WorldWideScience

Sample records for lung tissue density

  1. Association Between RT-Induced Changes in Lung Tissue Density and Global Lung Function

    International Nuclear Information System (INIS)

    Ma Jinli; Zhang Junan; Zhou Sumin; Hubbs, Jessica L.; Foltz, Rodney J.; Hollis, Donna R.; Light, Kim L.; Wong, Terence Z.; Kelsey, Christopher R.; Marks, Lawrence B.

    2009-01-01

    Purpose: To assess the association between radiotherapy (RT)-induced changes in computed tomography (CT)-defined lung tissue density and pulmonary function tests (PFTs). Methods and Materials: Patients undergoing incidental partial lung RT were prospectively assessed for global (PFTs) and regional (CT and single photon emission CT [SPECT]) lung function before and, serially, after RT. The percent reductions in the PFT and the average changes in lung density were compared (Pearson correlations) in the overall group and subgroups stratified according to various clinical factors. Comparisons were also made between the CT- and SPECT-based computations using the Mann-Whitney U test. Results: Between 1991 and 2004, 343 patients were enrolled in this study. Of these, 111 patients had a total of 203 concurrent post-RT evaluations of changes in lung density and PFTs available for the analyses, and 81 patients had a total of 141 concurrent post-RT SPECT images. The average increases in lung density were related to the percent reductions in the PFTs, albeit with modest correlation coefficients (range, 0.20-0.43). The analyses also indicated that the association between lung density and PFT changes is essentially equivalent to the corresponding association with SPECT-defined lung perfusion. Conclusion: We found a weak quantitative association between the degree of increase in lung density as defined by CT and the percent reduction in the PFTs.

  2. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  3. Influence of radiation therapy on lung tissue in breast cancer patients. CT-assessed density changes 4 years after completion of radiotherapy

    International Nuclear Information System (INIS)

    Svane, G.; Rotstein, S.; Lax, I.

    1995-01-01

    CT-assessed density changes in lung tissues were measured in 22 disease-free breast cancer patients 4 years after completion of radiation therapy. All patients had previously undergone similar CT-examinations before treatment, 3 months, and 9 months after radiotherapy. In patients with visible areas of increased lung density at earlier CT-examinations a decrease of focal findings was observed at 4 years. In patients without focal findings, an increase in density relative to that before therapy was observed. The difference between the mean lung density values among those with visible radiological findings and those without was statistically significant both at 3 and 9 months after therapy. However, this difference did not persist at 4 years. These results may indicate a 2-phase development of radiation-induced lung damages - an acute phase and a late phase; the late phase emerging slowly, and in this study detectable 4 years after completion of radiation therapy. (orig.)

  4. Late regional density changes of the lung after radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Vagane, Randi; Danielsen, Turi; Fossa, Sophie Dorothea; Lokkevik, Erik; Olsen, Dag Rune

    2009-01-01

    Background and purpose: To investigate density changes in lung tissue, 3-4 years after postoperative adjuvant radiotherapy for breast cancer, based on dose dependence and regional differences. Material and methods: Sixty-one breast cancer patients, who had received computed tomography (CT) based postoperative radiotherapy, were included. CT scans were performed 35-51 months after start of radiotherapy. Dose information and CT scans from before and after radiotherapy were geometrically aligned in order to analyse changes in air-filled fraction (derived from CT density) as a function of dose for different regions of the lung. Results: Dose-dependent reduction of the air-filled fraction was shown to vary between the different regions of the lung. For lung tissue receiving about 50 Gy, the largest reduction in air-filled fraction was found in the cranial part of the lung. An increased air-filled fraction was observed for lung tissue irradiated to doses below 20 Gy, indicating compensatory response. Conclusions: The treatment-induced change in whole-lung density is a weighted response, involving the different regions, the irradiated volumes, and dose levels to these volumes. Simplistic models may therefore not be appropriate for describing the whole-lung dose-volume-response relationship following inhomogeneous irradiation

  5. Two methods for isolating the lung area of a CT scan for density information

    International Nuclear Information System (INIS)

    Hedlund, L.W.; Anderson, R.F.; Goulding, P.L.; Beck, J.W.; Effmann, E.L.; Putman, C.E.

    1982-01-01

    Extracting density information from irregularly shaped tissue areas of CT scans requires automated methods when many scans are involved. We describe two computer methods that automatically isolate the lung area of a CT scan. Each starts from a single, operator specified point in the lung. The first method follows the steep density gradient boundary between lung and adjacent tissues; this tracking method is useful for estimating the overall density and total area of lung in a scan because all pixels within the lung area are available for statistical sampling. The second method finds all contiguous pixels of lung that are within the CT number range of air to water and are not a part of strong density gradient edges; this method is useful for estimating density and area of the lung parenchyma. Structures within the lung area that are surrounded by strong density gradient edges, such as large blood vessels, airways and nodules, are excluded from the lung sample while lung areas with diffuse borders, such as an area of mild or moderate edema, are retained. Both methods were tested on scans from an animal model of pulmonary edema and were found to be effective in isolating normal and diseased lungs. These methods are also suitable for isolating other organ areas of CT scans that are bounded by density gradient edges

  6. Accurate heterogeneous dose calculation for lung cancer patients without high‐resolution CT densities

    Science.gov (United States)

    Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.

    2009-01-01

    The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf

  7. Time evolution of regional CT density changes in normal lung after IMRT for NSCLC

    International Nuclear Information System (INIS)

    Bernchou, Uffe; Schytte, Tine; Bertelsen, Anders; Bentzen, Søren M.; Hansen, Olfred; Brink, Carsten

    2013-01-01

    Purpose: This study investigates the clinical radiobiology of radiation induced lung disease in terms of regional computed tomography (CT) density changes following intensity modulated radiotherapy (IMRT) for non-small-cell lung cancer (NSCLC). Methods: A total of 387 follow-up CT scans in 131 NSCLC patients receiving IMRT to a prescribed dose of 60 or 66 Gy in 2 Gy fractions were analyzed. The dose-dependent temporal evolution of the density change was analyzed using a two-component model, a superposition of an early, transient component and a late, persistent component. Results: The CT density of healthy lung tissue was observed to increase significantly (p 12 months. Conclusions: The radiobiology of lung injury may be analyzed in terms of CT density change. The initial transient change in density is consistent with radiation pneumonitis, while the subsequent stabilization of the density is consistent with pulmonary fibrosis

  8. Automating the expert consensus paradigm for robust lung tissue classification

    Science.gov (United States)

    Rajagopalan, Srinivasan; Karwoski, Ronald A.; Raghunath, Sushravya; Bartholmai, Brian J.; Robb, Richard A.

    2012-03-01

    Clinicians confirm the efficacy of dynamic multidisciplinary interactions in diagnosing Lung disease/wellness from CT scans. However, routine clinical practice cannot readily accomodate such interactions. Current schemes for automating lung tissue classification are based on a single elusive disease differentiating metric; this undermines their reliability in routine diagnosis. We propose a computational workflow that uses a collection (#: 15) of probability density functions (pdf)-based similarity metrics to automatically cluster pattern-specific (#patterns: 5) volumes of interest (#VOI: 976) extracted from the lung CT scans of 14 patients. The resultant clusters are refined for intra-partition compactness and subsequently aggregated into a super cluster using a cluster ensemble technique. The super clusters were validated against the consensus agreement of four clinical experts. The aggregations correlated strongly with expert consensus. By effectively mimicking the expertise of physicians, the proposed workflow could make automation of lung tissue classification a clinical reality.

  9. 18FDG uptake associated with CT density on PET/CT in lungs with and without chronic interstitial lung diseases

    International Nuclear Information System (INIS)

    Inoue, Kentaro; Okada, Ken; Taki, Yasuyuki; Goto, Ryoi; Kinomura, Shigeo; Fukuda, Hiroshi

    2009-01-01

    The dependent-density of computed tomography (CT) images of positron emission tomography (PET)/CT is sometimes difficult to distinguish from chronic interstitial lung disease (ILD) when it accompanies increased 18 F-fluorodeoxy-D-glucose ( 18 FDG) uptake. Though the possible utility of 18 FDG-PET for the diagnosis of active ILD has been reported, the clinical relevance of mild lung 18 FDG uptake in ILD cases without signs and symptoms suggesting acute progression has not been described. This study aimed to test relationships between 18 FDG uptake and lung density on CT using PET/CT in patients with normal lung as well as clinically stable chronic ILD. Thirty-six patients with normal lungs (controls) and 28 patients with chronic ILD (ILD cases) without acute exacerbation were retrospectively selected from 18 FDG PET/CT scans performed in examination of malignant neoplasms. Elliptical regions of interest (ROIs) were placed on the lung. The relationships between CT density and 18 FDG uptake between the control and ILD cases were tested. The CT density and 18 FDG uptake had a linear correlation in both the controls and the ILD cases without a difference in their regression slopes, and they were overlapped between the controls and the ILD cases with higher mean values in the ILD cases. Lung 18 FDG uptake was considered to reflect a gravity-dependent tissue density in the normal lung. Though the lung 18 FDG uptake as well as the CT density tended to be higher in chronic ILD patients, it may be difficult to distinguish them in normal dependent regions from those related to chronic ILD in some cases. (author)

  10. Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation

    International Nuclear Information System (INIS)

    Hanley, J.; Debois, M.M.; Raben, A.; Mageras, G.S.; Lutz, W.R.; Mychalczak, B.; Schwartz, L.H.; Gloeggler, P.J.; Leibel, S.A.; Fuks, Z.; Kutcher, G.J.

    1996-01-01

    Purpose/Objective: Lung tumors are subject to movement due to respiratory motion. Conventionally, a margin is applied to the clinical target volume (CTV) to account for this and other treatment uncertainties. The purpose of this study is to evaluate the dosimetric benefits of a deep inspiration breath-hold (DIBH) technique which has two distinct features - deep inspiration which reduces lung density and breath-hold which immobilizes lung tumors. Both properties can potentially reduce the mass of normal lung tissue in the high dose region, thus improving the possibility of dose escalation. Methods and Materials: To study the efficacy of the DIBH technique, CT scans are acquired for each patient under 4 respiration conditions: free-breathing; DIBH; shallow inspiration breath-hold; shallow expiration breath-hold. The free-breathing and DIBH scans are used to generate treatment plans for comparison of standard and DIBH techniques, while the shallow inspiration and expiration scans provide information on the maximum extent of tumor motion under free-breathing conditions. To acquire the breath-hold scans, the patients are brought to reproducible respiration levels using spirometry and slow vital capacity maneuvers. For the treatment plan comparison free-breathing and DIBH planning target volumes (PTVs) are constructed consisting of the CTV plus a margin for setup error and lung tumor motion. For both plans the margin for setup error is the same while the margin for lung tumor motion differs. The margin for organ motion in free-breathing is determined by the maximum tumor excursions in the shallow inspiration and expiration CT scans. For the DIBH, tumor motion is reduced to the extent to which DIBH can be maintained and the margin for any residual tumor motion is determined from repeat fluoroscopic movies, acquired with the patient monitored using spirometry. Three-dimensional treatment plans, generated using apertures based on the free-breathing and DIBH PTVs, are

  11. Lung regeneration by fetal lung tissue implantation in a mouse pulmonary emphysema model.

    Science.gov (United States)

    Uyama, Koh; Sakiyama, Shoji; Yoshida, Mitsuteru; Kenzaki, Koichiro; Toba, Hiroaki; Kawakami, Yukikiyo; Okumura, Kazumasa; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira

    2016-01-01

    The mortality and morbidity of chronic obstructive pulmonary disease are high. However, no radical therapy has been developed to date. The purpose of this study was to evaluate whether fetal mouse lung tissue can grow and differentiate in the emphysematous lung. Fetal lung tissue from green fluorescent protein C57BL/6 mice at 16 days' gestation was used as donor material. Twelve-month-old pallid mice were used as recipients. Donor lungs were cut into small pieces and implanted into the recipient left lung by performing thoracotomy under anesthesia. The recipient mice were sacrificed at day 7, 14, and 28 after implantation and used for histological examination. Well-developed spontaneous pulmonary emphysema was seen in 12-month-old pallid mice. Smooth and continuous connection between implanted fetal lung tissue and recipient lung was recognized. Air space expansion and donor tissue differentiation were observed over time. We could clearly distinguish the border zones between injected tissue and native tissue by the green fluorescence of grafts. Fetal mouse lung fragments survived and differentiated in the emphysematous lung of pallid mice. Implantation of fetal lung tissue in pallid mice might lead to further lung regeneration research from the perspective of respiratory and exercise function. J. Med. Invest. 63: 182-186, August, 2016.

  12. Lung tissue mechanics as an emergent phenomenon.

    Science.gov (United States)

    Suki, Béla; Bates, Jason H T

    2011-04-01

    The mechanical properties of lung parenchymal tissue are both elastic and dissipative, as well as being highly nonlinear. These properties cannot be fully understood, however, in terms of the individual constituents of the tissue. Rather, the mechanical behavior of lung tissue emerges as a macroscopic phenomenon from the interactions of its microscopic components in a way that is neither intuitive nor easily understood. In this review, we first consider the quasi-static mechanical behavior of lung tissue and discuss computational models that show how smooth nonlinear stress-strain behavior can arise through a percolation-like process in which the sequential recruitment of collagen fibers with increasing strain causes them to progressively take over the load-bearing role from elastin. We also show how the concept of percolation can be used to link the pathologic progression of parenchymal disease at the micro scale to physiological symptoms at the macro scale. We then examine the dynamic mechanical behavior of lung tissue, which invokes the notion of tissue resistance. Although usually modeled phenomenologically in terms of collections of springs and dashpots, lung tissue viscoelasticity again can be seen to reflect various types of complex dynamic interactions at the molecular level. Finally, we discuss the inevitability of why lung tissue mechanics need to be complex.

  13. Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues

    International Nuclear Information System (INIS)

    Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo; Suda, Syuichi; Fukuzaki, Minoru.

    1994-01-01

    We investigated the nuclear magnetic resonance (NMR) relaxation times, T 1 and T 2 , for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T 1 and T 2 for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T 1 and T 2 between adenocarcinoma and lung tissue. The values of T 1 and T 2 for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T 1 and T 2 are not specific to malignant tissues. (author)

  14. The First Korean Case of Cutaneous Lung Tissue Heterotopia

    Science.gov (United States)

    Jeon, Ga Won; Han, Seong Woo; Jung, Ji Mi; Kang, Mi Seon

    2010-01-01

    Cutaneous lung tissue heterotopia is a very rare disorder where mature lung tissues develop in the skin. This is only the second known report of cutaneous lung tissue heterotopia, with the first by Singer et al. in 1998. A newborn infant had a hemangioma-like, freely movable mass connected to the anterior aspect of the sternal manubrium. Pathologic findings showed mature lung tissues with bronchi, bronchioles, and alveoli through the dermis and subcutis, and it was diagnosed as cutaneous lung tissue heterotopia. Cutaneous lung tissue heterotopia is hypervascular, so grossly it looks like a hemangioma. It can be differentiated from pulmonary sequestration, teratoma, bronchogenic cyst, and branchial cleft cyst by histology and the location of the mass. We describe the clinical, radiologic, and pathologic findings of a cutaneous lung tissue heterotopia, the first reported in Korea. PMID:20808688

  15. Prediction of lung density changes after radiotherapy by cone beam computed tomography response markers and pre-treatment factors for non-small cell lung cancer patients.

    Science.gov (United States)

    Bernchou, Uffe; Hansen, Olfred; Schytte, Tine; Bertelsen, Anders; Hope, Andrew; Moseley, Douglas; Brink, Carsten

    2015-10-01

    This study investigates the ability of pre-treatment factors and response markers extracted from standard cone-beam computed tomography (CBCT) images to predict the lung density changes induced by radiotherapy for non-small cell lung cancer (NSCLC) patients. Density changes in follow-up computed tomography scans were evaluated for 135 NSCLC patients treated with radiotherapy. Early response markers were obtained by analysing changes in lung density in CBCT images acquired during the treatment course. The ability of pre-treatment factors and CBCT markers to predict lung density changes induced by radiotherapy was investigated. Age and CBCT markers extracted at 10th, 20th, and 30th treatment fraction significantly predicted lung density changes in a multivariable analysis, and a set of response models based on these parameters were established. The correlation coefficient for the models was 0.35, 0.35, and 0.39, when based on the markers obtained at the 10th, 20th, and 30th fraction, respectively. The study indicates that younger patients without lung tissue reactions early into their treatment course may have minimal radiation induced lung density increase at follow-up. Further investigations are needed to examine the ability of the models to identify patients with low risk of symptomatic toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Factors influencing the decline in lung density in a Danish lung cancer screening cohort

    DEFF Research Database (Denmark)

    Shaker, Saher B.; Dirksen, Asger; Lo, Pechin Chien Pau

    2012-01-01

    Lung cancer screening trials provide an opportunity to study the natural history of emphysema by using CT lung density as a surrogate parameter.In the Danish Lung Cancer Screening Trial, 2,052 participants were included. At screening rounds, smoking habits were recorded and spirometry was performed....... CT lung density was measured as the volume-adjusted 15th percentile density (PD15). A mixed effects model was used with former smoking males with...

  17. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  18. Quantitative computed tomography of lung parenchyma in patients with emphysema: analysis of higher-density lung regions

    Science.gov (United States)

    Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David

    2011-03-01

    Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.

  19. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Sciences, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India)

    2013-10-15

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering.

  20. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    International Nuclear Information System (INIS)

    Gupta, Sweta K.; Dinda, Amit K.; Potdar, Pravin D.; Mishra, Narayan C.

    2013-01-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering

  1. TH-CD-202-06: A Method for Characterizing and Validating Dynamic Lung Density Change During Quiet Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Dou, T [University of California, Los Angeles, Los Angeles, CA (United States); Ruan, D [UCLA School of Medicine, Los Angeles, CA (United States); Heinrich, M [Institute of Medical Informatics, University of Lubeck, Lubeck, Schleswig-Holstein (Germany); Low, D [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To obtain a functional relationship that calibrates the lung tissue density change under free breathing conditions through correlating Jacobian values to the Hounsfield units. Methods: Free-breathing lung computed tomography images were acquired using a fast helical CT protocol, where 25 scans were acquired per patient. Using a state-of-the-art deformable registration algorithm, a set of the deformation vector fields (DVF) was generated to provide spatial mapping from the reference image geometry to the other free-breathing scans. These DVFs were used to generate Jacobian maps, which estimate voxelwise volume change. Subsequently, the set of 25 corresponding Jacobian and voxel intensity in Hounsfield units (HU) were collected and linear regression was performed based on the mass conservation relationship to correlate the volume change to density change. Based on the resulting fitting coefficients, the tissues were classified into parenchymal (Type I), vascular (Type II), and soft tissue (Type III) types. These coefficients modeled the voxelwise density variation during quiet breathing. The accuracy of the proposed method was assessed using mean absolute difference in HU between the CT scan intensities and the model predicted values. In addition, validation experiments employing a leave-five-out method were performed to evaluate the model accuracy. Results: The computed mean model errors were 23.30±9.54 HU, 29.31±10.67 HU, and 35.56±20.56 HU, respectively, for regions I, II, and III, respectively. The cross validation experiments averaged over 100 trials had mean errors of 30.02 ± 1.67 HU over the entire lung. These mean values were comparable with the estimated CT image background noise. Conclusion: The reported validation experiment statistics confirmed the lung density modeling during free breathing. The proposed technique was general and could be applied to a wide range of problem scenarios where accurate dynamic lung density information is needed

  2. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    Science.gov (United States)

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  3. A Comparative Study of Rat Lung Decellularization by Chemical Detergents for Lung Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hamid Tebyanian

    2017-12-01

    CONCLUSION: Decellularized lung tissue can be used in the laboratory to study various aspects of pulmonary biology and physiology and also, these results can be used in the continued improvement of engineered lung tissue.

  4. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications.

    Science.gov (United States)

    Gupta, Sweta K; Dinda, Amit K; Potdar, Pravin D; Mishra, Narayan C

    2013-10-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H&E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Protein signature of lung cancer tissues.

    Directory of Open Access Journals (Sweden)

    Michael R Mehan

    Full Text Available Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan to compare protein expression signatures of non small-cell lung cancer (NSCLC tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment.

  6. Analysis of lung tissue particles among silicosis cases

    Directory of Open Access Journals (Sweden)

    B Case

    2005-10-01

    Full Text Available Background and Aims:Lung tissue samples of several miners, millers, sandblaster, welders andconstruction workers with historical exposure to mineral particles were analyzed. These subjectshad significant respiratory exposure to silica particles and demanded compensation foroccupational lung diseases.Method: Lung tissue samples were observed under an Electron microscope with 10000Xmagnification. Mineral particles were sized and analyzed by EDS detector based on X-rayspectrophotometry.Results: The results have indicated that the lung particle burden of the subjects was closelyrelated to their occupational history. The highest level of mineral silica particles were found in thelungs of miners and sandblasters. The highest concentration of metallic particles was found in thelungs of welders and miners in ferric mining industry. Severity of lung fibrosis was directlyrelated to the lung free silica concentration. However, no association was found between particlediameter and severity of fibrosis. In addition, lung particle burden of silicotic cases with lungcancer contained a much higher concentration of metallic particles and asbestos fibres that thelung of those subject with silicosis only.Conclusion: Although workers in mining and construction may be predominantly exposed tosilica particles including quartz, the role of other mineral particles including asbestos fibres,metallic fibres and other minerals should be taken into account in the genesis of occupational lungdisease in particular lung cancer. Lung tissue sample analysis can provide valuable informationto assess the legal and compensation cases.

  7. Electron density values of various human tissues: in vitro Compton scatter measurements and calculated ranges

    International Nuclear Information System (INIS)

    Shrimpton, P.C.

    1981-01-01

    Accurate direct measurements of electron density have been performed on specimens from 10 different tissue types of the human body, representing the major organs, using a Compton scatter technique. As a supplement to these experimental values, calculations have been carried out to determine the electron densities expected for these tissue types. The densities observed are in good agreement with the broad ranges deduced from the basic data previously published. The results of both the in vitro sample measurements and the approximate calculations indicate that the electron density of most normal healthy soft tissue can be expected to fall within the fairly restricted range of +- 5% around 3.4 X 10 23 electrons per cm 3 . The obvious exception to this generalisation is the result for lung tissue, which falls considerably below this range owing to the high air content inherent in its construction. In view of such an overall limited variation with little difference between tissues, it would appear that electron density alone is likely to be a rather poor clinical parameter for tissue analysis, with high accuracy and precision being essential in any in vivo Compton measurements for imaging or diagnosis on specific organs. (author)

  8. Rapid fall in lung density following smoking cessation in COPD.

    Science.gov (United States)

    Shaker, Saher B; Stavngaard, Trine; Laursen, Lars Christian; Stoel, Berend C; Dirksen, Asger

    2011-02-01

    Whether smoking-induced lung inflammation subsides after smoking cessation is currently a matter of debate. We used computed tomography (CT) to evaluate the effect of smoking cessation on lung density in patients with COPD. Thirty-six patients quit smoking out of 254 current smokers with COPD who were followed with annual CT and lung function tests (LFT) for 2?4 years as part of a randomised placebo-controlled trial of the effect of inhaled budesonide on CT-lung density. Lung density was expressed as the 15th percentile density (PD15) and relative area of emphysema below -910 HU (RA-910). From the time-trends in the budesonide and placebo groups the expected CT-lung densities at the first visit after smoking cessation were calculated by linear regression and compared to the observed densities. Following smoking cessation RA-910 increased by 2.6% (p = 0.003) and PD15 decreased by -4.9 HU (p = 0.0002). Furthermore, changes were larger in the budesonide group than the placebo group (PD15: -7.1 vs -2.8 HU. RA-910 3.7% vs 1.7%). These differences were, however, not statistically significant. The LFT parameters (FEV(1) and diffusion capacity) were not significantly influenced by smoking cessation. Inflammation partly masks the presence of emphysema on CT and smoking cessation results in a paradoxical fall in lung density, which resembles rapid progression of emphysema. This fall in density is probably due to an anti-inflammatory effect of smoking cessation.

  9. Trace element load in cancer and normal lung tissue

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Braziewicz, J.; Banas, D.; Majewska, U.; Gozdz, S.; Urbaniak, A.

    1999-01-01

    Samples of malignant and benign human lung tissues were analysed by two complementary methods, i.e., particle induced X-ray emission (PIXE) and total reflection X-ray fluorescence (TRXRF). The concentration of trace elements of P, S, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Se, Sr, Hg and Pb was determined in squamous cancer of lung tissue from 65 people and in the benign lung tumour tissue from 5 people. Several elements shows enhancement in cancerous lung tissue of women in comparison to men, i.e., titanium show maximum enhancement by 48% followed by Cr (20%) and Mn (36%). At the same time trace element concentration of Sr and Pb are declaimed by 30% and 20% in women population. Physical basis of used analytical methods, experimental set-up and the procedure of sample preparation are described

  10. Effect of low-density lateral interfaces on soft-tissue doses

    International Nuclear Information System (INIS)

    Hunt, Margie A.; Desobry, Gregory E.; Fowble, Barbara; Coia, Lawrence R.

    1997-01-01

    Purpose: Doses at the interface between tissue and low-density inhomogeneities with the interface positioned perpendicular to the beam direction have been well studied. When the inhomogeneity lies parallel to the beam direction (i.e., a lateral interface), the resulting dose distribution is not as well known. Lateral lung--soft-tissue interfaces are common in many fields used to treat malignancies in the thorax region including tangential breast fields and anteroposterior fields for lung and esophageal cancer. The purpose of this study was to evaluate the dose distribution along lateral interfaces and to determine the implications for treatment. Methods and Materials: A polystyrene and cork slab phantom was irradiated from the side to simulate treatment fields with lateral lung--soft-tissue interfaces. The beam was positioned with the isocenter in polystyrene and the field edge in cork. Cork slabs (0.6-2.5 cm) were used to simulate different thicknesses of lung between the field edge and the target volume. Measurements were made using a parallel plate ionization chamber. With the chamber position held constant, polystyrene slabs were added between the cork and the chamber to study the dose distribution in the interface region. Interface doses were studied as a function of the amount of cork in the field, field size, beam energy (6-18 MV), and depth. Results: Doses in the interface region were lower by as much as 10% compared to doses in a homogeneous phantom. For a given cork width and field size, the magnitude of the underdose increased by several percent as the x-ray energy increased from 6 to 18 MV. The underdose at the interface was 5% for 6 MV and 8% for 18 MV X-rays with a 1-cm cork width. For a 2.5-cm cork width, underdoses of 2.5% and 3% at distances up to 2.5 and 4 mm lateral to the interface were observed for 6- and 18-MV X-rays, respectively. However, doses right at the interface were 1% greater for 6 MV and 3% less for 18 MV than doses in a homogeneous

  11. Positron emission tomography of the lung

    International Nuclear Information System (INIS)

    Wollmer, P.

    1984-01-01

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  12. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease.

    Science.gov (United States)

    Pragman, Alexa A; Lyu, Tianmeng; Baller, Joshua A; Gould, Trevor J; Kelly, Rosemary F; Reilly, Cavan S; Isaacson, Richard E; Wendt, Chris H

    2018-01-09

    Oral taxa are often found in the chronic obstructive pulmonary disease (COPD) lung microbiota, but it is not clear if this is due to a physiologic process such as aspiration or experimental contamination at the time of specimen collection. Microbiota samples were obtained from nine subjects with mild or moderate COPD by swabbing lung tissue and upper airway sites during lung lobectomy. Lung specimens were not contaminated with upper airway taxa since they were obtained surgically. The microbiota were analyzed with 16S rRNA gene qPCR and 16S rRNA gene hypervariable region 3 (V3) sequencing. Data analyses were performed using QIIME, SourceTracker, and R. Streptococcus was the most common genus in the oral, bronchial, and lung tissue samples, and multiple other taxa were present in both the upper and lower airways. Each subject's own bronchial and lung tissue microbiota were more similar to each other than were the bronchial and lung tissue microbiota of two different subjects (permutation test, p = 0.0139), indicating more within-subject similarity than between-subject similarity at these two lung sites. Principal coordinate analysis of all subject samples revealed clustering by anatomic sampling site (PERMANOVA, p = 0.001), but not by subject. SourceTracker analysis found that the sources of the lung tissue microbiota were 21.1% (mean) oral microbiota, 8.7% nasal microbiota, and 70.1% unknown. An analysis using the neutral theory of community ecology revealed that the lung tissue microbiota closely reflects the bronchial, oral, and nasal microbiota (immigration parameter estimates 0.69, 0.62, and 0.74, respectively), with some evidence of ecologic drift occurring in the lung tissue. This is the first study to evaluate the mild-moderate COPD lung tissue microbiota without potential for upper airway contamination of the lung samples. In our small study of subjects with COPD, we found oral and nasal bacteria in the lung tissue microbiota, confirming that

  13. Histopathology of lung disease in the connective tissue diseases.

    Science.gov (United States)

    Vivero, Marina; Padera, Robert F

    2015-05-01

    The pathologic correlates of interstitial lung disease (ILD) secondary to connective tissue disease (CTD) comprise a diverse group of histologic patterns. Lung biopsies in patients with CTD-associated ILD tend to demonstrate simultaneous involvement of multiple anatomic compartments of the lung. Certain histologic patterns tend to predominate in each defined CTD, and it is possible in many cases to confirm connective tissue-associated lung disease and guide patient management using surgical lung biopsy. This article will cover the pulmonary pathologies seen in rheumatoid arthritis, systemic sclerosis, myositis, systemic lupus erythematosus, Sjögren syndrome, and mixed CTD. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Metallic artifact mitigation and organ-constrained tissue assignment for Monte Carlo calculations of permanent implant lung brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J. G. H.; Miksys, N.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Furutani, K. M. [Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 (United States)

    2014-01-15

    Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue

  15. Rapid fall in lung density following smoking cessation in COPD

    DEFF Research Database (Denmark)

    Shaker, Saher B; Stavngaard, Trine; Laursen, Lars Christian

    2011-01-01

    Whether smoking-induced lung inflammation subsides after smoking cessation is currently a matter of debate. We used computed tomography (CT) to evaluate the effect of smoking cessation on lung density in patients with COPD.......Whether smoking-induced lung inflammation subsides after smoking cessation is currently a matter of debate. We used computed tomography (CT) to evaluate the effect of smoking cessation on lung density in patients with COPD....

  16. Connective tissue diseases, multimorbidity and the ageing lung.

    Science.gov (United States)

    Spagnolo, Paolo; Cordier, Jean-François; Cottin, Vincent

    2016-05-01

    Connective tissue diseases encompass a wide range of heterogeneous disorders characterised by immune-mediated chronic inflammation often leading to tissue damage, collagen deposition and possible loss of function of the target organ. Lung involvement is a common complication of connective tissue diseases. Depending on the underlying disease, various thoracic compartments can be involved but interstitial lung disease is a major contributor to morbidity and mortality. Interstitial lung disease, pulmonary hypertension or both are found most commonly in systemic sclerosis. In the elderly, the prevalence of connective tissue diseases continues to rise due to both longer life expectancy and more effective and better-tolerated treatments. In the geriatric population, connective tissue diseases are almost invariably accompanied by age-related comorbidities, and disease- and treatment-related complications, which contribute to the significant morbidity and mortality associated with these conditions, and complicate treatment decision-making. Connective tissue diseases in the elderly represent a growing concern for healthcare providers and an increasing burden of global health resources worldwide. A better understanding of the mechanisms involved in the regulation of the immune functions in the elderly and evidence-based guidelines specifically designed for this patient population are instrumental to improving the management of connective tissue diseases in elderly patients. Copyright ©ERS 2016.

  17. Lung density: clinical method for quantitation of pulmonary congestion and edema

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, E S; Webber, C E; Coates, G; Cockshott, W P; Nahmias, C; Lassen, N [McMaster Univ., Hamilton, Ontario (Canada); Bispebjerg Hospital, Copenhagen (Denmark))

    1977-01-22

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of ..gamma..-rays is directed at the lung and, by measuring the scattered ..gamma..-rays, lung density is calculated.

  18. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT.

    Science.gov (United States)

    Higano, Nara S; Fleck, Robert J; Spielberg, David R; Walkup, Laura L; Hahn, Andrew D; Thomen, Robert P; Merhar, Stephanie L; Kingma, Paul S; Tkach, Jean A; Fain, Sean B; Woods, Jason C

    2017-10-01

    To demonstrate that ultrashort echo time (UTE) magnetic resonance imaging (MRI) can achieve computed tomography (CT)-like quantification of lung parenchyma in free-breathing, non-sedated neonates. Because infant CTs are used sparingly, parenchymal disease evaluation via UTE MRI has potential for translational impact. Two neonatal control cohorts without suspected pulmonary morbidities underwent either a research UTE MRI (n = 5; 1.5T) or a clinically-ordered CT (n = 9). Whole-lung means and anterior-posterior gradients of UTE-measured image intensity (arbitrary units, au, normalized to muscle) and CT-measured density (g/cm 3 ) were compared (Mann-Whitney U-test). Separately, a diseased neonatal cohort (n = 5) with various pulmonary morbidities underwent both UTE MRI and CT. UTE intensity and CT density were compared with Spearman correlations within ∼33 anatomically matched regions of interest (ROIs) in each diseased subject, spanning low- to high-density tissues. Radiological classifications were evaluated in all ROIs, with mean UTE intensities and CT densities compared in each classification. In control subjects, whole-lung UTE intensities (0.51 ± 0.04 au) were similar to CT densities (0.44 ± 0.09 g/cm 3 ) (P = 0.062), as were UTE (0.021 ± 0.020 au/cm) and CT (0.034 ± 0.024 [g/cm 3 ]/cm) anterior-posterior gradients (P = 0.351). In diseased subjects' ROIs, significant correlations were observed between UTE and CT (P ≤0.007 in each case). Relative differences between UTE and CT were small in all classifications (4-25%). These results demonstrate a strong association between UTE image intensity and CT density, both between whole-lung tissue in control patients and regional radiological pathologies in diseased patients. This indicates the potential for UTE MRI to longitudinally evaluate neonatal pulmonary disease and to provide visualization of pathologies similar to CT, without sedation/anesthesia or ionizing radiation

  19. Factors influencing the decline in lung density in a Danish lung cancer screening cohort

    NARCIS (Netherlands)

    S.B. Shaker (Saher); A. Dirksen (Asger); P. Lo (Pechin); L.T. Skovgaard (Lene); M. de Bruijne (Marleen); J.H. Pedersen (Jerry)

    2012-01-01

    textabstractLung cancer screening trials provide an opportunity to study the natural history of emphysema by using computed tomography (CT) lung density as a surrogate parameter. In the Danish Lung Cancer Screening Trial, 2,052 participants were included. At screening rounds, smoking habits were

  20. Increased mean lung density: Another independent predictor of lung cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Sverzellati, Nicola, E-mail: nicola.sverzellati@unipr.it [Department of Department of Surgical Sciences, Section of Diagnostic Imaging, University of Parma, Padiglione Barbieri, University Hospital of Parma, V. Gramsci 14, 43100 Parma (Italy); Randi, Giorgia, E-mail: giorgia.randi@marionegri.it [Department of Epidemiology, Mario Negri Institute, Via La Masa 19, 20156 Milan (Italy); Spagnolo, Paolo, E-mail: paolo.spagnolo@unimore.it [Respiratory Disease Unit, Center for Rare Lung Disease, Department of Oncology, Hematology and Respiratory Disease, University of Modena and Reggio Emilia, Via del Pozzo 71, 44124 Modena (Italy); Marchianò, Alfonso, E-mail: alfonso.marchiano@istitutotumori.mi.it [Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy); Silva, Mario, E-mail: mac.mario@hotmail.it [Department of Department of Surgical Sciences, Section of Diagnostic Imaging, University of Parma, Padiglione Barbieri, University Hospital of Parma, V. Gramsci 14, 43100 Parma (Italy); Kuhnigk, Jan-Martin, E-mail: Jan-Martin.Kuhnigk@mevis.fraunhofer.de [Fraunhofer MEVIS, Universitaetsallee 29, 28359 Bremen (Germany); La Vecchia, Carlo, E-mail: carlo.lavecchia@marionegri.it [Department of Occupational Health, University of Milan, Via Venezian 1, 20133 Milan (Italy); Zompatori, Maurizio, E-mail: maurizio.zompatori@unibo.it [Department of Radiology, Cardio-Thoracic Section, S. Orsola-Malpighi Hospital, Via Albertoni 15, 40138 Bologna (Italy); Pastorino, Ugo, E-mail: ugo.pastorino@istitutotumori.mi.it [Department of Surgery, Section of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy)

    2013-08-15

    Objectives: To investigate the relationship between emphysema phenotype, mean lung density (MLD), lung function and lung cancer by using an automated multiple feature analysis tool on thin-section computed tomography (CT) data. Methods: Both emphysema phenotype and MLD evaluated by automated quantitative CT analysis were compared between outpatients and screening participants with lung cancer (n = 119) and controls (n = 989). Emphysema phenotype was defined by assessing features such as extent, distribution on core/peel of the lung and hole size. Adjusted multiple logistic regression models were used to evaluate independent associations of CT densitometric measurements and pulmonary function test (PFT) with lung cancer risk. Results: No emphysema feature was associated with lung cancer. Lung cancer risk increased with decreasing values of forced expiratory volume in 1 s (FEV{sub 1}) independently of MLD (OR 5.37, 95% CI: 2.63–10.97 for FEV{sub 1} < 60% vs. FEV{sub 1} ≥ 90%), and with increasing MLD independently of FEV{sub 1} (OR 3.00, 95% CI: 1.60–5.63 for MLD > −823 vs. MLD < −857 Hounsfield units). Conclusion: Emphysema per se was not associated with lung cancer whereas decreased FEV{sub 1} was confirmed as being a strong and independent risk factor. The cross-sectional association between increased MLD and lung cancer requires future validations.

  1. Quantitative measurement of lung density with x-ray CT and positron CT, (2)

    International Nuclear Information System (INIS)

    Ito, Kengo; Ito, Masatoshi; Kubota, Kazuo

    1985-01-01

    Lung density was quantitatively measured on six diseased patients with X-ray CT (XCT) and Positron CT(PCT). The findings are as follows: In the silicosis, extravascular lung density was found to be remarkably increased compared to normals (0.29gcm -3 ), but blood volume was in normal range. In the post-irradiated lung cancers, extravascular lung density increased in the irradiated sites compared to the non-irradiated opposite sites, and blood volume varied in each case. In a patient with chronic heart failure, blood volume decreased (0.11mlcm -3 ) with increased extravascular lung density (0.23gcm -3 ). In the chronic obstructive pulmonary disease, both extravascular lung density and blood volume decreased (0.11gcm -3 and 0.10mlcm -3 respectively). Lung density measured with XCT was constantly lower than that with PCT in all cases. But changes in the values of lung density measured, correlated well with each other. In conclusion, the method presented here may clarify the etiology of the diffuse pulmonary diseases, and be used to differentiate and grade the diseases. (author)

  2. Hazy increased density in diffuse lung disease

    International Nuclear Information System (INIS)

    Klein, J.S.; Webb, W.R.; Gamsu, G.; Warnock, M.; Park, C.K.

    1989-01-01

    In order to determine the significance of ground glass density on high-resolution CT scans of patients with idiopathic pulmonary fibrosis and other lung disorders, the authors have reviewed 200 high-resolution CT studies and found 50 cases demonstrating areas of hazy increased lung density. Disease entities most often associated with this finding included DIP, UIP, alveolar proteinosis, sarcoidosis, and bronchiolitis obliterans/ organizing pneumonia. Pathologic examination revealed either cellular or fluid material lining terminal air spaces, often associated with alveolar wall infiltration and an absence of fibrosis. Gallium scans and bronchoalveolar lavage in some cases showed active inflammation Follow-up high-resolution CT studies in 10 patients showed either change or resolution of the hazy densities, confirming the presence of a reversible parenchymal lesion

  3. Production of decellularized porcine lung scaffolds for use in tissue engineering.

    Science.gov (United States)

    Balestrini, Jenna L; Gard, Ashley L; Liu, Angela; Leiby, Katherine L; Schwan, Jonas; Kunkemoeller, Britta; Calle, Elizabeth A; Sivarapatna, Amogh; Lin, Tylee; Dimitrievska, Sashka; Cambpell, Stuart G; Niklason, Laura E

    2015-12-01

    There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual DNA, biochemical composition, mechanical characteristics, tissue architecture, and recellularization capacity.

  4. HU deviation in lung and bone tissues: Characterization and a corrective strategy.

    Science.gov (United States)

    Ai, Hua A; Meier, Joseph G; Wendt, Richard E

    2018-05-01

    In the era of precision medicine, quantitative applications of x-ray Computed Tomography (CT) are on the rise. These require accurate measurement of the CT number, also known as the Hounsfield Unit. In this study, we evaluated the effect of patient attenuation-induced beam hardening of the x-ray spectrum on the accuracy of the HU values and a strategy to correct for the resulting deviations in the measured HU values. A CIRS electron density phantom was scanned on a Siemens Biograph mCT Flow CT scanner and a GE Discovery 710 CT scanner using standard techniques that are employed in the clinic to assess the HU deviation caused by beam hardening in different tissue types. In addition, an anthropomorphic ATOM adult male upper torso phantom was scanned on the GE Discovery 710 scanner. Various amounts of Superflab bolus material were wrapped around the phantoms to simulate different patient sizes. The mean HU values that were measured in the phantoms were evaluated as a function of the water-equivalent area (A w ), a parameter that is described in the report of AAPM Task Group 220. A strategy by which to correct the HU values was developed and tested. The variation in the HU values in the anthropomorphic ATOM phantom under different simulated body sizes, both before and after correction, were compared, with a focus on the lung and bone tissues. Significant HU deviations that depended on the simulated patient size were observed. A positive correlation between HU and A w was observed for tissue types that have an HU of less than zero, while a negative correlation was observed for tissue types with HU values that are greater than zero. The magnitude of the difference increases as the underlying attenuation property deviates further away from that of water. In the electron density phantom study, the maximum observed HU differences between the measured and reference values in the cortical bone and lung materials were 426 and 94 HU, respectively. In the anthropomorphic phantom

  5. Measurement of asbestos bodies in lung tissue of autopsy cases diagnosed with primary lung cancer

    International Nuclear Information System (INIS)

    Idei, Yuka; Kamada, Satoe; Matsumoto, Shoji; Ohnishi, Kazuo; Kitazawa, Riko; Kitazawa, Sohei

    2007-01-01

    To investigate the relation between asbestos-related lung cancer and the concentration of asbestos bodies in lung tissue, we analyzed the concentration in 24 autopsy cases diagnosed with primary lung cancer, with regard to the gender, age, histological type of lung cancer and occupation of each case. The asbestos bodies were measured according to Kohyama's method. Positive cases (more than 5,000 bodies per 1 g of dry lung tissue) were further analyzed for asbestosis and pleural plaques by chest X-ray and chest CT. Two cases exhibited more than 5,000 bodies, five cases between 1,000 and 5,000, and seventeen cases less than 1,000. The occupation of the two positive cases was not informative: one demonstrated neither asbestosis nor pleural plaques, and the other showed only pleural plaques. Although the number of cases of asbestos-related lung cancer is minimal among all lung cancer cases, the number of the former may exceed that of mesothelioma patients. Not only physicians but also radiologists, surgeons and pathologists need to collaborate in the diagnosis of asbestos-related lung cancer. (author)

  6. Factors influencing the decline in lung density in a Danish lung cancer screening cohort.

    Science.gov (United States)

    Shaker, Saher B; Dirksen, Asger; Lo, Pechin; Skovgaard, Lene T; de Bruijne, Marleen; Pedersen, Jesper H

    2012-11-01

    Lung cancer screening trials provide an opportunity to study the natural history of emphysema by using computed tomography (CT) lung density as a surrogate parameter. In the Danish Lung Cancer Screening Trial, 2,052 participants were included. At screening rounds, smoking habits were recorded and spirometry was performed. CT lung density was measured as the volume-adjusted 15th percentile density (PD15). A mixed effects model was used with former smoking males with <30 pack-yrs and without airflow obstruction (AFO) at entry as a reference group. At study entry, 893 (44%) participants had AFO. For the reference group, PD15 was 72.6 g·L(-1) with an annual decline of -0.33 g·L(-1). Female sex and current smoking increased PD15 at baseline, 17.3 g·L(-1) (p<0.001) and 10 g·L(-1) (p<0.001), respectively; and both increased the annual decline in PD15 (female: -0.3 g·L(-1); current smoking: -0.4 g·L(-1)). The presence and severity of AFO was a strong predictor of low PD15 at baseline (Global Initiative for Chronic Obstructive Lung Disease (GOLD) I: -1.4 g·L(-1); GOLD II: -6.3 g·L(-1); GOLD III: -17 g·L(-1)) and of increased annual decline in PD15 (GOLD I: -0.2 g·L(-1); GOLD II: -0.5 g·L(-1); GOLD III: -0.5 g·L(-1)). Female sex, active smoking and the presence of AFO are associated with accelerated decline in lung density.

  7. Production of decellularized porcine lung scaffolds for use in tissue engineering†

    Science.gov (United States)

    Balestrini, Jenna L.; Gard, Ashley L.; Liu, Angela; Leiby, Katherine L.; Schwan, Jonas; Kunkemoeller, Britta; Calle, Elizabeth A.; Sivarapatna, Amogh; Lin, Tylee; Dimitrievska, Sashka; Cambpella, Stuart G.; Niklason, Laura E.

    2015-01-01

    There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual PMID:26426090

  8. Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.

    Science.gov (United States)

    Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-11-01

    The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels. © 2015 Wiley Periodicals, Inc.

  9. Calculation of microplanar beam dose profiles in a tissue/lung/tissue phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Allen, B.J.

    1998-01-01

    Recent advances in synchrotron generated x-ray beams with a high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed technique takes advantage of the hypothesized repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. (author)

  10. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    Science.gov (United States)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  11. Measurement of histamine release from human lung tissue ex vivo by microdialysis technique

    DEFF Research Database (Denmark)

    Nissen, Dan; Petersen, Lars Jelstrup; Nolte, H

    1998-01-01

    OBJECTIVE AND DESIGN: Currently no method is available for measurement of mediator release from intact human lung. In this study, a microdialysis technique was used to measure histamine release from mast cells in human lung tissue ex vivo. MATERIAL: Microdialysis fibers of 216 microm were inserted...... responses were observed but data could be reproduced within individual donors. Monocyte chemoattractant protein-1, a potent basophil secretagogue, did not induce histamine release in lung tissue which indicated mast cells to be the histamine source. Substance P did not release histamine in the lung tissue....... CONCLUSIONS: The microdialysis technique allowed measurements of histamine release from mast cells in intact lung ex vivo. The method may prove useful since a number of experiments can be performed in a few hours in intact lung tissue without any dispersion or enzymatic treatment....

  12. Feasibility of using 'lung density' values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients.

    Science.gov (United States)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Iwashita, Yoshiaki; Brown, Brian H; Soma, Kazui

    2015-06-01

    This paper reports on the results of a study which compares lung density values obtained from electrical impedance tomography (EIT), clinical diagnosis and CT values (HU) within a region of interest in the lung. The purpose was to assess the clinical use of lung density estimation using EIT data. In 11 patients supported by a mechanical ventilator, the consistency of regional lung density measurements as estimated by EIT was validated to assess the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities recorded in the supine position between normal lungs and diseased lungs associated with pneumonia, atelectasis and pleural effusion (normal; 240 ± 71.7 kg m(-3), pneumonia; 306 ± 38.6 kg m(-3), atelectasis; 497 ± 130 kg m(-3), pleural effusion; 467 ± 113 kg m(-3): Steel-Dwass test, p EIT images. The results of CT and EIT images from five patients in an intensive care unit showed a correlation coefficient of 0.66 ± 0.13 between the CT values (HU) and the lung density values (kg m(-3)) obtained from EIT. These results indicate that it may be possible to obtain a quantitative value for regional lung density using EIT.

  13. Quantitative measurement of lung density with x-ray CT and positron CT, (2). Diseased subjects

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kengo; Ito, Masatoshi; Kubota, Kazuo

    1985-05-01

    Lung density was quantitatively measured on six diseased patients with X-ray CT (XCT) and Positron CT(PCT). The findings are as follows: In the silicosis, extravascular lung density was found to be remarkably increased compared to normals (0.29gcm/sup 3/), but blood volume was in normal range. In the post-irradiated lung cancers, extravascular lung density increased in the irradiated sites compared to the non-irradiated opposite sites, and blood volume varied in each case. In a patient with chronic heart failure, blood volume decreased (0.11mlcm/sup 3/) with increased extravascular lung density (0.23gcm/sup 3/). In the chronic obstructive pulmonary disease, both extravascular lung density and blood volume decreased (0.11gcm/sup 3/ and 0.10mlcm/sup 3/ respectively). Lung density measured with XCT was constantly lower than that with PCT in all cases. But changes in the values of lung density measured, correlated well with each other. In conclusion, the method presented here may clarify the etiology of the diffuse pulmonary diseases, and be used to differentiate and grade the diseases.

  14. Predictors of idiopathic pulmonary fibrosis in absence of radiologic honeycombing: A cross sectional analysis in ILD patients undergoing lung tissue sampling.

    Science.gov (United States)

    Salisbury, Margaret L; Xia, Meng; Murray, Susan; Bartholmai, Brian J; Kazerooni, Ella A; Meldrum, Catherine A; Martinez, Fernando J; Flaherty, Kevin R

    2016-09-01

    Idiopathic pulmonary fibrosis (IPF) can be diagnosed confidently and non-invasively when clinical and computed tomography (CT) criteria are met. Many do not meet these criteria due to absence of CT honeycombing. We investigated predictors of IPF and combinations allowing accurate diagnosis in individuals without honeycombing. We utilized prospectively collected clinical and CT data from patients enrolled in the Lung Tissue Research Consortium. Included patients had no honeycombing, no connective tissue disease, underwent diagnostic lung biopsy, and had CT pattern consistent with fibrosing ILD (n = 200). Logistic regression identified clinical and CT variables predictive of IPF. The probability of IPF was assessed at various cut-points of important clinical and CT variables. A multivariable model adjusted for age and gender found increasingly extensive reticular densities (OR 2.93, CI 95% 1.55-5.56, p = 0.001) predicted IPF, while increasing ground glass densities predicted a diagnosis other than IPF (OR 0.55, CI 95% 0.34-0.89, p = 0.02). The model-based probability of IPF was 80% or greater in patients with age at least 60 years and extent of reticular density one-third or more of total lung volume; for patients meeting or exceeding these clinical thresholds the specificity for IPF is 96% (CI 95% 91-100%) with 21 of 134 (16%) biopsies avoided. In patients with suspected fibrotic ILD and absence of CT honeycombing, extent of reticular and ground glass densities predict a diagnosis of IPF. The probability of IPF exceeds 80% in subjects over age 60 years with one-third of total lung having reticular densities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Analysis of lung tissue using ion beams

    International Nuclear Information System (INIS)

    Alvarez, J.L.; Barrera, R.; Miranda, J.

    2002-01-01

    In this work a comparative study is presented of the contents of metals in lung tissue from healthy patients and with lung cancer, by means of two analytical techniques: Particle Induced X-ray Emission (PIXE) and Rutherford Backscattering Spectrometry (RBS). The samples of cancerous tissue were taken from 26 autopsies made to individuals died in the National Institute of Respiratory Disease (INER), 22 of cancer and 4 of other non-cancer biopsies. When analyzing the entirety of the samples, in the cancerous tissues, there were increments in the concentrations of S (4%), K (635%), Co (85%) and Cu (13%). Likewise, there were deficiencies in the concentrations of Cl (59%), Ca (6%), Fe (26%) and Zn (7%). Only in the cancerous tissues there were appearances of P, Ca, Ti, V, Cr, Mn, Ni, Br and Sr. The tissue samples were classified according to cancer types (adenocarcinomas, epidermoides and of small cell carcinoma), personal habits (smokers and alcoholic), genetic predisposition and residence place. There was a remarkable decrease in the concentration of Ca and a marked increment in the Cu in the epidermoide tissue samples with regard to those of adenocarcinoma or of small cells cancer. Also, decrements were detected in K and increments of Fe, Co and Cu in the sample belonging to people that resided in Mexico City with regard to those that resided in the State of Mexico

  16. Tissue hyaluronan expression, as reflected in the sputum of lung cancer patients, is an indicator of malignancy

    International Nuclear Information System (INIS)

    Rangel, M.P.; Sá, V.K. de; Martins, V.; Martins, J.R.M.; Parra, E.R.; Mendes, A.; Andrade, P.C.; Reis, R.M.; Longatto-Filho, A.; Oliveira, C.Z.; Takagaki, T.; Carraro, D.M.; Nader, H.B.; Capelozzi, V.L.

    2015-01-01

    Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology

  17. Tissue hyaluronan expression, as reflected in the sputum of lung cancer patients, is an indicator of malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, M.P.; Sá, V.K. de; Martins, V. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Martins, J.R.M. [Disciplina de Biologia Molecular, Departamento de Bioquímica, Faculdade de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Disciplina de Endocrinologia e Metabolismo, Laboratório de Endocrinologia Molecular e Translacional-LEMT, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Parra, E.R. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Mendes, A. [Disciplina de Biologia Molecular, Departamento de Bioquímica, Faculdade de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Andrade, P.C. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Reis, R.M. [Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga (Portugal); ICVS/3B' s - PT Government Associate Laboratory, Guimarães (Portugal); Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos, Fundação Pio XII, Barretos, SP (Brazil); Longatto-Filho, A. [Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga (Portugal); ICVS/3B' s - PT Government Associate Laboratory, Guimarães (Portugal); Laboratório de Investigação Médica (LIM 14), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos, Fundação Pio XII, Barretos, SP (Brazil); Oliveira, C.Z. [Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos, Fundação Pio XII, Barretos, SP (Brazil); Takagaki, T. [Divisão de Pneumologia, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Carraro, D.M. [Centro Internacional de Pesquisa/CIPE, AC Camargo Cancer Center, São Paulo, SP (Brazil); Nader, H.B. [Disciplina de Biologia Molecular, Departamento de Bioquímica, Faculdade de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Capelozzi, V.L. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-05-08

    Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology.

  18. Ventilatory protective strategies during thoracic surgery: effects of alveolar recruitment maneuver and low-tidal volume ventilation on lung density distribution.

    Science.gov (United States)

    Kozian, Alf; Schilling, Thomas; Schütze, Hartmut; Senturk, Mert; Hachenberg, Thomas; Hedenstierna, Göran

    2011-05-01

    The increased tidal volume (V(T)) applied to the ventilated lung during one-lung ventilation (OLV) enhances cyclic alveolar recruitment and mechanical stress. It is unknown whether alveolar recruitment maneuvers (ARMs) and reduced V(T) may influence tidal recruitment and lung density. Therefore, the effects of ARM and OLV with different V(T) on pulmonary gas/tissue distribution are examined. Eight anesthetized piglets were mechanically ventilated (V(T) = 10 ml/kg). A defined ARM was applied to the whole lung (40 cm H(2)O for 10 s). Spiral computed tomographic lung scans were acquired before and after ARM. Thereafter, the lungs were separated with an endobronchial blocker. The pigs were randomized to receive OLV in the dependent lung with a V(T) of either 5 or 10 ml/kg. Computed tomography was repeated during and after OLV. The voxels were categorized by density intervals (i.e., atelectasis, poorly aerated, normally aerated, or overaerated). Tidal recruitment was defined as the addition of gas to collapsed lung regions. The dependent lung contained atelectatic (56 ± 10 ml), poorly aerated (183 ± 10 ml), and normally aerated (187 ± 29 ml) regions before ARM. After ARM, lung volume and aeration increased (426 ± 35 vs. 526 ± 69 ml). Respiratory compliance enhanced, and tidal recruitment decreased (95% vs. 79% of the whole end-expiratory lung volume). OLV with 10 ml/kg further increased aeration (atelectasis, 15 ± 2 ml; poorly aerated, 94 ± 24 ml; normally aerated, 580 ± 98 ml) and tidal recruitment (81% of the dependent lung). OLV with 5 ml/kg did not affect tidal recruitment or lung density distribution. (Data are given as mean ± SD.) The ARM improves aeration and respiratory mechanics. In contrast to OLV with high V(T), OLV with reduced V(T) does not reinforce tidal recruitment, indicating decreased mechanical stress.

  19. WE-AB-207B-05: Correlation of Normal Lung Density Changes with Dose After Stereotactic Body Radiotherapy (SBRT) for Early Stage Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q; Devpura, S; Feghali, K; Liu, C; Ajlouni, M; Movsas, B; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To investigate correlation of normal lung CT density changes with dose accuracy and outcome after SBRT for patients with early stage lung cancer. Methods: Dose distributions for patients originally planned and treated using a 1-D pencil beam-based (PB-1D) dose algorithm were retrospectively recomputed using algorithms: 3-D pencil beam (PB-3D), and model-based Methods: AAA, Acuros XB (AXB), and Monte Carlo (MC). Prescription dose was 12 Gy × 4 fractions. Planning CT images were rigidly registered to the followup CT datasets at 6–9 months after treatment. Corresponding dose distributions were mapped from the planning to followup CT images. Following the method of Palma et al .(1–2), Hounsfield Unit (HU) changes in lung density in individual, 5 Gy, dose bins from 5–45 Gy were assessed in the peri-tumor region, defined as a uniform, 3 cm expansion around the ITV(1). Results: There is a 10–15% displacement of the high dose region (40–45 Gy) with the model-based algorithms, relative to the PB method, due to the electron scattering of dose away from the tumor into normal lung tissue (Fig.1). Consequently, the high-dose lung region falls within the 40–45 Gy dose range, causing an increase in HU change in this region, as predicted by model-based algorithms (Fig.2). The patient with the highest HU change (∼110) had mild radiation pneumonitis, and the patient with HU change of ∼80–90 had shortness of breath. No evidence of pneumonitis was observed for the 3 patients with smaller CT density changes (<50 HU). Changes in CT densities, and dose-response correlation, as computed with model-based algorithms, are in excellent agreement with the findings of Palma et al. (1–2). Conclusion: Dose computed with PB (1D or 3D) algorithms was poorly correlated with clinically relevant CT density changes, as opposed to model-based algorithms. A larger cohort of patients is needed to confirm these results. This work was supported in part by a grant from Varian

  20. Esophageal involvement and interstitial lung disease in mixed connective tissue disease.

    Science.gov (United States)

    Fagundes, M N; Caleiro, M T C; Navarro-Rodriguez, T; Baldi, B G; Kavakama, J; Salge, J M; Kairalla, R; Carvalho, C R R

    2009-06-01

    Mixed connective tissue disease is a systemic inflammatory disorder that results in both pulmonary and esophageal manifestations. We sought to evaluate the relationship between esophageal dysfunction and interstitial lung disease in patients with mixed connective tissue disease. We correlated the pulmonary function data and the high-resolution computed tomography findings of interstitial lung disease with the results of esophageal evaluation in manometry, 24-hour intraesophageal pH measurements, and the presence of esophageal dilatation on computed tomography scan. Fifty consecutive patients with mixed connective tissue disease, according to Kasukawa's classification criteria, were included in this prospective study. High-resolution computed tomography parenchymal abnormalities were present in 39 of 50 patients. Esophageal dilatation, gastroesophageal reflux, and esophageal motor impairment were also very prevalent (28 of 50, 18 of 36, and 30 of 36, respectively). The presence of interstitial lung disease on computed tomography was significantly higher among patients with esophageal dilatation (92% vs. 45%; pmotor dysfunction (90% vs. 35%; pesophageal and pulmonary involvement, our series revealed a strong association between esophageal motor dysfunction and interstitial lung disease in patients with mixed connective tissue disease.

