30-mm parenchymal safety margin ranged from 26.1 mm in right-sided segments 7 + 8 to 59.8 mm in the left apical segments 1-3. Using a three-dimensional reconstruction of lung CT scans, we demonstrated that segmentectomy or resection of segmental groups should be feasible with adequate margins, even for larger tumours in selected cases. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Image Denoising And Segmentation Approchto Detect Tumor From BRAINMRI Images

    Directory of Open Access Journals (Sweden)

    Shanta Rangaswamy

    2018-04-01

    Full Text Available The detection of the Brain Tumor is a challenging problem, due to the structure of the Tumor cells in the brain. This project presents a systematic method that enhances the detection of brain tumor cells and to analyze functional structures by training and classification of the samples in SVM and tumor cell segmentation of the sample using DWT algorithm. From the input MRI Images collected, first noise is removed from MRI images by applying wiener filtering technique. In image enhancement phase, all the color components of MRI Images will be converted into gray scale image and make the edges clear in the image to get better identification and improvised quality of the image. In the segmentation phase, DWT on MRI Image to segment the grey-scale image is performed. During the post-processing, classification of tumor is performed by using SVM classifier. Wiener Filter, DWT, SVM Segmentation strategies were used to find and group the tumor position in the MRI filtered picture respectively. An essential perception in this work is that multi arrange approach utilizes various leveled classification strategy which supports execution altogether. This technique diminishes the computational complexity quality in time and memory. This classification strategy works accurately on all images and have achieved the accuracy of 93%.

  2. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2016-01-01

    Full Text Available Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs. Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  3. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis.

    Science.gov (United States)

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  4. Brain Tumor Segmentation Based on Random Forest

    Directory of Open Access Journals (Sweden)

    László Lefkovits

    2016-09-01

    Full Text Available In this article we present a discriminative model for tumor detection from multimodal MR images. The main part of the model is built around the random forest (RF classifier. We created an optimization algorithm able to select the important features for reducing the dimensionality of data. This method is also used to find out the training parameters used in the learning phase. The algorithm is based on random feature properties for evaluating the importance of the variable, the evolution of learning errors and the proximities between instances. The detection performances obtained have been compared with the most recent systems, offering similar results.

  5. Circulating tumor cells in lung cancer.

    Science.gov (United States)

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. Copyright © 2012 S. Karger AG, Basel.

  6. Lung vessel segmentation in CT images using graph-cuts

    Science.gov (United States)

    Zhai, Zhiwei; Staring, Marius; Stoel, Berend C.

    2016-03-01

    Accurate lung vessel segmentation is an important operation for lung CT analysis. Filters that are based on analyzing the eigenvalues of the Hessian matrix are popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work, we propose a new graph-cuts cost function combining appearance and shape, where CT intensity represents appearance and vesselness from a Hessian-based filter represents shape. Due to the amount of voxels in high resolution CT scans, the memory requirement and time consumption for building a graph structure is very high. In order to make the graph representation computationally tractable, those voxels that are considered clearly background are removed from the graph nodes, using a threshold on the vesselness map. The graph structure is then established based on the remaining voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining voxels. Vessels are segmented by minimizing the energy cost function with the graph-cuts optimization framework. We optimized the parameters used in the graph-cuts cost function and evaluated the proposed method with two manually labeled sub-volumes. For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The evaluation results of the sub-volume data show that the proposed method produced a more accurate vessel segmentation compared to the previous methods, with F1 score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive performance with an area under the ROC curve of 0.975, especially among the binary submissions.

  7. Tumor Seeding Following Lung Radiofrequency Ablation: A Case Report

    International Nuclear Information System (INIS)

    Yamakado, Koichiro; Akeboshi, Masao; Nakatsuka, Atsuhiro; Takaki, Haruyuki; Takao, Motoshi; Kobayashi, Hiroyasu; Taguchi, Osamu; Takeda, Kan

    2005-01-01

    Lung radiofrequency (RF) ablation was performed for the treatment of a primary lung cancer measuring 2.5 cm in maximum diameter in a 78-year-old man. A contrast-enhanced computed tomography (CT) study performed 3 months after RF ablation showed incomplete ablation of the lung tumor and the appearance of a chest wall tumor 4.0 cm in maximum diameter that was considered to be the result of needle-tract seeding. RF ablation was performed for the treatment of both the lung and the chest wall tumors. Although tumor enhancement was eradicated in both of the treated tumors, follow-up CT studies revealed diffuse intra-pulmonary metastases in both lungs 2 months after the second RF session. He is currently receiving systemic chemotherapy

  8. Percutaneous radiofrequency ablation of lung tumors in a large animal model.

    Science.gov (United States)

    Ahrar, Kamran; Price, Roger E; Wallace, Michael J; Madoff, David C; Gupta, Sanjay; Morello, Frank A; Wright, Kenneth C

    2003-08-01

    Percutaneous radiofrequency ablation (RFA) is accepted therapy for liver tumors in the appropriate clinical setting, but its use in lung neoplasms remains investigational. We undertook this study to evaluate the feasibility and immediate effectiveness of RFA for treatment of both solitary pulmonary nodules and clusters of lung tumors in a large animal model. Percutaneous RFA of 14 lung tumors in five dogs was performed under CT guidance. Animals were euthanatized 8-48 hours after the procedure. The lungs and adjacent structures were harvested for gross and histopathologic evaluation. Five solitary pulmonary nodules (range, 17-26 mm) and three clusters of three nodules each (range, 7-17 mm per nodule) were treated with RFA. All ablations were technically successful. Perilesional ground-glass opacity and small asymptomatic pneumothoraces (n = 4) were visualized during the RFA sessions. One dog developed a large pneumothorax treated with tube thoracostomy but was euthanatized 8 hours post-RFA for persistent pneumothorax and continued breathing difficulty. Follow-up CT 48 hours post-RFA revealed opacification of the whole lung segment. Gross and histopathologic evaluation showed complete thermal coagulation necrosis of all treated lesions without evidence of any viable tumor. The region of thermal coagulation necrosis typically extended to the lung surface. Small regions of pulmonary hemorrhage and congestion often surrounded the areas of coagulation necrosis. RFA can be used to treat both solitary pulmonary nodules and clusters of tumor nodules in the canine lung tumor model. This model may be useful for development of specific RFA protocols for human lung tumors.

  9. Mandatory chromosomal segment balance in aneuploid tumor cells

    International Nuclear Information System (INIS)

    Kost-Alimova, Maria; Stanbridge, Eric; Klein, George; Imreh, Stefan; Darai-Ramqvist, Eva; Yau, Wing Lung; Sandlund, Agneta; Fedorova, Ludmila; Yang, Ying; Kholodnyuk, Irina; Cheng, Yue; Li Lung, Maria

    2007-01-01

    Euploid chromosome balance is vitally important for normal development, but is profoundly changed in many tumors. Is each tumor dependent on its own structurally and numerically changed chromosome complement that has evolved during its development and progression? We have previously shown that normal chromosome 3 transfer into the KH39 renal cell carcinoma line and into the Hone1 nasopharyngeal carcinoma line inhibited their tumorigenicity. The aim of the present study was to distinguish between a qualitative and a quantitative model of this suppression. According to the former, a damaged or deleted tumor suppressor gene would be restored by the transfer of a normal chromosome. If so, suppression would be released only when the corresponding sequences of the exogenous normal chromosome are lost or inactivated. According to the alternative quantitative model, the tumor cell would not tolerate an increased dosage of the relevant gene or segment. If so, either a normal cell derived, or, a tumor derived endogenous segment could be lost. Fluorescence in Situ Hybridization based methods, as well as analysis of polymorphic microsatellite markers were used to follow chromosome 3 constitution changes in monochromosomal hybrids. In both tumor lines with introduced supernumerary chromosomes 3, the copy number of 3p21 or the entire 3p tended to fall back to the original level during both in vitro and in vivo growth. An exogenous, normal cell derived, or an endogenous, tumor derived, chromosome segment was lost with similar probability. Identification of the lost versus retained segments showed that the intolerance for increased copy number was particularly strong for 3p14-p21, and weaker for other 3p regions. Gains in copy number were, on the other hand, well tolerated in the long arm and particularly the 3q26-q27 region. The inability of the cell to tolerate an experimentally imposed gain in 3p14-p21 in contrast to the well tolerated gain in 3q26-q27 is consistent with the

  10. Enhanced tumor growth in the remaining lung after major lung resection.

    Science.gov (United States)

    Sano, Fumiho; Ueda, Kazuhiro; Murakami, Junichi; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu

    2016-05-01

    Pneumonectomy induces active growth of the remaining lung in order to compensate for lost lung tissue. We hypothesized that tumor progression is enhanced in the activated local environment. We examined the effects of mechanical strain on the activation of lung growth and tumor progression in mice. The mechanical strain imposed on the right lung after left pneumonectomy was neutralized by filling the empty space that remained after pneumonectomy with a polypropylene prosthesis. The neutralization of the strain prevented active lung growth. According to an angiogenesis array, stronger monocyte chemoattractant protein-1 (MCP-1) expression was found in the strain-induced growing lung. The neutralization of the strain attenuated the release of MCP-1 from the lung cells. The intravenous injection of Lewis lung cancer cells resulted in the enhanced development of metastatic foci in the strain-induced growing lung, but the enhanced development was canceled by the neutralization of the strain. An immunohistochemical analysis revealed the prominent accumulation of tumor-associated macrophages in tumors arising in the strain-induced growing lung, and that there was a relationship between the accumulation and the MCP-1 expression status. Our results suggested that mechanical lung strain, induced by pulmonary resection, triggers active lung growth, thereby creating a tumor-friendly environment. The modification of that environment, as well as the minimizing of surgical stress, may be a meaningful strategy to improve the therapeutic outcome after lung cancer surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape

    DEFF Research Database (Denmark)

    Agn, Mikael; Puonti, Oula; Rosenschöld, Per Munck af

    2016-01-01

    In this paper, we present a fully automated generative method for brain tumor segmentation in multi-modal magnetic resonance images. The method is based on the type of generative model often used for segmenting healthy brain tissues, where tissues are modeled by Gaussian mixture models combined...... the use of the intensity information in the training images. Experiments on public benchmark data of patients suffering from low- and high-grade gliomas show that the method performs well compared to current state-of-the-art methods, while not being tied to any specific imaging protocol....... with a spatial atlas-based tissue prior. We extend this basic model with a tumor prior, which uses convolutional restricted Boltzmann machines (cRBMs) to model the shape of both tumor core and complete tumor, which includes edema and core. The cRBMs are trained on expert segmentations of training images, without...

  12. Molecular characterization of radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Guillet Bastide, K.

    2008-11-01

    The radon gas is a well known lung carcinogenic factor in human at high doses but the cancer risk at low doses is not established. Indeed, epidemiological studies at low doses are difficult to conduct because of the human exposure to other lung carcinogenic factors. These data underlined the necessity to conduct experiments on lung tumors developed on animal model. The aim of this work was to characterize rat lung tumors by working on a series of radon-induced tumors that included adenocarcinomas (A.C.), squamous cell carcinomas (S.C.C.) and adeno-squamous carcinomas (A.S.C.), that are mixed tumors with both A.C. and S.C.C. cellular components. A C.G.H. analysis of the three types of tumors allowed us to define chromosomal recurrent unbalances and to target candidate genes potentially implicated in lung carcinogenesis, as p16Ink4a, p19Arf, Rb1, K-Ras or c-Myc. A more precise analysis of the p16Ink4a/Cdk4/Rb1 and p19Arf/Mdm2/Tp53 pathways was performed and indicated that the Rb1 pathway was frequently inactivated through an absence of p16 Ink4a protein expression, indicating that it has a major role in rat lung carcinogenesis. Finally, a comparative transcriptomic analysis of the three types of tumors allowed us to show for the first time that the complex tumors A.S.C. have a transcriptomic profile in accordance with their mixed nature but that they also display their own expression profiles specificities. This work allowed us to find molecular characteristics common to murine and human lung tumors, indicating that the model of lung tumors in rat is pertinent to search for radiation-induced lung tumors specificities and to help for a better molecular identification of this type of tumors in human. (author)

  13. Volumetric multimodality neural network for brain tumor segmentation

    Science.gov (United States)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  14. Tumor segmentation of whole-body magnetic resonance imaging in neurofibromatosis type 1 patients: tumor burden correlates

    Energy Technology Data Exchange (ETDEWEB)

    Heffler, Michael A.; Xi, Yin; Chhabra, Avneesh [University of Texas Southwestern Medical Center, Department of Radiology, Dallas, TX (United States); Le, Lu Q. [University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, TX (United States)

    2017-01-15

    Segmentation of whole-body MRI (WBMRI) to assess the feasibility, quantitate the total tumor volume (tumor burden) in patients with neurofibromatosis type 1 (NF1) and examine associations with demographic, disease-related and anthropomorphic features. A consecutive series of patients with NF1 underwent WBMRI and were reviewed for tumors. Tumors were segmented using a semiautomated software-based tool. Tumors were classified as superficial or deep and discrete or plexiform. Segmentation times were recorded. Segmentation yielded the quantity and tumor burden of superficial, internal and plexiform tumors. Correlations between segmentation data and demographic, disease-related and anthropomorphic features were examined. Fifteen patients were evaluated (42.3 ± 13.6 years, 10 female, 5 male). Segmentation times were a median of 30 min and yielded 2,328 tumors (1,582 superficial, 746 internal and 23 plexiform). One tumor was malignant. Tumor counts ranged from 14 to 397. Tumor burden ranged from 6.95 cm3 to 571 cm3. Individual tumor volume ranged from 0.0120 cm3 to 298 cm3. Significant correlation was found between the total volume of superficial tumors and height (ρ = 0.5966, p < 0.02). Male patients had higher overall tumor burdens (p < 0.05) and higher superficial tumor burden (p < 0.03). Patients with negative family history had more tumors (p < 0.05). Segmentation of WBMRI in patients with NF1 is feasible and elucidates meaningful relationships among disease phenotype, anthropomorphic and demographic features. (orig.)

  15. Tumor segmentation of whole-body magnetic resonance imaging in neurofibromatosis type 1 patients: tumor burden correlates

    International Nuclear Information System (INIS)

    Heffler, Michael A.; Xi, Yin; Chhabra, Avneesh; Le, Lu Q.

    2017-01-01

    Segmentation of whole-body MRI (WBMRI) to assess the feasibility, quantitate the total tumor volume (tumor burden) in patients with neurofibromatosis type 1 (NF1) and examine associations with demographic, disease-related and anthropomorphic features. A consecutive series of patients with NF1 underwent WBMRI and were reviewed for tumors. Tumors were segmented using a semiautomated software-based tool. Tumors were classified as superficial or deep and discrete or plexiform. Segmentation times were recorded. Segmentation yielded the quantity and tumor burden of superficial, internal and plexiform tumors. Correlations between segmentation data and demographic, disease-related and anthropomorphic features were examined. Fifteen patients were evaluated (42.3 ± 13.6 years, 10 female, 5 male). Segmentation times were a median of 30 min and yielded 2,328 tumors (1,582 superficial, 746 internal and 23 plexiform). One tumor was malignant. Tumor counts ranged from 14 to 397. Tumor burden ranged from 6.95 cm3 to 571 cm3. Individual tumor volume ranged from 0.0120 cm3 to 298 cm3. Significant correlation was found between the total volume of superficial tumors and height (ρ = 0.5966, p < 0.02). Male patients had higher overall tumor burdens (p < 0.05) and higher superficial tumor burden (p < 0.03). Patients with negative family history had more tumors (p < 0.05). Segmentation of WBMRI in patients with NF1 is feasible and elucidates meaningful relationships among disease phenotype, anthropomorphic and demographic features. (orig.)

  16. Marginal Shape Deep Learning: Applications to Pediatric Lung Field Segmentation.

    Science.gov (United States)

    Mansoor, Awais; Cerrolaza, Juan J; Perez, Geovanny; Biggs, Elijah; Nino, Gustavo; Linguraru, Marius George

    2017-02-11

    Representation learning through deep learning (DL) architecture has shown tremendous potential for identification, localization, and texture classification in various medical imaging modalities. However, DL applications to segmentation of objects especially to deformable objects are rather limited and mostly restricted to pixel classification. In this work, we propose marginal shape deep learning (MaShDL), a framework that extends the application of DL to deformable shape segmentation by using deep classifiers to estimate the shape parameters. MaShDL combines the strength of statistical shape models with the automated feature learning architecture of DL. Unlike the iterative shape parameters estimation approach of classical shape models that often leads to a local minima, the proposed framework is robust to local minima optimization and illumination changes. Furthermore, since the direct application of DL framework to a multi-parameter estimation problem results in a very high complexity, our framework provides an excellent run-time performance solution by independently learning shape parameter classifiers in marginal eigenspaces in the decreasing order of variation. We evaluated MaShDL for segmenting the lung field from 314 normal and abnormal pediatric chest radiographs and obtained a mean Dice similarity coefficient of 0.927 using only the four highest modes of variation (compared to 0.888 with classical ASM 1 (p-value=0.01) using same configuration). To the best of our knowledge this is the first demonstration of using DL framework for parametrized shape learning for the delineation of deformable objects.

  17. AISLE: an automatic volumetric segmentation method for the study of lung allometry.

    Science.gov (United States)

    Ren, Hongliang; Kazanzides, Peter

    2011-01-01

    We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.

  18. A Genomics-Based Classification of Human Lung Tumors

    NARCIS (Netherlands)

    Seidel, Danila; Zander, Thomas; Heukamp, Lukas C.; Peifer, Martin; Bos, Marc; Fernandez-Cuesta, Lynnette; Leenders, Frauke; Lu, Xin; Ansen, Sascha; Gardizi, Masyar; Nguyen, Chau; Berg, Johannes; Russell, Prudence; Wainer, Zoe; Schildhaus, Hans-Ulrich; Rogers, Toni-Maree; Solomon, Benjamin; Pao, William; Carter, Scott L.; Getz, Gad; Hayes, D. Neil; Wilkerson, Matthew D.; Thunnissen, Erik; Travis, William D.; Perner, Sven; Wright, Gavin; Brambilla, Elisabeth; Buettner, Reinhard; Wolf, Juergen; Thomas, Roman; Gabler, Franziska; Wilkening, Ines; Mueller, Christian; Dahmen, Ilona; Menon, Roopika; Koenig, Katharina; Albus, Kerstin; Merkelbach-Bruse, Sabine; Fassunke, Jana; Schmitz, Katja; Kuenstlinger, Helen; Kleine, Michaela; Binot, Elke; Querings, Silvia; Altmueller, Janine; Boessmann, Ingelore; Nuemberg, Peter; Schneider, Peter; Groen, Harry; Timens, Wim

    2013-01-01

    We characterized genome alterations in 1255 clinically annotated lung tumors of all histological subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic

  19. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.

    Science.gov (United States)

    Cheimariotis, Grigorios-Aris; Al-Mashat, Mariam; Haris, Kostas; Aletras, Anthony H; Jögi, Jonas; Bajc, Marika; Maglaveras, Nicolaos; Heiberg, Einar

    2018-02-01

    Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes. A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images. The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p automatic quantification of wide range of measurements.

  20. WE-AB-303-08: Direct Lung Tumor Tracking Using Short Imaging Arcs

    International Nuclear Information System (INIS)

    Shieh, C; Huang, C; Keall, P; Feain, I

    2015-01-01

    Purpose: Most current tumor tracking technologies rely on implanted markers, which suffer from potential toxicity of marker placement and mis-targeting due to marker migration. Several markerless tracking methods have been proposed: these are either indirect methods or have difficulties tracking lung tumors in most clinical cases due to overlapping anatomies in 2D projection images. We propose a direct lung tumor tracking algorithm robust to overlapping anatomies using short imaging arcs. Methods: The proposed algorithm tracks the tumor based on kV projections acquired within the latest six-degree imaging arc. To account for respiratory motion, an external motion surrogate is used to select projections of the same phase within the latest arc. For each arc, the pre-treatment 4D cone-beam CT (CBCT) with tumor contours are used to estimate and remove the contribution to the integral attenuation from surrounding anatomies. The position of the tumor model extracted from 4D CBCT of the same phase is then optimized to match the processed projections using the conjugate gradient method. The algorithm was retrospectively validated on two kV scans of a lung cancer patient with implanted fiducial markers. This patient was selected as the tumor is attached to the mediastinum, representing a challenging case for markerless tracking methods. The tracking results were converted to expected marker positions and compared with marker trajectories obtained via direct marker segmentation (ground truth). Results: The root-mean-squared-errors of tracking were 0.8 mm and 0.9 mm in the superior-inferior direction for the two scans. Tracking error was found to be below 2 and 3 mm for 90% and 98% of the time, respectively. Conclusions: A direct lung tumor tracking algorithm robust to overlapping anatomies was proposed and validated on two scans of a lung cancer patient. Sub-millimeter tracking accuracy was observed, indicating the potential of this algorithm for real-time guidance

  1. Giant solitary fibrous tumor of the lung: A case report

    OpenAIRE

    Xiao, Ping; Sun, Linlin; Zhong, Diansheng; Lian, Linjuan; Xu, Dongbo

    2014-01-01

    A solitary fibrous tumor arising from the lung parenchyma is rarely described. Here, we present the clinical, imaging, and histological features of a case of a 54-year-old woman with an incidental lung mass of the right lower lobe on a chest radiograph.

  2. Pseudo tumors of the lung after lung volume reduction surgery.

    Science.gov (United States)

    Oey, Inger F; Jeyapalan, Kanagaratnam; Entwisle, James J; Waller, David A

    2004-03-01

    We describe 2 patients who underwent lung volume reduction surgery, who postoperatively had computed tomographic scans that showed symptomatic mass lesions suggestive of malignancy and an inhaled foreign body. Investigations excluded these conditions with the remaining likely diagnosis of pseudotumor secondary to buttressing material. These potential sequelae of lung volume reduction surgery should be recognized in follow-up investigations.

  3. Portal Vein Tumor Thrombus of Liver Metastasis from Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ryoko Ogawa

    2009-01-01

    Full Text Available We report a case of liver metastasis of lung carcinoma with portal vein tumor thrombus (PVTT. Although the primary lesion of lung tumor remained unchanged, the patient rapidly developed wide-spread metastases and formed PVTT of liver metastasis. The primary lesion showed features of mixed Clara and bronchial surface epithelial cell component type adenocarcinoma with small foci of micropapillary pattern. Micropapillary pattern was observed in the metastatic lesions in the liver and PVTT. Micropapillary pattern lung adenocarcinoma may develop rapid metastases and cause PVTT associated with liver metastasis. We should perform a detailed examination to establish correct diagnosis.

  4. An Ensemble of 2D Convolutional Neural Networks for Tumor Segmentation

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Puonti, Oula; Agn, Mikael

    2015-01-01

    Accurate tumor segmentation plays an important role in radiosurgery planning and the assessment of radiotherapy treatment efficacy. In this paper we propose a method combining an ensemble of 2D convolutional neural networks for doing a volumetric segmentation of magnetic resonance images....... The segmentation is done in three steps; first the full tumor region, is segmented from the background by a voxel-wise merging of the decisions of three networks learned from three orthogonal planes, next the segmentation is refined using a cellular automaton-based seed growing method known as growcut. Finally......, within-tumor sub-regions are segmented using an additional ensemble of networks trained for the task. We demonstrate the method on the MICCAI Brain Tumor Segmentation Challenge dataset of 2014, and show improved segmentation accuracy compared to an axially trained 2D network and an ensemble segmentation...

  5. Pulmonary emphysema and tumor microenvironment in primary lung cancer.

    Science.gov (United States)

    Murakami, Junichi; Ueda, Kazuhiro; Sano, Fumiho; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu

    2016-02-01

    To clarify the relationship between the presence of pulmonary emphysema and tumor microenvironment and their significance for the clinicopathologic aggressiveness of non-small cell lung cancer. The subjects included 48 patients with completely resected and pathologically confirmed stage I non-small cell lung cancer. Quantitative computed tomography was used to diagnose pulmonary emphysema, and immunohistochemical staining was performed to evaluate the matrix metalloproteinase (MMP) expression status in the intratumoral stromal cells as well as the microvessel density (MVD). Positive MMP-9 staining in the intratumoral stromal cells was confirmed in 17 (35%) of the 48 tumors. These 17 tumors were associated with a high MVD, frequent lymphovascular invasion, a high proliferative activity, and high postoperative recurrence rate (all, P pulmonary emphysema (P = 0.02). Lung cancers arising from pulmonary emphysema were also associated with a high MVD, proliferative activity, and postoperative recurrence rate (all, P < 0.05). The MMP-9 expression in intratumoral stromal cells is associated with the clinicopathologic aggressiveness of lung cancer and is predominantly identified in tumors arising in emphysematous lungs. Further studies regarding the biological links between the intratumoral and extratumoral microenvironment will help to explain why lung cancers originating in emphysematous lung tissues are associated with a poor prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer

    DEFF Research Database (Denmark)

    Knudsen, Mie Grunnet; Sorensen, J B

    2012-01-01

    The use of CEA as a prognostic and predictive marker in patients with lung cancer is widely debated. The aim of this review was to evaluate the results from studies made on this subject. Using the search words "CEA", "tumor markers in lung cancer", "prognostic significance", "diagnostic...... significance" and "predictive significance", a search was carried out on PubMed. Exclusion criteria was articles never published in English, articles before 1981 and articles evaluating tumor markers in lung cancer not involving CEA. Initially 217 articles were found, and 34 were left after selecting those...... relevant for the present study. Four of these included both Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) patients, and 31 dealt solely with NSCLC patients. Regarding SCLC no studies showed that serum level of CEA was a prognostic marker for overall survival (OS). The use of CEA...

  7. Hypofractionated stereotactic radiotherapy for malignant tumors of the lung

    Directory of Open Access Journals (Sweden)

    О. Ю. Аникеева

    2015-10-01

    Full Text Available Hypofractionated stereotactic radiotherapy was used for 26 patients at medically inoperable stage I of non-small cell lung cancer with dose escalation of 48-54 Gy prescribed at 90 or 95% isodose level in 3-4 fractions. Nine-months local control and cancer-specific survival were 82.0 and 66.8% respectively, with minimal toxicity. For metastatic lung tumors local control was obtained in 92% cases. Hypofractionated stereotactic radiation therapy (SBRT is safe and feasible for the treatment of inoperable primary lung cancer and single lung metastasis.

  8. [Utility of Multiple Increased Lung Cancer Tumor Markers in Treatment of Patients with Advanced Lung Adenocarcinoma].

    Science.gov (United States)

    Peng, Yan; Wang, Yan; Hao, Xuezhi; Li, Junling; Liu, Yutao; Wang, Hongyu

    2017-10-20

    Among frequently-used tumor markers in lung cancer, carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125), cytokeratin 19 (CYFRA21-1) and squamous carcinoma antigen (SCC), neuron specific enolase (NSE) and pro-gastrin-releasing peptide (ProGRP) are respectively expressed highly in lung adenocarcinoma, lung squamous carcinoma and small cell lung cancer. By comparing patients with multiple increased tumor markers (group A) and patients with increase of CEA and/or CA125 (group B), this study aims to investigate the utility of multiple increased tumor markers in therapeutic evaluation and prediction of disease relapsing in patients with advanced lung adenocarcinoma. Patients with stage IV lung adenocarcinoma who receiving the first line chemotherapy in Cancer Hospital, Chinese Academy of Medical Sciences were enrolled and retrospectively analyzed. Clinical characteristic, serum tumor markers before chemotherapy, efficacy evaluation, progression-free survival (PFS) were analyzed. Except CEA and CA125, the highest ratio of increased tumor markersin group A was CYFRA21-1 (93%), then was NSE (36%), SCC (13%) and ProGRP (12%). Patients with multiple increased tumor markers tend to have more distant metastasis (Ptumor markers have high risk of relapse, and maintenance therapy can reduce relapse risk.

  9. Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful

    2012-01-01

    Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor

  10. [A case of lung abscess during chemotherapy for testicular tumor].

    Science.gov (United States)

    Hayashi, Yujiro; Miyago, Naoki; Takeda, Ken; Yamaguchi, Yuichiro; Nakayama, Masashi; Arai, Yasuyuki; Kakimoto, Ken-ichi; Nishimura, Kazuo

    2014-05-01

    32-year-old man was seen in a clinic because of prolonged cough and slight-fever. Chest X-ray showed multiple pulmonary nodules, and multiple lung and mediastinal lymph node metastases from right testicular tumor was suspected by positron emission tomography/CT (PET/CT) scan. He was diagnosed with right testicular germ cell tumor (embryonal carcinoma + seminoma, pT2N1M1b), and classified into the intermediate risk group according to International Germ Cell Cancer Collaborative Group. He underwent 4 cycles of chemotherapy with bleomycin, etoposide and cisplatin (BEP therapy). During BEP therapy, sputum with foul odor appeared and chest CT scan revealed lung abscess with a necrotic lesion of metastatic tumor. The lung abscess was treated successfully with antibiotics.

  11. meta-analysis of Serum Tumor Markers in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xianfeng LU

    2010-12-01

    Full Text Available Background and objective The detection of serum tumor markers is of great value for early diagnosis of lung cancer. The aim of this study is to summarize the clinic significance characteristics of serum markers contributing to the detection of lung cancer. Methods References about serum markers of lung cancer were estimated using meta-analysis method. 712 references which included more than 20 cases, 20 controls, the serum markers of 52 832 patients with malignancies and 32 037 patients as controls were evaluated. Results Overall the detection of 13 markers play a significant part in lung cancer diagnosis. The sensitivity of CEA, CA125, CYFRA21-1, TPA, SCCAg, DKK1, NSE, ProGRP in the patients’ serum with lung cancer were 47.50%, 50.11%, 57.00%, 50.93%, 49.00%, 69.50%, 39.73%, 51.48% and the specificity were 92.34%, 80.19%, 90.16%, 88.41%, 91.07%, 92.20%, 89.11%, 94.89%. In the combined analysis of tumor markers: the sensitivity, specificity of NSE+ProGRP were 88.90% and 72.82% in diagnosis of small cell lung cancer, respectively. In diagnosis of squamous corcinoma, the sensitivity and specificity of TSGF+SCCAg+CYFRA21-1 were 95.30% and 74.20%. The the sensitivity and specificity of CA153+Ferrtin+CEA were 91.90% and 44.00% in diagnosis of lung cancer. Conclusion Although the assay of tumor markers in serum is useful for diagnosis of early lung cancer, the sensitivity and specificity are low. Combined detection of these tumor markers could increase sensitivity and specificity.

  12. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chapman, Christopher [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of Michigan School of Medicine, Ann Arbor, MI (United States); Rao, Aarti [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Davis, School of Medicine, Davis, CA (United States); Shen, John [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Irvine, School of Medicine, Irvine, CA (United States); Quinlan-Davidson, Sean [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Department of Radiation Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario (Canada); Filion, Edith J. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Departement de Medecine, Service de Radio-Oncologie, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Wakelee, Heather A.; Colevas, A. Dimitrios [Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); Whyte, Richard I. [Department of Cardiothoracic Surgery, Division of General Thoracic Surgery, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); and others

    2012-09-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18-25 Gy) (Group 1), and larger tumors (gross tumor volume {>=}12 mL) received multifraction regimens with BED {>=}100 Gy (total dose, 50-60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  13. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    International Nuclear Information System (INIS)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy; Chapman, Christopher; Rao, Aarti; Shen, John; Quinlan-Davidson, Sean; Filion, Edith J.; Wakelee, Heather A.; Colevas, A. Dimitrios; Whyte, Richard I.

    2012-01-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18–25 Gy) (Group 1), and larger tumors (gross tumor volume ≥12 mL) received multifraction regimens with BED ≥100 Gy (total dose, 50–60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  14. Three-Dimensional Segmentation of the Tumor in Computed Tomographic Images of Neuroblastoma

    OpenAIRE

    Deglint, Hanford J.; Rangayyan, Rangaraj M.; Ayres, Fábio J.; Boag, Graham S.; Zuffo, Marcelo K.

    2006-01-01

    Segmentation of the tumor in neuroblastoma is complicated by the fact that the mass is almost always heterogeneous in nature; furthermore, viable tumor, necrosis, and normal tissue are often intermixed. Tumor definition and diagnosis require the analysis of the spatial distribution and Hounsfield unit (HU) values of voxels in computed tomography (CT) images, coupled with a knowledge of normal anatomy. Segmentation and analysis of the tissue composition of the tumor can assist in quantitative ...

  15. Interactive lung segmentation in abnormal human and animal chest CT scans

    International Nuclear Information System (INIS)

    Kockelkorn, Thessa T. J. P.; Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-01-01

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  16. TU-F-17A-03: A 4D Lung Phantom for Coupled Registration/Segmentation Evaluation

    International Nuclear Information System (INIS)

    Markel, D; El Naqa, I; Levesque, I

    2014-01-01

    Purpose: Coupling the processes of segmentation and registration (regmentation) is a recent development that allows improved efficiency and accuracy for both steps and may improve the clinical feasibility of online adaptive radiotherapy. Presented is a multimodality animal tissue model designed specifically to provide a ground truth to simultaneously evaluate segmentation and registration errors during respiratory motion. Methods: Tumor surrogates were constructed from vacuum sealed hydrated natural sea sponges with catheters used for the injection of PET radiotracer. These contained two compartments allowing for two concentrations of radiotracer mimicking both tumor and background signals. The lungs were inflated to different volumes using an air pump and flow valve and scanned using PET/CT and MRI. Anatomical landmarks were used to evaluate the registration accuracy using an automated bifurcation tracking pipeline for reproducibility. The bifurcation tracking accuracy was assessed using virtual deformations of 2.6 cm, 5.2 cm and 7.8 cm of a CT scan of a corresponding human thorax. Bifurcations were detected in the deformed dataset and compared to known deformation coordinates for 76 points. Results: The bifurcation tracking accuracy was found to have a mean error of −0.94, 0.79 and −0.57 voxels in the left-right, anterior-posterior and inferior-superior axes using a 1×1×5 mm3 resolution after the CT volume was deformed 7.8 cm. The tumor surrogates provided a segmentation ground truth after being registered to the phantom image. Conclusion: A swine lung model in conjunction with vacuum sealed sponges and a bifurcation tracking algorithm is presented that is MRI, PET and CT compatible and anatomically and kinetically realistic. Corresponding software for tracking anatomical landmarks within the phantom shows sub-voxel accuracy. Vacuum sealed sponges provide realistic tumor surrogate with a known boundary. A ground truth with minimal uncertainty is thus

  17. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    Science.gov (United States)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  18. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography

    International Nuclear Information System (INIS)

    Aristophanous, Michalis; Penney, Bill C.; Martel, Mary K.; Pelizzari, Charles A.

    2007-01-01

    The increased interest in 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an ''analysis region'' to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of the

  19. Tumors of the lungs and bronchi

    International Nuclear Information System (INIS)

    Juhl, J.H.

    1987-01-01

    There has been an absolute as well as a relative increase in the incidence of carcinoma of the lung in the past 40 years, reflected in the mortality rate. In white male smokers, the reported incidence of cancer of the lung is 15 to 30 times higher than in nonsmokers. Of all carcinomas, bronchogenic carcinoma carries the highest mortality rate, but it may have reached a plateau in males. The incidence and mortality rate in females is now rising, with one study showing a drop in male:female ratio from 15 to 1 in the years 1955 to 1959 to 6 to 1 in the years 1968 to 1971 - a trend that appears to be related to an increase in female smokers. An increase in all cell types of lung cancer occurs in cigarette smoker. There also appears to be an increase in lung cancer in workers exposed to asbestos, arsenic, beryllium, chromate, nickel, vinyl chloride, radon gas, atomic radiation, and bis-chloromethyl ether (BCME). The number of workers studied does not allow a final conclusion about the cell type predominance in these groups

  20. Tumor Associated Neutrophils in Human Lung Cancer

    Science.gov (United States)

    2016-10-01

    tumor innate immune response. anti-tumor adaptive immune response, neutrophil and T cell interaction. ACCOMPLISHMENTS There were no significant...and by producing factors to recruit and acti- vate cells of the innate and adaptive immune system (Mantovani et al., 2011). Given these varying effects...vivo effects on neutro- phil activation (Figure 2, A and B) and cleavage of myeloid and lymphoid cell markers (Supplemental Figure 1, C–G). Once opti

  1. Early detection of lung cancer from CT images: nodule segmentation and classification using deep learning

    Science.gov (United States)

    Sharma, Manu; Bhatt, Jignesh S.; Joshi, Manjunath V.

    2018-04-01

    Lung cancer is one of the most abundant causes of the cancerous deaths worldwide. It has low survival rate mainly due to the late diagnosis. With the hardware advancements in computed tomography (CT) technology, it is now possible to capture the high resolution images of lung region. However, it needs to be augmented by efficient algorithms to detect the lung cancer in the earlier stages using the acquired CT images. To this end, we propose a two-step algorithm for early detection of lung cancer. Given the CT image, we first extract the patch from the center location of the nodule and segment the lung nodule region. We propose to use Otsu method followed by morphological operations for the segmentation. This step enables accurate segmentation due to the use of data-driven threshold. Unlike other methods, we perform the segmentation without using the complete contour information of the nodule. In the second step, a deep convolutional neural network (CNN) is used for the better classification (malignant or benign) of the nodule present in the segmented patch. Accurate segmentation of even a tiny nodule followed by better classification using deep CNN enables the early detection of lung cancer. Experiments have been conducted using 6306 CT images of LIDC-IDRI database. We achieved the test accuracy of 84.13%, with the sensitivity and specificity of 91.69% and 73.16%, respectively, clearly outperforming the state-of-the-art algorithms.

  2. A method for smoothing segmented lung boundary in chest CT images

    Science.gov (United States)

    Yim, Yeny; Hong, Helen

    2007-03-01

    To segment low density lung regions in chest CT images, most of methods use the difference in gray-level value of pixels. However, radiodense pulmonary vessels and pleural nodules that contact with the surrounding anatomy are often excluded from the segmentation result. To smooth lung boundary segmented by gray-level processing in chest CT images, we propose a new method using scan line search. Our method consists of three main steps. First, lung boundary is extracted by our automatic segmentation method. Second, segmented lung contour is smoothed in each axial CT slice. We propose a scan line search to track the points on lung contour and find rapidly changing curvature efficiently. Finally, to provide consistent appearance between lung contours in adjacent axial slices, 2D closing in coronal plane is applied within pre-defined subvolume. Our method has been applied for performance evaluation with the aspects of visual inspection, accuracy and processing time. The results of our method show that the smoothness of lung contour was considerably increased by compensating for pulmonary vessels and pleural nodules.

  3. Tumor cell survival dependence on helical tomotherapy, continuous arc and segmented dose delivery

    International Nuclear Information System (INIS)

    Yang Wensha; Wang Li; Larner, James; Read, Paul; Benedict, Stan; Sheng Ke

    2009-01-01

    The temporal pattern of radiation delivery has been shown to influence the tumor cell survival fractions for the same radiation dose. To study the effect more specifically for state of the art rotational radiation delivery modalities, 2 Gy of radiation dose was delivered to H460 lung carcinoma, PC3 prostate cancer cells and MCF-7 breast tumor cells by helical tomotherapy (HT), seven-field LINAC (7F), and continuous dose delivery (CDD) over 2 min that simulates volumetric rotational arc therapy. Cell survival was measured by the clonogenic assay. The number of viable H460 cell colonies was 23.2 ± 14.4% and 27.7 ± 15.6% lower when irradiated by CDD compared with HT and 7F, respectively, and the corresponding values were 36.8 ± 18.9% and 35.3 ± 18.9% lower for MCF7 cells (p < 0.01). The survival of PC3 was also lower when irradiated by CDD than by HT or 7F but the difference was not as significant (p = 0.06 and 0.04, respectively). The higher survival fraction from HT delivery was unexpected because 90% of the 2 Gy was delivered in less than 1 min at a significantly higher dose rate than the other two delivery techniques. The results suggest that continuous dose delivery at a constant dose rate results in superior in vitro tumor cell killing compared with prolonged, segmented or variable dose rate delivery.

  4. 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.

    Science.gov (United States)

    Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin

    2012-07-01

    Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational

  5. Gamma knife radiosurgery for metastatic brain tumors from lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Toru; Ono, Junichi; Iuchi, Toshihiko [Chiba Cardiovascular Center, Ichihara (Japan). Chiba Cancer Center] (and others)

    2003-01-01

    The purpose of this retrospective study is to evaluate the effectiveness of gamma knife radiosurgery (GKS) alone for metastatic brain tumors from lung cancer. Two hundred thirty-one consecutive patients with metastatic brain tumors from lung cancer filling the following 4 criteria were analyzed for this study; no prior brain tumor treatment, 25 or fewer lesions, a maximum 5 tumors with diameter of 2 cm or more, no surgically inaccessible tumor 3 cm or greater in diameter. According to the same treatment protocol, large tumors ({>=} 3 cm) were surgically removed and all the other small lesions (<3 cm) were treated with GKS. New lesions were treated with repeated GKS. The tumor-progression-free, overall, neurological, lowered-QOL (quality of life)-free and new-lesion-free survivals were calculated with the Kaplan-Meier method. The poor prognostic factors for each survival were also analyzed with the Cox's proportional hazard model. The tumor control rate at 1 year was 96.5%. The estimated median overall survival time was 7.7 months. The first-year survival rates were 83.0% in neurological survival and 76.0% in lowered-QOL-free survival. The new-lesion-free survival at 1 year was 27.9%. Multivariate analysis revealed significant poor prognostic factors for neurological and lowered-QOL-free survivals were carcinomatous meningitis and >10 brain lesions. This study suggests the results of GKS for metastatic brain tumors from lung cancer are quite satisfactory considering prevention of neurological death and maintenance of QOL. But cases with carcinomatous meningitis and/or >10 brain lesions are not good candidates for GKS alone. (author)

  6. Lung Tumor Radiofrequency Ablation: Where Do We Stand?

    International Nuclear Information System (INIS)

    Baère, Thierry de

    2011-01-01

    Today, radiofrequency ablation (RFA) of primary and metastatic lung tumor is increasingly used. Because RFA is most often used with curative intent, preablation workup must be a preoperative workup. General anesthesia provides higher feasibility than conscious sedation. The electrode positioning must be performed under computed tomography for sake of accuracy. The delivery of RFA must be adapted to tumor location, with different impedances used when treating tumors with or without pleural contact. The estimated rate of incomplete local treatment at 18 months was 7% (95% confidence interval, 3–14) per tumor, with incomplete treatment depicted at 4 months (n = 1), 6 months (n = 2), 9 months (n = 2), and 12 months (n = 2). Overall survival and lung disease-free survival at 18 months were, respectively, 71 and 34%. Size is a key point for tumor selection because large size is predictive of incomplete local treatment and poor survival. The ratio of ablation volume relative to tumor volume is predictive of complete ablation. Follow-up computed tomography that relies on the size of the ablation zone demonstrates the presence of incomplete ablation. Positron emission tomography might be an interesting option. Chest tube placement for pneumothorax is reported in 8 to 12%. Alveolar hemorrhage and postprocedure hemoptysis occurred in approximately 10% of procedures and rarely required specific treatment. Death was mostly related to single-lung patients and hilar tumors. No modification of forced expiratory volume in the first second between pre- and post-RFA at 2 months was found. RFA in the lung provides a high local efficacy rate. The use of RFA as a palliative tool in combination with chemotherapy remains to be explored.

  7. Cellular Biochemistry and Cytogenetics in a Rat Lung Tumor Model

    Science.gov (United States)

    1984-10-01

    lung tumor system the specific aims are: 1. To conduct studies of the effect of 3-methylchlanthrene (MCA) on DNA synthesis and cell proliferation in...alkylation of nucleic acids of the rat by N-methyl-N- nitrosourea , dimethylnitrosamine, dimethylsulfate, and methylmethanesulfonate. Biochem. J. 110:39-47

  8. [Lung metastases: tumor reduction as an oncologic concept].

    Science.gov (United States)

    Dienemann, H; Hoffmann, H; Trainer, C; Muley, T

    1998-01-01

    The principle of surgery for lung metastases is the removal of all lesions in the lung that are either visible or detectable by palpation. This may be combined with complete dissection of all ipsilateral lymph nodes. Therefore, "tumor reduction" rather than "complete" or "radical resection" may be an adequate description of this surgical approach. Since the dissemination of--macroscopically not detectable--tumor cells represents the major mannerism of every metastatic disease, any local therapy appears to be a discrepancy. However, in most cases the rationale of surgery for lung metastases is the lack of effective systemic therapy and the low morbidity of surgery, along with up to 60% 5-year survival rates.

  9. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  10. Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation.

    Science.gov (United States)

    Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R

    2010-01-01

    We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.

  11. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    International Nuclear Information System (INIS)

    Korfiatis, P; Costaridou, L; Kalogeropoulou, C; Petsas, T; Daoussis, D; Adonopoulos, A

    2009-01-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  12. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    Science.gov (United States)

    Korfiatis, P.; Kalogeropoulou, C.; Daoussis, D.; Petsas, T.; Adonopoulos, A.; Costaridou, L.

    2009-07-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  13. Reconstruction of segmental bone defect of long bones after tumor resection by devitalized tumor-bearing bone

    OpenAIRE

    Qu, Huayi; Guo, Wei; Yang, Rongli; Li, Dasen; Tang, Shun; Yang, Yi; Dong, Sen; Zang, Jie

    2015-01-01

    Background The reconstruction of an intercalary bone defect after a tumor resection of a long bone remains a challenge to orthopedic surgeons. Though several methods have been adopted to enhance the union of long segmental allografts or retrieved segmental autografts to the host bones, still more progresses are required to achieve a better union rate. Several methods have been adopted to devitalize tumor bone for recycling usage, and the results varied. We describe our experiences of using de...

  14. Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    2016-01-01

    Full Text Available Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.

  15. Inflammatory myofibroblastic tumor of the lung in pregnancy mimicking carcinoid tumor

    Directory of Open Access Journals (Sweden)

    Venkata Nagarjuna Maturu

    2016-01-01

    Full Text Available Inflammatory myofibroblastic tumors (IMT are uncommon neoplasms of the lung in adults. They constitute less than 1% of all lung neoplasms and usually present as parenchymal masses. Diagnosis requires a high index of suspicion. They are characterized by spindle-shaped tumor cells (fibroblasts/myofibroblasts in a background of lymphoplasmacytic infiltrate. About 50% of the tumors harbor an ALK gene rearrangement. They have to be differentiated from inflammatory pseudotumors (IPT, which show increased number of IgG4 plasma cells on immunostaining and are negative for anaplastic lymphoma kinase (ALK protein. Herein, we present a case of a 28-year old female who presented with hemoptysis and was diagnosed with an IMT of lung in the first trimester of pregnancy. We have not only reviewed the occurrence of IMT during pregnancy but also discuss the management options for IMT during pregnancy.

  16. Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.

    Science.gov (United States)

    Vidyaratne, L; Alam, M; Shboul, Z; Iftekharuddin, K M

    2018-01-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  17. Deep learning and texture-based semantic label fusion for brain tumor segmentation

    Science.gov (United States)

    Vidyaratne, L.; Alam, M.; Shboul, Z.; Iftekharuddin, K. M.

    2018-02-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  18. Movie prediction of lung tumor for precise chasing radiation therapy

    International Nuclear Information System (INIS)

    Chhatkuli, Ritu Bhusal; Demachi, Kazuyuki; Kawai, Masaki; Sakakibara, Hiroshi; Uesaka, Mitsuru

    2012-01-01

    In recent years, precision for radiation therapy is a major challenge in the field of cancer treatment. When it comes to a moving organ like lungs, limiting the radiation to the target and sparing the surrounding healthy tissue is always a concern. It can induce the limit in the accuracy of area irradiated during lung cancer radiation therapy. Many methods have been introduced to compensate the motion in order to reduce the effect of radiation to healthy tissue due to respiratory motion. The motion of lung along with the tumor makes it very difficult to spare the healthy tissue during radiation therapy. The fear of this unintended damage to the neighboring tissue often limits the dose that can be applied to the tumor. The purpose of this research is the prediction of future motion images for the improvement of tumor tracking method. We predict the motion images by using principal component analysis (PCA) and multi-channel singular spectral analysis (MSSA) method. Time series x-ray images are used as training images. The motion images were successfully predicted and verified using the developed algorithm. The real time implementation of this method in future is believed to be significant for higher level of real time tumor tracking during radiation therapy. (author)

  19. Automatic lung segmentation using control feedback system: morphology and texture paradigm.

    Science.gov (United States)

    Noor, Norliza M; Than, Joel C M; Rijal, Omar M; Kassim, Rosminah M; Yunus, Ashari; Zeki, Amir A; Anzidei, Michele; Saba, Luca; Suri, Jasjit S

    2015-03-01

    Interstitial Lung Disease (ILD) encompasses a wide array of diseases that share some common radiologic characteristics. When diagnosing such diseases, radiologists can be affected by heavy workload and fatigue thus decreasing diagnostic accuracy. Automatic segmentation is the first step in implementing a Computer Aided Diagnosis (CAD) that will help radiologists to improve diagnostic accuracy thereby reducing manual interpretation. Automatic segmentation proposed uses an initial thresholding and morphology based segmentation coupled with feedback that detects large deviations with a corrective segmentation. This feedback is analogous to a control system which allows detection of abnormal or severe lung disease and provides a feedback to an online segmentation improving the overall performance of the system. This feedback system encompasses a texture paradigm. In this study we studied 48 males and 48 female patients consisting of 15 normal and 81 abnormal patients. A senior radiologist chose the five levels needed for ILD diagnosis. The results of segmentation were displayed by showing the comparison of the automated and ground truth boundaries (courtesy of ImgTracer™ 1.0, AtheroPoint™ LLC, Roseville, CA, USA). The left lung's performance of segmentation was 96.52% for Jaccard Index and 98.21% for Dice Similarity, 0.61 mm for Polyline Distance Metric (PDM), -1.15% for Relative Area Error and 4.09% Area Overlap Error. The right lung's performance of segmentation was 97.24% for Jaccard Index, 98.58% for Dice Similarity, 0.61 mm for PDM, -0.03% for Relative Area Error and 3.53% for Area Overlap Error. The segmentation overall has an overall similarity of 98.4%. The segmentation proposed is an accurate and fully automated system.

  20. Active contour modes Crisp: new technique for segmentation of the lungs in CT images

    International Nuclear Information System (INIS)

    Reboucas Filho, Pedro Pedrosa; Cortez, Paulo Cesar; Holanda, Marcelo Alcantara

    2011-01-01

    This paper proposes a new active contour model (ACM), called ACM Crisp, and evaluates the segmentation of lungs in computed tomography (CT) images. An ACM draws a curve around or within the object of interest. This curve changes its shape, when some energy acts on it and moves towards the edges of the object. This process is performed by successive iterations of minimization of a given energy, associated with the curve. The ACMs described in the literature have limitations when used for segmentations of CT lung images. The ACM Crisp model overcomes these limitations, since it proposes automatic initiation and new external energy based on rules and radiological pulmonary densities. The paper compares other ACMs with the proposed method, which is shown to be superior. In order to validate the algorithm a medical expert in the field of Pulmonology of the Walter Cantidio University Hospital from the Federal University of Ceara carried out a qualitative analysis. In these analyses 100 CT lung images were used. The segmentation efficiency was evaluated into 5 categories with the following results for the ACM Crisp: 73% excellent, without errors, 20% acceptable, with small errors, and 7% reasonable, with large errors, 0% poor, covering only a small part of the lung, and 0% very bad, making a totally incorrect segmentation. In conclusion the ACM Crisp is considered a useful algorithm to segment CT lung images, and with potential to integrate medical diagnosis systems. (author)

  1. Segmentation of lung fields using Chan-Vese active contour model in chest radiographs

    Science.gov (United States)

    Sohn, Kiwon

    2011-03-01

    A CAD tool for chest radiographs consists of several procedures and the very first step is segmentation of lung fields. We develop a novel methodology for segmentation of lung fields in chest radiographs that can satisfy the following two requirements. First, we aim to develop a segmentation method that does not need a training stage with manual estimation of anatomical features in a large training dataset of images. Secondly, for the ease of implementation, it is desirable to apply a well established model that is widely used for various image-partitioning practices. The Chan-Vese active contour model, which is based on Mumford-Shah functional in the level set framework, is applied for segmentation of lung fields. With the use of this model, segmentation of lung fields can be carried out without detailed prior knowledge on the radiographic anatomy of the chest, yet in some chest radiographs, the trachea regions are unfavorably segmented out in addition to the lung field contours. To eliminate artifacts from the trachea, we locate the upper end of the trachea, find a vertical center line of the trachea and delineate it, and then brighten the trachea region to make it less distinctive. The segmentation process is finalized by subsequent morphological operations. We randomly select 30 images from the Japanese Society of Radiological Technology image database to test the proposed methodology and the results are shown. We hope our segmentation technique can help to promote of CAD tools, especially for emerging chest radiographic imaging techniques such as dual energy radiography and chest tomosynthesis.