  1. Rapid fall in lung density following smoking cessation in COPD

    DEFF Research Database (Denmark)

    Shaker, Saher B; Stavngaard, Trine; Laursen, Lars Christian

    2011-01-01

    Whether smoking-induced lung inflammation subsides after smoking cessation is currently a matter of debate. We used computed tomography (CT) to evaluate the effect of smoking cessation on lung density in patients with COPD....

  2. Indirect measurement of lung density and air volume from electrical impedance tomography (EIT) data.

    Science.gov (United States)

    Nebuya, Satoru; Mills, Gary H; Milnes, Peter; Brown, Brian H

    2011-12-01

    This paper describes a method for estimating lung density, air volume and changes in fluid content from a non-invasive measurement of the electrical resistivity of the lungs. Resistivity in Ω m was found by fitting measured electrical impedance tomography (EIT) data to a finite difference model of the thorax. Lung density was determined by comparing the resistivity of the lungs, measured at a relatively high frequency, with values predicted from a published model of lung structure. Lung air volume can then be calculated if total lung weight is also known. Temporal changes in lung fluid content will produce proportional changes in lung density. The method was implemented on EIT data, collected using eight electrodes placed in a single plane around the thorax, from 46 adult male subjects and 36 adult female subjects. Mean lung densities (±SD) of 246 ± 67 and 239 ± 64 kg m(-3), respectively, were obtained. In seven adult male subjects estimates of 1.68 ± 0.30, 3.42 ± 0.49 and 4.40 ± 0.53 l in residual volume, functional residual capacity and vital capacity, respectively, were obtained. Sources of error are discussed. It is concluded that absolute differences in lung density of about 30% and changes over time of less than 30% should be detected using the current technology in normal subjects. These changes would result from approximately 300 ml increase in lung fluid. The method proposed could be used for non-invasive monitoring of total lung air and fluid content in normal subjects but needs to be assessed in patients with lung disease.

  3. Lung Density Changes After Stereotactic Radiotherapy: A Quantitative Analysis in 50 Patients

    Energy Technology Data Exchange (ETDEWEB)

    Palma, David A., E-mail: david.palma@uwo.ca [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Soernsen de Koste, John van; Verbakel, Wilko F.A.R. [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Vincent, Andrew [Department of Biometrics, Netherlands Cancer Institute, Amsterdam (Netherlands); Senan, Suresh [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands)

    2011-11-15

    Purpose: Radiologic lung density changes are observed in more than 50% of patients after stereotactic body radiotherapy (SBRT) for lung cancer. We studied the relationship between SBRT dose and posttreatment computed tomography (CT) density changes, a surrogate for lung injury. Methods and Materials: The SBRT fractionation schemes used to treat Stage I lung cancer with RapidArc were three fractions of 18 Gy, five fractions of 11 Gy, or eight fractions of 7.5 Gy, prescribed at the 80% isodose. Follow-up CT scans performed at less than 6 months (n = 50) and between 6 and 9 months (n = 30) after SBRT were reviewed. Posttreatment scans were coregistered with baseline scans using a B-spline deformable registration algorithm. Voxel-Hounsfield unit histograms were created for doses between 0.5 and 50 Gy. Linear mixed effects models were used to assess the effects of SBRT dose on CT density, and the influence of possible confounders was tested. Results: Increased CT density was associated with higher dose, increasing planning target volume size, and increasing time after SBRT (all p < 0.0001). Density increases were apparent in areas receiving >6 Gy, were most prominent in areas receiving >20 Gy, and seemed to plateau above 40 Gy. In regions receiving >36 Gy, the reduction in air-filled fraction of lung after treatment was up to 18%. No increase in CT density was observed in the contralateral lung receiving {>=}3 Gy. Conclusions: A dose-response relationship exists for quantitative CT density changes after SBRT. A threshold of effect is seen at low doses, and a plateau at highest doses.

  4. Up-regulation of ALG-2 in hepatomas and lung cancer tissue

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Winding, Pernille

    2003-01-01

    , a result confirmed by immunohistochemical analysis. Staining of four different lung cancer tissue microarrays including specimens of 263 patients showed that ALG-2 is mainly localized to epithelial cells and significantly up-regulated in small-cell lung cancers and in non-small-cell lung cancers. Our...... using Western blot analysis and immunohistochemistry. Western blot analysis of 15 different adult mouse tissues demonstrated that ALG-2 is ubiquitously expressed. We found that ALG-2 was more than threefold overexpressed in rat liver hepatoma compared to normal rat liver using Western blot analysis...

  5. Toward in vivo lung's tissue incompressibility characterization for tumor motion modeling in radiation therapy

    International Nuclear Information System (INIS)

    Shirzadi, Zahra; Sadeghi-Naini, Ali; Samani, Abbas

    2013-01-01

    Purpose: A novel technique is proposed to characterize lung tissue incompressibility variation during respiration. Estimating lung tissue incompressibility parameter variations resulting from air content variation throughout respiration is critical for computer assisted tumor motion tracking. Continuous tumor motion is a major challenge in lung cancer radiotherapy, especially with external beam radiotherapy. If not accounted for, this motion may lead to areas of radiation overdosage for normal tissue. Given the unavailability of imaging modality that can be used effectively for real-time lung tumor tracking, computer assisted approach based on tissue deformation estimation can be a good alternative. This approach involves lung biomechanical model where its fidelity depends on input tissue properties. This investigation shows that considering variable tissue incompressibility parameter is very important for predicting tumor motion accurately, hence improving the lung radiotherapy outcome. Methods: First, an in silico lung phantom study was conducted to demonstrate the importance of employing variable Poisson's ratio for tumor motion predication. After it was established that modeling this variability is critical for accurate tumor motion prediction, an optimization based technique was developed to estimate lung tissue Poisson's ratio as a function of respiration cycle time. In this technique, the Poisson's ratio and lung pressure value were varied systematically until optimal values were obtained, leading to maximum similarity between acquired and simulated 4D CT lung images. This technique was applied in an ex vivo porcine lung study where simulated images were constructed using the end exhale CT image and deformation fields obtained from the lung's FE modeling of each respiration time increment. To model the tissue, linear elastic and Marlow hyperelastic material models in conjunction with variable Poisson's ratio were used. Results: The phantom study showed that

  6. SU-F-T-136: Breath Hold Lung Phantom Study in Using CT Density Versus Relative Stopping Power Ratio for Proton Pencil Beam Scanning System

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Wu, H; Rosen, L [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2016-06-15

    Purpose: To evaluate mass density effects of CT conversion table and its variation in current treatment planning system of spot scanning proton beam using an IROC proton lung phantom for this study. Methods: A proton lung phantom study was acquired to Imaging and Radiation Oncology Core Houston (IROC) Quality Assurance Center. Inside the lung phantom, GAF Chromic films and couples of thermal luminescent dosimeter (TLD) capsules embedded in specified PTV and adjacent structures to monitor delivered dosage and 3D dose distribution profiles. Various material such as cork (Lung), blue water (heart), Techron HPV (ribs) and organic material of balsa wood and cork as dosimetry inserts within phantom of solid water (soft tissue). Relative stopping power (RLSP) values were provided. Our treatment planning system (TPS) doesn’t require SP instead relative density was converted relative to water. However lung phantom was irradiated by planning with density override and the results were compared with IROC measurements. The second attempt was conducted without density override and compared with IROC’s. Results: The higher passing rate of imaging and measurement results of the lung phantom irradiation met the criteria by IROC without density override. The film at coronal plane was found to be shift due to inclined cylinder insertion. The converted CT density worked as expected to correlate relative stopping power. Conclusion: The proton lung phantom provided by IROC is a useful tool to qualify our commissioned proton pencil beam delivery with TPS within reliable confidence. The relative mass stopping power ratios of materials were converted from the relative physical density relative to water and the results were satisfied.

  7. Airspace Dimension Assessment with nanoparticles reflects lung density as quantified by MRI

    Science.gov (United States)

    Jakobsson, Jonas K; Löndahl, Jakob; Olsson, Lars E; Diaz, Sandra; Zackrisson, Sophia; Wollmer, Per

    2018-01-01

    Background Airspace Dimension Assessment with inhaled nanoparticles is a novel method to determine distal airway morphology. This is the first empirical study using Airspace Dimension Assessment with nanoparticles (AiDA) to estimate distal airspace radius. The technology is relatively simple and potentially accessible in clinical outpatient settings. Method Nineteen never-smoking volunteers performed nanoparticle inhalation tests at multiple breath-hold times, and the difference in nanoparticle concentration of inhaled and exhaled gas was measured. An exponential decay curve was fitted to the concentration of recovered nanoparticles, and airspace dimensions were assessed from the half-life of the decay. Pulmonary tissue density was measured using magnetic resonance imaging (MRI). Results The distal airspace radius measured by AiDA correlated with lung tissue density as measured by MRI (ρ = −0.584; p = 0.0086). The linear intercept of the logarithm of the exponential decay curve correlated with forced expiratory volume in one second (FEV1) (ρ = 0.549; p = 0.0149). Conclusion The AiDA method shows potential to be developed into a tool to assess conditions involving changes in distal airways, eg, emphysema. The intercept may reflect airway properties; this finding should be further investigated.

  8. Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis

    Science.gov (United States)

    Heinrichs, M. Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D.; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A.; Blumberg, Henry M.; Vashakidze, Sergo

    2017-01-01

    ABSTRACT Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary (n = 6 patients), mass-like (n = 3 patients), or consolidative (n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis (R = −0.66, P = 0.04) and acid-fast bacilli (R = −0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. PMID:28373198

  9. Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis.

    Science.gov (United States)

    Kempker, Russell R; Heinrichs, M Tobias; Nikolaishvili, Ketino; Sabulua, Irina; Bablishvili, Nino; Gogishvili, Shota; Avaliani, Zaza; Tukvadze, Nestani; Little, Brent; Bernheim, Adam; Read, Timothy D; Guarner, Jeannette; Derendorf, Hartmut; Peloquin, Charles A; Blumberg, Henry M; Vashakidze, Sergo

    2017-06-01

    Improved knowledge regarding the tissue penetration of antituberculosis drugs may help optimize drug management. Patients with drug-resistant pulmonary tuberculosis undergoing adjunctive surgery were enrolled. Serial serum samples were collected, and microdialysis was performed using ex vivo lung tissue to measure pyrazinamide concentrations. Among 10 patients, the median pyrazinamide dose was 24.7 mg/kg of body weight. Imaging revealed predominant lung lesions as cavitary ( n = 6 patients), mass-like ( n = 3 patients), or consolidative ( n = 1 patient). On histopathology examination, all tissue samples had necrosis; eight had a pH of ≤5.5. Tissue samples from two patients were positive for Mycobacterium tuberculosis by culture (pH 5.5 and 7.2). All 10 patients had maximal serum pyrazinamide concentrations within the recommended range of 20 to 60 μg/ml. The median lung tissue free pyrazinamide concentration was 20.96 μg/ml. The median tissue-to-serum pyrazinamide concentration ratio was 0.77 (range, 0.54 to 0.93). There was a significant inverse correlation between tissue pyrazinamide concentrations and the amounts of necrosis ( R = -0.66, P = 0.04) and acid-fast bacilli ( R = -0.75, P = 0.01) identified by histopathology. We found good penetration of pyrazinamide into lung tissue among patients with pulmonary tuberculosis with a variety of radiological lesion types. Our tissue pH results revealed that most lesions had a pH conducive to pyrazinamide activity. The tissue penetration of pyrazinamide highlights its importance in both drug-susceptible and drug-resistant antituberculosis treatment regimens. Copyright © 2017 American Society for Microbiology.

  10. Data-driven classification of ventilated lung tissues using electrical impedance tomography

    International Nuclear Information System (INIS)

    Gómez-Laberge, Camille; Hogan, Matthew J; Elke, Gunnar; Weiler, Norbert; Frerichs, Inéz; Adler, Andy

    2011-01-01

    Current methods for identifying ventilated lung regions utilizing electrical impedance tomography images rely on dividing the image into arbitrary regions of interest (ROI), manually delineating ROI, or forming ROI with pixels whose signal properties surpass an arbitrary threshold. In this paper, we propose a novel application of a data-driven classification method to identify ventilated lung ROI based on forming k clusters from pixels with correlated signals. A standard first-order model for lung mechanics is then applied to determine which ROI correspond to ventilated lung tissue. We applied the method in an experimental study of 16 mechanically ventilated swine in the supine position, which underwent changes in positive end-expiratory pressure (PEEP) and fraction of inspired oxygen (F I O 2 ). In each stage of the experimental protocol, the method performed best with k = 4 and consistently identified 3 lung tissue ROI and 1 boundary tissue ROI in 15 of the 16 subjects. When testing for changes from baseline in lung position, tidal volume, and respiratory system compliance, we found that PEEP displaced the ventilated lung region dorsally by 2 cm, decreased tidal volume by 1.3%, and increased the respiratory system compliance time constant by 0.3 s. F I O 2 decreased tidal volume by 0.7%. All effects were tested at p < 0.05 with n = 16. These findings suggest that the proposed ROI detection method is robust and sensitive to ventilation dynamics in the experimental setting

  11. Value of radio density determined by enhanced computed tomography for the differential diagnosis of lung masses

    International Nuclear Information System (INIS)

    Xie, Min

    2011-01-01

    Lung masses are often difficult to differentiate when their clinical symptoms and shapes or densities on computed tomography images are similar. However, with different pathological contents, they may appear differently on plain and enhanced computed tomography. Objectives: To determine the value of enhanced computed tomography for the differential diagnosis of lung masses based on the differences in radio density with and without enhancement. Patients and Methods: Thirty-six patients with lung cancer, 36 with pulmonary tuberculosis and 10 with inflammatory lung pseudo tumors diagnosed by computed tomography and confirmed by pathology in our hospital were selected. The mean ±SD radio densities of lung masses in the three groups of patients were calculated based on the results of plain and enhanced computed tomography. Results: There were no significant differences in the radio densities of the masses detected by plain computed tomography among patients with inflammatory lung pseudo tumors, tuberculosis and lung cancer (P> 0.05). However, there were significant differences (P< 0.01)between all the groups in terms of radio densities of masses detected by enhanced computed tomography. Conclusions: The radio densities of lung masses detected by enhanced computed tomography could potentially be used to differentiate between lung cancer, pulmonary tuberculosis and inflammatory lung pseudo tumors.

  12. Tracking Regional Tissue Volume and Function Change in Lung Using Image Registration

    Directory of Open Access Journals (Sweden)

    Kunlin Cao

    2012-01-01

    Full Text Available We have previously demonstrated the 24-hour redistribution and reabsorption of bronchoalveolar lavage (BAL fluid delivered to the lung during a bronchoscopic procedure in normal volunteers. In this work we utilize image-matching procedures to correlate fluid redistribution and reabsorption to changes in regional lung function. Lung CT datasets from six human subjects were used in this study. Each subject was scanned at four time points before and after BAL procedure. Image registration was performed to align images at different time points and different inflation levels. The resulting dense displacement fields were utilized to track tissue volume changes and reveal deformation patterns of local parenchymal tissue quantitatively. The registration accuracy was assessed by measuring landmark matching errors, which were on the order of 1 mm. The results show that quantitative-assessed fluid volume agreed well with bronchoscopist-reported unretrieved BAL volume in the whole lungs (squared linear correlation coefficient was 0.81. The average difference of lung tissue volume at baseline and after 24 hours was around 2%, which indicates that BAL fluid in the lungs was almost absorbed after 24 hours. Regional lung-function changes correlated with the presence of BAL fluid, and regional function returned to baseline as the fluid was reabsorbed.

  13. Correction for ‘artificial’ electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung

    International Nuclear Information System (INIS)

    Disher, Brandon; Hajdok, George; Craig, Jeff; Gaede, Stewart; Battista, Jerry J; Wang, An

    2013-01-01

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (−1000 HU). Similarly, CBCT data in a plastic lung

  14. CT analysis of lung density changes in patients undergoing total body irradiation prior to bone marrow transplantation

    International Nuclear Information System (INIS)

    Lee, J.Y.; Shank, B.; Bonfiglio, P.; Reid, A.

    1984-01-01

    Sequential changes in lung density measured by CT are potentially sensitive and convenient monitors of lung abnormalities following total body irradiation (TBI). Methods have been developed to compare pre- and post-TBI CT of lung. The average local features of a cross-sectional lung slice are extracted from three peripheral regions of interest in the anterior, posterior, and lateral portions of the CT image. Also, density profiles across a specific region may be obtained. These may be compared first for verification of patient position and breathing status and then for changes between pre- and post-TBI. These may also be compared with radiation dose profiles through the lung. A preliminary study on 21 leukemia patients undergoing total body irradiation indicates the following: (a) Density gradients of patients' lungs in the antero-posterior direction show a marked heterogeneity before and after transplantation compared with normal lungs. The patients with departures from normal density gradients pre-TBI correlate with later pulmonary complications. (b) Measurements of average peripheral lung densities have demonstrated that the average lung density in the younger age group is substantially higher: pre-TBI, the average CT number (1,000 scale) is -638 +/- 39 Hounsfield unit (HU) for 0-10 years old and -739 +/- 53 HU for 21-40 years old. (c) Density profiles showed no post-TBI regional changes in lung density corresponding to the dose profile across the lung, so no differentiation of a radiation-specific effect has yet been possible. Computed tomographic density profiles in the antero-posterior direction are successfully used to verify positioning of the CT slice and the breathing level of the lung

  15. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    Science.gov (United States)

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  16. Lung involvement in systemic connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Plavec Goran

    2008-01-01

    Full Text Available Background/Aim. Systemic connective tissue diseases (SCTD are chronic inflammatory autoimmune disorders of unknown cause that can involve different organs and systems. Their course and prognosis are different. All of them can, more or less, involve the respiratory system. The aim of this study was to find out the frequency of respiratory symptoms, lung function disorders, radiography and high-resolution computerized tomography (HRCT abnormalities, and their correlation with the duration of the disease and the applied treatment. Methods. In 47 non-randomized consecutive patients standard chest radiography, HRCT, and lung function tests were done. Results. Hypoxemia was present in nine of the patients with respiratory symptoms (20%. In all of them chest radiography was normal. In five of these patients lung fibrosis was established using HRCT. Half of all the patients with SCTD had symptoms of lung involvement. Lung function tests disorders of various degrees were found in 40% of the patients. The outcome and the degree of lung function disorders were neither in correlation with the duration of SCTD nor with therapy used (p > 0.05 Spearmans Ro. Conclusion. Pulmonary fibrosis occurs in about 10% of the patients with SCTD, and possibly not due to the applied treatment regimens. Hypoxemia could be a sing of existing pulmonary fibrosis in the absence of disorders on standard chest radiography.

  17. Regional Lung Density Changes After Radiation Therapy for Tumors in and Around Thorax

    International Nuclear Information System (INIS)

    Ma Jinli; Zhang Junan; Zhou Sumin; Hubbs, Jessica L.; Foltz, Rodney J.; Hollis, Donna R.; Light, Kim L.; Wong, Terence Z.; Kelsey, Christopher R.; Marks, Lawrence B.

    2010-01-01

    Purpose: To study the temporal nature of regional lung density changes and to assess whether the dose-dependent nature of these changes is associated with patient- and treatment-associated factors. Methods and Materials: Between 1991 and 2004, 118 patients with interpretable pre- and post-radiation therapy (RT) chest computed tomography (CT) scans were evaluated. Changes in regional lung density were related to regional dose to define a dose-response curve (DRC) for RT-induced lung injury using three-dimensional planning tools and image fusion. Multiple post-RT follow-up CT scans were evaluated by fitting linear-quadratic models of density changes on dose with time as the covariate. Various patient- and treatment-related factors were examined as well. Results: There was a dose-dependent increase in regional lung density at nearly all post-RT follow-up intervals. The population volume-weighted changes evolved over the initial 6-month period after RT and reached a plateau thereafter (p < 0.001). On univariate analysis, patient age greater than 65 years (p = 0.003) and/or the use of pre-RT surgery (p < 0.001) were associated with significantly greater changes in CT density at both 6 and 12 months after RT, but the magnitude of this effect was modest. Conclusions: There appears to be a temporal nature for the dose-dependent increases in lung density. Nondosimetric clinical factors tend to have no, or a modest, impact on these changes.

  18. Reduced generation of lung tissue-resident memory T cells during infancy.

    Science.gov (United States)

    Zens, Kyra D; Chen, Jun Kui; Guyer, Rebecca S; Wu, Felix L; Cvetkovski, Filip; Miron, Michelle; Farber, Donna L

    2017-10-02

    Infants suffer disproportionately from respiratory infections and generate reduced vaccine responses compared with adults, although the underlying mechanisms remain unclear. In adult mice, lung-localized, tissue-resident memory T cells (TRMs) mediate optimal protection to respiratory pathogens, and we hypothesized that reduced protection in infancy could be due to impaired establishment of lung TRM. Using an infant mouse model, we demonstrate generation of lung-homing, virus-specific T effectors after influenza infection or live-attenuated vaccination, similar to adults. However, infection during infancy generated markedly fewer lung TRMs, and heterosubtypic protection was reduced compared with adults. Impaired TRM establishment was infant-T cell intrinsic, and infant effectors displayed distinct transcriptional profiles enriched for T-bet-regulated genes. Notably, mouse and human infant T cells exhibited increased T-bet expression after activation, and reduction of T-bet levels in infant mice enhanced lung TRM establishment. Our findings reveal that infant T cells are intrinsically programmed for short-term responses, and targeting key regulators could promote long-term, tissue-targeted protection at this critical life stage. © 2017 Zens et al.

  19. Measurement of lung tissue dynamics in artificially ventilated rats with optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Schnabel Christian

    2017-09-01

    Full Text Available Diseases of lung tissue and the airways become a major task for medical care and health care systems in modern industrial countries in the future. Suitable treatment methods and strategies for lung support and artificial ventilation are of dare need. Besides the obvious importance as life-saving intervention, the effects of usually used over-pressure ventilation onto the sensitive alveolar tissue are insufficiently understood. Therefore, it is of great interest to characterize lung tissue during artificial ventilation at the alveolar level. Those measurements can be used to link micromechanics of alveolar structures to mechanical properties of the whole lung like compliance and resistance measured at the ventilator device. This can be done only in animal experiments due to the fact that imaging techniques used in human diagnostics like CT or MRT fail to resolve alveolar tissue structures. The disadvantage of high-resolution techniques like optical coherence tomography (OCT or intravital microscopy (IVM is the need of a surgical access to the lung due to the limitation in penetration depth of these techniques. Furthermore, imaging dynamic processes with high-resolution imaging techniques during uninterrupted artificial ventilation is a challenging task. In this study, we present a measurement setup for combined imaging of conventional pressure-controlled ventilated rats and the visualization of volume changes of alveolar structures during one cycle of breath. A custom-made OCT system in combination with a triggered scanning algorithm was used to acquire time-resolved 3D OCT image data. Furthermore, this system was combined with a self-adapting autofocus function for intravital microscopy to track the lung surface keeping the tissue in focal plane. The combination of new dynamic measurement modes for OCT and IVM allows new insights into alveolar tissue and will promote the understanding of mechanical behavior during artificial ventilation.

  20. Interstitial lung disease associated with connective tissue diseases

    International Nuclear Information System (INIS)

    Medina, Yimy F; Restrepo, Jose Felix; Iglesias, Antonio; Ojeda, Paulina; Matiz, Carlos

    2007-01-01

    An interstitial lung disease (ILD) belongs to a group of diffuse parenchyma lung diseases it should be differentiated from other pathologies among those are idiopathic and ILD associated to connective tissue diseases (CTD) New concepts have been developed in the last years and they have been classified in seven defined subgroups. It has been described the association of each one of these subgroups with CTD. Natural history and other aspects of its treatment is not known completely .For complete diagnose it is required clinical, image and histopathologic approaches. The biopsy lung plays an essential role. It is important to promote and to stimulate the subclasification of each subgroup with the purpose of knowing their natural history directing the treatment and to improve their outcome

  1. Distribution of latex particles in lung and lymph node tissues of rats and dogs

    International Nuclear Information System (INIS)

    Mueller, H.L; Muggenburg, B.A.; Gillett, N.A.; Guilmette, R.A.

    1988-01-01

    The distribution of fluorescent poly sytrene microspheres in different lung compartments, with differing particle numbers within individual lung and lymph node cells was examined In methacrylate-embedded tissue slices. Rat tissues were analyzed at 1, 7 and 13 days after particle instillation, dog tissues at 7 and 13 days. A much higher fraction of particles was seen in the lung interstitium and in lung-associated lymph nodes in dogs than in rats. Particle concentrations in TBLN cells were generally very low in both species, but were high in free alveolar cells after high particle numbers were instilled, and increased from 1 to 13 days, suggesting that alveolar cells with few particles were cleared faster than those wth high ingested particle numbers. (author)

  2. Mast cell density in isolated monkey lungs on exposure to cigarette smoke.

    OpenAIRE

    Walter, A; Walter, S

    1982-01-01

    The density and percentage of degranulated cells of the mast cell population were studied in the isolated lungs of 25 monkeys (Macaca radiata radiata) before and after acute exposure to cigarette smoke. In each animal one lung was used as the test lung while the other lung was used as its control. In the control lungs the total mean mast cell count was 9.5/mm2 and the proportion of degranulated cells was 9.7%. In the lungs exposed to smoke the total counts were lower (7.3/mm2) and the percent...

  3. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  4. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  5. Biochemical and morphological changes in rat lung tissue under the influence of external ionizing radiation

    International Nuclear Information System (INIS)

    Uzlenkova, N.Je.; Mamotyuk, Je.M.; Gusakova, V.A.; Kononenko, O.K.

    2006-01-01

    Single external x-ray exposure at minimum and mean lethal doses was established to cause a long activation of biochemical processes in the connective tissue of the rat lungs. Morphological and ultrastructure changes in the tissue of the lungs at early terms after x-ray and gamma-radiation exposure were due to development of destructive and degenerative reactions. The long-term changes were characterized by growth of connective tissue and formation of areas of fibrous changes in the structure of the lungs

  6. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Ernesto, E-mail: eamato@unime.it [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy); Italiano, Antonio [INFN – Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina (Italy); Baldari, Sergio [University of Messina, Department of Biomedical Sciences and of Morphologic and Functional Imaging, Section of Radiological Sciences, via Consolare Valeria, 1, I-98125 Messina (Italy)

    2013-11-21

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm{sup −3} density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  7. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    International Nuclear Information System (INIS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-01-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm −3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source–target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate

  8. Study of lung density corrections in a clinical trial (RTOG 88-08)

    International Nuclear Information System (INIS)

    Orton, Colin G.; Chungbin, Suzanne; Klein, Eric E.; Gillin, Michael T.; Schultheiss, Timothy E.; Sause, William T.

    1998-01-01

    Purpose: To investigate the effect of lung density corrections on the dose delivered to lung cancer radiotherapy patients in a multi-institutional clinical trial, and to determine whether commonly available density-correction algorithms are sufficient to improve the accuracy and precision of dose calculation in the clinical trials setting. Methods and Materials: A benchmark problem was designed (and a corresponding phantom fabricated) to test density-correction algorithms under standard conditions for photon beams ranging from 60 Co to 24 MV. Point doses and isodose distributions submitted for a Phase III trial in regionally advanced, unresectable non-small-cell lung cancer (Radiation Therapy Oncology Group 88-08) were calculated with and without density correction. Tumor doses were analyzed for 322 patients and 1236 separate fields. Results: For the benchmark problem studied here, the overall correction factor for a four-field treatment varied significantly with energy, ranging from 1.14 ( 60 Co) to 1.05 (24 MV) for measured doses, or 1.17 ( 60 Co) to 1.05 (24 MV) for doses calculated by conventional density-correction algorithms. For the patient data, overall correction factors (calculated) ranged from 0.95 to 1.28, with a mean of 1.05 and distributional standard deviation of 0.05. The largest corrections were for lateral fields, with a mean correction factor of 1.11 and standard deviation of 0.08. Conclusions: Lung inhomogeneities can lead to significant variations in delivered dose between patients treated in a clinical trial. Existing density-correction algorithms are accurate enough to significantly reduce these variations

  9. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID)

    DEFF Research Database (Denmark)

    Chapman, Kenneth R; Burdon, Jonathan G W; Piitulainen, Eeva

    2015-01-01

    BACKGROUND: The efficacy of α1 proteinase inhibitor (A1PI) augmentation treatment for α1 antitrypsin deficiency has not been substantiated by a randomised, placebo-controlled trial. CT-measured lung density is a more sensitive measure of disease progression in α1 antitrypsin deficiency emphysema...... of emphysema, a finding that could not be substantiated by lung density measurement at FRC alone or by the two measurements combined. These findings should prompt consideration of augmentation treatment to preserve lung parenchyma in individuals with emphysema secondary to severe α1 antitrypsin deficiency...

  10. Procoagulant, tissue factor-bearing microparticles in bronchoalveolar lavage of interstitial lung disease patients: an observational study.

    Directory of Open Access Journals (Sweden)

    Federica Novelli

    Full Text Available Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H₂O₂ was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons. Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r² = .27 and .31, respectively; p<.05 for both correlations. Exposure of lung epithelial cells to H₂O₂ caused an increase in microparticle-bound tissue factor

  11. Radiographic test phantom for computed tomographic lung nodule analysis

    International Nuclear Information System (INIS)

    Zerhouni, E.A.

    1987-01-01

    This patent describes a method for evaluating a computed tomograph scan of a nodule in a lung of a human or non-human animal. The method comprises generating a computer tomograph of a transverse section of the animal containing lung and nodule tissue, and generating a second computer tomograph of a test phantom comprising a device which simulates the transverse section of the animal. The tissue simulating portions of the device are constructed of materials having radiographic densities substantially identical to those of the corresponding tissue in the simulated transverse section of the animal and have voids therein which simulate, in size and shape, the lung cavities in the transverse section and which contain a test reference nodule constructed of a material of predetermined radiographic density which simulates in size, shape and position within a lung cavity void of the test phantom the nodule in the transverse section of the animal and comparing the respective tomographs

  12. Volume Adjustment of Lung Density by Computed Tomography Scans in Patients with Emphysema

    International Nuclear Information System (INIS)

    Shaker, S.B.; Dirksen, A.; Laursen, L.C.; Skovgaard, L.T.; Holstein-Rathlou, N.H.

    2004-01-01

    Purpose: To determine how to adjust lung density measurements for the volume of the lung calculated from computed tomography (CT) scans in patients with emphysema. Material and Methods: Fifty patients with emphysema underwent 3 CT scans at 2-week intervals. The scans were analyzed with a software package that detected the lung in contiguous images and subsequently generated a histogram of the pixel attenuation values. The total lung volume (TLV), lung weight, percentile density (PD), and relative area of emphysema (RA) were calculated from this histogram. RA and PD are commonly applied measures of pulmonary emphysema derived from CT scans. These parameters are markedly influenced by changes in the level of inspiration. The variability of lung density due to within-subject variation in TLV was explored by plotting TLV against PD and RA. Results: The coefficients for volume adjustment for PD were relatively stable over a wide range from the 10th to the 80th percentile, whereas for RA the coefficients showed large variability especially in the lower range, which is the most relevant for quantitation of pulmonary emphysema. Conclusion: Volume adjustment is mandatory in repeated CT densitometry and is more robust for PD than for RA. Therefore, PD seems more suitable for monitoring the progression of emphysema

  13. Spatial distribution patterns of energy deposition and cellular radiation effects in lung tissue following simulated exposure to alpha particles

    International Nuclear Information System (INIS)

    Hofmann, W.; Crawford-Brown, D.J.

    1990-01-01

    Randomly oriented sections of rat tissue have been digitised to provide the contours of tissue-air interfaces and the locations of individual cell nuclei in the alveolated region of the lung. Sources of alpha particles with varying irradiation geometries and densities are simulated to compute the resulting random pattern of cellular irradiation, i.e. spatial coordinates, frequency, track length, and energy of traversals by the emitted alpha particles. Probabilities per unit track lengths, derived from experimental data on in vitro cellular inactivation and transformation, are then applied to the results of the alpha exposure simulations to yield an estimate of the number of both dead and viable transformed cells and their spatial distributions. If lung cancer risk is linearly related to the number of transformed cells, the carcinogenic risk for hot particles is always smaller than that for a uniform nuclide distribution of the same activity. (author)

  14. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution.

    Science.gov (United States)

    Cui, Jia; Halbrook, Richard S; Zang, Shuying; Han, Shuang; Li, Xinyu

    2018-03-01

    Atmospheric pollution in urban areas is a major worldwide concern with potential adverse impacts on wildlife and humans. Biomonitoring can provide direct evidence of the bioavailability and bioaccumulation of toxic metals in the environment that is not available with mechanical air monitoring. The current study continues our evaluation of the usefulness of homing pigeon lung tissue as a biomonitor of atmospheric pollution. Homing pigeons (1-2, 5-6, and 9-10+ year old (yo)) collected from Guangzhou during 2015 were necropsied and concentrations of cadmium (Cd), lead (Pb), and mercury (Hg) were measured in lung tissue. Lung Cd and Pb concentrations were significantly greater in 9-10+-year-old pigeons compared with those in other age groups, indicating their bioavailability and bioaccumulation. Lung Pb and Cd concentrations measured in 5-yo pigeons collected from Guangzhou during 2015 were significantly lower than concentrations reported in 5-yo homing pigeons collected from Guangzhou during 2011 and correlated with concentrations measured using mechanical air monitoring. In addition to temporal differences, spatial differences in concentrations of Cd, Pb, and Hg reported in ambient air samples and in pigeon lung tissues collected from Beijing and Guangzhou are discussed.

  15. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  16. Ectopic Intrathoracic Hepatic Tissue and Accessory Lung Lobe Aplasia in a Dog.

    Science.gov (United States)

    Lande, Rachel; Dvorak, Laura; Gardiner, David W; Bahr, Anne

    2015-01-01

    A 6 yr old male Yorkshire terrier was presented for an ~6 yr history of progressive cough and dyspnea. Thoracic radiographs revealed a 6 cm diameter mass within the right caudal thorax. Thoracic ultrasound identified an intrathoracic mass ultrasonographically consistent with liver tissue and a chronic diaphragmatic hernia was suspected. Exploratory laparotomy was performed, but no evidence of a diaphragmatic hernia was identified. Thoracic exploration identified abnormal lung parenchyma. The accessory lung lobe was removed using a stapling devise near its base. The consolidated mass had the gross appearance of liver and was histologically identified as ectopic hepatic tissue. Ectopic hepatic tissue, unlike ectopic splenic and pancreatic tissue, is rare and generally has a subdiaphragmatic distribution. This solitary case report demonstrates that ectopic intrathoracic hepatic tissue should be considered a differential diagnosis for a caudal mediastinal mass.

  17. The association of systemic microvascular changes with lung function and lung density: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Bianca Harris

    Full Text Available Smoking causes endothelial dysfunction and systemic microvascular disease with resultant end-organ damage in the kidneys, eyes and heart. Little is known about microvascular changes in smoking-related lung disease. We tested if microvascular changes in the retina, kidneys and heart were associated with obstructive spirometry and low lung density on computed tomography. The Multi-Ethnic Study of Atherosclerosis recruited participants age 45-84 years without clinical cardiovascular disease. Measures of microvascular function included retinal arteriolar and venular caliber, urine albumin-to-creatinine ratio and, in a subset, myocardial blood flow on magnetic resonance imaging. Spirometry was measured following ATS/ERS guidelines. Low attenuation areas (LAA were measured on lung fields of cardiac computed tomograms. Regression models adjusted for pulmonary and cardiac risk factors, medications and body size. Among 3,397 participants, retinal venular caliber was inversely associated with forced expiratory volume in one second (FEV(1 (P<0.001 and FEV(1/forced vital capacity (FVC ratio (P = 0.04. Albumin-to-creatinine ratio was inversely associated with FEV(1 (P = 0.002 but not FEV(1/FVC. Myocardial blood flow (n = 126 was associated with lower FEV(1 (P = 0.02, lower FEV(1/FVC (P = 0.001 and greater percentage LAA (P = 0.04. Associations were of greater magnitude among smokers. Low lung function was associated with microvascular changes in the retina, kidneys and heart, and low lung density was associated with impaired myocardial microvascular perfusion. These cross-sectional results suggest that microvascular damage with end-organ dysfunction in all circulations may pertain to the lung, that lung dysfunction may contribute to systemic microvascular disease, or that there may be a shared predisposition.

  18. On the validity of density overrides for VMAT lung SBRT planning

    International Nuclear Information System (INIS)

    Wiant, David; Vanderstraeten, Caroline; Maurer, Jacqueline; Pursley, Jan; Terrell, Jonathon; Sintay, Benjamin J.

    2014-01-01

    Purpose: Modeling dose to a moving target in lung is a very difficult task. Current approaches to planning lung stereotactic body radiotherapy (SBRT) generally calculate dose on either free breathing or average computed tomography (CT) scans, which do not always accurately predict dose to parts of the target volume not occupied by tumor on the planning scan. In this work, the authors look at using density overrides of the target volumes to more accurately predict dose for lung SBRT using the analytic anisotropic algorithm (AAA). Methods: Volumetric modulated arc therapy plans were created on free breathing scans (FBP), time average scans (AVGP), free breathing scans with the internal target volume overridden to tumor density (ITVP), free breathing scans with the planning target volume overridden to tumor density (PTVP), and free breathing scan using a hybrid scheme with the internal target volume set to tumor density and the planning target volume minus the internal target volume set to a density intermediate between lung and tumor (HP) for the case of a 4D motion phantom and five patient cases. Radiochromic film measurements were made for the phantom plans, with gamma analysis used to compare the planned to delivered dose. The patient plans were recalculated on each of the phases of a 4DCT to evaluate tumor coverage and conformity index (CI). A modified modulation complexity score (MCSv) and average open area per control point (AA) metrics were used to evaluate multileaf collimator (MLC) modulation for each of the plans. Results: The HP plans showed significantly higher gamma passing rates (p < 0.05) than the FBP, AVGP, and ITVP for criteria of 2 mm/2% and 1 mm/1%. No significant correlation was observed between gamma values and AA or MCSv. The tumor volume was covered by the prescription dose on all phases of the 4DCT for all patient plans. The PTVP and HP yielded lower mean CI than the other plans for all five patients, with three of the cases showing

  19. On the validity of density overrides for VMAT lung SBRT planning

    Energy Technology Data Exchange (ETDEWEB)

    Wiant, David, E-mail: david.wiant@conehealth.com; Vanderstraeten, Caroline; Maurer, Jacqueline; Pursley, Jan; Terrell, Jonathon; Sintay, Benjamin J. [Cone Health Cancer Center, Greensboro, North Carolina 27403 (United States)

    2014-08-15

    Purpose: Modeling dose to a moving target in lung is a very difficult task. Current approaches to planning lung stereotactic body radiotherapy (SBRT) generally calculate dose on either free breathing or average computed tomography (CT) scans, which do not always accurately predict dose to parts of the target volume not occupied by tumor on the planning scan. In this work, the authors look at using density overrides of the target volumes to more accurately predict dose for lung SBRT using the analytic anisotropic algorithm (AAA). Methods: Volumetric modulated arc therapy plans were created on free breathing scans (FBP), time average scans (AVGP), free breathing scans with the internal target volume overridden to tumor density (ITVP), free breathing scans with the planning target volume overridden to tumor density (PTVP), and free breathing scan using a hybrid scheme with the internal target volume set to tumor density and the planning target volume minus the internal target volume set to a density intermediate between lung and tumor (HP) for the case of a 4D motion phantom and five patient cases. Radiochromic film measurements were made for the phantom plans, with gamma analysis used to compare the planned to delivered dose. The patient plans were recalculated on each of the phases of a 4DCT to evaluate tumor coverage and conformity index (CI). A modified modulation complexity score (MCSv) and average open area per control point (AA) metrics were used to evaluate multileaf collimator (MLC) modulation for each of the plans. Results: The HP plans showed significantly higher gamma passing rates (p < 0.05) than the FBP, AVGP, and ITVP for criteria of 2 mm/2% and 1 mm/1%. No significant correlation was observed between gamma values and AA or MCSv. The tumor volume was covered by the prescription dose on all phases of the 4DCT for all patient plans. The PTVP and HP yielded lower mean CI than the other plans for all five patients, with three of the cases showing

  20. A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Braian, Clara; Svensson, Mattias; Brighenti, Susanna; Lerm, Maria; Parasa, Venkata R

    2015-10-05

    Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.

  1. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues.

    Science.gov (United States)

    Baltaci, A K; Mogulkoc, R; Salbacak, A; Celik, I; Sivrikaya, A

    2012-01-01

    The objective of the present study was to examine the effects of zinc supplementation on the oxidant damage in lung and liver tissues in rats exposed to a 50-Hz frequency magnetic field for 5 minutes every other day over a period of 6 months. The study included 24 adult male Sprague-Dawley rats, which were divided into the three groups in equal numbers: Group 1, the control group (G1); Group 2, the group exposed to an electromagnetic field (G2); and Group 3, the group, which was exposed to an EMF and supplemented with zinc (G3). At the end of the 6-month procedures, the animals were decapitated to collect lung and liver tissue samples, in which MDA was analyzed using the "TBARS method (nmol/g/protein)", GSH by the "biuret method (mg/g/protein)" and zinc levels by atomic emission (µg/dl). MDA levels in lung and liver tissues in G2 were higher than those in G1 and G3, and the levels in G3 were higher than those in G1 (pelectromagnetic field caused cellular damage in lung and liver tissues and zinc supplementation inhibited the inflicted cellular damage. Another important result of this study that needs emphasis was that exposure to an electromagnetic field led to a significant decrease in zinc levels in lung and liver tissues (Tab. 3, Ref. 23).

  2. Oxidative DNA damage in lung tissue from patients with COPD is clustered in functionally significant sequences

    Directory of Open Access Journals (Sweden)

    Viktor M Pastukh

    2011-03-01

    Full Text Available Viktor M Pastukh1, Li Zhang2, Mykhaylo V Ruchko1, Olena Gorodnya1, Gina C Bardwell1, Rubin M Tuder2, Mark N Gillespie11Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA; 2Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, Aurora, CO, USAAbstract: Lung tissue from COPD patients displays oxidative DNA damage. The present study determined whether oxidative DNA damage was randomly distributed or whether it was localized in specific sequences in either the nuclear or mitochondrial genomes. The DNA damage-specific histone, gamma-H2AX, was detected immunohistochemically in alveolar wall cells in lung tissue from COPD patients but not control subjects. A PCR-based method was used to search for oxidized purine base products in selected 200 bp sequences in promoters and coding regions of the VEGF, TGF-β1, HO-1, Egr1, and β-actin genes while quantitative Southern blot analysis was used to detect oxidative damage to the mitochondrial genome in lung tissue from control subjects and COPD patients. Among the nuclear genes examined, oxidative damage was detected in only 1 sequence in lung tissue from COPD patients: the hypoxic response element (HRE of the VEGF promoter. The content of VEGF mRNA also was reduced in COPD lung tissue. Mitochondrial DNA content was unaltered in COPD lung tissue, but there was a substantial increase in mitochondrial DNA strand breaks and/or abasic sites. These findings show that oxidative DNA damage in COPD lungs is prominent in the HRE of the VEGF promoter and in the mitochondrial genome and raise the intriguing possibility that genome and sequence-specific oxidative DNA damage could contribute to transcriptional dysregulation and cell fate decisions in COPD.Keywords: DNA damage, VEGF hypoxic response element, mtDNA, COPD

  3. N-isopropyl-p-iodoamphetamine receptors in normal and cancerous tissue of the human lung

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Eiko; Mishima, Michiaki; Kawakami, Kenzo; Sakai, Naoki; Sugiura, Naoharu; Kuno, Kenshi [Kyoto Univ. (Japan). Dept. of Clinical Physiology; Taniguchi, Takashi [Kyoto Pharmaceutical Univ. (Japan). Dept. of Neurobiology

    1993-04-01

    N-Isopropyl-p-iodoamphetamine (IMP) receptors in normal human lung tissue were characterized using a radioligand binding assay with iodine-125 IMP as the ligand. Saturation binding studies revealed the presence of two binding sites with dissociation constant (K[sub d]) values of 53[+-]2 and 4687[+-]124 nM and maximum binding capacity (Bmax) values of 7[+-]1 and 133[+-]27 pmol/mg protein (n=5) respectively. The IC[sub 50] values of various amines were as follows: IMP, 9x10[sup -5] M; propranolol, 5x10[sup -4] M; haloperidol, 6x10[sup -4] M; ketamine, 9x10[sup -3] M; dopamine, 1x10[sup -2] M. The IMP receptors of cancerous tissue obtained from human lung also had two binding sites with K[sub d] values of 54[+-]2 and 5277[+-]652 nM and Bmax values of 7[+-]1 and 103[+-]21 pmol/mg protein (n=3) respectively. There was no significant difference in binding parameters between normal and cancerous lung tissue. These results demonstrate the existence of IMP receptors and suggest that cancer does not affect the nature of IMP receptors in human lung tissue. (orig.).

  4. A morphological study of bronchi and lung tissues in long-term survived dogs

    OpenAIRE

    松本, 伸

    1984-01-01

    Morphological changes of the bronchus and lung tissue of ten adult dogs were examined at various intervals after sleeve resection of the left upper lobe was performed in combination with bronchoplasty and pulmonary artery angioplasty. Postoperative changes in the bronchus and pulmonary artery were investigated by bronchoscopy and pulmonary angiography 8 months to 14 months after the operation. The dogs were sacrificed 9 months to 32 months after the operation, and the bronchus and lung tissue...

  5. Prediction of lung density changes after radiotherapy by cone beam computed tomography response markers and pre-treatment factors for non-small cell lung cancer patients

    DEFF Research Database (Denmark)

    Bernchou, Uffe; Hansen, Olfred; Schytte, Tine

    2015-01-01

    BACKGROUND AND PURPOSE: This study investigates the ability of pre-treatment factors and response markers extracted from standard cone-beam computed tomography (CBCT) images to predict the lung density changes induced by radiotherapy for non-small cell lung cancer (NSCLC) patients. METHODS...... AND MATERIALS: Density changes in follow-up computed tomography scans were evaluated for 135 NSCLC patients treated with radiotherapy. Early response markers were obtained by analysing changes in lung density in CBCT images acquired during the treatment course. The ability of pre-treatment factors and CBCT...

  6. Expression and Significance of gp96 and Immune-related Gene CTLA-4, CD8 in Lung Cancer Tissues

    Directory of Open Access Journals (Sweden)

    Haiyan ZHENG

    2010-08-01

    Full Text Available Background and objective It has been proven that gp96 plays an important role in specific cytotoxic immune response which is involved in anti-tumor effect in the body. The aim of this study is to investigate the biological significance of heat shock protein gp96 and immune-related gene CTLA-4, CD8 expressions in lung cancer tissues of different progressive stages. Methods We used Envision immunohistochemistry method to detect the levels of expression of gp96, CTLA-4, CD8 in tissue microarray, which contained 89 primary lung cancer tissues, 12 lymph node metastasis lung cancer tissues, 12 precancerous lesions and 10 normal lung tissues, and analyzed the relationship between their expressions and clinicopathological parameters. Results (1 The positive rate of gp96 in primary lung cancer was remarkably higher than that in precancerous lesion and normal lung tissue (P < 0.05. The positive rate of CTLA-4 in primary lung cancer tissue and precancerous lesion was significantly higher than that in normal lung tissue (P < 0.05. The positive rate of CD8 in primary lung cancer tissue was significantly higher than that in normal lung tissue (P < 0.05. The positive rate of gp96 in CD8-positive lymphocytes in the high expression group was less than that in the low group (P < 0.05. (2 The positive rate of gp96 was closely related to sex, differentiation and clinical stage (P < 0.05, but not to age, gross type, histological type and lymph node metastasis (P > 0.05. The positive rate of CTLA-4 was closely related to age and differentiation (P < 0.05, but not to sex, gross type, histological type, clinical stage and lymph node metastasis (P > 0.05. CD8 expression was related to clinical stage (P < 0.05, but not to sex, age, gross type, histological type, differentiation and lymph node metastasis (P > 0.05. The positive rates of gp96, CTLA-4 were higher than that of CD8 in squamous cell carcinoma and SCLC, respectively. (3 There was positive correlation between gp

  7. Progress in Tissue Specimens Alternative for the Driver Genes Testing of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yan SUN

    2015-06-01

    Full Text Available Target treatment based on driver genes in advanced non-small cell lung cancer is very important currently. Tumor tissues is the gold standard for driver genes testing. However, most of patients could not get the gene information for lack of enough tissues. To explore the tissue specimens alternatives is a hot spot in clinical work. This report reviews the tissue specimen alternatives of driver gene testing in non-small cell lung cancer.

  8. Adsorption Properties of Typical Lung Cancer Breath Gases on Ni-SWCNTs through Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Qianqian Wan

    2017-01-01

    Full Text Available A lot of useful information is contained in the human breath gases, which makes it an effective way to diagnose diseases by detecting the typical breath gases. This work investigated the adsorption of typical lung cancer breath gases: benzene, styrene, isoprene, and 1-hexene onto the surface of intrinsic and Ni-doped single wall carbon nanotubes through density functional theory. Calculation results show that the typical lung cancer breath gases adsorb on intrinsic single wall carbon nanotubes surface by weak physisorption. Besides, the density of states changes little before and after typical lung cancer breath gases adsorption. Compared with single wall carbon nanotubes adsorption, single Ni atom doping significantly improves its adsorption properties to typical lung cancer breath gases by decreasing adsorption distance and increasing adsorption energy and charge transfer. The density of states presents different degrees of variation during the typical lung cancer breath gases adsorption, resulting in the specific change of conductivity of gas sensing material. Based on the different adsorption properties of Ni-SWCNTs to typical lung cancer breath gases, it provides an effective way to build a portable noninvasive portable device used to evaluate and diagnose lung cancer at early stage in time.

  9. Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.

    Science.gov (United States)

    Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2012-11-08

    A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.

  10. SU-F-T-150: Comparing Normal Tissue Irradiated Volumes for Proton Vs. Photon Treatment Plans On Lung Patients

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A; Mohan, R; Liao, Z [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The aim of this work is to compare the “irradiated volume” (IRV) of normal tissues receiving 5, 20, 50, 80 and 90% or higher of the prescription dose with passively scattered proton therapy (PSPT) vs. IMRT of lung cancer patients. The overall goal of this research is to understand the factors affecting outcomes of a randomized PSPT vs. IMRT lung trial. Methods: Thirteen lung cancer patients, selected randomly, were analyzed. Each patient had PSPT and IMRT 74 Gy (RBE) plans meeting the same normal tissue constraints generated. IRVs were created for pairs of IMRT and PSPT plans on each patient. The volume of iGTV, (respiratory motion-incorporated GTV) was subtracted from each IRV to create normal tissue irradiated volume IRVNT. The average of IRVNT DVHs over all patients was also calculated for both modalities and inter-compared as were the selected dose-volume indices. Probability (p value) curves were calculated based on the Wilcoxon matched-paired signed-rank test to determine the dose regions where the statistically significant differences existed. Results: As expected, the average 5, 20 and 50% IRVNT’s for PSPT was found to be significantly smaller than for IMRT (p < 0.001, 0.01, and 0.001 respectively). However, the average 90% IRVNT for PSPT was greater than for IMRT (p = 0.003) presumably due to larger penumbra of protons and the long range of protons in lower density media. The 80% IRVNT for PSPT was also larger but not statistically distinguishable (p = .224). Conclusion: PSPT modality has smaller irradiated volume at lower doses, but larger volume at high doses. A larger cohort of lung patients will be analyzed in the future and IRVNT of patients treated with PSPT and IMRT will be compared to determine if the irradiated volumes (the magnitude of “dose bath”) correlate with outcomes.

  11. Weight preserving image registration for monitoring disease progression in lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Lo, Pechin Chien Pau; Haseem, Ashraf

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan...... the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans...

  12. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome.

    Science.gov (United States)

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D

    2016-10-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.

  13. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry.

    Science.gov (United States)

    Christensen, Gary E; Song, Joo Hyun; Lu, Wei; El Naqa, Issam; Low, Daniel A

    2007-06-01

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  14. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry

    International Nuclear Information System (INIS)

    Christensen, Gary E.; Song, Joo Hyun; Lu, Wei; Naqa, Issam El; Low, Daniel A.

    2007-01-01

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  15. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle,

    Directory of Open Access Journals (Sweden)

    Samanta Portão de Carlos

    2014-08-01

    Full Text Available OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively] in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group: a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice, the greatest differences (increases in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.

  16. Improved correction for the tissue fraction effect in lung PET/CT imaging

    International Nuclear Information System (INIS)

    Holman, Beverley F; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F; Groves, Ashley M; Thielemans, Kris; Maher, Toby M

    2015-01-01

    Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K 1 and K i along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34–80% in the best case and 29–96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted. (paper)

  17. Improved correction for the tissue fraction effect in lung PET/CT imaging

    Science.gov (United States)

    Holman, Beverley F.; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F.; Maher, Toby M.; Groves, Ashley M.; Thielemans, Kris

    2015-09-01

    Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K1 and Ki along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34-80% in the best case and 29-96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted.

  18. Evaluation of changes in central airway dimensions, lung area and mean lung density at paired inspiratory/expiratory high-resolution computed tomography

    International Nuclear Information System (INIS)

    Ederle, J.R.; Heussel, C.P.; Hast, J.; Ley, S.; Thelen, M.; Kauczor, H.U.; Fischer, B.; Beek, E.J.R. van

    2003-01-01

    The aim of this study was to improve the understanding of interdependencies of dynamic changes in central airway dimensions, lung area and lung density on HRCT. The HRCT scans of 156 patients obtained at full inspiratory and expiratory position were evaluated retrospectively. Patients were divided into four groups according to lung function tests: normal subjects (n=47); obstructive (n=74); restrictive (n=19); or mixed ventilatory impairment (n=16). Mean lung density (MLD) was correlated with cross-sectional area of the lung (CSA L ), cross-sectional area of the trachea (CSA T ) and diameter of main-stem bronchi (D B ). The CSA L was correlated with CSA T and D B . MLD correlated with CSA L in normal subjects (r=-0.66, p T in the control group (r=-0.50, p B was found (r=-0.52, p L and CSA T correlated in the control group (r=0.67, p L and D B correlated in the control group (r=0.42, p<0.0001) and in patients with obstructive lung disease (r=0.24, p<0.05). Correlations for patients with restrictive and mixed lung disease were constantly lower. Dependencies between central and peripheral airway dimensions and lung parenchyma are demonstrated by HRCT. Best correlations are observed in normal subjects and patients with obstructive lung disease. Based on these findings we postulate that the dependencies are the result of air-flow and pressure patterns. (orig.)

  19. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells

    DEFF Research Database (Denmark)

    Rolandsson, Sara; Andersson Sjöland, Annika; Brune, Jan C

    2014-01-01

    BACKGROUND: Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported. This st......BACKGROUND: Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported...

  20. Rapid detection of Mannheimia haemolytica in lung tissues of sheep and from bacterial culture

    Directory of Open Access Journals (Sweden)

    Jyoti Kumar

    2015-09-01

    Full Text Available Aim: This study was aimed to detect Mannheimia haemolytica in lung tissues of sheep and from a bacterial culture. Introduction: M. haemolytica is one of the most important and well-established etiological agents of pneumonia in sheep and other ruminants throughout the world. Accurate diagnosis of M. haemolytica primarily relies on bacteriological examination, biochemical characteristics and, biotyping and serotyping of the isolates. In an effort to facilitate rapid M. haemolytica detection, polymerase chain reaction assay targeting Pasteurella haemolytica serotype-1 specific antigens (PHSSA, Rpt2 and 12S ribosomal RNA (rRNA genes were used to detect M. haemolytica directly from lung tissues and from bacterial culture. Materials and Methods: A total of 12 archived lung tissues from sheep that died of pneumonia on an organized farm were used. A multiplex polymerase chain reaction (mPCR based on two-amplicons targeted PHSSA and Rpt2 genes of M. haemolytica were used for identification of M. haemolytica isolates in culture from the lung samples. All the 12 lung tissue samples were tested for the presence M. haemolytica by PHSSA and Rpt2 genes based PCR and its confirmation by sequencing of the amplicons. Results: All the 12 lung tissue samples tested for the presence of PHSSA and Rpt2 genes of M. haemolytica by mPCR were found to be positive. Amplification of 12S rRNA gene fragment as internal amplification control was obtained with each mPCR reaction performed from DNA extracted directly from lung tissue samples. All the M. haemolytica were also positive for mPCR. No amplified DNA bands were observed for negative control reactions. All the three nucleotide sequences were deposited in NCBI GenBank (Accession No. KJ534629, KJ534630 and KJ534631. Sequencing of the amplified products revealed the identity of 99-100%, with published sequence of PHSSA and Rpt2 genes of M. haemolytica available in the NCBI database. Sheep specific mitochondrial 12S r

  1. Development of an experimental model of brain tissue heterotopia in the lung

    Science.gov (United States)

    Quemelo, Paulo Roberto Veiga; Sbragia, Lourenço; Peres, Luiz Cesar

    2007-01-01

    Summary The presence of heterotopic brain tissue in the lung is a rare abnormality. The cases reported thus far are usually associated with neural tube defects (NTD). As there are no reports of experimental models of NTD that present this abnormality, the objective of the present study was to develop a surgical method of brain tissue heterotopia in the lung. We used 24 pregnant Swiss mice divided into two groups of 12 animals each, denoted 17GD and 18GD according to the gestational day (GD) when caesarean section was performed to collect the fetuses. Surgery was performed on the 15th GD, one fetus was removed by hysterectomy and its brain tissue was cut into small fragments and implanted in the lung of its litter mates. Thirty-four live fetuses were obtained from the 17GD group. Of these, eight (23.5%) were used as control (C), eight (23.5%) were sham operated (S) and 18 (52.9%) were used for pulmonary brain tissue implantation (PBI). Thirty live fetuses were obtained from the females of the 18GD group. Of these, eight (26.6%) were C, eight (26.6%) S and 14 (46.6%) were used for PBI. Histological examination of the fetal trunks showed implantation of GFAP-positive brain tissue in 85% of the fetuses of the 17GD group and in 100% of those of the 18GD group, with no significant difference between groups for any of the parameters analysed. The experimental model proved to be efficient and of relatively simple execution, showing complete integration of the brain tissue with pulmonary and pleural tissue and thus representing a model that will permit the study of different aspects of cell implantation and interaction. PMID:17877535

  2. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor-α (TNF-α, whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI.

  3. Serpine2 deficiency results in lung lymphocyte accumulation and bronchus-associated lymphoid tissue formation.

    Science.gov (United States)

    Solleti, Siva Kumar; Srisuma, Sorachai; Bhattacharya, Soumyaroop; Rangel-Moreno, Javier; Bijli, Kaiser M; Randall, Troy D; Rahman, Arshad; Mariani, Thomas J

    2016-07-01

    Serine proteinase inhibitor, clade E, member 2 (SERPINE2), is a cell- and extracellular matrix-associated inhibitor of thrombin. Although SERPINE2 is a candidate susceptibility gene for chronic obstructive pulmonary disease, the physiologic role of this protease inhibitor in lung development and homeostasis is unknown. We observed spontaneous monocytic-cell infiltration in the lungs of Serpine2-deficient (SE2(-/-)) mice, beginning at or before the time of lung maturity, which resulted in lesions that resembled bronchus-associated lymphoid tissue (BALT). The initiation of lymphocyte accumulation in the lungs of SE2(-/-) mice involved the excessive expression of chemokines, cytokines, and adhesion molecules that are essential for BALT induction, organization, and maintenance. BALT-like lesion formation in the lungs of SE2(-/-) mice was also associated with a significant increase in the activation of thrombin, a recognized target of SE2, and excess stimulation of NF-κB, a major regulator of chemokine expression and inflammation. Finally, systemic delivery of thrombin rapidly stimulated lung chemokine expression in vivo These data uncover a novel mechanism whereby loss of serine protease inhibition leads to lung lymphocyte accumulation.-Solleti, S. K., Srisuma, S., Bhattacharya, S., Rangel-Moreno, J., Bijli, K. M., Randall, T. D., Rahman, A., Mariani, T. J. Serpine2 deficiency results in lung lymphocyte accumulation and bronchus-associated lymphoid tissue formation. © FASEB.

  4. Relation between radiation-induced whole lung functional loss and regional structural changes in partial irradiated rat lung

    International Nuclear Information System (INIS)

    Luijk, Peter van; Novakova-Jiresova, Alena; Faber, Hette; Steneker, Marloes N.J.; Kampinga, Harm H.; Meertens, Haarm; Coppes, Robert P.

    2006-01-01

    Purpose: Radiation-induced pulmonary toxicity is characterized by dose, region, and time-dependent severe changes in lung morphology and function. This study sought to determine the relation between the structural and functional changes in the irradiated rat lung at three different phases after irradiation. Materials and Methods: Six groups of animals were irradiated to 16-22 Gy to six different lung regions, each containing 50% of the total lung volume. Before and every 2 weeks after irradiation, the breathing rate (BR) was measured, and at Weeks 8, 26, and 38 CT was performed. From the computed tomography scans, the irradiated lung tissue was delineated using a computerized algorithm. A single quantitative measure for structural change was derived from changes of the mean and standard deviation of the density within the delineated lung. Subsequently, this was correlated with the BR in the corresponding phase. Results: In the mediastinal and apex region, the BR and computed tomography density changes did not correlate in any phase. After lateral irradiation, the density changes always correlated with the BR; however, in all other regions, the density changes only correlated significantly (r 2 = 0.46-0.85, p < 0.05) with the BR in Week 26. Conclusion: Changes in pulmonary function correlated with the structural changes in the absence of confounding heart irradiation

  5. Signs of Gas Trapping in Normal Lung Density Regions in Smokers.

    Science.gov (United States)

    Bodduluri, Sandeep; Reinhardt, Joseph M; Hoffman, Eric A; Newell, John D; Nath, Hrudaya; Dransfield, Mark T; Bhatt, Surya P

    2017-12-01

    A substantial proportion of subjects without overt airflow obstruction have significant respiratory morbidity and structural abnormalities as visualized by computed tomography. Whether regions of the lung that appear normal using traditional computed tomography criteria have mild disease is not known. To identify subthreshold structural disease in normal-appearing lung regions in smokers. We analyzed 8,034 subjects with complete inspiratory and expiratory computed tomographic data participating in the COPDGene Study, including 103 lifetime nonsmokers. The ratio of the mean lung density at end expiration (E) to end inspiration (I) was calculated in lung regions with normal density (ND) by traditional thresholds for mild emphysema (-910 Hounsfield units) and gas trapping (-856 Hounsfield units) to derive the ND-E/I ratio. Multivariable regression analysis was used to measure the associations between ND-E/I, lung function, and respiratory morbidity. The ND-E/I ratio was greater in smokers than in nonsmokers, and it progressively increased from mild to severe chronic obstructive pulmonary disease severity. A proportion of 26.3% of smokers without airflow obstruction had ND-E/I greater than the 90th percentile of normal. ND-E/I was independently associated with FEV 1 (adjusted β = -0.020; 95% confidence interval [CI], -0.032 to -0.007; P = 0.001), St. George's Respiratory Questionnaire scores (adjusted β = 0.952; 95% CI, 0.529 to 1.374; P smokers without airflow obstruction, and it is associated with respiratory morbidity. Clinical trial registered with www.clinicaltrials.gov (NCT00608764).

  6. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    Science.gov (United States)

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  7. Early and late effects of prenatal corticosteroid treatment on the microRNA profiles of lung tissue in rats

    Science.gov (United States)

    YU, HONG-REN; LI, SUNG-CHOU; TSENG, WAN-NING; TAIN, YOU-LIN; CHEN, CHIH-CHENG; SHEEN, JIUNN-MING; TIAO, MAO-MENG; KUO, HO-CHANG; HUANG, CHAO-CHENG; HSIEH, KAI-SHENG; HUANG, LI-TUNG

    2016-01-01

    Glucocorticoids have been administered to mothers at risk of premature delivery to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome. Micro (mi)RNAs serve various crucial functions in cell proliferation, differentiation and organ development; however, few studies have demonstrated an association between miRNAs and lung development. The aim of the present study was to investigate alterations in the miRNA profiles of rat lung tissue following prenatal glucocorticoid therapy for fetal lung development. The differences in miRNA expression profiles were compared between postnatal days 7 (D7) and 120 (D120) rat lung tissues, followed by validation using reverse transcription-quantitative polymerase chain reaction. The miRNA profiles of rat lung tissues following prenatal dexamethasone (DEX) therapy were also investigated. miRNAs with 2-fold changes were selected for further analysis. At D120, 6 upregulated and 6 downregulated miRNAs were detected, compared with D7. Among these differentially expressed miRNAs, miR-101-3p and miR-99b-5p were associated with the lowest and highest expressions of miRNA at D7, respectively. A limited impact on the miRNA profiles of rat lung tissues was observed following prenatal DEX treatment, which may help to further clarify the mechanisms underlying normal lung development. However, the results of the present study cannot entirely elucidate the effects of prenatal DEX treatment on the lung development of premature infants, and further studies investigating the impact of prenatal corticosteroids on fetal lung miRNA profiles are required. PMID:26997989

  8. Issues in quantification of registered respiratory gated PET/CT in the lung

    Science.gov (United States)

    Cuplov, Vesna; Holman, Beverley F.; McClelland, Jamie; Modat, Marc; Hutton, Brian F.; Thielemans, Kris

    2018-01-01

    PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent 18 F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16

  9. Resolvin D1 prevents smoking-induced emphysema and promotes lung tissue regeneration.

    Science.gov (United States)

    Kim, Kang-Hyun; Park, Tai Sun; Kim, You-Sun; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2016-01-01

    Emphysema is an irreversible disease that is characterized by destruction of lung tissue as a result of inflammation caused by smoking. Resolvin D1 (RvD1), derived from docosahexaenoic acid, is a novel lipid that resolves inflammation. The present study tested whether RvD1 prevents smoking-induced emphysema and promotes lung tissue regeneration. C57BL/6 mice, 8 weeks of age, were randomly divided into four groups: control, RvD1 only, smoking only, and smoking with RvD1 administration. Four different protocols were used to induce emphysema and administer RvD1: mice were exposed to smoking for 4 weeks with poly(I:C) or to smoking only for 24 weeks, and RvD1 was injected within the smoking exposure period to prevent regeneration or after completion of smoking exposure to assess regeneration. The mean linear intercept and inflammation scores were measured in the lung tissue, and inflammatory cells and cytokines were measured in the bronchoalveolar lavage fluid. Measurements of mean linear intercept showed that RvD1 significantly attenuated smoking-induced lung destruction in all emphysema models. RvD1 also reduced smoking-induced inflammatory cell infiltration, which causes the structural derangements observed in emphysema. In the 4-week prevention model, RvD1 reduced the smoking-induced increase in eosinophils and interleukin-6 in the bronchoalveolar lavage fluid. In the 24-week prevention model, RvD1 also reduced the increased neutrophils and total cell counts induced by smoking. RvD1 attenuated smoking-induced emphysema in vivo by reducing inflammation and promoting tissue regeneration. This result suggests that RvD1 may be useful in the prevention and treatment of emphysema.

  10. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry.

    Science.gov (United States)

    Kami, Kenjiro; Fujimori, Tamaki; Sato, Hajime; Sato, Mutsuko; Yamamoto, Hiroyuki; Ohashi, Yoshiaki; Sugiyama, Naoyuki; Ishihama, Yasushi; Onozuka, Hiroko; Ochiai, Atsushi; Esumi, Hiroyasu; Soga, Tomoyoshi; Tomita, Masaru

    2013-04-01

    Metabolic microenvironment of tumor cells is influenced by oncogenic signaling and tissue-specific metabolic demands, blood supply, and enzyme expression. To elucidate tumor-specific metabolism, we compared the metabolomics of normal and tumor tissues surgically resected pairwise from nine lung and seven prostate cancer patients, using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Phosphorylation levels of enzymes involved in central carbon metabolism were also quantified. Metabolomic profiles of lung and prostate tissues comprised 114 and 86 metabolites, respectively, and the profiles not only well distinguished tumor from normal tissues, but also squamous cell carcinoma from the other tumor types in lung cancer and poorly differentiated tumors from moderately differentiated tumors in prostate cancer. Concentrations of most amino acids, especially branched-chain amino acids, were significantly higher in tumor tissues, independent of organ type, but of essential amino acids were particularly higher in poorly differentiated than moderately differentiated prostate cancers. Organ-dependent differences were prominent at the levels of glycolytic and tricarboxylic acid cycle intermediates and associated energy status. Significantly high lactate concentrations and elevated activating phosphorylation levels of phosphofructokinase and pyruvate kinase in lung tumors confirmed hyperactive glycolysis. We highlighted the potential of CE-TOFMS-based metabolomics combined with phosphorylated enzyme analysis for understanding tissue-specific tumor microenvironments, which may lead to the development of more effective and specific anticancer therapeutics.

  11. A low-cost density reference phantom for computed tomography

    OpenAIRE

    Levine, Zachary H.; Li, Mingdong; Reeves, Anthony P.; Yankelevitz, David F.; Chen, Joseph J.; Siegel, Eliot L.; Peskin, Adele; Zeiger, Diana N.

    2009-01-01

    The authors characterized a commercially available foam composed of polyurethane and polyisocyanurate which is marketed for modeling parts in the aircraft, automotive, and related industries. The authors found that the foam may be suitable for use as a density reference standard in the range below −400 Hounsfield units. This range is coincident with the density of lung tissue. The foam may be helpful in making the diagnosis of lung disease more systematic.

  12. A low-cost density reference phantom for computed tomography.

    Science.gov (United States)

    Levine, Zachary H; Li, Mingdong; Reeves, Anthony P; Yankelevitz, David F; Chen, Joseph J; Siegel, Eliot L; Peskin, Adele; Zeiger, Diana N

    2009-02-01

    The authors characterized a commercially available foam composed of polyurethane and polyisocyanurate which is marketed for modeling parts in the aircraft, automotive, and related industries. The authors found that the foam may be suitable for use as a density reference standard in the range below -400 Hounsfield units. This range is coincident with the density of lung tissue. The foam may be helpful in making the diagnosis of lung disease more systematic.

  13. Weight preserving image registration for monitoring disease progression in lung CT.

    Science.gov (United States)

    Gorbunova, Vladlena; Lol, Pechin; Ashraf, Haseem; Dirksen, Asger; Nielsen, Mads; de Bruijne, Marleen

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is associated with progression of emphysema. To account for differences in lung intensity owing to differences in the inspiration level in the two scans rather than disease progression, we propose to adjust the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans and may result in a more sensitive measure of disease progression than standard quantitative CT measures.

  14. SU-E-J-64: Evaluation of a Commercial EPID-Based in Vivo Dosimetric System in the Presence of Lung Tissue Heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Gimeno-Olmos, J; Palomo-Llinares, R; Candela-Juan, C; Carmona Meseguer, V; Lliso-Valverde, F [Hospital Universitari i Politecnic La Fe, Valencia, Valencia (Spain); Garcia-Martinez, T [Hospital de la Ribera, Alzira, Valencia (Spain); Richart-Sancho, J [Clinica Benidorm, Benidorm, Alicante (Spain); Ballester, F [University of Valencia, Burjassot (Spain); Perez-Calatayud, J [Hospital Universitari i Politecnic La Fe, Valencia, Valencia (Spain); Clinica Benidorm, Benidorm, Alicante (Spain)

    2014-06-01

    Purpose: To study the performance of Dosimetry Check (DC), an EPID-based dosimetry software, which allows performing transit dosimetry, in low density medium, by comparing calculations in-phantom, and analysing results for 15 lung patients. Methods: DC software (v.3.8, pencil beam-based algorithm) has been tested, for plans (Eclipse v.10.0 TPS) delivered in two Varian Clinac iX equipped with aS1000 EPIDs.In the CIRS lung phantom, comparisons between DC and Eclipse (Acuros) were performed for several plans: (1) four field box; (2) square field delivered in arc mode; (3) RapidArc lung patient plan medially centred; (4) RapidArc lung patient plan centred in one lung. Reference points analysed: P1 (medial point, plans 1–3) and P2 (located inside one lung, plan 4).For fifteen lung patients treated with RapidArc, the isocentre and 9 additional points inside the PTV as well as the gamma passing rate (3%/3mm) for the PTV and at the main planes were studied. Results: In-phantom:P1: Per-field differences in plan 1: good agreement for AP-PA fields; discrepancy of 7% for the lateral fields. Global differences (plans 1–3): about 4%, showing a compensating effect of the individual differences.P2: Global difference (plan 4): 15 %. This represents the worst case situation as it is a point surrounded by lung tissue, where the DC pencil beam algorithm is expected to give the greater difference against Acuros.Lung patients: Mean point difference inside the PTV:(5.4±4.2) %. Gamma passing rate inside the PTV:(45±12) %. Conclusion: The performance of DC in heterogeneous lung medium was studied with a special phantom and the results for 15 patients were analysed. The found deviations show that even though DC is a highly promising in vivo dosimetry tool, there is a need of incorporating a more accurate algorithm mainly for plans with low density regions involved.

  15. Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice

    Science.gov (United States)

    Chai, Y; Calaf, G M; Zhou, H; Ghandhi, S A; Elliston, C D; Wen, G; Nohmi, T; Amundson, S A; Hei, T K

    2013-01-01

    Background: Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. Methods: A 1-cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. Results: Compared with sham-treated controls, the Spi− mutation frequency increased 2.4-fold in non-targeted lung tissues at 24 h after partial body irradiation (PBIR). Consistent with dramatic Cyclooxygenase 2 (COX-2) induction in the non-targeted bronchial epithelial cells, increasing levels of prostaglandin, together with 8-hydroxydeoxyguanosine, in the out-of-field lung tissues were observed after PBIR. In addition, DNA double-strand breaks and apoptosis were induced in bystander lung tissues after PBIR. Conclusion: The PBIR induces DNA damage and mutagenesis in non-targeted lung tissues, especially in bronchial epithelial cells, and COX-2 has an essential role in bystander mutagenesis. PMID:23321513

  16. Critical transition in tissue homeostasis accompanies murine lung senescence.

    Directory of Open Access Journals (Sweden)

    Carla L Calvi

    Full Text Available BACKGROUND: Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The susceptibility to pulmonary insults is attributed to "low pulmonary reserve", ostensibly reflecting a combination of age-related musculoskeletal, immunologic and intrinsic pulmonary dysfunction. METHODS/PRINCIPAL FINDINGS: Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age. Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4 (toll receptor 4 and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace enlargement during late life stages. CONCLUSION/SIGNIFICANCE: Our findings establish that a tissue-specific aging program is evident during a presenescent interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These signature events, during middle age, indicate that early stages of the aging immune system may have important correlates in the maintenance of tissue morphology. We further show that time-course analyses of aging

  17. Volume adjustment of lung density by computed tomography scans in patients with emphysema

    DEFF Research Database (Denmark)

    Shaker, S B; Dirksen, A; Laursen, Lars Christian

    2004-01-01

    of pulmonary emphysema derived from CT scans. These parameters are markedly influenced by changes in the level of inspiration. The variability of lung density due to within-subject variation in TLV was explored by plotting TLV against PD and RA. RESULTS: The coefficients for volume adjustment for PD were...... relatively stable over a wide range from the 10th to the 80th percentile, whereas for RA the coefficients showed large variability especially in the lower range, which is the most relevant for quantitation of pulmonary emphysema. CONCLUSION: Volume adjustment is mandatory in repeated CT densitometry......PURPOSE: To determine how to adjust lung density measurements for the volume of the lung calculated from computed tomography (CT) scans in patients with emphysema. MATERIAL AND METHODS: Fifty patients with emphysema underwent 3 CT scans at 2-week intervals. The scans were analyzed with a software...

  18. Proteoglycan changes in the extracellular matrix of lung tissue from patients with pulmonary emphysema

    NARCIS (Netherlands)

    van Straaten, JFM; Coers, W; Noordhoek, JA; Flipsen, JTM; Kauffman, HF; Timens, W; Postma, DS

    To characterize the changes in the extracellular matrix in smoking-related pulmonary emphysema, we undertook immunohistochemical studies in lung tissues from controls (n = 7), from patients with mild (n = 11) and severe (n = 8) emphysema, and from patients with lung fibrosis (n = 6). We studied

  19. Pulmonary actinomycosis imitating lung cancer on 18F-FDG PERT/CT: A case report and literature review

    International Nuclear Information System (INIS)

    Qiu, Lin; Lan, Lian Jun; Feng, Yue; Huang, Zhan Wen; Chen, Yue

    2015-01-01

    Here we report a case of 41-year-old man with a soft tissue density mass at right upper lung and palpable abscesses at right upper backside and right wrist. 18 F-fluorodeoxyglucose positron emission tomography/computed tomography demonstrated a 7.8 × 5.0 cm mass with soft-tissue density in the upper lobe of the right lung with high metabolic activity. The infiltrative mass extended to adjacent chest wall soft tissue. Final diagnosis of pulmonary actinomycosis with multiple abscesses was made. The patient responded well to antibiotics treatment

  20. Pulmonary Actinomycosis Imitating Lung Cancer on (18)F-FDG PET/CT: A Case Report and Literature Review.

    Science.gov (United States)

    Qiu, Lin; Lan, Lianjun; Feng, Yue; Huang, Zhanwen; Chen, Yue

    2015-01-01

    Here we report a case of 41-year-old man with a soft tissue density mass at right upper lung and palpable abscesses at right upper backside and right wrist. (18)F-fluorodeoxyglucose positron emission tomography/computed tomography demonstrated a 7.8 × 5.0 cm mass with soft-tissue density in the upper lobe of the right lung with high metabolic activity. The infiltrative mass extended to adjacent chest wall soft tissue. Final diagnosis of pulmonary actinomycosis with multiple abscesses was made. The patient responded well to antibiotics treatment.

  1. Response of rat lung tissue to short-term hyperoxia: a proteomic approach.

    Science.gov (United States)

    Spelten, Oliver; Wetsch, Wolfgang A; Wrettos, Georg; Kalenka, Armin; Hinkelbein, Jochen

    2013-11-01

    An inspiratory oxygen fraction of 1.0 is often required to avoid hypoxia both in many pre- and in-hospital situations. On the other hand, hyperoxia may lead to deleterious consequences (cell growth inhibition, inflammation, and apoptosis) for numerous tissues including the lung. Whereas clinical effects of hyperoxic lung injury are well known, its impact on the expression of lung proteins has not yet been evaluated sufficiently. The aim of this study was to analyze time-dependent alterations of protein expression in rat lung tissue after short-term normobaric hyperoxia (NH). After approval of the local ethics committee for animal research, N = 36 Wistar rats were randomized into six different groups: three groups with NH with exposure to 100 % oxygen for 3 h and three groups with normobaric normoxia (NN) with exposure to room air (21 % oxygen). After the end of the experiments, lungs were removed immediately (NH0 and NN0), after 3 days (NH3 and NN3) and after 7 days (NH7 and NN7). Lung lysates were analyzed by two-dimensional gel electrophoresis (2D-GE) followed by peptide mass fingerprinting using mass spectrometry. Statistical analysis was performed with Delta 2D (DECODON GmbH, Greifswald, Germany; ANOVA, Bonferroni correction, p pO2 was significantly higher in NH-groups compared to NN-groups (581 ± 28 vs. 98 ± 12 mmHg; p < 0.01), all other physiological parameters did not differ. Expression of 14 proteins were significantly altered: two proteins were up-regulated and 12 proteins were down-regulated. Even though NH was comparatively short termed, significant alterations in lung protein expression could be demonstrated up to 7 days after hyperoxia. The identified proteins indicate an association with cell growth inhibition, regulation of apoptosis, and approval of structural cell integrity.

  2. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection.

    Science.gov (United States)

    DiPiazza, Anthony; Laniewski, Nathan; Rattan, Ajitanuj; Topham, David J; Miller, Jim; Sant, Andrea J

    2018-07-01

    Pulmonary CD4 T cells are critical in respiratory virus control, both by delivering direct effector function and through coordinating responses of other immune cells. Recent studies have shown that following influenza virus infection, virus-specific CD4 T cells are partitioned between pulmonary vasculature and lung tissue. However, very little is known about the peptide specificity or functional differences of CD4 T cells within these two compartments. Using a mouse model of influenza virus infection in conjunction with intravascular labeling in vivo , the cell surface phenotype, epitope specificity, and functional potential of the endogenous polyclonal CD4 T cell response was examined by tracking nine independent CD4 T cell epitope specificities. These studies revealed that tissue-localized CD4 cells were globally distinct from vascular cells in expression of markers associated with transendothelial migration, residency, and micropositioning. Despite these differences, there was little evidence for remodeling of the viral epitope specificity or cytokine potential as cells transition from vasculature to the highly inflamed lung tissue. Our studies also distinguished cells in the pulmonary vasculature from peripheral circulating CD4 T cells, providing support for the concept that the pulmonary vasculature does not simply reflect circulating cells that are trapped within the narrow confines of capillary vessels but rather is enriched in transitional cells primed in the draining lymph node that have specialized potential to enter the lung tissue. IMPORTANCE CD4 T cells convey a multitude of functions in immunity to influenza, including those delivered in the lymph node and others conveyed by CD4 T cells that leave the lymph node, enter the blood, and extravasate into the lung tissue. Here, we show that the transition of recently primed CD4 cells detected in the lung vasculature undergo profound changes in expression of markers associated with tissue localization as

  3. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  4. 5-Aza-2'-deoxycytidine protects against emphysema in mice via suppressing p16Ink4a expression in lung tissue

    Directory of Open Access Journals (Sweden)

    He ZH

    2017-10-01

    Full Text Available Zhi-Hui He,1 Yan Chen,2 Ping Chen,2 Sheng-Dong He,2 Hui-Hui Zeng,2 Ji-Ru Ye,2 Da Liu,2 Jun Cao3 1Intensive Care Unit, 2Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, 3Department of Respiratory Medicine, Hunan Provincial People’s Hospital, Changsha, China Background: There is a growing realization that COPD, or at least emphysema, involves several processes presenting in aging and cellular senescence. Endothelial progenitor cells (EPCs contribute to neovascularization and play an important role in the development of COPD. The gene for p16Ink4a is a major dominant senescence one. The aim of the present study was to observe changes in lung function, histomorphology of lung tissue, and expression of p16Ink4a in lung tissue and bone marrow-derived EPCs in emphysematous mice induced by cigarette-smoke extract (CSE, and further to search for a potential candidate agent protecting against emphysema induced by CSE. Materials and methods: An animal emphysema model was induced by intraperitoneal injection of CSE. 5-Aza-2'-deoxycytidine (5-Aza-CdR was administered to the emphysematous mice. Lung function and histomorphology of lung tissue were measured. The p16Ink4a protein and mRNA in EPCs and lung tissues were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction, respectively. Results: CSE induced emphysema with increased p16Ink4a expression in lung tissue and bone marrow-derived EPCs. 5-Aza-CdR partly protected against emphysema, especially in the lung-morphology profile, and partly protest against the overexpression of p16Ink4a in EPCs and lung tissue induced by CSE. Conclusion: 5-Aza-CdR partly protected against emphysema in mice via suppressing p16Ink4a expression in EPCs and lung tissue. Keywords: 5-Aza-2'-deoxycytidine, cigarette smoke, emphysema, endothelial progenitor cells, p16Ink4a

  5. [Expression of high mobility group box-1 in the lung tissue and serum of patients with pulmonary tuberculosis].

    Science.gov (United States)

    Yang, Xiao-min; Yang, Hua

    2013-07-01

    To explore the expression of high mobility group box-1 (HMGB1) in the lung tissue and serum of patients with pulmonary tuberculosis and to explore its relationship with tumor necrosis factor (TNF)-α and interleukin(IL)-1β. Sixty samples of lung tissues were obtained from patients with pulmonary tuberculosis who had underwent pneumonectomy in Department of Chest Surgery, First Affiliated Hospital of Zunyi Medical College from June 2010 to December 2011. At the same period, 40 normal lung samples were also obtained from patients with pulmonary contusion and lung cancer by surgical resections as the control group. The mRNA expressions of HMGB1 was detected by reverse transcription-polymerase chain reaction (RT-PCR), and the protein level of HMGB1 was measured by immunohistochemical staining of tissue microarrays in lung tissue. Blood samples were taken from 89 patients with active pulmonary tuberculosis (pulmonary tuberculosis group), including hematogenous disseminated pulmonary tuberculosis (type II) in 35 cases and secondary pulmonary tuberculosis (type III) in 54 cases, and 50 healthy volunteers (control group). Furthermore, the 54 patients with secondary pulmonary tuberculosis were divided into different subgroups according to cavity formation and the lung fields involved: patients without lung cavity (35 cases) vs those with lung cavity (19 cases), patients with involvement of pulmonary tuberculosis (69 ± 29) was significantly higher than that in normal lung tissue (22 ± 12) (t = 2.389, P pulmonary tuberculosis (786 ± 86) was significantly higher than that in normal lung tissue (202 ± 60) (t = 3.872, P pulmonary tuberculosis group were (5.0 ± 3.2) µg/L, (118 ± 77) ng/L and (33 ± 20) ng/L, respectively, which were significantly higher than those in the control group [(1.7 ± 1.0) µg/L, (40 ± 11) ng/L and (18 ± 12) ng/L, respectively], the respective t values being -0.928, 4.268 and 11.064, all P pulmonary tuberculosis, the serum concentration of HMGB

  6. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    International Nuclear Information System (INIS)

    Traub, Richard J.

    2008-01-01

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness

  7. Influence of industrial dust of uranium ore on rats' lung tissue

    International Nuclear Information System (INIS)

    Jumasheva, R.T.

    2010-01-01

    Under the conditions of radiotoxic influence of uranium ore dust (UOD), the respiratory organs are the main system specifically responsible for adaptation to this factor. At the same time, there are not sufficient studies regarding the morphological aspects of structural lung distortions due to inhalational influence by UOD. To identify the nature of morphological changes in the animals' lung tissue at the cellular and subcellular levels under the influence of industrial dust of uranium ore in a dose of 50 MPC. Experimental studies were conducted on 80 white rats (tom) with a body mass of 120-180 g. The experimental animals were subjected to chronic inhalation of UOD in a dose of 50 MPC (107.75 mg/m 3 ). The animals that were kept in similar chambers but that were not exposed to UOD served as control animals. Material from the animals for research was withdrawn in 3, 7, 30 and 60 days after the beginning of the experiment. The animals were withdrawn from the experiment by decapitation after a brief ether anesthesia. The lung tissue was subjected to conventional histological processing. Sections were stained with haematoxylin and eosin according to van Gieson's method. For electronic microscopic examination the lung tissue slices were fixed and embedded by conventional methods. Obtained blocks were used to prepare ultrathin sections. An impact of UOD in a dose of 50 MPC was accompanied by the development of acute focal serous inflammation in the wall of the small bronchi and lung parenchyma in the early stages of the experiment (3-7 days), pneumonic foci of fibrosis, and the development of marked sclerotic changes in the peribronchial lymphoid tissue by the 30-th day. By the 60-th day, an increase of sclerotic changes in the bronchial wall accompanied by inhibition of the reaction on the part of interstitial macrophages and bronchus associated lymphoid tissue were reported. These indicate the intense course of the compensatory processes. Conducted electron

  8. The relationship between microvessels density and CT enhancement of the peripheral lung cancer

    International Nuclear Information System (INIS)

    Liu Shiyuan; Zhou Kangrong; Xiao Xiangsheng; Ye Tingjun; Zhang Zhiyong

    1999-01-01

    Objective: To investigate the relationship between microvessel density (MVD), clinical prognosis and CT enhancement of the peripheral lung cancer. Methods: 127 cases of peripheral lung cancer were examined with CT (87 cases retrospectively and 40 cases prospectively), and MVD were measured with immunohistochemical method by factor VIII on the specimens of the resected tumors. The results were analyzed and compared with CT enhancement, metastasis and prognosis. Results: The MVD was higher in the peripheral junction zone and interstitial areas than that in the parenchymal areas and necrotic zones of the tumors. Patients with nodal metastasis had higher MVD than those without nodal metastasis (56.9 +- 18.1 versus 43.8 +- 23.6, P 0.05); but the enhancement of the lung cancer correlated well with MVD (r 0.8874). Conclusions: Measurement of the microvessel density of tumor can determine the degree of angiogenesis of neoplasm and predict the metastasis or prognosis of the lung cancer. Angiogenesis not only constitutes the basis of enhancement of the tumor, but also determine the various degrees and patterns of enhancement. Spiral dynamic CT is the technique ideal to demonstrate the enhancement features, which might be helpful in making differential diagnosis of pulmonary nodules

  9. A comparison of conventional surfactant treatment and partial liquid ventilation on the lung volume of injured ventilated small lungs

    International Nuclear Information System (INIS)

    Proquitté, Hans; Hartenstein, Sebastian; Wauer, Roland R; Schmalisch, Gerd; Koelsch, Uwe; Rüdiger, Mario

    2013-01-01

    As an alternative to surfactant therapy (ST), partial liquid ventilation (PLV) with perfluorocarbons (PFC) has been considered as a treatment for acute lung injury (ALI) in newborns. The instilled PFC is much heavier than the instilled surfactant and the aim of this study was to investigate whether PLV, compared to ST, increases the end-expiratory volume of the lung (V L ). Fifteen newborn piglets (age <12 h, mean weight 678 g) underwent saline lung lavage to achieve a surfactant depletion. Thereafter animals were randomized to PLV (n = 8), receiving PFC PF5080 (3M, Germany) at 30 mL kg −1 , and ST (n = 7) receiving 120 mg Curosurf®. Blood gases, hemodynamics and static compliance were measured initially (baseline), immediately after ALI, and after 240 min mechanical ventilation with either technique. Subsequently all piglets were killed; the lungs were removed in toto and frozen in liquid N 2 . After freeze-drying the lungs were cut into lung cubes (LCs) with edge lengths of 0.7 cm, to calculate V L . All LCs were weighed and the density of the dried lung tissue was calculated. No statistically significant differences between treatment groups PLV and ST (means ± SD) were noted in body weight (676 ± 16 g versus 679 ± 17 g; P = 0.974) or lung dry weight (1.64 ± 0.29 g versus 1.79 ± 0.48 g; P = 0.48). Oxygenation index and ventilatory efficacy index did not differ significantly between both groups at any time. V L (34.28 ± 6.13 mL versus 26.22 ± 8.1 mL; P < 0.05) and the density of the dried lung tissue (48.07 ± 5.02 mg mL −1 versus 69.07 ± 5.30 mg mL −1 ; P < 0.001), however, differed significantly between the PLV and ST groups. A 4 h PLV treatment of injured ventilated small lungs increased V L by 30% and decreased lung density by 31% compared to ST treatment, indicating greater lung distension after PLV compared to ST. (paper)

  10. The relationship among human papilloma virus infection, survivin, and p53 gene in lung squamous carcinoma tissue

    International Nuclear Information System (INIS)

    Yue-Hua Wang; De-jie Chen; Tie-Nan Yi

    2010-01-01

    To study the relationship between the infection of human papillomavirus (HPV) type 16, type 18, the expression of survivin, and the mutation of p53 gene in lung squamous carcinoma tissue for the research of pathogenesis of lung carcinoma.This study was carried out at the Laboratory of Molecular Biology, Xiangfan Central Hospital of Hubei Province, China from September 2008 to May 2010. Forty-five specimens of lung squamous carcinoma tissue confirmed by histopathology were the excisional specimens taken by the Thoracic Surgery of Xiangfan Central Hospital. Normal tissue, closely adjacent to the fresh carcinoma specimens, was used as the control group for p53 gene mutation analysis. Sixteen surgical excisional specimens of benign lung disease were used as a control group of non-carcinomatous diseases. Human papillomavirus DNA were detected by polymerase chain reaction (PCR), and we used the PCR-single-strand conformation polymorphism-ethidium bromide (PCR-SSCP-EB) method to detect the mutations of the p53 gene. The expression of the survivin gene was detected by immunohistochemistry methods. Approximately 68.9% of 45 lung squamous carcinoma tissue had p53 gene mutations. The mutation rate of exon 5-8 p53 were 15.6%, 17.8%, 15.6% and 20%. Approximately 42.2% of lung squamous cell carcinoma samples were shown to be positive for HPV DNA expression and 62.2% were positive for survivin expression. There was an inverse correlation between the presence of HPV infections and mutations of p53 gene; and the mutations of p53 gene and expression of survivin had a positive relationship. Mutation of p53 gene and HPV infection may facilitate each other in the generation of lung squamous cell carcinoma. Abnormal expression of the survivin gene may take part in the onset and progression of lung squamous cell carcinoma (Author).

  11. Radiation dose response of normal lung assessed by Cone Beam CT - A potential tool for biologically adaptive radiation therapy

    International Nuclear Information System (INIS)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Soren M.; Hansen, Olfred; Nielsen, Morten; Brink, Carsten

    2011-01-01

    Background: Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose. Methods: A total of 665 CBCTs in 65 lung cancer patients treated with IMRT/VMAT to 60 or 66 Gy in 2 Gy fractions were analyzed. For each patient, CBCT lung density changes during the treatment course were related to the locally delivered dose. Results: A dose response is observed for the patient population at the end of the treatment course. However, the observed dose response is highly variable among patients. Density changes at 10th and 20th fraction are clearly correlated to those observed at the end of the treatment course. Conclusions: CBCT density changes in healthy lung tissue during radiotherapy correlate with the locally delivered dose and can be detected relatively early during the treatment. If these density changes are correlated to subsequent clinical toxicity this assay could form the basis for biological adaptive radiotherapy.

  12. Absorbed dose calculation of the energy deposition close to bone, lung and soft tissue interfaces in molecular radiotherapy

    International Nuclear Information System (INIS)

    Fernandez, M.; Lassman, M.

    2015-01-01

    Full text of publication follows. Aim: for voxel-based dosimetry in molecular radiotherapy (MRT) based on tabulated voxel S-values these values are usually obtained only for soft tissue. In order to study the changes in the dose deposition patterns at interfaces between different materials we have performed Monte Carlo simulations. Methods: the deposited energy patterns were obtained using the Monte-Carlo radiation code MCNPX v2.7 for Lu 177 (medium-energy) and Y 90 (high-energy). The following interfaces were studied: soft tissue-bone and soft tissue-lungs. For this purpose a volume of soft tissue homogeneously filled with Lu 177 or Y 90 was simulated at the interface to 3 different volumes containing no activity: soft tissue, lungs and bone. The emission was considered to be isotropic. The dimensions were chosen to ensure that the energy deposited by all generated particles was scored. The materials were defined as recommended by ICPR46; the decay schemes of Eckerman and Endo were used. With these data the absorbed dose patterns normalized to the maximum absorbed dose in the source region (soft tissue) were calculated. Results: the absorbed dose fractions in the boundary with soft tissue, bone and lungs are 50%, 47% and 57%, respectively, for Lu 177 and 50%, 47% and 51% for Y 90 . The distances to the interface at which the absorbed fractions are at 0.1% are 1.0, 0.6 and 3.0 mm for Lu 177 and 7.0, 4.0 and 24 mm for Y 90 , for soft tissue, bone and lungs respectively. Conclusions: in MRT, the changes in the absorbed doses at interfaces between soft tissue and bone/lungs need to be considered for isotopes emitting high energy particles. (authors)

  13. Differential N-glycan patterns identified in lung adenocarcinoma by N-glycan profiling of formalin-fixed paraffin-embedded (FFPE) tissue sections.

    Science.gov (United States)

    Wang, Xiaoning; Deng, Zaian; Huang, Chuncui; Zhu, Tong; Lou, Jiatao; Wang, Lin; Li, Yan

    2018-02-10

    N-glycan profiling is a powerful approach for analyzing the functional relationship between N-glycosylation and cancer. Current methods rely on either serum or fresh tissue samples; however, N-glycan patterns may differ between serum and tissue, as the proteins of serum originate from a variety of tissues. Furthermore, fresh tissue samples are difficult to ship and store. Here, we used a profiling method based on formalin-fixed paraffin-embedded (FFPE) tissue sections from lung adenocarcinoma patients. We found that our method was highly reproducible. We identified 58 N-glycan compositions from lung adenocarcinoma FFPE samples, 51 of which were further used for MS n -based structure prediction. We show that high mannose type N-glycans are upregulated, while sialylated N-glycans are downregulated in our FFPE lung adenocarcinoma samples, compared to the control samples. Our receiver operating characteristic (ROC) curve analysis shows that high mannose type and sialylated N-glycans are useful discriminators to distinguish between lung adenocarcinoma and control tissue. Together, our results indicate that expression levels of specific N-glycans correlate well with lung adenocarcinoma, and strongly suggest that our FFPE-based method will be useful for N-glycan profiling of cancer tissues. Glycosylation is one of the most important post-translational protein modifications, and is associated with several physiopathological processes, including carcinogenesis. In this study, we tested the feasibility of using formalin-fixed paraffin-embedded (FFPE) tissue sections to identify changes in N-glycan patterns and identified the differentially expressed N-glycans of lung adenocarcinoma. Our study shows that the FFPE-based N-glycan profiling method is useful for clinical diagnosis as well as identification of potential biomarkers, and our data expand current knowledge of differential N-glycan patterns of lung adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Transgenic Mice Overexpressing Vitamin D Receptor (VDR) Show Anti-Inflammatory Effects in Lung Tissues.

    Science.gov (United States)

    Ishii, Masaki; Yamaguchi, Yasuhiro; Isumi, Kyoko; Ogawa, Sumito; Akishita, Masahiro

    2017-12-01

    Vitamin D insufficiency is increasingly recognized as a prevalent problem worldwide, especially in patients with a chronic lung disease. Chronic obstructive pulmonary disease (COPD) is a type of chronic inflammatory lung disease. Previous clinical studies have shown that COPD leads to low vitamin D levels, which further increase the severity of COPD. Vitamin D homeostasis represents one of the most important factors that potentially determine the severity of COPD. Nonetheless, the mechanisms underlying the anti-inflammatory effects of vitamin D receptor (VDR) in lung tissues are still unclear. To investigate the anti-inflammatory effects of VDR, we generated transgenic mice that show lung-specific VDR overexpression under the control of the surfactant protein C promoter (TG mice). The TG mice were used to study the expression patterns of proinflammatory cytokines using real-time polymerase chain reaction and immunohistochemistry. The TG mice had lower levels of T helper 1 (Th1)-related cytokines than wild-type (WT) mice did. No significant differences in the expression of Th2 cytokines were observed between TG and WT mice. This study is the first to achieve lung-specific overexpression of VDR in TG mice: an interesting animal model useful for studying the relation between airway cell inflammation and vitamin D signaling. VDR expression is an important factor that influences anti-inflammatory responses in lung tissues. Our results show the crucial role of VDR in anti-inflammatory effects in lungs; these data are potentially useful for the treatment or prevention of COPD.

  15. Tissue spray ionization mass spectrometry for rapid recognition of human lung squamous cell carcinoma

    Science.gov (United States)

    Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen

    2015-05-01

    Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.

  16. Decellularized Rat Lung Scaffolds Using Sodium Lauryl Ether Sulfate for Tissue Engineering.

    Science.gov (United States)

    Ma, Jinhui; Ju, Zhihai; Yu, Jie; Qiao, Yeru; Hou, Chenwei; Wang, Chen; Hei, Feilong

    Perfusion decellularization with detergents is effective to maintain the architecture and proteins of extracellular matrix (ECM) for use in the field of lung tissue engineering (LTE). However, it is unclear which detergent is ideal to produce an acellular lung scaffold. In this study, we obtained two decellularized rat lung scaffolds using a novel detergent sodium lauryl ether sulfate (SLES) and a conventional detergent sodium dodecyl sulfate (SDS). Both decellularized lung scaffolds were assessed by histology, immunohistochemistry, scanning electron microscopy, DNA quantification, sulfated glycosaminoglycans (GAGs) quantification and western blot. Subsequently, the scaffolds were implanted subcutaneously in rats for 6 weeks and were evaluated via hematoxylin and eosin staining and Masson staining. Results indicated that SLES was effective to remove cells; moreover, lungs decellularized with SLES showed better preservation of sulfated GAGs, lung architecture, and ECM proteins than SDS. After 6 weeks, SLES scaffolds demonstrated a significantly greater potential for cell infiltration and blood vessel formation compared with SDS scaffolds. Taken together, we conclude that SLES is a promising detergent to produce an acellular scaffold using LTE for eventual transplantation.

  17. Interobserver variability in visual evaluation of thoracic CT scans and comparison with automatic computer measurements of CT lung density

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Thomsen, Laura Hohwü; Dirksen, Asger

    2012-01-01

    lung density measurements, i.e. densitometry. Methods – In a pilot study 60 CT scans were selected from a sample of 3980 CT scans from The Danish Lung Cancer Screening Trial (DLCST). The amount of emphysema in these scans was scored independently by two observers, who were blinded regarding clinical...... information. The lung was segmented automatically by in-house developed computer software, and the percentage of pixels below -950 HU was used as a surrogate marker for emphysema. The observer variability, as well as the correlation with the lung density measurements, was analysed using Spearman’s rank...... in emphysema grading. However, the agreement with the CT lung density measurement was poor, indicating that the two types of evaluation represent different aspects of emphysema. Most likely, they should be seen as complementary rather than competitive evaluations. Future comparison with physiological tests...

  18. Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation

    DEFF Research Database (Denmark)

    Skjøt-Arkil, Helene; Clausen, Rikke E; Nguyen, Quoc Hai Trieu

    2012-01-01

    Elastin is an essential component of selected connective tissues that provides a unique physiological elasticity. Elastin may be considered a signature protein of lungs where matrix metalloprotease (MMP) -9-and -12, may be considered the signature proteases of the macrophages, which in part...... are responsible for tissue damage during disease progression. Thus, we hypothesized that a MMP-9/-12 generated fragment of elastin may be a relevant biochemical maker for lung diseases....

  19. Radiation dose response of normal lung assessed by Cone Beam CT - a potential tool for biologically adaptive radiation therapy

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Schytte, Tine; Bentzen, Søren M

    2011-01-01

    Density changes of healthy lung tissue during radiotherapy as observed by Cone Beam CT (CBCT) might be an early indicator of patient specific lung toxicity. This study investigates the time course of CBCT density changes and tests for a possible correlation with locally delivered dose....

  20. Expression of the somatostatin receptor family mRNAs in lung cancer

    International Nuclear Information System (INIS)

    Wang Jing; Wang Liangang; Deng Jinglan; Wu Shengxi

    2000-01-01

    To investigate the characteristics of expression and distribution of 5 subtypes of somatostatin receptors (SSTR1-5) in lung cancer, in situ hybridization was used to examine the expression patterns of SSTR mRNAs in 21 cases of different pathologic types of lung cancer tissues with [α- 35 S]dATP labelled oligonucleotides of the 5 SSTR subtypes as probes. Additionally, Leica Q-500 image analysis processing system was employed for the semi-quantitatively analysis of the hybridization signals. Patterns of SSTR1-5 expression in lung cancer tissues were found as follows. SSTR2 was prominent in small cell lung cancer (SCLC), whereas in non-small cell lung cancer (NSCLC) including the adenous cancer (Ad) and the squamous cancer (Sq), the expression of SSTR1 mRNA was stronger than that of the other 4 types. the expression density of SSTR1-5 in the NSCLC was higher that the SCLC (p < 0.01). The expression patterns and densities of the SSTR subtypes showed heterogeneity in different pathologic types of lung cancer. The expressions of the SSTR mRNAs in both SCLC and NSCLC indicated the positive prospects for somatostatin analog (SSA)-oriented agents in the treatment of both types of the lung cancer

  1. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery.

    Science.gov (United States)

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-09-01

    To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  2. Investigating the bioavailability of graphene quantum dots in lung tissues via Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Tabish, Tanveer A; Lin, Liangxu; Ali, Muhammad; Jabeen, Farhat; Ali, Muhammad; Iqbal, Rehana; Horsell, David W; Winyard, Paul G; Zhang, Shaowei

    2018-06-06

    Biomolecular fractions affect the fate and behaviour of quantum dots (QDs) in living systems but how the interactions between biomolecules and QDs affect the bioavailability of QDs is a major knowledge gap in risk assessment analysis. The transport of QDs after release into a living organism is a complex process. The majority accumulate in the lungs where they can directly affect the inhalation process and lung architecture. Here, we investigate the bioavailability of graphene quantum dots (GQDs) to the lungs of rats by measuring the alterations in macromolecular fractions via Fourier transform infrared spectroscopy (FTIR). GQDs were intravenously injected into the rats in a dose-dependent manner (low (5 mg kg -1 ) and high (15 mg kg -1 ) doses of GQDs per body weight of rat) for 7 days. The lung tissues were isolated, processed and haematoxylin-eosin stained for histological analysis to identify cell death. Key biochemical differences were identified by spectral signatures: pronounced changes in cholesterol were found in two cases of low and high doses; a change in phosphorylation profile of substrate proteins in the tissues was observed in low dose at 24 h. This is the first time biomolecules have been measured in biological tissue using FTIR to investigate the biocompatibility of foreign material. We found that highly accurate toxicological changes can be investigated with FTIR measurements of tissue sections. As a result, FTIR could form the basis of a non-invasive pre-diagnostic tool for predicting the toxicity of GQDs.

  3. Lung density change after SABR: A comparative study between tri-Co-60 magnetic resonance-guided system and linear accelerator.

    Science.gov (United States)

    Kim, Eunji; Wu, Hong-Gyun; Park, Jong Min; Kim, Jung-In; Kim, Hak Jae; Kang, Hyun-Cheol

    2018-01-01

    Radiation-induced lung damage is an important treatment-related toxicity after lung stereotactic ablative radiotherapy (SABR). After implementing a tri-60Co magnetic-resonance image guided system, ViewRayTM, we compared the associated early radiological lung density changes to those associated with a linear accelerator (LINAC). Eight patients treated with the tri-60Co system were matched 1:1 with patients treated with LINAC. Prescription doses were 52 Gy or 60 Gy in four fractions, and lung dose-volumetric parameters were calculated from each planning system. The first two follow-up computed tomography (CT) were co-registered with the planning CT through deformable registration software, and lung density was measured by isodose levels. Tumor size was matched between the two groups, but the planning target volume of LINAC was larger than that of the tri-60Co system (p = 0.036). With regard to clinically relevant dose-volumetric parameters in the lungs, the ipsilateral lung mean dose, V10Gy and V20Gy were significantly poorer in tri-60Co plans compared to LINAC plans (p = 0.012, 0.036, and 0.017, respectively). Increased lung density was not observed in the first follow-up scan compared to the planning scan. A significant change of lung density was shown in the second follow-up scan and there was no meaningful difference between the tri-60Co system and LINAC for all dose regions. In addition, no patient developed clinical radiation pneumonitis until the second follow-up scan. Therefore, there was no significant difference in the early radiological lung damage between the tri-60Co system and LINAC for lung SABR despite of the inferior plan quality of the tri-60Co system compared to that of LINAC. Further studies with a longer follow-up period are needed to confirm our findings.

  4. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung

    Science.gov (United States)

    Holman, Beverley F.; Cuplov, Vesna; Hutton, Brian F.; Groves, Ashley M.; Thielemans, Kris

    2016-04-01

    Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18F-FDG and 18F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.

  5. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung

    International Nuclear Information System (INIS)

    Holman, Beverley F; Cuplov, Vesna; Hutton, Brian F; Groves, Ashley M; Thielemans, Kris

    2016-01-01

    Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18 F-FDG and 18 F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung. (paper)

  6. Cyclophosphamide for connective tissue disease-associated interstitial lung disease.

    Science.gov (United States)

    Barnes, Hayley; Holland, Anne E; Westall, Glen P; Goh, Nicole Sl; Glaspole, Ian N

    2018-01-03

    Approximately one-third of individuals with interstitial lung disease (ILD) have associated connective tissue disease (CTD). The connective tissue disorders most commonly associated with ILD include scleroderma/systemic sclerosis (SSc), rheumatoid arthritis, polymyositis/dermatomyositis, and Sjögren's syndrome. Although many people with CTD-ILD do not develop progressive lung disease, a significant proportion do progress, leading to reduced physical function, decreased quality of life, and death. ILD is now the major cause of death amongst individuals with systemic sclerosis.Cyclophosphamide is a highly potent immunosuppressant that has demonstrated efficacy in inducing and maintaining remission in autoimmune and inflammatory illnesses. However this comes with potential toxicities, including nausea, haemorrhagic cystitis, bladder cancer, bone marrow suppression, increased risk of opportunistic infections, and haematological and solid organ malignancies.Decision-making in the treatment of individuals with CTD-ILD is difficult; the clinician needs to identify those who will develop progressive disease, and to weigh up the balance between a high level of need for therapy in a severely unwell patient population against the potential for adverse effects from highly toxic therapy, for which only relatively limited data on efficacy can be found. Similarly, it is not clear whether histological subtype, disease duration, or disease extent can be used to predict treatment responsiveness. To assess the efficacy and adverse effects of cyclophosphamide in the treatment of individuals with CTD-ILD. We performed searches on CENTRAL, MEDLINE, Embase, CINAHL, and Web of Science up to May 2017. We handsearched review articles, clinical trial registries, and reference lists of retrieved articles. We included randomised controlled parallel-group trials that compared cyclophosphamide in any form, used individually or concomitantly with other immunomodulating therapies, versus non

  7. Over-expression of thymosin β4 in granulomatous lung tissue with active pulmonary tuberculosis.

    Science.gov (United States)

    Kang, Yun-Jeong; Jo, Jin-Ok; Ock, Mee Sun; Yoo, Young-Bin; Chun, Bong-Kwon; Oak, Chul-Ho; Cha, Hee-Jae

    2014-05-01

    Recent studies have shown that thymosin β4 (Tβ4) stimulates angiogenesis by inducing vascular endothelial growth factor (VEGF) expression and stabilizing hypoxia inducible factor-1α (HIF-1α) protein. Pulmonary tuberculosis (TB), a type of granulomatous disease, is accompanied by intense angiogenesis and VEGF levels have been reported to be elevated in serum or tissue inflamed by pulmonary tuberculosis. We investigated the expression of Tβ4 in granulomatous lung tissues at various stages of active pulmonary tuberculosis, and we also examined the expression patterns of VEGF and HIF-1α to compare their Tβ4 expression patterns in patients' tissues and in the tissue microarray of TB patients. Tβ4 was highly expressed in both granulomas and surrounding lymphocytes in nascent granulomatous lung tissue, but was expressed only surrounding tissues of necrotic or caseous necrotic regions. The expression pattern of HIF-1α was similar to that of Tβ4. VEGF was expressed in both granulomas and blood vessels surrounding granulomas. The expression pattern of VEGF co-localized with CD31 (platelet endothelial cell adhesion molecule, PECAM-1), a blood endothelial cell marker, and partially co-localized with Tβ4. However, the expression of Tβ4 did not co-localize with alveolar macrophages. Stained alveolar macrophages were present surrounding regions of granuloma highly expressing Tβ4. We also analyzed mRNA expression in the sputum of 10 normal and 19 pulmonary TB patients. Expression of Tβ4 was significantly higher in patients with pulmonary tuberculosis than in normal controls. These data suggest that Tβ4 is highly expressed in granulomatous lung tissue with active pulmonary TB and is associated with HIF-1α- and VEGF-mediated inflammation and angiogenesis. Furthermore, the expression of Tβ4 in the sputum of pulmonary tuberculosis patients can be used as a potential marker for diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Quantitative assessment of irradiated lung volume and lung mass in breast cancer patients treated with tangential fields in combination with deep inspiration breath hold (DIBH)

    International Nuclear Information System (INIS)

    Kapp, Karin Sigrid; Zurl, Brigitte; Stranzl, Heidi; Winkler, Peter

    2010-01-01

    Purpose: Comparison of the amount of irradiated lung tissue volume and mass in patients with breast cancer treated with an optimized tangential-field technique with and without a deep inspiration breath-hold (DIBH) technique and its impact on the normal-tissue complication probability (NTCP). Material and Methods: Computed tomography datasets of 60 patients in normal breathing (NB) and subsequently in DIBH were compared. With a Real-Time Position Management Respiratory Gating System (RPM), anteroposterior movement of the chest wall was monitored and a lower and upper threshold were defined. Ipsilateral lung and a restricted tangential region of the lung were delineated and the mean and maximum doses calculated. Irradiated lung tissue mass was computed based on density values. NTCP for lung was calculated using a modified Lyman-Kutcher-Burman (LKB) model. Results: Mean dose to the ipsilateral lung in DIBH versus NB was significantly reduced by 15%. Mean lung mass calculation in the restricted area receiving ≤ 20 Gy (M 20 ) was reduced by 17% in DIBH but associated with an increase in volume. NTCP showed an improvement in DIBH of 20%. The correlation of individual breathing amplitude with NTCP proved to be independent. Conclusion: The delineation of a restricted area provides the lung mass calculation in patients treated with tangential fields. DIBH reduces ipsilateral lung dose by inflation so that less tissue remains in the irradiated region and its efficiency is supported by a decrease of NTCP. (orig.)

  9. The relationship between bone mineral density and adipose tissue of postmenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hwa [Dept. of Radiology, HwaMyeong Iisin christian Hospital, Busan (Korea, Republic of); Kim, Jung Hoon [Dept. of Radiological Science, Catholic University of Pusan, Busan (Korea, Republic of); Im, In Chul [Dept. of Radiological Science, Dong Eui University, Busan (Korea, Republic of)

    2017-06-15

    Postmenopausal women are at increased risk for osteoporosis and obesity due to changes in hormones. The relationship between osteoporosis and body weight is known, and its relation with body fat mass is discussed. The purpose of this study was to evaluate the bone mineral density(BMD) changes of epicardial adipose tissue(EAT) and abdominal subcutaneous fat. The subjects of this study were 160 postmenopausal women who underwent BMD and echocardiography. The thickness of the epicardial adipose tissue was measured in three sections and the BMD were meassured according to the diagnostic criteria. The results of this study that age increase the risk of osteoporosis increases, and as the weight and BMI decrease, the risk of osteoporosis increases(p<0.05). The relationship between changes in bone mineral density and adipose tissue in postmenopausal women, increased epicardial adipose tissue was negatively correlated with the bone mineral density(p<0.05). conversely, increased abdominal subcutaneous fat thickness was positively correlated with bone mineral density(p<0.05). In other words, the effect of bone mineral density on the location of adipose tissue was different. If Echocardiography is used to periodically examine changes in the thickness of the epicardial adipose tissue, it may be prevented before proceeding to osteoporosis.