  2. A Case of Lung Abscess during Chemotherapy for Testicular Tumor

    OpenAIRE

    林, 裕次郎; 宮後, 直樹; 武田, 健; 山口, 唯一郎; 中山, 雅志; 新井, 康之; 垣本, 健一; 西村, 和郎

    2014-01-01

    32-year-old man was seen in a clinic because ofprolonged cough and slight-fever. Chest X-ray showed multiple pulmonary nodules, and multiple lung and mediastinal lymph node metastases from right testicular tumor was suspected by positron emission tomography/CT (PET/CT) scan. He was diagnosed with right testicular germ cell tumor (embryonal carcinoma+seminoma, pT2N1M1b), and classified into the intermediate risk group according to International Germ Cell Cancer Collaborative Group. He underwen...

  3. A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung.

    Science.gov (United States)

    Guo, Shengwen; Fei, Baowei

    2009-03-27

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  4. A minimal path searching approach for active shape model (ASM)-based segmentation of the lung

    Science.gov (United States)

    Guo, Shengwen; Fei, Baowei

    2009-02-01

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 +/- 0.33 pixels, while the error is 1.99 +/- 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  5. Tc99m glucoheptonate in detection of lung tumors

    International Nuclear Information System (INIS)

    Pfeiff, D.N.E.; Nascimento, C.B.L.; Riesgo, A.; Ferreira, E.D.; Kwiatowski, A.; Bornemann, C.

    1989-01-01

    The authors intended, with this study, the use and the efficacy of pulmonary scintigraphy with GHA Tc99 as auxiliary method in the diagnosis of lung tumors. Fifty-five patients were studied clinically and radiologically and afterwards with GHA Tc99 pulmonary scintigraphy. The data were confronted with pathologic findings. In thirty-nine of this patients the isotope were captivate in the place of the tumour. (author) [pt

  6. The relationship between tumor markers and pulmonary embolism in lung cancer.

    Science.gov (United States)

    Xiong, Wei; Zhao, Yunfeng; Xu, Mei; Guo, Jian; Pudasaini, Bigyan; Wu, Xueling; Liu, Jinming

    2017-06-20

    Tumor markers (TMs) and D-Dimer are both hallmarks of severity and prognosis of lung cancer. Tumor markers could be related to pulmonary embolism (PE) in lung cancer. The number of abnormal tumor markers of lung cancer patients with pulmonary embolism (3.9 ± 1.1vs1.6 ± 0.6,P 0.005) was more than that in patients without pulmonary embolism. TMs panel (P trend tumor markers, TMs panel (OR5.98, P Tumor markers were compared between lung cancer patients complicated with pulmonary embolism and those without pulmonary embolism Then the correlation between each tumor marker as well as panel of combined TMs and D-Dimer as well as pulmonary embolism were analyzed for patients with pulmonary embolism. There is a relationship between tumor markers and pulmonary embolism in patients with lung cancer. The panel of combined tumor markers is a valuable diagnostic marker for pulmonary embolism in lung cancer.

  7. Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm

    DEFF Research Database (Denmark)

    Letteboer, Marloes M J; Olsen, Ole F; Dam, Erik B

    2004-01-01

    RATIONALE AND OBJECTIVE: This article presents the evaluation of an interactive multiscale watershed segmentation algorithm for segmenting tumors in magnetic resonance brain images of patients scheduled for neuronavigational procedures. MATERIALS AND METHODS: The watershed method is compared...... delineation shows that the two methods are interchangeable according to the Bland and Altman criterion, and thus equally accurate. The repeatability of the watershed method and the manual method are compared by looking at the similarity of the segmented volumes. The similarity for intraobserver...

  8. Dynamic respiratory gated 18FDG-PET of lung tumors - a feasibility study

    International Nuclear Information System (INIS)

    Skjei Knudtsen, Ingerid; Skretting, Arne; Roedal, Jan; Brustugun, Odd Terje; Helland, Aaslaug; Malinen, Eirik

    2011-01-01

    Background. 18 FDG-PET/CT imaging is well established for diagnosis and staging of lung tumors. However, more detailed information regarding the distribution of FDG within the tumor, also as a function of time after injection may be relevant. In this study we explore the feasibility of a combined dynamic and respiratory gated (DR) PET protocol. Material and methods. A DR FDG-PET protocol for a Siemens Biograph 16 PET/CT scanner was set up, allowing data acquisition from the time of FDG injection. Breath-hold (BH) respiratory gating was performed at four intervals over a total acquisition time of 50 minutes. Thus, the PET protocol provides both motion-free images and a spatiotemporal characterization of the glucose distribution in lung tumors. Software tools were developed in-house for tentative tumor segmentation and for extracting standard uptake values (SUVs) voxel by voxel, tumor volumes and SUV gradients in all directions. Results. Four pilot patients have been investigated with the DR PET protocol. The procedure was well tolerated by the patients. The BH images appeared sharper, and SUV max /SUV mean was higher, compared to free breathing (FB) images. Also, SUV gradients in the periphery of the tumor in the BH images were in general greater than or equal to the gradients in the FB PET images. Conclusion. The DR FDG-PET protocol is feasible and the BH images have a superior quality compared to the FB images. The protocol may also provide information of relevance for radiotherapy planning and follow-up. A patient trial is needed for assessing the clinical value of the imaging protocol

  9. Towards lung EIT image segmentation: automatic classification of lung tissue state from analysis of EIT monitored recruitment manoeuvres

    International Nuclear Information System (INIS)

    Grychtol, Bartłomiej; Wolf, Gerhard K; Arnold, John H; Adler, Andy

    2010-01-01

    There is emerging evidence that the ventilation strategy used in acute lung injury (ALI) makes a significant difference in outcome and that an inappropriate ventilation strategy may produce ventilator-associated lung injury. Most harmful during mechanical ventilation are lung overdistension and lung collapse or atelectasis. Electrical impedance tomography (EIT) as a non-invasive imaging technology may be helpful to identify lung areas at risk. Currently, no automated method is routinely available to identify lung areas that are overdistended, collapsed or ventilated appropriately. We propose a fuzzy logic-based algorithm to analyse EIT images obtained during stepwise changes of mean airway pressures during mechanical ventilation. The algorithm is tested on data from two published studies of stepwise inflation–deflation manoeuvres in an animal model of ALI using conventional and high-frequency oscillatory ventilation. The timing of lung opening and collapsing on segmented images obtained using the algorithm during an inflation–deflation manoeuvre is in agreement with well-known effects of surfactant administration and changes in shunt fraction. While the performance of the algorithm has not been verified against a gold standard, we feel that it presents an important first step in tackling this challenging and important problem

  10. Towards lung EIT image segmentation: automatic classification of lung tissue state from analysis of EIT monitored recruitment manoeuvres.

    Science.gov (United States)

    Grychtol, Bartłomiej; Wolf, Gerhard K; Adler, Andy; Arnold, John H

    2010-08-01

    There is emerging evidence that the ventilation strategy used in acute lung injury (ALI) makes a significant difference in outcome and that an inappropriate ventilation strategy may produce ventilator-associated lung injury. Most harmful during mechanical ventilation are lung overdistension and lung collapse or atelectasis. Electrical impedance tomography (EIT) as a non-invasive imaging technology may be helpful to identify lung areas at risk. Currently, no automated method is routinely available to identify lung areas that are overdistended, collapsed or ventilated appropriately. We propose a fuzzy logic-based algorithm to analyse EIT images obtained during stepwise changes of mean airway pressures during mechanical ventilation. The algorithm is tested on data from two published studies of stepwise inflation-deflation manoeuvres in an animal model of ALI using conventional and high-frequency oscillatory ventilation. The timing of lung opening and collapsing on segmented images obtained using the algorithm during an inflation-deflation manoeuvre is in agreement with well-known effects of surfactant administration and changes in shunt fraction. While the performance of the algorithm has not been verified against a gold standard, we feel that it presents an important first step in tackling this challenging and important problem.

  11. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    DEFF Research Database (Denmark)

    Menze, Bjoern H.; Jakab, Andras; Bauer, Stefan

    2015-01-01

    a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing...

  12. 4D Proton treatment planning strategy for mobile lung tumors

    International Nuclear Information System (INIS)

    Kang Yixiu; Zhang Xiaodong; Chang, Joe Y.; Wang He; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Balter, Peter A.; Liu, Helen; Zhu, X. Ronald; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To investigate strategies for designing compensator-based 3D proton treatment plans for mobile lung tumors using four-dimensional computed tomography (4DCT) images. Methods and Materials: Four-dimensional CT sets for 10 lung cancer patients were used in this study. The internal gross tumor volume (IGTV) was obtained by combining the tumor volumes at different phases of the respiratory cycle. For each patient, we evaluated four planning strategies based on the following dose calculations: (1) the average (AVE) CT; (2) the free-breathing (FB) CT; (3) the maximum intensity projection (MIP) CT; and (4) the AVE CT in which the CT voxel values inside the IGTV were replaced by a constant density (AVE R IGTV). For each strategy, the resulting cumulative dose distribution in a respiratory cycle was determined using a deformable image registration method. Results: There were dosimetric differences between the apparent dose distribution, calculated on a single CT dataset, and the motion-corrected 4D dose distribution, calculated by combining dose distributions delivered to each phase of the 4DCT. The AVE R IGTV plan using a 1-cm smearing parameter had the best overall target coverage and critical structure sparing. The MIP plan approach resulted in an unnecessarily large treatment volume. The AVE and FB plans using 1-cm smearing did not provide adequate 4D target coverage in all patients. By using a larger smearing value, adequate 4D target coverage could be achieved; however, critical organ doses were increased. Conclusion: The AVE R IGTV approach is an effective strategy for designing proton treatment plans for mobile lung tumors

  13. Association between Congenital Lung Malformations and Lung Tumors in Children and Adults: A Systematic Review.

    Science.gov (United States)

    Casagrande, Arianna; Pederiva, Federica

    2016-11-01

    The appropriate management of asymptomatic congenital pulmonary malformations (CPMs) remains controversial. Prophylactic surgery is recommended to avoid the risk for development of pulmonary infections and to prevent the highly debated development of malignancy. However, the true risk for development of malignancy remains unknown. A systematic review analyzed all cases in which lung tumors associated with CPMs in both the pediatric and adult populations were described. A comprehensive literature search was carried out; it included all the cases in which an association between CPMs and malignant pulmonary lesions was reported. In all, 134 publications were eligible for inclusion. In 168 patients CPM was found associated with lung tumor. The diagnosis was made in 76 children at a mean age of 3.68 ± 3.4, whereas in the adult population (n = 92) it was made at a mean age of 44.62 ± 16.09. Cough was the most frequent presenting symptom both in children and in adults. Most of the patients underwent lobectomy. The tumor most often associated with CPM was pleuropulmonary bastoma in children (n = 31) and adenocarcinoma (n = 20) or bronchioloalveolar carcinoma (n = 20) in adults. The CPM most frequenty associated with tumors in children was congenital cystic adenomatoid malformation (n = 37), especially type 1 (n = 21), whereas in adults it was bronchogenic cyst (n = 25), followed by congenital cystic adenomatoid malformation (n = 21). CPMs should be followed up and never underestimated because they may conceal a tumor. Apparently, there is no age limit for malignant progression of CPMs and no limit of the interval between first detection of the CPM and appearance of the associated tumor. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  14. The use of the Kalman filter in the automated segmentation of EIT lung images

    International Nuclear Information System (INIS)

    Zifan, A; Chapman, B E; Liatsis, P

    2013-01-01

    In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging. (paper)

  15. The use of the Kalman filter in the automated segmentation of EIT lung images.

    Science.gov (United States)

    Zifan, A; Liatsis, P; Chapman, B E

    2013-06-01

    In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging.

  16. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  17. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    Science.gov (United States)

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  18. Assessment of tumors of the lung apex by imaging techniques

    International Nuclear Information System (INIS)

    Rueda, J.; Serrano, F.; Pain, M.I.; Rodriguez, F.

    1996-01-01

    The purpose of this study was to analyze the value of MR in the preoperative staging of tumors of the lung apex and detection of local invasion of adjacent structures to determine its influence on the therapeutic approach. We obtained plain X-ray images in two planes, as well as CT and Mr images, in 12 patients with Pan coast tumor in whom there was surgical (n=8) or clinical (n=4) evidence of invasion. The objective was to assess local infiltration of brain stem and chest wall soft tissue, enveloping of the subclavian artery, substantial involvement of the brachial plexus and destruction of the vertebral body. In our series, MR was superior to the other imaging techniques in predicting the involvement of the structures surrounding the tumor. In conclusion, MR should be performed in a patient diagnosed by plain radiography as having an apical tumors to assess local tumor extension, while CT should be done to detect mediastinal lymph node involvement and distant metastases. 19 refs

  19. Transarterial Embolization of Anomalous Systemic Arterial Supply to Normal Basal Segments of the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Sen, E-mail: jasfly77@vip.163.com; Yu, Dong; Jie, Bing [Tongji University School of Medicine, Department of Radiology, Shanghai Pulmonary Hospital (China)

    2016-09-15

    PurposeTo evaluate transarterial embolization (TAE) for the management of anomalous systemic arterial (ASA) supply to normal basal segments of the lung.MethodsThirteen patients with ASA supply to normal basal segments of the lung underwent TAE. All patients presented with hemoptysis and had complete-type anomalies on pre-TAE or post-TAE computed tomography (CT). The anomaly was unilateral in all patients; 11 lesions were located in the left lung and 2 in the right. All patients underwent embolization with coils (n = 10) or a vascular plug (n = 3). Procedural success, clinical efficacy, and complications were assessed. Mean post-TAE CT and clinical follow-up was 25.4 and 42.1 months, respectively.ResultsTechnical success was achieved in 100 % of cases. Several changes were noted on follow-up CT: complete obstruction of the ASA in all cases, normal (n = 11) or decreased (n = 2) density of the affected lung parenchyma, reduction of the primary enlarged inferior pulmonary vein in all cases, and pulmonary infarction and thickening of the corresponding bronchial artery (n = 4). The main complication was pulmonary infarction in four cases.ConclusionTAE is a safe, effective, and minimally invasive therapeutic option for patients with ASA supply to normal basal segments of the lung.

  20. Quality of Radiomic Features in Glioblastoma Multiforme: Impact of Semi-Automated Tumor Segmentation Software.

    Science.gov (United States)

    Lee, Myungeun; Woo, Boyeong; Kuo, Michael D; Jamshidi, Neema; Kim, Jong Hyo

    2017-01-01

    The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic. Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC NDR ≥1), while above 35% of the texture features showed poor NDR (software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics.

  1. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    Science.gov (United States)

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  2. Sensitivity of Tumor Motion Simulation Accuracy to Lung Biomechanical Modeling Approaches and Parameters

    OpenAIRE

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional com...

  3. Reconstruction of segmental bone defect of long bones after tumor resection by devitalized tumor-bearing bone.

    Science.gov (United States)

    Qu, Huayi; Guo, Wei; Yang, Rongli; Li, Dasen; Tang, Shun; Yang, Yi; Dong, Sen; Zang, Jie

    2015-09-24

    The reconstruction of an intercalary bone defect after a tumor resection of a long bone remains a challenge to orthopedic surgeons. Though several methods have been adopted to enhance the union of long segmental allografts or retrieved segmental autografts to the host bones, still more progresses are required to achieve a better union rate. Several methods have been adopted to devitalize tumor bone for recycling usage, and the results varied. We describe our experiences of using devitalized tumor-bearing bones for the repairing of segmental defects after tumor resection. Twenty-seven eligible patients treated from February 2004 to May 2012 were included. The segmental tumor bone (mean length, 14 cm) was resected, and then devitalized in 20% sterile saline at 65 °C for 30 min after the tumor tissue was removed. The devitalized bone was implanted back into the defect by using nails or plates. Complete healing of 50 osteotomy ends was achieved at a median time of 11 months (interquartile range (IQR) 9-13 months). Major complications included bone nonunion in four bone junctions (7.4%), devitalized bone fracture in one patient (3.7%), deep infection in three patients (11.1%), and fixation failure in two patients (7.4%). The bone union rates at 1 and 2 years were 74.1 and 92.6%, respectively. The average functional score according to the Musculoskeletal Tumor Society (MSTS) 93 scoring system was 93 % (IQR 80-96.7%). Incubation in 20% sterile saline at 65 °C for 30 min is an effective method of devitalization of tumor-bearing bone. The retrieved bone graft may provide as a less expensive alternative for limb salvage. The structural bone and the preserved osteoinductivity of protein may improve bone union.

  4. Tumor specific lung cancer diagnostics with multiplexed FRET immunoassays

    Science.gov (United States)

    Geißler, D.; Hill, D.; Löhmannsröben, H.-G.; Thomas, E.; Lavigne, A.; Darbouret, B.; Bois, E.; Charbonnière, L. J.; Ziessel, R. F.; Hildebrandt, N.

    2010-02-01

    An optical multiplexed homogeneous (liquid phase) immunoassay based on FRET from a terbium complex to eight different fluorescent dyes is presented. We achieved highly sensitive parallel detection of four different lung cancer specific tumor markers (CEA, NSE, SCC and CYFRA21-1) within a single assay and show a proof-of-principle for 5- fold multiplexing. The method is well suited for fast and low-cost miniaturized point-of-care testing as well as for highthroughput screening in a broad range of in-vitro diagnostic applications.

  5. Basic anatomic aspects of the lung (segmental, lobular and sublobular) considering radiological point of view (Part 1)

    International Nuclear Information System (INIS)

    Santos, Itazil Benicio dos

    1994-01-01

    A basic anatomic study of the lung considering radiological aspects is presented. After a short introduction, some topics are emphasized, such as the structures which originate the lungs and lung segment details. Some histological elements are also briefly presented. Several illustrations complement the presentation

  6. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry

    Science.gov (United States)

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-03-01

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.

  7. Expression of the p16{sup INK4a} tumor suppressor gene in rodent lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Swafford, D.S.; Tesfaigzi, J.; Belinsky, S.A.

    1995-12-01

    Aberrations on the short arm of chromosome 9 are among the earliest genetic changes in human cancer. p16{sup INK4a} is a candidate tumor suppressor gene that lies within human 9p21, a chromosome region associated with frequent loss of heterozygosity in human lung tumors. The p16{sup INK4a} protein functions as an inhibitor of cyclin D{sub 1}-dependent kinases that phosphorylate the retinoblastoma (Rb) tumor suppressor gene product enabling cell-cycle progression. Thus, overexpression of cyclin D{sub 1}, mutation of cyclin-dependent kinase genes, or loss of p16{sup INK4a} function, can all result in functional inactivation of Rb. Inactivation of Rb by mutation or deletion can result in an increase in p16{sup INK4a} transcription, suggesting that an increased p16{sup INK4a} expression in a tumor cell signals dysfunction of the pathway. The p16{sup (INK4a)} gene, unlike some tumor suppressor genes, is rarely inactivated by mutation. Instead, the expression of this gene is suppressed in some human cancers by hypermethylation of the CpG island within the first exon or by homozygous deletion: 686. Chromosome losses have been observed at 9p21 syntenic loci in tumors of the mouse and rat, two species often used as animal models for pulmonary carcinogenesis. Expression of p16{sup INK4a} is lost in some mouse tumor cell lines, often due to homozygous deletion. These observations indicate that p16{sup INK4a} dysfunction may play a role in the development of neoplasia in rodents as well as humans. The purpose of the current investigation was to define the extent to which p16{sup INK4a} dysfunction contributes to the development of rodent lung tumors and to determine the mechanism of inactivation of the gene. There is no evidence to suggest a loss of function of the p16{sup INK4a} tumor suppressor gene in these primary murine lung tumors by mutation, deletion, or methylation.

  8. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  9. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    Directory of Open Access Journals (Sweden)

    David Fecher

    Full Text Available Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future.

  10. An accurate segmentation method for volumetry of brain tumor in 3D MRI

    Science.gov (United States)

    Wang, Jiahui; Li, Qiang; Hirai, Toshinori; Katsuragawa, Shigehiko; Li, Feng; Doi, Kunio

    2008-03-01

    Accurate volumetry of brain tumors in magnetic resonance imaging (MRI) is important for evaluating the interval changes in tumor volumes during and after treatment, and also for planning of radiation therapy. In this study, an automated volumetry method for brain tumors in MRI was developed by use of a new three-dimensional (3-D) image segmentation technique. First, the central location of a tumor was identified by a radiologist, and then a volume of interest (VOI) was determined automatically. To substantially simplify tumor segmentation, we transformed the 3-D image of the tumor into a two-dimensional (2-D) image by use of a "spiral-scanning" technique, in which a radial line originating from the center of the tumor scanned the 3-D image spirally from the "north pole" to the "south pole". The voxels scanned by the radial line provided a transformed 2-D image. We employed dynamic programming to delineate an "optimal" outline of the tumor in the transformed 2-D image. We then transformed the optimal outline back into 3-D image space to determine the volume of the tumor. The volumetry method was trained and evaluated by use of 16 cases with 35 brain tumors. The agreement between tumor volumes provided by computer and a radiologist was employed as a performance metric. Our method provided relatively accurate results with a mean agreement value of 88%.

  11. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer.

    Science.gov (United States)

    Grunnet, M; Sorensen, J B

    2012-05-01

    The use of CEA as a prognostic and predictive marker in patients with lung cancer is widely debated. The aim of this review was to evaluate the results from studies made on this subject. Using the search words "CEA", "tumor markers in lung cancer", "prognostic significance", "diagnostic significance" and "predictive significance", a search was carried out on PubMed. Exclusion criteria was articles never published in English, articles before 1981 and articles evaluating tumor markers in lung cancer not involving CEA. Initially 217 articles were found, and 34 were left after selecting those relevant for the present study. Four of these included both Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) patients, and 31 dealt solely with NSCLC patients. Regarding SCLC no studies showed that serum level of CEA was a prognostic marker for overall survival (OS). The use of CEA serum level as a prognostic marker in NSCLC was investigated in 23 studies and the use of CEA plasma level in two. In 18 (17 serum, 1 plasma) of these studies CEA was found to be a useful prognostic marker for either OS, recurrence after surgery or/and progression free survival (PFS) in NSCLC patients. Interestingly, an overweight of low stage (stage I-II) disease and adenocarcinoma (AC) patients were observed in this group. The remaining 7 studies (6 serum, 1 plasma) contained an overweight of patients with squamous carcinoma (SQ). One study found evidence for that a tumor marker index (TMI), based on preoperative CEA and CYFRA21-1 serum levels, is useful as a prognostic marker for OS in NSCLC. Six studies evaluated the use of CEA as a predictive marker for risk of recurrence and risk of death in NSCLC patients. Four of these studies found, that CEA was useful as a predictive marker for risk of recurrence and risk of death measured over time. No studies found CEA levels useful as a diagnostic marker for lung cancer. With regard to NSCLC the level of CEA measured in tumor tissue in

  12. Measurement of lung tumor motion using respiration-correlated CT

    International Nuclear Information System (INIS)

    Mageras, Gig S.; Pevsner, Alex; Yorke, Ellen D.; Rosenzweig, Kenneth E.; Ford, Eric C.; Hertanto, Agung; Larson, Steven M.; Lovelock, D. Michael; Erdi, Yusuf E.; Nehmeh, Sadek A.; Humm, John L.; Ling, C. Clifton

    2004-01-01

    Purpose: We investigate the characteristics of lung tumor motion measured with respiration-correlated computed tomography (RCCT) and examine the method's applicability to radiotherapy planning and treatment. Methods and materials: Six patients treated for non-small-cell lung carcinoma received a helical single-slice computed tomography (CT) scan with a slow couch movement (1 mm/s), while simultaneously respiration is recorded with an external position-sensitive monitor. Another 6 patients receive a 4-slice CT scan in a cine mode, in which sequential images are acquired for a complete respiratory cycle at each couch position while respiration is recorded. The images are retrospectively resorted into different respiration phases as measured with the external monitor (4-slice data) or patient surface displacement observed in the images (single-slice data). The gross tumor volume (GTV) in lung is delineated at one phase and serves as a visual guide for delineation at other phases. Interfractional GTV variation is estimated by scaling diaphragm position variations measured in gated radiographs at treatment with the ratio of GTV:diaphragm displacement observed in the RCCT data. Results: Seven out of 12 patients show GTV displacement with respiration of more than 1 cm, primarily in the superior-inferior (SI) direction; 2 patients show anterior-posterior displacement of more than 1 cm. In all cases, extremes in GTV position in the SI direction are consistent with externally measured extremes in respiration. Three patients show evidence of hysteresis in GTV motion, in which the tumor trajectory is displaced 0.2 to 0.5 cm anteriorly during expiration relative to inspiration. Significant (>1 cm) expansion of the GTV in the SI direction with respiration is observed in 1 patient. Estimated intrafractional GTV motion for gated treatment at end expiration is 0.6 cm or less in all cases; however; interfraction variation estimates (systematic plus random) are more than 1 cm in 3

  13. WE-G-BRF-06: Positron Emission Tomography (PET)-Guided Dynamic Lung Tumor Tracking for Cancer Radiotherapy: First Patient Simulations

    International Nuclear Information System (INIS)

    Yang, J; Loo, B; Graves, E; Yamamoto, T; Keall, P

    2014-01-01

    Purpose: PET-guided dynamic tumor tracking is a novel concept of biologically targeted image guidance for radiotherapy. A dynamic tumor tracking algorithm based on list-mode PET data has been developed and previously tested on dynamic phantom data. In this study, we investigate if dynamic tumor tracking is clinically feasible by applying the method to lung cancer patient PET data. Methods: PET-guided tumor tracking estimates the target position of a segmented volume in PET images reconstructed continuously from accumulated coincidence events correlated with external respiratory motion, simulating real-time applications, i.e., only data up to the current time point is used to estimate the target position. A target volume is segmented with a 50% threshold, consistently, of the maximum intensity in the predetermined volume of interest. Through this algorithm, the PET-estimated trajectories are quantified from four lung cancer patients who have distinct tumor location and size. The accuracy of the PET-estimated trajectories is evaluated by comparing to external respiratory motion because the ground-truth of tumor motion is not known in patients; however, previous phantom studies demonstrated sub-2mm accuracy using clinically derived 3D tumor motion. Results: The overall similarity of motion patterns between the PET-estimated trajectories and the external respiratory traces implies that the PET-guided tracking algorithm can provide an acceptable level of targeting accuracy. However, there are variations in the tracking accuracy between tumors due to the quality of the segmentation which depends on target-to-background ratio, tumor location and size. Conclusion: For the first time, a dynamic tumor tracking algorithm has been applied to lung cancer patient PET data, demonstrating clinical feasibility of real-time tumor tracking for integrated PET-linacs. The target-to-background ratio is a significant factor determining accuracy: screening during treatment planning would

  14. Quantitative study on lung volume and lung perfusion using SPECT and CT in thoracal tumors

    International Nuclear Information System (INIS)

    Beyer-Enke, S.A.; Goerich, J.; Strauss, L.G.

    1988-01-01

    22 patients with space occupying lesions in the thoracal region were investigated by computer tomography and by perfusion scintigraphy using SPECT. In order to evaluate the CT images quantitatively, the lung volume was determined using approximation method and compared with the perfusion in the SPECT study. For this, anatomically equivalent transaxial SPECT slices had been coordinated to the CT slices. Between the determined lung volumes and the activity in the ocrresponding layers, a statistically significant correlation was found. It could be shown that the stronger perfusion, frequently observed at the right side of the healthy lung, may be explained by an higher volume of the right pulmonary lobe. Whereas in benign displacing processes the relation activity to volume was similar to the one of the healthy lung, a strongly reduced perfusion together with inconspicuous lung volumes became apparent with malignant tumors. In addition to the great morphological evidence of CT and SPECT studies, additional informations regarding the dignity of displacing processes may be derived from the quantitative evaluation of both methods. (orig.) [de

  15. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).

    Science.gov (United States)

    Iqbal, Sajid; Ghani, M Usman; Saba, Tanzila; Rehman, Amjad

    2018-04-01

    A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. © 2018 Wiley Periodicals, Inc.

  16. US-Cut: interactive algorithm for rapid detection and segmentation of liver tumors in ultrasound acquisitions

    Science.gov (United States)

    Egger, Jan; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Chen, Xiaojun; Zoller, Wolfram G.; Schmalstieg, Dieter; Hann, Alexander

    2016-04-01

    Ultrasound (US) is the most commonly used liver imaging modality worldwide. It plays an important role in follow-up of cancer patients with liver metastases. We present an interactive segmentation approach for liver tumors in US acquisitions. Due to the low image quality and the low contrast between the tumors and the surrounding tissue in US images, the segmentation is very challenging. Thus, the clinical practice still relies on manual measurement and outlining of the tumors in the US images. We target this problem by applying an interactive segmentation algorithm to the US data, allowing the user to get real-time feedback of the segmentation results. The algorithm has been developed and tested hand-in-hand by physicians and computer scientists to make sure a future practical usage in a clinical setting is feasible. To cover typical acquisitions from the clinical routine, the approach has been evaluated with dozens of datasets where the tumors are hyperechoic (brighter), hypoechoic (darker) or isoechoic (similar) in comparison to the surrounding liver tissue. Due to the interactive real-time behavior of the approach, it was possible even in difficult cases to find satisfying segmentations of the tumors within seconds and without parameter settings, and the average tumor deviation was only 1.4mm compared with manual measurements. However, the long term goal is to ease the volumetric acquisition of liver tumors in order to evaluate for treatment response. Additional aim is the registration of intraoperative US images via the interactive segmentations to the patient's pre-interventional CT acquisitions.

  17. Lung cancer-associated tumor antigens and the present status of immunotherapy against non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Yasumoto, Kosei; Hanagiri, Takeshi; Takenoyama, Mitsuhiro

    2009-01-01

    Despite recent advances in surgery, irradiation, and chemotherapy, the prognosis of patients with lung cancer is still poor. Therefore, the development and application of new therapeutic strategies are essential for improving the prognosis of this disease. Significant progress in our understanding of tumor immunology and molecular biology has allowed us to identify the tumor-associated antigens recognized by cytotoxic T lymphocytes. Immune responses and tumor-associated antigens against not only malignant melanoma but also lung cancer have been elucidated at the molecular level. In a theoretical sense, tumor eradication is considered possible through antigen-based immunotherapy against such diseases. However, many clinical trials of cancer vaccination with defined tumor antigens have resulted in objective clinical responses in only a small number of patients. Tumor escape mechanisms from host immune surveillance remain a major obstacle for cancer immunotherapy. A better understanding of the immune escape mechanisms employed by tumor cells is necessary before we can develop a more effective immunotherapeutic approach to lung cancer. We review recent studies regarding the identification of tumor antigens in lung cancer, tumor immune escape mechanisms, and clinical vaccine trials in lung cancer. (author)

  18. Uncommon of the uncommon: Malignant Perivascular epithelioid cell tumor of the lung

    International Nuclear Information System (INIS)

    Lim, Hyun Ju; Lee, Ho Yun; Han, Joung Ho; Choi, Yong Soo; Lee, Kyung Soo

    2013-01-01

    A perivascular epithelioid cell (PEC) tumor is a rare mesenchymal tumor characterized by abundant cytoplasmic Periodic acid-Schiff positive glycogen (also called sugar tumor or clear cell tumor of the lung for this characteristic) and is mostly benign. We report a case of a 63-year-old man who presented with an enlarging mass on chest radiograph. After a thorough workup, diagnosis of malignant pulmonary PEC tumor with lung to lung metastases was established. Herein, the difficulties of diagnosis and management we confronted are described.

  19. Uncommon of the uncommon: Malignant Perivascular epithelioid cell tumor of the lung

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyun Ju; Lee, Ho Yun; Han, Joung Ho; Choi, Yong Soo; Lee, Kyung Soo [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2013-08-15

    A perivascular epithelioid cell (PEC) tumor is a rare mesenchymal tumor characterized by abundant cytoplasmic Periodic acid-Schiff positive glycogen (also called sugar tumor or clear cell tumor of the lung for this characteristic) and is mostly benign. We report a case of a 63-year-old man who presented with an enlarging mass on chest radiograph. After a thorough workup, diagnosis of malignant pulmonary PEC tumor with lung to lung metastases was established. Herein, the difficulties of diagnosis and management we confronted are described.

  20. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation.

    Science.gov (United States)

    Wang, Shuo; Zhou, Mu; Liu, Zaiyi; Liu, Zhenyu; Gu, Dongsheng; Zang, Yali; Dong, Di; Gevaert, Olivier; Tian, Jie

    2017-08-01

    Accurate lung nodule segmentation from computed tomography (CT) images is of great importance for image-driven lung cancer analysis. However, the heterogeneity of lung nodules and the presence of similar visual characteristics between nodules and their surroundings make it difficult for robust nodule segmentation. In this study, we propose a data-driven model, termed the Central Focused Convolutional Neural Networks (CF-CNN), to segment lung nodules from heterogeneous CT images. Our approach combines two key insights: 1) the proposed model captures a diverse set of nodule-sensitive features from both 3-D and 2-D CT images simultaneously; 2) when classifying an image voxel, the effects of its neighbor voxels can vary according to their spatial locations. We describe this phenomenon by proposing a novel central pooling layer retaining much information on voxel patch center, followed by a multi-scale patch learning strategy. Moreover, we design a weighted sampling to facilitate the model training, where training samples are selected according to their degree of segmentation difficulty. The proposed method has been extensively evaluated on the public LIDC dataset including 893 nodules and an independent dataset with 74 nodules from Guangdong General Hospital (GDGH). We showed that CF-CNN achieved superior segmentation performance with average dice scores of 82.15% and 80.02% for the two datasets respectively. Moreover, we compared our results with the inter-radiologists consistency on LIDC dataset, showing a difference in average dice score of only 1.98%. Copyright © 2017. Published by Elsevier B.V.

  1. Video-Assisted Thoracoscopic Surgery in Patients With Clinically Resectable Lung Tumors

    Directory of Open Access Journals (Sweden)

    H. Sakai

    1996-01-01

    Full Text Available To investigate the feasibility of thoracoscopic resection, a pilot study was performed in patients with clinically resectable lung tumors. In 40 patients, Video-assisted thoracic surgery (VATS was performed because of suspicion of malignancy. There were 29 men and 11 women with a median age of 54.8 years (range 18 to 78. Preoperative indications were suspected lung cancer and tumor in 27 patients, assessment of tumor resectability in 7 patients, and probability of metastatic tumors in 6 patients. The final diagnoses in the 27 patients with suspected lung cancer were 12 primary lung cancers, 6 lung metastases, and 9 benign lesions. The success rates for VATS (no conversion to thoracotomy were 1 of 12 (8.3% for resectable stage I lung cancer, 8 of 12 (66.7% for metastatic tumors, and 9 of 9 (100% for benign tumors. With VATS, 6 of 7 patients (85.7%, possible stage III non-small cell lung cancer, an explorative thoracotomy with was avoided, significantly reducing morbidity. The reasons for conversion to thoracotomy were 1 oncological (N2 lymph node dissection and prevention of tumor spillage and 2 technical (inability to locate the nodule, central localization, no anatomical fissure, or poor lung function requiring full lung ventilation. The ultimate diagnoses were 19 lung cancers, 12 metastatic lung tumors, and 9 benign lung tumors. Our data show the limitations of VATS for malignant tumors in general use. These findings, together with the fact that experience in performing thoracoscopic procedures demonstrates a learning curve, may limit the use of thoracoscopic resection as a routine surgical procedure, especially when strict oncological rules are respected.

  2. Detection of lung tumor movement in real-time tumor-tracking radiotherapy

    International Nuclear Information System (INIS)

    Shimizu, Shinichi; Shirato, Hiroki; Ogura, Shigeaki; Akita-Dosaka, Hirotoshi; Kitamura, Kei; Nishioka, Takeshi; Kagei, Kenji; Nishimura, Masaji; Miyasaka, Kazuo

    2001-01-01

    Purpose: External radiotherapy for lung tumors requires reducing the uncertainty due to setup error and organ motion. We investigated the three-dimensional movement of lung tumors through an inserted internal marker using a real-time tumor-tracking system and evaluated the efficacy of this system at reducing the internal margin. Methods and Materials: Four patients with lung cancer were analyzed. A 2.0-mm gold marker was inserted into the tumor. The real-time tumor-tracking system calculates and stores three-dimensional coordinates of the marker 30 times/s. The system can trigger the linear accelerator to irradiate the tumor only when the marker is located within the predetermined 'permitted dislocation'. The value was set at ±1 to ±3 mm according to the patient's characteristics. We analyzed 10,413-14,893 data sets for each of the 4 patients. The range of marker movement during normal breathing (beam-off period) was compared with that during gated irradiation (beam-on period) by Student's t test. Results: The range of marker movement during the beam-off period was 5.5-10.0 mm in the lateral direction (x), 6.8-15.9 mm in the craniocaudal direction (y) and 8.1-14.6 mm in the ventrodorsal direction (z). The range during the beam-on period was reduced to within 5.3 mm in all directions in all 4 patients. A significant difference was found between the mean of the range during the beam-off period and the mean of the range during the beam-on period in the x (p=0.007), y (p=0.025), and z (p=0.002) coordinates, respectively. Conclusion: The real-time tumor-tracking radiotherapy system was useful to analyze the movement of an internal marker. Treatment with megavoltage X-rays was properly given when the tumor marker moved into the 'permitted dislocation' zone from the planned position

  3. Lymphatic drainage of lung segments in the visceral pleura: a cadaveric study.

    Science.gov (United States)

    Fourdrain, Alex; Lafitte, Sophie; Iquille, Jules; De Dominicis, Florence; Havet, Eric; Peltier, Johann; Bagan, Patrick; Berna, Pascal

    2018-01-01

    Although peribronchial lymphatic drainage of the lung has been well characterized, lymphatic drainage in the visceral pleura is less well understood. The objective of the present study was to evaluate the lymphatic drainage of lung segments in the visceral pleura. Adult, European cadavers were examined. Cadavers with a history of pleural or pulmonary disease were excluded. The cadavers had been refrigerated but not embalmed. The lungs were surgically removed and re-warmed. Blue dye was injected into the subpleural area and into the first draining visceral pleural lymphatic vessel of each lung segment. Twenty-one cadavers (7 males and 14 females; mean age 80.9 years) were dissected an average of 9.8 day postmortem. A total of 380 dye injections (in 95 lobes) were performed. Lymphatic drainage of the visceral pleura followed a segmental pathway in 44.2% of the injections (n = 168) and an intersegmental pathway in 55.8% (n = 212). Drainage was found to be both intersegmental and interlobar in 2.6% of the injections (n = 10). Lymphatic drainage in the visceral pleura followed an intersegmental pathway in 22.8% (n = 13) of right upper lobe injections, 57.9% (n = 22) of right middle lobe injections, 83.3% (n = 75) of right lower lobe injections, 21% (n = 21) of left upper lobe injections, and 85.3% (n = 81) of left lower lobe injections. In the lung, lymphatic drainage in the visceral pleura appears to be more intersegmental than the peribronchial pathway is-especially in the lower lobes. The involvement of intersegmental lymphatic drainage in the visceral pleura should now be evaluated during pulmonary resections (and especially sub-lobar resections) for lung cancer.

  4. SU-C-207B-03: A Geometrical Constrained Chan-Vese Based Tumor Segmentation Scheme for PET

    International Nuclear Information System (INIS)

    Chen, L; Zhou, Z; Wang, J

    2016-01-01

    Purpose: Accurate segmentation of tumor in PET is challenging when part of tumor is connected with normal organs/tissues with no difference in intensity. Conventional segmentation methods, such as thresholding or region growing, cannot generate satisfactory results in this case. We proposed a geometrical constrained Chan-Vese based scheme to segment tumor in PET for this special case by considering the similarity between two adjacent slices. Methods: The proposed scheme performs segmentation in a slice-by-slice fashion where an accurate segmentation of one slice is used as the guidance for segmentation of rest slices. For a slice that the tumor is not directly connected to organs/tissues with similar intensity values, a conventional clustering-based segmentation method under user’s guidance is used to obtain an exact tumor contour. This is set as the initial contour and the Chan-Vese algorithm is applied for segmenting the tumor in the next adjacent slice by adding constraints of tumor size, position and shape information. This procedure is repeated until the last slice of PET containing tumor. The proposed geometrical constrained Chan-Vese based algorithm was implemented in Matlab and its performance was tested on several cervical cancer patients where cervix and bladder are connected with similar activity values. The positive predictive values (PPV) are calculated to characterize the segmentation accuracy of the proposed scheme. Results: Tumors were accurately segmented by the proposed method even when they are connected with bladder in the image with no difference in intensity. The average PPVs were 0.9571±0.0355 and 0.9894±0.0271 for 17 slices and 11 slices of PET from two patients, respectively. Conclusion: We have developed a new scheme to segment tumor in PET images for the special case that the tumor is quite similar to or connected to normal organs/tissues in the image. The proposed scheme can provide a reliable way for segmenting tumors.

  5. SU-C-207B-03: A Geometrical Constrained Chan-Vese Based Tumor Segmentation Scheme for PET

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L; Zhou, Z; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Accurate segmentation of tumor in PET is challenging when part of tumor is connected with normal organs/tissues with no difference in intensity. Conventional segmentation methods, such as thresholding or region growing, cannot generate satisfactory results in this case. We proposed a geometrical constrained Chan-Vese based scheme to segment tumor in PET for this special case by considering the similarity between two adjacent slices. Methods: The proposed scheme performs segmentation in a slice-by-slice fashion where an accurate segmentation of one slice is used as the guidance for segmentation of rest slices. For a slice that the tumor is not directly connected to organs/tissues with similar intensity values, a conventional clustering-based segmentation method under user’s guidance is used to obtain an exact tumor contour. This is set as the initial contour and the Chan-Vese algorithm is applied for segmenting the tumor in the next adjacent slice by adding constraints of tumor size, position and shape information. This procedure is repeated until the last slice of PET containing tumor. The proposed geometrical constrained Chan-Vese based algorithm was implemented in Matlab and its performance was tested on several cervical cancer patients where cervix and bladder are connected with similar activity values. The positive predictive values (PPV) are calculated to characterize the segmentation accuracy of the proposed scheme. Results: Tumors were accurately segmented by the proposed method even when they are connected with bladder in the image with no difference in intensity. The average PPVs were 0.9571±0.0355 and 0.9894±0.0271 for 17 slices and 11 slices of PET from two patients, respectively. Conclusion: We have developed a new scheme to segment tumor in PET images for the special case that the tumor is quite similar to or connected to normal organs/tissues in the image. The proposed scheme can provide a reliable way for segmenting tumors.

  6. Methodologies and tools for proton beam design for lung tumors

    International Nuclear Information System (INIS)

    Moyers, Michael F.; Miller, Daniel W.; Bush, David A.; Slater, Jerry D.

    2001-01-01

    Purpose: Proton beams can potentially increase the dose delivered to lung tumors without increasing the dose to critical normal tissues because protons can be stopped before encountering the normal tissues. This potential can only be realized if tissue motion and planning uncertainties are correctly included during planning. This study evaluated several planning strategies to determine which method best provides adequate tumor coverage, minimal normal tissue irradiation, and simplicity of use. Methods and Materials: Proton beam treatment plans were generated using one or more of three different planning strategies. These strategies included designing apertures and boluses to the PTV, apertures to the PTV and boluses to the CTV, and aperture and bolus to the CTV. Results: The planning target volume as specified in ICRU Report 50 can be used only to design the lateral margins of beams, because the distal and proximal margins resulting from CT number uncertainty, beam range uncertainty, tissue motions, and setup uncertainties, are different than the lateral margins resulting from these same factors. The best strategy for target coverage with the planning tools available overirradiated some normal tissues unnecessarily. The available tools also made the planning of lung tumors difficult. Conclusions: This study demonstrated that inclusion of target motion and setup uncertainties into a plan should be performed in the beam design step instead of creating new targets. New computerized treatment planning system tools suggested by this study will ease planning, facilitate abandonment of the PTV concept, improve conformance of the dose distribution to the target, and improve conformal avoidance of critical normal tissues

  7. MRI-guided tumor tracking in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Laura I; Jiang, Steve B [Center for Advanced Radiotherapy Technology and Department of Radiation Oncology, University of California San Diego, 3960 Health Sciences Dr., La Jolla, CA 92093-0865 (United States); Du, Jiang, E-mail: lcervino@ucsd.edu [Department of Radiology, University of California San Diego, 200 West Arbor Dr., San Diego, CA 92103-8226 (United States)

    2011-07-07

    Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error e and the error at 95% confidence level e{sub 95} were evaluated for each model. The ANN model led to e = 1.5 mm and e{sub 95} = 4.2 mm, while TM led to e = 0.6 mm and e{sub 95} = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.

  8. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-01-01

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells

  9. 3D segmentation of kidney tumors from freehand 2D ultrasound

    Science.gov (United States)

    Ahmad, Anis; Cool, Derek; Chew, Ben H.; Pautler, Stephen E.; Peters, Terry M.

    2006-03-01

    To completely remove a tumor from a diseased kidney, while minimizing the resection of healthy tissue, the surgeon must be able to accurately determine its location, size and shape. Currently, the surgeon mentally estimates these parameters by examining pre-operative Computed Tomography (CT) images of the patient's anatomy. However, these images do not reflect the state of the abdomen or organ during surgery. Furthermore, these images can be difficult to place in proper clinical context. We propose using Ultrasound (US) to acquire images of the tumor and the surrounding tissues in real-time, then segmenting these US images to present the tumor as a three dimensional (3D) surface. Given the common use of laparoscopic procedures that inhibit the range of motion of the operator, we propose segmenting arbitrarily placed and oriented US slices individually using a tracked US probe. Given the known location and orientation of the US probe, we can assign 3D coordinates to the segmented slices and use them as input to a 3D surface reconstruction algorithm. We have implemented two approaches for 3D segmentation from freehand 2D ultrasound. Each approach was evaluated on a tissue-mimicking phantom of a kidney tumor. The performance of our approach was determined by measuring RMS surface error between the segmentation and the known gold standard and was found to be below 0.8 mm.

  10. Assessing the scale of tumor heterogeneity by complete hierarchical segmentation of MRI

    International Nuclear Information System (INIS)

    Gensheimer, Michael F; Ermoian, Ralph P; Hawkins, Douglas S; Trister, Andrew D

    2015-01-01

    In many cancers, intratumoral heterogeneity has been found in histology, genetic variation and vascular structure. We developed an algorithm to interrogate different scales of heterogeneity using clinical imaging. We hypothesize that heterogeneity of perfusion at coarse scale may correlate with treatment resistance and propensity for disease recurrence. The algorithm recursively segments the tumor image into increasingly smaller regions. Each dividing line is chosen so as to maximize signal intensity difference between the two regions. This process continues until the tumor has been divided into single voxels, resulting in segments at multiple scales. For each scale, heterogeneity is measured by comparing each segmented region to the adjacent region and calculating the difference in signal intensity histograms. Using digital phantom images, we showed that the algorithm is robust to image artifacts and various tumor shapes. We then measured the primary tumor scales of contrast enhancement heterogeneity in MRI of 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival. Coarser scale of maximum signal intensity heterogeneity was prognostic of shorter survival (p = 0.05). By contrast, two fractal parameters and three Haralick texture features were not prognostic. In summary, our algorithm produces a biologically motivated segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. If validated on a larger dataset, this prognostic imaging biomarker could be useful to identify patients at higher risk for recurrence and candidates for alternative treatment. (paper)

  11. Assessing the scale of tumor heterogeneity by complete hierarchical segmentation of MRI.

    Science.gov (United States)

    Gensheimer, Michael F; Hawkins, Douglas S; Ermoian, Ralph P; Trister, Andrew D

    2015-02-07

    In many cancers, intratumoral heterogeneity has been found in histology, genetic variation and vascular structure. We developed an algorithm to interrogate different scales of heterogeneity using clinical imaging. We hypothesize that heterogeneity of perfusion at coarse scale may correlate with treatment resistance and propensity for disease recurrence. The algorithm recursively segments the tumor image into increasingly smaller regions. Each dividing line is chosen so as to maximize signal intensity difference between the two regions. This process continues until the tumor has been divided into single voxels, resulting in segments at multiple scales. For each scale, heterogeneity is measured by comparing each segmented region to the adjacent region and calculating the difference in signal intensity histograms. Using digital phantom images, we showed that the algorithm is robust to image artifacts and various tumor shapes. We then measured the primary tumor scales of contrast enhancement heterogeneity in MRI of 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival. Coarser scale of maximum signal intensity heterogeneity was prognostic of shorter survival (p = 0.05). By contrast, two fractal parameters and three Haralick texture features were not prognostic. In summary, our algorithm produces a biologically motivated segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. If validated on a larger dataset, this prognostic imaging biomarker could be useful to identify patients at higher risk for recurrence and candidates for alternative treatment.

  12. SU-C-BRA-06: Automatic Brain Tumor Segmentation for Stereotactic Radiosurgery Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Stojadinovic, S; Jiang, S; Timmerman, R; Abdulrahman, R; Nedzi, L; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Stereotactic radiosurgery (SRS), which delivers a potent dose of highly conformal radiation to the target in a single fraction, requires accurate tumor delineation for treatment planning. We present an automatic segmentation strategy, that synergizes intensity histogram thresholding, super-voxel clustering, and level-set based contour evolving methods to efficiently and accurately delineate SRS brain tumors on contrast-enhance T1-weighted (T1c) Magnetic Resonance Images (MRI). Methods: The developed auto-segmentation strategy consists of three major steps. Firstly, tumor sites are localized through 2D slice intensity histogram scanning. Then, super voxels are obtained through clustering the corresponding voxels in 3D with reference to the similarity metrics composited from spatial distance and intensity difference. The combination of the above two could generate the initial contour surface. Finally, a localized region active contour model is utilized to evolve the surface to achieve the accurate delineation of the tumors. The developed method was evaluated on numerical phantom data, synthetic BRATS (Multimodal Brain Tumor Image Segmentation challenge) data, and clinical patients’ data. The auto-segmentation results were quantitatively evaluated by comparing to ground truths with both volume and surface similarity metrics. Results: DICE coefficient (DC) was performed as a quantitative metric to evaluate the auto-segmentation in the numerical phantom with 8 tumors. DCs are 0.999±0.001 without noise, 0.969±0.065 with Rician noise and 0.976±0.038 with Gaussian noise. DC, NMI (Normalized Mutual Information), SSIM (Structural Similarity) and Hausdorff distance (HD) were calculated as the metrics for the BRATS and patients’ data. Assessment of BRATS data across 25 tumor segmentation yield DC 0.886±0.078, NMI 0.817±0.108, SSIM 0.997±0.002, and HD 6.483±4.079mm. Evaluation on 8 patients with total 14 tumor sites yield DC 0.872±0.070, NMI 0.824±0

  13. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  14. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    International Nuclear Information System (INIS)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H; Neelakkantan, Harini; Meeks, Sanford L; Kupelian, Patrick A

    2010-01-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  15. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H [University of Central Florida, FL (United States); Neelakkantan, Harini; Meeks, Sanford L [M D Anderson Cancer Center Orlando, FL (United States); Kupelian, Patrick A, E-mail: anand.santhanam@orlandohealth.co [Department of Radiation Oncology, University of California, Los Angeles, CA (United States)

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  16. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    Science.gov (United States)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  17. Impact of tumor extent and location on treatment outcome in patients with stage III non-small cell lung cancer treated with radiation therapy

    International Nuclear Information System (INIS)

    Hayakawa, Kazushige; Mitsuhashi, Norio; Saito, Yoshihiro

    1996-01-01

    The results of treatment of 141 patients with stage III non-small cell lung cancer (NSCLC) who received definitive radiation therapy at Gunma University Hospital between 1976 and 1989 were retrospectively analyzed. Radiation was given with standard fractionation for a planned prophylactic dose of 40 Gy over 4 weeks and a definitive dose of 60 Gy over 6 weeks or more. The two- and five-year survival rates were 27% and 12% for stage IIIA, and 18% and 8% for stage IIIB, respectively (P=0.052). By univariate analysis, a primary tumor less than 5 cm in diameter was also an important predictor of survival (P=0.008). As for tumor location, the patients with primary tumors in the upper lobes or the superior segment of the lower lobes of the lung lived longer than those with primary tumors at any other site (P=0.032). Patients with epidermoid carcinoma had a higher survival rate at 5 years than those with other histologic types (14% vs 3%, P=0.074). Multivariate analysis showed that among tumor characteristics, the site of the primary tumor, the pattern of tumor spread and N stage were significantly associated with overall survival. Among the patients with stage III NSCLC, those with stage IIIA epidermoid carcinoma in the upper lobe or the superior segment of the lower lobe of the lung were considered to be the most favorable candidates for definitive radiation therapy. (author)

  18. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  19. Performance Analysis of Unsupervised Clustering Methods for Brain Tumor Segmentation

    Directory of Open Access Journals (Sweden)

    Tushar H Jaware

    2013-10-01

    Full Text Available Medical image processing is the most challenging and emerging field of neuroscience. The ultimate goal of medical image analysis in brain MRI is to extract important clinical features that would improve methods of diagnosis & treatment of disease. This paper focuses on methods to detect & extract brain tumour from brain MR images. MATLAB is used to design, software tool for locating brain tumor, based on unsupervised clustering methods. K-Means clustering algorithm is implemented & tested on data base of 30 images. Performance evolution of unsupervised clusteringmethods is presented.

  20. Lung Volume Reduction After Stereotactic Ablative Radiation Therapy of Lung Tumors: Potential Application to Emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Binkley, Michael S. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Shrager, Joseph B. [Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Leung, Ann N. [Department of Radiology, Stanford University School of Medicine, Stanford, California (United States); Popat, Rita [Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California (United States); Trakul, Nicholas [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Department of Radiation Oncology, University of Southern California Keck School of Medicine, Los Angeles, California (United States); Atwood, Todd F.; Chaudhuri, Aadel [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Maxim, Peter G. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Diehn, Maximilian, E-mail: Diehn@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States)

    2014-09-01

    Purpose: Lung volume reduction surgery (LVRS) improves dyspnea and other outcomes in selected patients with severe emphysema, but many have excessive surgical risk for LVRS. We analyzed the dose-volume relationship for lobar volume reduction after stereotactic ablative radiation therapy (SABR) of lung tumors, hypothesizing that SABR could achieve therapeutic volume reduction if applied in emphysema. Methods and Materials: We retrospectively identified patients treated from 2007 to 2011 who had SABR for 1 lung tumor, pre-SABR pulmonary function testing, and ≥6 months computed tomographic (CT) imaging follow-up. We contoured the treated lobe and untreated adjacent lobe(s) on CT before and after SABR and calculated their volume changes relative to the contoured total (bilateral) lung volume (TLV). We correlated lobar volume reduction with the volume receiving high biologically effective doses (BED, α/β = 3). Results: 27 patients met the inclusion criteria, with a median CT follow-up time of 14 months. There was no grade ≥3 toxicity. The median volume reduction of the treated lobe was 4.4% of TLV (range, −0.4%-10.8%); the median expansion of the untreated adjacent lobe was 2.6% of TLV (range, −3.9%-11.6%). The volume reduction of the treated lobe was positively correlated with the volume receiving BED ≥60 Gy (r{sup 2}=0.45, P=.0001). This persisted in subgroups determined by high versus low pre-SABR forced expiratory volume in 1 second, treated lobe CT emphysema score, number of fractions, follow-up CT time, central versus peripheral location, and upper versus lower lobe location, with no significant differences in effect size between subgroups. Volume expansion of the untreated adjacent lobe(s) was positively correlated with volume reduction of the treated lobe (r{sup 2}=0.47, P<.0001). Conclusions: We identified a dose-volume response for treated lobe volume reduction and adjacent lobe compensatory expansion after lung tumor SABR, consistent across

  1. Antioxidant intervention of smoking-induced lung tumor in mice by vitamin E and quercetin

    International Nuclear Information System (INIS)

    Yang, Jie; Li, Jun-Wen; Wang, Lu; Chen, Zhaoli; Shen, Zhi-Qiang; Jin, Min; Wang, Xin-Wei; Zheng, Yufei; Qiu, Zhi-Gang; Wang, Jing-feng

    2008-01-01

    Epidemiological and in vitro studies suggest that antioxidants such as quercetin and vitamin E (VE) can prevent lung tumor caused by smoking; however, there is limited evidence from animal studies. In the present study, Swiss mouse was used to examine the potential of quercetin and VE for prevention lung tumor induced by smoking. Our results suggest that the incidence of lung tumor and tumor multiplicity were 43.5% and 1.00 ± 0.29 in smoking group; Quercetin has limited effects on lung tumor prevention in this in vivo model, as measured by assays for free radical scavenging, reduction of smoke-induced DNA damage and inhibition of apoptosis. On the other hand, vitamin E drastically decreased the incidence of lung tumor and tumor multiplicity which were 17.0% and 0.32 ± 0.16, respectively (p < 0.05); and demonstrated prominent antioxidant effects, reduction of DNA damage and decreased cell apoptosis (p < 0.05). Combined treatment with quercetin and VE in this animal model did not demonstrate any effect greater than that due to vitamin E alone. In addition, gender differences in the occurrence of smoke induced-lung tumor and antioxidant intervention were also observed. We conclude that VE might prevent lung tumor induced by smoking in Swiss mice

  2. Soluble tumor necrosis factor receptor-1 in preterm infants with chronic lung disease.

    Science.gov (United States)

    Sato, Miho; Mori, Masaaki; Nishimaki, Shigeru; An, Hiromi; Naruto, Takuya; Sugai, Toshiyuki; Shima, Yoshio; Seki, Kazuo; Yokota, Shumpei

    2010-04-01

    It is clear that inflammation plays an important role in developing chronic lung disease in preterm infants. The purpose of the present study is to investigate changes of serum soluble tumor necrosis factor receptor-1 levels over time in infants with chronic lung disease. The serum levels of soluble tumor necrosis factor receptor-1 were measured after delivery, and at 7, 14, 21 and 28 days of age in 10 infants with chronic lung disease and in 18 infants without chronic lung disease. The serum level of soluble tumor necrosis factor receptor-1 was significantly higher in infants with chronic lung disease than in infants without chronic lung disease after delivery. The differences between these two groups remained up to 28 days of age. Prenatal inflammation with persistence into postnatal inflammation may be involved in the onset of chronic lung disease.

  3. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, H.; Bach, K.S.; Hansen, H. [Copenhagen University, Department of Radiology, Gentofte Hospital, Hellerup (Denmark); Hoop, B. de [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands); Shaker, S.B.; Dirksen, A. [Copenhagen University, Department of Respiratory Medicine, Gentofte Hospital, Hellerup (Denmark); Prokop, M. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands); Radboud University Nijmegen, Department of Radiology, Nijmegen (Netherlands); Pedersen, J.H. [Copenhagen University, Department of Cardiothoracic Surgery RT, Rigshospitalet, Copenhagen (Denmark)

    2010-08-15

    We examined the reproducibility of lung nodule volumetry software that offers three different volumetry algorithms. In a lung cancer screening trial, 188 baseline nodules >5 mm were identified. Including follow-ups, these nodules formed a study-set of 545 nodules. Nodules were independently double read by two readers using commercially available volumetry software. The software offers readers three different analysing algorithms. We compared the inter-observer variability of nodule volumetry when the readers used the same and different algorithms. Both readers were able to correctly segment and measure 72% of nodules. In 80% of these cases, the readers chose the same algorithm. When readers used the same algorithm, exactly the same volume was measured in 50% of readings and a difference of >25% was observed in 4%. When the readers used different algorithms, 83% of measurements showed a difference of >25%. Modern volumetric software failed to correctly segment a high number of screen detected nodules. While choosing a different algorithm can yield better segmentation of a lung nodule, reproducibility of volumetric measurements deteriorates substantially when different algorithms were used. It is crucial even in the same software package to choose identical parameters for follow-up. (orig.)

  4. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably

    International Nuclear Information System (INIS)

    Ashraf, H.; Bach, K.S.; Hansen, H.; Hoop, B. de; Shaker, S.B.; Dirksen, A.; Prokop, M.; Pedersen, J.H.

    2010-01-01

    We examined the reproducibility of lung nodule volumetry software that offers three different volumetry algorithms. In a lung cancer screening trial, 188 baseline nodules >5 mm were identified. Including follow-ups, these nodules formed a study-set of 545 nodules. Nodules were independently double read by two readers using commercially available volumetry software. The software offers readers three different analysing algorithms. We compared the inter-observer variability of nodule volumetry when the readers used the same and different algorithms. Both readers were able to correctly segment and measure 72% of nodules. In 80% of these cases, the readers chose the same algorithm. When readers used the same algorithm, exactly the same volume was measured in 50% of readings and a difference of >25% was observed in 4%. When the readers used different algorithms, 83% of measurements showed a difference of >25%. Modern volumetric software failed to correctly segment a high number of screen detected nodules. While choosing a different algorithm can yield better segmentation of a lung nodule, reproducibility of volumetric measurements deteriorates substantially when different algorithms were used. It is crucial even in the same software package to choose identical parameters for follow-up. (orig.)

  5. Three-dimensional segmentation of the tumor mass in computed tomographic images of neuroblastoma

    Science.gov (United States)

    Deglint, Hanford J.; Rangayyan, Rangaraj M.; Boag, Graham S.

    2004-05-01

    Tumor definition and diagnosis require the analysis of the spatial distribution and Hounsfield unit (HU) values of voxels in computed tomography (CT) images, coupled with a knowledge of normal anatomy. Segmentation of the tumor in neuroblastoma is complicated by the fact that the mass is almost always heterogeneous in nature; furthermore, viable tumor, necrosis, fibrosis, and normal tissue are often intermixed. Rather than attempt to separate these tissue types into distinct regions, we propose to explore methods to delineate the normal structures expected in abdominal CT images, remove them from further consideration, and examine the remaining parts of the images for the tumor mass. We explore the use of fuzzy connectivity for this purpose. Expert knowledge provided by the radiologist in the form of the expected structures and their shapes, HU values, and radiological characteristics are also incorporated in the segmentation algorithm. Segmentation and analysis of the tissue composition of the tumor can assist in quantitative assessment of the response to chemotherapy and in the planning of delayed surgery for resection of the tumor. The performance of the algorithm is evaluated using cases acquired from the Alberta Children's Hospital.

  6. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis

    OpenAIRE

    Liu, Jian; Cho, Sung-Nam; Akkanti, Bindu; Jin, Nili; Mao, Jianqiang; Long, Weiwen; Chen, Tenghui; Zhang, Yiqun; Tang, Ximing; Wistub, Ignacio I.; Creighton, Chad J.; Kheradmand, Farrah; DeMayo, Francesco J.

    2015-01-01

    Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 resul...

  7. Vessel Enhancement and Segmentation of 4D CT Lung Image Using Stick Tensor Voting

    Science.gov (United States)

    Cong, Tan; Hao, Yang; Jingli, Shi; Xuan, Yang

    2016-12-01

    Vessel enhancement and segmentation plays a significant role in medical image analysis. This paper proposes a novel vessel enhancement and segmentation method for 4D CT lung image using stick tensor voting algorithm, which focuses on addressing the vessel distortion issue of vessel enhancement diffusion (VED) method. Furthermore, the enhanced results are easily segmented using level-set segmentation. In our method, firstly, vessels are filtered using Frangi's filter to reduce intrapulmonary noises and extract rough blood vessels. Secondly, stick tensor voting algorithm is employed to estimate the correct direction along the vessel. Then the estimated direction along the vessel is used as the anisotropic diffusion direction of vessel in VED algorithm, which makes the intensity diffusion of points locating at the vessel wall be consistent with the directions of vessels and enhance the tubular features of vessels. Finally, vessels can be extracted from the enhanced image by applying level-set segmentation method. A number of experiments results show that our method outperforms traditional VED method in vessel enhancement and results in satisfied segmented vessels.

  8. Incidentally diagnosed simultaneous second primary tumor of the sphenoid sinus in a patient with lung cancer

    DEFF Research Database (Denmark)

    Yigit, Ozgur; Taskin, Umit; Demir, Ahmet

    2009-01-01

    Synchronous tumors are described as multiple primary malignancies presenting within 6 months of diagnosis of index tumors. Synchronous tumors of the lung and the head and neck region is frequently seen. However, isolated sphenoid sinus and lung cancers are not reported yet. Here, we reported...... an incidentally diagnosed simultaneous second primary sphenoid sinus tumor in a patient with lung cancer. Radiological evaluation results demonstrated a significant contrast-enhanced mass in the sphenoid sinus extending through the nasopharynx because of the destruction of the sphenoid sinus. The decision...

  9. Quality of radiomic features in glioblastoma multiforme: Impact of semi-automated tumor segmentation software

    International Nuclear Information System (INIS)

    Lee, Myung Eun; Kim, Jong Hyo; Woo, Bo Yeong; Ko, Micheal D.; Jamshidi, Neema

    2017-01-01

    The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic. Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC NDR ≥1), while above 35% of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they were highly redundant. The use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics

  10. Quality of radiomic features in glioblastoma multiforme: Impact of semi-automated tumor segmentation software

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Eun; Kim, Jong Hyo [Center for Medical-IT Convergence Technology Research, Advanced Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of); Woo, Bo Yeong [Dept. of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon (Korea, Republic of); Ko, Micheal D.; Jamshidi, Neema [Dept. of Radiological Sciences, University of California, Los Angeles, Los Angeles (United States)

    2017-06-15

    The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic. Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC < 0.5). Most first order statistics and morphometric features showed moderate-to-high NDR (4 > NDR ≥1), while above 35% of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they were highly redundant. The use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics.

  11. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation

    Science.gov (United States)

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-01

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC  =  0.66+/- 0.04 ), Positive Predictive Value (PPV  =  0.81+/- 0.06 ) and Sensitivity (Sen.  =  0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol)  =  40+/- 30 , DSC  =  0.71+/- 0.07 and PPV  =  0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume

  12. Method of image segmentation using a neural network. Application to MR imaging of brain tumors

    International Nuclear Information System (INIS)

    Engler, E.; Gautherie, M.

    1992-01-01

    An original method of numerical images segmentation has been developed. This method is based on pixel clustering using a formal neural network configurated by supervised learning of pre-classified examples. The method has been applied to series of MR images of brain tumors (gliomas) with a view to proceed with a 3D-extraction of the tumor volume. This study is part of a project on cancer thermotherapy including the development of a scan-focused ultrasound system of tumor heating and a 3D-numerical thermal model

  13. Computerized method for estimation of the location of a lung tumor on EPID cine images without implanted markers in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Arimura, H; Toyofuku, F; Higashida, Y; Onizuka, Y; Terashima, H; Egashira, Y; Shioyama, Y; Nomoto, S; Honda, H; Nakamura, K; Yoshidome, S; Anai, S

    2009-01-01

    The purpose of this study was to develop a computerized method for estimation of the location of a lung tumor in cine images on an electronic portal imaging device (EPID) without implanted markers during stereotactic body radiotherapy (SBRT). Each tumor region was segmented in the first EPID cine image, i.e., reference portal image, based on a multiple-gray level thresholding technique and a region growing technique, and then the image including the tumor region was cropped as a 'tumor template' image. The tumor location was determined as the position in which the tumor template image took the maximum cross-correlation value within each consecutive portal image, which was acquired in cine mode on the EPID in treatment. EPID images with 512 x 384 pixels (pixel size: 0.56 mm) were acquired at a sampling rate of 0.5 frame s -1 by using energies of 4, 6 or 10 MV on linear accelerators. We applied our proposed method to EPID cine images (226 frames) of 12 clinical cases (ages: 51-83, mean: 72) with a non-small cell lung cancer. As a result, the average location error between tumor points obtained by our method and the manual method was 1.47 ± 0.60 mm. This preliminary study suggests that our method based on the tumor template matching technique might be feasible for tracking the location of a lung tumor without implanted markers in SBRT.

  14. Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0243 TITLE: Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution 5b. GRANT NUMBER 5c. PROGRAM...derive a prognostic classifier. 15. SUBJECT TERMS NSCLC; tumor evolution ; whole exome sequencing 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  15. Three-dimensional ultrashort echo time MRI and Short T2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice.

    Science.gov (United States)

    Müller, Andreas; Jagoda, Philippe; Fries, Peter; Gräber, Stefan; Bals, Robert; Buecker, Arno; Jungnickel, Christopher; Beisswenger, Christoph

    2018-02-01

    To investigate the potential of 3D ultrashort echo time MRI and short T 2 images generated by subtraction for determination of total tumor burden in lung cancer. As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T 2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images.

    Science.gov (United States)

    Jian, Junming; Xiong, Fei; Xia, Wei; Zhang, Rui; Gu, Jinhui; Wu, Xiaodong; Meng, Xiaochun; Gao, Xin

    2018-06-01

    Segmentation of colorectal tumors is the basis of preoperative prediction, staging, and therapeutic response evaluation. Due to the blurred boundary between lesions and normal colorectal tissue, it is hard to realize accurate segmentation. Routinely manual or semi-manual segmentation methods are extremely tedious, time-consuming, and highly operator-dependent. In the framework of FCNs, a segmentation method for colorectal tumor was presented. Normalization was applied to reduce the differences among images. Borrowing from transfer learning, VGG-16 was employed to extract features from normalized images. We conducted five side-output blocks from the last convolutional layer of each block of VGG-16 along the network, these side-output blocks can deep dive multiscale features, and produced corresponding predictions. Finally, all of the predictions from side-output blocks were fused to determine the final boundaries of the tumors. A quantitative comparison of 2772 colorectal tumor manual segmentation results from T2-weighted magnetic resonance images shows that the average Dice similarity coefficient, positive predictive value, specificity, sensitivity, Hammoude distance, and Hausdorff distance were 83.56, 82.67, 96.75, 87.85%, 0.2694, and 8.20, respectively. The proposed method is superior to U-net in colorectal tumor segmentation (P colorectal tumor segmentation (P > 0.05). The results indicate that the introduction of FCNs contributed to accurate segmentation of colorectal tumors. This method has the potential to replace the present time-consuming and nonreproducible manual segmentation method.

  17. Intra-observer and inter-observer agreements for the measurement of dual-input whole tumor computed tomography perfusion in patients with lung cancer: Influences of the size and inner-air density of tumors.

    Science.gov (United States)

    Wang, Qingle; Zhang, Zhiyong; Shan, Fei; Shi, Yuxin; Xing, Wei; Shi, Liangrong; Zhang, Xingwei

    2017-09-01

    This study was conducted to assess intra-observer and inter-observer agreements for the measurement of dual-input whole tumor computed tomography perfusion (DCTP) in patients with lung cancer. A total of 88 patients who had undergone DCTP, which had proved a diagnosis of primary lung cancer, were divided into two groups: (i) nodules (diameter ≤3 cm) and masses (diameter >3 cm) by size, and (ii) tumors with and without air density. Pulmonary flow, bronchial flow, and pulmonary index were measured in each group. Intra-observer and inter-observer agreements for measurement were assessed using intraclass correlation coefficient, within-subject coefficient of variation, and Bland-Altman analysis. In all lung cancers, the reproducibility coefficient for intra-observer agreement (range 26.1-38.3%) was superior to inter-observer agreement (range 38.1-81.2%). Further analysis revealed lower agreements for nodules compared to masses. Additionally, inner-air density reduced both agreements for lung cancer. The intra-observer agreement for measuring lung cancer DCTP was satisfied, while the inter-observer agreement was limited. The effects of tumoral size and inner-air density to agreements, especially between two observers, should be emphasized. In future, an automatic computer-aided segment of perfusion value of the tumor should be developed. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  18. Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis

    Directory of Open Access Journals (Sweden)

    Giulia Fregni

    2018-03-01

    Full Text Available Metastasis is a multi-step process in which direct crosstalk between cancer cells and their microenvironment plays a key role. Here, we assessed the effect of paired tumor-associated and normal lung tissue mesenchymal stem cells (MSCs on the growth and dissemination of primary human lung carcinoma cells isolated from the same patients. We show that the tumor microenvironment modulates MSC gene expression and identify a four-gene MSC signature that is functionally implicated in promoting metastasis. We also demonstrate that tumor-associated MSCs induce the expression of genes associated with an aggressive phenotype in primary lung cancer cells and selectively promote their dissemination rather than local growth. Our observations provide insight into mechanisms by which the stroma promotes lung cancer metastasis. Keywords: Tumor-associated MSCs, lung cancer, metastasis, GREM1, LOXL2, ADAMTS12, ITGA11

  19. Detection of five tumor markers in lung cancer by trypsin digestion of sputum method

    International Nuclear Information System (INIS)

    Lin Min; Nong Tianlei; Liu Daying

    2011-01-01

    To explore the detection of five tumor markers by trypsin digestion of sputum in the diagnosis of lung cancer, the samples of sputum in patients with lung cancer and benign lung disease were digested by trypsin and used to measure five tumor markers. The results showed that the sputum were well digested by 6% trypsin at pH8 and no affect on the determination of tumor markers. The CEA, CA125, CA153, CA211 and NSE levels in lung cancer group were significantly higher than that of in benign group (P<0.05). The sputum CEA and CA125 levels were significantly higher than that of the serum levels (P<0.05). The detection of sputum CEA, CA125, CA153, CA211 and NSE levels have clinical value in the diagnosis of lung cancer. When combined with other diagnostic methods,it might be helpful for further diagnosis in non confirmed lung cancer patients. (authors)

  20. Prognostic value of PET/CT in lung cancer. Study of survival and tumor metabolic characterization

    International Nuclear Information System (INIS)

    Ladron de Guevara, David; Fuentes Anibal; Farina, Ciro; Corral, Camilo; Pefaur, Raul

    2013-01-01

    PET/CT (Positron emission tomography/computed tomography) is a hybrid image modality widely used in oncology, for staging, therapy evaluation or follow up. Aim: To evaluate the prognostic value of PET/CT in lung cancer. Material and Methods: Retrospective review of PET/CT records, selecting 51 patients with a lung malignancy, mass or nodule referred for PET/CT between December 2008 and December 2010. All had pathological confirmation of malignancy and had not been treated previously. Age, gender, body mass index, radiological features of lung tumor and metastases, and lung tumor 18 F-fluoro-2-deoxy-d-glucose uptake using the SUV (Standardized uptake value) index were recorded. Survival was analyzed using Kaplan-Meier curves and a Cox proportional regression analysis. Results: Pathology confirmed the presence of lung cancer in 47 patients aged 30 to 88 years. Four patients (7.8%) had other type of tumors such as carcinoid or lymphoma. Fifty percent of lung cancer patients died during a mean observation lapse of 18 months (range: 2-34 months). Patients with metastases, local lymph node involvement, a lung tumor size ≥ 3 cm and high tumor uptake (SUVmax > 6) had significantly lower survival. Occurrence of metastases was the only independent prognostic factor in the Cox regression. A lung lesion with a SUVmax ≥ 12 was always associated to hilar/mediastinal lymph node involvement. Conclusions: PET/CT imaging gives important prognostic information in lung cancer patients

  1. Density overwrites of internal tumor volumes in intensity modulated proton therapy plans for mobile lung tumors

    Science.gov (United States)

    Botas, Pablo; Grassberger, Clemens; Sharp, Gregory; Paganetti, Harald

    2018-02-01

    The purpose of this study was to investigate internal tumor volume density overwrite strategies to minimize intensity modulated proton therapy (IMPT) plan degradation of mobile lung tumors. Four planning paradigms were compared for nine lung cancer patients. Internal gross tumor volume (IGTV) and internal clinical target volume (ICTV) structures were defined encompassing their respective volumes in every 4DCT phase. The paradigms use different planning CT (pCT) created from the average intensity projection (AIP) of the 4DCT, overwriting the density within the IGTV to account for movement. The density overwrites were: (a) constant filling with 100 HU (C100) or (b) 50 HU (C50), (c) maximum intensity projection (MIP) across phases, and (d) water equivalent path length (WEPL) consideration from beam’s-eye-view. Plans were created optimizing dose-influence matrices calculated with fast GPU Monte Carlo (MC) simulations in each pCT. Plans were evaluated with MC on the 4DCTs using a model of the beam delivery time structure. Dose accumulation was performed using deformable image registration. Interplay effect was addressed applying 10 times rescanning. Significantly less DVH metrics degradation occurred when using MIP and WEPL approaches. Target coverage (D99≥slant 70 Gy(RBE)) was fulfilled in most cases with MIP and WEPL (D{{99}WEPL}=69.2+/- 4.0 Gy (RBE)), keeping dose heterogeneity low (D5-D{{95}WEPL}=3.9+/- 2.0 Gy(RBE)). The mean lung dose was kept lowest by the WEPL strategy, as well as the maximum dose to organs at risk (OARs). The impact on dose levels in the heart, spinal cord and esophagus were patient specific. Overall, the WEPL strategy gives the best performance and should be preferred when using a 3D static geometry for lung cancer IMPT treatment planning. Newly available fast MC methods make it possible to handle long simulations based on 4D data sets to perform studies with high accuracy and efficiency, even prior to individual treatment planning.

  2. Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Elmpt, Wouter van; Das, Marco; Hüllner, Martin; Sharifi, Hoda; Zegers, Catharina M.L.; Reymen, Bart; Lambin, Philippe; Wildberger, Joachim E.; Troost, Esther G.C.; Veit-Haibach, Patrick; De Ruysscher, Dirk

    2013-01-01

    Purpose: Dynamic contrast-enhanced CT (DCE-CT) quantifies vasculature properties of tumors, whereas static FDG-PET/CT defines metabolic activity. Both imaging modalities are capable of showing intra-tumor heterogeneity. We investigated differences in vasculature properties within primary non-small cell lung cancer (NSCLC) tumors measured by DCE-CT and metabolic activity from FDG-PET/CT. Methods: Thirty three NSCLC patients were analyzed prior to treatment. FDG-PET/CT and DCE-CT were co-registered. The tumor was delineated and metabolic activity was segmented on the FDG-PET/CT in two regions: low (<50% maximum SUV) and high (⩾50% maximum SUV) metabolic uptake. Blood flow, blood volume and permeability were calculated using a maximum slope, deconvolution algorithm and a Patlak model. Correlations were assessed between perfusion parameters for the regions of interest. Results: DCE-CT provided additional information on vasculature and tumor heterogeneity that was not correlated to metabolic tumor activity. There was no significant difference between low and high metabolic active regions for any of the DCE-CT parameters. Furthermore, only moderate correlations between maximum SUV and DCE-CT parameters were observed. Conclusions: No direct correlation was observed between FDG-uptake and parameters extracted from DCE-CT. DCE-CT may provide complementary information to the characterization of primary NSCLC tumors over FDG-PET/CT imaging

  3. Emergence of Convolutional Neural Network in Future Medicine: Why and How. A Review on Brain Tumor Segmentation

    Science.gov (United States)

    Alizadeh Savareh, Behrouz; Emami, Hassan; Hajiabadi, Mohamadreza; Ghafoori, Mahyar; Majid Azimi, Seyed

    2018-03-01

    Manual analysis of brain tumors magnetic resonance images is usually accompanied by some problem. Several techniques have been proposed for the brain tumor segmentation. This study will be focused on searching popular databases for related studies, theoretical and practical aspects of Convolutional Neural Network surveyed in brain tumor segmentation. Based on our findings, details about related studies including the datasets used, evaluation parameters, preferred architectures and complementary steps analyzed. Deep learning as a revolutionary idea in image processing, achieved brilliant results in brain tumor segmentation too. This can be continuing until the next revolutionary idea emerging.

  4. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    International Nuclear Information System (INIS)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-01-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy. (paper)

  5. Obtention of tumor volumes in PET images stacks using techniques of colored image segmentation

    International Nuclear Information System (INIS)

    Vieira, Jose W.; Lopes Filho, Ferdinand J.; Vieira, Igor F.

    2014-01-01

    This work demonstrated step by step how to segment color images of the chest of an adult in order to separate the tumor volume without significantly changing the values of the components R (Red), G (Green) and B (blue) of the colors of the pixels. For having information which allow to build color map you need to segment and classify the colors present at appropriate intervals in images. The used segmentation technique is to select a small rectangle with color samples in a given region and then erase with a specific color called 'rubber' the other regions of image. The tumor region was segmented into one of the images available and the procedure is displayed in tutorial format. All necessary computational tools have been implemented in DIP (Digital Image Processing), software developed by the authors. The results obtained, in addition to permitting the construction the colorful map of the distribution of the concentration of activity in PET images will also be useful in future work to enter tumors in voxel phantoms in order to perform dosimetric assessments

  6. Multiple fields may offer better esophagus sparing without increased probability of lung toxicity in optimized IMRT of lung tumors

    International Nuclear Information System (INIS)

    Chapet, Olivier; Fraass, Benedick A.; Haken, Randall K. ten

    2006-01-01

    Purpose: To evaluate whether increasing numbers of intensity-modulated radiation therapy (IMRT) fields enhance lung-tumor dose without additional predicted toxicity for difficult planning geometries. Methods and Materials: Data from 8 previous three dimensional conformal radiation therapy (3D-CRT) patients with tumors located in various regions of each lung, but with planning target volumes (PTVs) overlapping part of the esophagus, were used as input. Four optimized-beamlet IMRT plans (1 plan that used the 3D-CRT beam arrangement and 3 plans with 3, 5, or 7 axial, but predominantly one-sided, fields) were compared. For IMRT, the equivalent uniform dose (EUD) in the whole PTV was optimized simultaneously with that in a reduced PTV exclusive of the esophagus. Normal-tissue complication probability-based costlets were used for the esophagus, heart, and lung. Results: Overall, IMRT plans (optimized by use of EUD to judiciously allow relaxed PTV dose homogeneity) result in better minimum PTV isodose surface coverage and better average EUD values than does conformal planning; dose generally increases with the number of fields. Even 7-field plans do not significantly alter normal-lung mean-dose values or lung volumes that receive more than 13, 20, or 30 Gy. Conclusion: Optimized many-field IMRT plans can lead to escalated lung-tumor dose in the special case of esophagus overlapping PTV, without unacceptable alteration in the dose distribution to normal lung

  7. The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: A phantom study

    International Nuclear Information System (INIS)

    Yang, Jaewon; Yamamoto, Tokihiro; Mazin, Samuel R.; Graves, Edward E.; Keall, Paul J.

    2014-01-01

    Purpose: This study aims to evaluate the potential and feasibility of positron emission tomography for dynamic lung tumor tracking during radiation treatment. The authors propose a center of mass (CoM) tumor tracking algorithm using gated-PET images combined with a respiratory monitor and investigate the geometric accuracy of the proposed algorithm. Methods: The proposed PET dynamic lung tumor tracking algorithm estimated the target position information through the CoM of the segmented target volume on gated PET images reconstructed from accumulated coincidence events. The information was continuously updated throughout a scan based on the assumption that real-time processing was supported (actual processing time at each frame ≈10 s). External respiratory motion and list-mode PET data were acquired from a phantom programmed to move with measured respiratory traces (external respiratory motion and internal target motion) from human subjects, for which the ground truth target position was known as a function of time. The phantom was cylindrical with six hollow sphere targets (10, 13, 17, 22, 28, and 37 mm in diameter). The measured respiratory traces consisted of two sets: (1) 1D-measured motion from ten healthy volunteers and (2) 3D-measured motion from four lung cancer patients. The authors evaluated the geometric accuracy of the proposed algorithm by quantifying estimation errors (Euclidean distance) between the actual motion of targets (1D-motion and 3D-motion traces) and CoM trajectories estimated by the proposed algorithm as a function of time. Results: The time-averaged error of 1D-motion traces over all trajectories of all targets was 1.6 mm. The error trajectories decreased with time as coincidence events were accumulated. The overall error trajectory of 1D-motion traces converged to within 2 mm in approximately 90 s. As expected, more accurate results were obtained for larger targets. For example, for the 37 mm target, the average error over all 1D

  8. Effect of Audio Coaching on Correlation of Abdominal Displacement With Lung Tumor Motion

    International Nuclear Information System (INIS)

    Nakamura, Mitsuhiro; Narita, Yuichiro; Matsuo, Yukinori; Narabayashi, Masaru; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Nagata, Yasushi; Hiraoka, Masahiro

    2009-01-01

    Purpose: To assess the effect of audio coaching on the time-dependent behavior of the correlation between abdominal motion and lung tumor motion and the corresponding lung tumor position mismatches. Methods and Materials: Six patients who had a lung tumor with a motion range >8 mm were enrolled in the present study. Breathing-synchronized fluoroscopy was performed initially without audio coaching, followed by fluoroscopy with recorded audio coaching for multiple days. Two different measurements, anteroposterior abdominal displacement using the real-time positioning management system and superoinferior (SI) lung tumor motion by X-ray fluoroscopy, were performed simultaneously. Their sequential images were recorded using one display system. The lung tumor position was automatically detected with a template matching technique. The relationship between the abdominal and lung tumor motion was analyzed with and without audio coaching. Results: The mean SI tumor displacement was 10.4 mm without audio coaching and increased to 23.0 mm with audio coaching (p < .01). The correlation coefficients ranged from 0.89 to 0.97 with free breathing. Applying audio coaching, the correlation coefficients improved significantly (range, 0.93-0.99; p < .01), and the SI lung tumor position mismatches became larger in 75% of all sessions. Conclusion: Audio coaching served to increase the degree of correlation and make it more reproducible. In addition, the phase shifts between tumor motion and abdominal displacement were improved; however, all patients breathed more deeply, and the SI lung tumor position mismatches became slightly larger with audio coaching than without audio coaching.

  9. SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, M; Yang, J; Beadle, B [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled according to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of

  10. SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors

    International Nuclear Information System (INIS)

    Aristophanous, M; Yang, J; Beadle, B

    2014-01-01

    Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled according to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of

  11. A comparison of tumor motion characteristics between early stage and locally advanced stage lung cancers

    International Nuclear Information System (INIS)

    Yu, Z. Henry; Lin, Steven H.; Balter, Peter; Zhang Lifei; Dong Lei

    2012-01-01

    Purpose: With the increasing use of conformal radiation therapy methods for non-small cell lung cancer (NSCLC), it is necessary to accurately determine respiratory-induced tumor motion. The purpose of this study is to analyze and compare the motion characteristics of early and locally advanced stage NSCLC tumors in a large population and correlate tumor motion with position, volume, and diaphragm motion. Methods and materials: A total of 191 (94 early stage, 97 locally advanced) non-small cell lung tumors were analyzed for this study. Each patient received a four-dimensional CT scan prior to receiving radiation treatment. A soft-tissue-based rigid registration algorithm was used to track the tumor motion. Tumor volumes were determined based on the gross tumor volume delineated by physicians in the end of expiration phase. Tumor motion characteristics were correlated with their standardized tumor locations, lobe location, and clinical staging. Diaphragm motion was calculated by subtracting the diaphragm location between the expiration and the inspiration phases. Results: Median, max, and 95th percentile of tumor motion for early stage tumors were 5.9 mm, 31.0 mm, and 20.0 mm, which were 1.2 mm, 12 mm, and 7 mm more than those in locally advanced NSCLC, respectively. The range of motion at 95th percentile is more than 50% larger in early stage lung cancer group than in the locally advanced lung cancer group. Early stage tumors in the lower lobe showed the largest motion with a median motion of 9.2 mm, while upper/mid-lobe tumors exhibited a median motion of 3.3 mm. Tumor volumes were not correlated with motion. Conclusion: The range of tumor motion differs depending on tumor location and staging of NSCLC. Early stage tumors are more mobile than locally advanced stage NSCLC. These factors should be considered for general motion management strategies when 4D simulation is not performed on individual basis.

  12. Neonatal congenital lung tumors - the importance of mid-second-trimester ultrasound as a diagnostic clue

    International Nuclear Information System (INIS)

    Waelti, Stephan L.; Garel, Laurent; Rypens, Francoise; Dubois, Josee; Dal Soglio, Dorothee; Messerli, Michael

    2017-01-01

    The differential diagnosis for primary lung masses in neonates includes a variety of developmental abnormalities; it also consists of the much rarer congenital primary lung tumors: cystic pleuropulmonary blastoma (cystic PPB), fetal lung interstitial tumor (FLIT), congenital peribronchial myofibroblastic tumor (CPMT), and congenital fibrosarcoma. Radiologic differentiation between malformations and tumors is often very challenging. The objective was to establish distinctive features between developmental pulmonary abnormalities and primary lung tumors. We conducted a retrospective study of 135 congenital lung lesions at a university mother and child center over a period of 10 years (2005-2015). During this time, we noted four tumors (two cystic PPBs and two FLITs) and 131 malformations. We recorded the following parameters: timing of conspicuity in utero (mid-second trimester, third trimester, or not seen prenatally), presence of symptoms at birth, prenatal and perinatal radiologic findings, and either histological diagnoses by pathology or follow-up imaging in non-operated cases. All lesions except the four tumors were detected during mid-second-trimester ultrasound. In none of the tumors was any pulmonary abnormality found on the mid-second-trimester sonogram, contrary to the developmental pulmonary abnormalities. The timing of conspicuity in utero appears to be a key feature for the differentiation between malformations and tumors. Lesions that were not visible at the mid-second-trimester ultrasound should be considered as tumor. A cystic lung lesion in the context of a normal mid-second-trimester ultrasound is highly suggestive of a cystic PPB. Differentiating the types of solid congenital lung tumors based upon imaging features is not yet feasible. (orig.)

  13. Neonatal congenital lung tumors - the importance of mid-second-trimester ultrasound as a diagnostic clue

    Energy Technology Data Exchange (ETDEWEB)

    Waelti, Stephan L.; Garel, Laurent; Rypens, Francoise; Dubois, Josee [University of Montreal, Department of Medical Imaging, Sainte-Justine Hospital, Quebec (Canada); Dal Soglio, Dorothee [University of Montreal, Department of Pathology, Sainte-Justine Hospital, Quebec (Canada); Messerli, Michael [University Hospital Zurich, University of Zurich, Department of Nuclear Medicine, Zurich (Switzerland)

    2017-12-15

    The differential diagnosis for primary lung masses in neonates includes a variety of developmental abnormalities; it also consists of the much rarer congenital primary lung tumors: cystic pleuropulmonary blastoma (cystic PPB), fetal lung interstitial tumor (FLIT), congenital peribronchial myofibroblastic tumor (CPMT), and congenital fibrosarcoma. Radiologic differentiation between malformations and tumors is often very challenging. The objective was to establish distinctive features between developmental pulmonary abnormalities and primary lung tumors. We conducted a retrospective study of 135 congenital lung lesions at a university mother and child center over a period of 10 years (2005-2015). During this time, we noted four tumors (two cystic PPBs and two FLITs) and 131 malformations. We recorded the following parameters: timing of conspicuity in utero (mid-second trimester, third trimester, or not seen prenatally), presence of symptoms at birth, prenatal and perinatal radiologic findings, and either histological diagnoses by pathology or follow-up imaging in non-operated cases. All lesions except the four tumors were detected during mid-second-trimester ultrasound. In none of the tumors was any pulmonary abnormality found on the mid-second-trimester sonogram, contrary to the developmental pulmonary abnormalities. The timing of conspicuity in utero appears to be a key feature for the differentiation between malformations and tumors. Lesions that were not visible at the mid-second-trimester ultrasound should be considered as tumor. A cystic lung lesion in the context of a normal mid-second-trimester ultrasound is highly suggestive of a cystic PPB. Differentiating the types of solid congenital lung tumors based upon imaging features is not yet feasible. (orig.)

  14. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    International Nuclear Information System (INIS)

    Rymaszewski, Amy L.; Tate, Everett; Yimbesalu, Joannes P.; Gelman, Andrew E.; Jarzembowski, Jason A.; Zhang, Hao; Pritchard, Kirkwood A. Jr.; Vikis, Haris G.

    2014-01-01

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting

  15. The role of neutrophil myeloperoxidase in models of lung tumor development.

    Science.gov (United States)

    Rymaszewski, Amy L; Tate, Everett; Yimbesalu, Joannes P; Gelman, Andrew E; Jarzembowski, Jason A; Zhang, Hao; Pritchard, Kirkwood A; Vikis, Haris G

    2014-05-09

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  16. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    Energy Technology Data Exchange (ETDEWEB)

    Rymaszewski, Amy L.; Tate, Everett; Yimbesalu, Joannes P. [Department of Pharmacology and Toxicology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Gelman, Andrew E. [Department of Surgery, Washington University in St. Louis, St. Louis, MO 63130 (United States); Jarzembowski, Jason A. [Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Zhang, Hao; Pritchard, Kirkwood A. Jr. [Department of Surgery and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Vikis, Haris G., E-mail: hvikis@mcw.edu [Department of Pharmacology and Toxicology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States)

    2014-05-09

    Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA)-initiated, butylated hydroxytoluene (BHT)-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO) activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC), a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC) tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  17. The Role of Neutrophil Myeloperoxidase in Models of Lung Tumor Development

    Directory of Open Access Journals (Sweden)

    Amy L. Rymaszewski

    2014-05-01

    Full Text Available Chronic inflammation plays a key tumor-promoting role in lung cancer. Our previous studies in mice demonstrated that neutrophils are critical mediators of tumor promotion in methylcholanthrene (MCA-initiated, butylated hydroxytoluene (BHT-promoted lung carcinogenesis. In the present study we investigated the role of neutrophil myeloperoxidase (MPO activity in this inflammation promoted model. Increased levels of MPO protein and activity were present in the lungs of mice administered BHT. Treatment of mice with N-acetyl lysyltyrosylcysteine amide (KYC, a novel tripeptide inhibitor of MPO, during the inflammatory stage reduced tumor burden. In a separate tumor model, KYC treatment of a Lewis Lung Carcinoma (LLC tumor graft in mice had no effect on tumor growth, however, mice genetically deficient in MPO had significantly reduced LLC tumor growth. Our observations suggest that MPO catalytic activity is critical during the early stages of tumor development. However, during the later stages of tumor progression, MPO expression independent of catalytic activity appears to be required. Our studies advocate for the use of MPO inhibitors in a lung cancer prevention setting.

  18. Immunohistochemical detection of epidermal growth factor receptor in radiation-induced lung tumors in Beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, N A; Haley, P J; Hahn, F F

    1988-12-01

    Increased levels of epidermal growth factor receptor have been reported in a variety of tumors, including pulmonary squamous cell carcinomas in man. The purpose of this study was to determine if increased levels of epidermal growth factor (EGFR) were present in lung tumors from Beagle dogs that had been exposed to {sup 239}PuO{sub 2}- Using immunohistochemical techniques, sections from 17 lung tumors were examined for the presence of EGFR. Seven of the tumors were strongly positive for EGFR; the remainder of the tumors and the normal lung sections were negative. The positive immunostaining could not be correlated with the histologic phenotype of the tumors. Work is in progress to determine the level of EGFR in preneoplastic, proliferative epithelial foci in the Iung. (author)

  19. MO-AB-BRA-09: Temporally Realistic Manipulation a 4D Biomechanical Lung Phantom for Evaluation of Simultaneous Registration and Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Markel, D; Levesque, I R.; Larkin, J; Leger, P; El Naqa, I [McGill University, Montreal, QC (Canada)

    2015-06-15

    Purpose: To produce multi-modality compatible, realistic datasets for the joint evaluation of segmentation and registration with a reliable ground truth using a 4D biomechanical lung phantom. The further development of a computer controlled air flow system for recreation of real patient breathing patterns is incorporated for additional evaluation of motion prediction algorithms. Methods: A pair of preserved porcine lungs was pneumatically manipulated using an in-house computer controlled respirator. The respirator consisted of a set of bellows actuated by a 186 W computer controlled industrial motor. Patient breathing traces were recorded using a respiratory bellows belt during CT simulation and input into a control program incorporating a proportional-integral-derivative (PID) feedback controller in LabVIEW. Mock tumors were created using dual compartment vacuum sealed sea sponges. 65% iohexol,a gadolinium-based contrast agent and 18F-FDG were used to produce contrast and thus determine a segmentation ground truth. The intensity distributions of the compartments were then digitally matched for the final dataset. A bifurcation tracking pipeline provided a registration ground truth using the bronchi of the lung. The lungs were scanned using a GE Discovery-ST PET/CT scanner and a Phillips Panorama 0.23T MRI using a T1 weighted 3D fast field echo (FFE) protocol. Results: The standard deviation of the error between the patient breathing trace and the encoder feedback from the respirator was found to be ±4.2%. Bifurcation tracking error using CT (0.97×0.97×3.27 mm{sup 3} resolution) was found to be sub-voxel up to 7.8 cm displacement for human lungs and less than 1.32 voxel widths in any axis up to 2.3 cm for the porcine lungs. Conclusion: An MRI/PET/CT compatible anatomically and temporally realistic swine lung phantom was developed for the evaluation of simultaneous registration and segmentation algorithms. With the addition of custom software and mock tumors, the

  20. The management of tumor motions in the stereotactic irradiation to lung cancer under the use of Abches to control active breathing

    Energy Technology Data Exchange (ETDEWEB)

    Tarohda, Tohru I.; Ishiguro, Mitsuru; Hasegawa, Kouhei; Kohda, Yukihiko; Onishi, Hiroaki; Aoki, Tetsuya; Takanaka, Tsuyoshi [Department of Radiology, Asanogawa General Hospital, 83 Kosaka-naka, Kanazawa 920-8621 (Japan); Department of Neurosurgery, Asanogawa General Hospital, 83 Kosaka-naka, Kanazawa 920-8621 (Japan); Naruwa Clinic, 1-16-6 Naruwa, Kanazawa 920-0818 (Japan); Department of Radiation Therapy, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641 (Japan)

    2011-07-15

    displacement with the use of Abches was 4.5 mm (S-I) in the lingular segment. These results suggest that use of the Abches system can reduce deviations in tumor position to levels below those achieved under free breathing, irrespective of the tumor location. Conclusions: Respiratory control with high accuracy and reproducibility is required for high-precision radiotherapy of inoperable nonsmall-cell lung cancer and was achieved using Abches in this study.

  1. Brain tumor segmentation in MRI by using the fuzzy connectedness method

    Science.gov (United States)

    Liu, Jian-Guo; Udupa, Jayaram K.; Hackney, David; Moonis, Gul

    2001-07-01

    The aim of this paper is the precise and accurate quantification of brain tumor via MRI. This is very useful in evaluating disease progression, response to therapy, and the need for changes in treatment plans. We use multiple MRI protocols including FLAIR, T1, and T1 with Gd enhancement to gather information about different aspects of the tumor and its vicinity- edema, active regions, and scar left over due to surgical intervention. We have adapted the fuzzy connectedness framework to segment tumor and to measure its volume. The method requires only limited user interaction in routine clinical MRI. The first step in the process is to apply an intensity normalization method to the images so that the same body region has the same tissue meaning independent of the scanner and patient. Subsequently, a fuzzy connectedness algorithm is utilized to segment the different aspects of the tumor. The system has been tested, for its precision, accuracy, and efficiency, utilizing 40 patient studies. The percent coefficient of variation (% CV) in volume due to operator subjectivity in specifying seeds for fuzzy connectedness segmentation is less than 1%. The mean operator and computer time taken per study is 3 minutes. The package is designed to run under operator supervision. Delineation has been found to agree with the operators' visual inspection most of the time except in some cases when the tumor is close to the boundary of the brain. In the latter case, the scalp is included in the delineation and an operator has to exclude this manually. The methodology is rapid, robust, consistent, yielding highly reproducible measurements, and is likely to become part of the routine evaluation of brain tumor patients in our health system.

  2. Unusual Behavior of a Lung Inflammatory Myofibroblastic Tumor: Case Report.

    Science.gov (United States)

    Rodrigues, Cristina; Cabral, Daniel; Almodovar, Teresa; Ribeiro, Analisa; Delgado, Diogo; Mota, Leonor; Mendes, Samuel; Alvoeiro, Magda; Torres, Carolina; Calado, Telma; Antunes, Mariana; Félix, Francisco

    2017-01-01

    55 years old, male patient. History of heavy smoking (65 UMA) and COPD. Admitted to hospital due to a left pneumonia. Thoracic CT and PET-Scan, showed left lower lobe mass measuring 92x89 mm (SUVmax 49). Several mediastinal node groups presented increased uptake of FDG. A fiberoptic bronchoscopy was performed. Citology of the bronchoalveolar lavage suggested a squamous carcinoma. EBUS of node stations 4R, 4L e 7 without evidence of malignancy. The case was taken to a multidisciplinary meeting staged as IIIA (T3N2M0). Neoadjuvant therapy (four cycles cysplatine and gemcitabine) was decided based on station 5, suspected disease. A left lower lobectomy was performed after a cervical mediastinoscopy excluded metastasis of node stations 4R and 4L. Histology of the specimen was compatible with inflammatory myofibroblastic tumor (IMT). No lymph node involvement was reported. It was restaged as IIB (ypT3N0M0). Three months after surgery one de novo nodule in the lingula with 12,7 of SUVmax was reported. The nodule was removed confirming a IMT metastasis. Four months after the nodule ressection a CT showed new lung and liver nodules. A total oclusion of the left main bronchus was documented and bronchoscopic debulking of the endobronchial mass again revealed IMT. Paliative radiotherapy was decided in the multidisciplinar group targeting the left main bronchus (five sessions of radiotherapy on a dose of 20Gy in 4Gy daily fractions). Ten months after surgery due to the onset of back pain, a CT revealed a sacrum lesion whose needle biopsy was suspicious for multiple myeloma. The patient was referred to another oncological center where previous non-surgical cases had been sent in the past. The patient is now proposed for histology reassessment and discussion by the hematology and pneumology medical teams. Inflammatory myofibrobastic tumors are considered benign or low-grade malignant tumors. The size of the tumour (cut-off of 3 cm) and secure surgical resection with free

  3. SU-G-JeP1-06: Correlation of Lung Tumor Motion with Tumor Location Using Electromagnetic Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Muccigrosso, D; Maughan, N; Parikh, P [Washington University School of Medicine, Saint Louis, MO (United States); Schultejans, H; Bera, R [Lindbergh High School, St. Louis, MO (United States)

    2016-06-15

    Purpose: It is well known that lung tumors move with respiration. However, most measurements of lung tumor motion have studied long treatment times with intermittent imaging; those populations may not necessarily represent conventional LINAC patients. We summarized the correlation between tumor motion and location in a multi-institutional trial with electromagnetic tracking, and identified the patient cohort that would most benefit from respiratory gating. Methods: Continuous electromagnetic transponder data (Varian Medical, Seattle, WA) of lung tumor motion was collected from 14 patients (214 total fractions) across 3 institutions during external beam radiation therapy in a prospective clinical trial (NCT01396551). External intervention from the clinician, such as couch shifts, instructed breath-holds, and acquisition pauses, were manually removed from the 10 Hz tracking data according to recorded notes. The average three-dimensional displacement from the breathing cycle’s end-expiratory to end-inhalation phases (peak-to-peak distance) of the transponders’ isocenter was calculated for each patient’s treatment. A weighted average of each isocenter was used to assess the effects of location on motion. A total of 14 patients were included in this analysis, grouped by their transponders’ location in the lung: upper, medial, and lower. Results: 8 patients had transponders in the upper lung, and 3 patients each in the medial lobe and lower lung. The weighted average ± standard deviation of all peak-to-peak distances for each group was: 1.04 ± 0.39 cm in the lower lung, 0.56 ± 0.14 cm in the medial lung, and 0.30 ± 0.06 cm in the upper lung. Conclusion: Tumors in the lower lung are most susceptible to excessive motion and daily variation, and would benefit most from continuous motion tracking and gating. Those in the medial lobe might be at moderate risk. The upper lobes have limited motion. These results can guide different motion management strategies

  4. Brain tumor segmentation using holistically nested neural networks in MRI images.

    Science.gov (United States)

    Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W

    2017-10-01

    Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of

  5. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    Science.gov (United States)

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  6. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    International Nuclear Information System (INIS)

    Tehrani, Joubin Nasehi; Wang, Jing; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney–Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney–Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney–Rivlin material model along left-right, anterior–posterior, and superior–inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. (paper)

  7. Definition of gross tumor volume in lung cancer: inter-observer variability

    NARCIS (Netherlands)

    van de Steene, Jan; Linthout, Nadine; de Mey, Johan; Vinh-Hung, Vincent; Claassens, Cornelia; Noppen, Marc; Bel, Arjan; Storme, Guy

    2002-01-01

    BACKGROUND AND PURPOSE: To determine the inter-observer variation in gross tumor volume (GTV) definition in lung cancer, and its clinical relevance. MATERIALS AND METHODS: Five clinicians involved in lung cancer were asked to define GTV on the planning CT scan of eight patients. Resulting GTVs were

  8. Audiovisual biofeedback guided breath-hold improves lung tumor position reproducibility and volume consistency

    Directory of Open Access Journals (Sweden)

    Danny Lee, PhD

    2017-07-01

    Conclusions: This study demonstrated that audiovisual biofeedback can be used to improve the reproducibility and consistency of breath-hold lung tumor position and volume, respectively. These results may provide a pathway to achieve more accurate lung cancer radiation treatment in addition to improving various medical imaging and treatments by using breath-hold procedures.