  10. Detection of EGFR and COX-2 Expression by Immunohistochemical Method on a Tissue Microarray Section in Lung Cancer and Biological Significance

    Directory of Open Access Journals (Sweden)

    Xinyun WANG

    2010-02-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR and cyclooxygenase-2 (COX-2, which can regulate growth, invasion and metastasis of tumor through relevant signaling pathway, have been detected in a variety of solid tumors. The aim of this study is to investigate the biological significance of EGFR and COX-2 expression in lung cancer and the relationship between them. Methods The expression of EGFR and COX-2 was detected in 89 primary lung cancer tissues, 12 premaliganant lesions, 12 lymph node metastases, and 10 normal lung tissues as the control by immunohistochemical method on a tissue microarray section. Results EGFR protein was detectable in 59.6%, 41.7%, and 66.7% of primary lung cancer tissues, premalignant lesions and lymph node metastases, respectively; COX-2 protein was detectable in 52.8%, 41.7%, and 66.7% of primary lung cancer tissues, premalignant lesions and lymph node metastases, respectively, which were significantly higher than those of the control (P 0.05. COX-2 expression was related to gross type (P < 0.05. A highly positive correlation was observed between EGFR and COX-2 expression (P < 0.01. Conclusion Overexpression of EGFR and COX-2 may play an important role in the tumorgenesis, progression and malignancy of lung cancer. Detection of EGFR and COX-2 expression might be helpful to diagnosis and prognosis of lung cancer.

  11. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    International Nuclear Information System (INIS)

    Rottmann, Joerg; Berbeco, Ross; Keall, Paul

    2013-01-01

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time

  12. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    Energy Technology Data Exchange (ETDEWEB)

    Rottmann, Joerg; Berbeco, Ross [Brigham and Women' s Hospital, Dana Farber-Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia)

    2013-09-15

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  13. The role of nailfold capillaroscopy in interstitial lung diseases - can it differentiate idiopathic cases from collagen tissue disease associated interstitial lung diseases?

    Science.gov (United States)

    Çakmakçı Karadoğan, Dilek; Balkarlı, Ayşe; Önal, Özgür; Altınışık, Göksel; Çobankara, Veli

    2015-01-01

    Nailfold capillaroscopy (NFC) is a non-invasive diagnostic test that is mostly used for early diagnosis of collagen tissue diseases (CTDs). We aimed to evaluate whether NFC findings could be a clue for discriminating idiopathic interstitial lung diseases (ILD) from CTD associated ILDs (CTD-ILD). Additionally it was aimed to determine whether NFC could be helpful in discriminating usual interstitial pneumonia (UIP) pattern from non-specific interstitial pneumonia (NSIP) pattern. We grouped patients into three main groups: 15 CTD-ILD, 18 idiopathic ILD, and 17 patients in the control group. The CTD-ILD group was split into two subgroups: 8 patients with Sjögren's syndrome (SJS)-associated ILD and 7 with rheumatoid arthritis (RA)-associated ILD. The idiopathic-ILD group consisted of 10 idiopathic NSIP and 8 IPF patients. The control group consisted of 10 SJS and 7 RA patients without lung disease. None of the patients were on acute exacerbation at the time of examination, and none had Reynaud's phenomenon. Mean capillary density was significantly reduced only in the CTD-ILD group as compared to the control group (p= 0.006). In subgroup analysis, it was determined that RA-ILD, IPF, and SJS-ILD subgroups had more severe capillaroscopic abnormalities. Mean capillary density in patients with the UIP pattern was reduced compared to patients with the NSIP pattern and those in the control group; p values were 0.008 and nailfold capillaroscopic findings of patients with NSIP and UIP patterns. NFC findings can be helpful in discriminating UIP patterns from NSIP patterns. But to show its role in differentiating idiopathic disease, more studies with more patients are needed.

  14. Measurement of lung density in congestive heart failure by computed tomography

    International Nuclear Information System (INIS)

    Nomura, Masanori; Miyagi, Yutaka; Tachi, Keiji; Sakabe, Yoshiyuki; Sakai, Yasuhiko; Hishida, Hitoshi; Mizuno, Yasushi; Sasaki, Fumio; Koga, Sukehiko

    1984-01-01

    The computed tomography (CT) number within the region of interest (ROI) was used as a parameter to assess lung density in patients with congestive heart failure. Thirty-eight patients with valvular heart disease (VHD) and 34 patients with ischemic heart disease (IHD) were studied. Based on the New York Heart Association (NYHA) classification, 24 VHD patients were in class I or II (VHD I-II) and the other 14 were in NYHA class III or IV (VHD III-IV). Eighteen patients with IHD were in NYHA class I or II (IHD I-II) and 16 were in class III or IV (IHD III-IV). The CT number was measured bilaterally at the upper, middle and lower levels of the chest and compared with the corresponding value in 21 normal subjects (Group N). In a preliminary study on Group N, the CT numbers were insensitive to the size of the ROI, but were closely related to its location. In clinical applications, the mean values of the CT numbers in all six lung fields increased in the order of IHD I-II, to VHD I-II, IHD III-IV and VHD III-IV. Except for patients in IHD I-II, they were significantly larger than in Group N. The relationship between the CT number and the systolic and mean pulmonary arterial pressures and the pulmonary capillary wedge pressure were evaluated in 36 patients. Significant correlations were obtained in all six lung fields (r=0.65-0.78, p<0.001). The results suggest that measurement of lung density by CT is useful for the quantitative evaluation of the severity of disease in patients with congestive heart failure. (author)

  15. Measurement of lung density in congestive heart failure by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Masanori; Miyagi, Yutaka; Tachi, Keiji; Sakabe, Yoshiyuki; Sakai, Yasuhiko; Hishida, Hitoshi; Mizuno, Yasushi; Sasaki, Fumio; Koga, Sukehiko [Fujita-Gakuen Health Univ., Toyoake, Aichi (Japan)

    1984-11-01

    The computed tomography (CT) number within the region of interest (ROI) was used as a parameter to assess lung density in patients with congestive heart failure. Thirty-eight patients with valvular heart disease (VHD) and 34 patients with ischemic heart disease (IHD) were studied. Based on the New York Heart Association (NYHA) classification, 24 VHD patients were in class I or II (VHD I-II) and the other 14 were in NYHA class III or IV (VHD III-IV). Eighteen patients with IHD were in NYHA class I or II (IHD I-II) and 16 were in class III or IV (IHD III-IV). The CT number was measured bilaterally at the upper, middle and lower levels of the chest and compared with the corresponding value in 21 normal subjects (Group N). In a preliminary study on Group N, the CT numbers were insensitive to the size of the ROI, but were closely related to its location. In clinical applications, the mean values of the CT numbers in all six lung fields increased in the order of IHD I-II, to VHD I-II, IHD III-IV and VHD III-IV. Except for patients in IHD I-II, they were significantly larger than in Group N. The relationship between the CT number and the systolic and mean pulmonary arterial pressures and the pulmonary capillary wedge pressure were evaluated in 36 patients. Significant correlations were obtained in all six lung fields (r=0.65-0.78, p < 0.001). The results suggest that measurement of lung density by CT is useful for the quantitative evaluation of the severity of disease in patients with congestive heart failure.

  16. Pediatric dosimetry for intrapleural lung injections of 32P chromic phosphate

    International Nuclear Information System (INIS)

    Konijnenberg, Mark W; Olch, Arthur

    2010-01-01

    Intracavitary injections of 32 P chromic phosphate are used in the therapy of pleuropulmonary blastoma and pulmonary sarcomas in children. The lung dose, however, has never been calculated despite the potential risk of lung toxicity from treatment. In this work the dosimetry has been calculated in target tissue and lung for pediatric phantoms. Pleural cavities were modeled in the Monte Carlo code MCNP within the pediatric MIRD phantoms. Both the depth-dose curves in the pleural lining and into the lung as well as 3D dose distributions were calculated for either homogeneous or inhomogeneous 32 P activity distributions. Dose-volume histograms for the lung tissue and isodose graphs were generated. The results for the 2D depth-dose curve to the pleural lining and tumor around the pleural cavity correspond well with the point kernel model-based recommendations. With a 2 mm thick pleural lining, one-third of the lung parenchyma volume gets a dose more than 30 Gy (V 30 ) for 340 MBq 32 P in a 10 year old. This is close to lung tolerance. Younger children will receive a larger dose to the lung when the lung density remains equal to the adult value; the V 30 relative lung volume for a 5 year old is 35% at an activity of 256 MBq and for a 1 year old 165 MBq yields a V 30 of 43%. At higher densities of the lung tissue V 30 stays below 32%. All activities yield a therapeutic dose of at least 225 Gy in the pleural lining. With a more normal pleural lining thickness (0.5 mm instead of 2 mm) the injected activities will have to be reduced by a factor 5 to obtain tolerable lung doses in pediatric patients. Previous dosimetry recommendations for the adult apply well down to lung surface areas of 400 cm 2 . Monte Carlo dosimetry quantitates the three-dimensional dose distribution, providing a better insight into the maximum tolerable activity for this therapy.

  17. [The effects of postconditioning with propofol on Toll-like receptor 4 expression in the lung tissue of rat with acute lung injury].

    Science.gov (United States)

    Li, Guo-Fu; Tong, Xin; Luan, Ting; Zang, Bin

    2012-10-01

    To investigate the effect of postconditioning with propofol on Toll-like receptor 4 (TLR4) expression in the lung tissue in lipopolysaccharide (LPS)-induced acute lung injury (ALI) rats. Thirty Sprague-Dawley (SD) rats were randomly assigned to control group, ALI group, and propofol postcondition group (each n=10). The model of ALI was reproduced by intravenous injection of LPS (8 mg/kg for 30 minutes) into the rats, equivalent normal saline was injected into the rats of control group. The rats were postconditioned with propofol injected intravenously by 20 mg/kg bolus dose and then continuously by 40 mg×kg(-1)×h(-1) with a constant speed for 1 hour. The rats were sacrificed 6 hours after drug injection. Lung wet/dry weight (W/D) ratio and lung permeability index (LPI) was taken. Tumor necrosis factor-α (TNF-α) level in bronchoalveolar lavage fluid (BALF) was detected using enzyme linked immunosorbent assay (ELISA) method and TLR4 mRNA expression in lung tissue was assessed by reverse transcription-polymerase chain reaction (RT-PCR). The lung W/D ratio, LPI, TLR4 mRNA and TNF-α in BALF were all increased in ALI group compared with control group [lung W/D ratio: 5.30±0.28 vs. 4.21±0.14, LPI (×10(-3)): 8.7±2.2 vs. 3.3±2.0, TLR4 mRNA: 2.451±0.028 vs. 0.998±0.021, TNF-α: 643.46±62.31 ng/L vs. 120.43±12.65 ng/L, all Pwaterfall-like inflammatory reaction.

  18. Isolation of Blastomyces dermatitidis yeast from lung tissue during murine infection for in vivo transcriptional profiling.

    Science.gov (United States)

    Marty, Amber J; Wüthrich, Marcel; Carmen, John C; Sullivan, Thomas D; Klein, Bruce S; Cuomo, Christina A; Gauthier, Gregory M

    2013-07-01

    Blastomyces dermatitidis belongs to a group of thermally dimorphic fungi that grow as sporulating mold in the soil and convert to pathogenic yeast in the lung following inhalation of spores. Knowledge about the molecular events important for fungal adaptation and survival in the host remains limited. The development of high-throughput analytic tools such as RNA sequencing (RNA-Seq) has potential to provide novel insight on fungal pathogenesis especially if applied in vivo during infection. However, in vivo transcriptional profiling is hindered by the low abundance of fungal cells relative to mammalian tissue and difficulty in isolating fungal cells from the tissues they infect. For the purpose of obtaining B. dermatitidis RNA for in vivo transcriptional analysis by RNA-Seq, we developed a simple technique for isolating yeast from murine lung tissue. Using a two-step approach of filtration and centrifugation following lysis of murine lung cells, 91% of yeast cells causing infection were isolated from lung tissue. B. dermatitidis recovered from the lung yielded high-quality RNA with minimal murine contamination and was suitable for RNA-Seq. Approximately 87% of the sequencing reads obtained from the recovered yeast aligned with the B. dermatitidis genome. This was similar to 93% alignment for yeast grown in vitro. The use of near-freezing temperature along with short ex vivo time minimized transcriptional changes that would have otherwise occurred with higher temperature or longer processing time. In conclusion, we have developed a technique that recovers the majority of yeast causing pulmonary infection and yields high-quality fungal RNA with minimal contamination by mammalian RNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Abnormalities in lung volumes and airflow in children with newly diagnosed connective tissue disease.

    Science.gov (United States)

    Peradzyńska, Joanna; Krenke, Katarzyna; Szylling, Anna; Kołodziejczyk, Beata; Gazda, Agnieszka; Rutkowska-Sak, Lidia; Kulus, Marek

    2016-01-01

    Connective tissue diseases (CTDs) of childhood are rare inflammatory disorders, involving various organs and tissues including respiratory system. Pulmonary involvement in patients with CTDs is uncommon but may cause functional impairment. Data on prevalence and type of lung function abnormalities in children with CTDs are scarce. Thus, the aim of this study was to asses pulmonary functional status in children with newly diagnosed CTD and follow the results after two years of the disease course. There were 98 children (mean age: 13 ± 3; 76 girls), treated in Department of Pediatric Rheumatology, Institute of Rheumatology, Warsaw and 80 aged-matched, healthy controls (mean age 12.7 ± 2.4; 50 girls) included into the study. Study procedures included medical history, physical examination, chest radiograph and PFT (spirometry and whole body-plethysmography). Then, the assessment of PFT was performed after 24 months. FEV₁, FEV₁/FVC and MEF50 were significantly lower in CTD as compared to control group, there was no difference in FVC and TLC. The proportion of patients with abnormal lung function was significantly higher in the study group, 41 (42%) vs 9 (11%). 24-months observation didn't reveal progression in lung function impairment. Lung function impairment is relatively common in children with CTDs. Although restrictive ventilatory pattern is considered typical feature of lung involvement in CTDs, airflow limitation could also be an initial abnormality.

  20. Implementation of several mathematical algorithms to breast tissue density classification

    International Nuclear Information System (INIS)

    Quintana, C.; Redondo, M.; Tirao, G.

    2014-01-01

    The accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories. - Highlights: • Breast density classification can be obtained by suitable mathematical algorithms. • Mathematical processing help radiologists to obtain the BI-RADS classification. • The entropy and joint entropy show high performance for density classification

  1. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma.

    Science.gov (United States)

    de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2017-06-24

    Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10 5 human AD-MSCs, or EVs (released by 10 5  AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3 + CD4 + T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3 + CD4 + T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3 + CD4 + T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different

  2. The cryoablation of lung tissue using liquid nitrogen in gel and in the ex vivo pig lung.

    Science.gov (United States)

    Nomori, Hiroaki; Yamazaki, Ikuo; Kondo, Toshiya; Kanno, Masaya

    2017-02-01

    To examine the efficiency of cryoablation using liquid nitrogen in lung tissue, we measured the size and temperature distribution of the frozen area (iceball) in gel and in the ex vivo pig lungs. Cryoprobes with diameters of 2.4 and 3.4 mm (2.4D and 3.4D, respectively) were used. Three temperature sensors were positioned at the surface of the cryoprobe and at distances of 0.5 and 1.5 cm from the cryoprobe. The ex vivo pig lungs were perfused with 37 °C saline and inflated using ventilator to simulate in vivo lung conditions. In gel, the 2.4D and 3.4D probes made iceballs of 3.9 ± 0.1 and 4.8 ± 0.3 cm in diameter, respectively, and the temperature at 1.5 cm from those probes reached -32 ± 8 and -53 ± 5 °C, respectively. In the pig lung, the 2.4D and 3.4D probes made iceballs of 5.2 ± 0.1 and 5.5 ± 0.4 cm in diameter, respectively, and the temperature at 1.5 cm from these probes reached -49 ± 5 and -58 ± 3 °C, respectively. Liquid nitrogen cryoablation using both 2.4D and 3.4D probes made iceballs that were of sufficient size, and effective temperatures were reached in both gel and the ex vivo pig lung.

  3. Cell structure and proliferative activity of organ cultures of normal embryonic lung tissue of mice resistant (C57BL) and predisposed (A) to lung tumors

    International Nuclear Information System (INIS)

    Kolesnichenko, T.S.; Gor'kova, T.G.

    1985-01-01

    Local factors such as proliferative activity and the numerical ratio between epithelial and mesenchymal cells, and also the character of interaction between the tissue components in ontogeny may play an important role in the realization of sensitivity of mice of a particular line to the development of lung tumors. These characteristics of lung tissue in mice of lines A and C57BL are investigated under normal conditions and during induced carcinogenesis. Results are given of a comparative study of the relative numbers of epithelial and mesenchymal cells in organ cultures of embryonic lungs. 3 H-thymidine was added to the cultures on the 14th day of the experiment in a concentration of 1 microCi/m1 medium. An autoradiographic study of the cultures was performed

  4. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD data

    Directory of Open Access Journals (Sweden)

    Srivastava Mousami

    2012-11-01

    Full Text Available Abstract Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal and disease (cancer sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95 identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4. Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1, chemotherapy/drug resistance biomarkers (panel 2, hypoxia regulated biomarkers (panel 3 and lung extra cellular matrix biomarkers (panel 4. Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3, HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1

  5. A mast cell secretagogue, compound 48/80, prevents the accumulation of hyaluronan in lung tissue injured by ionizing irradiation

    International Nuclear Information System (INIS)

    Nilsson, K.; Bjermer, L.; Hellstroem, S.H.; Henriksson, R.; Haellgren, R.

    1990-01-01

    Irradiation with a single dose of 30 Grey on the basal regions of the lungs of Sprague-Dawley rats induced a peribronchial and alveolar inflammation. Infiltration of mast cells in the edematous alveolar interstitial tissue and also in the peribronchial tissue were characteristic features of the lesion. The appearance of mast cells was already seen 4 wk after irradiation and by weeks 6 to 8 there was a heavy infiltration. The staining properties suggested that they were connective tissue-type mast cells. The infiltration of mast cells was paralleled by an accumulation of hyaluronan (hyaluronic acid) in the alveolar interstitial tissue 6 and 8 wk after irradiation. The recovery of hyaluronan (HA) during bronchoalveolar lavage (BAL) of the lungs also increased at this time. Treatment with a mast cell secretagogue, compound 48/80, induced a distinct reduction of granulated mast cells in the alveolar tissue. Regular treatment with compound 48/80 from the time of irradiation considerably reduced the HA recovery during BAL and the HA accumulation in the interstitial tissue but did not affect the interstitial infiltration of mononuclear cells and polymorphonuclear leukocytes. By contrast, an accumulation of HA in the alveolar interstitial space was induced when compound 48/80 was given not until mast cell infiltration of the lung had started. The effects of compound 48/80 indicate that the connective tissue response after lung irradiation is dependent on whether or not mast cell degranulation is induced before or after the mast cell infiltration of the alveolar tissue

  6. Analysis of factors causing signal loss in the measurement of lung tissue water by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Fukuzaki, Minoru; Shioya, Sumie; Haida, Munetaka

    1997-01-01

    The water content of lung, brain, and muscle tissue was measured by nuclear magnetic resonance (NMR) and compared with gravimetric determinations. The NMR signal intensity of water was measured by a single 90 degree pulse and by a spin-echo sequence. The absolute water content was determined by the difference in the sample's weight before and after desiccation. The NMR detectable water in each tissue was expressed as a percentage of the signal intensity for an equal weight of distilled water. Using the single pulse measurement, 67% of the gravimetrically-measured water was detected in collapsed lung samples (consisting of about 47% retained air), in contrast to 96% for brain and 98% for muscle. For degassed lung samples, the NMR detectability of water increased to 87% with the single pulse measurement and to 90% with the spin-echo measurement, but the values remained significantly less than those of brain or muscle. Factors that caused the NMR signal loss of 33% in collapsed lung samples were: air-tissue interfaces (20%), microscopic field inhomogeneity (3%), and a water component with an extremely short magnetization decay time constant (10%). (author)

  7. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    Science.gov (United States)

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  8. Does Three-Dimensional External Beam Partial Breast Irradiation Spare Lung Tissue Compared With Standard Whole Breast Irradiation?

    International Nuclear Information System (INIS)

    Jain, Anudh K.; Vallow, Laura A.; Gale, Ashley A.; Buskirk, Steven J.

    2009-01-01

    Purpose: To determine whether three-dimensional conformal partial breast irradiation (3D-PBI) spares lung tissue compared with whole breast irradiation (WBI) and to include the biologically equivalent dose (BED) to account for differences in fractionation. Methods and Materials: Radiotherapy treatment plans were devised for WBI and 3D-PBI for 25 consecutive patients randomized on the NSABP B-39/RTOG 0413 protocol at Mayo Clinic in Jacksonville, Florida. WBI plans were for 50 Gy in 25 fractions, and 3D-PBI plans were for 38.5 Gy in 10 fractions. Volume of ipsilateral lung receiving 2.5, 5, 10, and 20 Gy was recorded for each plan. The linear quadratic equation was used to calculate the corresponding dose delivered in 10 fractions and volume of ipsilateral lung receiving these doses was recorded for PBI plans. Ipsilateral mean lung dose was recorded for each plan and converted to BED. Results: There was a significant decrease in volume of lung receiving 20 Gy with PBI (median, 4.4% vs. 7.5%; p 3 vs 4.85 Gy 3 , p = 0.07). PBI plans exposed more lung to 2.5 and 5 Gy. Conclusions: 3D-PBI exposes greater volumes of lung tissue to low doses of radiation and spares the amount of lung receiving higher doses when compared with WBI.

  9. Uptake of low density lipoproteins by the hamster lung. Interactions with capillary endothelium

    International Nuclear Information System (INIS)

    Nistor, A.; Simionescu, M.

    1986-01-01

    The mechanism by which the circulating low density lipoproteins (LDL) contribute to the lung surfactant cholesterol was investigated by perfusing the hamster lung in situ with LDL either radiolabeled or coupled to gold, or both. Part of [ 125 I]-LDL and [ 3 H]-cholesterol LDL were taken up by a specific process which was time- and concentration-dependent and reached saturation within 20 to 30 min of perfusion. Competition experiments and removal of receptor-bound LDL by heparin suggested that about 50% of LDL uptake is receptor-independent. Experiments using double labeled LDL showed a preferential uptake of 3 H-cholesterol versus 125 I by the lung both in situ and in vivo. LDL-gold particles (LDL-Au), recirculated through the isolated lung, bound to the endothelial luminal plasma membrane and to features potentially involved in receptor-mediated endocytosis (coated pits, coated vesicles, lysosomelike structures) and in transcytosis (plasmalemmal vesicles). The results suggest that LDL uptake by the lung takes place by both receptor-mediated and receptor-independent mechanisms. Cholesterol may be in part transferred to the lung without the apoprotein moiety; the alveolar capillary endothelium appears to be the first monitor of this complex process

  10. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model.

    Science.gov (United States)

    Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2017-08-31

    Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H 2 O and a tidal volume of 6 ml x kg -1 . The control group (n = 10) had an end expiratory pressure of 5 cm H 2 O and a tidal volume of 10 ml x kg -1 . 10 11 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p protective group was unchanged (p protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.

  11. Gene Expression Profiling in Lung Tissues from Rat Exposed to Lunar Dust Particles

    Science.gov (United States)

    Zhang, Ye; Lam, Chiu-Wing; Zalesak, Selina M.; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Scully, Robert R.; Williams, Kyle; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (gene expression changes in lung tissues from rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, and 3 months after the last inhalation exposure. The total RNAs were isolated from lung tissues after being lavaged. The Agilent Rat GE v3 microarray was used to profile global gene expression (44K). The genes with significant expression changes are identified and the gene expression data were further analyzed using various statistical tools.

  12. Radiation-induced changes in production of prostaglandins Fsub(2α), E, and thromboxane B2 in guinea pig parenchymal lung tissues

    International Nuclear Information System (INIS)

    Steel, L.K.; Catravas, G.N.

    1982-01-01

    At 1 hour to 4 days after unilateral exposure of guinea pigs to a single dose (0.5, 1.5, or 3.0 Gy) of gamma-radiation, changes were detected in prostaglandin and thromboxane concentrations in parenchymal lung tissues. At 1-3 hours after exposure, tissue levels of PGFsub(2α), PGE, and thromboxane B 2 were significantly elevated in animals receiving 3.0 Gy, with the magnitude of alteration revealing a radiation dose effect. By 24 hours, tissue prostaglandin and thromboxane levels returned to near control values. Lung tissue synthesis of prostaglandins in response to H-1 receptor stimulation by the exogenous addition of histamine revealed similar radiation dose effects. The carboxylic acid ionophore A23187, exogenously applied to lung tissues, revealed a transient peak of increased sensitivity to ionophore stimulation for TxB 2 synthesis at 24 hours and for PGFsub(2α) at 72 hours post-irradiation. The data suggest that significant alterations in prostaglandin and thromboxane concentrations in parenchymal lung tissues occur following irradiation, in a dose-dependent manner, and that altered responsiveness to H-1 receptor stimulation and divalent cation transport also occur

  13. Mast cells in the human lung at high altitude

    Science.gov (United States)

    Heath, Donald

    1992-12-01

    Mast cell densities in the lung were measured in five native highlanders of La Paz (3600 m) and in one lowlander dying from high-altitude pulmonary oedema (HAPO) at 3440 m. Two of the highlanders were mestizos with normal pulmonary arteries and the others were Aymara Indians with muscular remodelling of their pulmonary vasculature. The aim of the investigation was to determine if accumulation of mast cells in the lung at high altitude (HA) is related to alveolar hypoxia alone, to a combination of hypoxia and muscularization of the pulmonary arterial tree, or to oedema of the lung. The lungs of four lowlanders were used as normoxic controls. The results showed that the mast cell density of the two Mestizos was in the normal range of lowlanders (0.6-8.8 cells/mm2). In the Aymara Indians the mast cell counts were raised (25.6-26.0 cells/mm2). In the lowlander dying from HAPO the mast cell count was greatly raised to 70.1 cells/mm2 lung tissue. The results show that in native highlanders an accumulation of mast cells in the lung is not related to hypoxia alone but to a combination of hypoxia and muscular remodelling of the pulmonary arteries. However, the most potent cause of increased mast cell density in the lung at high altitude appears to be high-altitude pulmonary oedema.

  14. Dosimetric verification of small fields in the lung using lung-equivalent polymer gel and Monte Carlo simulation.

    Science.gov (United States)

    Gharehaghaji, Nahideh; Dadgar, Habib Alah

    2018-01-01

    The main purpose of this study was evaluate a polymer-gel-dosimeter (PGD) for three-dimensional verification of dose distributions in the lung that is called lung-equivalent gel (LEG) and then to compare its result with Monte Carlo (MC) method. In the present study, to achieve a lung density for PGD, gel is beaten until foam is obtained, and then sodium dodecyl sulfate is added as a surfactant to increase the surface tension of the gel. The foam gel was irradiated with 1 cm × 1 cm field size in the 6 MV photon beams of ONCOR SIEMENS LINAC, along the central axis of the gel. The LEG was then scanned on a 1.5 Tesla magnetic resonance imaging scanner after irradiation using a multiple-spin echo sequence. Least-square fitting the pixel values from 32 consecutive images using a single exponential decay function derived the R2 relaxation rates. Moreover, 6 and 18 MV photon beams of ONCOR SIEMENS LINAC are simulated using MCNPX MC Code. The MC model is used to calculate the depth dose water and low-density water resembling the soft tissue and lung, respectively. Percentages of dose reduction in the lung region relative to homogeneous phantom for 6 MV photon beam were 44.6%, 39%, 13%, and 7% for 0.5 cm × 0.5 cm, 1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm fields, respectively. For 18 MV photon beam, the results were found to be 82%, 69%, 46%, and 25.8% for the same field sizes, respectively. Preliminary results show good agreement between depth dose measured with the LEG and the depth dose calculated using MCNP code. Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.

  15. Low or undetectable TPO receptor expression in malignant tissue and cell lines derived from breast, lung, and ovarian tumors

    Directory of Open Access Journals (Sweden)

    Erickson-Miller Connie L

    2012-09-01

    Full Text Available Abstract Background Numerous efficacious chemotherapy regimens may cause thrombocytopenia. Thrombopoietin receptor (TPO-R agonists, such as eltrombopag, represent a novel approach for the treatment of chemotherapy-induced thrombocytopenia. The TPO-R MPL is expressed on megakaryocytes and megakaryocyte precursors, although little is known about its expression on other tissues. Methods Breast, lung, and ovarian tumor samples were analyzed for MPL expression by microarray and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR, and for TPO-R protein expression by immunohistochemistry (IHC. Cell line proliferation assays were used to analyze the in vitro effect of eltrombopag on breast, lung, and ovarian tumor cell proliferation. The lung carcinoma cell lines were also analyzed for TPO-R protein expression by Western blot. Results MPL mRNA was not detectable in 118 breast tumors and was detectable at only very low levels in 48% of 29 lung tumors studied by microarray analysis. By qRT-PCR, low but detectable levels of MPL mRNA were detectable in some normal (14-43% and malignant (3-17% breast, lung, and ovarian tissues. A comparison of MPL to EPOR, ERBB2, and IGF1R mRNA demonstrates that MPL mRNA levels were far lower than those of EPOR and ERBB2 mRNA in the same tissues. IHC analysis showed negligible TPO-R protein expression in tumor tissues, confirming mRNA analysis. Culture of breast, lung, and ovarian carcinoma cell lines showed no increase, and in fact, showed a decrease in proliferation following incubation with eltrombopag. Western blot analyses revealed no detectable TPO-R protein expression in the lung carcinoma cell lines. Conclusions Multiple analyses of breast, lung, and ovarian tumor samples and/or cell lines show no evidence of MPL mRNA or TPO-R protein expression. Eltrombopag does not stimulate growth of breast, lung, or ovarian tumor cell lines at doses likely to exert their actions on megakaryocytes and

  16. Studies on mRNA expression of the somatostatin receptor family in lung cancer

    International Nuclear Information System (INIS)

    Wang Jing; Deng Jinglan; Wu Shengxi; Qiao Hongqing

    2000-01-01

    Objective: To investigate the characteristics of expression and distribution of 5 subtypes of somatostatin receptors (SSTR1∼5) in lung cancer. Methods: With [α- 35 S]dATP labelled oligonucleotides of the 5 SSTR subtypes as probes, using in situ hybridization, patterns of mRNA expression were detected in lung cancer tissue sections of 21 cases which fell in varied pathologic types. Additionally, Leica Q-500 image analyzing device was employed to semi-quantitatively analyze density of the expression. Results: Patterns of SSTR1∼5 expression in lung cancer were as follows: SSTR2 expression was dominant in small cell lung cancer (SCLC) while in non-small cell lung cancer (NSCLC) such as adenous and squamous, SSTR1 expression was stronger than that of the other 4 subtypes, In density of SSTR1∼5 expression in lung cancer, NSCLC was higher than SCLC (P<0.01). Conclusions: even though patterns and density of expression of SSTR subtypes in the lung cancer showed heterogeneity in different histopathologic types, as in SCLC and in NSCLC. Therefore, it has positive prospects for somatostatin analog-oriented agents to be used in treatment of both types of the lung cancers

  17. Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density.

    Science.gov (United States)

    Johnson, E J; Hammond, B R; Yeum, K J; Qin, J; Wang, X D; Castaneda, C; Snodderly, D M; Russell, R M

    2000-06-01

    Lutein and zeaxanthin are the only carotenoids in the macular region of the retina (referred to as macular pigment [MP]). Foods that are rich in lutein and zeaxanthin can increase MP density. Response to dietary lutein and zeaxanthin in other tissues has not been studied. The objective of this study was to examine tissue responses to dietary lutein and zeaxanthin and relations among tissues in lutein and zeaxanthin concentrations. Seven subjects consumed spinach and corn, which contain lutein and zeaxanthin, with their daily diets for 15 wk. At 0, 4, 8, and 15 wk and 2 mo after the study, serum, buccal mucosa cells, and adipose tissue were analyzed for carotenoids, and MP density was measured. Serum and buccal cell concentrations of lutein increased significantly from baseline during dietary modification. Serum zeaxanthin concentrations were greater than at baseline only at 4 wk, whereas buccal cell and adipose tissue concentrations of zeaxanthin did not change. Adipose tissue lutein concentrations peaked at 8 wk. Changes in adipose tissue lutein concentration were inversely related to the changes in MP density, suggesting an interaction between adipose tissue and retina in lutein metabolism. To investigate the possibility of tissue interactions, we examined cross-sectional relations among serum, tissue, and dietary lutein concentrations, anthropometric measures, and MP density in healthy adults. Significant negative correlations were found between adipose tissue lutein concentrations and MP for women, but a significant positive relation was found for men. Sex differences in lutein metabolism may be an important factor in tissue interactions and in determining MP density.

  18. On Predicting lung cancer subtypes using ‘omic’ data from tumor and tumor-adjacent histologically-normal tissue

    International Nuclear Information System (INIS)

    Pineda, Arturo López; Ogoe, Henry Ato; Balasubramanian, Jeya Balaji; Rangel Escareño, Claudia; Visweswaran, Shyam; Herman, James Gordon; Gopalakrishnan, Vanathi

    2016-01-01

    Adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the most prevalent histological types among lung cancers. Distinguishing between these subtypes is critically important because they have different implications for prognosis and treatment. Normally, histopathological analyses are used to distinguish between the two, where the tissue samples are collected based on small endoscopic samples or needle aspirations. However, the lack of cell architecture in these small tissue samples hampers the process of distinguishing between the two subtypes. Molecular profiling can also be used to discriminate between the two lung cancer subtypes, on condition that the biopsy is composed of at least 50 % of tumor cells. However, for some cases, the tissue composition of a biopsy might be a mix of tumor and tumor-adjacent histologically normal tissue (TAHN). When this happens, a new biopsy is required, with associated cost, risks and discomfort to the patient. To avoid this problem, we hypothesize that a computational method can distinguish between lung cancer subtypes given tumor and TAHN tissue. Using publicly available datasets for gene expression and DNA methylation, we applied four classification tasks, depending on the possible combinations of tumor and TAHN tissue. First, we used a feature selector (ReliefF/Limma) to select relevant variables, which were then used to build a simple naïve Bayes classification model. Then, we evaluated the classification performance of our models by measuring the area under the receiver operating characteristic curve (AUC). Finally, we analyzed the relevance of the selected genes using hierarchical clustering and IPA® software for gene functional analysis. All Bayesian models achieved high classification performance (AUC > 0.94), which were confirmed by hierarchical cluster analysis. From the genes selected, 25 (93 %) were found to be related to cancer (19 were associated with ADC or SCC), confirming the biological relevance of our

  19. Ethylene-vinyl acetate foam as a new lung substitute in radiotherapy.

    Science.gov (United States)

    Marqués, Enrique; Mancha, Pedro J

    2018-04-01

    The purpose of this study was to evaluate ethylene-vinyl acetate (EVA) foam as a new lung substitute in radiotherapy and to study its physical and dosimetric characteristics. We calculated the ideal vinyl acetate (VA) content of EVA foam sheets to mimic the physical and dosimetric characteristics of the ICRU lung tissue. We also computed the water-to-medium mass collision stopping power ratios, mass attenuation coefficients, CT numbers, effective atomic numbers and electron densities for: ICRU lung tissue, the RANDO commercial phantom, scaled WATER and EVA foam sheets with varying VA contents in a range between the minimum and maximum values supplied by the manufacturer. For all these substitutes, we simulated percent depth-dose curves with EGSnrc Monte Carlo (MC PDDs) in a water-lung substitute-water slab phantom expressed as dose-to-medium and dose-to-water for 3 × 3- and 10 × 10-cm 2 field sizes. PDD for the 10 × 10-cm 2 field size was also calculated with the MultiGrid Superposition algorithm (MGS PDD) for a relative electron density to water ratio of 0.26. The latter was compared with the MC PDDs in dose-to-water for scaled WATER and EVA foam sheets with the VA content that was most similar to the calculated ideal content that is physically achievable in practice. We calculated an ideal VA content of 55%; however, the maximum physically achievable content with current manufacturing techniques is 40%. The physical characteristics of the EVA foam sheets with a VA content of 40% (EVA40) are very close to those of the ICRU lung reference. The physical densities of the EVA40 foam sheets ranged from 0.030 to 0.965 g/cm 3 , almost covering the entire physical density range of the inflated/deflated lung (0.260-1.050 g/cm 3 ). Its mass attenuation coefficient at the effective energy of a 6-MV photon beam agrees within 0.8% of the ICRU reference value, and its CT number agrees within 6 HU. The effective atomic number for EVA40 varies by less than 0.42 of the

  20. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue.

    Science.gov (United States)

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  1. Automatic breast tissue density estimation scheme in digital mammography images

    Science.gov (United States)

    Menechelli, Renan C.; Pacheco, Ana Luisa V.; Schiabel, Homero

    2017-03-01

    Cases of breast cancer have increased substantially each year. However, radiologists are subject to subjectivity and failures of interpretation which may affect the final diagnosis in this examination. The high density features in breast tissue are important factors related to these failures. Thus, among many functions some CADx (Computer-Aided Diagnosis) schemes are classifying breasts according to the predominant density. In order to aid in such a procedure, this work attempts to describe automated software for classification and statistical information on the percentage change in breast tissue density, through analysis of sub regions (ROIs) from the whole mammography image. Once the breast is segmented, the image is divided into regions from which texture features are extracted. Then an artificial neural network MLP was used to categorize ROIs. Experienced radiologists have previously determined the ROIs density classification, which was the reference to the software evaluation. From tests results its average accuracy was 88.7% in ROIs classification, and 83.25% in the classification of the whole breast density in the 4 BI-RADS density classes - taking into account a set of 400 images. Furthermore, when considering only a simplified two classes division (high and low densities) the classifier accuracy reached 93.5%, with AUC = 0.95.

  2. Age-dependent accumulation of heavy metals in liver, kidney and lung tissues of homing pigeons in Beijing, China.

    Science.gov (United States)

    Cui, Jia; Wu, Bin; Halbrook, Richard S; Zang, Shuying

    2013-12-01

    Biomonitoring provides direct evidence of the bioavailability and accumulation of toxic elements in the environment. In the current study, 1-2, 5-6, and 9-10+ year old homing pigeons collected from the Haidian District of Beijing during 2011 were necropsied and concentrations of cadmium, lead, and mercury were measured in liver, lung, and kidney tissue. At necropsy, gray/black discoloration of the margins of the lungs was observed in 98 % of the pigeons. There were no significant differences in metal concentrations as a function of gender. Cadmium concentrations in all tissues and Pb concentrations in the lung tissues were significantly greater in 9-10+ year old pigeons compared to other age groups indicating that Cd and Pb were bioavailable. Mercury concentrations were not significantly different among age groups. Cadmium concentrations in kidney and lung tissues of 9-10+ year old pigeons were similar to or exceeded concentrations of Cd reported in pigeons from another high traffic urban area and most wild avian species from Korea suggesting that Cd in this region of Beijing may be of concern. Homing pigeons provide valuable exposure and bioaccumulation data not readily available from air monitoring alone, thus providing information regarding potential health effects in wildlife and humans in urban areas. As environmental quality standards are implemented in China, homing pigeons will serve as a valuable bio-monitor of the efficacy of these actions.

  3. Optical density measurements on the examination of colon cancer tissues

    International Nuclear Information System (INIS)

    Touati, E.; Ajaal, T.; Hamassi, A.

    2015-01-01

    Automated quantitative image analysis can aid in cancer diagnosis and, in general, mange medical treatments managements and improve routine medical diagnosis. Early diagnosis can make big difference between life and death. Microscopic images from two tissue types forty-four normal and fifty-eight cancers, was evaluated based on their ability to identify abnormalities in colon images. Optical density approach is applied to extract parameters that exhibit cancer behavior on colon tissues images. Using statistical toolbox, a significant result of (p<0.0001) for the mean and the variance of the optical density parameter were detected, and only (p<0.001) for skewness optical density. based on linear discrimination method, the obtained result shows 905 accuracy for both sensitivity and specificity, and with an overall accuracy of 90% (author)

  4. Precision cut lung slices as an efficient tool for in vitro lung physio-pharmacotoxicology studies.

    Science.gov (United States)

    Morin, Jean-Paul; Baste, Jean-Marc; Gay, Arnaud; Crochemore, Clément; Corbière, Cécile; Monteil, Christelle

    2013-01-01

    1.We review the specific approaches for lung tissue slices preparation and incubation systems and the research application fields in which lung slices proved to be a very efficient alternative to animal experimentation for biomechanical, physiological, pharmacological and toxicological approaches. 2.Focus is made on air-liquid interface dynamic organ culture systems that allow direct tissue exposure to complex aerosol and that best mimic in vivo lung tissue physiology. 3.A compilation of research applications in the fields of vascular and airway reactivity, mucociliary transport, polyamine transport, xenobiotic biotransformation, chemicals toxicology and complex aerosols supports the concept that precision cut lung slices are a very efficient tool maintaining highly differentiated functions similar to in vivo lung organ when kept under dynamic organ culture. They also have been successfully used for lung gene transfer efficiency assessment, for lung viral infection efficiency assessment, for studies of tissue preservation media and tissue post-conditioning to optimize lung tissue viability before grafting. 4.Taken all together, the reviewed studies point to a great interest for precision cut lung slices as an efficient and valuable alternative to in vivo lung organ experimentation.

  5. Protective effect of gel form of gastric gavage applicated aloe vera on ischemia reperfusion injury in renal and lung tissue.

    Science.gov (United States)

    Sahin, Hasan; Yener, Ali Umit; Karaboga, Ihsan; Sehitoglu, Muserref Hilal; Dogu, Tugba; Altinisik, Hatice Betul; Altinisik, Ugur; Simsek, Tuncer

    2017-12-30

    The aloe vera plant has become increasingly popular in recent years. This study aimed to research the effect of aloe vera to prevent renal and lung tissue damage in an experimental ischemia-reperfusion (I/R) injury model. The study included 21 male Wistar Albino rats, which were categorized into control group, n = 7 (no procedures), Sham group n = 7 (I/R); and aloe vera therapy group, n = 7 (aloe vera and I/R). Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) were evaluated from lung and kidney tissues for biochemical investigations. As histopathological, hematoxylin and eosin and anti-iNOS were also examined. In biochemical investigations, SOD, CAT, and GPx levels of the Sham group were found to be lower compared with the other groups (P < 0.05). The aloe vera therapy group was not statistically different from control groups but significantly different compared with the Sham group. In the same way, the MDA levels of kidney and lung tissues were statistically significant in the aloe vera therapy group, compared to the Sham group. In the Sham group, the peribronchial and perialveolar edema were observed in lung parenchyma. Also, excess interstitial hemorrhage, leukocyte infiltration, and alveolar wall thickening were identified in ischemic groups. The histopathological changes were much lighter than in the aloe vera therapy group. In renal tissues, excess epithelial cell deterioration, tubular desqumination, and glomerular atrophy were observed in the Sham group. The histopathological changes were markedly reduced in the aloe vera therapy  group. In the kidney and lung tissue, the level of iNOS activity in the Sham group was significantly higher than in the control and aloe vera therapy group. This study indicated that aloe vera is protective against oxidative damage formed by I/R in distant organs like the lungs and kidneys.

  6. Cytonuclear Epistasis Controls the Density of Symbiont Wolbachia pipientis in Nongonadal Tissues of Mosquito Culex quinquefasciatus.

    Science.gov (United States)

    Emerson, Kevin J; Glaser, Robert L

    2017-08-07

    Wolbachia pipientis , a bacterial symbiont infecting arthropods and nematodes, is vertically transmitted through the female germline and manipulates its host's reproduction to favor infected females. Wolbachia also infects somatic tissues where it can cause nonreproductive phenotypes in its host, including resistance to viral pathogens. Wolbachia -mediated phenotypes are strongly associated with the density of Wolbachia in host tissues. Little is known, however, about how Wolbachia density is regulated in native or heterologous hosts. Here, we measure the broad-sense heritability of Wolbachia density among families in field populations of the mosquito Culex pipiens , and show that densities in ovary and nongonadal tissues of females in the same family are not correlated, suggesting that Wolbachia density is determined by distinct mechanisms in the two tissues. Using introgression analysis between two different strains of the closely related species C. quinquefasciatus , we show that Wolbachia densities in ovary tissues are determined primarily by cytoplasmic genotype, while densities in nongonadal tissues are determined by both cytoplasmic and nuclear genotypes and their epistatic interactions. Quantitative-trait-locus mapping identified two major-effect quantitative-trait loci in the C. quinquefasciatus genome explaining a combined 23% of variance in Wolbachia density, specifically in nongonadal tissues. A better understanding of how Wolbachia density is regulated will provide insights into how Wolbachia density can vary spatiotemporally in insect populations, leading to changes in Wolbachia -mediated phenotypes such as viral pathogen resistance. Copyright © 2017 Emerson, Glaser.

  7. Whole-lung volume and density in spirometrically-gated inspiratory and expiratory CT in systemic sclerosis: correlation with static volumes at pulmonary function tests.

    Science.gov (United States)

    Camiciottoli, G; Diciotti, S; Bartolucci, M; Orlandi, I; Bigazzi, F; Matucci-Cerinic, M; Pistolesi, M; Mascalchi, M

    2013-03-01

    Spiral low-dose computed tomography (LDCT) permits to measure whole-lung volume and density in a single breath-hold. To evaluate the agreement between static lung volumes measured with LDCT and pulmonary function test (PFT) and the correlation between the LDCT volumes and lung density in restrictive lung disease. Patients with Systemic Sclerosis (SSc) with (n = 24) and without (n = 16) pulmonary involvement on sequential thin-section CT and patients with chronic obstructive pulmonary disease (COPD)(n = 29) underwent spirometrically-gated LDCT at 90% and 10% of vital capacity to measure inspiratory and expiratory lung volumes and mean lung attenuation (MLA). Total lung capacity and residual volume were measured the same day of CT. Inspiratory [95% limits of agreement (95% LoA)--43.8% and 39.2%] and expiratory (95% LoA -45.8% and 37.1%) lung volumes measured on LDCT and PFT showed poor agreement in SSc patients with pulmonary involvement, whereas they were in substantial agreement (inspiratory 95% LoA -14.1% and 16.1%; expiratory 95% LoA -13.5% and 23%) in SSc patients without pulmonary involvement and in inspiratory scans only (95% LoA -23.1% and 20.9%) of COPD patients. Inspiratory and expiratory LDCT volumes, MLA and their deltas differentiated both SSc patients with or without pulmonary involvement from COPD patients. LDCT lung volumes and density were not correlated in SSc patients with pulmonary involvement, whereas they did correlate in SSc without pulmonary involvement and in COPD patients. In restrictive lung disease due to SSc there is poor agreement between static lung volumes measured using LDCT and PFT and the relationship between volume and density values on CT is altered.

  8. Lung structure and function relation in systemic sclerosis: Application of lung densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Ninaber, Maarten K., E-mail: m.k.ninaber@lumc.nl [Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Stolk, Jan; Smit, Jasper; Le Roy, Ernest J. [Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Kroft, Lucia J.M. [Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Els Bakker, M. [Division of Image Processing, Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Vries Bouwstra, Jeska K. de; Schouffoer, Anne A. [Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Staring, Marius; Stoel, Berend C. [Division of Image Processing, Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands)

    2015-05-15

    Highlights: • A quantitative CT parameter of lung parenchyma in systemic sclerosis is presented. • We examine the optimal percentage threshold for the percentile density. • The 85th percentile density threshold correlated significantly with lung function. • A lung structure–function relation is confirmed. • We report applicability of Perc85 in progression mapping of interstitial lung disease. - Abstract: Introduction: Interstitial lung disease occurs frequently in patients with systemic sclerosis (SSc). Quantitative computed tomography (CT) densitometry using the percentile density method may provide a sensitive assessment of lung structure for monitoring parenchymal damage. Therefore, we aimed to evaluate the optimal percentile density score in SSc by quantitative CT densitometry, against pulmonary function. Material and methods: We investigated 41 SSc patients by chest CT scan, spirometry and gas transfer tests. Lung volumes and the nth percentile density (between 1 and 99%) of the entire lungs were calculated from CT histograms. The nth percentile density is defined as the threshold value of densities expressed in Hounsfield units. A prerequisite for an optimal percentage was its correlation with baseline DLCO %predicted. Two patients showed distinct changes in lung function 2 years after baseline. We obtained CT scans from these patients and performed progression analysis. Results: Regression analysis for the relation between DLCO %predicted and the nth percentile density was optimal at 85% (Perc85). There was significant agreement between Perc85 and DLCO %predicted (R = −0.49, P = 0.001) and FVC %predicted (R = −0.64, P < 0.001). Two patients showed a marked change in Perc85 over a 2 year period, but the localization of change differed clearly. Conclusions: We identified Perc85 as optimal lung density parameter, which correlated significantly with DLCO and FVC, confirming a lung parenchymal structure–function relation in SSc. This provides

  9. Lung structure and function relation in systemic sclerosis: Application of lung densitometry

    International Nuclear Information System (INIS)

    Ninaber, Maarten K.; Stolk, Jan; Smit, Jasper; Le Roy, Ernest J.; Kroft, Lucia J.M.; Els Bakker, M.; Vries Bouwstra, Jeska K. de; Schouffoer, Anne A.; Staring, Marius; Stoel, Berend C.

    2015-01-01

    Highlights: • A quantitative CT parameter of lung parenchyma in systemic sclerosis is presented. • We examine the optimal percentage threshold for the percentile density. • The 85th percentile density threshold correlated significantly with lung function. • A lung structure–function relation is confirmed. • We report applicability of Perc85 in progression mapping of interstitial lung disease. - Abstract: Introduction: Interstitial lung disease occurs frequently in patients with systemic sclerosis (SSc). Quantitative computed tomography (CT) densitometry using the percentile density method may provide a sensitive assessment of lung structure for monitoring parenchymal damage. Therefore, we aimed to evaluate the optimal percentile density score in SSc by quantitative CT densitometry, against pulmonary function. Material and methods: We investigated 41 SSc patients by chest CT scan, spirometry and gas transfer tests. Lung volumes and the nth percentile density (between 1 and 99%) of the entire lungs were calculated from CT histograms. The nth percentile density is defined as the threshold value of densities expressed in Hounsfield units. A prerequisite for an optimal percentage was its correlation with baseline DLCO %predicted. Two patients showed distinct changes in lung function 2 years after baseline. We obtained CT scans from these patients and performed progression analysis. Results: Regression analysis for the relation between DLCO %predicted and the nth percentile density was optimal at 85% (Perc85). There was significant agreement between Perc85 and DLCO %predicted (R = −0.49, P = 0.001) and FVC %predicted (R = −0.64, P < 0.001). Two patients showed a marked change in Perc85 over a 2 year period, but the localization of change differed clearly. Conclusions: We identified Perc85 as optimal lung density parameter, which correlated significantly with DLCO and FVC, confirming a lung parenchymal structure–function relation in SSc. This provides

  10. Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs.

    Science.gov (United States)

    Dunphy, Siobhán E; Bratt, Jessica A J; Akram, Khondoker M; Forsyth, Nicholas R; El Haj, Alicia J

    2014-10-01

    In this study, collagen-elastin constructs were prepared with the aim of producing a material capable of mimicking the mechanical properties of a single alveolar wall. Collagen has been used in a wide range of tissue engineering applications; however, due to its low mechanical properties its use is limited to non load-bearing applications without further manipulation using methods such as cross-linking or mechanical compression. Here, it was hypothesised that the addition of soluble elastin to a collagen hydrogel could improve its mechanical properties. Hydrogels made from collagen only and collagen plus varying amounts elastin were prepared. Young׳s modulus of each membrane was measured using the combination of a non-destructive indentation and a theoretical model previously described. An increase in Young׳s modulus was observed with increasing concentration of elastin. The use of non-destructive indentation allowed for online monitoring of the elastic moduli of cell-seeded constructs over 8 days. The addition of lung fibroblasts into the membrane increased the stiffness of the hydrogels further and cell-seeded collagen hydrogels were found to have a stiffness equal to the theoretical value for a single alveolar wall (≈5kPa). Through provision of some of the native extracellular matrix components of the lung parenchyma these scaffolds may be able to provide an initial building block toward the regeneration of new functional lung tissue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation

    Science.gov (United States)

    2012-01-01

    Background Elastin is an essential component of selected connective tissues that provides a unique physiological elasticity. Elastin may be considered a signature protein of lungs where matrix metalloprotease (MMP) -9-and -12, may be considered the signature proteases of the macrophages, which in part are responsible for tissue damage during disease progression. Thus, we hypothesized that a MMP-9/-12 generated fragment of elastin may be a relevant biochemical maker for lung diseases. Methods Elastin fragments were identified by mass-spectrometry and one sequence, generated by MMP-9 and -12 (ELN-441), was selected for monoclonal antibody generation and used in the development of an ELISA. Soluble and insoluble elastin from lung was cleaved in vitro and the time-dependent release of fragments was assessed in the ELN-441 assay. The release of ELN-441 in human serum from patients with chronic obstructive pulmonary disease (COPD) (n = 10) and idiopathic pulmonary fibrosis (IPF) (n = 29) were compared to healthy matched controls (n = 11). Results The sequence ELN-441 was exclusively generated by MMP-9 and -12 and was time-dependently released from soluble lung elastin. ELN-441 levels were 287% higher in patients diagnosed with COPD (p elastin. This fragment was elevated in serum from patients with the lung diseases IPF and COPD, however these data needs to be validated in larger clinical settings. PMID:22818364

  12. Radiation-induced changes in production of prostaglandins Fsub(2. cap alpha. ), E, and thromboxane B/sub 2/ in guinea pig parenchymal lung tissues

    Energy Technology Data Exchange (ETDEWEB)

    Steel, L K; Catravas, G N [Armed Forces Radiobiology Research Inst., Bethesda, MD (USA)

    1982-11-01

    At 1 hour to 4 days after unilateral exposure of guinea pigs to a single dose (0.5, 1.5, or 3.0 Gy) of gamma-radiation, changes were detected in prostaglandin and thromboxane concentrations in parenchymal lung tissues. At 1-3 hours after exposure, tissue levels of PGFsub(2..cap alpha..), PGE, and thromboxane B/sub 2/ were significantly elevated in animals receiving 3.0 Gy, with the magnitude of alteration revealing a radiation dose effect. By 24 hours, tissue prostaglandin and thromboxane levels returned to near control values. Lung tissue synthesis of prostaglandins in response to H-1 receptor stimulation by the exogenous addition of histamine revealed similar radiation dose effects. The carboxylic acid ionophore A23187, exogenously applied to lung tissues, revealed a transient peak of increased sensitivity to ionophore stimulation for TxB/sub 2/ synthesis at 24 hours and for PGFsub(2..cap alpha..) at 72 hours post-irradiation. The data suggest that significant alterations in prostaglandin and thromboxane concentrations in parenchymal lung tissues occur following irradiation, in a dose-dependent manner, and that altered responsiveness to H-1 receptor stimulation and divalent cation transport also occur.

  13. Connective tissue-activating peptide III: a novel blood biomarker for early lung cancer detection.

    Science.gov (United States)

    Yee, John; Sadar, Marianne D; Sin, Don D; Kuzyk, Michael; Xing, Li; Kondra, Jennifer; McWilliams, Annette; Man, S F Paul; Lam, Stephen

    2009-06-10

    There are no reliable blood biomarkers to detect early lung cancer. We used a novel strategy that allows discovery of differentially present proteins against a complex and variable background. Mass spectrometry analyses of paired pulmonary venous-radial arterial blood from 16 lung cancer patients were applied to identify plasma proteins potentially derived from the tumor microenvironment. Two differentially expressed proteins were confirmed in 64 paired venous-arterial blood samples using an immunoassay. Twenty-eight pre- and postsurgical resection peripheral blood samples and two independent, blinded sets of plasma from 149 participants in a lung cancer screening study (49 lung cancers and 100 controls) and 266 participants from the National Heart Lung and Blood Institute Lung Health Study (45 lung cancer and 221 matched controls) determined the accuracy of the two protein markers to detect subclinical lung cancer. Connective tissue-activating peptide III (CTAP III)/ neutrophil activating protein-2 (NAP-2) and haptoglobin were identified to be significantly higher in venous than in arterial blood. CTAP III/NAP-2 levels decreased after tumor resection (P = .01). In two independent population cohorts, CTAP III/NAP-2 was significantly associated with lung cancer and improved the accuracy of a lung cancer risk prediction model that included age, smoking, lung function (FEV(1)), and an interaction term between FEV(1) and CTAP III/NAP-2 (area under the curve, 0.84; 95% CI, 0.77 to 0.91) compared to CAPIII/NAP-2 alone. We identified CTAP III/NAP-2 as a novel biomarker to detect preclinical lung cancer. The study underscores the importance of applying blood biomarkers as part of a multimodal lung cancer risk prediction model instead of as stand-alone tests.

  14. Silica inhalation altered telomere length and gene expression of telomere regulatory proteins in lung tissue of rats.

    Science.gov (United States)

    Shoeb, Mohammad; Joseph, Pius; Kodali, Vamsi; Mustafa, Gul; Farris, Breanne Y; Umbright, Christina; Roberts, Jenny R; Erdely, Aaron; Antonini, James M

    2017-12-11

    Exposure to silica can cause lung fibrosis and cancer. Identification of molecular targets is important for the intervention and/or prevention of silica-induced lung diseases. Telomeres consist of tandem repeats of DNA sequences at the end of chromosomes, preventing chromosomal fusion and degradation. Regulator of telomere length-1 (RTEL1) and telomerase reverse transcriptase (TERT), genes involved in telomere regulation and function, play important roles in maintaining telomere integrity and length. The goal of this study was to assess the effect of silica inhalation on telomere length and the regulation of RTEL1 and TERT. Lung tissues and blood samples were collected from rats at 4, 32, and 44 wk after exposure to 15 mg/m 3 of silica × 6 h/d × 5 d. Controls were exposed to air. At all-time points, RTEL1 expression was significantly decreased in lung tissue of the silica-exposed animals compared to controls. Also, significant increases in telomere length and TERT were observed in the silica group at 4 and 32 wk. Telomere length, RTEL1 and TERT expression may serve as potential biomarkers related to silica exposure and may offer insight into the molecular mechanism of silica-induced lung disease and tumorigeneses.

  15. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  16. Post-mortem detection of gasoline residues in lung tissue and heart blood of fire victims.