  9. Irradiated large segment allografts in limb saving surgery for extremity tumor - Philippine experience

    International Nuclear Information System (INIS)

    Wang, E.H.M.; Agcaoili, N.; Turqueza, M.S.

    1999-01-01

    Limb saving surgery has only recently become an option in the Phillipines. This has given a better comprehension of oncologic principles and from the refinement of bone-reconstruction procedures. Foremost among the latter is the use of large segment bone allografts. Large-segment allografts (LSA) are available from the Tissue and Bone Bank of the University of the Philippines (UP). After harvest, these bones are processed at the Bank, radiation-sterilized at the Philippine Nuclear Research Institute, and then stored in a -80 degree C deep freezer. We present our 4-year experience (Jan 93 - Dec 96) with LSA for limb saving surgery in musculoskeletal tumors. All patients included had: (1) malignant or aggressive extremity tumors; (2) surgery performed by the UP - Musculoskeletal Tumor Unit (UP-MUST Unit); (3) reconstructions utilizing irradiated large-segment allografts from the UP Tissue and Bone Bank; and (4) follow-up of at least one year or until death. Tumors included osteosarcoma (6) giant cell tumors (11), and metastatic lesions (3). Age ranged from 16-64 years old; 13 males and 7 females. Bones involved were the femur (12) tibia (5) and humerus (3). Average defect length was 15 cm and surgeries performed were intercalary replacement (5), resection arthrodesis (11), hemicondylar allograft (3), and allograft-prosthesis-composite (1). Follow-up ranged was from 17- 60 months or until death. Fifteen (1 5) were alive with NED (no evidence of disease), 3 were dead (2 of disease 1 of other causes), and 2 were AWED (alive with evidence of disease). Functional evaluation using the criteria of the International Society of Limb Salvage (ISOLS) was performed on 18 patients. This averaged 27.5 out of 30 points (92%) for 15 patients. Many having returned to their previous work and recreation. The 3 failures were due to infections in 2 cases (both of whom opted for amputations but who have not been fit with prostheses), and a fracture (secondary to a fall) in one case. Limb

  10. Automated segmentation of tumors on bone scans using anatomy-specific thresholding

    Science.gov (United States)

    Chu, Gregory H.; Lo, Pechin; Kim, Hyun J.; Lu, Peiyun; Ramakrishna, Bharath; Gjertson, David; Poon, Cheryce; Auerbach, Martin; Goldin, Jonathan; Brown, Matthew S.

    2012-03-01

    Quantification of overall tumor area on bone scans may be a potential biomarker for treatment response assessment and has, to date, not been investigated. Segmentation of bone metastases on bone scans is a fundamental step for this response marker. In this paper, we propose a fully automated computerized method for the segmentation of bone metastases on bone scans, taking into account characteristics of different anatomic regions. A scan is first segmented into anatomic regions via an atlas-based segmentation procedure, which involves non-rigidly registering a labeled atlas scan to the patient scan. Next, an intensity normalization method is applied to account for varying levels of radiotracer dosing levels and scan timing. Lastly, lesions are segmented via anatomic regionspecific intensity thresholding. Thresholds are chosen by receiver operating characteristic (ROC) curve analysis against manual contouring by board certified nuclear medicine physicians. A leave-one-out cross validation of our method on a set of 39 bone scans with metastases marked by 2 board-certified nuclear medicine physicians yielded a median sensitivity of 95.5%, and specificity of 93.9%. Our method was compared with a global intensity thresholding method. The results show a comparable sensitivity and significantly improved overall specificity, with a p-value of 0.0069.

  11. Texture analysis of automatic graph cuts segmentations for detection of lung cancer recurrence after stereotactic radiotherapy

    Science.gov (United States)

    Mattonen, Sarah A.; Palma, David A.; Haasbeek, Cornelis J. A.; Senan, Suresh; Ward, Aaron D.

    2015-03-01

    Stereotactic ablative radiotherapy (SABR) is a treatment for early-stage lung cancer with local control rates comparable to surgery. After SABR, benign radiation induced lung injury (RILI) results in tumour-mimicking changes on computed tomography (CT) imaging. Distinguishing recurrence from RILI is a critical clinical decision determining the need for potentially life-saving salvage therapies whose high risks in this population dictate their use only for true recurrences. Current approaches do not reliably detect recurrence within a year post-SABR. We measured the detection accuracy of texture features within automatically determined regions of interest, with the only operator input being the single line segment measuring tumour diameter, normally taken during the clinical workflow. Our leave-one-out cross validation on images taken 2-5 months post-SABR showed robustness of the entropy measure, with classification error of 26% and area under the receiver operating characteristic curve (AUC) of 0.77 using automatic segmentation; the results using manual segmentation were 24% and 0.75, respectively. AUCs for this feature increased to 0.82 and 0.93 at 8-14 months and 14-20 months post SABR, respectively, suggesting even better performance nearer to the date of clinical diagnosis of recurrence; thus this system could also be used to support and reinforce the physician's decision at that time. Based on our ongoing validation of this automatic approach on a larger sample, we aim to develop a computer-aided diagnosis system which will support the physician's decision to apply timely salvage therapies and prevent patients with RILI from undergoing invasive and risky procedures.

  12. SU-G-BRA-04: Simulation of Errors in Maximal Intensity Projection (MIP)-Based Lung Tumor Internal Target Volumes (ITV) Using Real-Time 2D MRI and Deformable Image Registration Based Lung Tumor Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D; Kishan, A; Santhanam, A; Min, Y; O’Connell, D; Lamb, J; Cao, M; Agazaryan, N; Yang, Y; Lee, P; Low, D [University of California, Los Angeles, Ca (United States)

    2016-06-15

    Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the first frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric

  13. SU-G-BRA-04: Simulation of Errors in Maximal Intensity Projection (MIP)-Based Lung Tumor Internal Target Volumes (ITV) Using Real-Time 2D MRI and Deformable Image Registration Based Lung Tumor Tracking

    International Nuclear Information System (INIS)

    Thomas, D; Kishan, A; Santhanam, A; Min, Y; O’Connell, D; Lamb, J; Cao, M; Agazaryan, N; Yang, Y; Lee, P; Low, D

    2016-01-01

    Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the first frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric

  14. SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning

    International Nuclear Information System (INIS)

    Kim, J; Han, J; Ailawadi, S; Baker, J; Hsia, A; Xu, Z; Ryu, S

    2016-01-01

    Purpose: Normal organ segmentation is one time-consuming and labor-intensive step for lung radiotherapy treatment planning. The aim of this study is to evaluate the performance of a multi-atlas based segmentation approach for automatic organs at risk (OAR) delineation. Methods: Fifteen Lung stereotactic body radiation therapy patients were randomly selected. Planning CT images and OAR contours of the heart - HT, aorta - AO, vena cava - VC, pulmonary trunk - PT, and esophagus – ES were exported and used as reference and atlas sets. For automatic organ delineation for a given target CT, 1) all atlas sets were deformably warped to the target CT, 2) the deformed sets were accumulated and normalized to produce organ probability density (OPD) maps, and 3) the OPD maps were converted to contours via image thresholding. Optimal threshold for each organ was empirically determined by comparing the auto-segmented contours against their respective reference contours. The delineated results were evaluated by measuring contour similarity metrics: DICE, mean distance (MD), and true detection rate (TD), where DICE=(intersection volume/sum of two volumes) and TD = {1.0 - (false positive + false negative)/2.0}. Diffeomorphic Demons algorithm was employed for CT-CT deformable image registrations. Results: Optimal thresholds were determined to be 0.53 for HT, 0.38 for AO, 0.28 for PT, 0.43 for VC, and 0.31 for ES. The mean similarity metrics (DICE[%], MD[mm], TD[%]) were (88, 3.2, 89) for HT, (79, 3.2, 82) for AO, (75, 2.7, 77) for PT, (68, 3.4, 73) for VC, and (51,2.7, 60) for ES. Conclusion: The investigated multi-atlas based approach produced reliable segmentations for the organs with large and relatively clear boundaries (HT and AO). However, the detection of small and narrow organs with diffused boundaries (ES) were challenging. Sophisticated atlas selection and multi-atlas fusion algorithms may further improve the quality of segmentations.

  15. SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Han, J; Ailawadi, S; Baker, J; Hsia, A; Xu, Z; Ryu, S [Stony Brook University Hospital, Stony Brook, NY (United States)

    2016-06-15

    Purpose: Normal organ segmentation is one time-consuming and labor-intensive step for lung radiotherapy treatment planning. The aim of this study is to evaluate the performance of a multi-atlas based segmentation approach for automatic organs at risk (OAR) delineation. Methods: Fifteen Lung stereotactic body radiation therapy patients were randomly selected. Planning CT images and OAR contours of the heart - HT, aorta - AO, vena cava - VC, pulmonary trunk - PT, and esophagus – ES were exported and used as reference and atlas sets. For automatic organ delineation for a given target CT, 1) all atlas sets were deformably warped to the target CT, 2) the deformed sets were accumulated and normalized to produce organ probability density (OPD) maps, and 3) the OPD maps were converted to contours via image thresholding. Optimal threshold for each organ was empirically determined by comparing the auto-segmented contours against their respective reference contours. The delineated results were evaluated by measuring contour similarity metrics: DICE, mean distance (MD), and true detection rate (TD), where DICE=(intersection volume/sum of two volumes) and TD = {1.0 - (false positive + false negative)/2.0}. Diffeomorphic Demons algorithm was employed for CT-CT deformable image registrations. Results: Optimal thresholds were determined to be 0.53 for HT, 0.38 for AO, 0.28 for PT, 0.43 for VC, and 0.31 for ES. The mean similarity metrics (DICE[%], MD[mm], TD[%]) were (88, 3.2, 89) for HT, (79, 3.2, 82) for AO, (75, 2.7, 77) for PT, (68, 3.4, 73) for VC, and (51,2.7, 60) for ES. Conclusion: The investigated multi-atlas based approach produced reliable segmentations for the organs with large and relatively clear boundaries (HT and AO). However, the detection of small and narrow organs with diffused boundaries (ES) were challenging. Sophisticated atlas selection and multi-atlas fusion algorithms may further improve the quality of segmentations.

  16. Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model

    Directory of Open Access Journals (Sweden)

    Ferrone Soldano

    2007-06-01

    Full Text Available Abstract Background The anti-tumor efficacy of human immune effector cells, such as cytolytic T lymphocytes (CTLs, has been difficult to study in lung cancer patients in the clinical setting. Improved experimental models for the study of lung tumor-immune cell interaction as well as for evaluating the efficacy of adoptive transfer of immune effector cells are needed. Methods To address questions related to the in vivo interaction of human lung tumor cells and immune effector cells, we obtained an HLA class I + lung tumor cell line from a fresh surgical specimen, and using the infiltrating immune cells, isolated and characterized tumor antigen-specific, CD8+ CTLs. We then established a SCID mouse-human tumor xenograft model with the tumor cell line and used it to study the function of the autologous CTLs provided via adoptive transfer. Results The tumor antigen specific CTLs isolated from the tumor were found to have an activated memory phenotype and able to kill tumor cells in an antigen specific manner in vitro. Additionally, the tumor antigen-specific CTLs were fully capable of homing to and killing autologous tumors in vivo, and expressing IFN-γ, each in an antigen-dependent manner. A single injection of these CTLs was able to provide significant but temporary control of the growth of autologous tumors in vivo without the need for IL-2. The timing of injection of CTLs played an essential role in the outcome of tumor growth control. Moreover, immunohistochemical analysis of surviving tumor cells following CTL treatment indicated that the surviving tumor cells expressed reduced MHC class I antigens on their surface. Conclusion These studies confirm and extend previous studies and provide additional information regarding the characteristics of CTLs which can be found within a patient's tumor. Moreover, the in vivo model described here provides a unique window for observing events that may also occur in patients undergoing adoptive cellular

  17. Radical stereotactic radiosurgery with real-time tumor motion tracking in the treatment of small peripheral lung tumors

    Directory of Open Access Journals (Sweden)

    Chang Thomas

    2007-10-01

    Full Text Available Abstract Background Recent developments in radiotherapeutic technology have resulted in a new approach to treating patients with localized lung cancer. We report preliminary clinical outcomes using stereotactic radiosurgery with real-time tumor motion tracking to treat small peripheral lung tumors. Methods Eligible patients were treated over a 24-month period and followed for a minimum of 6 months. Fiducials (3–5 were placed in or near tumors under CT-guidance. Non-isocentric treatment plans with 5-mm margins were generated. Patients received 45–60 Gy in 3 equal fractions delivered in less than 2 weeks. CT imaging and routine pulmonary function tests were completed at 3, 6, 12, 18, 24 and 30 months. Results Twenty-four consecutive patients were treated, 15 with stage I lung cancer and 9 with single lung metastases. Pneumothorax was a complication of fiducial placement in 7 patients, requiring tube thoracostomy in 4. All patients completed radiation treatment with minimal discomfort, few acute side effects and no procedure-related mortalities. Following treatment transient chest wall discomfort, typically lasting several weeks, developed in 7 of 11 patients with lesions within 5 mm of the pleura. Grade III pneumonitis was seen in 2 patients, one with prior conventional thoracic irradiation and the other treated with concurrent Gefitinib. A small statistically significant decline in the mean % predicted DLCO was observed at 6 and 12 months. All tumors responded to treatment at 3 months and local failure was seen in only 2 single metastases. There have been no regional lymph node recurrences. At a median follow-up of 12 months, the crude survival rate is 83%, with 3 deaths due to co-morbidities and 1 secondary to metastatic disease. Conclusion Radical stereotactic radiosurgery with real-time tumor motion tracking is a promising well-tolerated treatment option for small peripheral lung tumors.

  18. Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction

    Directory of Open Access Journals (Sweden)

    Jinke Wang

    2016-01-01

    Full Text Available This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD 11.15±69.63 cm3, volume overlap error (VOE 3.5057±1.3719%, average surface distance (ASD 0.7917±0.2741 mm, root mean square distance (RMSD 1.6957±0.6568 mm, maximum symmetric absolute surface distance (MSD 21.3430±8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.

  19. Segmental microvascular permeability in ischemia-reperfusion injury in rat lung.

    Science.gov (United States)

    Khimenko, P L; Taylor, A E

    1999-06-01

    Segmental microvascular permeabilities were measured using pre- and postalveolar vessel capillary filtration coefficient (Kfc) values (ml. min-1. cmH2O-1. 100 g-1) in isolated rat lungs subjected to ischemia-reperfusion (I/R). Total Kfc values measured in flowing and nonflowing lungs were highly correlated (r = 0.98, P Kfc values were then measured in another group of lungs under no-flow conditions when airway pressure was increased to 20 cmH2O and either the arterial or venous pressure was elevated to 7-8 cmH2O to measure the prealveolar and postalveolar Kfc values. Control total and postalveolar Kfc values were 0.0225 +/- 0.001 and 0.0219 +/- 0.001 ml. min-1. cmH2O-1. 100 g-1, respectively, and the prealveolar permeability was extremely small (0.00003 +/- 0.00005 ml. min-1. cmH2O-1. 100 g-1). Kfc values were again made in nonflowing lungs that had been subjected to 45 min of ischemia followed by 30 min of reperfusion. After I/R, the total membrane Kfc increased 10-fold to 0.2597 +/- 0.006 ml. min-1. cmH2O-1. 100 g-1, the prealveolar Kfc increased to 0.0677 +/- 0.003 ml. min-1. cmH2O-1. 100 g-1, and the postalveolar Kfc increased to 0.1354 +/- 0.008 ml. min-1. cmH2O-1. 100 g-1 (P Kfc.

  20. Classification of primary lung tumors in dogs: 210 cases (1975-1985)

    International Nuclear Information System (INIS)

    Ogilvie, G.K.; Haschek, W.M.; Withrow, S.J.; Richardson, R.C.; Harvey, H.J.; Henderson, R.A.; Fowler, J.D.; Norris, A.M.; Tomlinson, J.; McCaw, D.

    1989-01-01

    Two hundred ten dogs that had primary lung tumors diagnosed between 1975 and 1985 were evaluated. The majority of the tumors were classified as adenocarcinoma (74.8%) and alveolar carcinoma (20%). The most common clinical signs of disease were cough (52%), dyspnea (23.8%), lethargy (18.1%), weight loss (12.4%), and tachypnea (4.8%). The clinical methods that were most successful in directly or indirectly leading to a diagnosis of primary lung tumor were thoracic radiography (77.1%) and cytologic examination of fine-needle aspirate specimens (24.8%)

  1. Enhanced inflammation and attenuated tumor suppressor pathways are associated with oncogene-induced lung tumors in aged mice

    Science.gov (United States)

    Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3-5 months) and old (19-24 months) mice. Activati...

  2. Lung segmentation refinement based on optimal surface finding utilizing a hybrid desktop/virtual reality user interface.

    Science.gov (United States)

    Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R

    2013-01-01

    Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation of 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54±0.75 mm prior to refinement vs. 1.11±0.43 mm post-refinement, p≪0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction was about 2 min per case. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the

  3. Lung Segmentation Refinement based on Optimal Surface Finding Utilizing a Hybrid Desktop/Virtual Reality User Interface

    Science.gov (United States)

    Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R.

    2013-01-01

    Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation on 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54 ± 0.75 mm prior to refinement vs. 1.11 ± 0.43 mm post-refinement, p ≪ 0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction per case was about 2 min. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation

  4. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy

    International Nuclear Information System (INIS)

    Shirzadi, Zahra; Sadeghi-Naini, Ali; Samani, Abbas

    2013-01-01

    Purpose: A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Estimating lung tissue incompressibility parameter variations resulting from air content variation throughout respiration is critical for computer assisted tumor motion tracking. Continuous tumor motion is a major challenge in lung cancer radiotherapy, especially with external beam radiotherapy. If not accounted for, this motion may lead to areas of radiation overdosage for normal tissue. Given the unavailability of imaging modality that can be used effectively for real-time lung tumor tracking, computer assisted approach based on tissue deformation estimation can be a good alternative. This approach involves lung biomechanical model where its fidelity depends on input tissue properties. This investigation shows that considering variable tissue incompressibility parameter is very important for predicting tumor motion accurately, hence improving the lung radiotherapy outcome. Methods: First, an in silico lung phantom study was conducted to demonstrate the importance of employing variable Poisson's ratio for tumor motion predication. After it was established that modeling this variability is critical for accurate tumor motion prediction, an optimization based technique was developed to estimate lung tissue Poisson's ratio as a function of respiration cycle time. In this technique, the Poisson's ratio and lung pressure value were varied systematically until optimal values were obtained, leading to maximum similarity between acquired and simulated 4D CT lung images. This technique was applied in an ex vivo porcine lung study where simulated images were constructed using the end exhale CT image and deformation fields obtained from the lung's FE modeling of each respiration time increment. To model the tissue, linear elastic and Marlow hyperelastic material models in conjunction with variable Poisson's ratio were used. Results: The phantom study showed that

  5. Diagnostic value of CEA and CYFRA 21-1 tumor markers in primary lung cancer.

    Science.gov (United States)

    Okamura, Kyoko; Takayama, Koichi; Izumi, Miiru; Harada, Taishi; Furuyama, Kazuto; Nakanishi, Yoichi

    2013-04-01

    Lung cancer is sometimes difficult to differentiate from benign lung diseases expressing nodular shadow in imaging study. We assessed the diagnostic value of two commonly used tumor markers in distinguishing primary lung cancer from benign lung disease. The serum levels of carcinoembryonic antigen (CEA) and cytokeratin 19 fragments (CYFRA 21-1) were retrospectively analyzed in 655 lung cancer patients and 237 patients with benign lung disease. The standard cut-off levels of 3.2 ng/mL CEA and 3.5 ng/mL CYFRA 21-1 and twice these respective levels (6.4 ng/mL and 7.0 ng/mL) were used. CEA and CYFRA 21-1 levels were elevated in 32% and 11% of benign lung disease patients, respectively. CEA sensitivity and specificity for lung cancer diagnosis was 69% and 68% respectively, while that for CYFRA 21-1 was 43% and 89%, respectively. Thus, the combined value for the specificity of the two tumor markers was greater than either alone. Patients were grouped depending on their hospital status, and prevalence rates were determined. The prevalence rate of lung cancer in admitted patients was 51%, the prevalence rate of lung cancer in outpatients was 12%, and the prevalence rate of lung cancer identified during health check-ups was 0.1%. Positive predictive values (PPVs) were calculated using Bayes' theorem, and varied with the serum tumor marker and prevalence rate: PPVs of CEA [prevalence rate] were 69.2% [51%], 22.7% [12%], and 0.22% [0.1%], while PPVs of CYFRA 21-1 were 80.3% [51%], 34.8% [12%], and 0.39% [0.1%]. However, PPVs for lung cancer diagnosis at a prevalence rate of 51% were 87.3% or higher when the patient exhibited positive CEA and CYFRA 21-1, or CEA or CYFRA 21-1 levels twice the standard cut-off. Our results indicate that CEA and CYFRA 21-1 are reliable serum tumor markers for the diagnosis of lung cancer in addition to CT scans when combined or used individually at twice the standard cut-off level in high prevalence rate groups. The prevalence rate should

  6. Reproducibility of Lobar Perfusion and Ventilation Quantification Using SPECT/CT Segmentation Software in Lung Cancer Patients.

    Science.gov (United States)

    Provost, Karine; Leblond, Antoine; Gauthier-Lemire, Annie; Filion, Édith; Bahig, Houda; Lord, Martin

    2017-09-01

    Planar perfusion scintigraphy with 99m Tc-labeled macroaggregated albumin is often used for pretherapy quantification of regional lung perfusion in lung cancer patients, particularly those with poor respiratory function. However, subdividing lung parenchyma into rectangular regions of interest, as done on planar images, is a poor reflection of true lobar anatomy. New tridimensional methods using SPECT and SPECT/CT have been introduced, including semiautomatic lung segmentation software. The present study evaluated inter- and intraobserver agreement on quantification using SPECT/CT software and compared the results for regional lung contribution obtained with SPECT/CT and planar scintigraphy. Methods: Thirty lung cancer patients underwent ventilation-perfusion scintigraphy with 99m Tc-macroaggregated albumin and 99m Tc-Technegas. The regional lung contribution to perfusion and ventilation was measured on both planar scintigraphy and SPECT/CT using semiautomatic lung segmentation software by 2 observers. Interobserver and intraobserver agreement for the SPECT/CT software was assessed using the intraclass correlation coefficient, Bland-Altman plots, and absolute differences in measurements. Measurements from planar and tridimensional methods were compared using the paired-sample t test and mean absolute differences. Results: Intraclass correlation coefficients were in the excellent range (above 0.9) for both interobserver and intraobserver agreement using the SPECT/CT software. Bland-Altman analyses showed very narrow limits of agreement. Absolute differences were below 2.0% in 96% of both interobserver and intraobserver measurements. There was a statistically significant difference between planar and SPECT/CT methods ( P software is highly reproducible. This tridimensional method yields statistically significant differences in measurements for right lung lobes when compared with planar scintigraphy. We recommend that SPECT/CT-based quantification be used for all lung

  7. Malignant Phyllodes Tumor Presenting in Bone, Brain, Lungs, and Lymph Nodes

    Directory of Open Access Journals (Sweden)

    Eric D. Johnson

    2016-12-01

    Full Text Available Introduction: Phyllodes tumors (PTs are rare fibroepithelial tumors of the breast which are classified as benign, borderline, or malignant. Malignant PTs account for <1% of malignant breast tumors, and borderline tumors have potential to progress to malignant tumors. Metastatic recurrences are most commonly documented in bone and lungs. We report an extremely rare presentation of recurrent malignant PTs involving the brain, lung, lymph nodes, and bone. Case: A 66-year-old female presented with a large breast mass. Biopsy identified malignant PT, treated by mastectomy. One year later she presented with acute back pain; imaging showed pathological L4 spinal compression fracture. Core biopsy confirmed PT. Staging identified additional metastases in the lymph nodes, brain, and lung. Discussion: PTs are rare and fast-growing tumors that originate from periductal stromal tissues and are composed of both epithelial and stromal components. Histologically, they are classified as benign, borderline, or malignant. The prognosis of the malignant type is poorly defined, with local recurrence occurring in 10–40% and metastases in 10%. Chemotherapy and radiotherapy are generally ineffective in this tumor type. The most common metastatic sites for malignant cases are the lung and bones, but in rare instances, PTs may metastasize elsewhere. Conclusion: We report a rare presentation of recurrent malignant PT presenting as pathological fracture of the lumbar spine with impingement on the spinal column, along with cerebellar, nodal, and pulmonary metastases. Only 1 similar case has been previously reported.

  8. Region of interest-based versus whole-lung segmentation-based approach for MR lung perfusion quantification in 2-year-old children after congenital diaphragmatic hernia repair

    Energy Technology Data Exchange (ETDEWEB)

    Weis, M.; Sommer, V.; Hagelstein, C.; Schoenberg, S.O.; Neff, K.W. [Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Zoellner, F.G. [Heidelberg University, Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim (Germany); Zahn, K. [University of Heidelberg, Department of Paediatric Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Schaible, T. [Heidelberg University, Department of Paediatrics, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany)

    2016-12-15

    With a region of interest (ROI)-based approach 2-year-old children after congenital diaphragmatic hernia (CDH) show reduced MR lung perfusion values on the ipsilateral side compared to the contralateral. This study evaluates whether results can be reproduced by segmentation of whole-lung and whether there are differences between the ROI-based and whole-lung measurements. Using dynamic contrast-enhanced (DCE) MRI, pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) were quantified in 30 children after CDH repair. Quantification results of an ROI-based (six cylindrical ROIs generated of five adjacent slices per lung-side) and a whole-lung segmentation approach were compared. In both approaches PBF and PBV were significantly reduced on the ipsilateral side (p always <0.0001). In ipsilateral lungs, PBF of the ROI-based and the whole-lung segmentation-based approach was equal (p=0.50). In contralateral lungs, the ROI-based approach significantly overestimated PBF in comparison to the whole-lung segmentation approach by approximately 9.5 % (p=0.0013). MR lung perfusion in 2-year-old children after CDH is significantly reduced ipsilaterally. In the contralateral lung, the ROI-based approach significantly overestimates perfusion, which can be explained by exclusion of the most ventral parts of the lung. Therefore whole-lung segmentation should be preferred. (orig.)

  9. Region of interest-based versus whole-lung segmentation-based approach for MR lung perfusion quantification in 2-year-old children after congenital diaphragmatic hernia repair

    International Nuclear Information System (INIS)

    Weis, M.; Sommer, V.; Hagelstein, C.; Schoenberg, S.O.; Neff, K.W.; Zoellner, F.G.; Zahn, K.; Schaible, T.

    2016-01-01

    With a region of interest (ROI)-based approach 2-year-old children after congenital diaphragmatic hernia (CDH) show reduced MR lung perfusion values on the ipsilateral side compared to the contralateral. This study evaluates whether results can be reproduced by segmentation of whole-lung and whether there are differences between the ROI-based and whole-lung measurements. Using dynamic contrast-enhanced (DCE) MRI, pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) were quantified in 30 children after CDH repair. Quantification results of an ROI-based (six cylindrical ROIs generated of five adjacent slices per lung-side) and a whole-lung segmentation approach were compared. In both approaches PBF and PBV were significantly reduced on the ipsilateral side (p always <0.0001). In ipsilateral lungs, PBF of the ROI-based and the whole-lung segmentation-based approach was equal (p=0.50). In contralateral lungs, the ROI-based approach significantly overestimated PBF in comparison to the whole-lung segmentation approach by approximately 9.5 % (p=0.0013). MR lung perfusion in 2-year-old children after CDH is significantly reduced ipsilaterally. In the contralateral lung, the ROI-based approach significantly overestimates perfusion, which can be explained by exclusion of the most ventral parts of the lung. Therefore whole-lung segmentation should be preferred. (orig.)

  10. FLAIR lesion segmentation: Application in patients with brain tumors and acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Artzi, Moran, E-mail: artzimy@gmail.com [The Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Aizenstein, Orna, E-mail: ornaaize@gmail.com [The Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Jonas-Kimchi, Tali, E-mail: talijk@tlvmc.gov.il [Radiology Department, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Myers, Vicki, E-mail: vicki_myers@hotmail.com [The Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Hallevi, Hen, E-mail: hen.hallevi@gmail.com [Neurology Department, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Ben Bashat, Dafna, E-mail: dafnab@tlvmc.gov.il [The Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-09-15

    Background: Lesion size in fluid attenuation inversion recovery (FLAIR) images is an important clinical parameter for patient assessment and follow-up. Although manual delineation of lesion areas considered as ground truth, it is time-consuming, highly user-dependent and difficult to perform in areas of indistinct borders. In this study, an automatic methodology for FLAIR lesion segmentation is proposed, and its application in patients with brain tumors undergoing therapy; and in patients following stroke is demonstrated. Materials and methods: FLAIR lesion segmentation was performed in 57 magnetic resonance imaging (MRI) data sets obtained from 44 patients: 28 patients with primary brain tumors; 5 patients with recurrent-progressive glioblastoma (rGB) who were scanned longitudinally during anti-angiogenic therapy (18 MRI scans); and 11 patients following ischemic stroke. Results: FLAIR lesion segmentation was obtained in all patients. When compared to manual delineation, a high visual similarity was observed, with an absolute relative volume difference of 16.80% and 20.96% and a volumetric overlap error of 24.87% and 27.50% obtained for two raters: accepted values for automatic methods. Quantitative measurements of the segmented lesion volumes were in line with qualitative radiological assessment in four patients who received anti-anogiogenic drugs. In stroke patients the proposed methodology enabled identification of the ischemic lesion and differentiation from other FLAIR hyperintense areas, such as pre-existing disease. Conclusion: This study proposed a replicable methodology for FLAIR lesion detection and quantification and for discrimination between lesion of interest and pre-existing disease. Results from this study show the wide clinical applications of this methodology in research and clinical practice.

  11. FLAIR lesion segmentation: Application in patients with brain tumors and acute ischemic stroke

    International Nuclear Information System (INIS)

    Artzi, Moran; Aizenstein, Orna; Jonas-Kimchi, Tali; Myers, Vicki; Hallevi, Hen; Ben Bashat, Dafna

    2013-01-01

    Background: Lesion size in fluid attenuation inversion recovery (FLAIR) images is an important clinical parameter for patient assessment and follow-up. Although manual delineation of lesion areas considered as ground truth, it is time-consuming, highly user-dependent and difficult to perform in areas of indistinct borders. In this study, an automatic methodology for FLAIR lesion segmentation is proposed, and its application in patients with brain tumors undergoing therapy; and in patients following stroke is demonstrated. Materials and methods: FLAIR lesion segmentation was performed in 57 magnetic resonance imaging (MRI) data sets obtained from 44 patients: 28 patients with primary brain tumors; 5 patients with recurrent-progressive glioblastoma (rGB) who were scanned longitudinally during anti-angiogenic therapy (18 MRI scans); and 11 patients following ischemic stroke. Results: FLAIR lesion segmentation was obtained in all patients. When compared to manual delineation, a high visual similarity was observed, with an absolute relative volume difference of 16.80% and 20.96% and a volumetric overlap error of 24.87% and 27.50% obtained for two raters: accepted values for automatic methods. Quantitative measurements of the segmented lesion volumes were in line with qualitative radiological assessment in four patients who received anti-anogiogenic drugs. In stroke patients the proposed methodology enabled identification of the ischemic lesion and differentiation from other FLAIR hyperintense areas, such as pre-existing disease. Conclusion: This study proposed a replicable methodology for FLAIR lesion detection and quantification and for discrimination between lesion of interest and pre-existing disease. Results from this study show the wide clinical applications of this methodology in research and clinical practice

  12. Investigation of the Relationship Between Gross Tumor Volume Location and Pneumonitis Rates Using a Large Clinical Database of Non-Small-Cell Lung Cancer Patients

    International Nuclear Information System (INIS)

    Vinogradskiy, Yevgeniy; Tucker, Susan L.; Liao Zhongxing; Martel, Mary K.

    2012-01-01

    Purpose: Studies have suggested that function may vary throughout the lung, and that patients who have tumors located in the base of the lung are more susceptible to radiation pneumonitis. The purpose of our study was to investigate the relationship between gross tumor volume (GTV) location and pneumonitis rates using a large clinical database of 547 patients with non–small-cell lung cancer. Methods and Materials: The GTV centroids of all patients were mapped onto one common coordinate system, in which the boundaries of the coordinate system were defined by the extreme points of each individual patient lung. The data were qualitatively analyzed by graphing all centroids and displaying the data according to the presence of severe pneumonitis, tumor stage, and smoking status. The centroids were grouped according to superior–inferior segments, and the pneumonitis rates were analyzed. In addition, we incorporated the GTV centroid information into a Lyman–Kutcher–Burman normal tissue complication probability model and tested whether adding spatial information significantly improved the fit of the model. Results: Of the 547 patients analyzed, 111 (20.3%) experienced severe radiation pneumonitis. The pneumonitis incidence rates were 16%, 23%, and 21% for the superior, middle, and inferior thirds of the lung, respectively. Qualitatively, the GTV centroids of nonsmokers were notably absent from the superior portion of the lung. In addition, the GTV centroids of patients who had Stage III and IV clinical staging were concentrated toward the medial edge of the lung. The comparison between the GTV centroid model and the conventional dose–volume model did not yield a statistically significant difference in model fit. Conclusions: Lower pneumonitis rates were noted for the superior portion of the lung; however the differences were not statistically significant. For our patient cohort, incorporating GTV centroid information did not lead to a statistically significant

  13. Investigation of the relationship between gross tumor volume location and pneumonitis rates using a large clinical database of non-small-cell lung cancer patients.

    Science.gov (United States)

    Vinogradskiy, Yevgeniy; Tucker, Susan L; Liao, Zhongxing; Martel, Mary K

    2012-04-01

    Studies have suggested that function may vary throughout the lung, and that patients who have tumors located in the base of the lung are more susceptible to radiation pneumonitis. The purpose of our study was to investigate the relationship between gross tumor volume (GTV) location and pneumonitis rates using a large clinical database of 547 patients with non-small-cell lung cancer. The GTV centroids of all patients were mapped onto one common coordinate system, in which the boundaries of the coordinate system were defined by the extreme points of each individual patient lung. The data were qualitatively analyzed by graphing all centroids and displaying the data according to the presence of severe pneumonitis, tumor stage, and smoking status. The centroids were grouped according to superior-inferior segments, and the pneumonitis rates were analyzed. In addition, we incorporated the GTV centroid information into a Lyman-Kutcher-Burman normal tissue complication probability model and tested whether adding spatial information significantly improved the fit of the model. Of the 547 patients analyzed, 111 (20.3%) experienced severe radiation pneumonitis. The pneumonitis incidence rates were 16%, 23%, and 21% for the superior, middle, and inferior thirds of the lung, respectively. Qualitatively, the GTV centroids of nonsmokers were notably absent from the superior portion of the lung. In addition, the GTV centroids of patients who had Stage III and IV clinical staging were concentrated toward the medial edge of the lung. The comparison between the GTV centroid model and the conventional dose-volume model did not yield a statistically significant difference in model fit. Lower pneumonitis rates were noted for the superior portion of the lung; however the differences were not statistically significant. For our patient cohort, incorporating GTV centroid information did not lead to a statistically significant improvement in the fit of the pneumonitis model. Copyright

  14. Metastatic Lung Lesions as a Preferred Resection Site for Immunotherapy With Tumor Infiltrating Lymphocytes.

    Science.gov (United States)

    Ben-Avi, Ronny; Itzhaki, Orit; Simansky, David; Zippel, Dov; Markel, Gal; Ben Nun, Alon; Schachter, Jacob; Besser, Michal J

    2016-06-01

    Adoptive cell therapy with tumor infiltrating lymphocytes (TIL) yields 50% response rates in metastatic melanoma and shows promising clinical results in other solid tumors. Autologous TIL cultures are isolated from resected tumor tissue, expanded ex vivo to large numbers and reinfused to the preconditioned patient. In this prospective study, we validate the origin of the tumor biopsy and its effect on T-cell function and clinical response. One hundred forty-four patients underwent surgery and 79 patients were treated with TIL adoptive cell therapy. Cultures from lung tissue were compared with other origins. The success rate of establishing TIL culture from lung tissue was significantly higher compared with nonlung tissue (94% vs. 72%, respectively, P≤0.003). Lung-derived TIL cultures gave rise to higher cell numbers (P≤0.011) and exhibited increased in vitro antitumor reactivity. The average fold expansion for lung-derived TIL during a rapid expansion procedure was 1349±557 compared with 1061±473 for nonlung TIL (P≤0.038). Patients treated with TIL cultures of lung origin (compared with nonlung) had prolonged median overall survival (29 vs. 9.5 mo; P≤0.065). Given the remarkable advancement in minimally invasive thoracic surgery and the results of this study, we suggest efforts should be taken to resect lung metastasis rather than other sites to generate TIL cultures for clinical use.

  15. Impact of endobronchial coiling on segmental bronchial lumen in treated and untreated lung lobes: Correlation with changes in lung volume, clinical and pulmonary function tests.

    Science.gov (United States)

    Kloth, C; Thaiss, W M; Hetzel, J; Ditt, H; Grosse, U; Nikolaou, K; Horger, M

    2016-07-01

    To assess the impact of endobronchial coiling on the segment bronchus cross-sectional area and volumes in patients with lung emphysema using quantitative chest-CT measurements. Thirty patients (female = 15; median age = 65.36 years) received chest-CT before and after endobronchial coiling for lung volume reduction (LVR) between January 2010 and December 2014. Thin-slice (0.6 mm) non-enhanced image data sets were acquired both at end-inspiration and end-expiration using helical technique and 120 kV/100-150 mAs. Clinical response was defined as an increase in the walking distance (Six-minute walk test; 6MWT) after LVR-therapy. Additionally, pulmonary function test (PFT) measurements were used for clinical correlation. In the treated segmental bronchia, the cross-sectional lumen area showed significant reduction (p  0.05). In the ipsilateral lobes, the lumina showed no significant changes. In the contralateral lung, we found tendency towards increased cross-sectional area in inspiration (p = 0.06). Volumes of the treated segments correlated with the treated segmental bronchial lumina in expiration (r = 0.80, p volume of the treated lobe in responders only. Endobronchial coiling causes significant decrease in the cross-sectional area of treated segment bronchi in inspiration and a slight increase in expiration accompanied by a volume reduction. • Endobronchial coiling has indirect impact on cross-sectional area of treated segment bronchi • Volume changes of treated lobes correlate with changes in bronchial cross-sectional area • Coil-induced effects reflect their stabilizing and stiffening impact on lung parenchyma • Endobronchial coiling reduces bronchial collapsing compensating the loss of elasticity.

  16. A generative model for segmentation of tumor and organs-at-risk for radiation therapy planning of glioblastoma patients

    DEFF Research Database (Denmark)

    Agn, Mikael; Law, Ian; Munck Af Rosenschöld, Per

    2016-01-01

    to model tumor shape. The method is not tuned to any specific imaging protocol and can simultaneously segment the gross tumor volume, peritumoral edema and healthy tissue structures relevant for radiotherapy planning. We validate the method on a manually delineated clinical data set of glioblastoma...

  17. Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity.

    Science.gov (United States)

    Bellance, N; Benard, G; Furt, F; Begueret, H; Smolková, K; Passerieux, E; Delage, J P; Baste, J M; Moreau, P; Rossignol, R

    2009-12-01

    Little is known on the metabolic profile of lung tumors and the reminiscence of embryonic features. Herein, we determined the bioenergetic profiles of human fibroblasts taken from lung epidermoid carcinoma (HLF-a) and fetal lung (MRC5). We also analysed human lung tumors and their surrounding healthy tissue from four patients with adenocarcinoma. On these different models, we measured functional parameters (cell growth rates in oxidative and glycolytic media, respiration, ATP synthesis and PDH activity) as well as compositional features (expression level of various energy proteins and upstream transcription factors). The results demonstrate that both the lung fetal and cancer cell lines produced their ATP predominantly by glycolysis, while oxidative phosphorylation was only capable of poor ATP delivery. This was explained by a decreased mitochondrial biogenesis caused by a lowered expression of PGC1alpha (as shown by RT-PCR and Western blot) and mtTFA. Consequently, the relative expression of glycolytic versus OXPHOS markers was high in these cells. Moreover, the re-activation of mitochondrial biogenesis with resveratrol induced cell death specifically in cancer cells. A consistent reduction of mitochondrial biogenesis and the subsequent alteration of respiratory capacity was also observed in lung tumors, associated with a lower expression level of bcl2. Our data give a better characterization of lung cancer cells' metabolic alterations which are essential for growth and survival. They designate mitochondrial biogenesis as a possible target for anti-cancer therapy.

  18. The Combination of the Tumor Markers Suggests the Histological Diagnosis of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Linjie Liu

    2017-01-01

    Full Text Available Tumor markers are beneficial for the diagnosis and therapy monitoring of lung cancer. However, the value of tumor markers in lung cancer histological diagnosis is unknown. In this study, we analyzed the serum levels of six tumor markers (CEA, CYFRA21-1, SCC, NSE, ProGRP, and CA125 in 2097 suspected patients with lung cancer and determined whether the combination of the tumor markers was useful for histological diagnosis of lung cancer. We found that CYFRA21-1 was the most sensitive marker in NSCLC. ProGRP showed a better clinical performance than that of NSE in discriminating between SCLC and NSCLC. The serum level of CYFRA21-1 or SCC was significantly higher in squamous carcinoma (p<0.05, and the levels of ProGRP and NSE were significantly higher in SCLC (p<0.05. According to the criteria established, SCLC and NSCLC were discriminated with sensitivity of 87.12 and 62.63% and specificity of 64.61 and 99.5%, respectively. The sensitivity and specificity in the differentiation of adenocarcinoma and squamous carcinoma were 68.1 and 81.63% and 70.73 and 65.93%, with NPV of 46.03 and 68.97% and PPV of 85.82 and 79.47%, respectively. Our results suggested the combination of six tumor markers could discriminate the histological types of lung cancer.

  19. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver

    International Nuclear Information System (INIS)

    Wulf, Joern; Haedinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-01-01

    Background and purpose: Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5 mm in axial and 5-10 mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Materials and methods: Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10 mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). Results: A decrease of TC to 3 . Conclusions: Target reproducibility was precise within the reference isodose in 91% of lung and 81% of liver tumors with a TC of the complete CTV ≥95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm 3 are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins

  20. Automatic lung lobe segmentation of COPD patients using iterative B-spline fitting

    Science.gov (United States)

    Shamonin, D. P.; Staring, M.; Bakker, M. E.; Xiao, C.; Stolk, J.; Reiber, J. H. C.; Stoel, B. C.

    2012-02-01

    We present an automatic lung lobe segmentation algorithm for COPD patients. The method enhances fissures, removes unlikely fissure candidates, after which a B-spline is fitted iteratively through the remaining candidate objects. The iterative fitting approach circumvents the need to classify each object as being part of the fissure or being noise, and allows the fissure to be detected in multiple disconnected parts. This property is beneficial for good performance in patient data, containing incomplete and disease-affected fissures. The proposed algorithm is tested on 22 COPD patients, resulting in accurate lobe-based densitometry, and a median overlap of the fissure (defined 3 voxels wide) with an expert ground truth of 0.65, 0.54 and 0.44 for the three main fissures. This compares to complete lobe overlaps of 0.99, 0.98, 0.98, 0.97 and 0.87 for the five main lobes, showing promise for lobe segmentation on data of patients with moderate to severe COPD.

  1. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    Science.gov (United States)

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart

    2015-02-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  2. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    International Nuclear Information System (INIS)

    Martin, Spencer; Rodrigues, George; Gaede, Stewart; Brophy, Mark; Barron, John L; Beauchemin, Steven S; Palma, David; Louie, Alexander V; Yu, Edward; Yaremko, Brian; Ahmad, Belal

    2015-01-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development. (paper)

  3. Imaging of tumor viability in lung cancer. Initial results using 23Na-MRI

    International Nuclear Information System (INIS)

    Henzler, T.; Apfaltrer, P.; Haneder, S.; Schoenberg, S.O.; Fink, C.; Konstandin, S.; Schad, L.; Schmid-Bindert, G.; Manegold, C.; Wenz, F.

    2012-01-01

    23 Na-MRI has been proposed as a potential imaging biomarker for the assessment of tumor viability and the evaluation of therapy response but has not yet been evaluated in patients with lung cancer. We aimed to assess the feasibility of 23 Na-MRI in patients with lung cancer. Three patients with stage IV adenocarcinoma of the lung were examined on a clinical 3 Tesla MRI system (Magnetom TimTrio, Siemens Healthcare, Erlangen, Germany). Feasibility of 23 Na-MRI images was proven by comparison and fusion of 23 Na-MRI with 1 H-MR, CT and FDG-PET-CT images. 23 Na signal intensities (SI) of tumor and cerebrospinal fluid (CSF) of the spinal canal were measured and the SI ratio in tumor and CSF was calculated. One chemonaive patient was examined before and after the initiation of combination therapy (Carboplatin, Gemcitabin, Cetuximab). All 23 Na-MRI examinations were successfully completed and were of diagnostic quality. Fusion of 23 Na-MRI images with 1 H-MRI, CT and FDG-PET-CT was feasible in all patients and showed differences in solid and necrotic tumor areas. The mean tumor SI and the tumor/CSF SI ratio were 13.3 ± 1.8 x 103 and 0.83 ± 0.14, respectively. In necrotic tumors, as suggested by central non-FDG-avid areas, the mean tumor SI and the tumor/CSF ratio were 19.4 x 103 and 1.10, respectively. 23 Na-MRI is feasible in patients with lung cancer and could provide valuable functional molecular information regarding tumor viability, and potentially treatment response. (orig.)

  4. Lung adenocarcinoma with intraoperatively diagnosed pleural seeding: Is main tumor resection beneficial for prognosis?

    Science.gov (United States)

    Li, Chi; Kuo, Shuenn-Wen; Hsu, Hsao-Hsun; Lin, Mong-Wei; Chen, Jin-Shing

    2018-03-01

    To evaluate whether main tumor resection improves survival compared with pleural biopsy alone in patients with lung adenocarcinoma with intraoperatively diagnosed pleural seeding. Forty-three patients with lung adenocarcinoma with pleural seeding diagnosed unexpectedly during surgery performed between January 2006 and December 2014 were included in this retrospective study using a prospectively collected lung cancer database. Each surgeon decided whether to perform main tumor resection or pleural biopsy alone. Main tumor and visible pleural nodule resection was performed in 30 patients (tumor resection group). The remaining 13 patients underwent pleural nodule biopsy alone (open-close group). The clinical T stage was higher in the open-close group than in the tumor resection group (P = .02). The tumor resection group had longer operative times compared with the open-close group (mean, 141.8 vs 80.3 minutes). There were no other statistically significant differences in perioperative parameters. The surgical method was the sole statistically significant prognostic factor. Patients in the tumor resection group had better progression-free survival (3-year survival: 44.5% vs 0%; P = .009) and overall survival (3-year survival: 82.9% vs 38.5%; P = .013) than did the open-close group. There was no significant survival difference between sublobar resection and lobectomy for the main tumor resection. Our study demonstrated improved progression-free and overall survival after main tumor and visible pleural nodule resection in patients with lung adenocarcinoma with intraoperatively diagnosed pleural seeding. Further randomized trials are needed to define the role of main tumor resection in these patients. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  5. Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry?

    International Nuclear Information System (INIS)

    Heeswijk, Miriam M. van; Lambregts, Doenja M.J.; Griethuysen, Joost J.M. van; Oei, Stanley; Rao, Sheng-Xiang; Graaff, Carla A.M. de; Vliegen, Roy F.A.; Beets, Geerard L.; Papanikolaou, Nikos; Beets-Tan, Regina G.H.

    2016-01-01

    Purpose: Diffusion-weighted imaging (DWI) tumor volumetry is promising for rectal cancer response assessment, but an important drawback is that manual per-slice tumor delineation can be highly time consuming. This study investigated whether manual DWI-volumetry can be reproduced using a (semi)automated segmentation approach. Methods and Materials: Seventy-nine patients underwent magnetic resonance imaging (MRI) that included DWI (highest b value [b1000 or b1100]) before and after chemoradiation therapy (CRT). Tumor volumes were assessed on b1000 (or b1100) DWI before and after CRT by means of (1) automated segmentation (by 2 inexperienced readers), (2) semiautomated segmentation (manual adjustment of the volumes obtained by method 1 by 2 radiologists), and (3) manual segmentation (by 2 radiologists); this last assessment served as the reference standard. Intraclass correlation coefficients (ICC) and Dice similarity indices (DSI) were calculated to evaluate agreement between different methods and observers. Measurement times (from a radiologist's perspective) were recorded for each method. Results: Tumor volumes were not significantly different among the 3 methods, either before or after CRT (P=.08 to .92). ICCs compared to manual segmentation were 0.80 to 0.91 and 0.53 to 0.66 before and after CRT, respectively, for the automated segmentation and 0.91 to 0.97 and 0.61 to 0.75, respectively, for the semiautomated method. Interobserver agreement (ICC) pre and post CRT was 0.82 and 0.59 for automated segmentation, 0.91 and 0.73 for semiautomated segmentation, and 0.91 and 0.75 for manual segmentation, respectively. Mean DSI between the automated and semiautomated method were 0.83 and 0.58 pre-CRT and post-CRT, respectively; DSI between the automated and manual segmentation were 0.68 and 0.42 and 0.70 and 0.41 between the semiautomated and manual segmentation, respectively. Median measurement time for the radiologists was 0 seconds (pre- and post-CRT) for the

  6. Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry?

    Energy Technology Data Exchange (ETDEWEB)

    Heeswijk, Miriam M. van [Department of Radiology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Surgery, Maastricht University Medical Centre, Maastricht (Netherlands); Lambregts, Doenja M.J., E-mail: d.lambregts@nki.nl [Department of Radiology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Radiology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Griethuysen, Joost J.M. van [GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Radiology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Oei, Stanley [Department of Radiology, Maastricht University Medical Centre, Maastricht (Netherlands); Rao, Sheng-Xiang [Department of Radiology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai (China); Graaff, Carla A.M. de [Department of Radiology, Maastricht University Medical Centre, Maastricht (Netherlands); Vliegen, Roy F.A. [Atrium Medical Centre Parkstad/Zuyderland Medical Centre, Heerlen (Netherlands); Beets, Geerard L. [GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Surgery, The Netherlands Cancer Institute, Amsterdam (Netherlands); Papanikolaou, Nikos [Laboratory of Computational Medicine, Institute of Computer Science, FORTH, Heraklion, Crete (Greece); Beets-Tan, Regina G.H. [GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Radiology, The Netherlands Cancer Institute, Amsterdam (Netherlands)

    2016-03-15

    Purpose: Diffusion-weighted imaging (DWI) tumor volumetry is promising for rectal cancer response assessment, but an important drawback is that manual per-slice tumor delineation can be highly time consuming. This study investigated whether manual DWI-volumetry can be reproduced using a (semi)automated segmentation approach. Methods and Materials: Seventy-nine patients underwent magnetic resonance imaging (MRI) that included DWI (highest b value [b1000 or b1100]) before and after chemoradiation therapy (CRT). Tumor volumes were assessed on b1000 (or b1100) DWI before and after CRT by means of (1) automated segmentation (by 2 inexperienced readers), (2) semiautomated segmentation (manual adjustment of the volumes obtained by method 1 by 2 radiologists), and (3) manual segmentation (by 2 radiologists); this last assessment served as the reference standard. Intraclass correlation coefficients (ICC) and Dice similarity indices (DSI) were calculated to evaluate agreement between different methods and observers. Measurement times (from a radiologist's perspective) were recorded for each method. Results: Tumor volumes were not significantly different among the 3 methods, either before or after CRT (P=.08 to .92). ICCs compared to manual segmentation were 0.80 to 0.91 and 0.53 to 0.66 before and after CRT, respectively, for the automated segmentation and 0.91 to 0.97 and 0.61 to 0.75, respectively, for the semiautomated method. Interobserver agreement (ICC) pre and post CRT was 0.82 and 0.59 for automated segmentation, 0.91 and 0.73 for semiautomated segmentation, and 0.91 and 0.75 for manual segmentation, respectively. Mean DSI between the automated and semiautomated method were 0.83 and 0.58 pre-CRT and post-CRT, respectively; DSI between the automated and manual segmentation were 0.68 and 0.42 and 0.70 and 0.41 between the semiautomated and manual segmentation, respectively. Median measurement time for the radiologists was 0 seconds (pre- and post-CRT) for the

  7. Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry?

    Science.gov (United States)

    van Heeswijk, Miriam M; Lambregts, Doenja M J; van Griethuysen, Joost J M; Oei, Stanley; Rao, Sheng-Xiang; de Graaff, Carla A M; Vliegen, Roy F A; Beets, Geerard L; Papanikolaou, Nikos; Beets-Tan, Regina G H

    2016-03-15

    Diffusion-weighted imaging (DWI) tumor volumetry is promising for rectal cancer response assessment, but an important drawback is that manual per-slice tumor delineation can be highly time consuming. This study investigated whether manual DWI-volumetry can be reproduced using a (semi)automated segmentation approach. Seventy-nine patients underwent magnetic resonance imaging (MRI) that included DWI (highest b value [b1000 or b1100]) before and after chemoradiation therapy (CRT). Tumor volumes were assessed on b1000 (or b1100) DWI before and after CRT by means of (1) automated segmentation (by 2 inexperienced readers), (2) semiautomated segmentation (manual adjustment of the volumes obtained by method 1 by 2 radiologists), and (3) manual segmentation (by 2 radiologists); this last assessment served as the reference standard. Intraclass correlation coefficients (ICC) and Dice similarity indices (DSI) were calculated to evaluate agreement between different methods and observers. Measurement times (from a radiologist's perspective) were recorded for each method. Tumor volumes were not significantly different among the 3 methods, either before or after CRT (P=.08 to .92). ICCs compared to manual segmentation were 0.80 to 0.91 and 0.53 to 0.66 before and after CRT, respectively, for the automated segmentation and 0.91 to 0.97 and 0.61 to 0.75, respectively, for the semiautomated method. Interobserver agreement (ICC) pre and post CRT was 0.82 and 0.59 for automated segmentation, 0.91 and 0.73 for semiautomated segmentation, and 0.91 and 0.75 for manual segmentation, respectively. Mean DSI between the automated and semiautomated method were 0.83 and 0.58 pre-CRT and post-CRT, respectively; DSI between the automated and manual segmentation were 0.68 and 0.42 and 0.70 and 0.41 between the semiautomated and manual segmentation, respectively. Median measurement time for the radiologists was 0 seconds (pre- and post-CRT) for the automated method, 41 to 69 seconds (pre-CRT) and

  8. The level of serum tumor makers and bone metastases of lung cancer correlation

    International Nuclear Information System (INIS)

    Li Li; Jin Jianhua

    2014-01-01

    Objective: To study the correlation between the level of serum tumor makers and bone metastases of lung cancer. Method: In 128 diagnosed patients with lung cancer, small cell lung cancer were 26 cases, non-small cell lung cancer were 102 cases which included 44 cases of adenocarcinoma, 50 cases of squamous cell carcinoma, 4 cases of large cell carcinoma, 4 cases of squamous adenocarcinoma. "9"9"mTc-MDP whole-body bone scanning was performed in 128 patients with lung cancer. over the same period, the serum samples were collected in these patients and 30 comparison controls. CEA, CA125, CA199, SCC, NSE, CA15-3, and AFP were measured by ELISA technique. Bone imaging findings analysis used t-test, and serum levels of tumor markers analysis used χ"2 test. Results: The diagnostic of 53 cases of lung cancer with bone metastasis was subject to clinical criteria of lung cancer with bone metastases. The positive ratio of patients with osseous metastasis was confirmed by "9"9"mTc-MDP whole-body bone scanning was 23.44% (30/128), including 16 cases of lung adenocarcinoma, 9 cases of squamous cell carcinoma, 3 cases of small cell lung cancer , 1 case of large cell lung cancer, 1 case of squamous adenocarcinoma and multiple bone metastases accounted for 66.67% (20/30). The levels of serum CEA, CA125, CA199, SCC, NSE and CA15-3 were higher than the control group (P < O.05). 29 cases of CEA positive and 21 cases of CA125 positive were included in 30 cases of lung cancer with bone metastasis. There was a significant difference between the levels of CEA, CA125, CA199, NSE in lung cancer with bone metastases and without bone metastases (P < 0.05). The sensitivity of "9"9"mTc-MDP whole-body bone scanning in diagnosis of lung cancer with bone metastasis was 84.91%. Conclusion: The average value of CEA, CA125, and CA199, SCC, NSE and CA15-3 in lung cancer patients were significantly higher than the control group. In addition, there is a significantly correlation between the occurrence

  9. Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration

    International Nuclear Information System (INIS)

    Barnes, Elizabeth A.; Murray, Brad R.; Robinson, Donald M.; Underwood, Lori J.; Hanson, John; Roa, Wilson H.Y.

    2001-01-01

    Purpose:To examine the dosimetric benefit of self-gated radiotherapy at deep-inspiration breath hold (DIBH) in the treatment of patients with non-small-cell lung cancer (NSCLC). The relative contributions of tumor immobilization at breath hold (BH) and increased lung volume at deep inspiration (DI) in sparing high-dose lung irradiation (≥20 Gy) were examined. Methods and Materials:Ten consecutive patients undergoing radiotherapy for Stage I-IIIB NSCLC who met the screening criteria were entered on this study. Patients were instructed to BH at DI without the use of external monitors or breath-holding devices (self-gating). Computed tomography (CT) scans of the thorax were performed during free breathing (FB) and DIBH. Fluoroscopy screened for reproducible tumor position throughout DIBH, and determined the maximum superior-inferior (SI) tumor motion during both FB and DIBH. Margins used to define the planning target volume (PTV) from the clinical target volume included 1 cm for setup error and organ motion, plus an additional SI margin for tumor motion, as determined from fluoroscopy. Three conformal treatment plans were then generated for each patient, one from the FB scan with FB PTV margins, a second from the DIBH scan with FB PTV margins, and a third from the DIBH scan with DIBH PTV margins. The percent of total lung volume receiving ≥20 Gy (using a prescription dose of 70.9 Gy to isocenter) was determined for each plan. Results:Self-gating at DIBH was possible for 8 of the 10 patients; 2 patients were excluded, because they were not able to perform a reproducible DIBH. For these 8 patients, the median BH time was 23 (range, 19-52) s. The mean percent of total lung volume receiving ≥20 Gy under FB conditions (FB scan with FB PTV margins) was 12.8%. With increased lung volume alone (DIBH scan with FB PTV margins), this was reduced to 11.0%, tending toward a significant decrease in lung irradiation over FB (p=0.086). With both increased lung volume and tumor

  10. Oncogene expression in primary lung tumors in dogs that inhaled 239PuO2

    International Nuclear Information System (INIS)

    Kelly, G.; Kerkof, P.R.; Haley, P.J.

    1988-01-01

    Ten radiation-induced and three spontaneous lung tumors were analyzed for aberrant expression of known oncogenes. In 12 of 13 tumors tested, sequences hybridizing to the c-myc oncogene were expressed at levels 1.5 times higher than sequences hybridizing to β-actin. This level of oncogene expression was also observed in 9 of 13 tumors for 1 or more members of the ras family of oncogenes. Seven of thirteen tumors examined express sequences that hybridize with clones of v-ros or c-met. The ros and met clones both code for oncogenes whose normal homologues are transmembrane proteins related to the insulin receptor. (author)

  11. Cyclin D expression in plutonium-induced lung tumors in F344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F.F.; Kelly, G. [SouthWest Scientific Resources, Inc., Albuquerque, NM (United States)

    1995-12-01

    The genetic mechanisms responsible for {alpha}-radiation-induced lung cancer in rats following inhalation of {sup 239}Pu is an ongoing area of research in our laboratory. Previous studies have examined the status of the p53 gene by immunohistochemistry. Only two tumors (2/26 squamous cell carcinomas) exhibited detectable levels of p53 products. Both were the result of mutations in codons 280 and 283. More recent studies of X-ray-induced lung tumors in rats showed a similar lack of involvement of p53. In conclusion, we found that {alpha}-radiation-induced rat lung tumors have a high incidence (31 of 39) of cyclin D{sub 1} overexpression.

  12. Failure of the cultivated mushroom (Agaricus bisporus) to induce tumors in the A/J mouse lung tumor model

    DEFF Research Database (Denmark)

    Pilegaard, Kirsten; Kristiansen, E.; Meyer, Otto A.

    1997-01-01

    We studied whether the cultivated mushroom (Agaricus bisporus) or 4-(carboxy)phenylhydrazine (CP) induce lung adenomas in the A/J mouse lung tumor model. For 26 weeks female mice were fed a semisynthetic diet where 11 or 22% of the diet was replaced by freeze-dried mushrooms. The intake...... of the mushroom diets was equivalent to an intake of agaritine, the major phenylhydrazine derivative occurring in the mushroom, of 92 or 166 mg/kg body weight per day. The intake of CP was 106 mg/kg body weight per day. Neither the;freeze-dried mushroom nor CP induced statistically significant increased numbers...

  13. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina [Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195-6043 (United States); Yartsev, Slav [London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario 46A 4L6 (Canada)

    2014-06-15

    Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained

  14. Therapy monitoring using dynamic MRI: Analysis of lung motion and intrathoracic tumor mobility before and after radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Plathow, Christian [Eberhard-Karls University Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany); German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Hof, Holger; Kuhn, Sabine [University of Heidelberg, Department of Radiation Therapy, Clinic for Thoracic Diseases, Heidelberg (Germany); Puderbach, Michael; Ley, Sebastian; Biederer, Juergen; Kauczor, Hans-Ulrich [German Cancer Research Center, Department of Radiology, Heidelberg (Germany); Claussen, Claus D.; Schaefer, Juergen [Eberhard-Karls University Tuebingen, Department of Diagnostic Radiology, Tuebingen (Germany); Huber, Peter E. [University of Heidelberg, Department of Radiation Therapy, Clinic for Thoracic Diseases, Heidelberg (Germany); German Cancer Research Center, Department of Radiation Oncology, Heidelberg (Germany); Tuengerthal, Siegfried [University of Heidelberg, Department of Radiology, Heidelberg (Germany)

    2006-09-15

    A frequent side effect after radiotherapy of lung tumors is a decrease of pulmonary function accompanied by dyspnea due to developing lung fibrosis. The aim of this study was to monitor lung motion as a correlate of pulmonary function and intrathoracic tumor mobility before and after radiotherapy (RT) using dynamic MRI (dMRI). Thirty-five patients with stage I non-small-cell lung carcinoma were examined using dMRI (trueFISP; three images/s). Tumors were divided into T1 and T2 tumors of the upper, middle and lower lung region (LR). Maximum craniocaudal (CC) lung dimensions and tumor mobility in three dimensions were monitored. Vital capacity (VC) was measured and correlated using spirometry. Before RT, the maximum CC motion of the tumor-bearing hemithorax was 5.2{+-}0.9 cm if the tumor was located in the lower LR (middle LR: 5.5{+-}0.8 cm; upper LR: 6.0{+-}0.6 cm). After RT, lung motion was significantly reduced in the lower LR (P<0.05). Before RT, the maximum CC tumor mobility was significantly higher in tumors of the lower LR 2.5{+-}0.6 vs. 2.0{+-}0.3 cm (middle LR; P<0.05) vs. 0.7{+-}0.2 cm (upper LR; P<0.01). After RT, tumor mobility was significantly reduced in the lower LR (P<0.01) and in T2 tumor patients (P<0.05). VC showed no significant changes. dMRI is capable of monitoring changes in lung motion that were not suspected from spirometry. This might make the treatment of side effects possible at a very early stage. Changes of lung motion and tumor mobility are highly dependent on the tumor localization and tumor diameter. (orig.)

  15. Therapy monitoring using dynamic MRI: Analysis of lung motion and intrathoracic tumor mobility before and after radiotherapy

    International Nuclear Information System (INIS)

    Plathow, Christian; Hof, Holger; Kuhn, Sabine; Puderbach, Michael; Ley, Sebastian; Biederer, Juergen; Kauczor, Hans-Ulrich; Claussen, Claus D.; Schaefer, Juergen; Huber, Peter E.; Tuengerthal, Siegfried

    2006-01-01

    A frequent side effect after radiotherapy of lung tumors is a decrease of pulmonary function accompanied by dyspnea due to developing lung fibrosis. The aim of this study was to monitor lung motion as a correlate of pulmonary function and intrathoracic tumor mobility before and after radiotherapy (RT) using dynamic MRI (dMRI). Thirty-five patients with stage I non-small-cell lung carcinoma were examined using dMRI (trueFISP; three images/s). Tumors were divided into T1 and T2 tumors of the upper, middle and lower lung region (LR). Maximum craniocaudal (CC) lung dimensions and tumor mobility in three dimensions were monitored. Vital capacity (VC) was measured and correlated using spirometry. Before RT, the maximum CC motion of the tumor-bearing hemithorax was 5.2±0.9 cm if the tumor was located in the lower LR (middle LR: 5.5±0.8 cm; upper LR: 6.0±0.6 cm). After RT, lung motion was significantly reduced in the lower LR (P<0.05). Before RT, the maximum CC tumor mobility was significantly higher in tumors of the lower LR 2.5±0.6 vs. 2.0±0.3 cm (middle LR; P<0.05) vs. 0.7±0.2 cm (upper LR; P<0.01). After RT, tumor mobility was significantly reduced in the lower LR (P<0.01) and in T2 tumor patients (P<0.05). VC showed no significant changes. dMRI is capable of monitoring changes in lung motion that were not suspected from spirometry. This might make the treatment of side effects possible at a very early stage. Changes of lung motion and tumor mobility are highly dependent on the tumor localization and tumor diameter. (orig.)

  16. Central lung tumors with obstructive pneumonitis; ultrasonographic findings and usefulness of ultrasound-guided biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong An; Kim, Sun Su; Seon, Young Seok; Lee, Kyoung Rok; Kim, Byoung Geun; Park, Byung Ran; Kim, Se Jong [Kwangju Christian Hospital, Kwangju (Korea, Republic of)

    2001-02-01

    To determine the ultrasonographic findings and assess the usefulness of ultrasound (US)-guided biopsy of central lung tumors in patients with obstructive pneumonitis. Fourteen patients with central lung tumors causing obstructive pneumonitis, as seen on chest radiographs and chest CT scans, were examined between January 1997 and January 2000. In no patient conclusive histologic diagnosis obtained by means of bronchoscopic biopsy or sputum cytology. Eleven patients were men and three were women, and their ages ranged from 45 to 83 (mean, 64) years. For all examinations, real-time, linear-array, convex US units with a 3.75-and a 5.0-MHz transducer were used. The images obtained were analyzed for evidence of consolidation or atelectasis in the lung, demonstrable tumors, and tumor size and echogenicity. For US-guided percutaneous transthoracic biopsy, 19.5G automatic biopsy devices, were employed. Lung consolidation due to a wedge-shaped, homogeneous, hypoechoic lesion was revealed by sonographic fluid bronchograms, air bronchograms, air alvelograms, and visualization of intraparenchymal pulmonary vessels, which showed appropriate motion with respiration. The tumor presumed to be causing obstruction was seen as a hypoechoic nodule near the hilum or as a well-defined hyperechoic mass inside the partially consolidated lung. Pleural effusion was observed in one case. The cytologic findings indicated the presence of squamous cell carcinoma (n=4), adenocarcinoma (n=4), small cell carcinoma (n=3), non-small cell carcinoma (n=2) and large cell carcinoma (n=1). The success rate was 100%, and there were no complications. In patients with central lung tumors causing obstructive pneumonitis, chest ultrasonography and US-guided biopsy are useful adjunctive diagnostic modalities and techniques.

  17. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis

    Science.gov (United States)

    MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI

    2014-01-01

    The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637

  18. Respiratory gating during stereotactic body radiotherapy for lung cancer reduces tumor position variability.

    Science.gov (United States)

    Saito, Tetsuo; Matsuyama, Tomohiko; Toya, Ryo; Fukugawa, Yoshiyuki; Toyofuku, Takamasa; Semba, Akiko; Oya, Natsuo

    2014-01-01

    We evaluated the effects of respiratory gating on treatment accuracy in lung cancer patients undergoing lung stereotactic body radiotherapy by using electronic portal imaging device (EPID) images. Our study population consisted of 30 lung cancer patients treated with stereotactic body radiotherapy (48 Gy/4 fractions/4 to 9 days). Of these, 14 were treated with- (group A) and 16 without gating (group B); typically the patients whose tumors showed three-dimensional respiratory motion ≧5 mm were selected for gating. Tumor respiratory motion was estimated using four-dimensional computed tomography images acquired during treatment simulation. Tumor position variability during all treatment sessions was assessed by measuring the standard deviation (SD) and range of tumor displacement on EPID images. The two groups were compared for tumor respiratory motion and position variability using the Mann-Whitney U test. The median three-dimensional tumor motion during simulation was greater in group A than group B (9 mm, range 3-30 mm vs. 2 mm, range 0-4 mm; psimulation, tumor position variability in the EPID images was low and comparable to patients treated without gating. This demonstrates the benefit of respiratory gating.

  19. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Amish P., E-mail: Amish.Shah@orlandohealth.com [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States); Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Mañon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L. [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States)

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still

  20. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2015-03-01

    Full Text Available Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 results in ELF3 and ErbB2 pathway activation due to decreased expression of ERRFI1, a negative regulator of ERBB2 in mouse and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuate tumor progression and cell invasion, respectively. Expression profile analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both a prognostic biomarker and a therapeutic drug target for treating lung cancer.

  1. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis.

    Science.gov (United States)

    Liu, Jian; Cho, Sung-Nam; Akkanti, Bindu; Jin, Nili; Mao, Jianqiang; Long, Weiwen; Chen, Tenghui; Zhang, Yiqun; Tang, Ximing; Wistub, Ignacio I; Creighton, Chad J; Kheradmand, Farrah; DeMayo, Francesco J

    2015-03-03

    Lung cancer remains the leading cause of cancer death. Genome sequencing of lung tumors from patients with squamous cell carcinoma has identified SMAD4 to be frequently mutated. Here, we use a mouse model to determine the molecular mechanisms by which Smad4 loss leads to lung cancer progression. Mice with ablation of Pten and Smad4 in airway epithelium develop metastatic adenosquamous tumors. Comparative transcriptomic and in vivo cistromic analyses determine that loss of PTEN and SMAD4 results in ELF3 and ErbB2 pathway activation due to decreased expression of ERRFI1, a negative regulator of ERBB2 in mouse and human cells. The combinatorial inhibition of ErbB2 and Akt signaling attenuate tumor progression and cell invasion, respectively. Expression profile analysis of human lung tumors substantiated the importance of the ErbB2/Akt/ELF3 signaling pathway as both a prognostic biomarker and a therapeutic drug target for treating lung cancer. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Involvement of growth factors and their receptors in radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Leung, F.C.; Dagle, G.E.; Cross, F.T.

    1992-01-01

    In this paper we examine the role of growth factors (GF) and their receptors (GFR) in radon-induced rat lung tumors. Inhalation exposure of radon and its daughters induced lung tumors in rats, but the molecule/cellular mechanisms are not known. Recent evidence suggests that GF/GFR play a critical role in the growth and development of lung cancer in humans and animals. We have developed immunocytochemical methods for identifying sites of production and action of GF/GFR at the cellular level; for example, the avidin-biotin horseradish peroxidase technique. In radon-induced rat epidermoid carcinomas, epidermal growth factor (EGF), EGF-receptors (EGF-R), transforming growth factor alpha (TGF-α), and bombesin were found to be abnormally expressed. These abnormal expressions, mainly associated with epidermoid carcinomas of the lung, were not found in any other lung tumor types. Our data suggest that EGF, EGF-R, TGF-α, and bombesin are involved in radon oncogenesis in rat lungs, especially in epidermoid carcinomas, possibly through the autocrine/paracrine pathway

  3. Recombinant human endostatin improves tumor vasculature and alleviates hypoxia in Lewis lung carcinoma

    International Nuclear Information System (INIS)

    Peng Fang; Wang Jin; Zou Yi; Bao Yong; Huang Wenlin; Chen Guangming; Luo Xianrong; Chen Ming

    2011-01-01

    Objective: To investigate whether recombinant human endostatin can create a time window of vascular normalization prior to vascular pruning to alleviate hypoxia in Lewis lung carcinoma in mice. Methods: Kinetic changes in morphology of tumor vasculature in response to recombinant human endostatin were detected under a confocal microscope with immunofluorescent staining in Lewis lung carcinomas in mice. The hypoxic cell fraction of different time was assessed with immunohistochemical staining . Effects on tumor growth were monitored as indicated in the growth curve of tumors . Results: Compared with the control group vascularity of the tumors was reduced over time by recombinant human endostatin treatment and significantly regressed for 9 days. During the treatment, pericyte coverage increased at day 3, increased markedly at day 5, and fell again at day 7. The vascular basement membrane was thin and closely associated with endothelial cells after recombinant human endostatin treatment, but appeared thickened, loosely associated with endothelial cells in control tumors. The decrease in hypoxic cell fraction at day 5 after treatment was also found. Tumor growth was not accelerated 5 days after recombinant human endostatin treatment. Conclusions: Recombinant human endostatin can normalize tumor vasculature within day 3 to 7, leading to improved tumor oxygenation. The results provide important experimental basis for combining recombinant human endostatin with radiation therapy in human tumors. (authors)

  4. Laser fluorescence bronchoscope for localization of occult lung tumors

    International Nuclear Information System (INIS)

    Profio, A.E.; Doiron, D.R.; King, E.G.

    1979-01-01

    A system for imaging occult bronchogenic carcinoma by the fluorescence of previously-injected, tumor-specific compound hematoporphyrin-derivative has been assembled and successfully used to locate a tumor l mm thick. The violet excitation source is a krypton ion laser coupled to fused quartz fiber light conductor. An electrostatic image intensifier attached to a standard flexible fiberoptic bronchoscope provides a bright image even at relatively low irradiance. A red secondary filter rejects most reflected background and autofluorescence. Sensitivity and contrast capability of the system should permit detection of a tumor less than 0.1 mm thick

  5. The Potential Biomarkers and Immunological Effects of Tumor-Derived Exosomes in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Shamila D. Alipoor

    2018-04-01

    Full Text Available Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite considerable achievements in lung cancer diagnosis and treatment, the global control of the disease remains problematic. In this respect, greater understanding of the disease pathology is crucially needed for earlier diagnosis and more successful treatment to be achieved. Exosomes are nano-sized particles secreted from most cells, which allow cross talk between cells and their surrounding environment via transferring their cargo. Tumor cells, just like normal cells, also secrete exosomes that are termed Tumor-Derived Exosome or tumor-derived exosome (TEX. TEXs have gained attention for their immuno-modulatory activities, which strongly affect the tumor microenvironment and antitumor immune responses. The immunological activity of TEX influences both the innate and adaptive immune systems including natural killer cell activity and regulatory T-cell maturation as well as numerous anti-inflammatory responses. In the context of lung cancer, TEXs have been studied in order to better understand the mechanisms underlying tumor metastasis and progression. As such, TEX has the potential to act both as a biomarker for lung cancer diagnosis as well as the response to therapy.

  6. Clinical characteristics and outcome of pneumothorax after stereotactic body radiotherapy for lung tumors.

    Science.gov (United States)

    Asai, Kaori; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Sasaki, Tomonari; Matsuo, Yoshio; Ohga, Saiji; Yoshitake, Tadamasa; Terashima, Kotaro; Shinoto, Makoto; Matsumoto, Keiji; Hirata, Hidenari; Honda, Hiroshi

    2015-12-01

    We retrospectively investigated the clinical characteristics and outcome of pneumothorax after stereotactic body radiotherapy (SBRT) for lung tumors. Between April 2003 and July 2012, 473 patients with lung tumors were treated with SBRT. We identified 12 patients (2.5 %) with pneumothorax caused by SBRT, and evaluated the clinical features of pneumothorax. All of the tumors were primary lung cancers. The severity of radiation pneumonitis was grade 1 in 10 patients and grade 2 in two patients. Nine patients had emphysema. The planning target volume and pleura overlapped in 11 patients, and the tumors were attached to the pleura in 7 patients. Rib fractures were observed in three patients before or at the same time as the diagnosis of pneumothorax. The median time to onset of pneumothorax after SBRT was 18.5 months (4-84 months). The severity of pneumothorax was grade 1 in 11 patients and grade 3 in one patient. Although pneumothorax was a relatively rare late adverse effect after SBRT, some patients demonstrated pneumothorax after SBRT for peripheral lung tumors. Although most pneumothorax was generally tolerable and self-limiting, careful follow-up is needed.

  7. Prognostic factors of tumor recurrence in completely resected non-small cell lung cancer

    International Nuclear Information System (INIS)

    Tantraworasin, Apichat; Saeteng, Somcharoen; Lertprasertsuke, Nirush; Arreyakajohn, Nuttapon; Kasemsarn, Choosak; Patumanond, Jayanton

    2013-01-01

    Patients with completely resected non-small cell lung cancer (NSCLC) have an excellent outcome; however tumor recurs in 30%–77% of patients. This study retrospectively analyzed the clinicopathologic features of patients with any operable stage of NSCLC to identify the prognostic factors that influence tumor recurrence, including intratumoral blood vessel invasion (IVI), tumor size, tumor necrosis, and intratumoral lymphatic invasion. From January 2002 to December 2011, 227 consecutive patients were enrolled in this study. They were divided into two groups: the “no recurrence” group and the “recurrence” group. Recurrence-free survival was analyzed by multivariable Cox regression analysis, stratified by tumor staging, chemotherapy, and nodal involvement. IVI, tumor necrosis, tumor diameter more than 5 cm, and nodal involvement were identified as independent prognostic factors of tumor recurrence. The hazard ratio (HR) of patients with IVI was 2.1 times higher than that of patients without IVI (95% confident interval [CI]: 1.4–3.2) (P = 0.001).The HR of patients with tumor necrosis was 2.1 times higher than that of patients without tumor necrosis (95% CI: 1.3–3.4) (P = 0.001). Patients who had a maximum tumor diameter greater than 5 cm had significantly higher risk of recurrence than patients who had a maximum tumor diameter of less than 5 cm (HR 1.9, 95% CI: 1.0–3.5) (P = 0.033). IVI, tumor diameter more than 5 cm, and tumor necrosis are prognostic factors of tumor recurrence in completely resected NSCLC. Therefore, NSCLC patients, with or without nodal involvement, who have one or more prognostic factors of tumor recurrence may benefit from adjuvant chemotherapy for prevention of tumor recurrence

  8. Audiovisual biofeedback improves the correlation between internal/external surrogate motion and lung tumor motion.

    Science.gov (United States)

    Lee, Danny; Greer, Peter B; Paganelli, Chiara; Ludbrook, Joanna Jane; Kim, Taeho; Keall, Paul

    2018-03-01

    Breathing management can reduce breath-to-breath (intrafraction) and day-by-day (interfraction) variability in breathing motion while utilizing the respiratory motion of internal and external surrogates for respiratory guidance. Audiovisual (AV) biofeedback, an interactive personalized breathing motion management system, has been developed to improve reproducibility of intra- and interfraction breathing motion. However, the assumption of the correlation of respiratory motion between surrogates and tumors is not always verified during medical imaging and radiation treatment. Therefore, the aim of the study was to test the hypothesis that the correlation of respiratory motion between surrogates and tumors is the same under free breathing without guidance (FB) and with AV biofeedback guidance for voluntary motion management. For 13 lung cancer patients receiving radiotherapy, 2D coronal and sagittal cine-MR images were acquired across two MRI sessions (pre- and mid-treatment) with two breathing conditions: (a) FB and (b) AV biofeedback, totaling 88 patient measurements. Simultaneously, the external respiratory motion of the abdomen was measured. The internal respiratory motion of the diaphragm and lung tumor was retrospectively measured from 2D coronal and sagittal cine-MR images. The correlation of respiratory motion between surrogates and tumors was calculated using Pearson's correlation coefficient for: (a) abdomen to tumor (abdomen-tumor) and (b) diaphragm to tumor (diaphragm-tumor). The correlations were compared between FB and AV biofeedback using several metrics: abdomen-tumor and diaphragm-tumor correlations with/without ≥5 mm tumor motion range and with/without adjusting for phase shifts between the signals. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 11% (p = 0.12) from 0.53 to 0.59 and diaphragm-tumor correlation by 13% (p = 0.02) from 0.55 to 0.62. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 17% (p = 0

  9. Tumor-Associated Neutrophils in Human Lung Cancer

    Science.gov (United States)

    2017-10-01

    markers in humans. The logistical, ethical , and regulatory difficulties in obtaining human tumor tissue for research also act to discourage such...Mouse models of cancer. Annu. Rev. Pathol 6, 95–119 52. Merlo, L.M. et al. (2006) Cancer as an evolutionary and ecological process. Nat. Rev. Cancer...some effect on the phenotype and function of TANs. The logistical, ethical , and regulatory difficulties in obtaining human tumor tissue for research

  10. SU-E-J-29: Audiovisual Biofeedback Improves Tumor Motion Consistency for Lung Cancer Patients

    International Nuclear Information System (INIS)

    Lee, D; Pollock, S; Makhija, K; Keall, P; Greer, P; Arm, J; Hunter, P; Kim, T

    2014-01-01

    Purpose: To investigate whether the breathing-guidance system: audiovisual (AV) biofeedback improves tumor motion consistency for lung cancer patients. This will minimize respiratory-induced tumor motion variations across cancer imaging and radiotherapy procedues. This is the first study to investigate the impact of respiratory guidance on tumor motion. Methods: Tumor motion consistency was investigated with five lung cancer patients (age: 55 to 64), who underwent a training session to get familiarized with AV biofeedback, followed by two MRI sessions across different dates (pre and mid treatment). During the training session in a CT room, two patient specific breathing patterns were obtained before (Breathing-Pattern-1) and after (Breathing-Pattern-2) training with AV biofeedback. In each MRI session, four MRI scans were performed to obtain 2D coronal and sagittal image datasets in free breathing (FB), and with AV biofeedback utilizing Breathing-Pattern-2. Image pixel values of 2D images after the normalization of 2D images per dataset and Gaussian filter per image were used to extract tumor motion using image pixel values. The tumor motion consistency of the superior-inferior (SI) direction was evaluated in terms of an average tumor motion range and period. Results: Audiovisual biofeedback improved tumor motion consistency by 60% (p value = 0.019) from 1.0±0.6 mm (FB) to 0.4±0.4 mm (AV) in SI motion range, and by 86% (p value < 0.001) from 0.7±0.6 s (FB) to 0.1±0.2 s (AV) in period. Conclusion: This study demonstrated that audiovisual biofeedback improves both breathing pattern and tumor motion consistency for lung cancer patients. These results suggest that AV biofeedback has the potential for facilitating reproducible tumor motion towards achieving more accurate medical imaging and radiation therapy procedures

  11. SU-E-J-29: Audiovisual Biofeedback Improves Tumor Motion Consistency for Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D; Pollock, S; Makhija, K; Keall, P [The University of Sydney, Camperdown, NSW (Australia); Greer, P [The University of Newcastle, Newcastle, NSW (Australia); Calvary Mater Newcastle Hospital, Newcastle, NSW (Australia); Arm, J; Hunter, P [Calvary Mater Newcastle Hospital, Newcastle, NSW (Australia); Kim, T [The University of Sydney, Camperdown, NSW (Australia); University of Virginia Health System, Charlottesville, VA (United States)

    2014-06-01

    Purpose: To investigate whether the breathing-guidance system: audiovisual (AV) biofeedback improves tumor motion consistency for lung cancer patients. This will minimize respiratory-induced tumor motion variations across cancer imaging and radiotherapy procedues. This is the first study to investigate the impact of respiratory guidance on tumor motion. Methods: Tumor motion consistency was investigated with five lung cancer patients (age: 55 to 64), who underwent a training session to get familiarized with AV biofeedback, followed by two MRI sessions across different dates (pre and mid treatment). During the training session in a CT room, two patient specific breathing patterns were obtained before (Breathing-Pattern-1) and after (Breathing-Pattern-2) training with AV biofeedback. In each MRI session, four MRI scans were performed to obtain 2D coronal and sagittal image datasets in free breathing (FB), and with AV biofeedback utilizing Breathing-Pattern-2. Image pixel values of 2D images after the normalization of 2D images per dataset and Gaussian filter per image were used to extract tumor motion using image pixel values. The tumor motion consistency of the superior-inferior (SI) direction was evaluated in terms of an average tumor motion range and period. Results: Audiovisual biofeedback improved tumor motion consistency by 60% (p value = 0.019) from 1.0±0.6 mm (FB) to 0.4±0.4 mm (AV) in SI motion range, and by 86% (p value < 0.001) from 0.7±0.6 s (FB) to 0.1±0.2 s (AV) in period. Conclusion: This study demonstrated that audiovisual biofeedback improves both breathing pattern and tumor motion consistency for lung cancer patients. These results suggest that AV biofeedback has the potential for facilitating reproducible tumor motion towards achieving more accurate medical imaging and radiation therapy procedures.

  12. On Predicting lung cancer subtypes using ‘omic’ data from tumor and tumor-adjacent histologically-normal tissue

    International Nuclear Information System (INIS)

    Pineda, Arturo López; Ogoe, Henry Ato; Balasubramanian, Jeya Balaji; Rangel Escareño, Claudia; Visweswaran, Shyam; Herman, James Gordon; Gopalakrishnan, Vanathi

    2016-01-01

    Adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the most prevalent histological types among lung cancers. Distinguishing between these subtypes is critically important because they have different implications for prognosis and treatment. Normally, histopathological analyses are used to distinguish between the two, where the tissue samples are collected based on small endoscopic samples or needle aspirations. However, the lack of cell architecture in these small tissue samples hampers the process of distinguishing between the two subtypes. Molecular profiling can also be used to discriminate between the two lung cancer subtypes, on condition that the biopsy is composed of at least 50 % of tumor cells. However, for some cases, the tissue composition of a biopsy might be a mix of tumor and tumor-adjacent histologically normal tissue (TAHN). When this happens, a new biopsy is required, with associated cost, risks and discomfort to the patient. To avoid this problem, we hypothesize that a computational method can distinguish between lung cancer subtypes given tumor and TAHN tissue. Using publicly available datasets for gene expression and DNA methylation, we applied four classification tasks, depending on the possible combinations of tumor and TAHN tissue. First, we used a feature selector (ReliefF/Limma) to select relevant variables, which were then used to build a simple naïve Bayes classification model. Then, we evaluated the classification performance of our models by measuring the area under the receiver operating characteristic curve (AUC). Finally, we analyzed the relevance of the selected genes using hierarchical clustering and IPA® software for gene functional analysis. All Bayesian models achieved high classification performance (AUC > 0.94), which were confirmed by hierarchical cluster analysis. From the genes selected, 25 (93 %) were found to be related to cancer (19 were associated with ADC or SCC), confirming the biological relevance of our

  13. WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI

    International Nuclear Information System (INIS)

    Gensheimer, M; Trister, A; Ermoian, R; Hawkins, D

    2014-01-01

    Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segments at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was

  14. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.

    Science.gov (United States)

    Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L

    2015-08-01

    Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  15. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Teo, S.-K. [Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632 (Singapore); Tan, C. H. [Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433 (Singapore); Tham, I. W. K. [Department of Radiation Oncology, National University Cancer Institute, Singapore 119082 (Singapore)

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  16. Response of rat prostate and lung tumors to ionizing radiation combined with the angiogenesis inhibitor AMCA

    Energy Technology Data Exchange (ETDEWEB)

    Kal, H.B. [Dept. of Radiotherapy, Univ. Medical Centre Utrecht (Netherlands); Struikmans, H. [Dept. of Radiotherapy, Univ. Medical Centre Utrecht (Netherlands); Dept. of Radiotherapy, Medical Centre Haaglanden, Westeinde Hospital, The Hague (Netherlands); Gebbink, M.F.B.G.; Voest, E.E. [Dept. of Medical Oncology, Univ. Medical Centre Utrecht (Netherlands)

    2004-12-01

    Aim: to determine whether radiation combined with Trans-4-AminoMethyl cyclohexane carboxylic acid (AMCA, or tranexamic acid, Cyklokapron registered) results in a better tumor response than radiation alone. Materials and methods: we evaluated the responses of the L44 lung tumor in BN rats and R3327-MATLyLu (MLL) prostate tumor in Copenhagen rats, to single and fractionated X-ray doses with and without AMCA (1.5 g/kg). Tumors were grown subcutaneously in the flank of the animal. AMCA was administered subcutaneously twice daily for at least 2 weeks. Response to treatment was evaluated according to excess growth delay and specific growth delay. Results: L44 and MLL tumors treated with AMCA only experienced a non-significant growth delay. L44 tumors treated with 4 daily dose fractions of 2.5 Gy had a significant excess and specific growth delay when treated with AMCA, the enhancement ratio was 1.6-1.7. The enhancement ratio based on the calculated excess biologically effective dose of the linear-quadratic concept was 1.4-1.5. MLL tumors treated with a single dose of 20 Gy and AMCA had no significant excess growth delay. Conclusion: the enhancement ratio of 1.4-1.7 for the L44 tumor, but not for the MLL tumor, due to AMCA treatment, indicates that AMCA may potentiate the anti-tumor effect of ionizing radiation in distinct tumor types. (orig.)

  17. Response of rat prostate and lung tumors to ionizing radiation combined with the angiogenesis inhibitor AMCA

    International Nuclear Information System (INIS)

    Kal, H.B.; Struikmans, H.; Gebbink, M.F.B.G.; Voest, E.E.

    2004-01-01

    Aim: to determine whether radiation combined with Trans-4-AminoMethyl cyclohexane carboxylic acid (AMCA, or tranexamic acid, Cyklokapron registered) results in a better tumor response than radiation alone. Materials and methods: we evaluated the responses of the L44 lung tumor in BN rats and R3327-MATLyLu (MLL) prostate tumor in Copenhagen rats, to single and fractionated X-ray doses with and without AMCA (1.5 g/kg). Tumors were grown subcutaneously in the flank of the animal. AMCA was administered subcutaneously twice daily for at least 2 weeks. Response to treatment was evaluated according to excess growth delay and specific growth delay. Results: L44 and MLL tumors treated with AMCA only experienced a non-significant growth delay. L44 tumors treated with 4 daily dose fractions of 2.5 Gy had a significant excess and specific growth delay when treated with AMCA, the enhancement ratio was 1.6-1.7. The enhancement ratio based on the calculated excess biologically effective dose of the linear-quadratic concept was 1.4-1.5. MLL tumors treated with a single dose of 20 Gy and AMCA had no significant excess growth delay. Conclusion: the enhancement ratio of 1.4-1.7 for the L44 tumor, but not for the MLL tumor, due to AMCA treatment, indicates that AMCA may potentiate the anti-tumor effect of ionizing radiation in distinct tumor types. (orig.)

  18. Primary Lung Signet Ring Cell Carcinoma Presenting as a Cavitary Pancoast Tumor in a 32-Year-Old Man.

    Science.gov (United States)

    Corvini, Michael; Koorji, Alysha; Sgroe, Erica; Nguyen, Uyen

    2018-06-01

    Signet ring cell carcinoma, a subtype of adenocarcinoma, is a rare cause of primary lung cancer. The authors report a case of primary lung signet ring cell carcinoma presenting as a cavitary Pancoast tumor in a 32-year-old male smoker. Beyond the rarity of primary lung signet ring cell carcinoma itself, the youth of the patient, his smoking status, the presence of cavitation, and the location of the tumor in the superior sulcus make it especially atypical.

  19. Multimodal navigated skull base tumor resection using image-based vascular and cranial nerve segmentation: A prospective pilot study.

    Science.gov (United States)

    Dolati, Parviz; Gokoglu, Abdulkerim; Eichberg, Daniel; Zamani, Amir; Golby, Alexandra; Al-Mefty, Ossama

    2015-01-01

    Skull base tumors frequently encase or invade adjacent normal neurovascular structures. For this reason, optimal tumor resection with incomplete knowledge of patient anatomy remains a challenge. To determine the accuracy and utility of image-based preoperative segmentation in skull base tumor resections, we performed a prospective study. Ten patients with skull base tumors underwent preoperative 3T magnetic resonance imaging, which included thin section three-dimensional (3D) space T2, 3D time of flight, and magnetization-prepared rapid acquisition gradient echo sequences. Imaging sequences were loaded in the neuronavigation system for segmentation and preoperative planning. Five different neurovascular landmarks were identified in each case and measured for accuracy using the neuronavigation system. Each segmented neurovascular element was validated by manual placement of the navigation probe, and errors of localization were measured. Strong correspondence between image-based segmentation and microscopic view was found at the surface of the tumor and tumor-normal brain interfaces in all cases. The accuracy of the measurements was 0.45 ± 0.21 mm (mean ± standard deviation). This information reassured the surgeon and prevented vascular injury intraoperatively. Preoperative segmentation of the related cranial nerves was possible in 80% of cases and helped the surgeon localize involved cranial nerves in all cases. Image-based preoperative vascular and neural element segmentation with 3D reconstruction is highly informative preoperatively and could increase the vigilance of neurosurgeons for preventing neurovascular injury during skull base surgeries. Additionally, the accuracy found in this study is superior to previously reported measurements. This novel preliminary study is encouraging for future validation with larger numbers of patients.

  20. Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI

    Science.gov (United States)

    Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.

    2014-01-01

    The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328

  1. Carcinogenic agents present in the atmosphere and incidence of primary lung tumors in mice

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J A

    1939-01-01

    Exposure of mice to suspended benzene extracts of exhaust pipe soot from engine burning heavy oil for once/hr, 6 hr/day, for a lifetime, produced a slight increase in lung tumors whereas chimney soot had no effect. Conversely, chimney soot extract painted on skin was judged carcinogenic, whereas exhaust soot did not produce cancer.

  2. [Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network].

    Science.gov (United States)

    Wang, Yuanyuan; Zhou, Tao; Lu, Huiling; Wu, Cuiying; Yang, Pengfei

    2017-08-01

    The convolutional neural network (CNN) could be used on computer-aided diagnosis of lung tumor with positron emission tomography (PET)/computed tomography (CT), which can provide accurate quantitative analysis to compensate for visual inertia and defects in gray-scale sensitivity, and help doctors diagnose accurately. Firstly, parameter migration method is used to build three CNNs (CT-CNN, PET-CNN, and PET/CT-CNN) for lung tumor recognition in CT, PET, and PET/CT image, respectively. Then, we aimed at CT-CNN to obtain the appropriate model parameters for CNN training through analysis the influence of model parameters such as epochs, batchsize and image scale on recognition rate and training time. Finally, three single CNNs are used to construct ensemble CNN, and then lung tumor PET/CT recognition was completed through relative majority vote method and the performance between ensemble CNN and single CNN was compared. The experiment results show that the ensemble CNN is better than single CNN on computer-aided diagnosis of lung tumor.

  3. Soft computing approach to 3D lung nodule segmentation in CT.

    Science.gov (United States)

    Badura, P; Pietka, E

    2014-10-01

    This paper presents a novel, multilevel approach to the segmentation of various types of pulmonary nodules in computed tomography studies. It is based on two branches of computational intelligence: the fuzzy connectedness (FC) and the evolutionary computation. First, the image and auxiliary data are prepared for the 3D FC analysis during the first stage of an algorithm - the masks generation. Its main goal is to process some specific types of nodules connected to the pleura or vessels. It consists of some basic image processing operations as well as dedicated routines for the specific cases of nodules. The evolutionary computation is performed on the image and seed points in order to shorten the FC analysis and improve its accuracy. After the FC application, the remaining vessels are removed during the postprocessing stage. The method has been validated using the first dataset of studies acquired and described by the Lung Image Database Consortium (LIDC) and by its latest release - the LIDC-IDRI (Image Database Resource Initiative) database. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Gamma-knife radiosurgery for metastatic brain tumors from primary lung cancer

    International Nuclear Information System (INIS)

    Uchiyama, Bine; Satoh, Ken; Saijo, Yasuo

    1998-01-01

    Forty patients with metastatic brain tumors from primary lung cancer underwent radiosurgery (γ-knife). We retrospectively compared their prior treatment history, number of metastatic foci, and performance status, to evaluate the effects of, and indications for, γ-knife therapy. After both the primary and the metastatic tumors were controlled, performance status could be used as an index in the choice of γ-knife therapy. Our results demonstrate that repeated γ-knife radiosurgeries prolonged survival time. Gamma-knife radiosurgery improves quality of life and prognosis of patients with metastatic brain tumors. (author)

  5. The catabolism of radioiodinated anti-lung-cancer monoclonal antibodies in tumor-bearing nude mice

    International Nuclear Information System (INIS)

    Shi Xubao

    1991-01-01

    Nude mice bearing humor lung cancer xenografts were injected intravenously or intraperitoneally with a mixture of radioiodinated anti-lung-cancer monoclonal antibodies, 2E3 and 6D1. The blood radioactivity versus time curve was fitted to a two-compartment open model with a 3.4 day blood radioactivity clearance half-life and a 636 ml/kg apparent distribution volume. Radioiodinated 2E3 and 6D1 given intraperitoneally were rapidly absorbed, with a 2.08 absorption half-life and 89% bioavailability. The highest radioactivity levels were found in the tumor, blood, liver and spleen 1-3 days after injection; next came the lung, kidney, stomach and intestine. The relative radioactivity increased in the tumor as levels in blood and normal tissues decreased. The in vivo deiodination of radioiodinated 2E3 and 6D1 was about 18.6% and free radioiodine was excreted in the urine

  6. Outcome of four-dimensional stereotactic radiotherapy for centrally located lung tumors

    International Nuclear Information System (INIS)

    Nuyttens, Joost J.; Voort van Zyp, Noelle C. van der; Praag, John; Aluwini, Shafak; Klaveren, Rob J. van; Verhoef, Cornelis; Pattynama, Peter M.; Hoogeman, Mischa S.

    2012-01-01

    Purpose: To assess local control, overall survival, and toxicity of four-dimensional, risk-adapted stereotactic body radiotherapy (SBRT) delivered while tracking respiratory motion in patients with primary and metastatic lung cancer located in the central chest. Methods: Fifty-eight central lesions of 56 patients (39 with primary, 17 with metastatic tumors) were treated. Fifteen tumors located near the esophagus were treated with 6 fractions of 8 Gy. Other tumors were treated according to the following dose escalation scheme: 5 fractions of 9 Gy (n = 6), then 5 fractions of 10 Gy (n = 15), and finally 5 fractions of 12 Gy (n = 22). Results: Dose constraints for critical structures were generally achieved; in 21 patients the coverage of the PTV was reduced below 95% to protect adjacent organs at risk. At a median follow-up of 23 months, the actuarial 2-years local tumor control was 85% for tumors treated with a BED >100 Gy compared to 60% for tumors treated with a BED ⩽100 Gy. No grade 4 or 5 toxicity was observed. Acute grade 1–2 esophagitis was observed in 11% of patients. Conclusion: SBRT of central lung lesions can be safely delivered, with promising early tumor control in patients many of whom have severe comorbid conditions.

  7. Molecular and cytogenetic characterization of radon-induced lung tumors in the rat

    International Nuclear Information System (INIS)

    Dano, Laurent

    2000-01-01

    Radon is a natural radioactive gas. This radioelement, which is an α-particle emitter, is omnipresent in the environment. Inhalation of atmospheric radon is the major exposure route in man of natural radioactivity which results in respiratory tract contamination. An increased lung cancer risk associated with radon inhalation has been shown both in humans and animals by epidemiological and experimental studies, respectively. In rats, characterization of dose-effect relationships has led to the construction of statistical models that may help theoretically in the prediction of human health involvements of both occupational and domestic chronic exposure to radon. However, little is known about the cellular and molecular mechanisms of radon-induced lung carcinogenesis. In the laboratory, a model of lung cancers induced in rats after radon inhalation is available. This model represents a good tool to identify and characterize the genetic events contributing to the development of radon-induced lung tumors. Carrying out a global approach based on the combined use of classical and molecular cytogenetic methods, the analysis of 17 neoplasms allowed the identification of chromosomal regions frequently altered in these tumors. Numerous similarities have been found between our results and the cytogenetic data for human lung cancers, suggesting common underlying genetic molecular mechanisms for lung cancer development in both species. Moreover, our study has allowed to point to tumor suppressor genes and proto-oncogenes potentially involved in radon-induced lung carcinogenesis. Thus, our results may aid further molecular studies aimed either at confirming the role of these candidate genes or at demonstrating the involvement of yet to be identified genes. (author) [fr

  8. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    International Nuclear Information System (INIS)

    Schneider, Katja U; Liebenberg, Volker; Kneip, Christoph; Seegebarth, Anke; Erdogan, Fikret; Rappold, Gudrun; Schmidt, Bernd; Dietrich, Dimo; Fleischhacker, Michael; Leschber, Gunda; Merk, Johannes; Schäper, Frank; Stapert, Henk R; Vossenaar, Erik R; Weickmann, Sabine

    2011-01-01

    DNA methylation in the SHOX2 locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with SHOX2 gene expression and/or copy number alterations. An amplification of the SHOX2 gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples. SHOX2 expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect SHOX2 DNA methylation levels. SHOX2 expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH. A hypermethylation of the SHOX2 locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the SHOX2 gene showed no difference. Frequent gene amplification correlated with hypermethylation of the SHOX2 gene locus. This concerted effect qualifies SHOX2 DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples

  9. [Construction of 2-dimensional tumor microvascular architecture phenotype in non-small cell lung cancer].

    Science.gov (United States)

    Liu, Jin-kang; Wang, Xiao-yi; Xiong, Zeng; Zhou, Hui; Zhou, Jian-hua; Fu, Chun-yan; Li, Bo

    2008-08-01

    To construct a technological platform of 2-dimensional tumor microvascular architecture phenotype (2D-TAMP) expression. Thirty samples of non-small cell lung cancer (NSCLC) were collected after surgery. The corresponding sections of tumor tissue specimens to the slice of CT perfusion imaging were selected. Immunohistochemical staining,Gomori methenamine silver stain, and electron microscope observation were performed to build a technological platform of 2D-TMAP expression by detecting the morphology and the integrity of basement membrane of microvasculature, microvascular density, various microvascular subtype, the degree of the maturity and lumenization of microvasculature, and the characteristics of immunogenetics of microvasculature. The technological platform of 2D-TMAP expression was constructed successfully. There was heterogeneity in 2D-TMAP expression of non-small cell lung cancer. The microvascular of NSCLC had certain characteristics. 2D-TMAP is a key technology that can be used to observe the overall state of micro-environment in tumor growth.