    Science.gov (United States)

    Pahor, Kevin; Olson, Greg; Forbes, Shari L

    2013-09-01

    The purpose of this study was to determine whether gasoline residues could be detected post-mortem in lung tissue and heart blood of fire victims. The lungs and heart blood were investigated to determine whether they were suitable samples for collection and could be collected without contamination during an autopsy. Three sets of test subjects (pig carcasses) were investigated under two different fire scenarios. Test subjects 1 were anaesthetized following animal ethics approval, inhaled gasoline vapours for a short period and then euthanized. The carcasses were clothed and placed in a house where additional gasoline was poured onto the carcass post-mortem in one fire, but not in the other. Test subjects 2 did not inhale gasoline, were clothed and placed in the house and had gasoline poured onto them in both fires. Test subjects 3 were clothed but had no exposure to gasoline either ante- or post-mortem. Following controlled burns and suppression with water, the carcasses were collected, and their lungs and heart blood were excised at a necropsy. The headspace from the samples was analysed using thermal desorption-gas chromatography-mass spectroscopy. Gasoline was identified in the lungs and heart blood from the subjects that were exposed to gasoline vapours prior to death (test subjects 1). All other samples were negative for gasoline residues. These results suggest that it is useful to analyse for volatile ignitable liquids in lung tissue and blood as it may help to determine whether a victim was alive and inhaling gases at the time of a fire.

  17. Incomplete Memories: The Natural Suppression of Tissue-Resident Memory CD8 T Cells in the Lung

    Directory of Open Access Journals (Sweden)

    Katie L. Reagin

    2018-01-01

    Full Text Available The yearly, cyclic impact of viruses like influenza on human health and the economy is due to the high rates of mutation of traditional antibody targets, which negate any preexisting humoral immunity. However, the seasonality of influenza infections can equally be attributed to an absent or defective memory CD8 T cell response since the epitopes recognized by these cells are derived from essential virus proteins that mutate infrequently. Experiments in mouse models show that protection from heterologous influenza infection is temporally limited and conferred by a population of tissue-resident memory (TRM cells residing in the lung and lung airways. TRM are elicited by a diverse set of pathogens penetrating mucosal barriers and broadly identified by extravascular staining and expression of the activation and adhesion molecules CD69 and CD103. Interestingly, lung TRM fail to express these molecules, which could limit tissue retention, resulting in airway expulsion or death with concomitant loss of heterologous protection. Here, we make the case that respiratory infections uniquely evoke a form of natural immunosuppression whereby specific cytokines and cell–cell interactions negatively impact memory cell programming and differentiation. Respiratory memory is not only short-lived but most of the memory cells in the lung parenchyma may not be bona fide TRM. Given the quantity of microbes humans inhale over a lifetime, limiting cellular residence could be a mechanism employed by the respiratory tract to preserve organismal vitality. Therefore, successful efforts to improve respiratory immunity must carefully and selectively breach these inherent tissue barriers.

  18. Conservative surgery and radiotherapy for early-stage breast cancer using a lung density correction: the University of Michigan experience

    International Nuclear Information System (INIS)

    Pierce, Lori J.; Strawderman, Myla H.; Douglas, Kathye R.; Lichter, Allen S.

    1997-01-01

    Purpose: Although an abundance of reports detail the successful use of definitive radiotherapy of the breast in the treatment in Stage I or II breast cancer, little data have been published concerning the use of lung density correction and its effect upon long-term outcome. As it has been the practice at the University of Michigan to routinely use lung density correction in the dose calculations to the breast, we retrospectively analyzed our results for local control, relapse-free, and overall survival. Methods and Materials: Clinical records were reviewed of 429 women with Stage I or II breast cancer treated with lumpectomy, axillary dissection, and breast irradiation with or without systemic chemo/hormonal therapy. Tangential radiotherapy fields delivering 45 to 50 Gy were used to treat the entire breast. A boost was delivered in 95% of cases for a total tumor bed dose of 60 to 66 Gy. All treatment plans were calculated using a lung density correction. Results: With a median follow up of 4.4 years, the 5-year actuarial rate of local control with local failure as the only site of first failure was 96% (95% CI 94-98%). Univariate analysis for local failure as only first failure found the following factors to statistically predict for increased risk of breast recurrence: young age (≤35 years old), premenopausal status, tumor size >2 cm, positive family history, and positive microscopic margins. Multivariate analysis revealed young age and margin status to be the only factors remaining significant for local failure. The 5-year actuarial relapse-free survival was 85% (95% CI 81-89%); overall survival at 5 years was 90% (95% CI 87-94%). Conclusions: Lung density correction results in rates of local control, disease-free, and overall survival at 5 years that compare favorably with series using noncorrected unit density calculations. While we will continue to update our results with increasing follow-up, our 5-year data indicate that the use of lung-density correction

  19. Effect of radon and its progeny on the expression and mutation of p53 in lung tissues of mice

    International Nuclear Information System (INIS)

    Piao Chunnan; Tian Mei; Liu Jianxiang; Ruan Jianlei; Su Xu

    2010-01-01

    Objective: To explore the effect of radon and its progeny on the expression and mutations of p53 in lung tissue of mouse model. Methods: Apoptosis was detected by terminal deoxynucleotidy transferase-mediated dUTP-biotin nick end labeling. The expression of p53 gene was analyzed by immunohistochemistry, Western blot and realtime-PCR. PCR-SSCP was used to detect the mutation of p53 in lung tissues. Results: Compared with those in the control group, the apoptotic index were increased significantly in 30 WLM and 60 WLM groups (t=18.11, -10.30, P<0.05). The p53 protein was increased significantly (t=-11.08, P<0.05; t=-7.00, P<0.05) in 30 WLM and 60 WLM groups. The mutation of p53 gene was not detected in lungs of radon-exposure mice. Conclusions: Lung and bronchus might be the targets of radon and its progeny, and p53 gene plays an important role in the progression of radon-induced lung injury. (authors)

  20. Accumulation of radium in ferruginous protein bodies formed in lung tissue. Association of resulting radiation hotspots with malignant mesothelioma and other malignancies

    International Nuclear Information System (INIS)

    Nakamura, Eizo; Makishima, Akio; Hagino, Kyoko; Okabe, Kazunori

    2009-01-01

    While exposure to fibers and particles has been proposed to be associated with several different lung malignancies including mesothelioma, the mechanism for the carcinogenesis is not fully understood. Along with mineralogical observation, we have analyzed forty-four major and trace elements in extracted asbestos bodies (fibers and proteins attached to them) with coexisting fiber-free ferruginous protein bodies from extirpative lungs of individuals with malignant mesothelioma. These observations together with patients' characteristics suggest that inhaled iron-rich asbestos fibers and dust particles, and excess iron deposited by continuous cigarette smoking would induce ferruginous protein body formation resulting in ferritin aggregates in lung tissue. Chemical analysis of ferruginous protein bodies extracted from lung tissues reveals anomalously high concentrations of radioactive radium, reaching millions of times higher concentration than that of seawater. Continuous and prolonged internal exposure to hotspot ionizing radiation from radium and its daughter nuclides could cause strong and frequent DNA damage in lung tissue, initiate different types of tumour cells, including malignant mesothelioma cells, and may cause cancers. (author)

  1. Right ventricular systolic pressure measurements in combination with harvest of lung and immune tissue samples in mice.

    Science.gov (United States)

    Chen, Wen-Chi; Park, Sung-Hyun; Hoffman, Carol; Philip, Cecil; Robinson, Linda; West, James; Grunig, Gabriele

    2013-01-16

    The function of the right heart is to pump blood through the lungs, thus linking right heart physiology and pulmonary vascular physiology. Inflammation is a common modifier of heart and lung function, by elaborating cellular infiltration, production of cytokines and growth factors, and by initiating remodeling processes. Compared to the left ventricle, the right ventricle is a low-pressure pump that operates in a relatively narrow zone of pressure changes. Increased pulmonary artery pressures are associated with increased pressure in the lung vascular bed and pulmonary hypertension. Pulmonary hypertension is often associated with inflammatory lung diseases, for example chronic obstructive pulmonary disease, or autoimmune diseases. Because pulmonary hypertension confers a bad prognosis for quality of life and life expectancy, much research is directed towards understanding the mechanisms that might be targets for pharmaceutical intervention. The main challenge for the development of effective management tools for pulmonary hypertension remains the complexity of the simultaneous understanding of molecular and cellular changes in the right heart, the lungs and the immune system. Here, we present a procedural workflow for the rapid and precise measurement of pressure changes in the right heart of mice and the simultaneous harvest of samples from heart, lungs and immune tissues. The method is based on the direct catheterization of the right ventricle via the jugular vein in close-chested mice, first developed in the late 1990s as surrogate measure of pressures in the pulmonary artery. The organized team-approach facilitates a very rapid right heart catheterization technique. This makes it possible to perform the measurements in mice that spontaneously breathe room air. The organization of the work-flow in distinct work-areas reduces time delay and opens the possibility to simultaneously perform physiology experiments and harvest immune, heart and lung tissues. The

  2. Detection of SiO2 nanoparticles in lung tissue by ToF-SIMS imaging and fluorescence microscopy.

    Science.gov (United States)

    Veith, Lothar; Vennemann, Antje; Breitenstein, Daniel; Engelhard, Carsten; Wiemann, Martin; Hagenhoff, Birgit

    2017-07-10

    The direct detection of nanoparticles in tissues at high spatial resolution is a current goal in nanotoxicology. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is widely used for the direct detection of inorganic and organic substances with high spatial resolution but its capability to detect nanoparticles in tissue sections is still insufficiently explored. To estimate the applicability of this technique for nanotoxicological questions, comparative studies with established techniques on the detection of nanoparticles can offer additional insights. Here, we compare ToF-SIMS imaging data with sub-micrometer spatial resolution to fluorescence microscopy imaging data to explore the usefulness of ToF-SIMS for the detection of nanoparticles in tissues. SiO 2 nanoparticles with a mean diameter of 25 nm, core-labelled with fluorescein isothiocyanate, were intratracheally instilled into rat lungs. Subsequently, imaging of lung cryosections was performed with ToF-SIMS and fluorescence microscopy. Nanoparticles were successfully detected with ToF-SIMS in 3D microanalysis mode based on the lateral distribution of SiO 3 - (m/z 75.96), which was co-localized with the distribution pattern that was obtained from nanoparticle fluorescence. In addition, the lateral distribution of protein (CN - , m/z 26.00) and phosphate based signals (PO 3 - , m/z 78.96) originating from the tissue material could be related to the SiO 3 - lateral distribution. In conclusion, ToF-SIMS is suitable to directly detect and laterally resolve SiO 2 nanomaterials in biological tissue at sufficient intensity levels. At the same time, information about the chemical environment of the nanoparticles in the lung tissue sections is obtained.

  3. FDG uptake in the fatty tissues of supraclavicular and the vascular structure of the lung hilum

    International Nuclear Information System (INIS)

    Dang Yaping; Liu Gang; Li Miao

    2004-01-01

    Objectives: To investigate FDG uptake on the sites of supraclavicular region (SR) and the lung hilum (LH) and find out the exact tissues of the uptake. Methods: Supraclavicular region (SR) and lung hilum (LH) are common sites for lymph node metastases. A commonly reported site of non-malignant FDG uptake on PET imaging in the SR is muscular uptake. PET/CT offers a unique technique to correlate PET findings with CT anatomy in the SR and EH. From September 2002 to March 2003, 147 consecutive clinical patients imaged by FDG PET/CT whole-body scan (GE Discovery LS, CT attenuation correction, OSEM reconstruction) were retrospectively reviewed. The presence of abnormal FDG uptake on PET images in the sites of SR and LH regions was evaluated and the corresponding CT findings on the same regions were also assessed. Results: Of 147 patients, 8 cases (2M, 6F and mean age 44 years) were found with increased symmetrical FDG uptake in the regions of the lower neck and shoulder as well as costo-vertebral articulations, the positive rates were 2.1% and 11.3 % for men and women respectively, and the average rate was 5.4%. However, no FDG uptake was seen in the greater muscular structures of the cervical or thoracic spine. FDG uptake was seen in the fatty tissue between the shoulder muscle and the dorsal thoracic wall, but not within the muscles itself. Five patients (3M, 2F, age 56-74 years,3.4%) showed abnormal LH FDG uptake, which were definitely localized in the vascular structure of the lung hilum by CT Conclusion: Co-registered PET/CT imaging shows that the FDG uptake been well known in the SR and LH regions are not fully located in greater muscular structures and lymph nodes, but in the costo-vertebral articulation complex of the thoracic spine and fatty tissue of the shoulders as well as in the vascular structure of both lung hilum. The FDG uptake in the fatty tissue of the shoulders was mostly seen in women, while the uptake in vascular structure of the lung hilum were

  4. Study of electron densities of normal and neoplastic human breast tissues by Compton scattering using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2012-07-15

    Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: Black-Right-Pointing-Pointer Electron density of normal and neoplastic breast tissues was measured using Compton scattering. Black-Right-Pointing-Pointer Monochromatic synchrotron radiation was used to obtain the Compton scattering data. Black-Right-Pointing-Pointer The area of Compton peaks was used to determine the electron densities of samples. Black-Right-Pointing-Pointer Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. Black-Right-Pointing-Pointer Comparison with previous results showed differences smaller than 4%.

  5. Study of electron densities of normal and neoplastic human breast tissues by Compton scattering using synchrotron radiation

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceição, A.L.C.; Poletti, M.E.

    2012-01-01

    Electron densities of 33 samples of normal (adipose and fibroglangular) and neoplastic (benign and malignant) human breast tissues were determined through Compton scattering data using a monochromatic synchrotron radiation source and an energy dispersive detector. The area of Compton peaks was used to determine the electron densities of the samples. Adipose tissue exhibits the lowest values of electron density whereas malignant tissue the highest. The relationship with their histology was discussed. Comparison with previous results showed differences smaller than 4%. - Highlights: ► Electron density of normal and neoplastic breast tissues was measured using Compton scattering. ► Monochromatic synchrotron radiation was used to obtain the Compton scattering data. ► The area of Compton peaks was used to determine the electron densities of samples. ► Adipose tissue shows the lowest electron density values whereas the malignant tissue the highest. ► Comparison with previous results showed differences smaller than 4%.

  6. Implementation of several mathematical algorithms to breast tissue density classification

    Science.gov (United States)

    Quintana, C.; Redondo, M.; Tirao, G.

    2014-02-01

    The accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories.

  7. Real-time in vivo tissue characterization with diffuse reflectance spectroscopy during transthoracic lung biopsy: a clinical feasibility study

    NARCIS (Netherlands)

    Spliethoff, Jarich; Prevoo, Warner; Meier, Mark A.J.; de Jong, Jeroen; Evers, Daniel; Evers, Daniel J.; Sterenborg, Hendricus J.C.M.; Lucassen, Gerald; Lucassen, Gerald W.; Hendriks, Benno H.W.; Ruers, Theo J.M.

    2016-01-01

    Purpose: This study presents the first in vivo real-time tissue characterization during image-guided percutaneous lung biopsies using diffuse reflectance spectroscopy (DRS) sensing at the tip of a biopsy needle with integrated optical fibers. Experimental Design: Tissues from 21 consented patients

  8. Increased mast cell density and airway responses to allergic and non-allergic stimuli in a sheep model of chronic asthma.

    Directory of Open Access Journals (Sweden)

    Joanne Van der Velden

    Full Text Available BACKGROUND: Increased mast cell (MC density and changes in their distribution in airway tissues is thought to contribute significantly to the pathophysiology of asthma. However, the time sequence for these changes and how they impact small airway function in asthma is not fully understood. The aim of the current study was to characterise temporal changes in airway MC density and correlate these changes with functional airway responses in sheep chronically challenged with house dust mite (HDM allergen. METHODOLOGY/PRINCIPAL FINDINGS: MC density was examined on lung tissue from four spatially separate lung segments of allergic sheep which received weekly challenges with HDM allergen for 0, 8, 16 or 24 weeks. Lung tissue was collected from each segment 7 days following the final challenge. The density of tryptase-positive and chymase-positive MCs (MC(T and MC(TC respectively was assessed by morphometric analysis of airway sections immunohistochemically stained with antibodies against MC tryptase and chymase. MC(T and MC(TC density was increased in small bronchi following 24 weeks of HDM challenges compared with controls (P<0.05. The MC(TC/MC(T ratio was significantly increased in HDM challenged sheep compared to controls (P<0.05. MC(T and MC(TC density was inversely correlated with allergen-induced increases in peripheral airway resistance after 24 weeks of allergen exposure (P<0.05. MC(T density was also negatively correlated with airway responsiveness after 24 challenges (P<0.01. CONCLUSIONS: MC(T and MC(TC density in the small airways correlates with better lung function in this sheep model of chronic asthma. Whether this finding indicates that under some conditions mast cells have protective activities in asthma, or that other explanations are to be considered requires further investigation.

  9. Soluble TGF-β type II receptor gene therapy reduces TGF-β activity in irradiated lung tissue and protects lungs from radiation-induced injury

    International Nuclear Information System (INIS)

    Vujaskovic, Z.; Rabbani, Z.; Zhang, X.; Samulski, T.V.; Li, C.-Y.; Anscher, M.S.

    2003-01-01

    Full text: The objective was to determine whether administration of recombinant human adenoviral vector carrying soluble TGF-β1 type II receptor (TβR-II) gene reduces availability of active TGFβ1 and protects lung from radiation-induced injury. Female Fisher-344 rats were randomized into four groups to receive: 1) Control 2) Adenoviral green fluorescent protein vector (AdGFP) alone 3) Radiation (RT) + Adenoviral vector with TGF-β1 type II receptor gene (AdexTβR-II-Fc) 4) RT alone. Animals were irradiated to right hemithorax using a single dose of 30 Gy. The packaging and production of a recombinant adenovirus carrying the fused human TβR-II-IgG1 Fc gene was achieved by use of the AdEasy system. The treatment vector AdexTbR-II-Fc (1.5*1010 PFU) and control vector AdGFP (1*109 PFU) were injected i.v. 24 hrs after RT. Respiratory rate was measured as an index of pulmonary function weekly for 5 weeks post RT. Structural damage was scored histologically. Immunohistochemistry was performed to identify activated macrophages. ELISA was used to quantify active TGF-β1 in tissue homogenate. Western blot was used to determine TβR-II expression in plasma and lung tissue. Animals receiving treatment vector AdexTbR-II-Fc have elevated plasma levels of soluble TβR-II at 24 and 48 hours after injection. In the RT+AdexTbR-II-Fc group, there was a significant reduction in respiratory rate (p = 0.002) at four weeks after treatment compared to RT alone group. Histology revealed a significant reduction in lung structural damage in animals receiving gene therapy after RT vs RT alone (p=0.0013). There was also a decrease in the number of activated macrophage (p= 0.02) in RT+AdexTbR-II-Fc group vs RT alone. The tissue protein expression of active TGF-β1 was significantly reduced in rats receiving RT+AdexTbR-II-Fc treatment (p<0.05). This study shows the ability of adenovirus mediated soluble TβR-II gene therapy to reduce tissue levels of active TGF-β1 and ameliorate radiation

  10. Thermal Ablation of Lung Tissue: In Vivo Experimental Comparison of Microwave and Radiofrequency

    International Nuclear Information System (INIS)

    Crocetti, Laura; Bozzi, Elena; Faviana, Pinuccia; Cioni, Dania; Della Pina, Clotilde; Sbrana, Alberto; Fontanini, Gabriella; Lencioni, Riccardo

    2010-01-01

    This study was designed to compare feasibility, safety, and effectiveness of microwave (MW) ablation versus radiofrequency (RF) ablation of lung tissue in a rabbit model. Twenty New Zealand White rabbits were submitted to MW (n = 10, group A) or RF ablation (n = 10, group B). The procedures were performed with a prototype MW ablation device with a 1.6-cm radiating section antenna (Valleylab MW Ablation System) and with a 2-cm exposed-tip RF electrode (Cool-tip RF Ablation System). At immediate computed tomography increase in density, maximum diameters (D1-D3) of ablation zones were measured and ablation volume was calculated. Histopathologic assessment was performed 3 and 7 days after the procedure. Technical success was achieved in nine of 10 rabbits in each group. One death occurred in group B. Complications included pneumothorax (group A, n = 4; group B, n = 4), abscess (group A, n = 1; group B, n = 1), and thoracic wall burn (group A, n = 4). No significant differences were demonstrated in attenuation increase (P = 0.73), dimensions (P = 0.28, 0.86, 0.06, respectively, comparing D1-D3) and volume (P = 0.17). At histopathology, ablation zones were similar, with septal necrosis, edema, hemorrhage, and peripheral lymphocytic infiltrate. Complete thrombosis of more than 90% of vessels up to 2 mm in diameter was depicted at the periphery of the ablation zone in group A specimens. In group B specimens, complete thrombosis was depicted in 20% of vessels. Feasibility and safety of MW and RF ablation are similar in a lung rabbit model. MW ablation produces a greater damage to peripheral small vessels inducing thrombosis.

  11. Characterization of TLR-induced inflammatory responses in COPD and control lung tissue explants

    Directory of Open Access Journals (Sweden)

    Pomerenke A

    2016-09-01

    Full Text Available Anna Pomerenke,1 Simon R Lea,1 Sarah Herrick,2 Mark A Lindsay,3 Dave Singh1 1Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, 2Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, 3Department of Pharmacy and Pharmacology, University of Bath, Bath, UK Purpose: Viruses are a common cause of exacerbations in chronic obstructive pulmonary disease (COPD. They activate toll-like receptors (TLRs 3, 7, and 8, leading to a pro-inflammatory response. We have characterized the responses of TLR3 and TLR7/8 in lung tissue explants from COPD patients and control smokers.Methods: We prepared lung whole tissue explants (WTEs from patients undergoing surgery for confirmed or suspected lung cancer. In order to mimic the conditions of viral infection, we used poly(I:C for TLR3 stimulation and R848 for TLR7/8 stimulation. These TLR ligands were used alone and in combination. The effects of tumor necrosis factor α (TNFα neutralization and dexamethasone on TLR responses were examined. Inflammatory cytokine release was measured by enzyme-linked immunosorbent assay and gene expression by quantitative real-time polymerase chain reaction.Results: WTEs from COPD patients released higher levels of pro-inflammatory cytokines compared with WTEs from smokers. Activation of multiple TLRs led to a greater than additive release of TNFα and CCL5. TNFα neutralization and dexamethasone treatment decreased cytokine release.Conclusion: This WTE model shows an enhanced response of COPD compared with controls, suggesting an increased response to viral infection. There was amplification of innate immune responses with multiple TLR stimulation. Keywords: COPD, poly(I:C, R848, cytokines, lung explant

  12. Statistical lung model for microdosimetry

    International Nuclear Information System (INIS)

    Fisher, D.R.; Hadley, R.T.

    1984-03-01

    To calculate the microdosimetry of plutonium in the lung, a mathematical description is needed of lung tissue microstructure that defines source-site parameters. Beagle lungs were expanded using a glutaraldehyde fixative at 30 cm water pressure. Tissue specimens, five microns thick, were stained with hematoxylin and eosin then studied using an image analyzer. Measurements were made along horizontal lines through the magnified tissue image. The distribution of air space and tissue chord lengths and locations of epithelial cell nuclei were recorded from about 10,000 line scans. The distribution parameters constituted a model of lung microstructure for predicting the paths of random alpha particle tracks in the lung and the probability of traversing biologically sensitive sites. This lung model may be used in conjunction with established deposition and retention models for determining the microdosimetry in the pulmonary lung for a wide variety of inhaled radioactive materials

  13. Identification of early-stage usual interstitial pneumonia from low-dose chest CT scans using fractional high-density lung distribution

    Science.gov (United States)

    Xie, Yiting; Salvatore, Mary; Liu, Shuang; Jirapatnakul, Artit; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2017-03-01

    A fully-automated computer algorithm has been developed to identify early-stage Usual Interstitial Pneumonia (UIP) using features computed from low-dose CT scans. In each scan, the pre-segmented lung region is divided into N subsections (N = 1, 8, 27, 64) by separating the lung from anterior/posterior, left/right and superior/inferior in 3D space. Each subsection has approximately the same volume. In each subsection, a classic density measurement (fractional high-density volume h) is evaluated to characterize the disease severity in that subsection, resulting in a feature vector of length N for each lung. Features are then combined in two different ways: concatenation (2*N features) and taking the maximum in each of the two corresponding subsections in the two lungs (N features). The algorithm was evaluated on a dataset consisting of 51 UIP and 56 normal cases, a combined feature vector was computed for each case and an SVM classifier (RBF kernel) was used to classify them into UIP or normal using ten-fold cross validation. A receiver operating characteristic (ROC) area under the curve (AUC) was used for evaluation. The highest AUC of 0.95 was achieved by using concatenated features and an N of 27. Using lung partition (N = 27, 64) with concatenated features had significantly better result over not using partitions (N = 1) (p-value < 0.05). Therefore this equal-volume partition fractional high-density volume method is useful in distinguishing early-stage UIP from normal cases.

  14. FCT (functional computed tomography) evaluation of the lung volumes at different PEEP (positive-end expiratory pressure) ventilation pattern, in mechanical ventilated patients

    International Nuclear Information System (INIS)

    Papi, M.G.; Di Segni, R.; Mazzetti, G.; Staffa, F.; Conforto, F.; Calimici, R.; Salvi, A.; Matteucci, G.

    2007-01-01

    Purpose To evaluate with FCT (functional computed tomography) total lung volume and fractional lung volumes at different PEEP (positive end expiratory pressure) values in acute mechanically ventilated patients. Methods Nine ICU (intensive care unity) patients (1 lung pneumonia, 2 polytrauma, 2 sepsis, 3 brain surgery, 1 pulmonary embolism); mean age 48 ± 15 years, 6 male, 3 female; GE 16 MDCT scan was performed with acquisition from apex to diaphragma in seven seca at different PEEP values. Raw CT data were analysed by an advantage workstation to obtain volume density masks and histograms of both lungs and each lung and these density ranges were applied: - 1000 - 950 hyper-ventilated lung, -900 - 650 well aerated lung, -950 - 500 all aerated lung, -500 + 200 lung tissue. Total and fractional lung volumes, Hounsfield unit (HU) were calculated and compared at different PEEP values (0, 5, 10, 15 cm H 2 O). In four patients lung volumes were compared between the more and the less involved lung at increased PEEP. Statistic analysis: comparison means-medians tests. Results Data calculated at five PEEP showed unexpected decrease of total lung volume and increase of lung density (HU); proportionally no significant improvement of oxigenation. (orig.)

  15. FCT (functional computed tomography) evaluation of the lung volumes at different PEEP (positive-end expiratory pressure) ventilation pattern, in mechanical ventilated patients

    Energy Technology Data Exchange (ETDEWEB)

    Papi, M.G.; Di Segni, R.; Mazzetti, G.; Staffa, F. [Dept. of Radiology, S. Giovanni HS, Rome (Italy); Conforto, F.; Calimici, R.; Salvi, A. [Dept. of Anesthesiology, S. Giovanni HS, Rome (Italy); Matteucci, G. [Dept. of Pneumology, S. Giovanni HS, Rome (Italy)

    2007-06-15

    Purpose To evaluate with FCT (functional computed tomography) total lung volume and fractional lung volumes at different PEEP (positive end expiratory pressure) values in acute mechanically ventilated patients. Methods Nine ICU (intensive care unity) patients (1 lung pneumonia, 2 polytrauma, 2 sepsis, 3 brain surgery, 1 pulmonary embolism); mean age 48 {+-} 15 years, 6 male, 3 female; GE 16 MDCT scan was performed with acquisition from apex to diaphragma in seven seca at different PEEP values. Raw CT data were analysed by an advantage workstation to obtain volume density masks and histograms of both lungs and each lung and these density ranges were applied: - 1000 - 950 = hyper-ventilated lung, -900 - 650 well aerated lung, -950 - 500 all aerated lung, -500 + 200 lung tissue. Total and fractional lung volumes, Hounsfield unit (HU) were calculated and compared at different PEEP values (0, 5, 10, 15 cm H{sub 2}O). In four patients lung volumes were compared between the more and the less involved lung at increased PEEP. Statistic analysis: comparison means-medians tests. Results Data calculated at five PEEP showed unexpected decrease of total lung volume and increase of lung density (HU); proportionally no significant improvement of oxigenation. (orig.)

  16. Comparison of Tissue Density in Hounsfield Units in Computed Tomography and Cone Beam Computed Tomography.

    Science.gov (United States)

    Varshowsaz, Masoud; Goorang, Sepideh; Ehsani, Sara; Azizi, Zeynab; Rahimian, Sepideh

    2016-03-01

    Bone quality and quantity assessment is one of the most important steps in implant treatment planning. Different methods such as computed tomography (CT) and recently suggested cone beam computed tomography (CBCT) with lower radiation dose and less time and cost are used for bone density assessment. This in vitro study aimed to compare the tissue density values in Hounsfield units (HUs) in CBCT and CT scans of different tissue phantoms with two different thicknesses, two different image acquisition settings and in three locations in the phantoms. Four different tissue phantoms namely hard tissue, soft tissue, air and water were scanned by three different CBCT and a CT system in two thicknesses (full and half) and two image acquisition settings (high and low kVp and mA). The images were analyzed at three sites (middle, periphery and intermediate) using eFilm software. The difference in density values was analyzed by ANOVA and correction coefficient test (P<0.05). There was a significant difference between density values in CBCT and CT scans in most situations, and CBCT values were not similar to CT values in any of the phantoms in different thicknesses and acquisition parameters or the three different sites. The correction coefficients confirmed the results. CBCT is not reliable for tissue density assessment. The results were not affected by changes in thickness, acquisition parameters or locations.

  17. TRPA1 channels: expression in non-neuronal murine lung tissues and dispensability for hyperoxia-induced alveolar epithelial hyperplasia.

    Science.gov (United States)

    Kannler, Martina; Lüling, Robin; Yildirim, Ali Önder; Gudermann, Thomas; Steinritz, Dirk; Dietrich, Alexander

    2018-05-12

    Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca 2+ ([Ca 2+ ] i ) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca 2+ ] i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca 2+ ] i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.

  18. Specific detection of Pasteurella multocida in chickens with fowl cholera and in pig lung tissues using fluorescent rRNA in situ hybridization

    DEFF Research Database (Denmark)

    Mbuthia, P.G.; Christensen, H.; Boye, Mette

    2001-01-01

    in formalin-fixed paraffin-embedded lung tissues from experimental fowl cholera in chickens and infections in pigs. In chicken lung tissues P. multocida cells were detected singly, in pairs, as microcolonies, and as massive colonies within air capillaries (septa and lumen), parabronchial septa, and blood...... and fast method for specific detection of P. multocida in histological formalin-fixed tissues. The test was replicable and reproducible and is recommended as a supplementary test for diagnosis and as a tool in pathogenesis studies of fowl cholera and respiratory tract infections in pigs due to P. multocida....

  19. Importance of scatter compensation algorithm in heterogeneous tissue for the radiation dose calculation of small lung nodules. A clinical study

    International Nuclear Information System (INIS)

    Baba, Yuji; Murakami, Ryuji; Mizukami, Naohisa; Morishita, Shoji; Yamashita, Yasuyuki; Araki, Fujio; Moribe, Nobuyuki; Hirata, Yukinori

    2004-01-01

    The purpose of this study was to compare radiation doses of small lung nodules calculated with beam scattering compensation and those without compensation in heterogeneous tissues. Computed tomography (CT) data of 34 small (1-2 cm: 12 nodules, 2-3 cm 11 nodules, 3-4 cm 11 nodules) lung nodules were used in the radiation dose measurements. Radiation planning for lung nodule was performed with a commercially available unit using two different radiation dose calculation methods: the superposition method (with scatter compensation in heterogeneous tissues), and the Clarkson method (without scatter compensation in heterogeneous tissues). The energy of the linac photon used in this study was 10 MV and 4 MV. Monitor unit (MU) to deliver 10 Gy at the center of the radiation field (center of the nodule) calculated with the two methods were compared. In 1-2 cm nodules, MU calculated by Clarkson method (MUc) was 90.0±1.1% (4 MV photon) and 80.5±2.7% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 92.9±1.1% (4 MV photon) and 86.6±2.8% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 90.5±2.0% (4 MV photon) and 90.1±1.7% (10 MV photon) compared to MUs. In 1-2 cm nodules, MU calculated without lung compensation (MUn) was 120.6±8.3% (4 MV photon) and 95.1±4.1% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 120.3±11.5% (4 MV photon) and 100.5±4.6% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 105.3±9.0% (4 MV photon) and 103.4±4.9% (10 MV photon) compared to MUs. The MU calculated without lung compensation was not significantly different from the MU calculated by superposition method in 2-3 cm nodules. We found that the conventional dose calculation algorithm without scatter compensation in heterogeneous tissues substantially overestimated the radiation dose of small nodules in the lung field. In the calculation of dose distribution of small

  20. Elevated levels of CXC chemokine connective tissue activating peptide (CTAP)-III in lung cancer patients.

    Science.gov (United States)

    Lee, Gina; Gardner, Brian K; Elashoff, David A; Purcell, Colleen M; Sandha, Harpavan S; Mao, Jenny T; Krysan, Kostyantyn; Lee, Jay M; Dubinett, Steven M

    2011-05-15

    Despite advances in treatments, lung cancer has been the leading cause of cancer-related deaths in the United States for the past several decades. Recent findings from the National Lung Screening Trial reveal that low-dose helical computed tomography (CT) scan screening of high-risk individuals reduces lung cancer mortality. This suggests that early detection is of key importance to improving patient outcome. However, of those screened with CT scans, 25% had positive scans that require further follow-up studies which often involve more radiation exposure and invasive tests to reduce false positive results. The purpose of this study was to identify candidate plasma biomarkers to aid in diagnosis of lung cancer in at-risk individuals. We found increased expression of the CXC chemokine connective tissue-activating peptide (CTAP)-III from plasma specimens of lung cancer patients compared to at-risk control subjects. Identification of the peptide was confirmed by the addition of an anti-NAP-2 antibody that recognizes CTAP-III and NAP-2. We also quantified and verified the increased levels of plasma CTAP-III with ELISA in patients with lung cancer (mean ± SD, 1859 ± 1219 ng/mL) compared to controls (698 ± 434 ng/mL; Pcancer patients. Further studies are required to determine if this chemokine could be utilized in a blood-based biomarker panel for the diagnosis of lung cancer.

  1. Contrast-enhanced MRI of the lung

    International Nuclear Information System (INIS)

    Kauczor, Hans-Ulrich; Kreitner, Karl-Friedrich

    2000-01-01

    The lung has long been neglected by MR imaging. This is due to unique intrinsic difficulties: (1) signal loss due to cardiac pulsation and respiration; (2) susceptibility artifacts caused by multiple air-tissue interfaces; (3) low proton density. There are many MR strategies to overcome these problems. They consist of breath-hold imaging, respiratory and cardiac gating procedures, use of short repetition and echo times, increase of the relaxivity of existing spins by administration of intravenous contrast agents, and enrichment of spin density by hyperpolarized noble gases or oxygen. Improvements in scanner performance and frequent use of contrast media have increased the interest in MR imaging and MR angiography of the lung. They can be used on a routine basis for the following indications: characterization of pulmonary nodules, staging of bronchogenic carcinoma, in particular assessment of chest wall invasion; evaluation of inflammatory activity in interstitial lung disease; acute pulmonary embolism, chronic thromboembolic pulmonary hypertension, vascular involvement in malignant disease; vascular abnormalities. Future perspectives include perfusion imaging using extracellular or intravascular (blood pool) contrast agents and ventilation imaging using inhalation of hyperpolarized noble gases, of paramagnetic oxygen or of aerosolized contrast agents. These techniques represent new approaches to functional lung imaging. The combination of visualization of morphology and functional assessment of ventilation and perfusion is unequalled by any other technique

  2. Innate lymphoid cells: the role in respiratory infections and lung tissue damage.

    Science.gov (United States)

    Głobińska, Anna; Kowalski, Marek L

    2017-10-01

    Innate lymphoid cells (ILCs) represent a diverse family of cells of the innate immune system, which play an important role in regulation of tissue homeostasis, immunity and inflammation. Emerging evidence has highlighted the importance of ILCs in both protective immunity to respiratory infections and their pathological roles in the lungs. Therefore, the aim of this review is to summarize the current knowledge, interpret and integrate it into broader perspective, enabling greater insight into the role of ILCs in respiratory diseases. Areas covered: In this review we highlighted the role of ILCs in the lungs, citing the most recent studies in this area. PubMed searches (2004- July 2017) were conducted using the term 'innate lymphoid cells respiratory viral infections' in combination with other relevant terms including various respiratory viruses. Expert commentary: Since studies of ILCs have opened new areas of investigation, understanding the role of ILCs in respiratory infections may help to clarify the mechanisms underlying viral-induced exacerbations of lung diseases, providing the basis for novel therapeutic strategies. Potential therapeutic targets have already been identified. So far, the most promising strategy is cytokine-targeting, although further clinical trials are needed to verify its effectiveness.

  3. Transbronchial lung biopsy without fluoroscopic guide in Tehran Imam Khomeini’s Hospital (1999

    Directory of Open Access Journals (Sweden)

    "Firoozbakhsh S

    2002-08-01

    Full Text Available Background: Transbronchial lung biopsy (TBLB is an attractive alternative to open lung biopsy as an initial diagnostic procedure for patients with diffuse parenchymal disease or localized densities beyond direct endoscopic vision. TBLB can be carried out safely without fluoroscopy in patients with diffuse lung disease. Since in our bronchoscopic department fluoroscopy is not available, we planned to evaluate the blind (without fluoroscopic guide TBLB being performed in our department to determine the success rate in obtaining lung tissue, the sensitivity of the procedure and the risk of complications. Materials and Methods: Sixty-Four TBLB were done in our department during a 6 month period (March-September 1999. Results: Lung tissue wasn’t detected in two (3.1 percent samples. Pathological results were helpful in 46 (71.9 percent cases. No evidence of hemoptysis was found after the procedure. Three (4.68 percent cases of pneumothorax was detected. Only one of them required chest tube (1.51 percent. Conclusion: We concluded that blind TBLB was successful in our department with rates of complications comparable to other approved centers.

  4. Bone tissue density modification in treatment of shin pseudoarthrosis by transosseous compressive osteosynthesis

    Directory of Open Access Journals (Sweden)

    Tishkov N.V.

    2011-12-01

    Full Text Available Objective is to detect bone mineral density along the shin according to «Esperanto» levels by Hounsfield's scale. Materials and methods. The analysis of density modification in 25 patients with pseudoarthrosis of tibia with predominant localization in a lower one-third of bone has been carried out. Results. By means of computed tomography it has been revealed that the bone tissue density of the tibia in the process of false joint union when using the compressive variant of combined transosseous osteosynthesis has changed according to the regularity reproducing phase character of the accumulation of mineral substances in the bone. Conclution. The growth of mineral density of the bone tissue during treatment spreads in the directions from proximal and distal metaepiphyses to the zone of pseudoarthrosis knitting

  5. Mineral density volume gradients in normal and diseased human tissues.

    Directory of Open Access Journals (Sweden)

    Sabra I Djomehri

    Full Text Available Clinical computed tomography provides a single mineral density (MD value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca to phosphorus (P and Ca to zinc (Zn elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc. A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49, hypomineralized dentin (0.32-0.46, cementum (1.51, and bone (1.68 were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765 and in cementum (595-990, highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  6. Mineral Density Volume Gradients in Normal and Diseased Human Tissues

    Science.gov (United States)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations. PMID:25856386

  7. Results of total lung irradiation and chemotherapy in comparison with partial lung irradiation in metastatic undifferentiated soft tissue sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Zamboglou, N.; Fuerst, G.; Pape, H.; Bannach, B.; Schmitt, G.; Molls, M.

    1988-07-01

    The poor prognosis of patients with unresectable pulmonary metastases of soft tissue sarcoma is well known. In order to evaluate the beneficial effect of radiotherapy, we have treated 44 patients with pulmonary metastases of grade 3 soft tissue sarcoma from 1980 to 1986. In 36 patients the treatment volume was restricted to the single metastases up to a dose of 50 to 60 (9 to 10 Gy/week). The survival rate at one year was 18% and at two years 6%. Eight patients were treated with a combined regimen, consisting of cisplatin and ifosfamide with simultaneous whole lung irradiation. Irradiation was performed with 8 or 16 MV photons at a hyperfractionation of 2x0,8 Gy/day (8 Gy/week). After a dose of 12 Gy, the single metastases were boosted up to 50 to 60 Gy, with a second course of chemotherapy. In six of eight patients complete remissions were achieved, one patient showed a partial remission. The survival rate at 27 months was 50%. The patients with partial remission died from pulmonary progression at 23 months. One patient died after twelve months from a loco-regional recurrence in the tonsillar fossa without evidence of pulmonary disease. Side effects included alopecia and moderate bone marrow suppression approximately twelve days after each chemotherapy cycle. Pulmonary fibrosis was observed only at the high dose volume without impairment of respiratory function. From these observations the conclusion is drawn that whole lung irradiation simultaneously with cisplatin and ifosfamide chemotherapy provides good palliative results without relevant morbidity in patients with high grade unresectable pulmonary metastases of soft tissue sarcomas.

  8. Monte Carlo based water/medium stopping-power ratios for various ICRP and ICRU tissues

    International Nuclear Information System (INIS)

    Fernandez-Varea, Jose M; Carrasco, Pablo; Panettieri, Vanessa; Brualla, Lorenzo

    2007-01-01

    Water/medium stopping-power ratios, s w,m , have been calculated for several ICRP and ICRU tissues, namely adipose tissue, brain, cortical bone, liver, lung (deflated and inflated) and spongiosa. The considered clinical beams were 6 and 18 MV x-rays and the field size was 10 x 10 cm 2 . Fluence distributions were scored at a depth of 10 cm using the Monte Carlo code PENELOPE. The collision stopping powers for the studied tissues were evaluated employing the formalism of ICRU Report 37 (1984 Stopping Powers for Electrons and Positrons (Bethesda, MD: ICRU)). The Bragg-Gray values of s w,m calculated with these ingredients range from about 0.98 (adipose tissue) to nearly 1.14 (cortical bone), displaying a rather small variation with beam quality. Excellent agreement, to within 0.1%, is found with stopping-power ratios reported by Siebers et al (2000a Phys. Med. Biol. 45 983-95) for cortical bone, inflated lung and spongiosa. In the case of cortical bone, s w,m changes approximately 2% when either ICRP or ICRU compositions are adopted, whereas the stopping-power ratios of lung, brain and adipose tissue are less sensitive to the selected composition. The mass density of lung also influences the calculated values of s w,m , reducing them by around 1% (6 MV) and 2% (18 MV) when going from deflated to inflated lung

  9. Preanalytics in lung cancer.

    Science.gov (United States)

    Warth, Arne; Muley, Thomas; Meister, Michael; Weichert, Wilko

    2015-01-01

    Preanalytic sampling techniques and preparation of tissue specimens strongly influence analytical results in lung tissue diagnostics both on the morphological but also on the molecular level. However, in contrast to analytics where tremendous achievements in the last decade have led to a whole new portfolio of test methods, developments in preanalytics have been minimal. This is specifically unfortunate in lung cancer, where usually only small amounts of tissue are at hand and optimization in all processing steps is mandatory in order to increase the diagnostic yield. In the following, we provide a comprehensive overview on some aspects of preanalytics in lung cancer from the method of sampling over tissue processing to its impact on analytical test results. We specifically discuss the role of preanalytics in novel technologies like next-generation sequencing and in the state-of the-art cytology preparations. In addition, we point out specific problems in preanalytics which hamper further developments in the field of lung tissue diagnostics.

  10. Lung cancer in connective tissue disease-associated interstitial lung disease: clinical features and impact on outcomes.

    Science.gov (United States)

    Watanabe, Satoshi; Saeki, Keigo; Waseda, Yuko; Murata, Akari; Takato, Hazuki; Ichikawa, Yukari; Yasui, Masahide; Kimura, Hideharu; Hamaguchi, Yasuhito; Matsushita, Takashi; Yamada, Kazunori; Kawano, Mitsuhiro; Furuichi, Kengo; Wada, Takashi; Kasahara, Kazuo

    2018-02-01

    Lung cancer (LC) adversely impacts survival in patients with idiopathic pulmonary fibrosis. However, little is known about LC in patients with connective tissue disease-associated interstitial lung disease (CTD-ILD). The aim of this study was to evaluate the prevalence of and risk factors for LC in CTD-ILD, and the clinical characteristics and survival of CTD-ILD patients with LC. We conducted a single-center, retrospective review of patients with CTD-ILD from 2003 to 2016. Patients with pathologically diagnosed LC were identified. The prevalence, risk factors, and clinical features of LC and the impact of LC on CTD-ILD patient outcomes were observed. Of 266 patients with CTD-ILD, 24 (9.0%) had LC. CTD-ILD with LC was more likely in patients who were older, male, and smokers; had rheumatoid arthritis, a usual interstitial pneumonia pattern, emphysema on chest computed tomography scan, and lower diffusing capacity of the lung carbon monoxide (DLco)% predicted; and were not receiving immunosuppressive therapy. Multivariate analysis indicated that the presence of emphysema [odds ratio (OR), 8.473; 95% confidence interval (CI), 2.241-32.033] and nonuse of immunosuppressive therapy (OR, 8.111; 95% CI, 2.457-26.775) were independent risk factors for LC. CTD-ILD patients with LC had significantly worse survival than patients without LC (10-year survival rate: 28.5% vs. 81.8%, P<0.001). LC is associated with the presence of emphysema and nonuse of immunosuppressive therapy, and contributes to increased mortality in patients with CTD-ILD.

  11. Adaptive radiotherapy of lung cancer patients with pleural effusion or atelectasis

    International Nuclear Information System (INIS)

    Møller, Ditte Sloth; Khalil, Azza Ahmed; Knap, Marianne Marquard; Hoffmann, Lone

    2014-01-01

    Background and purpose: Changes in lung density due to atelectasis, pleural effusion and pneumonia/pneumonitis are observed in lung cancer patients. These changes may be an indication for adaptive radiotherapy in order to maintain target coverage and avoid increased risk of normal tissue complications. Material and methods: CBCT scans of 163 patients were reviewed to score lung changes and find the incidence, the impact of geometric and dosimetric changes and the timing of appearance and disappearance of changes. Results: 23% of the patients had changes in the lung related to pleural effusion, atelectasis or pneumonia/pneumonitis. In 9% of all patients, the appearance or disappearance of a change introduced a shift of the tumor or lymph nodes relative to the spine >5 mm. Only major density changes affected the dose distribution, and 9% of all patients needed adaptive treatment planning due to density changes. In total, 12% of all patients did benefit from an adaptive treatment plan and in 85% of these patients, an atelectasis did change. Conclusions: An adaptive strategy was indicated for 12% of the patients due to atelectasis, pleural effusion or pneumonia/pneumonitis. The predominant cause for adaptation was atelectasis. No systematic pattern in the appearance and disappearance of the changes were observed and hence weekly evaluation is preferable

  12. A 3D human tissue-engineered lung model to study influenza A infection.

    Science.gov (United States)

    Bhowmick, Rudra; Derakhshan, Mina; Liang, Yurong; Ritchey, Jerry; Liu, Lin; Gappa-Fahlenkamp, Heather

    2018-05-05

    Influenza A virus (IAV) claims approximately 250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (2D cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction, would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineering Lung Model (3D-HTLM), we described the 3D culture of primary human small airway epithelial cells (HSAEpCs), and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2.The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.

  13. FDG uptake in the fatty tissues of supraclavicular and the vascular structure of the lung hilum

    International Nuclear Information System (INIS)

    Dang Yaping; Liu Gang; Li Miao

    2004-01-01

    Full text: Supraclavicular region (SR) and lung hilum (LH) are common sites for lymph node metastases. A commonly reported site of non-malignant FDG uptake on PET imaging in the SR is muscular uptake. PET/CT offers a unique technique to correlate PET findings with CT anatomy in the SR and LH. We carried out this study to investigate FDG uptake in SR and LH to find out the exact tissues of FDG uptake. From September 2002 to March 2003, 147 consecutive patients imaged by FDG PET/CT whole-body scan (GE Discovery LS, CT attenuation correction, OSEM reconstruction) were retrospectively reviewed. The presence of abnormal FDG uptake on PET images in SR and LH regions was evaluated and the corresponding CT findings on the same regions were also assessed. Of the 147 patients, 8 cases (2M, 6F and mean age 44 years) were found with increased symmetrical FDG uptake in the regions of the lower neck and shoulder as well as costo-vertebral articulations. The positive rates were 2.1% and 11.3% for men and women respectively, and the average rate was 5.4%. However, no FDG uptake was seen in the greater muscular structures of the cervical or thoracic spine. FDG uptake was seen in the fatty tissue between the shoulder muscle and the dorsal thoracic wall, but not within the muscles itself. Five patients (3M, 2F, age 56-74 years, 3.4%) showed abnormal FDG uptake in LH, which were definitely localized in the vascular structure of the lung hilum by CT. Co-registered PET/CT imaging shows that the FDG uptake, though well known in the SR and LH regions, is not fully located in greater muscular structures and lymph nodes, but in the costo-vertebral articulation complex of the thoracic spine and fatty tissue of the shoulders as well as in the vascular structure of both lung hilum. The FDG uptake in the fatty tissue of the shoulders was mostly seen in women, while the uptake in vascular structure of the lung hilum were found in aged people. (author)

  14. SU-E-T-573: Normal Tissue Dose Effect of Prescription Isodose Level Selection in Lung Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Zhang, Q; Lei, Y; Zheng, D; Zhu, X; Wahl, A; Lin, C; Zhou, S; Zhen, W

    2015-01-01

    Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness were created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing

  15. Prognostic significance of tissue polypeptidespecific antigen (TPS) in patients with advanced non-small cell lung cancer

    NARCIS (Netherlands)

    A. van der Gaast (Ate); C.H.H. Schoenmakers (Christian); T.C. Kok (Tjebbe); B.G. Blijenberg (Bert); W.C.J. Hop (Wim); T.A.W. Splinter (Ted)

    1994-01-01

    textabstractIn this study, we evaluated the prognostic value of the tumour marker, tissue polypeptide-specific antigen (TPS), in 203 patients with non-small cell lung cancer (NSCLC), and related this to several other known prognostic factors. TPS was significantly correlated with lactate

  16. Killing effect of EGFR-TKI combined with 125I seed implantation therapy on ⅢB-Ⅳ stage lung cancer tissue

    Directory of Open Access Journals (Sweden)

    Ai-Sheng Xiang

    2016-12-01

    Full Text Available Objective: To analyze the killing effect of EGFR-TKI combined with 125I seed implantation therapy on ⅢB-Ⅳ stage lung cancer tissue. Methods: A total of 78 patients with ⅢB-Ⅳ stage lung cancer were randomly divided into observation group and control group (n=39, control group received EGFR-TKI treatment and observation group received EGFR-TKI combined with 125I seed implantation therapy. Differences in apoptosis gene, invasion gene and autophagy gene expression in lung tissue were compared between two groups after 1 month of treatment. Results: Apoptosis genes PDCD5, bax and bcl-xS mRNA expression levels in lung tissue of observation group after 1 month of treatment were higher than those of control group while Bag-1, survivin and bcl-xL mRNA expression levels were lower than those of control group; invasion genes CD147, EGFR and DDX17 mRNA expression levels were lower than those of control group while Bin1, E-cadherin and Ovol2 mRNA expression levels were higher than those of control group; autophagy genes ARHI, Beclin1, Atg5, LC3B, pULK and PI3KC3 mRNA expression levels were higher than those of control group. Conclusions: EGFR-TKI combined with 125I seed implantation therapy can enhance the tumor killing effect on patients with ⅢB-Ⅳ stage lung cancer, and contribute to the optimization of overall condition and the extension of survival time.

  17. Computer program modifications for lung microdosimetry

    International Nuclear Information System (INIS)

    Harty, R.; Hadley, R.T.

    1983-01-01

    A lung model based on statistical studies of beagle dog lung microstructure was incorporated to describe the distributions of tissue, air space, and cell nuclei in pulmonary lung tissue was modified from basic to FORTRAN to shorten time and increase flexibility

  18. Dosimetric lung models

    International Nuclear Information System (INIS)

    James, A.C.; Roy, M.

    1986-01-01

    The anatomical and physiological factors that vary with age and influence the deposition of airborne radionuclides in the lung are reviewed. The efficiency with which aerosols deposit in the lung for a given exposure at various ages from birth to adulthood is evaluated. Deposition within the lung is considered in relation to the clearance mechanisms acting in different regions or compartments. The procedure for evaluating dose to sensitive tissues in lung and transfer to other organs that is being considered by the Task Group established by ICRP to review the Lung Model is outlined. Examples of the application of this modelling procedure to evaluate lung dose as a function of age are given, for exposure to radon daughters in dwellings, and for exposure to an insoluble 239 Pu aerosol. The former represents exposure to short-lived radionuclides that deliver relatively high doses to bronchial tissue. In this case, dose rates are marginally higher in children than in adults. Plutonium exposure represents the case where dose is predominantly delivered to respiratory tissue and lymph nodes. In this case, the life-time doses tend to be lower for exposure in childhood. Some of the uncertainties in this modelling procedure are noted

  19. Predictive Value of Early Tumor Shrinkage and Density Reduction of Lung Metastases in Patients With Metastatic Colorectal Cancer Treated With Regorafenib.

    Science.gov (United States)

    Vanwynsberghe, Hannes; Verbeke, Xander; Coolen, Johan; Van Cutsem, Eric

    2017-12-01

    The benefit of regorafenib in colorectal cancer is not very pronounced. At present, there is lack of predictive biological or radiological markers. We studied if density reduction or small changes in size of lung metastases could be a predictive marker. We retrospectively measured density in size of lung metastases of all patients included in the CORRECT and CONSIGN trials at our center. Contrast-enhanced CT scan at baseline and at week 8 were compared. Data of progressive-free survival and overall survival were collected from the CORRECT and CONSIGN trials. A significant difference in progressive-free survival was seen in 3 groups: response or stable disease in size (5.36 vs. 3.96 months), response in density (6.03 vs. 2.72 months), and response in corrected density (6.14 vs. 3.08 months). No difference was seen for response in size versus stable disease or progressive disease in size. For overall survival, a difference was observed in the same 3 groups: response or stable disease in size (9.89 vs. 6.44 months), response in density (9.59 vs. 7.04 months), and response in corrected density (9.09 vs. 7.16 months). No difference was seen for response in size versus stable disease or progressive disease in size. Density reduction in lung metastases might be a good predictive parameter to predict outcome for regorafenib. Early tumor progression might be a negative predictive factor. If further validated, density reduction and early tumor progression might be useful to ameliorate the cost-benefit of regorafenib. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cell density signal protein suitable for treatment of connective tissue injuries and defects

    Science.gov (United States)

    Schwarz, Richard I.

    2002-08-13

    Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.

  1. [Elevated expression of endothelin 2 in lung tissues of asthmatic rats after exposed to cigarette smoke and its mechanism].

    Science.gov (United States)

    Han, Fangfang; Zhu, Shuyang; Chen, Bi; Li, Jingjing

    2017-08-01

    Objective To study the effect of cigarette smoke exposure on the expression of endothelin 2 (ET-2) in bronchial epithelium of asthmatic rats. Methods Asthma models were established through intraperitoneal injection of 1 mL chicken ovalbumin (OVA)/Al(OH) 3 mixture (asthma model group, n=6); based on the asthma models, exposure to smoking gas lasted four weeks with 10 cigarettes per day (smoke-exposed asthma group, n=6); based on the smoke-exposed asthma models, the rats were treated with intraperitoneal injection of dexamethasone 2 mg/(kg.d), intragastric administration of ET receptor inhibitor bosentan 100 mg/(kg.d) and combined use, respectively named dexamethasone treated group, bosentan treated group, and dexamethasone-bosentan treated group, 6 rats in every group. What's more, other 6 rats were only subjected to intraperitoneal injection of 1 mL normal saline as normal controls; in addition to the injection of saline, cigarette smoke control group (n=6) was set up by the exposure to smoking gas for four weeks with 10 cigarettes per day. Bronchoalveolar lavage fluid (BALF) was collected from the upper lobe of the left lung for cell counting and classification. Pathological changes of the right upper lung lobe tissues were observed by HE staining. In other lung tissues, the expression of JNK1/2 was detected by Western blotting; ET-2 was tested by Western blotting and immunohistochemistry; thiobarbituric acid reactive substances (TBARS) assay and trace enzyme standard method were used to measure malondialdehyde (MDA) and glutathione (GSH), respectively. Results Compared with normal control group, the number of airway inflammation cells increased in the BALF, and the expressions of ET-2, JNK1/2, MDA and GSH increased in the lung tissues of cigarette smoke control group, asthma model group and cigarette smoke-exposed asthma group. Compared with cigarette smoke-exposed asthma group, the number of airway inflammation cells decreased in the BALF, and the expressions of

  2. Effect of chest wall radiotherapy in different manners using tissue equivalent bolus on skin and lung of cavia cobayas

    International Nuclear Information System (INIS)

    Huang Wei; Qu Yaqin; Song Xiangfu; Liu Shixin; Jia Xiaojing; Guo He; Yang Lei

    2009-01-01

    Objective: To probe the influence of electron beam radiotherapy in different manners using different tissue equivalent boluses on skin and lung. Methods: Adult female cavia cobayas were randomly divided into four groups as control group, half-time with bolus group, half-time with bolus group and without bolus group. Acute-irradiation animal models were established using electron beam in different manners with or without 0.5 cm tissue equivalent bolus. Pathological changes in lung, hair vesicle and fibroblast cell count were analyzed 40 clays after irradiation. Results: The radiation dermatitis in the group with bolus was slighter than that of the group without bolus, but the radiation pneumonia was reverse. With bolus, the radiation dermatitis of haft-time group was slighter than that of full-time group. The injury repair of half-time group was more active than full-time group. Conclusions: The treatment of haft-time bolus could protect lung without serious skin complications. (authors)

  3. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    International Nuclear Information System (INIS)

    Samet, J.; Gilliland, F.D.

    1998-01-01

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors

  4. Lung cancer in uranium miners: A tissue resource and pilot study. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Samet, J.; Gilliland, F.D.

    1998-08-13

    This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting former uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors.