  10. Evaluation of clinical value of combined tumor markers detection in diagnosis of lung cancer

    International Nuclear Information System (INIS)

    Zhang Guangming; Deng Shouzhen; Wang Yun; Xu Lianqin; He Wanting; Gao Quan; Lin Xiangtong

    2002-01-01

    To evaluate clinical value of single or combined tumor marker detection CY21-1, CEA, CA15-3 and SCC in the diagnosis of lung cancer. There was retrospective analysis of 87 lung cancer inpatients, all of them was confirmed by pathology. Results showed: (1) Sensitivity of CY21-1, CEA, CA15-3 and SCC by single detection in diagnosing lung cancer was 59.8%, 39.1%, 44.8%, 18.4%, respectively. (2) Sensitivity of group I (CY21-1 + CEA) was 78.2%; sensitivity of group II (CY21-1 + CEA + CA15-3) was 88.5%; sensitivity of group III (CY21-1 + CEA + CA15-3 + SCC) was the same as group II. In the diagnosis of lung cancer, the combined detection with CY21-1, CEA, CA15-3 was an ideal selective combination

  11. Time-dependent cell disintegration kinetics in lung tumors after irradiation

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V; Palta, Jatinder J; Nagata, Yasushi

    2008-01-01

    We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T 1/2 . The half-life T 1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T 1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations

  12. Time-dependent cell disintegration kinetics in lung tumors after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, Alexei V; Palta, Jatinder J [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Nagata, Yasushi [Department of Therapeutic Radiology and Oncology, Kyoto University, Kyoto (Japan)], E-mail: chvetsov@ufl.edu

    2008-05-07

    We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T{sub 1/2}. The half-life T{sub 1/2} is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T{sub 1/2} of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.

  13. Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET

    International Nuclear Information System (INIS)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2008-01-01

    Small animal positron emission tomography (PET) with 18 F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal 18 F-FDG PET. Methods: To determine the impact of anesthesia on 18 F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of 18 F-FDG in various tissues were evaluated. The 18 F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of 18 F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased 18 F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest 18 F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by 18 F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal 18 F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire 18 F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model

  14. Mitigation of motion artifacts in CBCT of lung tumors based on tracked tumor motion during CBCT acquisition

    International Nuclear Information System (INIS)

    Lewis, John H; Li Ruijiang; Jia Xun; Watkins, W Tyler; Song, William Y; Jiang, Steve B; Lou, Yifei

    2011-01-01

    An algorithm capable of mitigating respiratory motion blurring artifacts in cone-beam computed tomography (CBCT) lung tumor images based on the motion of the tumor during the CBCT scan is developed. The tumor motion trajectory and probability density function (PDF) are reconstructed from the acquired CBCT projection images using a recently developed algorithm Lewis et al (2010 Phys. Med. Biol. 55 2505-22). Assuming that the effects of motion blurring can be represented by convolution of the static lung (or tumor) anatomy with the motion PDF, a cost function is defined, consisting of a data fidelity term and a total variation regularization term. Deconvolution is performed through iterative minimization of this cost function. The algorithm was tested on digital respiratory phantom, physical respiratory phantom and patient data. A clear qualitative improvement is evident in the deblurred images as compared to the motion-blurred images for all cases. Line profiles show that the tumor boundaries are more accurately and clearly represented in the deblurred images. The normalized root-mean-squared error between the images used as ground truth and the motion-blurred images are 0.29, 0.12 and 0.30 in the digital phantom, physical phantom and patient data, respectively. Deblurring reduces the corresponding values to 0.13, 0.07 and 0.19. Application of a -700 HU threshold to the digital phantom results in tumor dimension measurements along the superior-inferior axis of 2.8, 1.8 and 1.9 cm in the motion-blurred, ground truth and deblurred images, respectively. Corresponding values for the physical phantom are 3.4, 2.7 and 2.7 cm. A threshold of -500 HU applied to the patient case gives measurements of 3.1, 1.6 and 1.7 cm along the SI axis in the CBCT, 4DCT and deblurred images, respectively. This technique could provide more accurate information about a lung tumor's size and shape on the day of treatment.

  15. Advanced Research of mTOR and Lung Carcinoid Tumors

    Directory of Open Access Journals (Sweden)

    Zixuan ZHANG

    2013-01-01

    Full Text Available Mammalian target of rapamycin (mTOR, a main protein kinase in the phosphoinositide 3-kinase (PI3K/AKT/mTOR signaling pathway, is an important intracellular mediator involved in multiple celluar functions including proliferation, differentiation, apoptosis, tumorigenesis, and angiogenesis. Recently, the high expression of mTOR and mTOR-related kinase have been found in neuroendocrin tumors. Therefore, mTOR pathway represents an attractive target for new anticancer therapies except surgery.

  16. Adaptive region-growing with maximum curvature strategy for tumor segmentation in 18F-FDG PET

    Science.gov (United States)

    Tan, Shan; Li, Laquan; Choi, Wookjin; Kang, Min Kyu; D'Souza, Warren D.; Lu, Wei

    2017-07-01

    Accurate tumor segmentation in PET is crucial in many oncology applications. We developed an adaptive region-growing (ARG) algorithm with a maximum curvature strategy (ARG_MC) for tumor segmentation in PET. The ARG_MC repeatedly applied a confidence connected region-growing algorithm with increasing relaxing factor f. The optimal relaxing factor (ORF) was then determined at the transition point on the f-volume curve, where the volume just grew from the tumor into the surrounding normal tissues. The ARG_MC along with five widely used algorithms were tested on a phantom with 6 spheres at different signal to background ratios and on two clinic datasets including 20 patients with esophageal cancer and 11 patients with non-Hodgkin lymphoma (NHL). The ARG_MC did not require any phantom calibration or any a priori knowledge of the tumor or PET scanner. The identified ORF varied with tumor types (mean ORF  =  9.61, 3.78 and 2.55 respectively for the phantom, esophageal cancer, and NHL datasets), and varied from one tumor to another. For the phantom, the ARG_MC ranked the second in segmentation accuracy with an average Dice similarity index (DSI) of 0.86, only slightly worse than Daisne’s adaptive thresholding method (DSI  =  0.87), which required phantom calibration. For both the esophageal cancer dataset and the NHL dataset, the ARG_MC had the highest accuracy with an average DSI of 0.87 and 0.84, respectively. The ARG_MC was robust to parameter settings and region of interest selection, and it did not depend on scanners, imaging protocols, or tumor types. Furthermore, the ARG_MC made no assumption about the tumor size or tumor uptake distribution, making it suitable for segmenting tumors with heterogeneous FDG uptake. In conclusion, the ARG_MC was accurate, robust and easy to use, it provides a highly potential tool for PET tumor segmentation in clinic.

  17. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    International Nuclear Information System (INIS)

    Oikonomidis, Ioannis Vogiatzis; Cremona, Tiziana P; Schittny, Johannes C; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco

    2017-01-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis. (paper)

  18. An evaluation of planning techniques for stereotactic body radiation therapy in lung tumors

    International Nuclear Information System (INIS)

    Wu Jianzhou; Li Huiling; Shekhar, Raj; Suntharalingam, Mohan; D'Souza, Warren

    2008-01-01

    Purpose: To evaluate four planning techniques for stereotactic body radiation therapy (SBRT) in lung tumors. Methods and materials: Four SBRT plans were performed for 12 patients with stage I/II non-small-cell lung cancer under the following conditions: (1) conventional margins on free-breathing CT (plan 1), (2) generation of an internal target volume (ITV) using 4DCT with beam delivery under free-breathing conditions (plan 2), (3) gating at end-exhale (plan 3), and (4) gating at end-inhale (plan 4). Planning was performed following the RTOG 0236 protocol with a prescription dose of 54 Gy (3 fractions). For each plan 4D dose was calculated using deformable-image registration. Results: There was no significant difference in tumor dose delivered by the 4 plans. However, compared with plan 1, plans 2-4 reduced total lung BED by 1.9 ± 1.2, 3.1 ± 1.6 and 3.5 ± 2.1 Gy, reduced mean lung dose by 0.8 ± 0.5, 1.5 ± 0.8, and 1.6 ± 1.0 Gy, reduced V20 by 1.5 ± 1.0%, 2.7 ± 1.4%, and 2.8 ± 1.8%, respectively, with p < 0.01. Compared with plan 2, plans 3-4 reduced lung BED by 1.2 ± 1.0 and 1.6 ± 1.5 Gy, reduced mean lung dose by 0.6 ± 0.5 and 0.8 ± 0.7 Gy, reduced V20 by 1.2 ± 1.1% and 1.3 ± 1.5%, respectively, with p < 0.01. The differences in lung BED, mean dose and V20 of plan 4 compared with plan 3 were insignificant. Conclusions: Tumor dose coverage was statistically insignificant between all plans. However, compared with plan 1, plans 2-4 significantly reduced lung doses. Compared with plan 2, plan 3-4 also reduced lung toxicity. The difference in lung doses between plan 3 and plan 4 was not significant

  19. AUTOMATIC LUNG NODULE SEGMENTATION USING AUTOSEED REGION GROWING WITH MORPHOLOGICAL MASKING (ARGMM AND FEATURE EX-TRACTION THROUGH COMPLETE LOCAL BINARY PATTERN AND MICROSCOPIC INFORMATION PATTERN

    Directory of Open Access Journals (Sweden)

    Senthil Kumar

    2015-04-01

    Full Text Available An efficient Autoseed Region Growing with Morphological Masking(ARGMM is imple-mented in this paper on the Lung CT Slice to segment the 'Lung Nodules',which may be the potential indicator for the Lung Cancer. The segmentation of lung nodules car-ried out in this paper through Multi-Thresholding, ARGMM and Level Set Evolution. ARGMM takes twice the time compared to Level Set, but still the number of suspected segmented nodules are doubled, which make sure that no potential cancerous nodules go unnoticed at the earlier stages of diagnosis. It is very important not to panic the patient by finding the presence of nodules from Lung CT scan. Only 40 percent of nod-ules can be cancerous. Hence, in this paper an efficient Shape and Texture analysis is computed to quantitatively describe the segmented lung nodules. The Frequency spectrum of the lung nodules is developed and its frequency domain features are com-puted. The Complete Local binary pattern of lung nodules is computed in this paper by constructing the combine histogram of Sign and Magnitude Local Binary Patterns. Lo-cal Configuration Pattern is also determined in this work for lung nodules to numeri-cally model the microscopic information of nodules pattern.

  20. LUNG TUMOR KRAS AND TP53 MUTATIONS IN NON-SMOKERS REFLECT EXPOSURE TO PAH-RICH COAL COMBUSTION EMISSIONS

    Science.gov (United States)

    Abstract We determined the TP53 and codon 12 KRAS mutations in lung tumors from 24 nonsmokers whose tumors were associated with exposure to smoky coal. Among any tumors studied previously, these showed the highest percentage of mutations that (a) were G -+ T transver...

  1. Electroporation-based treatment planning for deep-seated tumors based on automatic liver segmentation of MRI images.

    Science.gov (United States)

    Pavliha, Denis; Mušič, Maja M; Serša, Gregor; Miklavčič, Damijan

    2013-01-01

    Electroporation is the phenomenon that occurs when a cell is exposed to a high electric field, which causes transient cell membrane permeabilization. A paramount electroporation-based application is electrochemotherapy, which is performed by delivering high-voltage electric pulses that enable the chemotherapeutic drug to more effectively destroy the tumor cells. Electrochemotherapy can be used for treating deep-seated metastases (e.g. in the liver, bone, brain, soft tissue) using variable-geometry long-needle electrodes. To treat deep-seated tumors, patient-specific treatment planning of the electroporation-based treatment is required. Treatment planning is based on generating a 3D model of the organ and target tissue subject to electroporation (i.e. tumor nodules). The generation of the 3D model is done by segmentation algorithms. We implemented and evaluated three automatic liver segmentation algorithms: region growing, adaptive threshold, and active contours (snakes). The algorithms were optimized using a seven-case dataset manually segmented by the radiologist as a training set, and finally validated using an additional four-case dataset that was previously not included in the optimization dataset. The presented results demonstrate that patient's medical images that were not included in the training set can be successfully segmented using our three algorithms. Besides electroporation-based treatments, these algorithms can be used in applications where automatic liver segmentation is required.

  2. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery.

    Science.gov (United States)

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-09-01

    To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  3. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer.

    Science.gov (United States)

    Yu, Xiaomu; Xu, Maoyi; Li, Na; Li, Zongjuan; Li, Hongye; Shao, Shujuan; Zou, Kun; Zou, Lijuan

    2017-08-19

    Macrophages in tumor are mostly M2-polarized and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). β-elemene has therapeutic effects against several cancers, however, it remains unknown whether β-elemene could inhibit cancer by targeting TAMs. Herein, we examined the effect of β-elemene on macrophages to elucidate a novel mechanism of β-elemene in tumor therapy. We showed that the conditioned medium of M2 macrophages promoted lung cancer cells to migration, invasion and epithelial mesenchymal transition, which could be inhibited by β-elemene. Moreover, β-elemene regulated the polarization of macrophages from M2 to M1. β-elemene also inhibited the proliferation, migration, invasion of lung cancer cells and enhanced its radiosensitivity. These results indicate β-elemene suppresses lung cancer by regulating both macrophages and lung cancer cells, it is a promising drug for combination with chemotherapy or radiotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Clinical Evaluation and Cost-Effectiveness Analysis of Serum Tumor Markers in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2013-01-01

    Full Text Available The detection of serum tumor markers is valuable for the early diagnosis of lung cancer. Tumor markers are frequently used for the management of cancer patients. However, single markers are less efficient but marker combinations increase the cost, which is troublesome for clinics. To find an optimal serum marker combination panel that benefits the patients and the medical management system as well, four routine lung cancer serum markers (SCCA, NSE, CEA, and CYFRA21-1 were evaluated individually and in combination. Meanwhile, the costs and effects of these markers in clinical practice in China were assessed by cost-effectiveness analysis. As expected, combinations of these tumor markers improved their sensitivity for lung cancer and different combination panels had their own usefulness. NSE + CEA + CYFRA21-1 was the optimal combination panel with highest Youden’s index (0.64, higher sensitivity (75.76%, and specificity (88.57%, which can aid the clinical diagnosis of lung cancer. Nevertheless, the most cost-effective combination was SCCA + CEA, which can be used to screen the high-risk group.

  5. Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer.

    Science.gov (United States)

    Yi, Fuming; Amarasinghe, Baru; Dang, Thao P

    2013-01-01

    Notch signaling plays an essential role in development as well as cancer. We have previously shown that Notch3 is important for lung cancer growth and survival. Notch receptors are activated through the interaction with their ligands, resulting in proteolytic cleavage of the receptors. This interaction is modulated by Fringe, a family of fucose-specific β1,3 N-acetylglucosaminyltransferases that modify the extracellular subunit of Notch receptors. Studies in developmental models showed that Fringe enhances Notch's response to Delta ligands at the expense of Jagged ligands. We observed that Manic Fringe expression is down-regulated in lung cancer. Since Jagged1, a known ligand for Notch3, is often over-expressed in lung cancer, we hypothesized that Fringe negatively regulates Notch3 activation. In this study, we show that re-expression of Manic Fringe down-regulates Notch3 target genes HES1 and HeyL and reduces tumor phenotype in vitro and in vivo. The mechanism for this phenomenon appears to be related to modulation of Notch3 protein stability. Proteasome inhibition reverses Manic Fringe-induced protein turnover. Taken together, our data provide the first evidence that Manic Fringe functions as a tumor suppressor in the lung and that the mechanism of its anti-tumor activity is mediated by inhibition of Notch3 activation.

  6. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably

    DEFF Research Database (Denmark)

    Ashraf, Haseem; de Hoop, B; Shaker, S B

    2010-01-01

    We examined the reproducibility of lung nodule volumetry software that offers three different volumetry algorithms.......We examined the reproducibility of lung nodule volumetry software that offers three different volumetry algorithms....

  7. Histogenesis of lung tumors induced in rats by inhalation of α emitters. An overview

    International Nuclear Information System (INIS)

    Masse, R.

    1979-01-01

    Recent reviews have shown that simular risks coefficients for α irradiation of the lung in man could be deduced using epidemiological or experimental data in animals. Most experimental data were obtained in rats. In this overview the histogenesis and ultrastructure of lung tumors are presented. Only few tumors originating from lung parenchyma could be considered as non relevant for extrapolation to man. Most tumors arose from axial bronchus or bronchioles and their histogenesis was very similar to what is known in man. The only striking difference between the two species was related to the growth characteristics of the tumors. Tumors in rat, frequently papillary, acquired only slowly their full malignancy. They seem to be only potentially malignant. Two main types of tumors were considered: bronchogenic (B) and bronchiolo alveolar (b.a.) carcinomas. Survivals of the cancerous rats were log normal distribution in a given group of dose and were supposed to reflect latent period. No difference was found between B and b.a. carcinomas; geometric standard deviation did not increase when doses decrease. Since risk coefficients were found to increase when dose decreased, and through latent period fitted well with a power function of dose within the dose range studied, it is observed that the latent period can not be deduced by extrapolation at low doses. b.a. carcinomas prevailed at low doses; the relevance of this observation to man is however dubious since combined action with environmental carcinogens led to a high prevalence of B. carcinomas. Though genetic and immune surveillance are factors of some importance in the determination of the tumors it is suggested that critical individuals will be mostly multi-exposed individuals

  8. Use of archived tissues for studies of plutonium-induced lung tumors

    International Nuclear Information System (INIS)

    Sanders, C.L.; McDonald, K.E.; Lauhala, K.E.; Frazier, M.E.

    1988-10-01

    Previous lifespan studies in rats exposed to plutonium-239 aerosols indicated that lung tumor incidence might be increased at radiation doses to the lung comparable to doses received by humans from a maximum permissible occupational lung deposition of 0.6 kBq 239 Pu. A total of 3,192 young adults, female, SPF, Wistar rats were used in the initial lifespan study: 2,134 were exposed to 239 PuO 2 at initial lung burdens (ILB) ranging from 0.009 to 6.7 kBq, and 1,058 were sham-exposed controls. Histopathological analyses have been completed on 1707 of the 3,192 rats, including 54 sham-exposed control sand 1153 exposed animals. Cell kinetics, autoradiographic and morphometric techniques are being used to evaluate the spatial-temporal dose-distribution patterns and the cellular events leadings up to lung tumor formation in 140 serially sacrificed female, Wistar rats given a single exposure to 239 PuO 2 (ILB, 3.9 kBq). Protooncogene activation, growth factors and growth factor receptors, DNA cell content (by cell flow cytometry and microspectrophotometry) and cell proliferation (by 3 H-TdR nuclear labeling) are being examined in archival paraffin-block sections. 27 refs., 2 figs

  9. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    International Nuclear Information System (INIS)

    Rottmann, Joerg; Berbeco, Ross; Keall, Paul

    2013-01-01

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time

  10. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    Energy Technology Data Exchange (ETDEWEB)

    Rottmann, Joerg; Berbeco, Ross [Brigham and Women' s Hospital, Dana Farber-Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia)

    2013-09-15

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  11. A rare tumoral combination, synchronous lung adenocarcinoma and mantle cell lymphoma of the pleura

    Directory of Open Access Journals (Sweden)

    Foroulis Christophoros N

    2008-12-01

    Full Text Available Abstract Background Coexistence of adenocarcinoma and mantle cell lymphoma in the same or different anatomical sites is extremely rare. We present a case of incidental discovery of primary lung adenocarcinoma and mantle cell lymphoma involving the pleura, during an axillary thoracotomy performed for a benign condition. Case presentation A 73-year old male underwent bullectomy and apical pleurectomy for persistent pneumothorax. A bulla of the lung apex was resected en bloc with a scar-like lesion of the lung, which was located in proximity with the bulla origin, by a wide wedge resection. Histologic examination of the stripped-off parietal pleura and of the bullectomy specimen revealed the synchronous occurrence of two distinct neoplasms, a lymphoma infiltrating the pleura and a primary, early lung adenocarcinoma. Immunohistochemical and fluorescence in situ hybridization assays were performed. The morphologic, immunophenotypic and genetic findings supported the diagnosis of primary lung adenocarcinoma (papillary subtype coexisting with a non-Hodgkin, B-cell lineage, mantle cell lymphoma involving both, visceral and parietal pleura and without mediastinal lymph node involvement. The neoplastic lymphoid cells showed the characteristic immunophenotype of mantle cell lymphoma and the translocation t(11;14. The patient received 6 cycles of chemotherapy, while pulmonary function tests precluded further pulmonary parenchyma resection (lobectomy for his adenocarcinoma. The patient is alive and without clinical and radiological findings of local recurrence or distant relapse from both tumors 14 months later. Conclusion This is the first reported case of a rare tumoral combination involving simultaneously lung and pleura, emphasizing at the incidental discovery of the two coexisting neoplasms during a procedure performed for a benign condition. Any tissue specimen resected during operations performed for non-tumoral conditions should be routinely sent for

  12. Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Alison K Bauer

    Full Text Available Nrf2 is a key transcription factor that regulates cellular redox and defense responses. However, permanent Nrf2 activation in human lung carcinomas promotes pulmonary malignancy and chemoresistance. We tested the hypothesis that Nrf2 has cell survival properties and lack of Nrf2 suppresses chemically-induced pulmonary neoplasia by treating Nrf2(+/+ and Nrf2(-/- mice with urethane. Airway inflammation and injury were assessed by bronchoalveolar lavage analyses and histopathology, and lung tumors were analyzed by gross and histologic analysis. We used transcriptomics to assess Nrf2-dependent changes in pulmonary gene transcripts at multiple stages of neoplasia. Lung hyperpermeability, cell death and apoptosis, and inflammatory cell infiltration were significantly higher in Nrf2(-/- mice compared to Nrf2(+/+ mice 9 and 11 wk after urethane. Significantly fewer lung adenomas were found in Nrf2(-/- mice than in Nrf2(+/+ mice at 12 and 22 wk. Nrf2 modulated expression of genes involved cell-cell signaling, glutathione metabolism and oxidative stress response, and immune responses during early stage neoplasia. In lung tumors, Nrf2-altered genes had roles in transcriptional regulation of cell cycle and proliferation, carcinogenesis, organismal injury and abnormalities, xenobiotic metabolism, and cell-cell signaling genes. Collectively, Nrf2 deficiency decreased susceptibility to urethane-induced lung tumorigenesis in mice. Cell survival properties of Nrf2 were supported, at least in part, by reduced early death of initiated cells and heightened advantage for tumor cell expansion in Nrf2(+/+ mice relative to Nrf2(-/- mice. Our results were consistent with the concept that Nrf2 over-activation is an adaptive response of cancer conferring resistance to anti-cancer drugs and promoting malignancy.

  13. Mucoepidermoid lung tumor appearing as an abscess on the scrotum.

    Science.gov (United States)

    Szendroi, Attila; Majoros, Attila; Székely, Eszter; Szucs, Miklós; Romics, Imre

    2009-01-01

    The authors present the case of a 52-year-old man who had recurring scrotal abscesses resulting in oncotomy being carried out seven times within 2 years. Eventually, it was dissected out totally. Histology proved anaplastic cancer metastasis. The primary tumor was detected in the bronchia; moreover, metastases were found in other organs as well. The patient died 6 weeks after the first diagnosis. We intended to draw attention to frequently occurring scrotal inflammation and thus the underlying diseases. We emphasize the importance of histology examinations. (c) 2009 S. Karger AG, Basel.

  14. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis.

    Science.gov (United States)

    Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro

    2017-09-01

    To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Prognostic impact of cytological fluid tumor markers in non-small cell lung cancer.

    Science.gov (United States)

    Cho, Arthur; Hur, Jin; Hong, Yoo Jin; Lee, Hye-Jeong; Kim, Young Jin; Hong, Sae Rom; Suh, Young Joo; Im, Dong Jin; Kim, Yun Jung; Lee, Jae Seok; Shim, Hyo Sup; Choi, Byoung Wook

    2016-03-01

    The serum tumor markers CYFRA 21-1, carcinoembryonic antigen (CEA), and squamous cell carcinoma antigen (SCCA) are useful in diagnosis and prognosis of non-small cell lung cancer (NSCLC). Cytologic tumor markers obtained during needle aspiration biopsies (NAB) of lung lesions are useful for NSCLC diagnosis. This study investigated the incremental prognostic value of cytologic tumor markers compared to serum tumor markers. This prospective study included 253 patients diagnosed with NSCLC by NAB with cytologic tumor marker analysis. Levels of cytologic CYFRA 21-1, CEA, SCCA, and their serum counterparts were followed up for survival analysis. Optimal cutoff values for each tumor marker were obtained for overall survival (OS) and progression-free survival (PFS) analyses. All patients were followed up for a median of 22.8 months. Using cutoff values of 0.44 ng/ml for C-SCCA, 2.0 ng/ml for S-SCCA, and 3.3 ng/ml for S-CYFRA, a multivariate analysis revealed that high S-SCCA (hazard ratio, HR, 1.84) and high C-SCCA (HR, 1.63) were independent predictive factors of OS. The 3-year overall survival rate was 55 vs. 80 % for high and low C-SCCA, respectively. Cytologic tumor marker level detection is easily obtainable and provides prognostic information for NSCLC. Cytologic tumor markers provide comparable prognostic information relative to serum tumor markers, with C-SCCA acting as a strong prognostic factor of overall survival and PFS.

  16. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.

    Science.gov (United States)

    Mueller, Jenna L; Harmany, Zachary T; Mito, Jeffrey K; Kennedy, Stephanie A; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G; Willett, Rebecca M; Brown, J Quincy; Ramanujam, Nimmi

    2013-01-01

    To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features. TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA) and the circle transform (CT) was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma. Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity). For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach. The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.

  17. CBCT-Guided Rapid Arc for stereotactic ablative radiotherapy (SABR) in lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Fandino, J. M.; Silva, M. C.; Izquierdo, P.; Candal, A.; Diaz, I.; Fernandez, C.; Gesto, C.; Poncet, M.; Soto, M.; Triana, G.; Losada, C.; Marino, A.

    2013-07-01

    Stereotactic ablative radiotherapy has emerged as a standard treatment option for stage I non-small cell lung cancer in patients unfit for surgery, or who refuse surgery. An increasing number of prospective phase I/II trials, as well as large single and multicenter studies have reported local control rates to be in excess of 85% for early stage non-small cell lung cancer. Volumetric arc therapy RapidArc with tumor-based image guidance technique will be presented as well as our preliminary observations. (Author)

  18. Gastrointestinal stromal tumor masquerading as a lung neoplasm. A case presentation and literature review

    Directory of Open Access Journals (Sweden)

    Papagiannopoulos K

    2008-05-01

    Full Text Available Abstract Gastrointestinal stromal tumors (GISTs are rare neoplasms of the gastrointestinal tract. Their incidence in the esophagus is 1%–3%. Never has a GIST been documented to directly invade the lung. We report a primary esophageal GIST with direct invasion into the lung parenchyma, presenting predominantly with respiratory symptoms. We include a retrospective literature review. Although the principle 'common things are common' usually guides our everyday clinical practice, this case emphasizes that rare entities can mimic common pathologies and underlines the importance of having a clearly defined differential diagnostic list which should be meticulously scrutinized.

  19. Do Tumors in the Lung Deform During Normal Respiration? An Image Registration Investigation

    International Nuclear Information System (INIS)

    Wu Jianzhou; Lei Peng; Shekhar, Raj; Li Huiling; Suntharalingam, Mohan; D'Souza, Warren D.

    2009-01-01

    Purpose: The purpose of this study was to investigate whether lung tumors may be described adequately using a rigid body assumption or whether they deform during normal respiration. Methods and Materials: Thirty patients with early stage non-small-cell lung cancer underwent four-dimensional (4D) computed tomography (CT) simulation. The gross tumor volume (GTV) was delineated on the 4D CT images. Image registration was performed in the vicinity of the GTV. The volume of interest for registration was the GTV and minimal volume of surrounding non-GTV tissue. Three types of registration were performed: translation only, translation + rotation, and deformable. The GTV contour from end-inhale was mapped to end-exhale using the registration-derived transformation field. The results were evaluated using three metrics: overlap index (OI), root-mean-squared distance (RMS), and Hausdorff distance (HD). Results: After translation only image registration, on average OI increased by 21.3%, RMS and HD reduced by 1.2 mm and 2.0 mm, respectively. The succeeding increases in OI after translation + rotation and deformable registration were 1.1% and 1.4% respectively. The succeeding reductions in RMS were 0.1 mm and 0.2 mm respectively. No reduction in HD was observed after translation + rotation and deformable image registration compared with translation only registration. The difference in the results from the three registration scenarios was independent of GTV size and motion amplitude. Conclusions: The primary effect of normal respiration on lung tumors was the translation of tumors. Rotation and deformation of lung tumors was determined to be minimal.

  20. An accurate algorithm to match imperfectly matched images for lung tumor detection without markers.

    Science.gov (United States)

    Rozario, Timothy; Bereg, Sergey; Yan, Yulong; Chiu, Tsuicheng; Liu, Honghuan; Kearney, Vasant; Jiang, Lan; Mao, Weihua

    2015-05-08

    In order to locate lung tumors on kV projection images without internal markers, digitally reconstructed radiographs (DRRs) are created and compared with projection images. However, lung tumors always move due to respiration and their locations change on projection images while they are static on DRRs. In addition, global image intensity discrepancies exist between DRRs and projections due to their different image orientations, scattering, and noises. This adversely affects comparison accuracy. A simple but efficient comparison algorithm is reported to match imperfectly matched projection images and DRRs. The kV projection images were matched with different DRRs in two steps. Preprocessing was performed in advance to generate two sets of DRRs. The tumors were removed from the planning 3D CT for a single phase of planning 4D CT images using planning contours of tumors. DRRs of background and DRRs of tumors were generated separately for every projection angle. The first step was to match projection images with DRRs of background signals. This method divided global images into a matrix of small tiles and similarities were evaluated by calculating normalized cross-correlation (NCC) between corresponding tiles on projections and DRRs. The tile configuration (tile locations) was automatically optimized to keep the tumor within a single projection tile that had a bad matching with the corresponding DRR tile. A pixel-based linear transformation was determined by linear interpolations of tile transformation results obtained during tile matching. The background DRRs were transformed to the projection image level and subtracted from it. The resulting subtracted image now contained only the tumor. The second step was to register DRRs of tumors to the subtracted image to locate the tumor. This method was successfully applied to kV fluoro images (about 1000 images) acquired on a Vero (BrainLAB) for dynamic tumor tracking on phantom studies. Radiation opaque markers were

  1. Tumor Localization Using Cone-Beam CT Reduces Setup Margins in Conventionally Fractionated Radiotherapy for Lung Tumors

    International Nuclear Information System (INIS)

    Yeung, Anamaria R.; Li, Jonathan G.; Shi Wenyin; Newlin, Heather E.; Chvetsov, Alexei; Liu, Chihray; Palta, Jatinder R.; Olivier, Kenneth

    2009-01-01

    Purpose: To determine whether setup margins can be reduced using cone-beam computed tomography (CBCT) to localize tumor in conventionally fractionated radiotherapy for lung tumors. Methods and Materials: A total of 22 lung cancer patients were treated with curative intent with conventionally fractionated radiotherapy using daily image guidance with CBCT. Of these, 13 lung cancer patients had sufficient CBCT scans for analysis (389 CBCT scans). The patients underwent treatment simulation in the BodyFix immobilization system using four-dimensional CT to account for respiratory motion. Daily alignment was first done according to skin tattoos, followed by CBCT. All 389 CBCT scans were retrospectively registered to the planning CT scans using automated soft-tissue and bony registration; the resulting couch shifts in three dimensions were recorded. Results: The daily alignment to skin tattoos with no image guidance resulted in systematic (Σ) and random (σ) errors of 3.2-5.6 mm and 2.0-3.5 mm, respectively. The margin required to account for the setup error introduced by aligning to skin tattoos with no image guidance was approximately 1-1.6 cm. The difference in the couch shifts obtained from the bone and soft-tissue registration resulted in systematic (Σ) and random (σ) errors of 1.5-4.1 mm and 1.8-5.3 mm, respectively. The margin required to account for the setup error introduced using bony anatomy as a surrogate for the target, instead of localizing the target itself, was 0.5-1.4 cm. Conclusion: Using daily CBCT soft-tissue registration to localize the tumor in conventionally fractionated radiotherapy reduced the required setup margin by up to approximately 1.5 cm compared with both no image guidance and image guidance using bony anatomy as a surrogate for the target.

  2. Optimized performance of flight Plan during chemoembolization for hepatocellular carcinoma: Importance of the proportion of segmented tumor area

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Seung Moon; Kim, Yong Pyo; Yum, Tae Jun; Eun, Na Lae; Lee, Da Hye; Lee, Kwang Hun [Dept. of Radiology, Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-09-15

    To evaluate retrospectively the clinical effectiveness of Flight Plan for Liver (FPFL), an automated tumor-feeding artery detection software in cone-beam CT angiography (CBCTA), in identifying tumor-feeding arteries for the treatment of hepatocellular carcinoma (HCC) using three different segmentation sensitivities. The study included 50 patients with 80 HCC nodules who received transarterial chemoembolization. Standard digital subtracted angiography (DSA) and CBCTA were systematically performed and analyzed. Three settings of the FPFL software for vascular tree segmentation were tested for each tumor: the default, Group D; adjusting the proportion of segmented tumor area between 30 to 50%, Group L; and between 50 to 80%, Group H. In total, 109 feeder vessels supplying 80 HCC nodules were identified. The negative predictive value of DSA, FPFL in groups D, L, and H was 56.8%, 87.7%, 94.2%, 98.5%, respectively. The accuracy of DSA, FPFL in groups D, L, and H was 62.6%, 86.8%, 93.4%, 95.6%, respectively. The sensitivity, negative predictive value (NPV), and accuracy of FPFL were higher in Group H than in Group D (p = 0.041, 0.034, 0.005). All three segmentation sensitivity groups showed higher specificity, positive predictive value, NPV, and accuracy of FPFL, as compared to DSA. FlightPlan for Liver is a valuable tool for increasing detection of HCC tumor feeding vessels, as compared to standard DSA analysis, particularly in small HCC. Manual adjustment of segmentation sensitivity improves the accuracy of FPFL.

  3. Optimized Performance of FlightPlan during Chemoembolization for Hepatocellular Carcinoma: Importance of the Proportion of Segmented Tumor Area

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Seung-Moon; Kim, Yong Pyo; Yum, Tae Jun; Eun, Na Lae; Lee, Dahye; Lee, Kwang-Hun [Department of Radiology, Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273 (Korea, Republic of)

    2016-11-01

    To evaluate retrospectively the clinical effectiveness of FlightPlan for Liver (FPFL), an automated tumor-feeding artery detection software in cone-beam CT angiography (CBCTA), in identifying tumor-feeding arteries for the treatment of hepatocellular carcinoma (HCC) using three different segmentation sensitivities. The study included 50 patients with 80 HCC nodules who received transarterial chemoembolization. Standard digital subtracted angiography (DSA) and CBCTA were systematically performed and analyzed. Three settings of the FPFL software for vascular tree segmentation were tested for each tumor: the default, Group D; adjusting the proportion of segmented tumor area between 30 to 50%, Group L; and between 50 to 80%, Group H. In total, 109 feeder vessels supplying 80 HCC nodules were identified. The negative predictive value of DSA, FPFL in groups D, L, and H was 56.8%, 87.7%, 94.2%, 98.5%, respectively. The accuracy of DSA, FPFL in groups D, L, and H was 62.6%, 86.8%, 93.4%, 95.6%, respectively. The sensitivity, negative predictive value (NPV), and accuracy of FPFL were higher in Group H than in Group D (p = 0.041, 0.034, 0.005). All three segmentation sensitivity groups showed higher specificity, positive predictive value, NPV, and accuracy of FPFL, as compared to DSA. FlightPlan for Liver is a valuable tool for increasing detection of HCC tumor feeding vessels, as compared to standard DSA analysis, particularly in small HCC. Manual adjustment of segmentation sensitivity improves the accuracy of FPFL.

  4. Dermatomyositis as the first manifestation of a lung tumor

    Directory of Open Access Journals (Sweden)

    A. Castro

    2013-07-01

    Full Text Available Dermatomyositis (DM is a rare disease characterized by proximal muscle weakness and a typical cutaneous rash. The muscle biopsy shows inflammatory lesions consistent with myositis, being related to an increased risk of cancer, often being considered as a paraneoplastic syndrome. The authors present a case of a 63-year-old man, with progressive proximal muscle weakness and cutaneous rash, appearing in two months. The muscle and skin biopsies were consistent with DM. Chest tomography showed that a nodular image in the lingular region and bronchy biopsy confirmed the diagnosis of small cell lung carcinoma (SCLC. This clinical case intends to enhance the importance of a thorough diagnostic study in patients with DM, as it is often a paraneoplastic syndrome. Resumo: A dermatomiosite (DM é uma doença rara, caracterizada por fraqueza muscular proximal associada a exantema cutâneo típico. A biopsia muscular apresenta lesões inflamatórias compatíveis com miosite, estando associada a um aumento de risco de neoplasia, frequentemente considerada como síndrome paraneoplásico. Os autores apresentam um caso de um homem de 63 anos, com quadro de fraqueza muscular proximal progressiva e exantema cutâneo com 2 meses de evolução. A biopsia cutânea e muscular foram compatíveis com DM. A tomografia tórax mostrou imagem nodular paracardíaca esquerda e a biopsia brônquica confirmou diagnóstico de carcinoma pulmão pequenas células. Este caso clínico pretende realçar a importância da realização do estudo diagnóstico exaustivo em doentes com DM, visto que esta patologia surge frequentemente como síndrome paraneoplásico. Keywords: Dermatomyositis, Lung neoplasms, Paraneoplastic syndrome, Palavras-chave: Dermatomiosite, Neoplasias pulmonares, Síndrome paraneoplásico

  5. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging.

    Science.gov (United States)

    Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke

    2007-11-01

    To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.

  6. Mouse mammary tumor virus-like gene sequences are present in lung patient specimens

    Directory of Open Access Journals (Sweden)

    Rodríguez-Padilla Cristina

    2011-09-01

    Full Text Available Abstract Background Previous studies have reported on the presence of Murine Mammary Tumor Virus (MMTV-like gene sequences in human cancer tissue specimens. Here, we search for MMTV-like gene sequences in lung diseases including carcinomas specimens from a Mexican population. This study was based on our previous study reporting that the INER51 lung cancer cell line, from a pleural effusion of a Mexican patient, contains MMTV-like env gene sequences. Results The MMTV-like env gene sequences have been detected in three out of 18 specimens studied, by PCR using a specific set of MMTV-like primers. The three identified MMTV-like gene sequences, which were assigned as INER6, HZ101, and HZ14, were 99%, 98%, and 97% homologous, respectively, as compared to GenBank sequence accession number AY161347. The INER6 and HZ-101 samples were isolated from lung cancer specimens, and the HZ-14 was isolated from an acute inflammatory lung infiltrate sample. Two of the env sequences exhibited disruption of the reading frame due to mutations. Conclusion In summary, we identified the presence of MMTV-like gene sequences in 2 out of 11 (18% of the lung carcinomas and 1 out of 7 (14% of acute inflamatory lung infiltrate specimens studied of a Mexican Population.

  7. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver.

    Science.gov (United States)

    Wulf, Jörn; Hädinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-02-01

    Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5mm in axial and 5-10mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). A decrease of TC to or=95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm(3) are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins.

  8. MR imaging-guided percutaneous cryotherapy for lung tumors: initial experience.

    Science.gov (United States)

    Liu, Shangang; Ren, Ruimei; Liu, Ming; Lv, Yubo; Li, Bin; Li, Chengli

    2014-09-01

    To evaluate prospectively the initial clinical experience of magnetic resonance (MR) imaging-guided percutaneous cryotherapy of lung tumors. MR imaging-guided percutaneous cryotherapy was performed in 21 patients with biopsy-proven lung tumors (12 men, 9 women; age range, 39-79 y). Follow-up consisted of contrast-enhanced chest computed tomography (CT) scan performed at 3-month intervals to assess tumor control; CT scanning was carried out for 12 months or until death. Cryotherapy procedures were successfully completed in all 21 patients. Pneumothorax occurred in 7 (33.3%) of 21 patients. Chest tube placement was required in one (4.8%) case. Hemoptysis was exhibited by 11 (52.4%) patients, and pleural effusion occurred in 6 (28.6%) patients. Other complications were observed in 14 (66.7%) patients. The mean follow-up period was 10.5 months (range, 9-12 mo) in patients who died. At month 12 of follow-up, 7 (33.3%) patients had a complete response to therapy, and 10 (47.6%) patients showed a partial response. In addition, two patients had stable disease, and two patients developed progressive disease; one patient developed a tumor in the liver, and the other developed a tumor in the brain. The 1-year local control rate was 81%, and 1-year survival rate was 90.5%. MR imaging-guided percutaneous cryotherapy appears feasible, effective, and minimally invasive for lung tumors. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  9. Alterations in the K-ras and p53 genes in rat lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Swafford, D.S.; Finch, G.L.; Mitchell, C.E. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States)] [and others

    1997-06-01

    Activation of the K-ras protooncogene and inactivation of the p53 tumor suppressor gene are events common to many types of human cancers. Molecular epidemiology studies have associated mutational profiles in these genes with specific exposures. The purpose of this paper is to review investigations that have examined the role of the K-ras and p53 genes in lung tumors induced in the F344 rat by mutagenic and nonmutagenic exposures. Mutation profiles within the K-ras and p53 genes, if present in rat lung tumors, would help to define some of the molecular mechanisms underlying cancer induction by various environmental agents. Pulmonary adenocarcinomas or squamous cell carcinomas were induced by tetranitromethane (TNM), 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), beryllium metal, plutonium-239, X-ray, diesel exhaust, or carbon black. These agents were chosen because the tumors they produced could arise via different types of DNA damage. Mutation of the K-ras gene was determined by approaches that included DNA transfection, direct sequencing, mismatch hybridization, and restriction fragment length polymorphism analysis. The frequency for mutation of the K-ras gene was exposure dependent. The transition mutations formed could have been derived from deamination of cytosine. Alteration in the p53 gene was assessed by immunohistochemical analysis for p53 protein and single-strand conformation polymorphism (SSCP) analysis of exons 4 to 9. None of the 93 adenocarinomas examined was immunoreactive toward the anti-p53 antibody CM1. In contrast, 14 of 71 squamous cell carcinomas exhibited nuclear p53 immunoreactivity with no correlation to type of exposure. However, SSCP analysis only detected mutations in 2 of 14 squamous cell tumors that were immunoreactive, suggesting that protein stabilization did not stem from mutations within the p53 gene. Thus, the p53 gene does not appear to be involved in the genesis of most rat lung tumors. 2 figs., 2 tabs., 48 refs.

  10. BJ-TSA-9, a novel human tumor-specific gene, has potential as a biomarker of lung cancer.

    Science.gov (United States)

    Li, Yunyan; Dong, Xueyuan; Yin, Yanhui; Su, Yanrong; Xu, Qingwen; Zhang, Yuxia; Pang, Xuewen; Zhang, Yu; Chen, Weifeng

    2005-12-01

    Using bioinformatics, we have identified a novel tumor-specific gene BJ-TSA-9, which has been validated by Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR). BJ-TSA-9 mRNA was expressed in 52.5% (21 of 40) of human lung cancer tissues and was especially higher in lung adenocarcinoma (68.8%). To explore the potential application of BJ-TSA-9 for the detection of circulating cancer cells in lung cancer patients, nested RT-PCR was performed. The overall positive detection rate was 34.3% (24 of 70) in peripheral blood mononuclear cells (PBMCs) of patients with various types of lung cancers and was 53.6% (15 of 28) in PBMCs of lung adenocarcinoma patients. In combination with the detection of two known marker genes SCC and LUNX, the detection rate was increased to 81.4%. A follow-up study was performed in 37 patients after surgical removal of tumor mass. Among nine patients with persistent detection of two to three tumor marker transcripts in PBMCs, six patients had recurrence/metastasis. In contrast, 28 patients with transient detection of one tumor marker or without detection of any tumor marker were all in remission. Thus, BJ-TSA-9 may serve as a marker for lung cancer diagnosis and as a marker, in combination with two other tumor markers, for the prediction of the recurrence and prognosis of lung cancer patients.

  11. Low-level chromosome 12 amplification in a primary lipoma of the lung: evidence for a pathogenetic relationship with common adipose tissue tumors.

    Science.gov (United States)

    Bridge, J A; Roberts, C A; Degenhardt, J; Walker, C; Lackner, R; Linder, J

    1998-02-01

    Cytogenetic analysis of a primary lipoma of the lung removed from a 56-year-old woman revealed the presence of a supernumerary marker chromosome in all metaphase cells analyzed; namely, 47,XX,+mar. To the best of our knowledge, this is the first cytogenetic description of a primary lipoma of lung. Genetic analysis of intramuscular lipoma, atypical lipoma, and well-differentiated liposarcoma have revealed the presence of one to three supernumerary ring or giant marker chromosomes composed of chromosome 12 segments as the characteristic anomaly. The marker chromosome in the present case was shown to be composed entirely of chromosome 12 material by subsequent analysis with a chromosome 12-specific paint probe and fluorescence in situ hybridization. Thus, analogous to intramuscular lipoma, atypical lipoma, and well-differentiated liposarcoma, extra chromosome 12 material is present. These findings support a pathogenetic relationship between this lipoma of unusual anatomic location and common adipose tissue tumors.

  12. Prognostic factors of tumor recurrence in completely resected non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Tantraworasin A

    2013-06-01

    Full Text Available Apichat Tantraworasin,1 Somcharean Seateang,1 Nirush Lertprasertsuke,2 Nuttapon Arreyakajohn,3 Choosak Kasemsarn,4 Jayanton Patumanond5 1General Thoracic Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University Hospital, Chiang Mai, Thailand; 2Department of Pathology, Faculty of Medicine, Chiang Mai University Hospital, Chiang Mai, Thailand; 3Cardiovascular Thoracic Unit, Department of Surgery, Lampang Hospital, Lampang, Thailand; 4Cardiovascular Thoracic Unit, Department of Surgery, Chest Institute, Nonthaburi, Thailand; 5Department of Community Medicine, Faculty of Medicine, Chiang Mai University Hospital, Chiang Mai, Thailand Background: Patients with completely resected non-small cell lung cancer (NSCLC have an excellent outcome; however tumor recurs in 30%-77% of patients. This study retrospectively analyzed the clinicopathologic features of patients with any operable stage of NSCLC to identify the prognostic factors that influence tumor recurrence, including intratumoral blood vessel invasion (IVI, tumor size, tumor necrosis, and nodal involvement. Methods: From January 2002 to December 2011, 227 consecutive patients were enrolled in this study. They were divided into two groups: the “no recurrence” group and the “recurrence” group. Recurrence-free survival was analyzed by multivariable Cox regression analysis, stratified by tumor staging, chemotherapy, and lymphatic invasion. Results: IVI, tumor necrosis, tumor diameter more than 5 cm, and nodal involvement were identified as independent prognostic factors of tumor recurrence. The hazard ratio (HR of patients with IVI was 2.1 times higher than that of patients without IVI (95% confident interval [CI]: 1.4–3.2 (P = 0.001.The HR of patients with tumor necrosis was 2.1 times higher than that of patients without tumor necrosis (95% CI: 1.3–3.4 (P = 0.001. Patients who had a maximum tumor diameter greater than 5 cm had significantly higher risk of recurrence than

  13. Determination of peripheral underdosage at the lung-tumor interface using Monte Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Taylor, Michael; Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick

    2012-01-01

    Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm 3 regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of “generic” tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.

  14. Determination of peripheral underdosage at the lung-tumor interface using Monte Carlo radiation transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael, E-mail: michael.taylor@rmit.edu.au [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)

    2012-04-01

    Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm{sup 3} regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of 'generic' tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.

  15. PCA based clustering for brain tumor segmentation of T1w MRI images.

    Science.gov (United States)

    Kaya, Irem Ersöz; Pehlivanlı, Ayça Çakmak; Sekizkardeş, Emine Gezmez; Ibrikci, Turgay

    2017-03-01

    Medical images are huge collections of information that are difficult to store and process consuming extensive computing time. Therefore, the reduction techniques are commonly used as a data pre-processing step to make the image data less complex so that a high-dimensional data can be identified by an appropriate low-dimensional representation. PCA is one of the most popular multivariate methods for data reduction. This paper is focused on T1-weighted MRI images clustering for brain tumor segmentation with dimension reduction by different common Principle Component Analysis (PCA) algorithms. Our primary aim is to present a comparison between different variations of PCA algorithms on MRIs for two cluster methods. Five most common PCA algorithms; namely the conventional PCA, Probabilistic Principal Component Analysis (PPCA), Expectation Maximization Based Principal Component Analysis (EM-PCA), Generalize Hebbian Algorithm (GHA), and Adaptive Principal Component Extraction (APEX) were applied to reduce dimensionality in advance of two clustering algorithms, K-Means and Fuzzy C-Means. In the study, the T1-weighted MRI images of the human brain with brain tumor were used for clustering. In addition to the original size of 512 lines and 512 pixels per line, three more different sizes, 256 × 256, 128 × 128 and 64 × 64, were included in the study to examine their effect on the methods. The obtained results were compared in terms of both the reconstruction errors and the Euclidean distance errors among the clustered images containing the same number of principle components. According to the findings, the PPCA obtained the best results among all others. Furthermore, the EM-PCA and the PPCA assisted K-Means algorithm to accomplish the best clustering performance in the majority as well as achieving significant results with both clustering algorithms for all size of T1w MRI images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Comparison of six methods of segmentation of tumor volume on the 18F-F.D.G. PET scan with reference histological volume in non small cell bronchopulmonary cancers

    International Nuclear Information System (INIS)

    Venel, Y.; Garhi, H.; Baulieu, J.L.; Prunier-Aesch, C.; Muret, A. de; Barillot, I.

    2008-01-01

    The 18 F-F.D.G. PET has demonstrated its importance in oncology, for initial extension and efficacy of anti tumoral therapeutics. Several studies have attempted to prove its utility to define tumoral volumes for conformational radiotherapy in non small cell lung cancers. Some authors have suggested the use of threshold of tumor intensity uptake with 40 or 50% of maximal intensity. Black et al. have determined contouring with linear regression formula of mean semi-quantitative index of tumor uptake (standard uptake value): SUV threshold = 0.307 Sub average + 0.588. Nestle et al. have taken into account the background noise intensity and mean intensity of the tumor: I threshold = β I average +I noise with β 0.15. Our study was done in collaboration with Inserm U618 team and has compared volumes defined on PET scan defined according to different methods based on intensity or S.U.V. to the tumour volume determined on CT scan by radio physicist. We have compared those volumes with histological volume that we considered for reference. Four patients have been included. They had 18 F-F.D.G. PET scan followed by complete tumoral removal surgery. Specific histological procedure allowed to define complete size of the tumor in re expanded lung. Comparatively to pathology, the volumes obtained using I max 40 and I max 50 are all underestimated. The volumes defined by Black's et al. method are under evaluated for the two largest tumours (15.8% to 22%) and overestimated for the two smallest ones (17.9 to 82.9%). Nestle's et al. method, using β = 0.15, correctly estimates two tumor volumes over 2 cm, but overestimates the two small tumors (79.6 to 124%). Finally, the corrected Nestle's et al. formula (using β = 0.264) overestimates three tumours. Volumes defined on CT scan by radio physicist are correct for one lesion, underestimated for one and overestimated for two other ones (44 and 179.5%). Nestle's et al. method seems to be the most accurate for tumours over 2 cm of

  17. Long-term local control with radiofrequency ablation or radiotherapy for second, third, and fourth lung tumors after lobectomy for primary lung cancer

    International Nuclear Information System (INIS)

    Yokouchi, Hideoki; Murata, Kohei; Miyazaki, Masaki; Miyamoto, Takeaki; Minami, Takafumi; Tsuji, Fumio; Mikami, Koji

    2016-01-01

    A 78-year-old woman developed second, third, and fourth lung tumors at intervals of 1-3 years after left upper lobectomy for primary lung cancer. The tumors were controlled with radiofrequency ablation (RFA) or conventional conformal radiotherapy for 9 years postoperatively. For the treatment of second primary lung cancer or lung metastasis after surgical resection of the primary lung cancer, reoperation is not recommended because of the impaired respiratory reserve. Thus, local therapy such as radiotherapy or RFA is applied in some cases. Among these, stereotactic body radiotherapy (SBRT) is a feasible option because of its good local control and safety, which is comparable with surgery. On the other hand, for cases of multiple lesions that are not suitable for radiotherapy or combination therapy, RFA could be an option because of its short-term local control, easiness, safety, and repeatability. After surgery for primary lung cancer, a second lung tumor could be controlled with highly effective and minimally invasive local therapy if it is recognized as a local disease but is medically inoperable. Therefore, long-term postoperative follow-up for primary lung cancer is beneficial. (author)

  18. PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma

    International Nuclear Information System (INIS)

    Makinoshima, Hideki; Ishii, Genichiro; Kojima, Motohiro; Fujii, Satoshi; Higuchi, Youichi; Kuwata, Takeshi; Ochiai, Atsushi

    2012-01-01

    Small-cell lung carcinoma (SCLC) is a neuroendocrine tumor subtype and comprises approximately 15% of lung cancers. Because SCLC is still a disease with a poor prognosis and limited treatment options, there is an urgent need to develop targeted molecular agents for this disease. We screened 20 cell lines from a variety of pathological phenotypes established from different organs by RT-PCR. Paraffin-embedded tissue from 252 primary tumors was examined for PTPRZ1 expression using immunohistochemistry. shRNA mediated PTPRZ1 down-regulation was used to study impact on tyrosine phosphorylation and in vivo tumor progression in SCLC cell lines. Here we show that PTPRZ1, a member of the protein tyrosine- phosphatase receptor (PTPR) family, is highly expressed in SCLC cell lines and specifically exists in human neuroendocrine tumor (NET) tissues. We also demonstrate that binding of the ligand of PTPRZ1, pleiotrophin (PTN), activates the PTN/PTPRZ1 signaling pathway to induce tyrosine phosphorylation of calmodulin (CaM) in SCLC cells, suggesting that PTPRZ1 is a regulator of tyrosine phosphorylation in SCLC cells. Furthermore, we found that PTPRZ1 actually has an important oncogenic role in tumor progression in the murine xenograft model. PTPRZ1 was highly expressed in human NET tissues and PTPRZ1 is an oncogenic tyrosine phosphatase in SCLCs. These results imply that a new signaling pathway involving PTPRZ1 could be a feasible target for treatment of NETs

  19. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    International Nuclear Information System (INIS)

    Yang Yin; Zhong Zichun; Guo Xiaohu; Wang Jing; Anderson, John; Solberg, Timothy; Mao Weihua

    2012-01-01

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  20. Comparison of two different segmentation methods on planar lung perfusion scan with reference to quantitative value on SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Min Seok; Kang, Yeon Koo; Ha, Seung Gyun [Dept. of Nuclear Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); and others

    2017-06-15

    Until now, there was no single standardized regional segmentation method of planar lung perfusion scan. We compared planar scan based two segmentation methods, which are frequently used in the Society of Nuclear Medicine, with reference to the lung perfusion single photon emission computed tomography (SPECT)/computed tomography (CT) derived values in lung cancer patients. Fifty-five lung cancer patients (male:female, 37:18; age, 67.8 ± 10.7 years) were evaluated. The patients underwent planar scan and SPECT/CT after injection of technetium-99 m macroaggregated albumin (Tc-99 m-MAA). The % uptake and predicted postoperative percentage forced expiratory volume in 1 s (ppoFEV1%) derived from both posterior oblique (PO) and anterior posterior (AP) methods were compared with SPECT/CT derived parameters. Concordance analysis, paired comparison, reproducibility analysis and spearman correlation analysis were conducted. The % uptake derived from PO method showed higher concordance with SPECT/CT derived % uptake in every lobe compared to AP method. Both methods showed significantly different lobar distribution of % uptake compared to SPECT/CT. For the target region, ppoFEV1% measured from PO method showed higher concordance with SPECT/CT, but lower reproducibility compared to AP method. Preliminary data revealed that every method significantly correlated with actual postoperative FEV1%, with SPECT/CT showing the best correlation. The PO method derived values showed better concordance with SPECT/CT compared to the AP method. Both PO and AP methods showed significantly different lobar distribution compared to SPECT/CT. In clinical practice such difference according to different methods and lobes should be considered for more accurate postoperative lung function prediction.

  1. AP-PA field orientation followed by IMRT reduces lung exposure in comparison to conventional 3D conformal and sole IMRT in centrally located lung tumors

    Directory of Open Access Journals (Sweden)

    Soyfer Viacheslav

    2012-02-01

    Full Text Available Abstract Little attention has been paid to the fact that intensity modulated radiation therapy (IMRT techniques do not easily enable treatment with opposed beams. Three treatment plans (3 D conformal, IMRT, and combined (anterior-posterior-posterio-anterior (AP-PA + IMRT of 7 patients with centrally-located lung cancer were compared for exposure of lung, spinal cord and esophagus. Combined IMRT and AP-PA techniques offer better lung tissue sparing compared to plans predicated solely on IMRT for centrally-located lung tumors.

  2. Dosimetric impact of gold markers implanted closely to lung tumors: a Monte Carlo simulation.

    Science.gov (United States)

    Shiinoki, Takehiro; Sawada, Akira; Ishihara, Yoshitomo; Miyabe, Yuki; Matsuo, Yukinori; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2014-05-08

    We are developing an innovative dynamic tumor tracking irradiation technique using gold markers implanted around a tumor as a surrogate signal, a real-time marker detection system, and a gimbaled X-ray head in the Vero4DRT. The gold markers implanted in a normal organ will produce uncertainty in the dose calculation during treatment planning because the photon mass attenuation coefficient of a gold marker is much larger than that of normal tissue. The purpose of this study was to simulate the dose variation near the gold markers in a lung irradiated by a photon beam using the Monte Carlo method. First, the single-beam and the opposing-beam geometries were simulated using both water and lung phantoms. Subsequently, the relative dose profiles were calculated using a stereotactic body radiotherapy (SBRT) treatment plan for a lung cancer patient having gold markers along the anterior-posterior (AP) and right-left (RL) directions. For the single beam, the dose at the gold marker-phantom interface laterally along the perpendicular to the beam axis increased by a factor of 1.35 in the water phantom and 1.58 in the lung phantom, respectively. Furthermore, the entrance dose at the interface along the beam axis increased by a factor of 1.63 in the water phantom and 1.91 in the lung phantom, while the exit dose increased by a factor of 1.00 in the water phantom and 1.12 in the lung phantom, respectively. On the other hand, both dose escalations and dose de-escalations were canceled by each beam for opposing portal beams with the same beam weight. For SBRT patient data, the dose at the gold marker edge located in the tumor increased by a factor of 1.30 in both AP and RL directions. In clinical cases, dose escalations were observed at the small area where the distance between a gold marker and the lung tumor was ≤ 5 mm, and it would be clinically negligible in multibeam treatments, although further investigation may be required.

  3. Detecting small lung tumors in mouse models by refractive-index microradiology

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Chia-Chi; Hwu, Y. [Academia Sinica, Institute of Physics, Taipei (China); National Tsing Hua University, Department of Engineering and System Science, Hsinchu (China); Zhang, Guilin; Yue, Weisheng; Li, Yan; Xue, Hongjie [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); Liu, Ping; Sun, Jianqi; Xu, Lisa X. [Shanghai Jiao Tong University, Shanghai (China); Wang, Chang Hai; Chen, Nanyow; Lu, Chien Hung; Lee, Ting-Kuo [Academia Sinica, Institute of Physics, Taipei (China); Yang, Yuh-Cheng; Lu, Yen-Ta [Mackay Memorial Hospital, Taipei City (China); Ching, Yu-Tai [National Chiao Tung University, Department of Computer Science, Hsinchu (China); Shih, T.F.; Yang, P.C. [National Taiwan University, College of Medicine, Taipei (China); Je, J.H. [Pohang University of Science and Technology Pohang, X-ray Imaging Center, Pohang CT, Kyungbuk (Korea, Republic of); Margaritondo, G. [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)

    2011-08-15

    Refractive-index (phase-contrast) radiology was able to detect lung tumors less than 1 mm in live mice. Significant micromorphology differences were observed in the microradiographs between normal, inflamed, and lung cancer tissues. This was made possible by the high phase contrast and by the fast image taking that reduces the motion blur. The detection of cancer and inflammation areas by phase contrast microradiology and microtomography was validated by bioluminescence and histopathological analysis. The smallest tumor detected is less than 1 mm{sup 3} with accuracy better than 1 x 10{sup -3} mm{sup 3}. This level of performance is currently suitable for animal studies, while further developments are required for clinical application. (orig.)

  4. Detecting small lung tumors in mouse models by refractive-index microradiology

    International Nuclear Information System (INIS)

    Chien, Chia-Chi; Hwu, Y.; Zhang, Guilin; Yue, Weisheng; Li, Yan; Xue, Hongjie; Liu, Ping; Sun, Jianqi; Xu, Lisa X.; Wang, Chang Hai; Chen, Nanyow; Lu, Chien Hung; Lee, Ting-Kuo; Yang, Yuh-Cheng; Lu, Yen-Ta; Ching, Yu-Tai; Shih, T.F.; Yang, P.C.; Je, J.H.; Margaritondo, G.

    2011-01-01

    Refractive-index (phase-contrast) radiology was able to detect lung tumors less than 1 mm in live mice. Significant micromorphology differences were observed in the microradiographs between normal, inflamed, and lung cancer tissues. This was made possible by the high phase contrast and by the fast image taking that reduces the motion blur. The detection of cancer and inflammation areas by phase contrast microradiology and microtomography was validated by bioluminescence and histopathological analysis. The smallest tumor detected is less than 1 mm 3 with accuracy better than 1 x 10 -3 mm 3 . This level of performance is currently suitable for animal studies, while further developments are required for clinical application. (orig.)

  5. 4π Noncoplanar Stereotactic Body Radiation Therapy for Centrally Located or Larger Lung Tumors

    International Nuclear Information System (INIS)

    Dong, Peng; Lee, Percy; Ruan, Dan; Long, Troy; Romeijn, Edwin; Low, Daniel A.; Kupelian, Patrick; Abraham, John; Yang, Yingli; Sheng, Ke

    2013-01-01

    Purpose: To investigate the dosimetric improvements in stereotactic body radiation therapy for patients with larger or central lung tumors using a highly noncoplanar 4π planning system. Methods and Materials: This study involved 12 patients with centrally located or larger lung tumors previously treated with 7- to 9-field static beam intensity modulated radiation therapy to 50 Gy. They were replanned using volumetric modulated arc therapy and 4π plans, in which a column generation method was used to optimize the beam orientation and the fluence map. Maximum doses to the heart, esophagus, trachea/bronchus, and spinal cord, as well as the 50% isodose volume, the lung volumes receiving 20, 10, and 5 Gy were minimized and compared against the clinical plans. A dose escalation study was performed to determine whether a higher prescription dose to the tumor would be achievable using 4π without violating dose limits set by the clinical plans. The deliverability of 4π plans was preliminarily tested. Results: Using 4π plans, the maximum heart, esophagus, trachea, bronchus and spinal cord doses were reduced by 32%, 72%, 37%, 44%, and 53% (P≤.001), respectively, and R 50 was reduced by more than 50%. Lung V 20 , V 10 , and V 5 were reduced by 64%, 53%, and 32% (P≤.001), respectively. The improved sparing of organs at risk was achieved while also improving planning target volume (PTV) coverage. The minimal PTV doses were increased by the 4π plans by 12% (P=.002). Consequently, escalated PTV doses of 68 to 70 Gy were achieved in all patients. Conclusions: We have shown that there is a large potential for plan quality improvement and dose escalation for patients with larger or centrally located lung tumors using noncoplanar beams with sufficient quality and quantity. Compared against the clinical volumetric modulated arc therapy and static intensity modulated radiation therapy plans, the 4π plans yielded significantly and consistently improved tumor coverage and

  6. 4π Noncoplanar Stereotactic Body Radiation Therapy for Centrally Located or Larger Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng; Lee, Percy; Ruan, Dan [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Long, Troy; Romeijn, Edwin [Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan (United States); Low, Daniel A.; Kupelian, Patrick; Abraham, John; Yang, Yingli [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States); Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California (United States)

    2013-07-01

    Purpose: To investigate the dosimetric improvements in stereotactic body radiation therapy for patients with larger or central lung tumors using a highly noncoplanar 4π planning system. Methods and Materials: This study involved 12 patients with centrally located or larger lung tumors previously treated with 7- to 9-field static beam intensity modulated radiation therapy to 50 Gy. They were replanned using volumetric modulated arc therapy and 4π plans, in which a column generation method was used to optimize the beam orientation and the fluence map. Maximum doses to the heart, esophagus, trachea/bronchus, and spinal cord, as well as the 50% isodose volume, the lung volumes receiving 20, 10, and 5 Gy were minimized and compared against the clinical plans. A dose escalation study was performed to determine whether a higher prescription dose to the tumor would be achievable using 4π without violating dose limits set by the clinical plans. The deliverability of 4π plans was preliminarily tested. Results: Using 4π plans, the maximum heart, esophagus, trachea, bronchus and spinal cord doses were reduced by 32%, 72%, 37%, 44%, and 53% (P≤.001), respectively, and R{sub 50} was reduced by more than 50%. Lung V{sub 20}, V{sub 10}, and V{sub 5} were reduced by 64%, 53%, and 32% (P≤.001), respectively. The improved sparing of organs at risk was achieved while also improving planning target volume (PTV) coverage. The minimal PTV doses were increased by the 4π plans by 12% (P=.002). Consequently, escalated PTV doses of 68 to 70 Gy were achieved in all patients. Conclusions: We have shown that there is a large potential for plan quality improvement and dose escalation for patients with larger or centrally located lung tumors using noncoplanar beams with sufficient quality and quantity. Compared against the clinical volumetric modulated arc therapy and static intensity modulated radiation therapy plans, the 4π plans yielded significantly and consistently improved tumor

  7. Clinical outcome of hypofractionated breath-hold image-guided SABR of primary lung tumors and lung metastases

    International Nuclear Information System (INIS)

    Boda-Heggemann, Judit; Wenz, Frederik; Lohr, Frank; Frauenfeld, Anian; Weiss, Christel; Simeonova, Anna; Neumaier, Christian; Siebenlist, Kerstin; Attenberger, Ulrike; Heußel, Claus Peter; Schneider, Frank

    2014-01-01

    Stereotactic Ablative RadioTherapy (SABR) of lung tumors/metastases has been shown to be an effective treatment modality with low toxicity. Outcome and toxicity were retrospectively evaluated in a unique single-institution cohort treated with intensity-modulated image-guided breath-hold SABR (igSABR) without external immobilization. The dose–response relationship is analyzed based on Biologically Equivalent Dose (BED). 50 lesions in 43 patients with primary NSCLC (n = 27) or lung-metastases of various primaries (n = 16) were consecutively treated with igSABR with Active-Breathing-Coordinator (ABC®) and repeat-breath-hold cone-beam-CT. After an initial dose-finding/-escalation period, 5x12 Gy for peripheral lesions and single doses of 5 Gy to varying dose levels for central lesions were applied. Overall-survival (OS), progression-free-survival (PFS), progression pattern, local control (LC) and toxicity were analyzed. The median BED2 was 83 Gy. 12 lesions were treated with a BED2 of <80 Gy, and 38 lesions with a BED2 of >80 Gy. Median follow-up was 15 months. Actuarial 1- and 2-year OS were 67% and 43%; respectively. Cause of death was non-disease-related in 27%. Actuarial 1- and 2-year PFS was 42% and 28%. Progression site was predominantly distant. Actuarial 1- and 2 year LC was 90% and 85%. LC showed a trend for a correlation to BED2 (p = 0.1167). Pneumonitis requiring conservative treatment occurred in 23%. Intensity-modulated breath-hold igSABR results in high LC-rates and low toxicity in this unfavorable patient cohort with inoperable lung tumors or metastases. A BED2 of <80 Gy was associated with reduced local control

  8. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry.

    Science.gov (United States)

    Kami, Kenjiro; Fujimori, Tamaki; Sato, Hajime; Sato, Mutsuko; Yamamoto, Hiroyuki; Ohashi, Yoshiaki; Sugiyama, Naoyuki; Ishihama, Yasushi; Onozuka, Hiroko; Ochiai, Atsushi; Esumi, Hiroyasu; Soga, Tomoyoshi; Tomita, Masaru

    2013-04-01

    Metabolic microenvironment of tumor cells is influenced by oncogenic signaling and tissue-specific metabolic demands, blood supply, and enzyme expression. To elucidate tumor-specific metabolism, we compared the metabolomics of normal and tumor tissues surgically resected pairwise from nine lung and seven prostate cancer patients, using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Phosphorylation levels of enzymes involved in central carbon metabolism were also quantified. Metabolomic profiles of lung and prostate tissues comprised 114 and 86 metabolites, respectively, and the profiles not only well distinguished tumor from normal tissues, but also squamous cell carcinoma from the other tumor types in lung cancer and poorly differentiated tumors from moderately differentiated tumors in prostate cancer. Concentrations of most amino acids, especially branched-chain amino acids, were significantly higher in tumor tissues, independent of organ type, but of essential amino acids were particularly higher in poorly differentiated than moderately differentiated prostate cancers. Organ-dependent differences were prominent at the levels of glycolytic and tricarboxylic acid cycle intermediates and associated energy status. Significantly high lactate concentrations and elevated activating phosphorylation levels of phosphofructokinase and pyruvate kinase in lung tumors confirmed hyperactive glycolysis. We highlighted the potential of CE-TOFMS-based metabolomics combined with phosphorylated enzyme analysis for understanding tissue-specific tumor microenvironments, which may lead to the development of more effective and specific anticancer therapeutics.

  9. Creation of a Tumor-Mimic Model Using a Muscle Paste for Radiofrequency Ablation of the Lung

    International Nuclear Information System (INIS)

    Kawai, T.; Kaminou, T.; Sugiura, K.; Hashimoto, M.; Ohuchi, Y.; Adachi, A.; Fujioka, S.; Ito, H.; Nakamura, K.; Ogawa, T.

    2009-01-01

    The purpose of this study was to develop an easily created tumor-mimic model and evaluate its efficacy for radiofrequency ablation (RFA) of the lung. The bilateral lungs of eight living adult swine were used. A tumor-mimic model was made by percutaneous injection of 1.0 ml muscle paste through the bone biopsy needle into the lung. An RFA probe was then inserted into the tumor mimics immediately after tumor creation. Ablation time, tissue impedance, and temperature were recorded. The tumor mimics and their coagulated regions were evaluated microscopically and macroscopically. The muscle paste was easily injected into the lung parenchyma through the bone biopsy needle and well visualized under fluoroscopy. In 10 of 12 sites the tumor mimics were oval shaped, localized, and homogeneous on gross specimens. Ten tumor mimics were successfully ablated, and four locations were ablated in the normal lung parenchyma as controls. In the tumor and normal lung parenchyma, ablation times were 8.9 ± 3.5 and 4.4 ± 1.6 min, respectively; tissue impedances at the start of ablation were 100.6 ± 16.6 and 145.8 ± 26.8 Ω, respectively; and temperatures at the end of ablation were 66.0 ± 7.9 and 57.5 ± 7.6 o C, respectively. The mean size of tumor mimics was 13.9 x 8.2 mm, and their coagulated area was 18.8 x 13.1 mm. In the lung parenchyma, the coagulated area was 15.3 x 12.0 mm. In conclusion, our tumor-mimic model using muscle paste can be easily and safely created and can be ablated using the ablation algorithm in the clinical setting.

  10. Evaluation and comparison of New 4DCT based strategies for proton treatment planning for lung tumors

    International Nuclear Information System (INIS)

    Wang, Ning; Patyal, Baldev; Ghebremedhin, Abiel; Bush, David

    2013-01-01

    To evaluate different strategies for proton lung treatment planning based on four-dimensional CT (4DCT) scans. Twelve cases, involving only gross tumor volumes (GTV), were evaluated. Single image sets of (1) maximum intensity projection (MIP3) of end inhale (EI), middle exhale (ME) and end exhale (EE) images; (2) average intensity projection (AVG) of all phase images; and (3) EE images from 4DCT scans were selected as primary images for proton treatment planning. Internal target volumes (ITVs) outlined by a clinician were imported into MIP3, AVG, and EE images as planning targets. Initially, treatment uncertainties were not included in planning. Each plan was imported into phase images of 4DCT scans. Relative volumes of GTVs covered by 95% of prescribed dose and mean ipsilateral lung dose of a phase image obtained by averaging the dose in inspiration and expiration phases were used to evaluate the quality of a plan for a particular case. For comparing different planning strategies, the mean of the averaged relative volumes of GTVs covered by 95% of prescribed dose and its standard deviation for each planning strategy for all cases were used. Then, treatment uncertainties were included in planning. Each plan was recalculated in phase images of 4DCT scans. Same strategies were used for plan evaluation except dose-volume histograms of the planning target volumes (PTVs) instead of GTVs were used and the mean and standard deviation of the relative volumes of PTVs covered by 95% of prescribed dose and the ipsilateral lung dose were used to compare different planning strategies. MIP3 plans without treatment uncertainties yielded 96.7% of the mean relative GTV covered by 95% of prescribed dose (standard deviations of 5.7% for all cases). With treatment uncertainties, MIP3 plans yielded 99.5% of mean relative PTV covered by 95% of prescribed dose (standard deviations of 0.7%). Inclusion of treatment uncertainties improved PTV dose coverage but also increased the ipsilateral

  11. Comparison of six methods of segmentation of tumor volume on the {sup 18}F-F.D.G. PET scan with reference histological volume in non small cell bronchopulmonary cancers; Comparaison de six methodes de segmentation du volume tumoral sur la {sup 18}F-FDG TEP-TDM avec le volume de reference anatomopathologique dans les cancers bronchopulmonaires non a petites cellules

    Energy Technology Data Exchange (ETDEWEB)

    Venel, Y.; Garhi, H.; Baulieu, J.L.; Prunier-Aesch, C. [CHRU de Tours-Bretonneau, Service de Medecine Nucleaire, 37 - Tours (France); Muret, A. de [CHRU de Tours-Bretonneau, Service de Radiotherapie, 37 - Tours (France); Barillot, I. [CHRU de Tours-Bretonneau, Service d' Anatomopathologie, 37 - Tours (France)

    2008-06-15

    The {sup 18}F-F.D.G. PET has demonstrated its importance in oncology, for initial extension and efficacy of anti tumoral therapeutics. Several studies have attempted to prove its utility to define tumoral volumes for conformational radiotherapy in non small cell lung cancers. Some authors have suggested the use of threshold of tumor intensity uptake with 40 or 50% of maximal intensity. Black et al. have determined contouring with linear regression formula of mean semi-quantitative index of tumor uptake (standard uptake value): SUV{sub threshold} = 0.307 Sub{sub average} + 0.588. Nestle et al. have taken into account the background noise intensity and mean intensity of the tumor: I{sub threshold} = {beta} I{sub average} +I{sub noise} with {beta} 0.15. Our study was done in collaboration with Inserm U618 team and has compared volumes defined on PET scan defined according to different methods based on intensity or S.U.V. to the tumour volume determined on CT scan by radio physicist. We have compared those volumes with histological volume that we considered for reference. Four patients have been included. They had {sup 18}F-F.D.G. PET scan followed by complete tumoral removal surgery. Specific histological procedure allowed to define complete size of the tumor in re expanded lung. Comparatively to pathology, the volumes obtained using I{sub max} 40 and I{sub max} 50 are all underestimated. The volumes defined by Black's et al. method are under evaluated for the two largest tumours (15.8% to 22%) and overestimated for the two smallest ones (17.9 to 82.9%). Nestle's et al. method, using {beta} = 0.15, correctly estimates two tumor volumes over 2 cm, but overestimates the two small tumors (79.6 to 124%). Finally, the corrected Nestle's et al. formula (using {beta} = 0.264) overestimates three tumours. Volumes defined on CT scan by radio physicist are correct for one lesion, underestimated for one and overestimated for two other ones (44 and 179.5%). Nestle

  12. SU-E-J-172: A Quantitative Assessment of Lung Tumor Motion Using 4DCT Imaging Under Conditions of Controlled Breathing in the Management of Non-Small Cell Lung Cancer (NSCLC) Using Stereotactic Body Radiation Therapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Mohatt, D; Gomez, J; Singh, A; Malhotra, H [Roswell Park Cancer Institute, Buffalo, NY (United States)

    2014-06-01

    Purpose: To study breathing related tumor motion amplitudes by lung lobe location under controlled breathing conditions used in Stereotactic Body Radiation Therapy (SBRT) for NSCLC. Methods: Sixty-five NSCLC SBRT patients since 2009 were investigated. Patients were categorized based on tumor anatomic location (RUL-17, RML-7, RLL-18, LUL-14, LLL-9). A 16-slice CT scanner [GE RT16 Pro] along with Varian Realtime Position Management (RPM) software was used to acquire the 4DCT data set using 1.25 mm slice width. Images were binned in 10 phases, T00 being at maximum inspiration ' T50 at maximum expiration phase. Tumor volume was segmented in T50 using the CT-lung window and its displacement were measured from phase to phase in all three axes; superiorinferior, anterior-posterior ' medial-lateral at the centroid level of the tumor. Results: The median tumor movement in each lobe was as follows: RUL= 3.8±2.0 mm (mean ITV: 9.5 cm{sup 3}), RML= 4.7±2.8 mm (mean ITV: 9.2 cm{sup 3}), RLL=6.6±2.6 mm (mean ITV: 12.3 cm{sup 3}), LUL=3.8±2.4 mm (mean ITV: 18.5 cm{sup 3}), ' LLL=4.7±2.5 mm (mean ITV: 11.9 cm{sup 3}). The median respiratory cycle for all patients was found to be 3.81 ± 1.08 seconds [minimum 2.50 seconds, maximum 7.07 seconds]. The tumor mobility incorporating breathing cycle was RUL = 0.95±0.49 mm/s, RML = 1.35±0.62 mm/s, RLL = 1.83±0.71 mm/s, LUL = 0.98 ±0.50 mm/s, and LLL = 1.15 ±0.53 mm/s. Conclusion: Our results show that tumor displacement is location dependent. The range of motion and mobility increases as the location of the tumor nears the diaphragm. Under abdominal compression, the magnitude of tumor motion is reduced by as much as a factor of 2 in comparison to reported tumor magnitudes under conventional free breathing conditions. This study demonstrates the utility of abdominal compression in reducing the tumor motion leading to reduced ITV and planning tumor volumes (PTV)

  13. Combining PET/CT with serum tumor markers to improve the evaluation of histological type of suspicious lung cancers.

    Science.gov (United States)

    Jiang, Rifeng; Dong, Ximin; Zhu, Wenzhen; Duan, Qing; Xue, Yunjing; Shen, Yanxia; Zhang, Guopeng

    2017-01-01

    Histological type is important for determining the management of patients with suspicious lung cancers. In this study, PET/CT combined with serum tumor markers were used to evaluate the histological type of lung lesions. Patients with suspicious lung cancers underwent 18F-FDG PET/CT and serum tumor markers detection. SUVmax of the tumor and serum levels of tumor markers were acquired. Differences in SUVmax and serum levels of tumor markers among different histological types of lung cancers and between EGFR mutation statues of adenocarcinoma were compared. The diagnostic efficiencies of SUVmax alone, each serum tumor marker alone, combined tumor markers and the combination of both methods were further assessed and compared. SCC had the highest level of SUVmax, followed by SCLC and adenocarcinoma, and benign lesions had a lowest level. CYFRA21-1 and SCC-Ag were significantly higher in SCC, NSE was significantly higher in SCLC (Ptumor marker or SUVmax alone. When combined, the AUC, sensitivity and specificity increased significantly (Ptumor markers (P>0.05 for all). SUVmax and serum tumor markers show values in evaluating the histological types of suspicious lung cancers. When properly combined, the diagnostic efficiency can increase significantly.

  14. Dose impact of a carbon fiber couch for stereotactic body radiation therapy of lung tumors

    International Nuclear Information System (INIS)

    Tominaga, Hirofumi; Kanetake, Nagisa; Kawasaki, Keiichi; Iwashita, Yuki; Sakata, Junichi; Okuda, Tomoko; Araki, Fujio; Shimohigashi, Yoshinobu; Tomiyama, Yuki

    2013-01-01

    The aim of this study was to measure the dose attenuation caused by a carbon fiber radiation therapy table (Imaging Couch Top; ICT, BrainLab) and to evaluate the dosimetric impact of ICT during stereotactic body radiation therapy (SBRT) in lung tumors. The dose attenuation of ICT was measured using an ionization chamber and modeled by means of a treatment planning system (TPS). SBRT was planned with and without ICT in a lung tumor phantom and ten cases of clinical lung tumors. The results were analyzed from isocenter doses and a dose-volume histogram (DVH): D 95 , D mean , V 20 , V 5 , homogeneity index (HI), and conformity index (CI). The dose attenuation of the ICT modeled with TPS agreed to within ±1% of the actually measured values. The isocenter doses, D 95 and D mean with and without ICT showed differences of 4.1-5% for posterior single field and three fields in the phantom study, and differences of 0.6-2.4% for five fields and rotation in the phantom study and six fields in ten clinical cases. The dose impact of ICT was not significant for five or more fields in SBRT. It is thus possible to reduce the dose effect of ICT by modifying the beam angle and beam weight in the treatment plan. (author)

  15. Dosimetric impact of a frame-based strategy in stereotactic radiotherapy of lung tumors

    International Nuclear Information System (INIS)

    Waldeland, Einar; Ramberg, Christina; Arnesen, Marius Roethe; Helland, Aaslaug; Brustugun, Odd Terje; Malinen, Eirik

    2012-01-01

    Introduction. Technological innovations have taken stereotactic body radiotherapy (SBRT) from frame-based strategies to image-guided strategies. In this study, cone beam computed tomography (CBCT) images acquired prior to SBRT of patients with lung tumors was used to study the dosimetric impact of a pure frame-based strategy. Material and methods. Thirty patients with inoperable lung tumors were retrospectively analyzed. All patients had received CBCT-guided SBRT with 3 fractions of 15 Gy to the planning target volume (PTV) margin including immobilization in a stereotactic body frame (SBF). Using the set-up corrections from the co-registration of the CBCT with the planning CT, all individual dose plans were recalculated with an isocenter position equal to the initial set-up position. Dose Volume Histogram (DVH) parameters of the recalculated dose plans were then analyzed. Results. The simulated plans showed that 88% of all fractions resulted in minimum 14.5 Gy to the internal target volume (ITV). For the simulated summed treatment (3 fractions per patient), 83% of the patients would minimum receive the prescription dose (45 Gy) to 100% of the ITV and all except one would receive the prescription dose to more than 90% of the ITV. Conclusions. SBRT including SBF, but without image guidance, results in appropriate dose coverage in most cases, using the current margins. With image guidance, margins for SBRT of lung tumors could possibly be reduced

  16. Diagnostic value of combined detection of serum tumor markers for lung cancer

    International Nuclear Information System (INIS)

    Li Yanping; Wang Qun; Zhao Zihong; Zhou Shan

    2013-01-01

    Objective: To investigate the diagnostic value of combined detection of serum tumor markers, including CEA, CA125, neuron-specific enolase (NSE) and cytokeratin fragment antigen 21-1 (CYFRA21-1) for lung cancer patients. Methods: The subjects involved 138 diagnosed lung cancer patients (82 males, 56 females, average age 58.6 years, from October 2010 to March 2012), 96 patients with benign lung diseases (56 males, 40 females, average age 51.3 years) and 45 healthy adults (30 males, 15 females, average age 43.9 years). The pathological types of lung cancer consisted of 66 squamous cell carcinoma (SCC), 52 adenocarcinoma and 20 small cell lung cancer (SCLC). The serum levels of CEA, CA125, NSE and CYFRA21-1 were measured with electrochemiluminescence immunoassay. The diagnostic efficacy for different pathological types was compared among each single tumor marker and combination of tumor markers. One-way analysis of variance q test were used for statistical analysis. Results: The serum levels of CEA, CA125, NSE and CYFRA21-1 in patients with lung cancer were higher than those in patients with benign lung diseases and in healthy subjects (CEA: (19.99±30.99), (10.78±19.77), (3.25±3.42) μg/L; CA125: (79.70±95.98), (44.96±44.97), (20.66±7.13) μg/L; NSE: (35.23±40.22), (15.31±8.42), (13.30±5.65) μg/L; CYFRA21-1: (18.07±43.71), (8.30±8.83), (3.13±1.60) μg/L; F=4.481, 5.436, 4.776, 6.002, all P<0.05). The highest level of CEA, NSE or CYFRA21-1 were found in adenocarcinoma (F=4.932, P<0.05), SCLC (F=5.119, P<0.05) or SCC (F=5.378, P<0.05), respectively. The highest sensitivity tumor markers for SCC, SCLC and adenocarcinoma were CYFRA21-1 (78.8%, 52/66), NSE (75.0%, 15/20) and CEA (57.7%, 30/52), respectively. In combined detection, the highest sensitivity combinations for SCC, SCLC and adenocarcinoma were CEA + CYFRA21-1 + NSE (89.4%, 59/66), CEA + CYFRA21-1 + NSE (80.0%, 16/20) and CEA + CA125 + NSE (78.8%, 41/52), respectively. Conclusions: Combined detection

  17. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Knybel, Lukas [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); VŠB-Technical University of Ostrava, Ostrava (Czech Republic); Cvek, Jakub, E-mail: Jakub.cvek@fno.cz [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); Molenda, Lukas; Stieberova, Natalie; Feltl, David [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic)

    2016-11-15

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe

  18. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    International Nuclear Information System (INIS)

    Knybel, Lukas; Cvek, Jakub; Molenda, Lukas; Stieberova, Natalie; Feltl, David

    2016-01-01

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P 15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P 3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact

  19. NSE, CEA and SCC - a useful combination of tumor markers in lung cancer

    International Nuclear Information System (INIS)

    Fischbach, W.; Jany, B.

    1988-01-01

    The usefulness of neuronspecific enolase (NSE), CEA, and of the tumor associated antigen SSC was investigated in 61 patients with histologically proven lung cancer (small cell lung cancer n=25, adenocarcinoma n=14, squamous cell carcinoma n=18 and large cell carcinoma n=4). The sensitivity of NSE was 93.3% in small cell lung cancer (SCLC), whereas in adeno- and squamous cell carcinoma only 8 or 13%, resp., elevated serum NSE were found. CEA was the most sensitive marker for adenocarcinoma (58.3%). Contrary to NSE, however, CEA does not allow any conclusions concerning differential diagnosis as pathological serum concentrations were also observed in 46.6% both in small cell lung cancer and in squamous cell carcinoma. SCC demonstrated a sensitivity of 53% in squamous cell carcinoma. Elevated serum levels were also found in adenocarcinoma (41.6%), but never in small lung cancer. For all three markers tested, high serum concentrations were predominantly present in patients with advanced disease state. (orig.) [de

  20. Differential CT features between malignant mesothelioma and pleural metastasis from lung cancer or extra thoracic primary tumor mimicking malignant mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Il; Ryu, Young Hoon; Lee, Kwang Hun; Choe, Kyu Ok; Kim, Sang Jin [College of Medicine, Yonsei University, Seoul (Korea, Republic of)

    2000-01-01

    To evaluate the differential CT features found among malignant mesothelioma and pleural metastasis from lung cancer and from extra-thoracic primary tumor which on CT mimic malignant mesothelioma. Forty-four patients who on chest CT scans showed pleural thickening suggesting malignant pleural disease and in whom this condition was pathologically confirmed were included in this study. On the basis of their pathologically proven primary disease (malignant mesothelioma (n=3D14), pleural metastasis of lung cancer (n=3D18), extra thoracic primary tumor (n=3D12). They were divided into three groups. Cases of lung which on CT showed a primary lung nodule or endobronchial mass with pleural lesion, or manifested only pleural effusion, were excluded. The following eight CT features were retrospectively analyzed: (1) configuration of pleural lesion (type I, single or multiple separate nodules, type II, localized flat pleural thickening, type III, diffuse flat pleural thickening; type IV, type III with pleural nodules superimposed; type V, mass filling the hemithorax), (2) the presence of pleural effusion, (3) chest wall or rib invasion, (4) the involvement of a major fissure, (5) extra-pleural fat proliferation, (6) calcified plaque, (7) metastatic lymph nodes, (8) metastatic lung modules. In malignant mesothelioma, type IV (8/14) or II (4/14) pleural thickening was relatively frequent. Pleural metastasis of lung cancer favored type IV (8/18) or I (6/18) pleural thickening, while pleural metastasis from extrathoracic primary tumor showed a variable thickening configuration, except type V. Pleural metastasis from lung cancer and extrapleural primary tumor more frequently showed type I configuration than did malignant mesothelioma, and there were significant differences among the three groups. Fissural involvement, on the other hand, was significantly more frequent in malignant mesothelioma than in pleural metastasis from lung cancer or extrapleural primary tumor. Metastatic

  1. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably.

    NARCIS (Netherlands)

    Ashraf, H.; Hoop, B.J. de; Shaker, S.B.; Dirksen, A.; Bach, K.S.; Hansen, H.; Prokop, M.; Pedersen, J.H.

    2010-01-01

    OBJECTIVE: We examined the reproducibility of lung nodule volumetry software that offers three different volumetry algorithms. METHODS: In a lung cancer screening trial, 188 baseline nodules >5 mm were identified. Including follow-ups, these nodules formed a study-set of 545 nodules. Nodules were

  2. Differential Motion Between Mediastinal Lymph Nodes and Primary Tumor in Radically Irradiated Lung Cancer Patients

    International Nuclear Information System (INIS)

    Schaake, Eva E.; Rossi, Maddalena M.G.; Buikhuisen, Wieneke A.; Burgers, Jacobus A.; Smit, Adrianus A.J.; Belderbos, José S.A.; Sonke, Jan-Jakob

    2014-01-01

    Purpose/Objective: In patients with locally advanced lung cancer, planning target volume margins for mediastinal lymph nodes and tumor after a correction protocol based on bony anatomy registration typically range from 1 to 1.5 cm. Detailed information about lymph node motion variability and differential motion with the primary tumor, however, is lacking from large series. In this study, lymph node and tumor position variability were analyzed in detail and correlated to the main carina to evaluate possible margin reduction. Methods and Materials: Small gold fiducial markers (0.35 × 5 mm) were placed in the mediastinal lymph nodes of 51 patients with non-small cell lung cancer during routine diagnostic esophageal or bronchial endoscopic ultrasonography. Four-dimensional (4D) planning computed tomographic (CT) and daily 4D cone beam (CB) CT scans were acquired before and during radical radiation therapy (66 Gy in 24 fractions). Each CBCT was registered in 3-dimensions (bony anatomy) and 4D (tumor, marker, and carina) to the planning CT scan. Subsequently, systematic and random residual misalignments of the time-averaged lymph node and tumor position relative to the bony anatomy and carina were determined. Additionally, tumor and lymph node respiratory amplitude variability was quantified. Finally, required margins were quantified by use of a recipe for dual targets. Results: Relative to the bony anatomy, systematic and random errors ranged from 0.16 to 0.32 cm for the markers and from 0.15 to 0.33 cm for the tumor, but despite similar ranges there was limited correlation (0.17-0.71) owing to differential motion. A large variability in lymph node amplitude between patients was observed, with an average motion of 0.56 cm in the cranial-caudal direction. Margins could be reduced by 10% (left-right), 27% (cranial-caudal), and 10% (anteroposterior) for the lymph nodes and −2%, 15%, and 7% for the tumor if an online carina registration protocol replaced a

  3. SU-D-207B-05: Robust Intra-Tumor Partitioning to Identify High-Risk Subregions for Prognosis in Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J; Gensheimer, M; Dong, X; Rubin, D; Napel, S; Diehn, M; Loo, B; Li, R [Stanford University, Palo Alto, CA (United States)

    2016-06-15

    Purpose: To develop an intra-tumor partitioning framework for identifying high-risk subregions from 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and CT imaging, and to test whether tumor burden associated with the high-risk subregions is prognostic of outcomes in lung cancer. Methods: In this institutional review board-approved retrospective study, we analyzed the pre-treatment FDG-PET and CT scans of 44 lung cancer patients treated with radiotherapy. A novel, intra-tumor partitioning method was developed based on a two-stage clustering process: first at patient-level, each tumor was over-segmented into many superpixels by k-means clustering of integrated PET and CT images; next, tumor subregions were identified by merging previously defined superpixels via population-level hierarchical clustering. The volume associated with each of the subregions was evaluated using Kaplan-Meier analysis regarding its prognostic capability in predicting overall survival (OS) and out-of-field progression (OFP). Results: Three spatially distinct subregions were identified within each tumor, which were highly robust to uncertainty in PET/CT co-registration. Among these, the volume of the most metabolically active and metabolically heterogeneous solid component of the tumor was predictive of OS and OFP on the entire cohort, with a concordance index or CI = 0.66–0.67. When restricting the analysis to patients with stage III disease (n = 32), the same subregion achieved an even higher CI = 0.75 (HR = 3.93, logrank p = 0.002) for predicting OS, and a CI = 0.76 (HR = 4.84, logrank p = 0.002) for predicting OFP. In comparison, conventional imaging markers including tumor volume, SUVmax and MTV50 were not predictive of OS or OFP, with CI mostly below 0.60 (p < 0.001). Conclusion: We propose a robust intra-tumor partitioning method to identify clinically relevant, high-risk subregions in lung cancer. We envision that this approach will be applicable to identifying useful

  4. TU-CD-304-06: Using FFF Beams Improves Tumor Control in Radiotherapy of Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Vassiliev, O [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Wang, H [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Electron disequilibrium at the lung-tumor interface results in an under-dosage of tumor regions close to its surface. This under-dosage is known to be significant and can compromise tumor control. Previous studies have shown that in FFF beams, disequilibrium effects are less pronounced, which is manifested in an increased skin dose. In this study we investigate the improvement in tumor dose coverage that can be achieved with FFF beams. The significance of this improvement is evaluated by comparing tumor control probabilities of FFF beams and conventional flattened beams. Methods: The dosimetric coverage was investigated in a virtual phantom representing the chest wall, lung tissue and the tumor. A range of tumor sizes was investigated, and two tumor locations – central and adjacent to the chest wall. Calculations were performed with BEAMnrc Monte Carlo code. Parallel-opposed and multiple coplanar 6-MV beams were simulated. The tumor control probabilities were calculated using the logistic model with parameters derived from clinical data for non-small lung cancer patients. Results: FFF beams were not entirely immune to disequilibrium effects. They nevertheless consistently delivered more uniform dose distribution throughout the volume of the tumor, and eliminated up to ∼15% of under-dosage in the most affected by disequilibrium 1-mm thick surface region of the tumor. A voxel-by-voxel comparison of tumor control probabilities between FFF and conventional flattened beams showed an advantage of FFF beams that, depending on the set up, was from a few to ∼9 percent. Conclusion: A modest improvement in tumor control probability on the order of a few percent can be achieved by replacing conventional flattened beams with FFF beams. However, given the large number of lung cancer patients undergoing radiotherapy, these few percent can potentially prevent local tumor recurrence for a significant number of patients.

  5. Phantom Tumor of the Lung: Localized Interlobar Effusion in Congestive Heart Failure

    Directory of Open Access Journals (Sweden)

    Mislav Lozo

    2014-01-01

    Full Text Available Localized interlobar effusions in congestive heart failure (phantom or vanishing lung tumor/s is/are uncommon but well known entities. An 83-year-old man presented with shortness of breath, swollen legs, and dry cough enduring five days. Chest-X-ray (CXR revealed massive sharply demarked round/oval homogeneous dense shadow 10 × 7 cm in size in the right inferior lobe. The treatment with the loop diuretics and fluid intake reduction resulted in complete resolution of the observed round/oval tumor-like image on the control CXR three days later. Radiologic appearance of such a mass-like configuration in patients with congestive heart failure demands correction of the underlying heart condition before further diagnostic investigation is performed to avoid unnecessary, expensive, and possibly harmful diagnostic and treatment errors.

  6. The potential diagnostic power of circulating tumor cell analysis for non-small-cell lung cancer.

    Science.gov (United States)

    Ross, Kirsty; Pailler, Emma; Faugeroux, Vincent; Taylor, Melissa; Oulhen, Marianne; Auger, Nathalie; Planchard, David; Soria, Jean-Charles; Lindsay, Colin R; Besse, Benjamin; Vielh, Philippe; Farace, Françoise

    2015-01-01

    In non-small-cell lung cancer (NSCLC), genotyping tumor biopsies for targetable somatic alterations has become routine practice. However, serial biopsies have limitations: they may be technically difficult or impossible and could incur serious risks to patients. Circulating tumor cells (CTCs) offer an alternative source for tumor analysis that is easily accessible and presents the potential to identify predictive biomarkers to tailor therapies on a personalized basis. Examined here is our current knowledge of CTC detection and characterization in NSCLC and their potential role in EGFR-mutant, ALK-rearranged and ROS1-rearranged patients. This is followed by discussion of the ongoing issues such as the question of CTC partnership as diagnostic tools in NSCLC.

  7. Hybrid video-assisted thoracic surgery with segmental-main bronchial sleeve resection for non-small cell lung cancer.

    Science.gov (United States)

    Li, Shuben; Chai, Huiping; Huang, Jun; Zeng, Guangqiao; Shao, Wenlong; He, Jianxing

    2014-04-01

    The purpose of the current study is to present the clinical and surgical results in patients who underwent hybrid video-assisted thoracic surgery with segmental-main bronchial sleeve resection. Thirty-one patients, 27 men and 4 women, underwent segmental-main bronchial sleeve anastomoses for non-small cell lung cancer between May 2004 and May 2011. Twenty-six (83.9%) patients had squamous cell carcinoma, and 5 patients had adenocarcinoma. Six patients were at stage IIB, 24 patients at stage IIIA, and 1 patient at stage IIIB. Secondary sleeve anastomosis was performed in 18 patients, and Y-shaped multiple sleeve anastomosis was performed in 8 patients. Single segmental bronchiole anastomosis was performed in 5 cases. The average time for chest tube removal was 5.6 days. The average length of hospital stay was 11.8 days. No anastomosis fistula developed in any of the patients. The 1-, 2-, and 3-year survival rates were 83.9%, 71.0%, and 41.9%, respectively. Hybrid video-assisted thoracic surgery with segmental-main bronchial sleeve resection is a complex technique that requires training and experience, but it is an effective and safe operation for selected patients.

  8. SU-F-R-44: Modeling Lung SBRT Tumor Response Using Bayesian Network Averaging

    International Nuclear Information System (INIS)

    Diamant, A; Ybarra, N; Seuntjens, J; El Naqa, I

    2016-01-01

    Purpose: The prediction of tumor control after a patient receives lung SBRT (stereotactic body radiation therapy) has proven to be challenging, due to the complex interactions between an individual’s biology and dose-volume metrics. Many of these variables have predictive power when combined, a feature that we exploit using a graph modeling approach based on Bayesian networks. This provides a probabilistic framework that allows for accurate and visually intuitive predictive modeling. The aim of this study is to uncover possible interactions between an individual patient’s characteristics and generate a robust model capable of predicting said patient’s treatment outcome. Methods: We investigated a cohort of 32 prospective patients from multiple institutions whom had received curative SBRT to the lung. The number of patients exhibiting tumor failure was observed to be 7 (event rate of 22%). The serum concentration of 5 biomarkers previously associated with NSCLC (non-small cell lung cancer) was measured pre-treatment. A total of 21 variables were analyzed including: dose-volume metrics with BED (biologically effective dose) correction and clinical variables. A Markov Chain Monte Carlo technique estimated the posterior probability distribution of the potential graphical structures. The probability of tumor failure was then estimated by averaging the top 100 graphs and applying Baye’s rule. Results: The optimal Bayesian model generated throughout this study incorporated the PTV volume, the serum concentration of the biomarker EGFR (epidermal growth factor receptor) and prescription BED. This predictive model recorded an area under the receiver operating characteristic curve of 0.94(1), providing better performance compared to competing methods in other literature. Conclusion: The use of biomarkers in conjunction with dose-volume metrics allows for the generation of a robust predictive model. The preliminary results of this report demonstrate that it is possible

  9. SU-F-R-44: Modeling Lung SBRT Tumor Response Using Bayesian Network Averaging

    Energy Technology Data Exchange (ETDEWEB)

    Diamant, A; Ybarra, N; Seuntjens, J [McGill University, Montreal, Quebec (Canada); El Naqa, I [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: The prediction of tumor control after a patient receives lung SBRT (stereotactic body radiation therapy) has proven to be challenging, due to the complex interactions between an individual’s biology and dose-volume metrics. Many of these variables have predictive power when combined, a feature that we exploit using a graph modeling approach based on Bayesian networks. This provides a probabilistic framework that allows for accurate and visually intuitive predictive modeling. The aim of this study is to uncover possible interactions between an individual patient’s characteristics and generate a robust model capable of predicting said patient’s treatment outcome. Methods: We investigated a cohort of 32 prospective patients from multiple institutions whom had received curative SBRT to the lung. The number of patients exhibiting tumor failure was observed to be 7 (event rate of 22%). The serum concentration of 5 biomarkers previously associated with NSCLC (non-small cell lung cancer) was measured pre-treatment. A total of 21 variables were analyzed including: dose-volume metrics with BED (biologically effective dose) correction and clinical variables. A Markov Chain Monte Carlo technique estimated the posterior probability distribution of the potential graphical structures. The probability of tumor failure was then estimated by averaging the top 100 graphs and applying Baye’s rule. Results: The optimal Bayesian model generated throughout this study incorporated the PTV volume, the serum concentration of the biomarker EGFR (epidermal growth factor receptor) and prescription BED. This predictive model recorded an area under the receiver operating characteristic curve of 0.94(1), providing better performance compared to competing methods in other literature. Conclusion: The use of biomarkers in conjunction with dose-volume metrics allows for the generation of a robust predictive model. The preliminary results of this report demonstrate that it is possible

  10. Trehalose Liposomes Suppress the Growth of Tumors on Human Lung Carcinoma-bearing Mice by Induction of Apoptosis In Vivo.

    Science.gov (United States)

    Ichihara, Hideaki; Kuwabara, Keiji; Matsumoto, Yoko

    2017-11-01

    Previous evidence demonstrates that trehalose liposomes (DMTreC14) composed of L-α-dimyristoylphosphatidylcholine (DMPC) and α-D-glycopyranosyl-α-D-glucopyranoside monomyristate (TreC14) inhibit proliferation and invasion on lung carcinoma (A549 cells) in vitro. Here, we aimed to investigate suppressive effects of DMTreC14 on the growth of tumor on human lung carcinoma bearing mice. DMTreC14 composed of 30 mol% DMPC and 70 mol% TreC14 were prepared by the sonication method. Anti-tumor activities of DMTreC14 using the subcutaneous and orthotopic graft-bearing mice of A549 cells were investigated in vivo. The remarkable reduction of volume and weight in subcutaneous tumors on subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were obtained. Apoptotic-positive cells in the subcutaneous tumor slice of subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were observed using TUNEL staining. Lung weights on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 were markedly decreased compared to those of the control group. Remarkable decrease in dimensions of tumor area of lung on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 was obtained in histological analysis using the hematoxylin and eosin staining. Remarkably high anti-tumor activities of DMTreC14 for the subcutaneous and orthotopic graft-bearing mice of lung carcinoma accompanied with apoptosis were revealed for the first time in vivo. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. 4D-MRI analysis of lung tumor motion in patients with hemidiaphragmatic paralysis

    International Nuclear Information System (INIS)

    Dinkel, Julien; Hintze, Christian; Tetzlaff, Ralf; Huber, Peter E.; Herfarth, Klaus; Debus, Juergen; Kauczor, Hans U.; Thieke, Christian

    2009-01-01

    Purpose: To investigate the complex breathing patterns in patients with hemidiaphragmatic paralysis due to malignant infiltration using four-dimensional magnetic resonance imaging (4D-MRI). Patients and methods: Seven patients with bronchial carcinoma infiltrating the phrenic nerve were examined using 1.5 T MRI. The motion of the tumor and of both hemi-diaphragms were measured on dynamic 2D TrueFISP and 4D FLASH MRI sequences. Results: For each patient, 3-6 breathing cycles were recorded. The respiratory-induced mean cranio-caudal displacement of the tumor was 6.6 mm (±2.8 SD). The mean displacement anterior-posterior was 7.4 mm (±2.6), while right-left movement was about 7.4 mm (±4.5). The mediastinum moved sidewards during inspiration, realizing a 'mediastinal shift'. The paralyzed hemidiaphragm and the tumor showed a paradox motion during respiration in five patients. In two patients, the affected hemidiaphragm had a regular, however minimal and asynchronous motion during respiration. Respiratory variability of both tumor and diaphragm motions was about 20% although patients were instructed to breath normally. The findings showed significant differences compared to breathing patterns of patients without diaphragm dysfunction. Conclusion: 4D-MRI is a promising tool to analyze complex breathing patterns in patients with lung tumors. It should be considered for use in planning of radiotherapy to account for individual tumor motion.