  5. KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only.

    Directory of Open Access Journals (Sweden)

    Yuki Togashi

    Full Text Available The promising results of anaplastic lymphoma kinase (ALK inhibitors have changed the significance of ALK fusions in several types of cancer. These fusions are no longer mere research targets or diagnostic markers, but they are now directly linked to the therapeutic benefit of patients. However, most available tumor tissues in clinical settings are formalin-fixed and paraffin-embedded (FFPE, and this significantly limits detailed genetic studies in many clinical cases. Although recent technical improvements have allowed the analysis of some known mutations in FFPE tissues, identifying unknown fusion genes by using only FFPE tissues remains difficult. We developed a 5'-rapid amplification of cDNA ends-based system optimized for FFPE tissues and evaluated this system on a lung cancer tissue with ALK rearrangement and without the 2 known ALK fusions EML4-ALK and KIF5B-ALK. With this system, we successfully identified a novel ALK fusion, KLC1-ALK. The result was confirmed by reverse transcription-polymerase chain reaction and fluorescence in situ hybridization. Then, we synthesized the putative full-length cDNA of KLC1-ALK and demonstrated the transforming potential of the fusion kinase with assays using mouse 3T3 cells. To the best of our knowledge, KLC1-ALK is the first novel oncogenic fusion identified using only FFPE tissues. This finding will broaden the potential value of archival FFPE tissues and provide further biological and clinical insights into ALK-positive lung cancer.

  6. Density overwrites of internal tumor volumes in intensity modulated proton therapy plans for mobile lung tumors

    Science.gov (United States)

    Botas, Pablo; Grassberger, Clemens; Sharp, Gregory; Paganetti, Harald

    2018-02-01

    The purpose of this study was to investigate internal tumor volume density overwrite strategies to minimize intensity modulated proton therapy (IMPT) plan degradation of mobile lung tumors. Four planning paradigms were compared for nine lung cancer patients. Internal gross tumor volume (IGTV) and internal clinical target volume (ICTV) structures were defined encompassing their respective volumes in every 4DCT phase. The paradigms use different planning CT (pCT) created from the average intensity projection (AIP) of the 4DCT, overwriting the density within the IGTV to account for movement. The density overwrites were: (a) constant filling with 100 HU (C100) or (b) 50 HU (C50), (c) maximum intensity projection (MIP) across phases, and (d) water equivalent path length (WEPL) consideration from beam’s-eye-view. Plans were created optimizing dose-influence matrices calculated with fast GPU Monte Carlo (MC) simulations in each pCT. Plans were evaluated with MC on the 4DCTs using a model of the beam delivery time structure. Dose accumulation was performed using deformable image registration. Interplay effect was addressed applying 10 times rescanning. Significantly less DVH metrics degradation occurred when using MIP and WEPL approaches. Target coverage (D99≥slant 70 Gy(RBE)) was fulfilled in most cases with MIP and WEPL (D{{99}WEPL}=69.2+/- 4.0 Gy (RBE)), keeping dose heterogeneity low (D5-D{{95}WEPL}=3.9+/- 2.0 Gy(RBE)). The mean lung dose was kept lowest by the WEPL strategy, as well as the maximum dose to organs at risk (OARs). The impact on dose levels in the heart, spinal cord and esophagus were patient specific. Overall, the WEPL strategy gives the best performance and should be preferred when using a 3D static geometry for lung cancer IMPT treatment planning. Newly available fast MC methods make it possible to handle long simulations based on 4D data sets to perform studies with high accuracy and efficiency, even prior to individual treatment planning.

  7. Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues.

    Science.gov (United States)

    Panzetta, Valeria; Musella, Ida; Rapa, Ida; Volante, Marco; Netti, Paolo A; Fusco, Sabato

    2017-07-15

    The mechanical cross-talk between cells and the extra-cellular matrix (ECM) regulates the properties, functions and healthiness of the tissues. When this is disturbed it changes the mechanical state of the tissue components, singularly or together, and cancer, along with other diseases, may start and progress. However, the bi-univocal mechanical interplay between cells and the ECM is still not properly understood. In this study we show how a microrheology technique gives us the opportunity to evaluate the mechanics of cells and the ECM at the same time. The mechanical phenotyping was performed on the surgically removed tissues of 10 patients affected by adenocarcinoma of the lung. A correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Our findings suggest a sort of asymmetric modification of the mechanical properties of the cells and the extra-cellular matrix in the tumor, being the more compliant cell even though it resides in a stiffer matrix. Overall, the simultaneous mechanical characterization of the tissues constituents (cells and ECM) provided new support for diagnosis and offered alternative points of analysis for cancer mechanobiology. When the integrity of the mechanical cross-talk between cells and the extra-cellular matrix is disturbed cancer, along with other diseases, may initiate and progress. Here, we show how a new technique gives the opportunity to evaluate the mechanics of cells and the ECM at the same time. It was applied on surgically removed tissues of 10 patients affected by adenocarcinoma of the lung and a correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    Science.gov (United States)

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.

  9. SU-G-BRC-08: Evaluation of Dose Mass Histogram as a More Representative Dose Description Method Than Dose Volume Histogram in Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J; Eldib, A; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Lin, M [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States); Li, J [Cyber Medical Inc, Xian, Shaanxi (China); Mora, G [Universidade de Lisboa, Codex, Lisboa (Portugal)

    2016-06-15

    Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number was used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.

  10. LungMAP: The Molecular Atlas of Lung Development Program.

    Science.gov (United States)

    Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam

    2017-11-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.

  11. Guards at the gate: physiological and pathological roles of tissue-resident innate lymphoid cells in the lung.

    Science.gov (United States)

    Cheng, Hang; Jin, Chengyan; Wu, Jing; Zhu, Shan; Liu, Yong-Jun; Chen, Jingtao

    2017-12-01

    The lung is an important open organ and the primary site of respiration. Many life-threatening diseases develop in the lung, e.g., pneumonia, asthma, chronic obstructive pulmonary diseases (COPDs), pulmonary fibrosis, and lung cancer. In the lung, innate immunity serves as the frontline in both anti-irritant response and anti-tumor defense and is also critical for mucosal homeostasis; thus, it plays an important role in containing these pulmonary diseases. Innate lymphoid cells (ILCs), characterized by their strict tissue residence and distinct function in the mucosa, are attracting increased attention in innate immunity. Upon sensing the danger signals from damaged epithelium, ILCs activate, proliferate, and release numerous cytokines with specific local functions; they also participate in mucosal immune-surveillance, immune-regulation, and homeostasis. However, when their functions become uncontrolled, ILCs can enhance pathological states and induce diseases. In this review, we discuss the physiological and pathological functions of ILC subsets 1 to 3 in the lung, and how the pathogenic environment affects the function and plasticity of ILCs.

  12. Proton beam therapy in non-small cell lung cancer: state of the art

    Directory of Open Access Journals (Sweden)

    Harada H

    2017-08-01

    Full Text Available Hideyuki Harada, Shigeyuki Murayama Radiation and Proton Therapy Center, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan Abstract: This review summarizes the past and present status of proton beam therapy (PBT for lung cancer. PBT has a unique characteristic called the Bragg peak that enables a reduction in the dose of normal tissue around the tumor, but is sensitive to the uncertainties of density changes. The heterogeneity in electron density for thoracic lesions, such as those in the lung and mediastinum, and tumor movement according to respiration necessitates respiratory management for PBT to be applied in lung cancer patients. There are two types of PBT – a passively scattered approach and a scanning approach. Typically, a passively scattered approach is more robust for respiratory movement and a scanning approach could result in a more conformal dose distribution even when the tumor shape is complex. Large tumors of centrally located lung cancer may be more suitably irradiated than with intensity-modulated radiotherapy (IMRT or stereotactic body radiotherapy (SBRT. For a locally advanced lung cancer, PBT can spare the lung and heart more than photon IMRT. However, no randomized controlled trial has reported differences between PBT and IMRT or SBRT for early-stage and locally advanced lung cancers. Therefore, a well-designed controlled trial is warranted. Keywords: proton beam therapy, non-small cell lung cancer, survival, SBRT, IMRT

  13. SU-E-J-249: Correlation of Mean Lung Ventilation Value with Ratio of Total Lung Volumes

    International Nuclear Information System (INIS)

    Yu, N; Qu, H; Xia, P

    2014-01-01

    Purpose: Lung ventilation function measured from 4D-CT and from breathing correlated CT images is a novel concept to incorporate the lung physiologic function into treatment planning of radiotherapy. The calculated ventilation functions may vary from different breathing patterns, affecting evaluation of the treatment plans. The purpose of this study is to correlate the mean lung ventilation value with the ratio of the total lung volumes obtained from the relevant CTs. Methods: A ventilation map was calculated from the variations of voxel-to-voxel CT densities from two breathing phases from either 4D-CT or breathing correlated CTs. An open source image registration tool of Plastimatch was used to deform the inhale phase images to the exhale phase images. To calculate the ventilation map inside lung, the whole lung was delineated and the tissue outside the lung was masked out. With a software tool developed in house, the 3D ventilation map was then converted in the DICOM format associated with the planning CT images. The ventilation map was analyzed on a clinical workstation. To correlate ventilation map thus calculated with lung volume change, the total lung volume change was compared the mean ventilation from our method. Results: Twenty two patients who underwent stereotactic body irradiation for lung cancer was selected for this retrospective study. For this group of patients, the ratio of lung volumes for the inhale (Vin ) and exhale phase (Vex ) was shown to be linearly related to the mean of the local ventilation (Vent), Vin/Vex=1.+0.49*Vent (R2=0.93, p<0.01). Conclusion: The total lung volume change is highly correlated with the mean of local ventilation. The mean of local ventilation may be useful to assess the patient's lung capacity

  14. Macrophages in lung tissue from patients with pulmonary emphysema express both inducible and endothelial nitric oxide synthase

    NARCIS (Netherlands)

    van Straaten, JFM; Postma, DS; Coers, W; Noordhoek, JA; Kauffman, HF; Timens, W

    To provide information concerning a possible biologic role of nitric oxide (NO) in smoking-related emphysema, we performed immunohistochemical studies in lung tissue from control subjects and patients with mild and severe emphysema We studied the presence of inducible and endothelial NO synthases

  15. Effects of quorum sensing system lasR/rhlR gene on the expression of Foxp3, TGF-β1 and IL-10 of lung tissue in tracheal intubation model rat with Pseudomonas aeruginosa biofilm infection

    Directory of Open Access Journals (Sweden)

    Qing-qing XIANG

    2016-03-01

    Full Text Available Objective  To investigate the effects of lasR/rhlR gene on Foxp3, TGF-β1 and IL-10 of lung tissue in rat tracheal intubation model with biofilm infection of Pseudomonas aeruginosa (Ps. aer wild strain (PAO1 and quorum sensing (QS deficient strain (ΔlasRΔrhlR. Methods  Twenty-one SD rats were randomly assigned into 3 groups (7 each: ΔlasRΔrhlR-treated group, PAO1-treated group and sterile control group. Biofilms (BF were cultured in vitro, and the BF coated tube (infected respectively with Ps. aer PAO1 strain, ΔlasRΔrhlR strain, or with asepsis was inserted into the trachea to establish the rat model. The rats were sacrificed on the 7th day after intubation. Colony count of lung tissue homogenate (cfu and lung HE staining were performed, and IL-10 content in bronchoalveolar lavage fluid (BALF, TGF-β1 in lung tissue, and the expression of Foxp3 mRNA in lung cells were determined. Results  The bacterial counts were significantly higher in PAO1 and ΔlasRΔrhlR groups than that in sterile control group, and the counts were obviously higher in PAO1 group (10 400.00±6313.70/g lung tissue than that in ΔlasRΔrhlR group (975.00±559.97/g lung tissue, P<0.05. There was no significant pathological changes in lung tissue in sterile control group, while the bronchi and blood vessels in PAO1 group were infiltrated by a large number of inflammatory cells and complicated with alveolar septum thickening and local abscess and necrosis. The pathological changes were milder in ΔlasRΔrhlR group than in PAO1 group; the expression of Foxp3 mRNA was higher in the two Ps. aer infected groups than that in sterile control group (0.65±0.32, and it was significantly higher in PAO1 group (4.62±1.07 than in ΔlasRΔrhlR group (2.15±1.43, P<0.05. The accumulated optical density value of TGF-β1 was significantly higher in the two Ps. aer infected groups than in sterile control group (3721.66±1412.95, and significantly higher in PAO1 group (65 090.56±33

  16. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer

    International Nuclear Information System (INIS)

    Willumsen, Nicholas; Bager, Cecilie L; Leeming, Diana J; Smith, Victoria; Christiansen, Claus; Karsdal, Morten A; Dornan, David; Bay-Jensen, Anne-Christine

    2014-01-01

    Extracellular matrix (ECM) proteins, such as collagen type I and elastin, and intermediate filament (IMF) proteins, such as vimentin are modified and dysregulated as part of the malignant changes leading to disruption of tissue homeostasis. Noninvasive biomarkers that reflect such changes may have a great potential for cancer. Levels of matrix metalloproteinase (MMP) generated fragments of type I collagen (C1M), of elastin (ELM), and of citrullinated vimentin (VICM) were measured in serum from patients with lung cancer (n = 40), gastrointestinal cancer (n = 25), prostate cancer (n = 14), malignant melanoma (n = 7), chronic obstructive pulmonary disease (COPD) (n = 13), and idiopathic pulmonary fibrosis (IPF) (n = 10), as well as in age-matched controls (n = 33). The area under the receiver operating characteristics (AUROC) was calculated and a diagnostic decision tree generated from specific cutoff values. C1M and VICM were significantly elevated in lung cancer patients as compared with healthy controls (AUROC = 0.98, P < 0.0001) and other cancers (AUROC = 0.83 P < 0.0001). A trend was detected when comparing lung cancer with COPD+IPF. No difference could be seen for ELM. Interestingly, C1M and VICM were able to identify patients with lung cancer with a positive predictive value of 0.9 and an odds ratio of 40 (95% CI = 8.7–186, P < 0.0001). Biomarkers specifically reflecting degradation of collagen type I and citrullinated vimentin are applicable for lung cancer patients. Our data indicate that biomarkers reflecting ECM and IMF protein dysregulation are highly applicable in the lung cancer setting. We speculate that these markers may aid in diagnosing and characterizing patients with lung cancer

  17. Effects of lung elasticity on the sound propagation in the lung

    International Nuclear Information System (INIS)

    Yoneda, Takahiro; Wada, Shigeo; Nakamura, Masanori; Horii, Noriaki; Mizushima, Koichiro

    2011-01-01

    Sound propagation in the lung was simulated for gaining insight into its acoustic properties. A thorax model consisting of lung parenchyma, thoracic bones, trachea and other tissues was made from human CT images. Acoustic nature of the lung parenchyma and bones was expressed with the Biot model of poroelastic material, whereas trachea and tissues were modeled with gas and an elastic material. A point sound source of white noises was placed in the first bifurcation of trachea. The sound propagation in the thorax model was simulated in a frequency domain. The results demonstrated the significant attenuation of sound especially in frequencies larger than 1,000 Hz. Simulations with a stiffened lung demonstrated suppression of the sound attenuation for higher frequencies observed in the normal lung. These results indicate that the normal lung has the nature of a low-pass filter, and stiffening helps the sound at higher frequencies to propagate without attenuations. (author)

  18. Interstitial Lung Disease

    Science.gov (United States)

    ... propranolol (Inderal, Innopran), may harm lung tissue. Some antibiotics. Nitrofurantoin (Macrobid, Macrodantin, others) and ethambutol (Myambutol) can cause lung damage. Anti-inflammatory drugs. Certain anti-inflammatory drugs, such as rituximab ( ...

  19. Surface density mapping of natural tissue by a scanning haptic microscope (SHM).

    Science.gov (United States)

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Nakayama, Yasuhide

    2013-02-01

    To expand the performance capacity of the scanning haptic microscope (SHM) beyond surface mapping microscopy of elastic modulus or topography, surface density mapping of a natural tissue was performed by applying a measurement theory of SHM, in which a frequency change occurs upon contact of the sample surface with the SHM sensor - a microtactile sensor (MTS) that vibrates at a pre-determined constant oscillation frequency. This change was mainly stiffness-dependent at a low oscillation frequency and density-dependent at a high oscillation frequency. Two paragon examples with extremely different densities but similar macroscopic elastic moduli in the range of natural soft tissues were selected: one was agar hydrogels and the other silicon organogels with extremely low (less than 25 mg/cm(3)) and high densities (ca. 1300 mg/cm(3)), respectively. Measurements were performed in saline solution near the second-order resonance frequency, which led to the elastic modulus, and near the third-order resonance frequency. There was little difference in the frequency changes between the two resonance frequencies in agar gels. In contrast, in silicone gels, a large frequency change by MTS contact was observed near the third-order resonance frequency, indicating that the frequency change near the third-order resonance frequency reflected changes in both density and elastic modulus. Therefore, a density image of the canine aortic wall was subsequently obtained by subtracting the image observed near the second-order resonance frequency from that near the third-order resonance frequency. The elastin-rich region had a higher density than the collagen-rich region.

  20. Comparison of single, fractionated and hyperfractionated irradiation on the development of normal tissue damage in rat lung

    International Nuclear Information System (INIS)

    Giri, P.G.S.; Kimler, B.F.; Giri, U.P.; Cox, G.G.; Reddy, E.K.

    1985-01-01

    The effect of fractionated thoracic irradiation on the development of normal tissue damage in rats was compared to that produced by single doses. Animals received a single dose of 15 Gy, 30 Gy in 10 daily fractions of 3 Gy each (fractionation), or 30 Gy in 30 fractions of 1 Gy each 3 times a day (hyperfractionation). The treatments produced minimal lethality since a total of only 6 animals died between days 273 and 475 after the initiation of treatment, with no difference in survival observed between the control and any of the 3 treated groups. Despite the lack of lethality, evidence of lung damage was obtained by histological examination. Animals that had received either single doses or fractionated doses had more of the pulmonary parenchyma involved than did animals that had received hyperfractionated doses. The authors conclude that, in the rat lung model, a total radiation dose of 30 Gy fractionated over 14 days produces no more lethality nor damage to lung tissue than does 15 Gy delivered as a single dose. However, long-term effects as evidenced by deposits of collagen and development of fibrosis are significantly reduced by hyperfractionation when compared to single doses and daily fractionation

  1. Identification of radiation response genes and proteins from mouse pulmonary tissues after high-dose per fraction irradiation of limited lung volumes.

    Science.gov (United States)

    Jin, Hee; Jeon, Seulgi; Kang, Ga-Young; Lee, Hae-June; Cho, Jaeho; Lee, Yun-Sil

    2017-02-01

    The molecular effects of focal exposure of limited lung volumes to high-dose per fraction irradiation (HDFR) such as stereotactic body radiotherapy (SBRT) have not been fully characterized. In this study, we used such an irradiation system and identified the genes and proteins after HDFR to mouse lung, similar to those associated with human therapy. High focal radiation (90 Gy) was applied to a 3-mm volume of the left lung of C57BL6 mice using a small-animal stereotactic irradiator. As well as histological examination for lungs, a cDNA micro array using irradiated lung tissues and a protein array of sera were performed until 4 weeks after irradiation, and radiation-responsive genes and proteins were identified. For comparison, the long-term effects (12 months) of 20 Gy radiation wide-field dose to the left lung were also investigated. The genes ermap, epb4.2, cd200r3 (up regulation) and krt15, hoxc4, gdf2, cst9, cidec, and bnc1 (down-regulation) and the proteins of AIF, laminin, bNOS, HSP27, β-amyloid (upregulation), and calponin (downregulation) were identified as being responsive to 90 Gy HDFR. The gdf2, cst9, and cidec genes also responded to 20 Gy, suggesting that they are universal responsive genes in irradiated lungs. No universal proteins were identified in both 90 Gy and 20 Gy. Calponin, which was downregulated in protein antibody array analysis, showed a similar pattern in microarray data, suggesting a possible HDFR responsive serum biomarker that reflects gene alteration of irradiated lung tissue. These genes and proteins also responded to the lower doses of 20 Gy and 50 Gy HDFR. These results suggest that identified candidate genes and proteins are HDFR-specifically expressed in lung damage induced by HDFR relevant to SBRT in humans.

  2. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  3. TH-CD-207B-11: Multi-Vendor Phantom Study of CT Lung Density Metrics: Is a Reproducibility of Less Than 1 HU Achievable?

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Mayer, H [National Institute of Standards & Technology, Gaithersburg, MD (United States); Judy, P [Brigham & Women’s Hospital, Boston, MA (United States); Fain, S [University of Wisconsin, Madison, WI (United States); Hoppel, B [Toshiba Medical Research Institute USA, Inc, Vernon Hills, IL (United States); Lynch, D [Nation Jewish Health, Denver, CO (United States); Fuld, M [Siemens Medical Solutions USA, Inc., Baltimore, MD (United States)

    2016-06-15

    Purpose: To standardize the calibration procedures of CT lung density measurements using low-density reference foams in a phantom, and to demonstrate a reproducibility of less than 1 HU for lung equivalent foam densities measured across CT vendor platforms and protocols. Methods: A phantom study was conducted on CT scanner models from 4 vendors at 100, 120, and 135/140 kVp and 1.5, 3, and 6 mGy dose settings, using a lung density phantom containing air, water, and 3 reference foams (indirectly calibrated) with discrete densities simulating a 5-cm slice of the human chest. Customized segmentation software was used to analyze the images and generate a mean HU and variance for each of the density for the 22 vendor/protocols. A 3-step calibration process was devised to remove a scanner-dependent parameter using linear regression of the HU value vs the relative electron density. The results were mapped to a single energy (80 keV) for final comparison. Results: The heterogeneity across vendor platforms for each density assessed by a random effects model was reduced by 50% after re-calibration, while the standard deviation of the mean HU values also improved by about the same amount. The 95% CI of the final HU value was within +/−1 HU for all 3 reference foam densities. For the backing lung foam in the phantom (served as an “unknown”), this CI is +/− 1.6 HU. The kVp and dose settings did not appear to have significant contributions to the variability. Conclusion: With the proposed calibration procedures, the inter-scanner reproducibility of better than 1 HU is demonstrated in the current phantom study for the reference foam densities, but not yet achieved for a test density. The sources of error are being investigated in the next round of scanning with a certified Standard Reference Material for direct calibration. Fain: research funding from GE Healthcare to develop pulmonary MRI techniques. Hoppel: employee of Toshiba Medical Research Institute USA

  4. Assessing the effect of electron density in photon dose calculations

    International Nuclear Information System (INIS)

    Seco, J.; Evans, P. M.

    2006-01-01

    Photon dose calculation algorithms (such as the pencil beam and collapsed cone, CC) model the attenuation of a primary photon beam in media other than water, by using pathlength scaling based on the relative mass density of the media to water. In this study, we assess if differences in the electron density between the water and media, with different atomic composition, can influence the accuracy of conventional photon dose calculations algorithms. A comparison is performed between an electron-density scaling method and the standard mass-density scaling method for (i) tissues present in the human body (such as bone, muscle, etc.), and for (ii) water-equivalent plastics, used in radiotherapy dosimetry and quality assurance. We demonstrate that the important material property that should be taken into account by photon dose algorithms is the electron density, and not the mass density. The mass-density scaling method is shown to overestimate, relative to electron-density predictions, the primary photon fluence for tissues in the human body and water-equivalent plastics, where 6%-7% and 10% differences were observed respectively for bone and air. However, in the case of patients, differences are expected to be smaller due to the large complexity of a treatment plan and of the patient anatomy and atomic composition and of the smaller thickness of bone/air that incident photon beams of a treatment plan may have to traverse. Differences have also been observed for conventional dose algorithms, such as CC, where an overestimate of the lung dose occurs, when irradiating lung tumors. The incorrect lung dose can be attributed to the incorrect modeling of the photon beam attenuation through the rib cage (thickness of 2-3 cm in bone upstream of the lung tumor) and through the lung and the oversimplified modeling of electron transport in convolution algorithms. In the present study, the overestimation of the primary photon fluence, using the mass-density scaling method, was shown

  5. Esophagus and contralateral lung-sparing IMRT for locally advanced lung cancer in the community hospital setting

    Directory of Open Access Journals (Sweden)

    Johnny eKao

    2015-06-01

    Full Text Available Background: The optimal technique for performing lung IMRT remains poorly defined. We hypothesize that improved dose distributions associated with normal tissue sparing IMRT can allow for safe dose escalation resulting in decreased acute and late toxicity. Methods: We performed a retrospective analysis of 82 consecutive lung cancer patients treated with curative intent from 1/10 to 9/14. From 1/10 to 4/12, 44 patients were treated with the community standard of 3-dimensional conformal radiotherapy or IMRT without specific esophagus or contralateral lung constraints (standard RT. From 5/12 to 9/14, 38 patients were treated with normal tissue-sparing IMRT with selective sparing of contralateral lung and esophagus. The study endpoints were dosimetry, toxicity and overall survival.Results: Despite higher mean prescribed radiation doses in the normal tissue-sparing IMRT cohort (64.5 Gy vs. 60.8 Gy, p=0.04, patients treated with normal tissue-sparing IMRT had significantly lower lung V20, V10, V5, mean lung, maximum esophagus and mean esophagus doses compared to patients treated with standard RT (p≤0.001. Patients in the normal tissue-sparing IMRT group had reduced acute grade ≥3 esophagitis (0% vs. 11%, p<0.001, acute grade ≥2 weight loss (2% vs. 16%, p=0.04, late grade ≥2 pneumonitis (7% vs. 21%, p=0.02. The 2-year overall survival was 52% with normal tissue-sparing IMRT arm compared to 28% for standard RT (p=0.015.Conclusion: These data provide proof of principle that suboptimal radiation dose distributions are associated with significant acute and late lung and esophageal toxicity that may result in hospitalization or even premature mortality. Strict attention to contralateral lung and esophageal dose volume constraints are feasible in the community hospital setting without sacrificing disease control.

  6. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    International Nuclear Information System (INIS)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar; Holanda, Marcelo Alcantara

    2010-01-01

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  7. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    Energy Technology Data Exchange (ETDEWEB)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar, E-mail: jhsfelix@gmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Medicina Clinica

    2010-12-15

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  8. Short-term Reproducibility of Computed Tomography-based Lung Density Measurements in Alpha-1 Antitrypsin Deficiency and Smokers with Emphysema

    International Nuclear Information System (INIS)

    Shaker, S.B.; Dirksen, A.; Laursen, L.C.; Maltbaek, N.; Christensen, L.; Sander, U.; Seersholm, N.; Skovgaard, L.T.; Nielsen, L.; Kok-Jensen, A.

    2004-01-01

    Purpose: To study the short-term reproducibility of lung density measurements by multi-slice computed tomography (CT) using three different radiation doses and three reconstruction algorithms. Material and Methods: Twenty-five patients with smoker's emphysema and 25 patients with 1-antitrypsin deficiency underwent 3 scans at 2-week intervals. Low-dose protocol was applied, and images were reconstructed with bone, detail, and soft algorithms. Total lung volume (TLV), 15th percentile density (PD-15), and relative area at -910 Hounsfield units (RA-910) were obtained from the images using Pulmo-CMS software. Reproducibility of PD-15 and RA-910 and the influence of radiation dose, reconstruction algorithm, and type of emphysema were then analysed. Results: The overall coefficient of variation of volume adjusted PD-15 for all combinations of radiation dose and reconstruction algorithm was 3.7%. The overall standard deviation of volume-adjusted RA-910 was 1.7% (corresponding to a coefficient of variation of 6.8%). Radiation dose, reconstruction algorithm, and type of emphysema had no significant influence on the reproducibility of PD-15 and RA-910. However, bone algorithm and very low radiation dose result in overestimation of the extent of emphysema. Conclusion: Lung density measurement by CT is a sensitive marker for quantitating both subtypes of emphysema. A CT-protocol with radiation dose down to 16 mAs and soft or detail reconstruction algorithm is recommended

  9. Quantification of lung surface area using computed tomography

    Directory of Open Access Journals (Sweden)

    Xing Li

    2010-10-01

    Full Text Available Abstract Objective To refine the CT prediction of emphysema by comparing histology and CT for specific regions of lung. To incorporate both regional lung density measured by CT and cluster analysis of low attenuation areas for comparison with histological measurement of surface area per unit lung volume. Methods The histological surface area per unit lung volume was estimated for 140 samples taken from resected lung specimens of fourteen subjects. The region of the lung sampled for histology was located on the pre-operative CT scan; the regional CT median lung density and emphysematous lesion size were calculated using the X-ray attenuation values and a low attenuation cluster analysis. Linear mixed models were used to examine the relationships between histological surface area per unit lung volume and CT measures. Results The median CT lung density, low attenuation cluster analysis, and the combination of both were important predictors of surface area per unit lung volume measured by histology (p Conclusion Combining CT measures of lung density and emphysematous lesion size provides a more accurate estimate of lung surface area per unit lung volume than either measure alone.

  10. Micromechanical model of lung parenchyma hyperelasticity

    Science.gov (United States)

    Concha, Felipe; Sarabia-Vallejos, Mauricio; Hurtado, Daniel E.

    2018-03-01

    Mechanics plays a key role in respiratory physiology, as lung tissue cyclically deforms to bring air in and out the lung, a life-long process necessary for respiration. The study of regional mechanisms of deformation in lung parenchyma has received great attention to date due to its clinical relevance, as local overstretching and stress concentration in lung tissue is currently associated to pathological conditions such as lung injury during mechanical ventilation therapy. This mechanical approach to lung physiology has motivated the development of constitutive models to better understand the relation between stress and deformation in the lung. While material models proposed to date have been key in the development of whole-lung simulations, either they do not directly relate microstructural properties of alveolar tissue with coarse-scale behavior, or they require a high computational effort when based on real alveolar geometries. Furthermore, most models proposed to date have not been thoroughly validated for anisotropic deformation states, which are commonly found in normal lungs in-vivo. In this work, we develop a novel micromechanical model of lung parenchyma hyperelasticity using the framework of finite-deformation homogenization. To this end, we consider a tetrakaidecahedron unit cell with incompressible Neo-Hookean structural elements that account for the alveolar wall tissue responsible for the elastic response, and derive expressions for its effective coarse-scale behavior that directly depend on the alveolar wall elasticity, reference porosity, and two other geometrical coefficients. To validate the proposed model, we simulate the non-linear elastic response of twelve representative volume elements (RVEs) of lung parenchyma with micrometric dimensions, whose geometry is obtained from micrometric computed-tomography reconstructions of murine lungs. We show that the proposed micromechanical model accurately captures the RVEs response not only for isotropic

  11. Eosinophilic Lung Disorders

    Science.gov (United States)

    ... problems characterized by having an increased number of eosinophils (white blood cells) in the lungs. These white ... category of pneumonias that feature increased numbers of eosinophils in the lung tissue. Pneumonia is an inflammatory ...

  12. Conservative surgery and radiotherapy for stage I/II breast cancer using lung density correction: 10-year and 15-year results

    International Nuclear Information System (INIS)

    Pierce, Lori J.; Griffith, Kent A.; Hayman, James A.; Douglas, Kathye R.; Lichter, Allen S.

    2005-01-01

    Purpose: Radiotherapy (RT) planning for breast cancer using lung density correction improves dose homogeneity. Its use obviates the need for a medial wedge, thus reducing scatter to the opposite breast. Although lung density correction is used at many centers in planning for early-stage breast cancer, long-term results of local control and survival have not been reported. Since 1984, we have used lung density correction for dose calculations at the University of Michigan. We now present our 10-year and 15-year results. Methods and Materials: The records of 867 patients with Stage I/II breast cancer treated with breast-conserving surgery and RT with or without systemic therapy were reviewed. Tangential fields delivering 45-50 Gy to the whole breast calculated using lung density correction were used. A boost was added in 96.8% of patients for a total median dose of 61.8 Gy. Results: With a median follow-up of 6.6 years (range, 0.2-18.9 years), 5-, 10-, and 15-year actuarial rates of in-breast tumor recurrence as only first failure were 2.2%, 3.6%, and 5.4%, respectively. With surgical salvage, the 15-year cumulative rate of local control was 99.7%. Factors that significantly predicted for increased rate of local recurrence in multivariate analysis were age ≤ 35 years, hazard ratio 4.8 (95% confidence interval [CI], 1.6-13.9) p = 0.004; negative progesterone receptor status, hazard ratio 6.8 (95% CI, 2.3-20.3) p = < 0.001; negative estrogen receptor status, hazard ratio 4.0 (95% CI, 1.5-11.1) p = 0.007; and lack of adjuvant tamoxifen therapy, hazard ratio 7.7 (95% CI, 1.7-33.3) p = 0.008. Relapse-free survival rates at 5, 10, and 15 years were 84.6%, 70.8%, and 55.9%, respectively; breast cancer-specific survival rates were 94.4%, 90.5%, and 86.9%, respectively; and corresponding estimates for overall survival were 89.7%, 75.7%, and 61.3%. Conclusions: Use of lung density correction was associated with high rates of local control, relapse-free survival, breast

  13. Sterilization of Lung Matrices by Supercritical Carbon Dioxide.

    Science.gov (United States)

    Balestrini, Jenna L; Liu, Angela; Gard, Ashley L; Huie, Janet; Blatt, Kelly M S; Schwan, Jonas; Zhao, Liping; Broekelmann, Tom J; Mecham, Robert P; Wilcox, Elise C; Niklason, Laura E

    2016-03-01

    Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO2) that can achieve a sterility assurance level 10(-6) in decellularized lung matrix. The effects of ScCO2 treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO2 did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO2, indicating that ScCO2 produces a matrix that is stable during storage. The current study's results indicate that ScCO2 can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes.

  14. WE-G-BRD-07: Investigation of Distal Lung Atelectasis Following Stereotactic Body Radiation Therapy Using Regional Lung Volume Changes Between Pre- and Post- Treatment CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    Diot, Q; Kavanagh, B; Miften, M [University of Colorado School of Medicine, Aurora, CO (United States)

    2014-06-15

    Purpose: To propose a quantitative method using lung deformations to differentiate between radiation-induced fibrosis and potential airway stenosis with distal atelectasis in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Twenty-four lung patients with large radiation-induced density increases outside the high dose region had their pre- and post-treatment CT scans manually registered. They received SBRT treatments at our institution between 2002 and 2009 in 3 or 5 fractions, to a median total dose of 54Gy (range, 30–60). At least 50 anatomical landmarks inside the lung (airway branches) were paired for the pre- and post-treatment scans to guide the deformable registration of the lung structure, which was then interpolated to the whole lung using splines. Local volume changes between the planning and follow-up scans were calculated using the deformation field Jacobian. Hyperdense regions were classified as atelectatic or fibrotic based on correlations between regional density increases and significant volume contractions compared to the surrounding tissues. Results: Out of 24 patients, only 7 demonstrated a volume contraction that was at least one σ larger than the remaining lung average. Because they did not receive high doses, these shrunk hyperdense regions were likely showing distal atelectasis resulting from radiation-induced airway stenosis rather than conventional fibrosis. On average, the hyperdense regions extended 9.2 cm farther than the GTV contours but not significantly more than 8.6 cm for the other patients (p>0.05), indicating that a large offset between the radiation and hyperdense region centers is not a good surrogate for atelectasis. Conclusion: A method based on the relative comparison of volume changes between different dates was developed to identify potential lung regions experiencing distal atelectasis. Such a tool is essential to study which lung structures need to be avoided to prevent

  15. SU-E-J-87: Ventilation Weighting Effect On Mean Doses of Both Side Lungs for Patients with Advanced Stage Lung Cancer

    International Nuclear Information System (INIS)

    Qu, H; Xia, P; Yu, N

    2015-01-01

    Purpose: To study ventilation weighting effect on radiation doses to both side lungs for patients with advanced stage lung cancer. Methods: Fourteen patients with advanced stage lung cancer were included in this retrospective study. Proprietary software was developed to calculate the lung ventilation map based on 4DCT images acquired for radiation therapy. Two phases of inhale (0%) and exhale (50%) were used for the lung ventilation calculations. For each patient, the CT images were resampled to the same dose calculation resolution of 3mmx3mmx3mm. The ventilation distribution was then normalized by the mean value of the ventilation. The ventilation weighted dose was calculated by applying linearly weighted ventilation to the dose of each pixel. The lung contours were automatically delineated from patient CT image with lung window, excluding the tumor and high density tissues. For contralateral and ipsilateral lungs, the mean lung doses from the original plan and ventilation weighted mean lung doses were compared using two tail t-Test. Results: The average of mean dose was 6.1 ±3.8Gy for the contralateral lungs, and 26.2 ± 14.0Gy for the ipsilateral lungs. The average of ventilation weighted dose was 6.3± 3.8Gy for the contralateral lungs and 24.6 ± 13.1Gy for the ipsilateral lungs. The statistics analysis shows the significance of the mean dose increase (p<0.015) for the contralateral lungs and decrease (p<0.005) for the ipsilateral lungs. Conclusion: Ventilation weighted doses were greater than the un-weighted doses for contralateral lungs and smaller for ipsilateral lungs. This Result may be helpful to understand the radiation dosimetric effect on the lung function and provide planning guidance for patients with advance stage lung cancer

  16. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats.

    Science.gov (United States)

    Cadirci, Elif; Halici, Zekai; Bayir, Yasin; Albayrak, Abdulmecit; Karakus, Emre; Polat, Beyzagul; Unal, Deniz; Atamanalp, Sabri S; Aksak, Selina; Gundogdu, Cemal

    2013-10-01

    Sepsis is a complex pathophysiological event involving metabolic acidosis, systemic inflammatory response syndrome, tissue damage and multiple organ dysfunction syndrome. Although many new mechanisms are being investigated to enlighten the pathophysiology of sepsis, there is no effective treatment protocol yet. Presence of 5-HT7 receptors in immune tissues prompted us to hypothesize that these receptors have roles in inflammation and sepsis. We investigated the effects of 5-HT7 receptor agonists and antagonists on serum cytokine levels, lung oxidative stress, lung histopathology, nuclear factor κB (NF-κB) positivity and lung 5-HT7 receptor density in cecal ligation and puncture (CLP) induced sepsis model of rats. Agonist administration to septic rats increased survival time; decreased serum cytokine response against CLP; decreased oxidative stress and increased antioxidant system in lungs; decreased the tissue NF-κB immunopositivity, which is high in septic rats; and decreased the sepsis-induced lung injury. In septic rats, as a result of high inflammatory response, 5-HT7 receptor expression in lungs increased significantly and agonist administration, which decreased inflammatory response and related mortality, decreased the 5-HT7 receptor expression. In conclusion, all these data suggest that stimulation of 5-HT7 receptors may be a new therapeutic target for prevention of impaired inflammatory response related lung injury and mortality. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Interactive lung segmentation in abnormal human and animal chest CT scans

    International Nuclear Information System (INIS)

    Kockelkorn, Thessa T. J. P.; Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-01-01

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  18. Estimation of Lung Ventilation

    Science.gov (United States)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  19. SARS – Lung Pathology

    Indian Academy of Sciences (India)

    Dry nonproductive cough – may show minimal lung infiltration. Recovery; * Lungs get fluid in bronchi- droplets infective and +ve for virus in culture and PCR. May also have co-infection with chlamydia/metapneumoviruses. Recovery; * Lung tissue destroyed due to ? immunological/cytokine mediated damage-Recovery ...

  20. Pulmonary emphysema and tumor microenvironment in primary lung cancer.

    Science.gov (United States)

    Murakami, Junichi; Ueda, Kazuhiro; Sano, Fumiho; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu

    2016-02-01

    To clarify the relationship between the presence of pulmonary emphysema and tumor microenvironment and their significance for the clinicopathologic aggressiveness of non-small cell lung cancer. The subjects included 48 patients with completely resected and pathologically confirmed stage I non-small cell lung cancer. Quantitative computed tomography was used to diagnose pulmonary emphysema, and immunohistochemical staining was performed to evaluate the matrix metalloproteinase (MMP) expression status in the intratumoral stromal cells as well as the microvessel density (MVD). Positive MMP-9 staining in the intratumoral stromal cells was confirmed in 17 (35%) of the 48 tumors. These 17 tumors were associated with a high MVD, frequent lymphovascular invasion, a high proliferative activity, and high postoperative recurrence rate (all, P pulmonary emphysema (P = 0.02). Lung cancers arising from pulmonary emphysema were also associated with a high MVD, proliferative activity, and postoperative recurrence rate (all, P < 0.05). The MMP-9 expression in intratumoral stromal cells is associated with the clinicopathologic aggressiveness of lung cancer and is predominantly identified in tumors arising in emphysematous lungs. Further studies regarding the biological links between the intratumoral and extratumoral microenvironment will help to explain why lung cancers originating in emphysematous lung tissues are associated with a poor prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung.

    Science.gov (United States)

    Hwang, Ji Young; Randall, Troy D; Silva-Sanchez, Aaron

    2016-01-01

    Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity.

  2. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    International Nuclear Information System (INIS)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J

    2016-01-01

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  3. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2016-06-15

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  4. Identification and validation of differentially expressed transcripts by RNA-sequencing of formalin-fixed, paraffin-embedded (FFPE) lung tissue from patients with Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Vukmirovic, Milica; Herazo-Maya, Jose D; Blackmon, John; Skodric-Trifunovic, Vesna; Jovanovic, Dragana; Pavlovic, Sonja; Stojsic, Jelena; Zeljkovic, Vesna; Yan, Xiting; Homer, Robert; Stefanovic, Branko; Kaminski, Naftali

    2017-01-12

    Idiopathic Pulmonary Fibrosis (IPF) is a lethal lung disease of unknown etiology. A major limitation in transcriptomic profiling of lung tissue in IPF has been a dependence on snap-frozen fresh tissues (FF). In this project we sought to determine whether genome scale transcript profiling using RNA Sequencing (RNA-Seq) could be applied to archived Formalin-Fixed Paraffin-Embedded (FFPE) IPF tissues. We isolated total RNA from 7 IPF and 5 control FFPE lung tissues and performed 50 base pair paired-end sequencing on Illumina 2000 HiSeq. TopHat2 was used to map sequencing reads to the human genome. On average ~62 million reads (53.4% of ~116 million reads) were mapped per sample. 4,131 genes were differentially expressed between IPF and controls (1,920 increased and 2,211 decreased (FDR < 0.05). We compared our results to differentially expressed genes calculated from a previously published dataset generated from FF tissues analyzed on Agilent microarrays (GSE47460). The overlap of differentially expressed genes was very high (760 increased and 1,413 decreased, FDR < 0.05). Only 92 differentially expressed genes changed in opposite directions. Pathway enrichment analysis performed using MetaCore confirmed numerous IPF relevant genes and pathways including extracellular remodeling, TGF-beta, and WNT. Gene network analysis of MMP7, a highly differentially expressed gene in both datasets, revealed the same canonical pathways and gene network candidates in RNA-Seq and microarray data. For validation by NanoString nCounter® we selected 35 genes that had a fold change of 2 in at least one dataset (10 discordant, 10 significantly differentially expressed in one dataset only and 15 concordant genes). High concordance of fold change and FDR was observed for each type of the samples (FF vs FFPE) with both microarrays (r = 0.92) and RNA-Seq (r = 0.90) and the number of discordant genes was reduced to four. Our results demonstrate that RNA sequencing of RNA

  5. Lung-dominant connective tissue disease among patients with interstitial lung disease: prevalence, functional stability, and common extrathoracic features

    Directory of Open Access Journals (Sweden)

    Daniel Antunes Silva Pereira

    2015-04-01

    Full Text Available OBJECTIVE: To describe the characteristics of a cohort of patients with lung-dominant connective tissue disease (LD-CTD. METHODS: This was a retrospective study of patients with interstitial lung disease (ILD, positive antinuclear antibody (ANA results (≥ 1/320, with or without specific autoantibodies, and at least one clinical feature suggestive of connective tissue disease (CTD. RESULTS: Of the 1,998 patients screened, 52 initially met the criteria for a diagnosis of LD-CTD: 37% were male; the mean age at diagnosis was 56 years; and the median follow-up period was 48 months. During follow-up, 8 patients met the criteria for a definitive diagnosis of a CTD. The remaining 44 patients comprised the LD-CTD group, in which the most prevalent extrathoracic features were arthralgia, gastroesophageal reflux disease, and Raynaud's phenomenon. The most prevalent autoantibodies in this group were ANA (89% and anti-SSA (anti-Ro, 27%. The mean baseline and final FVC was 69.5% and 74.0% of the predicted values, respectively (p > 0.05. Nonspecific interstitial pneumonia and usual interstitial pneumonia patterns were found in 45% and 9% of HRCT scans, respectively; 36% of the scans were unclassifiable. A similar prevalence was noted in histological samples. Diffuse esophageal dilatation was identified in 52% of HRCT scans. Nailfold capillaroscopy was performed in 22 patients; 17 showed a scleroderma pattern. CONCLUSIONS: In our LD-CTD group, there was predominance of females and the patients showed mild spirometric abnormalities at diagnosis, with differing underlying ILD patterns that were mostly unclassifiable on HRCT and by histology. We found functional stability on follow-up. Esophageal dilatation on HRCT and scleroderma pattern on nailfold capillaroscopy were frequent findings and might come to serve as diagnostic criteria.

  6. CT-guided needle biopsy in the diagnosis of lung adenocarcinoma accompanied by extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue: a rare combination.

    Science.gov (United States)

    Tian, Panwen; Wang, Ye; Wan, Chun; Shen, Yongchun; Wen, Fuqiang

    2015-01-01

    We represent a rare case of lung adenocarcinoma accompanied by extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT). The patient was a 66-year-old male presented with 1 month history of recurrent cough and hemoptysis. Chest CT showed solitary ground-glass opacity (GGO) in the upper lobe of the right lung and mediastinal lymph node enlargement in station 3p. A CT-guided transthoracic needle biopsy was performed. Tissue specimens of the GGO revealed a typical adenocarcinoma. Histopathologic diagnosis of mediastinal lymph node was extranodal marginal zone lymphoma of MALT. Because of its rarity, extranodal marginal zone lymphoma of MALT should be considered in the differential diagnosis when we encounter mediastinal lymphadenopathy in patients with lung adenocarcinoma.

  7. Irreversible Electroporation in a Swine Lung Model

    International Nuclear Information System (INIS)

    Dupuy, Damian E.; Aswad, Bassam; Ng, Thomas

    2011-01-01

    Purpose: This study was designed to evaluate the safety and tissue effects of IRE in a swine lung model. Methods: This study was approved by the institutional animal care committee. Nine anesthetized domestic swine underwent 15 percutaneous irreversible electroporation (IRE) lesion creations (6 with bipolar and 3 with 3–4 monopolar electrodes) under fluoroscopic guidance and with pancuronium neuromuscular blockade and EKG gating. IRE electrodes were placed into the central and middle third of the right mid and lower lobes in all animals. Postprocedure PA and lateral chest radiographs were obtained to evaluate for pneumothorax. Three animals were sacrificed at 2 weeks and six at 4 weeks. Animals underwent high-resolution CT scanning and PA and lateral radiographs 1 h before sacrifice. The treated lungs were removed en bloc, perfused with formalin, and sectioned. Gross pathologic and microscopic changes after standard hematoxylin and eosin staining were analyzed within the areas of IRE lesion creation. Results: No significant adverse events were identified. CT showed focal areas of spiculated high density ranging in greatest diameter from 1.1–2.2 cm. On gross inspection of the sectioned lung, focal areas of tan discoloration and increased density were palpated in the areas of IRE. Histological analysis revealed focal areas of diffuse alveolar damage with fibrosis and inflammatory infiltration that respected the boundaries of the interlobular septae. No pathological difference could be discerned between the 2- and 4-week time points. The bronchioles and blood vessels within the areas of IRE were intact and did not show signs of tissue injury. Conclusion: IRE creates focal areas of diffuse alveolar damage without creating damage to the bronchioles or blood vessels. Short-term safety in a swine model appears to be satisfactory.

  8. Illumina MiSeq 16S amplicon sequence analysis of bovine respiratory disease associated bacteria in lung and mediastinal lymph node tissue.

    Science.gov (United States)

    Johnston, Dayle; Earley, Bernadette; Cormican, Paul; Murray, Gerard; Kenny, David Anthony; Waters, Sinead Mary; McGee, Mark; Kelly, Alan Kieran; McCabe, Matthew Sean

    2017-05-02

    Bovine respiratory disease (BRD) is caused by growth of single or multiple species of pathogenic bacteria in lung tissue following stress and/or viral infection. Next generation sequencing of 16S ribosomal RNA gene PCR amplicons (NGS 16S amplicon analysis) is a powerful culture-independent open reference method that has recently been used to increase understanding of BRD-associated bacteria in the upper respiratory tract of BRD cattle. However, it has not yet been used to examine the microbiome of the bovine lower respiratory tract. The objective of this study was to use NGS 16S amplicon analysis to identify bacteria in post-mortem lung and lymph node tissue samples harvested from fatal BRD cases and clinically healthy animals. Cranial lobe and corresponding mediastinal lymph node post-mortem tissue samples were collected from calves diagnosed as BRD cases by veterinary laboratory pathologists and from clinically healthy calves. NGS 16S amplicon libraries, targeting the V3-V4 region of the bacterial 16S rRNA gene were prepared and sequenced on an Illumina MiSeq. Quantitative insights into microbial ecology (QIIME) was used to determine operational taxonomic units (OTUs) which corresponded to the 16S rRNA gene sequences. Leptotrichiaceae, Mycoplasma, Pasteurellaceae, and Fusobacterium were the most abundant OTUs identified in the lungs and lymph nodes of the calves which died from BRD. Leptotrichiaceae, Fusobacterium, Mycoplasma, Trueperella and Bacteroides had greater relative abundances in post-mortem lung samples collected from fatal cases of BRD in dairy calves, compared with clinically healthy calves without lung lesions. Leptotrichiaceae, Mycoplasma and Pasteurellaceae showed higher relative abundances in post-mortem lymph node samples collected from fatal cases of BRD in dairy calves, compared with clinically healthy calves without lung lesions. Two Leptotrichiaceae sequence contigs were subsequently assembled from bacterial DNA-enriched shotgun sequences

  9. Telomerase in lung cancer diagnostics

    International Nuclear Information System (INIS)

    Kovkarova, E.; Stefanovski, T.; Dimov, A.; Naumovski, J.

    2003-01-01

    Background. Telomerase is a ribonucleoprotein that looks after the telomeric cap of the linear chromosomes maintaining its length. It is over expressed in tumour tissues, but not in normal somatic cells. Therefore the aim of this study was to determine the telomerase activity in lung cancer patients as novel marker for lung cancer detection evaluating the influence of tissue/cell obtaining technique. Material and methods. Using the TRAP (telomeric repeat amplification protocol), telomerase activity was determined in material obtained from bronchobiopsy (60 lung cancer patients compared with 20 controls) and washings from transthoracic fine needle aspiration biopsy performed in 10 patients with peripheral lung tumours. Results. Telomerase activity was detected in 75% of the lung cancer bronchobyopsies, and in 100% in transthoracic needle washings. Conclusions. Measurement of telomerase activity can contribute in fulfilling the diagnosis of lung masses and nodules suspected for lung cancer. (author)

  10. Decay-Accelerating Factor Mitigates Controlled Hemorrhage-Instigated Intestinal and Lung Tissue Damage and Hyperkalemia in Swine

    Science.gov (United States)

    2011-07-01

    glucose , hematocrit (Hct), hemoglobin (Hb), sodium (Na+), potassium (K+), and ionized calcium (iCa2+) using i-STAT cartridges ( Abbott Laboratories...animals were observed for 200 minutes. Blood chemistry and physiological parameters were recorded. Tissue samples from lung and small intestine were...seemingly acceptable medical therapy and surgical intervention.4 The first physiologic response to severe blood loss is activation of the neuroendocrine

  11. Plutonium deposits in lung tissues of Filipinos

    International Nuclear Information System (INIS)

    Natera, E.S.; Palad, L.J.H.; Ignacio, L.M.

    1989-01-01

    This initial report on the plutonium concentration in lungs of Filipino adults is based on four samples. The data obtained suggest that the average of concentration in lungs of Filipinos is similar to that observed in other countries. This could be attributed to fallout resulting from nuclear test explosions conducted by neighboring countries. The result of this study will be useful in initiating the establishment of plutonium burden of Filipinos. (ELC). 2 tabs

  12. [The role of disequilibrium of expression of matrix metalloproteinase-2/9 and their tissue inhibitors in pathogenesis of hyperoxia-induced acute lung injury in mice].

    Science.gov (United States)

    Zhang, Xiang-feng; Zhu, Guang-fa; Liu, Shuang; Foda, Hussein D

    2008-10-01

    To investigate the role of matrix metalloproteinase-2/9 (MMP-2/9) and their tissue inhibitors (TIMP-1/2) in pathogenesis of acute lung injury (ALI) induced by hyperoxia. Seventy-two C57BL/6 mice were randomly divided into normal control group, hyperoxia for 24 hours group, hyperoxia for 48 hours group, and hyperoxia for 72 hours group, with 18 mice in each group. The mice in hyperoxia groups were exposed to >98% oxygen in sealed cages, and the normal control group were placed outside of the cage to breathe room air. At the end of the exposure time the animals were euthanized, the right lung was removed and phosphate buffer solution (PBS) was used to lavage the lung through the endotracheal catheter. The wet/dry weight ratio, broncho-alveolar lavage fluid (BALF) protein content and the volume of pleural fluid were measured, the severity of lung injury was assessed; the expression of MMP-2/9 and TIMP-1/2 mRNA in lung tissue at 24, 48 and 72 hours of hyperoxia were assessed by reverse transcript-polymerase chain reaction (RT-PCR); the amount of MMP-2/9 and TIMP-1/2 protein in lung tissue were measured by enzyme-linked immunosorbent assay (ELISA). Hyperoxia caused ALI as evidenced by the increase in lung wet/dry weight ratio, BALF protein content and the volume of pleural fluid as compared with the normal control group (P<0.05 or P<0.01). RT-PCR study showed increased expression of MMP-2/9 and TIMP-1 mRNA in lung tissues (P<0.05 or P<0.01), and ELISA assay also demonstrated upregulation of MMP-2/9 and an increase in TIMP-1 amount in BALF compared with their normal control group (P<0.05 or P<0.01). The ratios of both MMP-2 mRNA/TIMP-2 mRNA and MMP-2 protein/TIMP-2 protein were all increased in hyperoxia groups as compared with their normal control group (all P<0.01). Hyperoxia causes ALI in mice, and disturbance of MMP-2/TIMP-2 balance plays an important role in the development of hyperoxia-induced ALI in mice.

  13. Method to characterize inorganic particulates in lung tissue biopsies using field emission scanning electron microscopy

    Science.gov (United States)

    Lowers, Heather; Breit, George N.; Strand, Matthew; Pillers, Renee M.; Meeker, Gregory P.; Todorov, Todor I.; Plumlee, Geoffrey S.; Wolf, Ruth E.; Robinson, Maura; Parr, Jane; Miller, Robert J.; Groshong, Steve; Green, Francis; Rose, Cecile

    2018-01-01

    Humans accumulate large numbers of inorganic particles in their lungs over a lifetime. Whether this causes or contributes to debilitating disease over a normal lifespan depends on the type and concentration of the particles. We developed and tested a protocol for in situ characterization of the types and distribution of inorganic particles in biopsied lung tissue from three human groups using field emission scanning electron microscopy (FE-SEM) combined with energy dispersive spectroscopy (EDS). Many distinct particle types were recognized among the 13 000 particles analyzed. Silica, feldspars, clays, titanium dioxides, iron oxides and phosphates were the most common constituents in all samples. Particles were classified into three general groups: endogenous, which form naturally in the body; exogenic particles, natural earth materials; and anthropogenic particles, attributed to industrial sources. These in situ results were compared with those using conventional sodium hypochlorite tissue digestion and particle filtration. With the exception of clays and phosphates, the relative abundances of most common particle types were similar in both approaches. Nonetheless, the digestion/filtration method was determined to alter the texture and relative abundances of some particle types. SEM/EDS analysis of digestion filters could be automated in contrast to the more time intensive in situ analyses.

  14. The association between breast tissue optical content and mammographic density in pre- and post-menopausal women.

    Directory of Open Access Journals (Sweden)

    Kristina M Blackmore

    Full Text Available Mammographic density (MD, associated with higher water and lower fat content in the breast, is strongly related to breast cancer risk. Optical attenuation spectroscopy (OS is a non-imaging method of evaluating breast tissue composition by red and near-infrared light transmitted through the breast that, unlike mammography, does not involve radiation. OS provides information on wavelength dependent light scattering of tissue and on absorption by water, lipid, oxy-, deoxy-hemoglobin. We propose that OS could be an alternative marker of breast cancer risk and that OS breast tissue measures will be associated with MD. In the present analysis, we developed an algorithm to estimate breast tissue composition and light scattering parameters using a spectrally constrained global fitting procedure employing a diffuse light transport model. OS measurements were obtained from 202 pre- and post-menopausal women with normal mammograms. Percent density (PD and dense area (DA were measured using Cumulus. The association between OS tissue composition and PD and DA was analyzed using linear regression adjusted for body mass index. Among pre-menopausal women, lipid content was significantly inversely associated with square root transformed PD (β = -0.05, p = 0.0002 and DA (β = -0.05, p = 0.019; water content was significantly positively associated with PD (β = 0.06, p = 0.008. Tissue oxygen saturation was marginally inversely associated with PD (β = -0.03, p = 0.057 but significantly inversely associated with DA (β = -0.10, p = 0.002. Among post-menopausal women lipid and water content were significantly associated (negatively and positively, respectively with PD (β lipid = -0.08, β water = 0.14, both p<0.0001 and DA (β lipid = -0.10, p<0.0001; β water = 0.11, p = 0.001. The association between OS breast content and PD and DA is consistent with more proliferation in dense tissue of younger women, greater lipid content in low density tissue and higher water

  15. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    Science.gov (United States)

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  16. Dosimetric consequences of planning lung treatments on 4DCT average reconstruction to represent a moving tumour

    International Nuclear Information System (INIS)

    Dunn, L.F.; Taylor, M.L.; Kron, T.; Franich, R.