  12. A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: a validation study

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Soo Young; Suh, Sangil; Ryoo, Inseon; Park, Arim; Seol, Hae Young [Korea University Guro Hospital, Department of Radiology, Seoul (Korea, Republic of); Noh, Kyoung Jin [Soonchunhyang University, Department of Electronic Engineering, Asan (Korea, Republic of); Shim, Hackjoon [Toshiba Medical Systems Korea Co., Seoul (Korea, Republic of)

    2017-05-15

    We developed a semi-automated volumetric software, NPerfusion, to segment brain tumors and quantify perfusion parameters on whole-brain CT perfusion (WBCTP) images. The purpose of this study was to assess the feasibility of the software and to validate its performance compared with manual segmentation. Twenty-nine patients with pathologically proven brain tumors who underwent preoperative WBCTP between August 2012 and February 2015 were included. Three perfusion parameters, arterial flow (AF), equivalent blood volume (EBV), and Patlak flow (PF, which is a measure of permeability of capillaries), of brain tumors were generated by a commercial software and then quantified volumetrically by NPerfusion, which also semi-automatically segmented tumor boundaries. The quantification was validated by comparison with that of manual segmentation in terms of the concordance correlation coefficient and Bland-Altman analysis. With NPerfusion, we successfully performed segmentation and quantified whole volumetric perfusion parameters of all 29 brain tumors that showed consistent perfusion trends with previous studies. The validation of the perfusion parameter quantification exhibited almost perfect agreement with manual segmentation, with Lin concordance correlation coefficients (ρ {sub c}) for AF, EBV, and PF of 0.9988, 0.9994, and 0.9976, respectively. On Bland-Altman analysis, most differences between this software and manual segmentation on the commercial software were within the limit of agreement. NPerfusion successfully performs segmentation of brain tumors and calculates perfusion parameters of brain tumors. We validated this semi-automated segmentation software by comparing it with manual segmentation. NPerfusion can be used to calculate volumetric perfusion parameters of brain tumors from WBCTP. (orig.)

  13. A semi-automated volumetric software for segmentation and perfusion parameter quantification of brain tumors using 320-row multidetector computed tomography: a validation study.

    Science.gov (United States)

    Chae, Soo Young; Suh, Sangil; Ryoo, Inseon; Park, Arim; Noh, Kyoung Jin; Shim, Hackjoon; Seol, Hae Young

    2017-05-01

    We developed a semi-automated volumetric software, NPerfusion, to segment brain tumors and quantify perfusion parameters on whole-brain CT perfusion (WBCTP) images. The purpose of this study was to assess the feasibility of the software and to validate its performance compared with manual segmentation. Twenty-nine patients with pathologically proven brain tumors who underwent preoperative WBCTP between August 2012 and February 2015 were included. Three perfusion parameters, arterial flow (AF), equivalent blood volume (EBV), and Patlak flow (PF, which is a measure of permeability of capillaries), of brain tumors were generated by a commercial software and then quantified volumetrically by NPerfusion, which also semi-automatically segmented tumor boundaries. The quantification was validated by comparison with that of manual segmentation in terms of the concordance correlation coefficient and Bland-Altman analysis. With NPerfusion, we successfully performed segmentation and quantified whole volumetric perfusion parameters of all 29 brain tumors that showed consistent perfusion trends with previous studies. The validation of the perfusion parameter quantification exhibited almost perfect agreement with manual segmentation, with Lin concordance correlation coefficients (ρ c ) for AF, EBV, and PF of 0.9988, 0.9994, and 0.9976, respectively. On Bland-Altman analysis, most differences between this software and manual segmentation on the commercial software were within the limit of agreement. NPerfusion successfully performs segmentation of brain tumors and calculates perfusion parameters of brain tumors. We validated this semi-automated segmentation software by comparing it with manual segmentation. NPerfusion can be used to calculate volumetric perfusion parameters of brain tumors from WBCTP.

  14. Automatic block-matching registration to improve lung tumor localization during image-guided radiotherapy

    Science.gov (United States)

    Robertson, Scott Patrick

    To improve relatively poor outcomes for locally-advanced lung cancer patients, many current efforts are dedicated to minimizing uncertainties in radiotherapy. This enables the isotoxic delivery of escalated tumor doses, leading to better local tumor control. The current dissertation specifically addresses inter-fractional uncertainties resulting from patient setup variability. An automatic block-matching registration (BMR) algorithm is implemented and evaluated for the purpose of directly localizing advanced-stage lung tumors during image-guided radiation therapy. In this algorithm, small image sub-volumes, termed "blocks", are automatically identified on the tumor surface in an initial planning computed tomography (CT) image. Each block is independently and automatically registered to daily images acquired immediately prior to each treatment fraction. To improve the accuracy and robustness of BMR, this algorithm incorporates multi-resolution pyramid registration, regularization with a median filter, and a new multiple-candidate-registrations technique. The result of block-matching is a sparse displacement vector field that models local tissue deformations near the tumor surface. The distribution of displacement vectors is aggregated to obtain the final tumor registration, corresponding to the treatment couch shift for patient setup correction. Compared to existing rigid and deformable registration algorithms, the final BMR algorithm significantly improves the overlap between target volumes from the planning CT and registered daily images. Furthermore, BMR results in the smallest treatment margins for the given study population. However, despite these improvements, large residual target localization errors were noted, indicating that purely rigid couch shifts cannot correct for all sources of inter-fractional variability. Further reductions in treatment uncertainties may require the combination of high-quality target localization and adaptive radiotherapy.

  15. A study of tumor motion management in the conformal radiotherapy of lung cancer

    International Nuclear Information System (INIS)

    Burnett, Stuart S.C.; Sixel, Katharina E.; Cheung, Patrick C.F.; Hoisak, Jeremy D.P.

    2008-01-01

    Purpose: To assess the benefit derived from the reduction of planning target volumes (PTVs) afforded by tumor motion management in treatment planning for lung cancer. Methods: We use a simple formula that combines measurements of tumor motion and set-up error for 7 patients to determine PTVs based on the following scenarios: standard uniform 15 mm margin, individualized PTVs (no gating), spirometry-based gating, and active breath-control (ABC). We compare the percent volumes of lung receiving at least 20 Gy (V20) for a standard prescription, and the maximum tolerated doses (MTDs) at fixed V20. In anticipation of improvements in set-up accuracy, we repeat the analysis assuming a reduced set-up margin of 3 mm. Results: Relative to the standard, the average percent reductions in V20 (±1 standard deviation) for the ungated and gated scenarios are 17 ± 5 and 21 ± 8; the percent gains in MTD are 25 ± 12 and 33 ± 11, respectively. For the 3 mm set-up margin, the corresponding results for V20 are 28 ± 7 and 36 ± 7, and for MTD are 57 ± 23 and 79 ± 31. Conclusions: Any form of motion management provides a benefit over the use of a standard margin. The benefit derived from gating compared to the use of ungated individualized PTVs increases with tumor mobility but is generally modest. While motion management may benefit patients with highly mobile tumors, we expect efforts to reduce set-up error to be of greater overall significance. The practical limit for lung PTV margins is likely around 4-5 mm, provided set-up error can be reduced sufficiently

  16. Risk analysis of fatal and incidental lung tumors in wister rats after inhalation of plutonium dioxide

    International Nuclear Information System (INIS)

    Kai, M.; Akahane, K.; Ogiso, Y.

    2000-01-01

    Cancer risk analysis was done in animal studies for inhalation of plutonium dioxide. Female Wister rats were exposed to an aerosol of plutonium with AMAD of 0.4-0.5 μm and followed up until they died. We made some model analyses using their likelihood function. This approach enables us to consider temporal variation in dose-response analysis. Each rat contributes to the total likelihood depending on fatal or incidental tumors. In Weibul model analysis, the logarithm of the hazard function can be linearly modeled with the term of log (dose), log-L model, and additional term of the square of log (dose), log-LQ model. The likelihood ratio statistics gave a significantly better fit of the log-LQ model. However, if data more than 4 Gy were excluded, there was no significant difference between both models. The ratio of hazard function at 1 Gy and 0 Gy, the excess relative risk, showed 30 for total tumors. This result was much different from those in PNL data (Sanders et al.). The difference of pulmonary deposition depending upon particle size would cause different tumor incidence. Our studies indicated significant increase of occurrence of fatal lung cancer at an average dose of 0.5 Gy and thus did not suggest that a life-span effective threshold for death was about 1 Gy to the lung, which is shown in some papers. In contrast PNL, the incidence of adenoma showing the maximum at 0.5 Gy decreased with increasing lung dose from 1.5 Gy or higher, where malignant tumors such as adenocarcinomas increased. This phenomenon was analyzed with carcinogenesis models. (author)

  17. TH-E-17A-10: Markerless Lung Tumor Tracking Based On Beams Eye View EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Kearney, V; Liu, H; Jiang, L; Foster, R; Mao, W [UT Southwestern Medical Center, Dallas, Texas (United States); Rozario, T; Bereg, S [University of Texas at Dallas, Richardson, Texas (United States); Klash, S [Premier Cancer Centers, Dallas, TX (United States)

    2014-06-15

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT corresponding curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.

  18. Diagnostic Ability of Percutaneous Needle Biopsy Immediately After Radiofrequency Ablation for Malignant Lung Tumors: An Initial Experience

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Takaaki, E-mail: t-hasegawa@aichi-cc.jp [Aichi Cancer Center Hospital, Department of Diagnostic and Interventional Radiology (Japan); Kondo, Chiaki [Aichi Cancer Center Hospital, Department of Pathology and Molecular Diagnosis (Japan); Sato, Yozo; Inaba, Yoshitaka; Yamaura, Hidekazu; Kato, Mina; Murata, Shinichi; Onoda, Yui [Aichi Cancer Center Hospital, Department of Diagnostic and Interventional Radiology (Japan); Kuroda, Hiroaki; Sakao, Yukinori [Aichi Cancer Center Hospital, Department of Thoracic Surgery (Japan); Yatabe, Yasushi [Aichi Cancer Center Hospital, Department of Pathology and Molecular Diagnosis (Japan)

    2016-08-15

    PurposeTo evaluate the safety and diagnostic ability of percutaneous needle biopsy performed immediately after lung radiofrequency ablation (RFA).Materials and MethodsFrom May 2013 to April 2014, percutaneous needle biopsy was performed immediately after RFA for 3 patients (2 men and 1 woman, aged 57–76 years) who had lung tumors measuring 1.3–2.6 cm in diameter. All patients had prior history of malignancy, and all tumors were radiologically diagnosed as malignant. Obtained specimens were pathologically classified using standard hematoxylin and eosin staining.ResultsWe completed three planned sessions of RFA followed by percutaneous needle biopsy, all of which obtained tumor tissue that could be pathologically diagnosed. Two tumors were metastatic from renal clear cell carcinoma and rectal adenocarcinoma, respectively; one tumor was primary lung adenocarcinoma. There was no death or major complication related to the procedures. Although pneumothorax occurred in two patients, these resolved without the need for aspiration or chest tube placement. Tumor seeding was not observed, but 21 months after the procedure, one case developed local tumor progression that was treated by additional RFA.ConclusionPathologic diagnosis was possible by needle biopsy immediately after RFA for lung tumors. This technique may reduce the risks and efforts of performing biopsy and RFA on separate occasions.

  19. Quantitative Segmentation of Fluorescence Microscopy Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in Tumor Margins.

    Directory of Open Access Journals (Sweden)

    Jenna L Mueller

    Full Text Available To develop a robust tool for quantitative in situ pathology that allows visualization of heterogeneous tissue morphology and segmentation and quantification of image features.TISSUE EXCISED FROM A GENETICALLY ENGINEERED MOUSE MODEL OF SARCOMA WAS IMAGED USING A SUBCELLULAR RESOLUTION MICROENDOSCOPE AFTER TOPICAL APPLICATION OF A FLUORESCENT ANATOMICAL CONTRAST AGENT: acriflavine. An algorithm based on sparse component analysis (SCA and the circle transform (CT was developed for image segmentation and quantification of distinct tissue types. The accuracy of our approach was quantified through simulations of tumor and muscle images. Specifically, tumor, muscle, and tumor+muscle tissue images were simulated because these tissue types were most commonly observed in sarcoma margins. Simulations were based on tissue characteristics observed in pathology slides. The potential clinical utility of our approach was evaluated by imaging excised margins and the tumor bed in a cohort of mice after surgical resection of sarcoma.Simulation experiments revealed that SCA+CT achieved the lowest errors for larger nuclear sizes and for higher contrast ratios (nuclei intensity/background intensity. For imaging of tumor margins, SCA+CT effectively isolated nuclei from tumor, muscle, adipose, and tumor+muscle tissue types. Differences in density were correctly identified with SCA+CT in a cohort of ex vivo and in vivo images, thus illustrating the diagnostic potential of our approach.The combination of a subcellular-resolution microendoscope, acriflavine staining, and SCA+CT can be used to accurately isolate nuclei and quantify their density in anatomical images of heterogeneous tissue.

  20. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer: In vivo whole tumor assessment using volumetric perfusion computed tomography

    International Nuclear Information System (INIS)

    Ng, Q.-S.; Goh, Vicky; Milner, Jessica; Padhani, Anwar R.; Saunders, Michele I.; Hoskin, Peter J.

    2007-01-01

    Purpose: To quantitatively assess the in vivo acute vascular effects of fractionated radiotherapy for human non-small-cell lung cancer using volumetric perfusion computed tomography (CT). Methods and Materials: Sixteen patients with advanced non-small-cell lung cancer, undergoing palliative radiotherapy delivering 27 Gy in 6 fractions over 3 weeks, were scanned before treatment, and after the second (9 Gy), fourth (18 Gy), and sixth (27 Gy) radiation fraction. Using 16-detector CT, multiple sequential volumetric acquisitions were acquired after intravenous contrast agent injection. Measurements of vascular blood volume and permeability for the whole tumor volume were obtained. Vascular changes at the tumor periphery and center were also measured. Results: At baseline, lung tumor vascularity was spatially heterogeneous with the tumor rim showing a higher vascular blood volume and permeability than the center. After the second, fourth, and sixth fractions of radiotherapy, vascular blood volume increased by 31.6% (paired t test, p = 0.10), 49.3% (p = 0.034), and 44.6% (p = 0.0012) respectively at the tumor rim, and 16.4% (p = 0.29), 19.9% (p = 0.029), and 4.0% (p = 0.0050) respectively at the center of the tumor. After the second, fourth, and sixth fractions of radiotherapy, vessel permeability increased by 18.4% (p = 0.022), 44.8% (p = 0.0048), and 20.5% (p = 0.25) at the tumor rim. The increase in permeability at the tumor center was not significant after radiotherapy. Conclusion: Fractionated radiotherapy increases tumor vascular blood volume and permeability in human non-small-cell lung cancer. We have established the spatial distribution of vascular changes after radiotherapy; greater vascular changes were demonstrated at the tumor rim compared with the center

  1. Stereotactic ablative radiotherapy for small lung tumors with a moderate dose. Favorable results and low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Duncker-Rohr, V.; Nestle, U. [Universitaetsklinikum Freiburg (Germany); Momm, F. [Ortenau Klinikum Offenburg (Germany)] [and others

    2013-01-15

    Background: Stereotactic ablative body radiotherapy (SBRT, SABR) is being increasingly applied because of its high local efficacy, e.g., for small lung tumors. However, the optimum dosage is still under discussion. Here, we report data on 45 lung lesions [non-small cell lung cancer (NSCLC) or metastases] in 39 patients treated between 2009 and 2010 by SABR. Patients and methods: SABR was performed with total doses of 35 Gy (5 fractions) or 37.5 Gy (3 fractions) prescribed to the 60% isodose line encompassing the planning target volume. Three-monthly follow-up CT scans were supplemented by FDG-PET/CT if clinically indicated. Results: The median follow-up was 17 months. Local progression-free survival rates were 90.5% (all patients), 95.0% (NSCLC), and 81.8% (metastases) at 1 year. At 2 years, the respective local progression-free survival rates were 80.5%, 95.0%, and 59.7%. Overall survival rates were 71.1% (all patients), 65.4% (NSCLC), and 83.3% (metastases) at 1 year. Overall survival rates at 2 years were 52.7%, 45.9%, and 66.7%, respectively. Acute side effects were mild. Conclusion: With the moderate dose schedule used, well-tolerated SABR led to favorable local tumor control as in other published series. Standardization in reporting the dose prescription for SABR is needed to allow comparison of different series in order to determine optimum dosage. (orig.)

  2. Gene alterations in radiation-induced F344 rat lung tumors

    International Nuclear Information System (INIS)

    Kelly, G.; Hahn, F.F.

    1994-01-01

    The p53 tumor suppressor gene is frequently altered in all major histopathologic types of human lung tumors. Reported p53 mutations include base substitutions, allelic loss, rearrangements, and deletions. Point mutations resulting in base substitutions are clustered within a highly conserved region of the gene encoding exons 508, and mutations in this region substantially extend the half-life of the p53 protein. In addition to its prominent importance in lung carcinogenesis, the p53 gene plays a critical role in the cellular response to genetic damage caused by radiation. Specifically, the protein product of p53 induces a pause or block at the G 1 to S boundary of the cell cycle following radiation-caused DNA damage. This G 1 block may allow the cell time to repair the damaged DNA prior to replication. Cells lacking a functional p53 protein fail to pause for repair and consequently accumulate mutations in the genome at an accelerated rate. p53 has also been implicated as a controlling factor in apoptosis or in programmed cell death induced by DNA-damaging agents, such as ionizing radiation. The p53 gene is mutated in approximately 50% of squamous cell carcinomas from uranium miners who inhaled high doses of radon daughters. The purpose of the present study was to determine if a similar percentage of squamous cell carcinomas with p53 mutations developed in the lungs of rats exposed to aerosols of 239 PuO 2

  3. Stereotactic Ablative Radiation Therapy for Subcentimeter Lung Tumors: Clinical, Dosimetric, and Image Guidance Considerations

    International Nuclear Information System (INIS)

    Louie, Alexander V.; Senan, Suresh; Dahele, Max; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2014-01-01

    Purpose: Use of stereotactic ablative radiation therapy (SABR) for subcentimeter lung tumors is controversial. We report our outcomes for tumors with diameter ≤1 cm and their visibility on cone beam computed tomography (CBCT) scans and retrospectively evaluate the planned dose using a deterministic dose calculation algorithm (Acuros XB [AXB]). Methods and Materials: We identified subcentimeter tumors from our institutional SABR database. Tumor size was remeasured on an artifact-free phase of the planning 4-dimensional (4D)-CT. Clinical plan doses were generated using either a pencil beam convolution or an anisotropic analytic algorithm (AAA). All AAA plans were recalculated using AXB, and differences among D95 and mean dose for internal target volume (ITV) and planning target volume (PTV) on the average intensity CT dataset, as well as for gross tumor volume (GTV) on the end respiratory phases were reported. For all AAA patients, CBCT scans acquired during each treatment fraction were evaluated for target visibility. Progression-free and overall survival rates were calculated using the Kaplan-Meier method. Results: Thirty-five patients with 37 subcentimeter tumors were eligible for analysis. For the 22 AAA plans recalculated using AXB, Mean D95 ± SD values were 2.2 ± 4.4% (ITV) and 2.5 ± 4.8% (PTV) lower using AXB; whereas mean doses were 2.9 ± 4.9% (ITV) and 3.7 ± 5.1% (PTV) lower. Calculated AXB doses were significantly lower in one patient (difference in mean ITV and PTV doses, as well as in mean ITV and PTV D95 ranged from 22%-24%). However, the end respiratory phase GTV received at least 95% of the prescription dose. Review of 92 CBCT scans from all AAA patients revealed that the tumor was visualized in 82 images, and its position could be inferred in other images. The 2-year local progression-free survival was 100%. Conclusions: Patients with subcentimeter lung tumors are good candidates for SABR, given the dosimetry, ability to localize

  4. Analysis of relationship between tumor markers and quantification of free DNA in serum of lung cancer patients

    International Nuclear Information System (INIS)

    Yang Shunfang; Zhang Peiling; Cao Jie; Zeng Jun; Dong Qianggang

    2006-01-01

    To evaluate the diagnostic value and relationship between five tumor markers (CA19- 9,CA125,CYFRA21-1 ,CEA,NSE) and free DNA in serum for lung cancer detection and try to find a new and more efficient tumor marker, the amounts of CA19-9, CA125, CYFRA21-1, CEA, NSE were determined by RIA and free DNA was determined by the use of quantitative real time PCR amplification of the human epidermal growth factor receptor (EGFR) in 52 lung cancer patients and 8 cases of benign pulmonary disease and 10 healthy controls. The resulls showed that average concentration of free DNA in serum of lung cancer patients, benign pulmo- nary disease and healthy controls was 107.6ng/mL, 76.86ng/mL and 18.8ng/mL, respective- ly. The diagnostic sensitivity, specificity and accuracy of free DNA for lung cancer were 71. 2%, 50% and 68.3%, same as the diagnostic value of combined detection of five tumor markers. The sensitivity, specificity and accuracy of the five tumor markers and free DNA combinend detection for lung cancer were 94.2%, 25% and 85%, respectively. The free DNA in the serum of lung cancer patients may be a new and better tumor marker. (authors)

  5. Metabolically active tumour volume segmentation from dynamic [(18)F]FLT PET studies in non-small cell lung cancer.

    Science.gov (United States)

    Hoyng, Lieke L; Frings, Virginie; Hoekstra, Otto S; Kenny, Laura M; Aboagye, Eric O; Boellaard, Ronald

    2015-01-01

    Positron emission tomography (PET) with (18)F-3'-deoxy-3'-fluorothymidine ([(18)F]FLT) can be used to assess tumour proliferation. A kinetic-filtering (KF) classification algorithm has been suggested for segmentation of tumours in dynamic [(18)F]FLT PET data. The aim of the present study was to evaluate KF segmentation and its test-retest performance in [(18)F]FLT PET in non-small cell lung cancer (NSCLC) patients. Nine NSCLC patients underwent two 60-min dynamic [(18)F]FLT PET scans within 7 days prior to treatment. Dynamic scans were reconstructed with filtered back projection (FBP) as well as with ordered subsets expectation maximisation (OSEM). Twenty-eight lesions were identified by an experienced physician. Segmentation was performed using KF applied to the dynamic data set and a source-to-background corrected 50% threshold (A50%) was applied to the sum image of the last three frames (45- to 60-min p.i.). Furthermore, several adaptations of KF were tested. Both for KF and A50% test-retest (TRT) variability of metabolically active tumour volume and standard uptake value (SUV) were evaluated. KF performed better on OSEM- than on FBP-reconstructed PET images. The original KF implementation segmented 15 out of 28 lesions, whereas A50% segmented each lesion. Adapted KF versions, however, were able to segment 26 out of 28 lesions. In the best performing adapted versions, metabolically active tumour volume and SUV TRT variability was similar to those of A50%. KF misclassified certain tumour areas as vertebrae or liver tissue, which was shown to be related to heterogeneous [(18)F]FLT uptake areas within the tumour. For [(18)F]FLT PET studies in NSCLC patients, KF and A50% show comparable tumour volume segmentation performance. The KF method needs, however, a site-specific optimisation. The A50% is therefore a good alternative for tumour segmentation in NSCLC [(18)F]FLT PET studies in multicentre studies. Yet, it was observed that KF has the potential to subsegment

  6. Fetal lung interstitial tumor: the first Japanese case report and a comparison with fetal lung tissue and congenital cystic adenomatoid malformation/congenital pulmonary airway malformation type 3.

    Science.gov (United States)

    Yoshida, Mariko; Tanaka, Mio; Gomi, Kiyoshi; Iwanaka, Tadashi; Dehner, Louis P; Tanaka, Yukichi

    2013-10-01

    Fetal lung interstitial tumor, a newly recognized lung lesion in infants, was first reported in 2010. Here, we report the first Japanese case of fetal lung interstitial tumor which was originally diagnosed as atypical congenital cystic adenomatoid malformation/congenital pulmonary airway malformation type 3. A 7-day-old girl was referred to our hospital with respiratory distress and a left lung mass and she subsequently underwent left lower lobectomy. The specimen showed a 5 cm solid mass with a fibrous capsule. Histological examination revealed immature airspaces and interstitium, containing bronchioles and cartilage. The epithelial and interstitial cells contained abundant glycogen granules. Immunohistochemistry showed nuclear/cytoplasmic expression of β-catenin in the epithelial and interstitial cells. β-catenin gene mutations and trisomy 8 were not detected, so a neoplastic origin could not be confirmed. The histological findings were partly consistent with normal fetal lung at the canalicular stage, pulmonary interstitial glycogenosis, and congenital cystic adenomatoid malformation/congenital pulmonary airway malformation type 3. In this report, we compare the above conditions and discuss the pathogenesis of fetal lung interstitial tumor. © 2013 The Authors. Pathology International © 2013 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  7. 4-D segmentation and normalization of 3He MR images for intrasubject assessment of ventilated lung volumes

    Science.gov (United States)

    Contrella, Benjamin; Tustison, Nicholas J.; Altes, Talissa A.; Avants, Brian B.; Mugler, John P., III; de Lange, Eduard E.

    2012-03-01

    Although 3He MRI permits compelling visualization of the pulmonary air spaces, quantitation of absolute ventilation is difficult due to confounds such as field inhomogeneity and relative intensity differences between image acquisition; the latter complicating longitudinal investigations of ventilation variation with respiratory alterations. To address these potential difficulties, we present a 4-D segmentation and normalization approach for intra-subject quantitative analysis of lung hyperpolarized 3He MRI. After normalization, which combines bias correction and relative intensity scaling between longitudinal data, partitioning of the lung volume time series is performed by iterating between modeling of the combined intensity histogram as a Gaussian mixture model and modulating the spatial heterogeneity tissue class assignments through Markov random field modeling. Evaluation of the algorithm was retrospectively applied to a cohort of 10 asthmatics between 19-25 years old in which spirometry and 3He MR ventilation images were acquired both before and after respiratory exacerbation by a bronchoconstricting agent (methacholine). Acquisition was repeated under the same conditions from 7 to 467 days (mean +/- standard deviation: 185 +/- 37.2) later. Several techniques were evaluated for matching intensities between the pre and post-methacholine images with the 95th percentile value histogram matching demonstrating superior correlations with spirometry measures. Subsequent analysis evaluated segmentation parameters for assessing ventilation change in this cohort. Current findings also support previous research that areas of poor ventilation in response to bronchoconstriction are relatively consistent over time.

  8. Correlation between dose and tumor response in the radiotherapy of lung cancer of various histological types

    International Nuclear Information System (INIS)

    Koga, Kenji; Kusuhara, Toshiyuki; Nishikawa, Kiyoshi; Asada, Keiko; Watanabe, Katsushi

    1984-01-01

    Correlation between dose and tumor response by cell types was determined in 50 patients with lung cancer in order to predict the possibility of further tumor regression. The TDF (time-dose-fractionation) concept was used as dose factor. The radiation source was a cobalt-60 γ-ray or linear accelerator 10 MV X-ray. As a routine regime a fraction dose of 2 Gy five times per week was given to 39 of the 50 patients, but a dose of 2 Gy three times per week or of 1.5 Gy five times per week was given to seven and four patients, respectively. Radiation response was the best in small cell carcinoma and better in adenocarcinoma than in squamous cell carcinoma, showing a tumor regression rate of 50% or more in 90%, 80% and 58% of the patients, respectively. The correlation between tumor regression rate and TDF values was good in squamous cell carcinoma (r = 0.73) and small cell carcinoma (r = - 0.72), but poor in adenocarcinoma (r = - 0.10). These results suggest that in squamous cell carcinoma improvement of tumor regression can be expected by increasing TDF values, and in adenocarcinoma and small cell carcinoma the optimal TDF values are about 100 and 60 to 80, respectively. (author)

  9. Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies

    International Nuclear Information System (INIS)

    Weizman, Lior; Sira, Liat Ben; Joskowicz, Leo; Rubin, Daniel L.; Yeom, Kristen W.; Constantini, Shlomi; Shofty, Ben; Bashat, Dafna Ben

    2014-01-01

    Purpose: Tracking the progression of low grade tumors (LGTs) is a challenging task, due to their slow growth rate and associated complex internal tumor components, such as heterogeneous enhancement, hemorrhage, and cysts. In this paper, the authors show a semiautomatic method to reliably track the volume of LGTs and the evolution of their internal components in longitudinal MRI scans. Methods: The authors' method utilizes a spatiotemporal evolution modeling of the tumor and its internal components. Tumor components gray level parameters are estimated from the follow-up scan itself, obviating temporal normalization of gray levels. The tumor delineation procedure effectively incorporates internal classification of the baseline scan in the time-series as prior data to segment and classify a series of follow-up scans. The authors applied their method to 40 MRI scans of ten patients, acquired at two different institutions. Two types of LGTs were included: Optic pathway gliomas and thalamic astrocytomas. For each scan, a “gold standard” was obtained manually by experienced radiologists. The method is evaluated versus the gold standard with three measures: gross total volume error, total surface distance, and reliability of tracking tumor components evolution. Results: Compared to the gold standard the authors' method exhibits a mean Dice similarity volumetric measure of 86.58% and a mean surface distance error of 0.25 mm. In terms of its reliability in tracking the evolution of the internal components, the method exhibits strong positive correlation with the gold standard. Conclusions: The authors' method provides accurate and repeatable delineation of the tumor and its internal components, which is essential for therapy assessment of LGTs. Reliable tracking of internal tumor components over time is novel and potentially will be useful to streamline and improve follow-up of brain tumors, with indolent growth and behavior

  10. A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.

    Science.gov (United States)

    Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K

    2014-05-01

    Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.

  11. A segmentation framework towards automatic generation of boost subvolumes for FDG-PET tumors: A digital phantom study

    International Nuclear Information System (INIS)

    Yang, Fei; Grigsby, Perry W.

    2012-01-01

    Potential benefits of administering nonuniform radiation dose to heterogeneous tumors imaged with FDG-PET have been widely demonstrated; whereas the number of discrete dose levels to be utilized and corresponding locations for prescription inside tumors vary significantly with current existing methods. In this paper, an automated and unsupervised segmentation framework constituted mainly by an image restoration mechanism based on variational decomposition and a voxel clustering scheme based on spectral clustering was presented towards partitioning FDG-PET imaged tumors into subvolumes characterized with the total intra-subvolume activity similarity and the total inter-subvolume activity dissimilarity being simultaneously maximized. Experiments to evaluate the proposed system were carried out with using FDG-PET data generated from a digital phantom that employed SimSET (Simulation System for Emission Tomography) to simulate PET acquisition of tumors. The obtained results show the feasibility of the proposed system in dividing FDG-PET imaged tumor volumes into subvolumes with intratumoral heterogeneity being properly characterized, irrespective of variation in tumor morphology as well as diversity in intratumoral heterogeneity pattern.

  12. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management

    International Nuclear Information System (INIS)

    Chen, Ting; Qin, Songbing; Xu, Xiaoting; Jabbour, Salma K.; Haffty, Bruce G.; Yue, Ning J.

    2014-01-01

    Purpose/objectives: Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy. Methods/materials: Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes. Results: Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans. Conclusions: The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients

  13. Quantification of Tumor Volume Changes During Radiotherapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Fox, Jana; Ford, Eric; Redmond, Kristin; Zhou, Jessica; Wong, John; Song, Danny Y.

    2009-01-01

    Purpose: Dose escalation for lung cancer is limited by normal tissue toxicity. We evaluated sequential computed tomography (CT) scans to assess the possibility of adaptively reducing treatment volumes by quantifying the tumor volume reduction occurring during a course of radiotherapy (RT). Methods and Materials: A total of 22 patients underwent RT for Stage I-III non-small-cell lung cancer with conventional fractionation; 15 received concurrent chemotherapy. Two repeat CT scans were performed at a nominal dose of 30 Gy and 50 Gy. Respiration-correlated four-dimensional CT scans were used for evaluation of respiratory effects in 17 patients. The gross tumor volume (GTV) was delineated on simulation and all individual phases of the repeat CT scans. Parenchymal tumor was evaluated unless the nodal volume was larger or was the primary. Subsequent image sets were spatially co-registered with the simulation data for evaluation. Results: The median GTV reduction was 24.7% (range, -0.3% to 61.7%; p 100 cm 3 vs. 3 , and hilar and/or mediastinal involvement vs. purely parenchymal or pleural lesions. A tendency toward a greater volume reduction with increasing dose was seen, although this did not reach statistical significance. Conclusion: The results of this study have demonstrated significant alterations in the GTV seen on repeat CT scans during RT. These observations raise the possibility of using an adaptive approach toward RT of non-small-cell lung cancer to minimize the dose to normal structures and more safely increase the dose directed at the target tissues.

  14. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results

    Directory of Open Access Journals (Sweden)

    Ayakawa Shiho

    2009-05-01

    Full Text Available Abstract Background In stereotactic body radiotherapy (SBRT for lung tumors, reducing tumor movement is necessary. In this study, we evaluated changes in tumor movement and percutaneous oxygen saturation (SpO2 levels, and preliminary clinical results of SBRT using the BodyFIX immobilization system. Methods Between 2004 and 2006, 53 consecutive patients were treated for 55 lesions; 42 were stage I non-small cell lung cancer (NSCLC, 10 were metastatic lung cancers, and 3 were local recurrences of NSCLC. Tumor movement was measured with fluoroscopy under breath holding, free breathing on a couch, and free breathing in the BodyFIX system. SpO2 levels were measured with a finger pulseoximeter under each condition. The delivered dose was 44, 48 or 52 Gy, depending on tumor diameter, in 4 fractions over 10 or 11 days. Results By using the BodyFIX system, respiratory tumor movements were significantly reduced compared with the free-breathing condition in both craniocaudal and lateral directions, although the amplitude of reduction in the craniocaudal direction was 3 mm or more in only 27% of the patients. The average SpO2 did not decrease by using the system. At 3 years, the local control rate was 80% for all lesions. Overall survival was 76%, cause-specific survival was 92%, and local progression-free survival was 76% at 3 years in primary NSCLC patients. Grade 2 radiation pneumonitis developed in 7 patients. Conclusion Respiratory tumor movement was modestly suppressed by the BodyFIX system, while the SpO2 level did not decrease. It was considered a simple and effective method for SBRT of lung tumors. Preliminary results were encouraging.

  15. Reconstructive procedures for segmental resection of bone in giant cell tumors around the knee

    Directory of Open Access Journals (Sweden)

    Aggarwal Aditya

    2007-01-01

    Full Text Available Background: Segmental resection of bone in Giant Cell Tumor (GCT around the knee, in indicated cases, leaves a gap which requires a complex reconstructive procedure. The present study analyzes various reconstructive procedures in terms of morbidity and various complications encountered. Materials and Methods: Thirteen cases (M-six and F-seven; lower end femur-six and upper end tibia -seven of GCT around the knee, radiologically either Campanacci Grade II, Grade II with pathological fracture or Grade III were included. Mean age was 25.6 years (range 19-30 years. Resection arthrodesis with telescoping (shortening over intramedullary nail ( n=5, resection arthrodesis with an intercalary allograft threaded over a long intramedullary nail ( n=3 and resection arthrodesis with intercalary fibular autograft and simultaneous limb lengthening ( n=5 were the procedure performed. Results: Shortening was the major problem following resection arthrodesis with telescoping (shortening over intramedullary nail. Only two patients agreed for subsequent limb lengthening. The rest continued to walk with shortening. Infection was the major problem in all cases of resection arthrodesis with an intercalary allograft threaded over a long intramedullary nail and required multiple drainage procedures. Fusion was achieved after two years in two patients. In the third patient the allograft sequestrated. The patient underwent sequestrectomy, telescoping of fragments and ilizarov fixator application with subsequent limb lengthening. The patient was finally given an ischial weight relieving orthosis, 54 months after the index procedure. After resection arthrodesis with intercalary autograft and simultaneous lengthening the resultant gap (~15cm was partially bridged by intercalary nonvascularized dual fibular strut graft (6-7cm and additional corticocancellous bone graft from ipsilateral patella. Simultaneous limb lengthening with a distal tibial corticotomy was performed on an

  16. [(99)Tc(m)N-NOET dual-phase SPECT in differential diagnosis of benign and malignant lung tumors].

    Science.gov (United States)

    Liu, Haiyan; Li, Sijin; Yang, Suyun; Wu, Zhifang

    2014-01-01

    To investigate the value of (99)Tc(m)N-NOET dual-phase SPECT in differential diagnosis of benign and malignant lung tumors. CT scan, early (20 to 30 min) and delayed (2 h) imaging of NOET SPECT were performed on 61 patients suspected of lung lesions before operation. The results were compared with the pathological findings. All cases were not treated with radiotherapy, chemotherapy or surgery before checks. Moreover, all patients had pathological diagnosis. To determine the value in differential diagnosis of tumors by analyzing the tumor uptake and excretion of (99)Tc(m)N-NOET, and the results were compared with that of CT. The value of early T/N ratio (ER) in the malignant (G1) and benign (G2) groups was 1.25 ± 0.15 and 1.09 ± 0.11 (P 0.05). The ER, DR and RI of NOET SPECT in the malignant patients were not significantly correlated with TNM staging, pathological types, tumor diameter, cavity in the lung tumor mass, history of smoking, tumor size and patient gender (P > 0.05). The sensitivity of NOET dual-phase SPECT and CT in the differential diagnosis of benign and malignant lung tumors was 94.1% vs. 90.2%, specificity was 70.0% vs. 80.0% , positive predictive value (PPV) was 94.1% vs. 95.8%, negative predictive value (NPV) was 70.0% vs. 61.5 %, and accuracy was 90.2%. vs. 88.5% (P > 0.05 for all). (99)Tc(m)N- NOET dual-phase SPECT could be used in differential diagnosis of benign and malignant lung tumors, with no significant differences compared with the efficacy of CT imaging. The semiquantitative indexes (ER, DR and RI) of NOET SPECT can also be used in differential diagnosis of benign and malignant lung tumors, and are not significantly correlated with TNM staging, pathological types, tumor diameter, cavity of the lung tumor mass, history of smoking, tumor size and patient gender.

  17. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification.

    Science.gov (United States)

    Travis, William D; Brambilla, Elisabeth; Nicholson, Andrew G; Yatabe, Yasushi; Austin, John H M; Beasley, Mary Beth; Chirieac, Lucian R; Dacic, Sanja; Duhig, Edwina; Flieder, Douglas B; Geisinger, Kim; Hirsch, Fred R; Ishikawa, Yuichi; Kerr, Keith M; Noguchi, Masayuki; Pelosi, Giuseppe; Powell, Charles A; Tsao, Ming Sound; Wistuba, Ignacio

    2015-09-01

    The 2015 World Health Organization (WHO) Classification of Tumors of the Lung, Pleura, Thymus and Heart has just been published with numerous important changes from the 2004 WHO classification. The most significant changes in this edition involve (1) use of immunohistochemistry throughout the classification, (2) a new emphasis on genetic studies, in particular, integration of molecular testing to help personalize treatment strategies for advanced lung cancer patients, (3) a new classification for small biopsies and cytology similar to that proposed in the 2011 Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification, (4) a completely different approach to lung adenocarcinoma as proposed by the 2011 Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification, (5) restricting the diagnosis of large cell carcinoma only to resected tumors that lack any clear morphologic or immunohistochemical differentiation with reclassification of the remaining former large cell carcinoma subtypes into different categories, (6) reclassifying squamous cell carcinomas into keratinizing, nonkeratinizing, and basaloid subtypes with the nonkeratinizing tumors requiring immunohistochemistry proof of squamous differentiation, (7) grouping of neuroendocrine tumors together in one category, (8) adding NUT carcinoma, (9) changing the term sclerosing hemangioma to sclerosing pneumocytoma, (10) changing the name hamartoma to "pulmonary hamartoma," (11) creating a group of PEComatous tumors that include (a) lymphangioleiomyomatosis, (b) PEComa, benign (with clear cell tumor as a variant) and (c) PEComa, malignant, (12) introducing the entity pulmonary myxoid sarcoma with an EWSR1-CREB1 translocation, (13) adding the entities myoepithelioma and myoepithelial carcinomas, which can show EWSR1 gene rearrangements, (14) recognition of usefulness of WWTR1-CAMTA1 fusions in diagnosis of epithelioid

  18. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    Directory of Open Access Journals (Sweden)

    Wang Xin

    2010-02-01

    Full Text Available Abstract Background To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT guided hypofractionated radiotherapy with active breathing control (ABC for patients with non-small cell lung cancer (NSCLC or metastatic tumors in lung. Methods 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. Results The pre-correction systematic and random errors in the left-right (LR, superior-inferior (SI, anterior-posterior (AP directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20% grade1-2 acute pneumonitis, 3 (15% grade1 acute esophagitis, 2 (10% grade1 late pneumonitis and 1 (5% grade 1 late esophagitis. Conclusion The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used.

  19. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    Science.gov (United States)

    2010-01-01

    Background To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. Methods 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. Results The pre-correction systematic and random errors in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20%) grade1-2 acute pneumonitis, 3 (15%) grade1 acute esophagitis, 2 (10%) grade1 late pneumonitis and 1 (5%) grade 1 late esophagitis. Conclusion The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used. PMID:20187962

  20. Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

    International Nuclear Information System (INIS)

    Shen, Yali; Zhang, Hong; Wang, Jin; Zhong, Renming; Jiang, Xiaoqing; Xu, Qinfeng; Wang, Xin; Bai, Sen; Xu, Feng

    2010-01-01

    To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 Gy and 6 Gy. ABC is applied for every patient. During each treatment, patients receive CBCT scan for online set-up correction. The pre- and post-correction setup errors between fractions, the interfractional and intrafractional, set-up errors, PTV margin as well as toxicity are analyzed. The pre-correction systematic and random errors in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) directions were 3.7 mm and 5.3 mm, 3.1 mm and 2.1 mm, 3.7 mm and 2.8 mm, respectively, while the post-correction residual errors were 0.6 mm and 0.8 mm, 0.8 mm and 0.8 mm, 1.2 mm and 1.3 mm, respectively. There was an obvious intrafractional shift of tumor position. The pre-correction PTV margin was 9.5 mm in LR, 14.1 mm in SI and 8.2 mm in AP direction. After CBCT guided online correction, the PTV margin was markedly reduced in all three directions. The post-correction margins ranged 1.5 to 2.1 mm. The treatment was well tolerated by patients, of whom there were 4 (20%) grade1-2 acute pneumonitis, 3 (15%) grade1 acute esophagitis, 2 (10%) grade1 late pneumonitis and 1 (5%) grade 1 late esophagitis. The positioning errors for lung SBRT using ABC were significant. Online correction with CBCT image guidance should be applied to reduce setup errors and PTV margin, which may reduce radiotherapy toxicity of tissues when ABC was used

  1. Impact of Audio-Coaching on the Position of Lung Tumors

    International Nuclear Information System (INIS)

    Haasbeek, Cornelis J.A.; Spoelstra, Femke; Lagerwaard, Frank J.; Soernsen de Koste, John R. van; Cuijpers, Johan P.; Slotman, Ben J.; Senan, Suresh

    2008-01-01

    Purpose: Respiration-induced organ motion is a major source of positional, or geometric, uncertainty in thoracic radiotherapy. Interventions to mitigate the impact of motion include audio-coached respiration-gated radiotherapy (RGRT). To assess the impact of coaching on average tumor position during gating, we analyzed four-dimensional computed tomography (4DCT) scans performed both with and without audio-coaching. Methods and Materials: Our RGRT protocol requires that an audio-coached 4DCT scan is performed when the initial free-breathing 4DCT indicates a potential benefit with gating. We retrospectively analyzed 22 such paired scans in patients with well-circumscribed tumors. Changes in lung volume and position of internal target volumes (ITV) generated in three consecutive respiratory phases at both end-inspiration and end-expiration were analyzed. Results: Audio-coaching increased end-inspiration lung volumes by a mean of 10.2% (range, -13% to +43%) when compared with free breathing (p = 0.001). The mean three-dimensional displacement of the center of ITV was 3.6 mm (SD, 2.5; range, 0.3-9.6mm), mainly caused by displacement in the craniocaudal direction. Displacement of ITV caused by coaching was more than 5 mm in 5 patients, all of whom were in the subgroup of 9 patients showing total tumor motion of 10 mm or more during both coached and uncoached breathing. Comparable ITV displacements were observed at end-expiration phases of the 4DCT. Conclusions: Differences in ITV position exceeding 5 mm between coached and uncoached 4DCT scans were detected in up to 56% of mobile tumors. Both end-inspiration and end-expiration RGRT were susceptible to displacements. This indicates that the method of audio-coaching should remain unchanged throughout the course of treatment

  2. Radiation and concurrent chemotherapy for the treatment of Lewis lung tumor and B16 melanoma tumor in C57/BL mice

    International Nuclear Information System (INIS)

    Pedersen, J.E.; Barron, G.

    1984-01-01

    C57/BL mice bearing either Lewis lung tumor or B16 melanoma tumor were treated with radiation and concurrent chemotherapy. The treatment results were determined in vivo by tumor regrowth delay assay. When continuous infusion of either Cyclophosphamide (CYCLO) or 5-Fluorouracil (5-FU) or Adriamycin (ADRIA) or Mitomycin-C (MITO-C) was used in combination with continuous radiation at 1 cGy/min, no increase in tumor regrowth delay was observed over that of radiation alone. When multiple drug chemotherapy, FAM (5-FU, ADRIA, MITO-C) was administered in combination with radiation at 80 cGy/min, no increase in tumor regrowth delay was observed over that of radiation alone. In these two murine tumor models, when clinically relevant concentrations of commonly used chemotherapy agents were combined with radiation, no therapeutic advantage was observed

  3. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  4. Analysis of reproducibility of respiration-triggered gated radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Spoelstra, Femke O.B.; Soernsen de Koste, John R. van; Cuijpers, Johan P.; Lagerwaard, Frank J.; Slotman, Ben J.; Senan, Suresh

    2008-01-01

    Purpose: Respiration-gated radiotherapy (RGRT) can decrease the toxicity of chemo-radiotherapy (CT-RT) by allowing use of smaller treatment fields. RGRT requires a predictable relationship between tumor position and external surrogate, which must be verified during treatment. Time-integrated electronic portal imaging (TI-EPI) identifies mean intra-fractional positions of moving structures, and was used to study reproducibility of anatomy during RGRT for lung tumors. Materials and methods: TI-EPIs were acquired using an amorphous silicon-based electronic portal imaging system (EPID, aS500) in continuous image acquisition mode in 11 patients treated with audio-coached RGRT at end-inspiration. The Varian Real-time Position Management (RPM) system was used for 4DCT imaging and RGRT delivery. All TI-EPI portals were co-registered to corresponding digitally reconstructed radiographs (DRR) of the planning 4DCT using the spinal column. Displacements in tumor position or that of an adjacent bronchus during RGRT was measured relative to the reference structure on the DRR. Results: Vertebra-matched portals revealed systematic (Σ) and random (σ) errors of 1.8 and 1.3 mm in medial-lateral direction and 1.7 and 1.7 mm in cranial-caudal direction, indicating a reproducible tumor/bronchus position during the RPM-triggered gates. Conclusions: RGRT delivery at end-inspiration can achieve reproducible internal anatomy in 'gated' fields delivered with audio-coaching

  5. Induction of highly immunogenic variants of Lewis lung carcinoma tumor by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Peppoloni, S.; Herberman, R.B.; Gorelik, E.

    1985-01-01

    This study was undertaken to determine whether in vitro treatment of Lewis lung carcinoma (3LL) cells with ultraviolet (UV) radiation could increase their immunogenicity. Tumor cells were irradiated with UV light from a germicidal lamp (254 nm; UV-C) at a dose of 720 J/sq m. After 2 weeks of culture, the surviving cell population was cloned by limiting dilution. Cell suspensions of each clone were injected intrafootpad in C57BL/6 mice at a dose of 2.5 X 10(5) cells per mouse. Eighty independent clones were tested. Fifty-one clones showed decreased tumorigenicity and failed to grow in 20 to 95% of immunocompetent mice, whereas they produced tumors in 100% of irradiated (550 R) and athymic nude mice. These clones were designated tum- (nontumorigenic) clones. In contrast, all 25 clones selected from the untreated parental 3LL induced progressively growing tumors in 100% of the mice. After two courses of UV treatment, the uncloned 3LL population was rejected in 45% of inoculated mice. Mice rejecting an inoculum of a tum- clone were completely resistant to subsequent challenge with higher doses of the same or unrelated tum- clones. This resistance was fully expressed even after irradiation of immune mice with 550 R. Mice immune to a tum- clone also were able to prevent the growth of various tum+ clones or untreated 3LL tumor cells. When tum- and tum+ clone cells were simultaneously inoculated intrafootpad in opposite legs, rejection of tum- clone resulted also in the prevention of the growth of tum+ clone. Spleen cells of immune mice caused rapid elimination of radiolabeled 3LL tumor cells from the place of their inoculation (intrafootpad) and prevented tumor growth

  6. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    Directory of Open Access Journals (Sweden)

    Trong-Ngoc Le

    2016-01-01

    Full Text Available Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN, which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

  7. The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy

    International Nuclear Information System (INIS)

    Negoro, Yoshiharu; Nagata, Yasushi; Aoki, Tetsuya; Mizowaki, Takashi; Araki, Norio; Takayama, Kenji; Kokubo, Masaki; Yano, Shinsuke; Koga, Sachiko; Sasai, Keisuke; Shibamoto, Yuta; Hiraoka, Masahiro

    2001-01-01

    Purpose: To evaluate the daily setup accuracy and the reduction of respiratory tumor movement using a body frame in conformal therapy for solitary lung tumor. Methods and Materials: Eighteen patients with a solitary lung tumor underwent conformal therapy using a body frame. The body shell of the frame was shaped to the patient's body contour. The respiratory tumor movement was estimated using fluoroscopy, and if it was greater than 5 mm, pressure was applied to the patient's abdomen with the goal of minimizing tumor movement. CT images were then obtained, and a treatment planning was made. A total dose of 40 or 48 Gy was delivered in 4 fractions. Portal films were obtained at each treatment, and the field displacements between them and the simulation films were measured for daily setup errors. The patients were repositioned if the setup error was greater than 3 mm. Correlations were analyzed between patient characteristics and the tumor movement, or the tumor movement reduction and the daily setup errors. Results: Respiratory tumor movement ranged from 0 to 20 mm (mean 7.7 mm). The abdominal press reduced the tumor movement significantly from a range of 8 to 20 mm to a range of 2 to 11 mm (p=0.0002). Daily setup errors were within 5 mm in 90%, 100%, and 93% of all verifications in left-right, anterior-posterior, and cranio-caudal directions, respectively. Patient repositioning was performed in 25% of all treatments. No significant correlation was detected between patient characteristics and tumor movement, tumor movement reduction, and the daily setup errors. Conclusions: The abdominal press was successful in reducing the respiratory tumor movement. Daily setup accuracy using the body frame was acceptable. Verification should be performed at each treatment in hypofractionated conformal therapy

  8. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the b