    2010-01-01

    Full text: Anatomic motion during a radiotherapy treatment is one of the more significant challenges in contemporary radiation therapy. For tumours of the lung, motion due to patient respiration makes both accurate planning and dose delivery difficult. One approach is to use the maximum intensity projection (MIP) obtained from a 40 computed tomography (CT) scan and then use this to determine the treatment volume. The treatment is then planned on a 4DCT average reco struction, rather than assuming the entire ITY has a uniform tumour density. This raises the question: how well does planning on a 'blurred' distribution of density with CT values greater than lung density but less than tumour density match the true case of a tumour moving within lung tissue? The aim of this study was to answer this question, determining the dosimetric impact of using a 4D-CT average reconstruction as the basis for a radiotherapy treatment plan. To achieve this, Monte-Carlo sim ulations were undertaken using GEANT4. The geometry consisted of a tumour (diameter 30 mm) moving with a sinusoidal pattern of amplitude = 20 mm. The tumour's excursion occurs within a lung equivalent volume beyond a chest wall interface. Motion was defined parallel to a 6 MY beam. This was then compared to a single oblate tumour of a magnitude determined by the extremes of the tumour motion. The variable density of the 4DCT average tumour is simulated by a time-weighted average, to achieve the observed density gradient. The generic moving tumour geometry is illustrated in the Figure.

  17. Infection Rate and Tissue Localization of Murine IL-12p40-Producing Monocyte-Derived CD103+ Lung Dendritic Cells during Pulmonary Tuberculosis

    Science.gov (United States)

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965

  18. Infection rate and tissue localization of murine IL-12p40-producing monocyte-derived CD103(+) lung dendritic cells during pulmonary tuberculosis.

    Science.gov (United States)

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103(+) dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40(+) cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype.

  19. Lung tissue remodeling in the acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Souza Alba Barros de

    2003-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is characterized by diffuse alveolar damage, and evolves progressively with three phases: exsudative, fibroproliferative, and fibrotic. In the exudative phase, there are interstitial and alveolar edemas with hyaline membrane. The fibropro­liferative phase is characterized by exudate organization and fibroelastogenesis. There is proliferation of type II pneumocytes to cover the damaged epithelial surface, followed by differentiation into type I pneumocytes. The fibroproliferative phase starts early, and its severity is related to the patient?s prognosis. The alterations observed in the phenotype of the pulmonary parenchyma cells steer the tissue remodeling towards either progressive fibrosis or the restoration of normal alveolar architecture. The fibrotic phase is characterized by abnormal and excessive deposition of extracellular matrix proteins, mainly collagen. The dynamic control of collagen deposition and degradation is regulated by metalloproteinases and their tissular regulators. The deposition of proteoglycans in the extracellular matrix of ARDS patients needs better study. The regulation of extracellular matrix remodeling, in normal conditions or in several pulmonary diseases, such as ARDS, results from a complex mechanism that integrate the transcription of elements that destroy the matrix protein and produce activation/inhibition of several cellular types of lung tissue. This review article will analyze the ECM organization in ARDS, the different pulmonary parenchyma remodeling mechanisms, and the role of cytokines in the regulation of the different matrix components during the remodeling process.

  20. Elastin density: Link between histological and biomechanical properties of vaginal tissue in women with pelvic organ prolapse?

    Science.gov (United States)

    de Landsheere, Laurent; Brieu, Mathias; Blacher, Silvia; Munaut, Carine; Nusgens, Betty; Rubod, Chrystèle; Noel, Agnès; Foidart, Jean-Michel; Nisolle, Michelle; Cosson, Michel

    2016-04-01

    The aim of the study was to correlate histological and biomechanical characteristics of the vaginal wall in women with pelvic organ prolapse (POP). Tissue samples were collected from the anterior [point Ba; POP Questionnaire (POP-Q)] and/or posterior (point Bp; POP-Q) vaginal wall of 15 women who underwent vaginal surgery for POP. Both histological and biomechanical assessments were performed from the same tissue samples in 14 of 15 patients. For histological assessment, the density of collagen and elastin fibers was determined by combining high-resolution virtual imaging and computer-assisted digital image analysis. For biomechanical testing, uniaxial tension tests were performed to evaluate vaginal tissue stiffness at low (C0) and high (C1) deformation rates. Biomechanical testing highlights the hyperelastic behavior of the vaginal wall. At low strains (C0), vaginal tissue appeared stiffer when elastin density was low. We found a statistically significant inverse relationship between C0 and the elastin/collagen ratio (p = 0.048) in the lamina propria. However, at large strain levels (C1), no clear relationship was observed between elastin density or elastin/collagen ratio and stiffness, likely reflecting the large dispersion of the mechanical behavior of the tissue samples. Histological and biomechanical properties of the vaginal wall vary from patient to patient. This study suggests that elastin density deserves consideration as a relevant factor of vaginal stiffness in women with POP.

  1. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    Science.gov (United States)

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of Shear Movement of Lungs

    International Nuclear Information System (INIS)

    Xie Yaoqin; Chao Ming; Xing Lei

    2009-01-01

    Purpose: To report a tissue feature-based image registration strategy with explicit inclusion of the differential motions of thoracic structures. Methods and Materials: The proposed technique started with auto-identification of a number of corresponding points with distinct tissue features. The tissue feature points were found by using the scale-invariant feature transform method. The control point pairs were then sorted into different 'colors' according to the organs in which they resided and used to model the involved organs individually. A thin-plate spline method was used to register a structure characterized by the control points with a given 'color.' The proposed technique was applied to study a digital phantom case and 3 lung and 3 liver cancer patients. Results: For the phantom case, a comparison with the conventional thin-plate spline method showed that the registration accuracy was markedly improved when the differential motions of the lung and chest wall were taken into account. On average, the registration error and standard deviation of the 15 points against the known ground truth were reduced from 3.0 to 0.5 mm and from 1.5 to 0.2 mm, respectively, when the new method was used. A similar level of improvement was achieved for the clinical cases. Conclusion: The results of our study have shown that the segmented deformable approach provides a natural and logical solution to model the discontinuous organ motions and greatly improves the accuracy and robustness of deformable registration.

  3. Improved pulmonary nodule classification utilizing quantitative lung parenchyma features.

    Science.gov (United States)

    Dilger, Samantha K N; Uthoff, Johanna; Judisch, Alexandra; Hammond, Emily; Mott, Sarah L; Smith, Brian J; Newell, John D; Hoffman, Eric A; Sieren, Jessica C

    2015-10-01

    Current computer-aided diagnosis (CAD) models for determining pulmonary nodule malignancy characterize nodule shape, density, and border in computed tomography (CT) data. Analyzing the lung parenchyma surrounding the nodule has been minimally explored. We hypothesize that improved nodule classification is achievable by including features quantified from the surrounding lung tissue. To explore this hypothesis, we have developed expanded quantitative CT feature extraction techniques, including volumetric Laws texture energy measures for the parenchyma and nodule, border descriptors using ray-casting and rubber-band straightening, histogram features characterizing densities, and global lung measurements. Using stepwise forward selection and leave-one-case-out cross-validation, a neural network was used for classification. When applied to 50 nodules (22 malignant and 28 benign) from high-resolution CT scans, 52 features (8 nodule, 39 parenchymal, and 5 global) were statistically significant. Nodule-only features yielded an area under the ROC curve of 0.918 (including nodule size) and 0.872 (excluding nodule size). Performance was improved through inclusion of parenchymal (0.938) and global features (0.932). These results show a trend toward increased performance when the parenchyma is included, coupled with the large number of significant parenchymal features that support our hypothesis: the pulmonary parenchyma is influenced differentially by malignant versus benign nodules, assisting CAD-based nodule characterizations.

  4. Chronic exposure to microcystin-LR affected mitochondrial DNA maintenance and caused pathological changes of lung tissue in mice

    International Nuclear Information System (INIS)

    Li, Xinxiu; Xu, Lizhi; Zhou, Wei; Zhao, Qingya; Wang, Yaping

    2016-01-01

    Microcystin-LR (MC-LR), an important variant of cyanotoxin family, was frequently encountered in the contaminated aquatic environment and taken as a potent hepatotoxin. However, a little was known on the association between the long-term MC-LR exposure and lung damage. In this study, we investigated the changes of the pulmonary histopathology, mitochondrial DNA (mtDNA) integrity and the expression of mtDNA encoded genes in the mice with chronic exposed to MC-LR at different concentrations (1, 5, 10, 20 and 40 μg/L) for 12 months. Our results showed that the long-term and persistent exposure to MC-LR disturbed the balance of redox system, influenced mtDNA stability, changed the expression of mitochondrial genes in the lung cells. Notably, MC-LR exposure influenced the level of inflammatory cytokines and resulted in thickening of the alveolar septa. In conclusion, chronic exposure to MC-LR affected mtDNA maintenance, and caused lung impairment in mice. - Highlights: • A simulated natural exposure to MC-LR caused the lung pathological changes. • The chronic exposure disturbed the redox system balance of lung tissue cells. • The chronic exposure impaired the mtDNA stability and mitochondria function. • The lung was one of the vulnerable organs to MC-LR exposure in mice. - Long-term exposure to MC-LR in drinking water disturbed the balance of redox system, affected mitochondrial DNA maintenance and caused lung impairment in mice.

  5. High-density Lipoproteins and Apolipoprotein A-I: Potential New Players in the Prevention and Treatment of Lung Disease

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Gordon

    2016-09-01

    Full Text Available Apolipoprotein A-I (apoA-I and high-density lipoproteins (HDL mediate reverse cholesterol transport out of cells. Furthermore, HDL has additional protective functions, which include anti-oxidative, anti-inflammatory, anti-apoptotic, and vasoprotective effects. In contrast, HDL can become dysfunctional with a reduction in both cholesterol efflux and anti-inflammatory properties in the setting of disease or the acute phase response. These paradigms are increasingly being recognized to be active in the pulmonary system, where apoA-I and HDL have protective effects in normal lung health, as well as in a variety of disease states, including acute lung injury, asthma, chronic obstructive pulmonary disease, lung cancer, pulmonary arterial hypertension, pulmonary fibrosis, and viral pneumonia. Similar to observations in cardiovascular disease, however, HDL may become dysfunctional and contribute to disease pathogenesis in respiratory disorders. Furthermore, synthetic apoA-I mimetic peptides have been shown to have protective effects in animal models of acute lung injury, asthma, pulmonary hypertension, and influenza pneumonia. These findings provide evidence to support the concept that apoA-I mimetic peptides might be developed into a new treatment that can either prevent or attenuate the manifestations of lung diseases, such as asthma. Thus, the lung is positioned to take a page from the cardiovascular disease playbook and utilize the protective properties of HDL and apoA-I as a novel therapeutic approach.

  6. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    Directory of Open Access Journals (Sweden)

    W. Matthew Leevy

    2013-05-01

    Full Text Available X-ray Computed Tomography (CT is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.

  7. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    Science.gov (United States)

    Wathen, Connor A.; Foje, Nathan; van Avermaete, Tony; Miramontes, Bernadette; Chapaman, Sarah E.; Sasser, Todd A.; Kannan, Raghuraman; Gerstler, Steven; Leevy, W. Matthew

    2013-01-01

    X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site. PMID:23711461

  8. Repeated intratracheal instillation of PM10 induces lipid reshaping in lung parenchyma and in extra-pulmonary tissues.

    Directory of Open Access Journals (Sweden)

    Angela Maria Rizzo

    Full Text Available Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health.

  9. Feasibility of using ‘lung density’ values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients

    International Nuclear Information System (INIS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Iwashita, Yoshiaki; Brown, Brian H; Soma, Kazui

    2015-01-01

    This paper reports on the results of a study which compares lung density values obtained from electrical impedance tomography (EIT), clinical diagnosis and CT values (HU) within a region of interest in the lung. The purpose was to assess the clinical use of lung density estimation using EIT data. In 11 patients supported by a mechanical ventilator, the consistency of regional lung density measurements as estimated by EIT was validated to assess the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities recorded in the supine position between normal lungs and diseased lungs associated with pneumonia, atelectasis and pleural effusion (normal; 240 ± 71.7 kg m"−"3, pneumonia; 306 ± 38.6 kg m"−"3, atelectasis; 497 ± 130 kg m"−"3, pleural effusion; 467 ± 113 kg m"−"3: Steel–Dwass test, p < 0.05). In addition, in order to compare lung density with CT image pixels, the image resolution of CT images, which was originally 512 × 512 pixels, was changed to 16 × 16 pixels to match that of the EIT images. The results of CT and EIT images from five patients in an intensive care unit showed a correlation coefficient of 0.66 ± 0.13 between the CT values (HU) and the lung density values (kg m"−"3) obtained from EIT. These results indicate that it may be possible to obtain a quantitative value for regional lung density using EIT. (paper)

  10. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...

  11. Effect of ghrelin on inflammatory response in lung contusion

    Directory of Open Access Journals (Sweden)

    Berrak Guven

    2013-02-01

    Full Text Available The purpose of this study was to investigate the effects of ghrelin on inflammatory response and tissue damage following trauma-induced acute lung injury. Thirty male wistar albino rats (300–400 g were randomly assigned into three groups: control group (n = 6, lung contusion plus saline (saline-treated, n = 12, and lung contusion plus ghrelin (ghrelin-treated, n = 12. Saline- or ghrelin-treated traumatic rats were sacrificed at two time points (24 and 72 hours after lung contusion. Blood was collected for the analysis of serum adenosine deaminase (ADA. Tissue transforming growth factor-beta 1 (TGF-β1 and matrix metalloproteinase-2 (MMP-2 levels were measured by enzyme-linked immunosorbent assay and histopathological examination was performed on the lung tissue samples. Our results indicated that ghrelin significantly reduced morphologic damages. Serum ADA activities were significantly decreased after lung contusion and this decline started early with ghrelin treatment. TGF-β1 and MMP-2 levels in lung tissue were elevated at 72 hours after lung contusion and treatment with ghrelin significantly increased TGF-β1 level and reduced MMP-2 level. In conclusion, our study demonstrates that acute lung injury initiated proinflammatory responses and ghrelin administration showed an anti-inflammatory effect in lung contusion.

  12. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    International Nuclear Information System (INIS)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L

    2015-01-01

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator

  13. SU-E-T-92: Achieving Desirable Lung Doses in Total Body Irradiation Based On in Vivo Dosimetry and Custom Tissue Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Shiu, A; Zhou, S; Cui, J; Ballas, L [Univ Southern California, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To achieve desirable lung doses in total body irradiation (TBI) based on in vivo dosimetry and custom tissue compensation. Methods: The 15 MV photon beam of a Varian TrueBeam STx linac was used for TBI. Patients were positioned in the lateral decubitus position for AP/PA treatment delivery. Dose was calculated using the midpoint of the separation distance across the patient’s umbilicus. Patients received 200 cGy twice daily for 3 days. The dose rate at the patient’s midplane was approximately 10 cGy/min. Cerrobend blocks with a 5-HVL thickness were used for the primary lung shielding. A custom styrofoam holder for rice-flour filled bags was created based on the lung block cutouts. This was used to provide further lung shielding based on in vivo dose measurements. Lucite plates and rice-flour bags were placed in the head, neck, chest, and lower extremity regions during the treatment to compensate for the beam off-axis output variations. Two patients were included in the study. Patients 1 and 2 received a craniospinal treatment (1080 cGy) and a mediastinum treatment (2520 cGy), respectively, before the TBI. During the TBI nanoDot dosimeters were placed on the patient skin in the forehead, neck, umbilicus, and lung regions for dose monitoring. The doses were readout immediately after the treatment. Based on the readings, fine tuning of the thickness of the rice-flour filled bags was exploited to achieve the desirable lung doses. Results: For both patients the mean lung doses, which took into consideration all treatments, were controlled within 900 +/−10% cGy, as desired. Doses to the forehead, neck, and umbilicus were achieved within +/−10% of the prescribed dose (1200 cGy). Conclusion: A reliable and robust method was developed to achieve desirable lung doses and uniform body dose in TBI based on in vivo dosimetry and custom tissue compensator.

  14. Small cell lung cancer presenting as dermatomyositis: mistaken for single connective tissue disease.

    Science.gov (United States)

    Chao, Guanqun; Fang, Lizheng; Lu, Chongrong; Chen, Zhouwen

    2012-06-01

    Dermatomyositis (DM) is well-known to be associated with several types of malignancy. This case emphasizes the importance of a thorough examination for an underlying cancer, in patients with the symptoms of dermatomyositis. We report the case of a 62-year-old Chinese man who presented with a two-month history of edema of face and neck, together with erythema of the eyelids diagnosed of small cell lung cancer. Initially, it was thought to be single connective tissue disease such as DM. This study highlights the importance of a thorough physical examination when visiting a patient.

  15. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    Science.gov (United States)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  16. Changes in lung morphology and cell number in radiation pneumonitis and fibrosis: a quantitative ultrastructural study

    International Nuclear Information System (INIS)

    Vergara, J.A.; Raymond, U.; Thet, L.A.

    1987-01-01

    We used stereologic-morphometric techniques to obtain a detailed quantitative picture of the changes in lung ultrastructure of rats at 12 and 26 weeks after unilateral thoracic irradiation with 3000 cGy. At 12 weeks post-radiation, the total number type 1 epithelial cells, type 2 epithelial cells and capillary endothelial cells were decreased 50-70%, total type 1 epithelial and capillary surface areas were decreased 55-60%, and the total volume of intracapillary blood was decreased 75%. The interstitial cells and matrix together accounted for more than 9% of the peripheral lung tissue volume including air, compared to 3% in controls. The numerical density of interstitial cells was increased to 3-fold the control value. The numerical density of interstitial cells was increased to 3-fold the control value. Although fibroblasts still comprised the largest interstitial cell subgroup, the numerical density of mast cells was increased over 150-fold and other inflammatory and immune cells were increased to a lesser extent. At 26 weeks post-radiation, the number, volume, and surface area of the type 1 epithelium and capillary endothelium had further decreased to only 5-10% of control values. The total number of type 2 epithelial cells was reduced by 75% but the volume density was actually increased because of a 4-fold increase in the mean cell volume. The interstitial cells and matrix now comprised over 77% of total peripheral lung tissue volume including air as compared to 6% in controls. Mast cells and plasma cells comprised 11% and 19% of all interstitial cells respectively and the densities of these cells were 540 and 180-fold the control value respectively. The relation of these morphometric findings to the results of previous morphologic studies is discussed

  17. Asynchrony in respiratory movements between the pulmonary lobes in patients with COPD: continuous measurement of lung density by 4-dimensional dynamic-ventilation CT

    Directory of Open Access Journals (Sweden)

    Yamashiro T

    2017-07-01

    Full Text Available Tsuneo Yamashiro,1 Hiroshi Moriya,2 Shin Matsuoka,3 Yukihiro Nagatani,4 Maho Tsubakimoto,1 Nanae Tsuchiya,1 Sadayuki Murayama1 On behalf of the ACTIve Study Group 1Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan; 2Department of Radiology, Ohara General Hospital, Fukushima-City, Fukushima, Japan; 3Department of Radiology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; 4Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan Purpose: Four-dimensional dynamic-ventilation CT imaging demonstrates continuous movement of the lung. The aim of this study was to assess the correlation between interlobar synchrony in lung density and spirometric values in COPD patients and smokers, by measuring the continuous changes in lung density during respiration on the dynamic-ventilation CT. Materials and methods: Thirty-two smokers, including ten with COPD, underwent dynamic-ventilation CT during free breathing. CT data were continuously reconstructed every 0.5 sec. Mean lung density (MLD of the five lobes (right upper [RU], right middle [RM], right lower [RL], left upper [LU], and left lower [LL] was continuously measured by commercially available software using a fixed volume of volume of interest which was placed and tracked on a single designated point in each lobe. Concordance between the MLD time curves of six pairs of lung lobes (RU-RL, RU-RM, RM-RL, LU-LL, RU-LU, and RL-LL lobes was expressed by cross-correlation coefficients. The relationship between these cross-correlation coefficients and the forced expiratory volume in one second/forced vital capacity (FEV1.0/FVC values was assessed by Spearman rank correlation analysis. Results: In all six pairs of the pulmonary lobes, the cross-correlation coefficients of the two MLD curves were significantly positively correlated with FEV1.0/FVC (ρ =0.60–0.73, P<0.001. The mean value of the six

  18. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. The

  19. X-ray evaluation of bone tissue density in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Kotlubej, O.V.; Kamenets'kij, M.S.; Tkachenko, G.D.; Momot, N.V.

    1998-01-01

    Densitometry of hand and foot films of 111 patients with rheumatoid arthritis was performed. Twelve patients underwent CT of lumbar vertebra with tomodensitometry followed by analysis of the obtained graphic histograms. Photo densitometry of plain x-ray films and histographic analysis of CT scans allows to perform quantitative evaluation of the bone tissue density in rheumatoid arthritis and to reveal osteoporosis at early stages when x-ray features of the disease are absent

  20. Rapamycin attenuates bleomycin-induced pulmonary fibrosis in rats and the expression of metalloproteinase-9 and tissue inhibitors of metalloproteinase-1 in lung tissue.

    Science.gov (United States)

    Jin, Xiaoguang; Dai, Huaping; Ding, Ke; Xu, Xuefeng; Pang, Baosen; Wang, Chen

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common and devastating form of interstitial lung disease (ILD) in the clinic. There is no effective therapy except for lung transplantation. Rapamycin is an immunosuppressive drug with potent antifibrotic activity. The purpose of this study was to examine the effects of rapamycin on bleomycin-induced pulmonary fibrosis in rats and the relation to the expression of metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Sprague-Dawley rats were treated with intratracheal injection of 0.3 ml of bleomycin (5 mg/kg) in sterile 0.9% saline to make the pulmonary fibrosis model. Rapamycin was given at a dose of 0.5 mg/kg per gavage, beginning one day before bleomycin instillation and once daily until animal sacrifice. Ten rats in each group were sacrificed at 3, 7, 14, 28 and 56 days after bleomycin administration. Alveolitis and pulmonary fibrosis were semi-quantitatively assessed after HE staining and Masson staining under an Olympus BX40 microscope with an IDA-2000 Image Analysis System. Type I and III collagen fibers were identified by Picro-sirius-polarization. Hydroxyproline content in lung tissue was quantified by a colorimetric-based spectrophotometric assay, MMP-9 and TIMP-1 were detected by immunohistochemistry and by realtime quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Bleomycin induced alveolitis and pulmonary fibrosis of rats was inhibited by rapamycin. Significant inhibition of alveolitis and hydroxyproline product were demonstrated when daily administration of rapamycin lasted for at least 14 days. The inhibitory efficacy on pulmonary fibrosis was unremarkable until rapamycin treatment lasted for at least 28 days (P pulmonary fibrosis, which is associated with decreased expression of MMP-9 and TIMP-1.

  1. Perinatal Exposure to Insecticide Methamidophos Suppressed Production of Proinflammatory Cytokines Responding to Virus Infection in Lung Tissues in Mice

    Directory of Open Access Journals (Sweden)

    Wataru Watanabe

    2013-01-01

    Full Text Available Methamidophos, a representative organophosphate insecticide, is regulated because of its severe neurotoxicity, but it is suspected of contaminating agricultural foods in many countries due to illicit use. To reveal unknown effects of methamidophos on human health, we evaluated the developmental immunotoxicity of methamidophos using a respiratory syncytial virus (RSV infection mouse model. Pregnant mice were exposed to methamidophos (10 or 20 ppm in their drinking water from gestation day 10 to weaning on postnatal day 21. Offsprings born to these dams were intranasally infected with RSV. The levels of interleukin-6 (IL-6 and interferon-gamma in the bronchoalveolar lavage fluids after infection were significantly decreased in offspring mice exposed to methamidophos. Treatment with methamidophos did not affect the pulmonary viral titers but suppressed moderately the inflammation of lung tissues of RSV-infected offspring, histopathologically. DNA microarray analysis revealed that gene expression of the cytokines in the lungs of offspring mice exposed to 20 ppm of methamidophos was apparently suppressed compared with the control. Methamidophos did not suppress IL-6 production in RSV-infected J774.1 cell cultures. Thus, exposure of the mother to methamidophos during pregnancy and nursing was suggested to cause an irregular immune response in the lung tissues in the offspring mice.

  2. Proteomic patterns analysis with multivariate calculations as a promising tool for prompt differentiation of early stage lung tissue with cancer and unchanged tissue material

    Directory of Open Access Journals (Sweden)

    Grodzki Tomasz

    2011-03-01

    Full Text Available Abstract Background Lung cancer diagnosis in tissue material with commonly used histological techniques is sometimes inconvenient and in a number of cases leads to ambiguous conclusions. Frequently advanced immunostaining techniques have to be employed, yet they are both time consuming and limited. In this study a proteomic approach is presented which may help provide unambiguous pathologic diagnosis of tissue material. Methods Lung tissue material found to be pathologically changed was prepared to isolate proteome with fast and non selective procedure. Isolated peptides and proteins in ranging from 3.5 to 20 kDa were analysed directly using high resolution mass spectrometer (MALDI-TOF/TOF with sinapic acid as a matrix. Recorded complex spectra of a single run were then analyzed with multivariate statistical analysis algorithms (principle component analysis, classification methods. In the applied protocol we focused on obtaining the spectra richest in protein signals constituting a pattern of change within the sample containing detailed information about its protein composition. Advanced statistical methods were to indicate differences between examined groups. Results Obtained results indicate changes in proteome profiles of changed tissues in comparison to physiologically unchanged material (control group which were reflected in the result of principle component analysis (PCA. Points representing spectra of control group were located in different areas of multidimensional space and were less diffused in comparison to cancer tissues. Three different classification algorithms showed recognition capability of 100% regarding classification of examined material into an appropriate group. Conclusion The application of the presented protocol and method enabled finding pathological changes in tissue material regardless of localization and size of abnormalities in the sample volume. Proteomic profile as a complex, rich in signals spectrum of proteins

  3. Asthmatic inflammatory reaction in the lung tissues of juvenile rats following exposure to cyolane pesticide

    International Nuclear Information System (INIS)

    Nour el din, A.M.; Hassanin, M.M.

    2004-01-01

    The present study was carried out to evaluate the effect of the organophosphorus pesticide cyolane on the tissues of the respiratory system and the pro-inflammatory markers in the serum.The study was carried out on thirty juvenile Sprague Dawley rats. Animals were divided into three groups, one used as control and the other two groups, (Gr.I and Gr.Il) received daily diet contained cyolane equivalent to 1.0 mg/kg b.wt. for 2 and 4 weeks, respectively.Nitric oxide (No), immunoglobulins E(IgE) and G (IgG) were measured in the serum of control and treated rats as an important pro-inflammatory markers.The results revealed that nitric oxide was highly significantly increased in Gr.II (P< 0.001) and significantly increased in Gr.I (P< 0.01).As regards to serum immunoglobulins, the data obtained revealed significant increase in serum total IgE in both treated groups. The IgG, as an anaphylactic antibody, showed significant increase in both groups.Histopathological examination of lung tissue revealed increased inflammatory cells infiltration and congested blood vessels in Gr.I while Gr.II showed massive inflammatory cells infiltration and congestion of blood vessels which became more pronounced. In addition, the hypertrophied muscle fibers were increased in the sub-bronchial epithelium.We concluded that young adolescents and children must advised to avoid exposure to organophosphorus pesticides, even for short time, to prevent asthmatic inflammatory reaction, which by time destroy their lung tissues. Also, the study recommended importance of measuring No, IgE and IgG serum levels as inflammatory markers for early diagnosis and management of asthma

  4. Quantitative computed tomography determined regional lung mechanics in normal nonsmokers, normal smokers and metastatic sarcoma subjects.

    Directory of Open Access Journals (Sweden)

    Jiwoong Choi

    Full Text Available Extra-thoracic tumors send out pilot cells that attach to the pulmonary endothelium. We hypothesized that this could alter regional lung mechanics (tissue stiffening or accumulation of fluid and inflammatory cells through interactions with host cells. We explored this with serial inspiratory computed tomography (CT and image matching to assess regional changes in lung expansion.We retrospectively assessed 44 pairs of two serial CT scans on 21 sarcoma patients: 12 without lung metastases and 9 with lung metastases. For each subject, two or more serial inspiratory clinically-derived CT scans were retrospectively collected. Two research-derived control groups were included: 7 normal nonsmokers and 12 asymptomatic smokers with two inspiratory scans taken the same day or one year apart respectively. We performed image registration for local-to-local matching scans to baseline, and derived local expansion and density changes at an acinar scale. Welch two sample t test was used for comparison between groups. Statistical significance was determined with a p value < 0.05.Lung regions of metastatic sarcoma patients (but not the normal control group demonstrated an increased proportion of normalized lung expansion between the first and second CT. These hyper-expanded regions were associated with, but not limited to, visible metastatic lung lesions. Compared with the normal control group, the percent of increased normalized hyper-expanded lung in sarcoma subjects was significantly increased (p < 0.05. There was also evidence of increased lung "tissue" volume (non-air components in the hyper-expanded regions of the cancer subjects relative to non-hyper-expanded regions. "Tissue" volume increase was present in the hyper-expanded regions of metastatic and non-metastatic sarcoma subjects. This putatively could represent regional inflammation related to the presence of tumor pilot cell-host related interactions.This new quantitative CT (QCT method for linking

  5. Density and SUV Ratios from PET/CT in the Detection of Mediastinal Lymph Node Metastasis in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Tingting SHAO

    2015-03-01

    Full Text Available Background and objective Mediastinal involvement in lung cancer is a highly significant prognostic factor for survival, and accurate staging of the mediastinum will correctly identify patients who will benefit the most from surgery. Positron emission tomography/computed tomography (PET/CT has become the standard imaging modality for the staging of patients with lung cancer. The aim of this study is to investigate 18-fluoro-2-deoxy-glucose (18F-FDG PET/CT imaging in the detection of mediastinal disease in lung cancer. Methods A total of 72 patients newly diagnosed with non-small cell lung cancer (NSCLC who underwent preoperative whole-body 18F-FDG PET/CT were retrospectively included. All patients underwent radical surgery and mediastinal lymph node dissection. Mediastinal disease was histologically confirmed in 45 of 413 lymph nodes. PET/CT doctors analyzed patients’ visual images and evaluated lymph node’s short axis, lymph node’s maximum standardized uptake value (SUVmax, node/aorta density ratio, node/aorta SUV ratio, and other parameters using the histopathological results as the reference standard. The optimal cutoff value for each ratio was determined by receiver operator characteristic curve analysis. Results Using a threshold of 0.9 for density ratio and 1.2 for SUV ratio yielded high accuracy for the detection of mediastinal disease. The lymph node’s short axis, lymph node’s SUVmax, density ratio, and SUV ratio of integrated PET/CT for the accuracy of diagnosing mediastinal lymph node was 95.2%. The diagnostic accuracy of mediastinal lymph node with conventional PET/CT was 89.8%, whereas that of PET/CT comprehensive analysis was 90.8%. Conclusion Node/aorta density ratio and SUV ratio may be complimentary to conventional visual interpretation and SUVmax measurement. The use of lymph node’s short axis, lymph node’s SUVmax, and both ratios in combination is better than either conventional PET/CT analysis or PET

  6. Determination of tissue equivalent materials of a physical 8-year-old phantom for use in computed tomography

    International Nuclear Information System (INIS)

    Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh

    2015-01-01

    This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found. - Highlights: • A methodology to select tissue equivalent materials for use in CT was proposed. • Physical properties of different materials were studied. • TLDs dose and dose distribution were calculated for original and proposed materials. • B-100 as bone, and water as soft tissue are best substitute materials at 80 kVp. • Mass attenuation coefficient is determinant for selecting best tissue substitutes

  7. Estimation of lung tissue doses following exposure to low-LET radiation in the Canadian study of cancer following multiple fluoroscopies

    International Nuclear Information System (INIS)

    Howe, G.R.; Yaffe, M.

    1992-02-01

    Lung tissue doses from exposure to external low-LET radiation have been estimated for each year between 1930 and 1960 for 92,707 tuberculosis patients first treated in Canadian institutions between 1930 and 1952. Many of these patients received multiple chest fluoroscopies together with treatment by artificial pneumothorax, and thus accumulated doses up to 15.7 grays. The estimated doses have been used in a statistical analysis of lung cancer mortality between 1950 and 1987 occurring among 64,698 patients known to be alive at the start of 1950, and followed by linkage to the Canadian national mortality data base. There were substantial variations in the total cumulative lung tissue dose received by the cohort, with 2,490 individuals having doses in excess of 1.7 grays. A total of 1,156 lung cancer deaths was observed in the cohort, and these have been used to estimate relative risks. The most appropriate risk model appears to be a simple linear relative risk function, with an excess relative risk coefficient of 0.089 for an absorbed dose of 1 gray. This contrasts with estimates of relative risk based on the atomic bomb survivors study, for which the excess relative risk coefficient for males 20 years after the first exposure is estimated to be 0.64. The difference is statistically significant. It is postulated that fractionation and dose rate effectiveness factors may account for some of the discrepancy. (Modified author abstract) (14 refs., 20 tabs.)

  8. SU-D-BRC-04: Development of Proton Tissue Equivalent Materials for Calibration and Dosimetry Studies

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, E [Gainesville, FL (United States); Flampouri, S [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Lipnharski, I [University of Florida, Gainesville, FL (United States); Bolch, W [University Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: To develop new proton tissue equivalent materials (PTEM), urethane and fiberglass based, for proton therapy calibration and dosimetry studies. Existing tissue equivalent plastics are applicable only for x-rays because they focus on matching mass attenuation coefficients. This study aims to create new plastics that match mass stopping powers for proton therapy applications instead. Methods: New PTEMs were constructed using urethane and fiberglass resin materials for soft, fat, bone, and lung tissue. The stoichiometric analysis method was first used to determine the elemental composition of each unknown constituent. New initial formulae were then developed for each of the 4 PTEMs using the new elemental compositions and various additives. Samples of each plastic were then created and exposed to a well defined proton beam at the UF Health Proton Therapy Institute (UFHPTI) to validate its mass stopping power. Results: The stoichiometric analysis method revealed the elemental composition of the 3 components used in creating the PTEMs. These urethane and fiberglass based resins were combined with additives such as calcium carbonate, aluminum hydroxide, and phenolic micro spheres to achieve the desired mass stopping powers and densities. Validation at the UFHPTI revealed adjustments had to be made to the formulae, but the plastics eventually had the desired properties after a few iterations. The mass stopping power, density, and Hounsfield Unit of each of the 4 PTEMs were within acceptable tolerances. Conclusion: Four proton tissue equivalent plastics were developed: soft, fat, bone, and lung tissue. These plastics match each of the corresponding tissue’s mass stopping power, density, and Hounsfield Unit, meaning they are truly tissue equivalent for proton therapy applications. They can now be used to calibrate proton therapy treatment planning systems, improve range uncertainties, validate proton therapy Monte Carlo simulations, and assess in-field and out

  9. Concentrations of metallic elements in kidney, liver, and lung tissue of Indo-Pacific bottlenose dolphin Tursiops aduncus from coastal waters of Zanzibar, Tanzania.

    Science.gov (United States)

    Mapunda, Edgar C; Othman, Othman C; Akwilapo, Leonard D; Bouwman, Hindrik; Mwevura, Haji

    2017-09-15

    Concentrations of metallic elements in kidney, liver and lung tissues of Indo-Pacific bottlenose dolphins Tursiops aduncus from coastal waters of Zanzibar were determined using inductively coupled plasma - optical emission spectroscopy. Cadmium, chromium, copper, and zinc were quantifiable in all tissues at concentration ranges of 0.10-150, 0.08-3.2, 1.1-88 and 14-210μg/g dry mass, respectively. Copper and zinc was significantly higher in liver, and females had significantly higher Cd in liver, and chromium in lung. Generally, T. aduncus dolphins from coastal waters around Zanzibar carry low concentrations of metals compared with dolphins from other areas. Cadmium increased significantly with age in kidney and lung. Copper decreased significantly with age in liver, probably due to foetal metallothionein. This study supplied baseline data against which future trends in marine mammals in the Indian Ocean, the world's third largest, can be assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In search of the relevant lung dose

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1982-12-01

    Researchers have traditionally been inconsistent in their methods of determining and reporting dose to the lung from inhaled radionuclides - a situation which has led to difficulties in later comparing results and deriving dose-response relationships. The dose quantities which at present are most generally assumed to be related to risk of stochastic radiation effects (such as lung cancer) are (1) mean dose equivalent to the bronchial epithelium basal cell layer for radon daughters, and (2) mean dose equivalent to the whole lung (including tracheobronchial lymph nodes) for all other radionuclides. The average radiation dose is calculated by assuming that the energy is homogeneously impared to the entire tissue mass. However, the actual dose received by a cell which becomes transformed or tumorigenic is likely to be very much different than the smear dose to the entire organ. This realization has led to further study of stochastic energy deposition processes in single cells or cell nuclei from internal emitters. The end product of the stochastic approach to dosimetry, sometimes called microdosimetry, is a probability density in specific energy. For alpha-emitting radionuclides in the lung, a concept that may be more important than dose is the probability that a cell is hit by an alpha particle

  11. [Effect of oxidative stress-associated damage to the lung tissue caused by different body mass index in the rat models].

    Science.gov (United States)

    Li, X Y; Zhang, X J; Zhao, J H; Xu, J Y

    2016-12-12

    Objective: To investigate the influence of different diets on serum protein expression levels of 4-hydroxynonenal (4-HNE), thioredoxin (Trx), thioredoxin reductase (TrxR) and the activities of Trx and TrxR, and to explore the effect of damage to the lung tissue and the underlying mechanisms of different body mass index caused by different diets in the rat models . Method: Healthy clean male SD rats were randomly divided into normal group, emaciation group and fat group, which were raised by different diets for 6 months.Then the rats were sacrificed and the serum and lung tissue were prepared. The levels of 4-HNE, Trx and TrxR in peripheral blood were quantitatively analyzed by enzyme-linked immunosorbent assay(ELISA), and the activities of Trx and TrxR were measured by chemical methods. Results: Compared with the normal group, the lung tissue had more apparent emphysema in the emaciation and the fat groups under light microscope, and more inflammatory cell infiltration in alveolar septum was observed in the fat group.The levels of 4-HNE in the fat group[(24.7±8.7)mg/L]was significantly higher than that in the normal group[(15.4±4.7)mg/L, P 0.05)in the levels of 4-HNE between the emaciation and the normal groups. The levels of TrxR in the emaciation group[(7.7±1.4)μg/ml]was significantly higher than that in the normal and the fat groups[(6.2±1.1), (4.9±1.4)μg/ml, all P 0.05). The activity of Trx in the emaciation group[(32.4±8.5)×10 -3 A ·min -1 ·mg -1 ]was significantly higher than that in the normal group[(19.6±3.3)×10 -3 A ·min -1 ·mg -1 ]and the fat group[(11.3±7.5)×10 -3 A ·min -1 ·mg -1 , all P 0.05). Conclusion: Both high BMI and low BMI can affect the oxidative stress of the body, resulting in increased oxidants and decreased antioxidants, and can cause damage to the lung tissue in the rat models.

  12. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study

    Directory of Open Access Journals (Sweden)

    Yi Eunhee S

    2010-04-01

    Full Text Available Abstract Background Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD. Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD. Methods The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells, and CD1a+ cells (Langerhans cells. The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE, and dendritic cells extracted from mice chronically exposed to cigarette smoke. Results In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2% exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1, and B cell lymphoma leukemia-x(L (Bcl-xL, predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not

  13. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer

    International Nuclear Information System (INIS)

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Mulligan, Matthew; Battista, Jerry J

    2013-01-01

    Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons ( 5 × 5 cm 2 ) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ∼1 cm). For the phantom, square fields of 1 × 1 cm 2 , 3 × 3 cm 2 , or 5 × 5 cm 2 were applied. However, in the patient, 3 × 1 cm 2 , 3 × 2 cm 2 , 3 × 2.5 cm 2 , or 3 × 3 cm 2 field sizes were used in simulations to assure target coverage in the superior–inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was generated

  14. An experimental study on the radiation-induced injury of the rabbit lung: Correlation of soft-tissue radiograph and high- resolution CT findings with pathologic findings

    International Nuclear Information System (INIS)

    Lee, Ki Nam; Nam, Kyung Jin; Park, Byeoung Ho; Jeong, Jin Sook; Lee, Hyung Sik

    1994-01-01

    To describe soft-tissue radiographic and high-resolution CT findings of radiation-induced lung injury of rabbit over time and to correlate them with pathologic findings. 15 rabbits were irradiated in the right lung with one fracture of 2000 cGy. After 4, 6, 12, 20, 24 weeks 3 rabbits in each group were sacrificed and soft-tissue radiographs and high-resolution CT of their lung tissue were obtained. Radiological findings were correlated with pathologic findings. On soft-tissue radiogram, radiation pneumonitis shown as consolidation with air- bronchogram occurred in 3 cases after 6 weeks , and in 1 case after 12 weeks of irradiation. In addition, pneumonic consolidation with adjacent pleural contraction was seen in 2 cases after 12 weeks of irradiation. Fibrotic changes indicated by decreased volume occurred after 20 weeks and combined bronchiectatic change and bronchial wall thickening appeared after 20 weeks(N=1), and 24 weeks(N=3). HRCT findings of radiation pneumonitis were homogeneous, increased attention after 4 weeks(N=3), 6 and 12 weeks(each N=1), patchy consolidation after 6 and 12 weeks(each N=2), discrete consolidation after 12, 20 and 24 weeks(each N=1) and solid consolidation after 20 and 24 weeks(each N=2). Pathologically radiation pneumonitis and pulmonary congestion were seen after 4 and 6 weeks. After 6 weeks, collagen and reticulin fibers were detected along alveolar wall. Mixed radiation pneumonitis and fibrosis were detected after 12 weeks. 20 weeks after irradiation, fibrosis was well defined in interstitium and in 24 weeks, decreased number of alveoli and thickening of bronchial wall were defined. Radiation pneumonitis was provoked 4 weeks after irradiation on rabbit lung and progressed into radiation fibrosis 20 weeks after irradiation on soft-tissue radiographs and high-resolution CT. High-resolution CT is more precise in detecting early radiation pneumonitis and detailed pathologic findings

  15. Autofluorescence Imaging and Spectroscopy of Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mengyan Wang

    2016-12-01

    Full Text Available Lung cancer is one of the most common cancers, with high mortality rate worldwide. Autofluorescence imaging and spectroscopy is a non-invasive, label-free, real-time technique for cancer detection. In this study, lung tissue sections excised from patients were detected by laser scan confocal microscopy and spectroscopy. The autofluorescence images demonstrated the cellular morphology and tissue structure, as well as the pathology of stained images. Based on the spectra study, it was found that the majority of the patients showed discriminating fluorescence in tumor tissues from normal tissues. Therefore, autofluorescence imaging and spectroscopy may be a potential method for aiding the diagnosis of lung cancer.

  16. The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model.

    Science.gov (United States)

    Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F

    2017-12-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.

  17. Intercomparison of JAERI Torso Phantom lung sets

    International Nuclear Information System (INIS)

    Kramer, Gary H.; Hauck, Barry M.

    2000-01-01

    During the course of an IAEA sponsored In Vivo intercomparison using the JAERI phantom the Human Monitoring Laboratory was able to intercompare thirteen lung sets made by three suppliers. One set consisted of sliced lungs with planar inserts containing different radionuclides. The others consisted of whole lung sets with the activity homogeneously distributed throughout the tissue substitute material. Radionuclides in the study were: natural uranium, 3% enriched uranium, 241 Am, 238 Pu, 239 Pu, 152 Eu, and 232 Th Except for the 241 Am (59.5 keV) and occasionally one of the 232 Th (209 keV) photopeaks, the lung sets that had radioactivity homogeneously distributed throughout the tissue equivalent lung tissue material showed good agreement. The 241 Am lung set gave a counting efficiency that appeared 25% too high for all overlay plate configurations. This was observed by other participants. It exemplifies that the manufacture of tissue substitute lung sets is still something of a black art. Despite all precautions, this lung set is either inhomogeneous or has had the wrong activity added. Heterogeneity can lead to an error in the activity estimate of a factor of three if the activity was severely localised due to improper mixing. A factor of 1.25, which appears to be the discrepancy, could easily be explained in this way. It will not be known for some time, however, what the true reason is as the participants are still waiting for the destructive analysis of this lung set to determine the 'true' activity. The sliced lungs ( 241 Am, 152 Eu, and U-nat) manufactured by the Human Monitoring Laboratory are in excellent agreement with the other lung sets. The advantages of sliced lung sets and planar sources are manifold. Activity can be distributed in a known and reproducible manner to mimic either a homogeneous or heterogeneous distribution in the lung. Short lived radionuclides can be used. Cost is much less than purchasing or manufacturing lung sets that have the

  18. Protective mechanical ventilation does not exacerbate lung function impairment or lung inflammation following influenza A infection.

    Science.gov (United States)

    Zosky, Graeme R; Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D

    2009-11-01

    The degree to which mechanical ventilation induces ventilator-associated lung injury is dependent on the initial acute lung injury (ALI). Viral-induced ALI is poorly studied, and this study aimed to determine whether ALI induced by a clinically relevant infection is exacerbated by protective mechanical ventilation. Adult female BALB/c mice were inoculated with 10(4.5) plaque-forming units of influenza A/Mem/1/71 in 50 microl of medium or medium alone. This study used a protective ventilation strategy, whereby mice were anesthetized, tracheostomized, and mechanically ventilated for 2 h. Lung mechanics were measured periodically throughout the ventilation period using a modification of the forced oscillation technique to obtain measures of airway resistance and coefficients of tissue damping and tissue elastance. Thoracic gas volume was measured and used to obtain specific airway resistance, tissue damping, and tissue elastance. At the end of the ventilation period, a bronchoalveolar lavage sample was collected to measure inflammatory cells, macrophage inflammatory protein-2, IL-6, TNF-alpha, and protein leak. Influenza infection caused significant increases in inflammatory cells, protein leak, and deterioration in lung mechanics that were not exacerbated by mechanical ventilation, in contrast to previous studies using bacterial and mouse-specific viral infection. This study highlighted the importance of type and severity of lung injury in determining outcome following mechanical ventilation.

  19. Bone Density, Microarchitecture, and Tissue Quality Long-term After Kidney Transplant.

    Science.gov (United States)

    Pérez-Sáez, María José; Herrera, Sabina; Prieto-Alhambra, Daniel; Nogués, Xavier; Vera, María; Redondo-Pachón, Dolores; Mir, Marisa; Güerri, Roberto; Crespo, Marta; Díez-Pérez, Adolfo; Pascual, Julio

    2017-06-01

    Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is used to assess bone health in kidney transplant recipients (KTR). Trabecular bone score and in vivo microindentation are novel techniques that directly measure trabecular microarchitecture and mechanical properties of bone at a tissue level and independently predict fracture risk. We tested the bone status of long-term KTR using all 3 techniques. Cross-sectional study including 40 KTR with more than 10 years of follow-up and 94 healthy nontransplanted subjects as controls. Bone mineral density was measured at lumbar spine and the hip. Trabecular bone score was measured by specific software on the dual-energy x-ray absorptiometry scans of lumbar spine in 39 KTR and 77 controls. Microindentation was performed at the anterior tibial face with a reference-point indenter device. Bone measurements were standardized as percentage of a reference value, expressed as bone material strength index (BMSi) units. Multivariable (age, sex, and body mass index-adjusted) linear regression models were fitted to study the association between KTR and BMD/BMSi/trabecular bone score. Bone mineral density was lower at lumbar spine (0.925 ± 0.15 vs 0.982 ± 0.14; P = 0.025), total hip (0.792 ± 0.14 vs 0.902 ± 0.13; P bone score was borderline lower (1.21 ± 0.14 vs 1.3 ± 0.15; adjusted P = 0.072) in KTR. Despite persistent decrease in BMD, trabecular microarchitecture and tissue quality remain normal in long-term KTR, suggesting important recovery of bone health.

  20. Dose-dependent induction of transforming growth factor β (TGF-β) in the lung tissue of fibrosis-prone mice after thoracic irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Uthe, Daniela; Schmid, Kurt W.; Richter, Klaus D.; Wessel, Jan; Schuck, Andreas; Willich, Norman; Ruebe, Christian

    2000-01-01

    Purpose: The lung is the major dose-limiting organ for radiotherapy of cancer in the thoracic region. The pathogenesis of radiation-induced lung injury at the molecular level is still unclear. Immediate cellular damage after irradiation is supposed to result in cytokine-mediated multicellular interactions with induction and progression of fibrotic tissue reactions. The purpose of this investigation was to evaluate the acute and long-term effects of radiation on the gene expression of transforming growth factor beta (TGF-β) in a model of lung injury using fibrosis-sensitive C57BL/6 mice. Methods and Materials: The thoraces of C57BL/6 mice were irradiated with 6 and 12 Gy, respectively. Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 3, 6, 12, 24, 48, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation). The lung tissue from three different mice per dosage and time point was analyzed by a combination of polymerase chain reaction (PCR), immunohistochemistry, and light microscopy. The mRNA expression of TGF-β was quantified by competitive reverse transcriptase/polymerase chain reaction (RT-PCR); the cellular origin of the TGF-β protein was identified by immunohistochemical staining (alkaline phosphatase-anti-alkaline phosphatase [APAAP]). The cytokine expression on mRNA and protein level was correlated with the histopathological alterations. Results: Following thoracic irradiation with a single dose of 12 Gy, radiation-induced TGF-β release in lung tissue was appreciable already within the first hours (1, 3, and 6 hours postirradiation) and reached a significant increase after 12 hours; subsequently (48 hours, 72 hours, and 1 week postirradiation) the TGF-β expression declined to basal levels. At the beginning of the pneumonic phase, irradiation-mediated stimulation of TGF-β release reached

  1. Automatic method for selective enhancement of different tissue densities at digital chest radiography

    International Nuclear Information System (INIS)

    McNitt-Gray, M.F.; Taira, R.K.; Eldredge, S.L.; Razavi, M.

    1991-01-01

    This paper reports that digital chest radiographs often are too bright and/or lack contrast when viewed on a video display. The authors have developed a method that can automatically provide a series of look-up tables that selectively enhance the radiographically soft or dense tissues on a digital chest radiograph. This reduces viewer interaction and improves displayed image quality. On the basis of a histogram analysis, gray-level ranges are approximated for the patient background, radiographically soft tissues, and radiographically dense tissues. A series of look-up tables is automatically created by varying the contrast in each range to achieve a level of enhancement for a selected tissue range. This is repeated for differing amounts of enhancement and for each tissue range. This allows the viewer to interactively select a tissue density range and degree of enhancement at the time of display via precalculated look-up tables. Preclinical trials in pediatric radiology using computed radiography images show that this method reduces viewer interaction and improves or maintains the displayed image quality

  2. Multiple image x-radiography for functional lung imaging

    Science.gov (United States)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  3. Nucleic Acid Amplification Testing and Sequencing Combined with Acid-Fast Staining in Needle Biopsy Lung Tissues for the Diagnosis of Smear-Negative Pulmonary Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Faming Jiang

    Full Text Available Smear-negative pulmonary tuberculosis (PTB is common and difficult to diagnose. In this study, we investigated the diagnostic value of nucleic acid amplification testing and sequencing combined with acid-fast bacteria (AFB staining of needle biopsy lung tissues for patients with suspected smear-negative PTB.Patients with suspected smear-negative PTB who underwent percutaneous transthoracic needle biopsy between May 1, 2012, and June 30, 2015, were enrolled in this retrospective study. Patients with AFB in sputum smears were excluded. All lung biopsy specimens were fixed in formalin, embedded in paraffin, and subjected to acid-fast staining and tuberculous polymerase chain reaction (TB-PCR. For patients with positive AFB and negative TB-PCR results in lung tissues, probe assays and 16S rRNA sequencing were used for identification of nontuberculous mycobacteria (NTM. The sensitivity, specificity, positive predictive value (PPV, negative predictive value (NPV, and diagnostic accuracy of PCR and AFB staining were calculated separately and in combination.Among the 220 eligible patients, 133 were diagnosed with TB (men/women: 76/57; age range: 17-80 years, confirmed TB: 9, probable TB: 124. Forty-eight patients who were diagnosed with other specific diseases were assigned as negative controls, and 39 patients with indeterminate final diagnosis were excluded from statistical analysis. The sensitivity, specificity, PPV, NPV, and accuracy of histological AFB (HAFB for the diagnosis of smear-negative were 61.7% (82/133, 100% (48/48, 100% (82/82, 48.5% (48/181, and 71.8% (130/181, respectively. The sensitivity, specificity, PPV, and NPV of histological PCR were 89.5% (119/133, 95.8% (46/48, 98.3% (119/121, and 76.7% (46/60, respectively, demonstrating that histological PCR had significantly higher accuracy (91.2% [165/181] than histological acid-fast staining (71.8% [130/181], P < 0.001. Parallel testing of histological AFB staining and PCR showed the

  4. Histological evaluation of lung cancer with T2-weighted magnetic resonance images

    International Nuclear Information System (INIS)

    Ohta, Takashi; Matsuura, Yoshifumi; Shioya, Sumie; Ohta, Yasuyo

    1995-01-01

    We investigated the differences in signal intensity of lung cancer tissue and non-cancerous lung tissues on T 2 -weighted magnetic resonance (MR) images. MR images were obtained from patients with squamous cell carcinoma (n=6), adenocarcinoma (n=5), small cell carcinoma (n=5), and large cell carcinoma (n=1). To compare the MR signal intensity between tissues, we calculated the signal intensity ratios for tumor/skeletal muscle and lung/skeletal muscle. The MR signal intensity for each tissue was measured with a densitometer and T 2 -weighted MR images with a similar window and a center. The value of the signal intensity ratio for squamous cell carcinoma (3.26±0.76) was greater than those for adenocarcinoma (1.99±0.50, p<0.05), small cell carcinoma (2.35±0.60), large cell carcinoma (2.46), and non-cancerous lung tissues (1.70±0.68, p<0.02). The values of the MR signal intensity ratio for non-cancerous lung tissues were 2.00 for a collapsed lung, 0.93 for a fibrotic lung, and 2.18 for a fibrotic lung with obstructive pneumonia. The results suggest that the MR signal intensity ratio for pathologic tissues/normal skeletal muscle can be a useful indicator for qualitative and quantitative MR imaging diagnosis. (author)

  5. Uncovering growth-suppressive MicroRNAs in lung cancer

    DEFF Research Database (Denmark)

    Liu, Xi; Sempere, Lorenzo F; Galimberti, Fabrizio

    2009-01-01

    PURPOSE: MicroRNA (miRNA) expression profiles improve classification, diagnosis, and prognostic information of malignancies, including lung cancer. This study uncovered unique growth-suppressive miRNAs in lung cancer. EXPERIMENTAL DESIGN: miRNA arrays were done on normal lung tissues...... and adenocarcinomas from wild-type and proteasome degradation-resistant cyclin E transgenic mice to reveal repressed miRNAs in lung cancer. Real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays validated these findings. Lung cancer cell lines were derived from each......-malignant human lung tissue bank. RESULTS: miR-34c, miR-145, and miR-142-5p were repressed in transgenic lung cancers. Findings were confirmed by real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays. Similar miRNA profiles occurred in human normal versus malignant lung...

  6. Dosimetric verification of small fields in the lung using lung-equivalent polymer gel and Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Nahideh Gharehaghaji

    2018-01-01

    Conclusion: Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.

  7. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    Science.gov (United States)

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non

  8. Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT

    International Nuclear Information System (INIS)

    Zheng, Dandan; Zhu, Xiaofeng; Zhang, Qinghui; Liang, Xiaoying; Zhen, Weining; Lin, Chi; Verma, Vivek; Wang, Shuo; Wahl, Andrew; Lei, Yu; Zhou, Sumin; Zhang, Chi

    2016-01-01

    A challenge preventing routine clinical implementation of Monte Carlo (MC)-based lung SBRT is the difficulty of reinterpreting historical outcome data calculated with inaccurate dose algorithms, because the target dose was found to decrease to varying degrees when recalculated with MC. The large variability was previously found to be affected by factors such as tumour size, location, and lung density, usually through sub-group comparisons. We hereby conducted a pilot study to systematically and quantitatively analyze these patient factors and explore accurate target dose conversion models, so that large-scale historical outcome data can be correlated with more accurate MC dose without recalculation. Twenty-one patients that underwent SBRT for early-stage lung cancer were replanned with 6MV 360° dynamic conformal arcs using pencil-beam (PB) and recalculated with MC. The percent D95 difference (PB-MC) was calculated for the PTV and GTV. Using single linear regression, this difference was correlated with the following quantitative patient indices: maximum tumour diameter (MaxD); PTV and GTV volumes; minimum distance from tumour to soft tissue (dmin); and mean density and standard deviation of the PTV, GTV, PTV margin, lung, and 2 mm, 15 mm, 50 mm shells outside the PTV. Multiple linear regression and artificial neural network (ANN) were employed to model multiple factors and improve dose conversion accuracy. Single linear regression with PTV D95 deficiency identified the strongest correlation on mean-density (location) indices, weaker on lung density, and the weakest on size indices, with the following R 2 values in decreasing orders: shell2mm (0.71), PTV (0.68), PTV margin (0.65), shell15mm (0.62), shell50mm (0.49), lung (0.40), dmin (0.22), GTV (0.19), MaxD (0.17), PTV volume (0.15), and GTV volume (0.08). A multiple linear regression model yielded the significance factor of 3.0E-7 using two independent features: mean density of shell2mm (P = 1.6E-7) and PTV volume

  9. MO-F-CAMPUS-J-04: Tissue Segmentation-Based MR Electron Density Mapping Method for MR-Only Radiation Treatment Planning of Brain

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Lee, Y [Sunnybrook Odette Cancer Centre, Toronto, Ontario (Canada); Ruschin, M [Odette Cancer Centre, Toronto, ON (Canada); Karam, I [Sunnybrook Odette Cancer Center, Toronto, Ontario (Canada); Sahgal, A [University of Toronto, Toronto, ON (Canada)

    2015-06-15

    Purpose: Automatically derive electron density of tissues using MR images and generate a pseudo-CT for MR-only treatment planning of brain tumours. Methods: 20 stereotactic radiosurgery (SRS) patients’ T1-weighted MR images and CT images were retrospectively acquired. First, a semi-automated tissue segmentation algorithm was developed to differentiate tissues with similar MR intensities and large differences in electron densities. The method started with approximately 12 slices of manually contoured spatial regions containing sinuses and airways, then air, bone, brain, cerebrospinal fluid (CSF) and eyes were automatically segmented using edge detection and anatomical information including location, shape, tissue uniformity and relative intensity distribution. Next, soft tissues - muscle and fat were segmented based on their relative intensity histogram. Finally, intensities of voxels in each segmented tissue were mapped into their electron density range to generate pseudo-CT by linearly fitting their relative intensity histograms. Co-registered CT was used as a ground truth. The bone segmentations of pseudo-CT were compared with those of co-registered CT obtained by using a 300HU threshold. The average distances between voxels on external edges of the skull of pseudo-CT and CT in three axial, coronal and sagittal slices with the largest width of skull were calculated. The mean absolute electron density (in Hounsfield unit) difference of voxels in each segmented tissues was calculated. Results: The average of distances between voxels on external skull from pseudo-CT and CT were 0.6±1.1mm (mean±1SD). The mean absolute electron density differences for bone, brain, CSF, muscle and fat are 78±114 HU, and 21±8 HU, 14±29 HU, 57±37 HU, and 31±63 HU, respectively. Conclusion: The semi-automated MR electron density mapping technique was developed using T1-weighted MR images. The generated pseudo-CT is comparable to that of CT in terms of anatomical position of

  10. Characteristic patterns in the fibrotic lung. Comparing idiopathic pulmonary fibrosis with chronic lung allograft dysfunction.

    Science.gov (United States)

    Fernandez, Isis E; Heinzelmann, Katharina; Verleden, Stijn; Eickelberg, Oliver

    2015-03-01

    Tissue fibrosis, a major cause of death worldwide, leads to significant organ dysfunction in any organ of the human body. In the lung, fibrosis critically impairs gas exchange, tissue oxygenation, and immune function. Idiopathic pulmonary fibrosis (IPF) is the most detrimental and lethal fibrotic disease of the lung, with an estimated median survival of 50% after 3-5 years. Lung transplantation currently remains the only therapeutic alternative for IPF and other end-stage pulmonary disorders. Posttransplant lung function, however, is compromised by short- and long-term complications, most importantly chronic lung allograft dysfunction (CLAD). CLAD affects up to 50% of all transplanted lungs after 5 years, and is characterized by small airway obstruction with pronounced epithelial injury, aberrant wound healing, and subepithelial and interstitial fibrosis. Intriguingly, the mechanisms leading to the fibrotic processes in the engrafted lung exhibit striking similarities to those in IPF; therefore, antifibrotic therapies may contribute to increased graft function and survival in CLAD. In this review, we focus on these common fibrosis-related mechanisms in IPF and CLAD, comparing and contrasting clinical phenotypes, the mechanisms of fibrogenesis, and biomarkers to monitor, predict, or prognosticate disease status.

  11. SU-F-J-162: Is Bulky Electron Density Assignment Appropriatefor MRI-Only Based Treatment Planning for Lung Cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Prior, P; Chen, X; Johnstone, C; Gore, E; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: To assess the appropriateness of bulky electron density assisment for MRI-only treatment planning for lung cancer via comparing dosimetric difference between MRI- and CT-based plans. Methods: Planning 4DCTs acquired for six representative lung cancer patients were used to generate CT-based IMRT plans. To avoid the effect of anatomic difference between CT and MRI, MRI-based plans were generated using CTs by forcing the relative electron density (rED) of organ specific values from ICRU report 46 and using the mean rED value of the internal target volume (ITV) of the patient for the ITV. Both CT and “MRI” plans were generated using a research planning system (Monaco, Elekta) employing Monte Carlo dose calculation the following dose-volume-parameters (DVPs): D99 – dose delivered to 99% of the ITV/PTV volume; D95; D5; D1; Vpd –volume receiving the prescription dose; V5 – volume of normal lung irradiated > 5 Gy; and V20. The percent point difference and dose difference was used for comparison for Vpd-V5-V20 and D99-D1, respectively. Four additional plans per patient were calculated with rEDITV = 0.6 and 1.0 and rEDlung = 0.1 and 0.5. Results: Noticeable differences in the ITV and PTV point doses and DVPs were observed. Variations in Vpd ranged from 0.0–6.4% and 0.32–18.3% for the ITV and PTV, respectively. The ITV and PTV variations in D99, D95, D5 and D1 were 0.15–3.2 Gy. The normal lung V5 & V20 variations were no larger than 1.9%. In some instances, varying the rEDITV between rEDmean, 0.6 and 1.0 resulted in D95 increases ranging from 3.9–6.3%. Uniform rED assignment on normal lung affected DVPs of ITV and PTV by 4.0–9.8% and 0.3–19.6%, respectively. Conclusion: The commonly-used uniform rED assignment in MRI-only based planning may not be appropriate for lung-cancer. A voxel based method, e.g. synthetic CT generated from MRI data, is required. This work was partially funded by Elekta, Inc.

  12. Dose to level I and II axillary lymph nodes and lung by tangential field radiation in patients undergoing postmastectomy radiation with tissue expander reconstruction

    International Nuclear Information System (INIS)

    Russo, James K; Armeson, Kent E; Rhome, Ryan; Spanos, Michele; Harper, Jennifer L

    2011-01-01

    To define the dosimetric coverage of level I/II axillary volumes and the lung volume irradiated in postmastectomy radiotherapy (PMRT) following tissue expander placement. Twenty-three patients were identified who had undergone postmastectomy radiotherapy with tangent only fields. All patients had pre-radiation tissue expander placement and expansion. Thirteen patients had bilateral expander reconstruction. The level I/II axillary volumes were contoured using the RTOG contouring atlas. The patient-specific variables of expander volume, superior-to-inferior location of expander, distance between expanders, expander angle and axillary volume were analyzed to determine their relationship to the axillary volume and lung volume dose. The mean coverage of the level I/II axillary volume by the 95% isodose line (V D95% ) was 23.9% (range 0.3 - 65.4%). The mean Ipsilateral Lung V D50% was 8.8% (2.2-20.9). Ipsilateral and contralateral expander volume correlated to Axillary V D95% in patients with bilateral reconstruction (p = 0.01 and 0.006, respectively) but not those with ipsilateral only reconstruction (p = 0.60). Ipsilateral Lung V D50% correlated with angle of the expander from midline (p = 0.05). In patients undergoing PMRT with tissue expanders, incidental doses delivered by tangents to the axilla, as defined by the RTOG contouring atlas, do not provide adequate coverage. The posterior-superior region of level I and II is the region most commonly underdosed. Axillary volume coverage increased with increasing expander volumes in patients with bilateral reconstruction. Lung dose increased with increasing expander angle from midline. This information should be considered both when placing expanders and when designing PMRT tangent only treatment plans by contouring and targeting the axilla volume when axillary treatment is indicated

  13. The novel human influenza A(H7N9) virus is naturally adapted to efficient growth in human lung tissue.

    Science.gov (United States)

    Knepper, Jessica; Schierhorn, Kristina L; Becher, Anne; Budt, Matthias; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Gruber, Achim D; Suttorp, Norbert; Schweiger, Brunhilde; Hippenstiel, Stefan; Hocke, Andreas C; Wolff, Thorsten

    2013-10-08

    A novel influenza A virus (IAV) of the H7N9 subtype has been isolated from severely diseased patients with pneumonia and acute respiratory distress syndrome and, apparently, from healthy poultry in March 2013 in Eastern China. We evaluated replication, tropism, and cytokine induction of the A/Anhui/1/2013 (H7N9) virus isolated from a fatal human infection and two low-pathogenic avian H7 subtype viruses in a human lung organ culture system mimicking infection of the lower respiratory tract. The A(H7N9) patient isolate replicated similarly well as a seasonal IAV in explanted human lung tissue, whereas avian H7 subtype viruses propagated poorly. Interestingly, the avian H7 strains provoked a strong antiviral type I interferon (IFN-I) response, whereas the A(H7N9) virus induced only low IFN levels. Nevertheless, all viruses analyzed were detected predominantly in type II pneumocytes, indicating that the A(H7N9) virus does not differ in its cellular tropism from other avian or human influenza viruses. Tissue culture-based studies suggested that the low induction of the IFN-β promoter correlated with an efficient suppression by the viral NS1 protein. These findings demonstrate that the zoonotic A(H7N9) virus is unusually well adapted to efficient propagation in human alveolar tissue, which most likely contributes to the severity of lower respiratory tract disease seen in many patients. Humans are usually not infected by avian influenza A viruses (IAV), but this large group of viruses contributes to the emergence of human pandemic strains. Transmission of virulent avian IAV to humans is therefore an alarming event that requires assessment of the biology as well as pathogenic and pandemic potentials of the viruses in clinically relevant models. Here, we demonstrate that an early virus isolate from the recent A(H7N9) outbreak in Eastern China replicated as efficiently as human-adapted IAV in explanted human lung tissue, whereas avian H7 subtype viruses were unable to

  14. Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine.

    Science.gov (United States)

    Lee, Hyunsu; Park, Jae-Hyung; Seo, Incheol; Park, Sun-Hyun; Kim, Shin

    2014-12-21

    Mapping of tissue structure at the cellular, circuit, and organ-wide scale is important for understanding physiological and biological functions. A bio-electrochemical technique known as CLARITY used for three-dimensional anatomical and phenotypical mapping within transparent intact tissues has been recently developed. This method provided a major advance in understanding the structure-function relationships in circuits of the nervous system and organs by using whole-body clearing. Thus, in the present study, we aimed to improve the original CLARITY procedure and developed specific CLARITY protocols for various intact organs. We determined the optimal conditions for reducing bubble formation, discoloration, and depositing of black particles on the surface of tissue, which allowed production of clearer organ images. We also determined the appropriate replacement cycles of clearing solution for each type of organ, and convincingly demonstrated that 250-280 mA is the ideal range of electrical current for tissue clearing. We then acquired each type of cleared organs including brain, pancreas, liver, lung, kidney, and intestine. Additionally, we determined the images of axon fibers of hippocampal region, the Purkinje layer of cerebellum, and vessels and cellular nuclei of pancreas. CLARITY is an innovative biochemical technology for the structural and molecular analysis of various types of tissue. We developed improved CLARITY methods for clearing of the brain, pancreas, lung, intestine, liver, and kidney, and identified the appropriate experimental conditions for clearing of each specific tissue type. These optimized methods will be useful for the application of CLARITY to various types of organs.

  15. Two cases with giant lung abscess originating in the irradiated lung field following the concurrent chemo-radiotherapy of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Takeshi; Inui, Hiroyuki; Yukawa, Susumu; Nomoto, Hiroshi (Wakayama Medical Coll. (Japan)); Minakata, Yoshiaki; Yamagata, Toshiyuki

    1992-05-01

    Two patients with giant lung abscess originating in the irradiated lung field are reported. Lung abscesses occurred during the term of leukopenia following the concurrent chemo-radiotherapy of lung cancer. Both patients were diagnosed as small cell lung cancer, and were treated concurrently with chemotherapy (Cisplatin + Etoposide) and radiotherapy (total 40-50 Gy). Case 1 was a 59 years old male. Seven weeks after the first irradiation, a giant lung abscess was caused by methicillin resistant staphylococcus aureus (MRSA) originated in the lung field with radiation pneumonitis, and giant bronchial fistula was formed, that showed the specific bronchofiberscopic findings. Case 2 was a 67 years old male. Twelve weeks after the first irradiation, a giant lung abscess was caused by pseudomonas aeruginosa originated in the irradiated lung field following the formation of a pneumatocele. MRSA and pseudomonas aeruginosa are important as cause of hospital infection, and both can cause lung abscess. However, in our cases, lung abscess were formed just in the irradiated lung field and rapidly enlarged. These clinical findings suggested that myelosuppression and radiation injury of lung tissue might cause such giant lung abscess. (author).

  16. Two cases with giant lung abscess originating in the irradiated lung field following the concurrent chemo-radiotherapy of lung cancer

    International Nuclear Information System (INIS)

    Ikeda, Takeshi; Inui, Hiroyuki; Yukawa, Susumu; Nomoto, Hiroshi; Minakata, Yoshiaki; Yamagata, Toshiyuki.

    1992-01-01

    Two patients with giant lung abscess originating in the irradiated lung field are reported. Lung abscesses occurred during the term of leukopenia following the concurrent chemo-radiotherapy of lung cancer. Both patients were diagnosed as small cell lung cancer, and were treated concurrently with chemotherapy (Cisplatin + Etoposide) and radiotherapy (total 40-50 Gy). Case 1 was a 59 years old male. Seven weeks after the first irradiation, a giant lung abscess was caused by methicillin resistant staphylococcus aureus (MRSA) originated in the lung field with radiation pneumonitis, and giant bronchial fistula was formed, that showed the specific bronchofiberscopic findings. Case 2 was a 67 years old male. Twelve weeks after the first irradiation, a giant lung abscess was caused by pseudomonas aeruginosa originated in the irradiated lung field following the formation of a pneumatocele. MRSA and pseudomonas aeruginosa are important as cause of hospital infection, and both can cause lung abscess. However, in our cases, lung abscess were formed just in the irradiated lung field and rapidly enlarged. These clinical findings suggested that myelosuppression and radiation injury of lung tissue might cause such giant lung abscess. (author)

  17. Synchronous changes in coral chromatophore tissue density and skeletal banding as an adaptive response to environmental change

    Science.gov (United States)

    Ardisana, R. N.; Miller, C. A.; Sivaguru, M.; Fouke, B. W.

    2013-12-01

    Corals are a key reservoir of biodiversity in coastal, shallow water tropical marine environments, and density banding in their aragonite skeletons is used as a sensitive record of paleoclimate. Therefore, the cellular response of corals to environmental change and its expression in skeletal structure is of significant importance. Chromatophores, pigment-bearing cells within the ectoderm of hermatypic corals, serve to both enhance the photosynthetic activity of zooxanthellae symbionts, as well as protect the coral animal from harmful UV radiation. Yet connections have not previously been drawn between chromatophore tissue density and the development of skeletal density bands. A histological analysis of the coral Montastrea faveolata has therefore been conducted across a bathymetric gradient of 1-20 m on the southern Caribbean island of Curaçao. A combination of field and laboratory photography, serial block face imaging (SBFI), two-photon laser scanning microscopy (TPLSM), and 3D image analysis has been applied to test whether M. faveolata adapts to increasing water depth and decreasing photosynthetically active radiation by shifting toward a more heterotrophic lifestyle (decreasing zooxanthellae tissue density, increasing mucocyte tissue density, and decreasing chromatophores density). This study is among the first to collect and evaluate histological data in the spatial context of an entire unprocessed coral polyp. TPLSM was used to optically thin section unprocessed tissue biopsies with quantitative image analysis to yield a nanometer-scale three-dimensional map of the quantity and distribution of the symbionts (zooxanthellae) and a host fluorescent pigments (chromatophores), which is thought to have photoprotective properties, within the context of an entire coral polyp. Preliminary results have offered new insight regarding the three-dimensional distribution and abundance of chromatophores and have identified: (1) M. faveolata tissue collected from 8M SWD do

  18. Nested-PCR for the detection of Mycoplasma hyopneumoniae in bronchial alveolar swabs, frozen tissues and formalin-fixed paraffin-embedded swine lung samples: comparative evaluation with immunohistochemical findings and histological features

    Directory of Open Access Journals (Sweden)

    Paula R. Almeida

    2012-08-01

    Full Text Available The diagnosis of Mycoplasma hyopneumoniae infection is often performed through histopathology, immunohistochemistry (IHC and polymerase chain reaction (PCR or a combination of these techniques. PCR can be performed on samples using several conservation methods, including swabs, frozen tissue or formalin-fixed and paraffin-embedded (FFPE tissue. However, the formalin fixation process often inhibits DNA amplification. To evaluate whether M. hyopneumoniae DNA could be recovered from FFPE tissues, 15 lungs with cranioventral consolidation lesions were collected in a slaughterhouse from swine bred in herds with respiratory disease. Bronchial swabs and fresh lung tissue were collected, and a fragment of the corresponding lung section was placed in neutral buffered formalin for 48 hours. A PCR assay was performed to compare FFPE tissue samples with samples that were only refrigerated (bronchial swabs or frozen (tissue pieces. M. hyopneumoniae was detected by PCR in all 15 samples of the swab and frozen tissue, while it was detected in only 11 of the 15 FFPE samples. Histological features of M. hyopneumoniae infection were presented in 11 cases and 7 of these samples stained positive in IHC. Concordance between the histological features and detection results was observed in 13 of the FFPE tissue samples. PCR was the most sensitive technique. Comparison of different sample conservation methods indicated that it is possible to detect M. hyopneumoniae from FFPE tissue. It is important to conduct further research using archived material because the efficiency of PCR could be compromised under these conditions.

  19. Study of Different Tissue Density Effects on the Dose Distribution of a 103Pd Brachytherapy Source Model MED3633

    Directory of Open Access Journals (Sweden)

    Ali Asghar Mowlavi

    2010-09-01

    Full Text Available Introduction: Clinical application of encapsulated radioactive brachytherapy sources has a major role in cancer treatment. In the present research, the effects of different tissue densities on the dose distribution of a 103Pd brachytherapy source in a spherical phantom of 50 cm radius have been studied. Material and Methods: As is well known, absorbed dose in tissue depends to its density, but this difference is not clear in measurements. Therefore, we applied the MCNP code to evaluate the effect of density on the dose distribution. 103Pd brachytherapy sources are used to treat prostate, breast and other cancers. Results: Absorbed dose has been calculated and presented around a source placed in the center of the phantom for different tissue densities. Also, we derived anisotropy and radial dose functions and compared our Monte Carlo results with experimental results of Rivard and Li et al. for F(1, θ and g(r in 1.040 g/cm3 tissue. Conclusion: The results of this study show that relative dose variations around the source center are very considerable at different densities, because of the presence of a photoabsorber (Au-Cu alloy in the source core. Dose variation exceeds 80% at the point (Z = 2.4 mm, Y = 0 mm. Computed values of anisotropy and radial dose functions are in good agreement with the experimental results of Rivard and Li et al.

  20. Neurotrophins expression is decreased in lungs of human infants with congenital diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    O'Hanlon LD

    2014-02-01

    Full Text Available Lynn D O'Hanlon, Sherry M Mabry, Ikechukwu I EkekezieChildren's Mercy Hospitals/University of Missouri-Kansas City School of Medicine, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Kansas City, MO, USAObjectives: To evaluate neurotrophin (NT (nerve growth factor [NGF], NT-3, and brain-derived neurotrophic factor [BDNF] expression in autopsy lung tissues of human congenital diaphragmatic hernia (CDH infants versus that of infants that expired with: 1 "normal" lungs (controls; 2 chronic lung disease (CLD; and 3 pulmonary hypertension (PPHN.Hypothesis: NT expression will be significantly altered in CDH lung tissue compared with normal lung tissue and other neonatal lung diseases.Study design: Immunohistochemical studies for NT proteins NGF, BDNF, and NT-3 were applied to human autopsy neonatal lung tissue samples.Subject selection: The samples included a control group of 18 samples ranging from 23-week gestational age to term, a CDH group of 15 samples, a PPHN group of six samples, and a CLD group of 12 samples.Methodology: The tissue samples were studied, and four representative slide fields of alveoli/saccules and four of bronchioles were recorded from each sample. These slide fields were then graded (from 0 to 3 by three blinded observers for intensity of staining.Results: BDNF, NGF, and NT-3 immunostaining intensity scores were significantly decreased in the CDH lung tissue (n=15 compared with normal neonatal lung tissue (n=18 (P<0.001. The other neonatal pulmonary diseases that were studied, CLD and PPHN, were much less likely to be affected and were much more variable in their neurotrophin expression.Conclusion: NT expression is decreased in CDH lungs. The decreased expression of NT in CDH lung tissue may suggest they contribute to the abnormality in this condition.Keywords: nerve growth factor, NGF, brain-derived neurotrophic factor, BDNF, neurotrophin-3, NT-3, chronic lung disease, persistent pulmonary hypertension, lung

  1. Relationship between the 99mTc-MIBI and expression of P-glycoprotein in lung cancer

    International Nuclear Information System (INIS)

    Meng Zili; Shen Zhenya

    2002-01-01

    Objective: To correlate the imaging of 99m Tc-MIBI with the expression of P-glycoprotein (PGP) in lung cancer. Methods: All patients, undergoing early (30 min) and delayed (3h) 99m Tc-MIBI imaging before initiation of chemo-or radiotherapy, were diagnosed pathologically. Immunohistochemical studies were performed using a monoclonal antibody, P-170, developed against the internal epitope of PGP. Normal tissue and tumor washout rate and tumor-to-background ratio were correlated with the level of PGP expression. Results: There was an inverse correlation between tumor-to-background ratio and the density of PGP (P 0.1). Conclusion: The reduced ability for the tumors to accumulate MIBI correlates well with the increased levels of PGP expression, tumor washout rate of MIBI does not correlate with the density of PGP in tumor tissues

  2. Lung cancer in uranium miners: A tissue resource and pilot study. Progress report, September 25, 1992 - May 31, 1993

    International Nuclear Information System (INIS)

    Samet, J.M.

    1993-05-01

    This project involves two related activities directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first activity involves a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second activity is a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives are to facilitate the investigation of molecular changes in radon exposed lung cancer cases and to develop methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and to assess the feasibility of recruiting former uranium miners into a longitudinal study that collects multiple biologic specimens

  3. Over, and Underexpression of Endothelin 1 and TGF-Beta Family Ligands and Receptors in Lung Tissue of Broilers with Pulmonary Hypertension

    Science.gov (United States)

    Dominguez-Avila, Norma; Ruiz-Castañeda, Gabriel; González-Ramírez, Javier; Fernandez-Jaramillo, Nora; Escoto, Jorge; Sánchez-Muñoz, Fausto; Marquez-Velasco, Ricardo; Bojalil, Rafael; Espinosa-Cervantes, Román; Sánchez, Fausto

    2013-01-01

    Transforming growth factor beta (TGFβ) is a family of genes that play a key role in mediating tissue remodeling in various forms of acute and chronic lung disease. In order to assess their role on pulmonary hypertension in broilers, we determined mRNA expression of genes of the TGFβ family and endothelin 1 in lung samples from 4-week-old chickens raised either under normal or cold temperature conditions. Both in control and cold-treated groups of broilers, endothelin 1 mRNA expression levels in lungs from ascitic chickens were higher than levels from healthy birds (P 0.05). BAMBI mRNA gene expression was lowest in birds with ascites only in the control group as compared with the values from healthy birds (P < 0.05). PMID:24286074

  4. Effects of Initial Seeding Density and Fluid Perfusion Rate on Formation of Tissue-Engineered Bone

    OpenAIRE

    GRAYSON, WARREN L.; BHUMIRATANA, SARINDR; CANNIZZARO, CHRISTOPHER; CHAO, P.-H. GRACE; LENNON, DONALD P.; CAPLAN, ARNOLD I.; VUNJAK-NOVAKOVIC, GORDANA

    2008-01-01

    We describe a novel bioreactor system for tissue engineering of bone that enables cultivation of up to six tissue constructs simultaneously, with direct perfusion and imaging capability. The bioreactor was used to investigate the relative effects of initial seeding density and medium perfusion rate on the growth and osteogenic differentiation patterns of bone marrow–derived human mesenchymal stem cells (hMSCs) cultured on three-dimensional scaffolds. Fully decellularized bovine trabecular bon...

  5. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    International Nuclear Information System (INIS)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H; Neelakkantan, Harini; Meeks, Sanford L; Kupelian, Patrick A

    2010-01-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  6. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H [University of Central Florida, FL (United States); Neelakkantan, Harini; Meeks, Sanford L [M D Anderson Cancer Center Orlando, FL (United States); Kupelian, Patrick A, E-mail: anand.santhanam@orlandohealth.co [Department of Radiation Oncology, University of California, Los Angeles, CA (United States)

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  7. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    Science.gov (United States)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  8. Medical waste tissues - breathing life back into respiratory research.

    Science.gov (United States)

    BéruBé, Kelly A

    2013-12-01

    With the advent of biobanks to store human lung cells and tissues from patient donations and from the procurement of medical waste tissues, it is now possible to integrate (both spatially and temporally) cells into anatomically-correct and physiologically-functional tissues. Modern inhalation toxicology relies on human data on exposure and adverse effects, to determine the most appropriate risk assessments and mitigations for beneficial respiratory health. A point in case is the recapitulation of airway tissue, such as the bronchial epithelium, to investigate the impact of air pollution on human respiratory health. The bronchi are the first point of contact for inhaled substances that bypass defences in the upper respiratory tract. Animal models have been used to resolve such inhalation toxicology hazards. However, the access to medical waste tissues has enabled the Lung Particle Research Group to tissue-engineer the Micro-Lung (TM) and Metabo-Lung(TM) cell culture models, as alternatives to animals in basic research and in the safety testing of aerosolised consumer goods. The former model favours investigations focused on lung injury and repair mechanisms, and the latter model provides the element of metabolism, through the co-culturing of lung and liver (hepatocyte) cells. These innovations represent examples of the animal-free alternatives advocated by the 21st century toxicology paradigm, whereby human-derived cell/tissue data will lead to more-accurate and more-reliable public health risk assessments and therapeutic mitigations (e.g. exposure to ambient air pollutants and adverse drug reactions) for lung disease. 2013 FRAME.

  9. Microdosimetric approach for lung dose assessments

    International Nuclear Information System (INIS)

    Hofmann, W.; Steinhausler, F.; Pohl, E.; Bernroider, G.

    1980-01-01

    In the macroscopic region the term ''organ dose'' is related to an uniform energy deposition within a homogeneous biological target. Considering the lung, inhaled radioactive nuclides, however, show a significant non-uniform distribution pattern throughout the respiratory tract. For the calculation of deposition and clearance of inhaled alpha-emitting radionuclides within different regions of this organ, a detailed compartment model, based on the Weibel model A was developed. Since biological effects (e.g. lung cancer initiation) are primarily caused at the cellular level, the interaction of alpha particles with different types of cells of the lung tissue was studied. The basic approach is to superimpose alpha particle tracks on magnified images of randomly selected tissue slices, simulating alpha emitting sources. Particle tracks are generated by means of a specially developed computer program and used as input data for an on-line electronic image analyzer (Quantimet-720). Using adaptive pattern recognition methods the different cells in the lung tissue can be identified and their distribution within the whole organ determined. This microdosimetric method is applied to soluble radon decay products as well as to insoluble, highly localized, plutonium particles. For a defined microdistribution of alpha emitters, the resulting dose, integrated over all cellular dose values, is compared to the compartmental doses of the ICRP lung model. Furthermore this methodology is also applicable to other organs and tissues of the human body for dose calculations in practical health physics. (author)

  10. Modulation role of angelica sinensis on transforming growth factor beta 1 (TGF-β1) expression induced by radiation in the lung tissue

    International Nuclear Information System (INIS)

    Xie Conghua; Zhou Yunfeng; Peng Gang; Zhou Fuxiang; Zhang Gong; Liang Chen; Liu Hui; Chen Ji; Xia Mingtong

    2005-01-01

    Objective: To investigate the ability of Angelica Sinensis to affect the radiation- induced TGF-β 1 release in the animal model, so as to find an effective method to reduce the lung toxicity after thoracic irradiation. Methods: The thoraces of C57BL/6 mice were exposed to either sham irradiation or single fraction of 12 Gy. Four study groups were defined: those that received neither irradiation nor Angelica Sinensis (NT group), those that received Angelica Sinensis but no irradiation (AS group), those that underwent irradiation without Angelica Sinensis (XRT group) and those that received both Angelica Sinensis and irradiation (AS/XRT group). Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 24, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation) . The TGF-β 1 mRNA expressions in the lung tissue were quantified by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Immunohistochemical Streptavidin-Peroxidase method and positive cell counting were used for objective quantification of TGF-β 1 protein expression. Results: NT and AS groups exhibited low levels of TGF-β 1 protein expression with positive cell counts between 9 and 31. And there is an significantly elevated level of TGF-β 1 positive inflammatory cells in XRT group (P 1 in XRT group was significantly higher than the nonirradiated groups (P 1 response on mRNA level, but the statistical comparison of the TNF-αmRNA expression between the XRT and AS/XRT treatment-group was not significant (P=0.054). Conclusion: This study demonstrates a significant radiation-induced increase of TGF-β 1 (on mRNA and protein level) in the lung tissue, and the predominant localisation of TGF-β 1 in areas of inflammatory cell infiltrates suggests involvement of this cytokine in the pathogenesis of radiation-induced lung injury

  11. Evaluating Superoxide Dismutase (SOD, Glutathione (GSH, Malondialdehyde (MDA and the Histological Changes of the Lung Tissue after γ-Irradiation in Rats

    Directory of Open Access Journals (Sweden)

    Abolhasan Rezaeyan

    2016-09-01

    Full Text Available Background & Objective: The lung is a radiosensitive organ and its damage is a dose-limiting factor in radiotherapy. Different side effects such as pneumonia and lung fibrosis are found in patients with thorax irradiation. The objective of the present study is to evaluate the effects of γ-irradiation on acute and chronic injuries of lung tissue in rats. Materials & Methods: 32 rats were divided into two groups. Control group consisted of 14 rats that underwent shame irradiation. In radiation group, 18 rats underwent γ-irradiation. The rats were exposed to γ-irradiation 18 Gy using a single fraction cobalt-60 unit. Eight rats in each group were sacrificed 24 hours after radiotherapy for determining Superoxide Dismutase (SOD, Glutathione (GSH, Malondialdehyde (MDA, and histopathological evaluations. Remained animals were sacrificed eight weeks after radiotherapy for histopathological evaluation. Results: Compared to control group, the level of SOD and GSH significantly decreased and MDA level significantly increased in radiation group 24 hours following irradiation, (p=0.001, p<0.001, p=0.001 respectively. Early histopathological results after 24 hours showed that radiation increases neutrophil, macrophage, and inflammation incidence compared to control group (p<0.05. Late histopathological evaluation after eight weeks revealed significant increase in factors including mast cells, pulmonary edema, vascular thickness, vascular damage, and also inflammation and fibrosis incidence in case group compared to radiation group  (p<0.05. Conclusion: Localized chest radiation with dose of 18 Gy induces changes in oxidative stress indices and histopathological lung tissue damage in short and long term.

  12. Ischemia and reperfusion of the lung tissues induced increase of lung permeability and lung edema is attenuated by dimethylthiourea (PP69).

    Science.gov (United States)

    Chen, K H; Chao, D; Liu, C F; Chen, C F; Wang, D

    2010-04-01

    This study sought to determine whether oxygen radical scavengers of dimethylthiourea (DMTU), superoxide dismutase (SOD), or catalase (CAT) pretreatment attenuated ischemia-reperfusion (I/R)-induced lung injury. After isolation from a Sprague-Dawley rat, the lungs were perfused through the pulmonary artery cannula with rat whole blood diluted 1:1 with a physiological salt solution. An acute lung injury was induced by 10 minutes of hypoxia with 5% CO2-95% N2 followed by 65 minutes of ischemia and then 65 minutes of reperfusion. I/R significantly increased microvascular permeability as measured by the capillary filtration coefficient (Kfc), lung weight-to-body weight ratio (LW/BW), and protein concentration in bronchoalveolar lavage fluid (PCBAL). DMTU pretreatment significantly attenuated the acute lung injury. The capillary filtration coefficient (P<.01), LW/BW (P<.01) and PCBAL (P<.05) were significantly lower among the DMTU-treated rats than hosts pretreated with SOD or CAT. The possible mechanisms of the protective effect of DMTU in I/R-induced lung injury may relate to the permeability of the agent allowing it to scavenge intracellular hydroxyl radicals. However, whether superoxide dismutase or catalase antioxidants showed protective effects possibly due to their impermeability of the cell membrane not allowing scavenging of intracellular oxygen radicals. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Integrative proteomics and tissue microarray profiling indicate the association between overexpressed serum proteins and non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yansheng Liu

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC can be improved by the early detection and risk screening among population. To meet this need, here we describe the application of extensive peptide level fractionation coupled with label free quantitative proteomics for the discovery of potential serum biomarkers for lung cancer, and the usage of Tissue microarray analysis (TMA and Multiple reaction monitoring (MRM assays for the following up validations in the verification phase. Using these state-of-art, currently available clinical proteomic approaches, in the discovery phase we confidently identified 647 serum proteins, and 101 proteins showed a statistically significant association with NSCLC in our 18 discovery samples. This serum proteomic dataset allowed us to discern the differential patterns and abnormal biological processes in the lung cancer blood. Of these proteins, Alpha-1B-glycoprotein (A1BG and Leucine-rich alpha-2-glycoprotein (LRG1, two plasma glycoproteins with previously unknown function were selected as examples for which TMA and MRM verification were performed in a large sample set consisting about 100 patients. We revealed that A1BG and LRG1 were overexpressed in both the blood level and tumor sections, which can be referred to separate lung cancer patients from healthy cases.

  14. Automatic lung segmentation in the presence of alveolar collapse

    Directory of Open Access Journals (Sweden)

    Noshadi Areg

    2017-09-01

    Full Text Available Lung ventilation and perfusion analyses using chest imaging methods require a correct segmentation of the lung to offer anatomical landmarks for the physiological data. An automatic segmentation approach simplifies and accelerates the analysis. However, the segmentation of the lungs has shown to be difficult if collapsed areas are present that tend to share similar gray values with surrounding non-pulmonary tissue. Our goal was to develop an automatic segmentation algorithm that is able to approximate dorsal lung boundaries even if alveolar collapse is present in the dependent lung areas adjacent to the pleura. Computed tomography data acquired in five supine pigs with injured lungs were used for this purpose. First, healthy lung tissue was segmented using a standard 3D region growing algorithm. Further, the bones in the chest wall surrounding the lungs were segmented to find the contact points of ribs and pleura. Artificial boundaries of the dorsal lung were set by spline interpolation through these contact points. Segmentation masks of the entire lung including the collapsed regions were created by combining the splines with the segmentation masks of the healthy lung tissue through multiple morphological operations. The automatically segmented images were then evaluated by comparing them to manual segmentations and determining the Dice similarity coefficients (DSC as a similarity measure. The developed method was able to accurately segment the lungs including the collapsed regions (DSCs over 0.96.

  15. Histological changes in lung tissues related with sub-chronic exposure to ambient urban levels of PM2.5 in Córdoba, Argentina

    Science.gov (United States)

    Tavera Busso, Iván; Vera, Anahí; Mateos, Ana Carolina; Amarillo, Ana Carolina; Carreras, Hebe

    2017-10-01

    Concentration of fine particulate matter (PM2.5) is one of the most important environmental parameters to estimate health impacts attributable to air pollution. Despite the fact there are many studies regarding PM2.5 effects on human health, most of them were performed under conditions that do not simulate the natural particles interaction with the organism. In the present paper, we studied the effects of mammals' sub-chronic exposure to PM2.5 on the lower respiratory tract, addressing realistic exposure conditions to normal urban air. Thus, we exposed Wistar rats under controlled settings to the same normal urban air, with and without particles. Next, we analyzed chemical composition of PM2.5 and lungs samples, performed a histologic examination and run the comet assay to assess genotoxic effects. We found a strong agreement between lung tissues and PM2.5 elemental composition suggesting that metals found in lungs came from the particles inhaled. Histological analysis showed a mild to moderate infiltration, with a reduction of alveoli lumen and increment of alveolar macrophages and periodic acid-Schiff (PAS) (+) cells in treated animals. We also observed an increase in the number of nuclei with comets, mostly comets type 3, with a high DNA fragmentation as well. These results provide strong evidence that sub-chronic exposure to low particle levels, even below the 24 h WHO standard, can cause injuries in lungs tissues and DNA damage, as well.

  16. Epidermal growth factor receptor in primary human lung cancer

    International Nuclear Information System (INIS)

    Yu Xueyan; Hu Guoqiang; Tian Keli; Wang Mingyun

    1996-01-01

    Cell membranes were prepared from 12 human lung cancers for the study of the expression of epidermal growth factor receptors (EGFR). EGFR concentration was estimated by ligand binding studies using 125 I-radiolabeled EGF. The dissociation constants of the high affinity sites were identical, 1.48 nmol and 1.1 nmol in cancer and normal lung tissues, the EGFR contents were higher in lung cancer tissues (range: 2.25 to 19.39 pmol·g -1 membrane protein) than that in normal tissues from the same patients (range: 0.72 to 7.43 pmol·g -1 membrane protein). These results suggest that EGF and its receptor may play a role in the regulatory mechanisms in the control of lung cellular growth and tumor promotion

  17. Polyurethane as a base for a family of tissue equivalent materials

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    Recent experience gained in the selection of tissue equivalent materials for the construction of whole body counting phantoms has shown that commercially available polyurethane can be used as a base for a variety of tissue equivalent materials. Tissues simulated include lung, adipose, muscle, cartilage and rib bone. When selecting tissue equivalent materials it is important to understand what tissue properties must be simulated. Materials that simply simulate the linear attenuation of low energy photons for example, are not very likely to simulate neutron interaction properties accurately. With this in mind, we have developed more than one simulation composition for a given tissue, depending on the purpose to which the simulant is to be applied. Simple simulation of linear attenuation can be achieved by addition of carefully measured amounts of higher Z material, such as calcium carbonate to the polyurethane. However, the simulation necessary for medical scanning purposes, or for use in mixed radiation fields requires more complex formulations to yield proper material density, hydrogen and nitrogen content, electron density, and effective atomic number. Though polyurethane has limitations for simulation of tissues that differ markedly from its inherent composition (such as compacted bone), it is safe and easily used in modestly equipped laboratories. The simulants are durable and generally flexible. They can also be easily cast in irregular shapes to simulate specific organ geometries. (author)

  18. A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4+ T cell receptor repertoire clonality.

    Science.gov (United States)

    Zhu, Wei; Germain, Claire; Liu, Zheng; Sebastian, Yinong; Devi, Priyanka; Knockaert, Samantha; Brohawn, Philip; Lehmann, Kim; Damotte, Diane; Validire, Pierre; Yao, Yihong; Valge-Archer, Viia; Hammond, Scott A; Dieu-Nosjean, Marie-Caroline; Higgs, Brandon W

    2015-12-01

    T and B cell receptor (TCR and BCR, respectively) Vβ or immunoglobulin heavy chain complementarity-determining region 3 sequencing allows monitoring of repertoire changes through recognition, clonal expansion, affinity maturation, and T or B cell activation in response to antigen. TCR and BCR repertoire analysis can advance understanding of antitumor immune responses in the tumor microenvironment. TCR and BCR repertoires of sorted CD4 + , CD8 + or CD19 + cells in tumor, non-tumoral distant tissue (NT), and peripheral compartments (blood/draining lymph node [P]) from 47 non-small cell lung cancer (NSCLC) patients (age median = 68 y) were sequenced. The clonotype spectra were assessed among different tissues and correlated with clinical and immunological parameters. In all tissues, CD4 + and CD8 + TCR repertoires had greater clonality relative to CD19 + BCR. CD4 + T cells exhibited greater clonality in NT compared to tumor ( p = 0.002) and P ( p 68). Younger patients exhibited greater CD4 + T cell diversity in P compared to older patients ( p = 0.05), and greater CD4 + T cell clonality in tumor relative to P ( p cell clonality in tumor and P, respectively (both p = 0.05), correlated with high density of tumor-associated tertiary lymphoid structure (TLS) B cells, a biomarker of higher overall survival in NSCLC. Results indicate distinct adaptive immune responses in NSCLC, where peripheral T cell diversity is modulated by age, and tumor T cell clonal expansion is favored by the presence of TLSs in the tumor microenvironment.

  19. Reduced RAR-β gene expression in Benzo(a)Pyrene induced lung cancer mice is upregulated by DOTAP lipo-ATRA treatment.

    Science.gov (United States)

    Viswanathan, S; Berlin Grace, V M

    2018-05-16

    Molecular targeted therapy for specific genes is an emerging research. Retinoic Acid Receptor (RAR-β) is a key tumor suppressor which is found to be lost drastically during much cancer progression. We hence, analyzed the expression level of RAR-β gene during B(a)P induced lung cancer development in mice and studied the lung cancer targeted action of All Trans Retinoic Acid (ATRA) in DOTAP liposomal formulation. The effect of its treatment on lung cancer was determined by histopathological analysis. RAR-β gene expression was assessed by RT-PCR and qPCR. A distinct band for RAR-β gene (density - 0.5123 for lung and 0.5160 for liver) was observed in normal mice, whereas no visible band was observed in cancer induced group, indicating loss of RAR-β gene expression. Both ATRA and lipo-ATRA treated groups showed detectable RAR-β expression with relatively lesser density than the normal group. The expression was more intense in lipo-ATRA treatment (density-0.2973) compared with free ATRA treatment (density-0.1549) in lung tissues. The qPCR results also have highlighted a highly significant (p ≤ 0.01) variation RQ values between lipo-ATRA group (15.46 ± 1.54) and free ATRA group (7.58 ± 1.30) in lung tissue sample on 30th day. The mean RQ value for normal lung on 30th day was 20.86 ± 2.58 against the cancer control. The 120th day mice also showed the similar RAR-β expression pattern with further declined expression levels as there was no treatment given after 30 days. Interestingly, the lipo-ATRA treatment could show a highly significant (p ≤ 0.001) expression (12.00 ± 2.31) when compared with free ATRA treatment (3.31 ± 0.58) which implies that the lipo-ATRA formulation could result in sustained delivery of ATRA in target site. Histopathology of lung and liver on 120th day also revealed an effective therapeutic indication in lipo-ATRA treatment compared to free ATRA treatment due to lipo-ATRA's stealth property and it

  20. TU-H-CAMPUS-TeP2-01: A Comparison of Noninvasive Techniques to Assess Radiation-Induced Lung Damage in Mice

    International Nuclear Information System (INIS)

    Rubinstein, A; Kingsley, C; Melancon, A; Tailor, R; Pollard, J; Guindani, M; Followill, D; Hazle, J; Court, L

    2016-01-01

    Purpose: To evaluate the use of post-irradiation changes in respiratory rate and CBCT-based morphology as predictors of survival in mice. Methods: C57L/J mice underwent whole-thorax irradiation with a Co-60 beam to four different doses [0Gy (n=3), 9Gy (n=5), 11Gy (n=7), and 13Gy (n=5)] in order to induce varying levels of pneumonitis. Respiratory rate measurements, breath-hold CBCTs, and free-breathing CBCTs were acquired pre-irradiation and at six time points between two and seven months post-irradiation. For respiratory rate measurements, we developed a novel computer-vision-based technique. We recorded mice sleeping in standard laboratory cages with a 30 fps, 1080p webcam (Logitech C920). We calculated respiratory rate using corner detection and optical flow to track cyclical motion in the fur in the recorded video. Breath-hold and free-breathing CBCTs were acquired on the X-RAD225Cx system. For breathhold imaging, the mice were intubated and their breath was held at full-inhale for 20 seconds. Healthy lung tissue was delineated in the scans using auto-threshold contouring (0–0.7 g/cm"3). The volume of healthy lung was measured in each of the scans. Next, lung density was measured in a 6-mm"2 ROI in a fixed anatomic location in each of the scans. Results: Day-to-day variability in respiratory rate with our technique was 13%. All metrics except for breath-hold lung volume were correlated with survival: lung density on free-breathing (r=−0.7482,p<0.01) and breath-hold images (r=−0.5864,p<0.01), free-breathing lung volume (r=0.7179,p<0.01), and respiratory rate (r= 0.6953,p<0.01). Lung density on free-breathing scans was correlated with respiratory rate (r=0.7142,p<0.01) and lung density on breath-hold scans (r=0.5543,p<0.01). One significant practical hurdle in the CBCT measurements was that at least one lobe of the lung was collapsed in 36% of free-breathing scans and 45% of breath-hold scans. Conclusion: Lung density and lung volume on free-breathing CBCTs

  1. Lung-protective perioperative mechanical ventilation

    NARCIS (Netherlands)

    Hemmes, S.N.T.

    2015-01-01

    Intraoperative ventilation has the potential to cause lung injury and possibly increase risk of pulmonary complications after surgery. Use of large tidal volumes could cause overdistension of lung tissue, which can be aggravated by too high levels of positive end-expiratory pressure (PEEP). Too low

  2. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Directory of Open Access Journals (Sweden)

    Christopher B Massa

    2017-08-01

    Full Text Available Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs, however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group. An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical

  3. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Science.gov (United States)

    Massa, Christopher B; Groves, Angela M; Jaggernauth, Smita U; Laskin, Debra L; Gow, Andrew J

    2017-08-01

    Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at

  4. Dexmedetomidine Inhibits Inflammatory Reaction in Lung Tissues of Septic Rats by Suppressing TLR4/NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Yuqing Wu

    2013-01-01

    and 20 μg/kg significantly decreased mortality and pulmonary inflammation of septic rats, as well as suppressed CLP-induced elevation of TNF-α and IL-6 and inhibited TLR4/MyD88 expression and NF-κB activation. These results suggest that dexmedetomidine may decrease mortality and inhibit inflammatory reaction in lung tissues of septic rats by suppressing TLR4/MyD88/NF-κB pathway.

  5. Towards lung EIT image segmentation: automatic classification of lung tissue state from analysis of EIT monitored recruitment manoeuvres

    International Nuclear Information System (INIS)

    Grychtol, Bartłomiej; Wolf, Gerhard K; Arnold, John H; Adler, Andy

    2010-01-01

    There is emerging evidence that the ventilation strategy used in acute lung injury (ALI) makes a significant difference in outcome and that an inappropriate ventilation strategy may produce ventilator-associated lung injury. Most harmful during mechanical ventilation are lung overdistension and lung collapse or atelectasis. Electrical impedance tomography (EIT) as a non-invasive imaging technology may be helpful to identify lung areas at risk. Currently, no automated method is routinely available to identify lung areas that are overdistended, collapsed or ventilated appropriately. We propose a fuzzy logic-based algorithm to analyse EIT images obtained during stepwise changes of mean airway pressures during mechanical ventilation. The algorithm is tested on data from two published studies of stepwise inflation–deflation manoeuvres in an animal model of ALI using conventional and high-frequency oscillatory ventilation. The timing of lung opening and collapsing on segmented images obtained using the algorithm during an inflation–deflation manoeuvre is in agreement with well-known effects of surfactant administration and changes in shunt fraction. While the performance of the algorithm has not been verified against a gold standard, we feel that it presents an important first step in tackling this challenging and important problem

  6. Towards lung EIT image segmentation: automatic classification of lung tissue state from analysis of EIT monitored recruitment manoeuvres.

    Science.gov (United States)

    Grychtol, Bartłomiej; Wolf, Gerhard K; Adler, Andy; Arnold, John H

    2010-08-01

    There is emerging evidence that the ventilation strategy used in acute lung injury (ALI) makes a significant difference in outcome and that an inappropriate ventilation strategy may produce ventilator-associated lung injury. Most harmful during mechanical ventilation are lung overdistension and lung collapse or atelectasis. Electrical impedance tomography (EIT) as a non-invasive imaging technology may be helpful to identify lung areas at risk. Currently, no automated method is routinely available to identify lung areas that are overdistended, collapsed or ventilated appropriately. We propose a fuzzy logic-based algorithm to analyse EIT images obtained during stepwise changes of mean airway pressures during mechanical ventilation. The algorithm is tested on data from two published studies of stepwise inflation-deflation manoeuvres in an animal model of ALI using conventional and high-frequency oscillatory ventilation. The timing of lung opening and collapsing on segmented images obtained using the algorithm during an inflation-deflation manoeuvre is in agreement with well-known effects of surfactant administration and changes in shunt fraction. While the performance of the algorithm has not been verified against a gold standard, we feel that it presents an important first step in tackling this challenging and important problem.

  7. U-bearing particles in miners' and millers' lungs

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Singh, N.P.; Miller, S.C.; Jones, K.W.; Cholewa, M.; Hanson, A.L.; Saccomanno, G.

    1984-01-01

    The size distribution of uranium-bearing particles in air particulates in occupational areas of active uranium mines and mills is largely uninvestigated. Investigation of the size of residual uranium-bearing particles in uranium miners' and millers' lungs is warranted because significant inhalation of uranium can occur in certain occupational areas. Average uranium concentrations of about 0.3 ppM U in uranium miners' and millers' lungs have been reported. Local uranium concentrations in uranium-bearing particles inhaled and regionally deposited in the lungs of uranium miners and millers are orders of magnitude larger than the average uranium concentrations reported. The feasibility of using microPIXE (particle induced x-ray emission) techniques to search for such uranium-bearing particles embedded in lung tissues has been demonstrated. Proton microbeams 20 μm in diameter, scanning in 5 μm steps, were used to irradiate sections of lung tissues 10 to 40 μm thick. The paper will briefly describe the method, and present and discuss the results obtained in an extensive search for uranium-bearing particles embedded in lung tissues, collected at autopsy, of former uranium miners and millers. 13 references, 1 table

  8. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.

    Science.gov (United States)

    Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M

    2001-11-01

    To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and

  9. Lung Cancer and Human Papilloma Viruses (HPVs: Examining the Molecular Evidence

    Directory of Open Access Journals (Sweden)

    Priya R. Prabhu

    2012-01-01

    Full Text Available Human papilloma virus (HPV, known to be an etiological agent for genital cancers, has been suggested also to be a possible contributory agent for lung cancer. Alternatively, lung cancer, formerly considered to be solely a smoker's disease, may now be more appropriately categorised into never smoker's and smoker's lung cancer. Through this paper we attempt to bring forth the current knowledge regarding mechanisms of HPV gaining access into the lung tissue, various strategies involved in HPV-associated tumorigenesis in lung tissue.

  10. In vivo transfer of cholesteryl ester from high and low density plasma lipoproteins into human aortic tissue

    International Nuclear Information System (INIS)

    Stender, S.; Hjelms, E.

    1988-01-01

    For the study of cholesteryl ester transfer from different plasma lipoproteins into human aortic tissue, patients scheduled for reconstructive aortic surgery were intravenously injected with autologous in vitro labeled lipoproteins 20 to 24 hours before aortic intima-media samples were obtained during the operation. The injectate contained high density lipoproteins (d greater than 1.063) labeled with 3H-cholesteryl ester and lipoproteins of lower density (d less than 1.063) labeled with 14C-cholesteryl ester or lipoproteins with the opposite labeling. In 16 aortic tissue samples (some with visible atherosclerosis) from 11 normocholesterolemic patients, the aortic influx of total cholesteryl ester was 1 to 50 nmol x cm-2 x day-1. Some 39% +/- 3% (mean +/- SEM) of the influx was derived from high density lipoproteins, which in plasma accounted for only 22% +/- 2% (mean +/- SEM) of the esterified cholesterol. The findings suggest that: 1) esterified cholesterol from the two lipoprotein fractions in plasma enter the aortic intima by the same mechanism, and 2) influx of cholesteryl ester from the smaller, high density lipoproteins is greater than influx from the larger, lower density lipoproteins considering their concentrations in plasma. In some patients, the cholesterol content in the intima-media tissue with no visible atherosclerosis corresponded to only a few months of continuous cholesteryl ester influx. This time is short considering the age of the patients and, therefore, indicates that removal of esterified cholesterol from the intima-media is of major importance in preventing cholesterol deposition in the arterial wall

  11. CT manifestations of radiation-induced change in chest tissue

    International Nuclear Information System (INIS)

    Pagani, J.J.; Libshitz, H.I.

    1982-01-01

    The computed tomographic appearance of acute and chronic radiation change in the thorax is described. Acute radiation pneumonitis demonstrates patchy, confluent regions of increased pulmonary attenuation. Chronic changes include soft tissue density fibrotic changes that blend smoothly with the pleural surfaces and adjacent mediastinal structures. Also seen are bronchiectatic changes and distortion of normal intrathoracic anatomic relationships. Both the acute and chronic changes usually make linear lateral margins with adjacent aerated lung. Development of a discrete mass or focal cavitation after the radiation changes have become stable is suspect for recurrent tumor or infection

  12. Intra-observer and inter-observer agreements for the measurement of dual-input whole tumor computed tomography perfusion in patients with lung cancer: Influences of the size and inner-air density of tumors.

    Science.gov (United States)

    Wang, Qingle; Zhang, Zhiyong; Shan, Fei; Shi, Yuxin; Xing, Wei; Shi, Liangrong; Zhang, Xingwei

    2017-09-01

    This study was conducted to assess intra-observer and inter-observer agreements for the measurement of dual-input whole tumor computed tomography perfusion (DCTP) in patients with lung cancer. A total of 88 patients who had undergone DCTP, which had proved a diagnosis of primary lung cancer, were divided into two groups: (i) nodules (diameter ≤3 cm) and masses (diameter >3 cm) by size, and (ii) tumors with and without air density. Pulmonary flow, bronchial flow, and pulmonary index were measured in each group. Intra-observer and inter-observer agreements for measurement were assessed using intraclass correlation coefficient, within-subject coefficient of variation, and Bland-Altman analysis. In all lung cancers, the reproducibility coefficient for intra-observer agreement (range 26.1-38.3%) was superior to inter-observer agreement (range 38.1-81.2%). Further analysis revealed lower agreements for nodules compared to masses. Additionally, inner-air density reduced both agreements for lung cancer. The intra-observer agreement for measuring lung cancer DCTP was satisfied, while the inter-observer agreement was limited. The effects of tumoral size and inner-air density to agreements, especially between two observers, should be emphasized. In future, an automatic computer-aided segment of perfusion value of the tumor should be developed. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  13. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells: an in Vitro Study

    NARCIS (Netherlands)

    Sukho, P. (Panithi); J. Kirpensteijn (Jolle); Hesselink, J.W. (Jan Willem); G.J.V.M. van Osch (Gerjo); F. Verseijden (Femke); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2017-01-01

    textabstractAdipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were

  14. Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of in vivo exposed mice.

    Science.gov (United States)

    Chaurand, Perrine; Liu, Wei; Borschneck, Daniel; Levard, Clément; Auffan, Mélanie; Paul, Emmanuel; Collin, Blanche; Kieffer, Isabelle; Lanone, Sophie; Rose, Jérôme; Perrin, Jeanne

    2018-03-13

    In this methodological study, we demonstrated the relevance of 3D imaging performed at various scales for the ex vivo detection and location of cerium oxide nanomaterials (CeO 2 -NMs) in mouse lung. X-ray micro-computed tomography (micro-CT) with a voxel size from 14 µm to 1 µm (micro-CT) was combined with X-ray nano-computed tomography with a voxel size of 63 nm (nano-CT). An optimized protocol was proposed to facilitate the sample preparation, to minimize the experimental artifacts and to optimize the contrast of soft tissues exposed to metal-based nanomaterials (NMs). 3D imaging of the NMs biodistribution in lung tissues was consolidated by combining a vast variety of techniques in a correlative approach: histological observations, 2D chemical mapping and speciation analysis were performed for an unambiguous detection of NMs. This original methodological approach was developed following a worst-case scenario of exposure, i.e. high dose of exposure with administration via intra-tracheal instillation. Results highlighted both (i) the non-uniform distribution of CeO 2 -NMs within the entire lung lobe (using large field-of-view micro-CT) and (ii) the detection of CeO 2 -NMs down to the individual cell scale, e.g. macrophage scale (using nano-CT with a voxel size of 63 nm).

  15. SPECT/CT of lung nodules using 111In-DOTA-c(RGDfK) in a mouse lung carcinogenesis model.

    Science.gov (United States)

    Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuta, Koji; Yanaka, Akinori; Fujii, Hirofumi; Yoshimoto, Mitsuyoshi

    2013-08-01

    Lung cancer is one of the leading causes of cancer-related deaths worldwide, including Japan. Although computed tomography (CT) can detect small lung lesions such as those appearing as ground glass opacity, it cannot differentiate between malignant and non-malignant lesions. Previously, we have shown that single photon emission computed tomography (SPECT) imaging using (111)In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-D-Phe-Lys) (DOTA-c(RGDfK)), an imaging probe of αvβ3 integrin, is useful for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. In this study, we aimed to assess the usefulness of SPECT/CT with (111)In-DOTA-c(RGDfK) for the evaluation of the malignancy of lung cancer. Lung tumors were induced by a single intraperitoneal injection (250 mg/kg) of urethane in male A/J mice. Twenty-six weeks after the urethane treatment, SPECT was performed an hour after injection of (111)In-DOTA-c(RGDfK). Following this, the radioactivity ratios of tumor to normal lung tissue were measured by autoradiography (ARG) in the excised lung samples. We also examined the expression of αvβ3 integrin in mouse and human lung samples. Urethane treatment induced 5 hyperplasias, 41 adenomas and 12 adenocarcinomas in the lungs of 8 A/J mice. SPECT with (111)In-DOTA-c(RGDfK) could clearly visualize lung nodules, though we failed to detect small lung nodules like adenoma and hyperplasias (adenocarcinoma: 66.7%, adenoma: 33.6%, hyperplasia: 0.0%). ARG analysis revealed significant uptake of (111)In-DOTA-c(RGDfK) in all the lesions. Moreover, tumor to normal lung tissue ratios increased along with the progression of carcinogenesis. Histopathological examination using human lung tissue samples revealed clear up-regulation of αvβ3 integrin in well-differentiated adenocarcinoma (Noguchi type B and C) rather than atypical adenomatous hyperplasia. Although there are some limitations in evaluating the malignancy of

  16. Bronchus-associated lymphoid tissue (BALT) lymphoma of the lung showing mosaic pattern of inhomogeneous attenuation on thin-section CT: a case report

    International Nuclear Information System (INIS)

    Lee, In Jae; Kim, Sung Hwan; Koo, Soo Hyun; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Jang, Kee Taek; Kim, Duck Hwan

    2000-01-01

    The authors present a case of histologically proven bronchus-associated lymphoid tissue (BALT) lymphoma of the lung in a patient with primary Sjogren's syndrome that manifested on thin-section CT scan as a mosaic pattern of inhomogeneous attenuation due to mixed small airway and infiltrative abnormalities

  17. Effect of Cell Seeding Density and Inflammatory Cytokines on Adipose Tissue-Derived Stem Cells : an in Vitro Study

    NARCIS (Netherlands)

    Sukho, Panithi; Kirpensteijn, Jolle; Hesselink, Jan Willem; van Osch, Gerjo J V M; Verseijden, Femke; Bastiaansen-Jenniskens, Yvonne M

    Adipose tissue-derived stem cells (ASCs) are known to be able to promote repair of injured tissue via paracrine factors. However, the effect of cell density and inflammatory cytokines on the paracrine ability of ASCs remains largely unknown. To investigate these effects, ASCs were cultured in 8000

  18. A study of the behaviour of 0.5 μm aerosol particles in the human lung

    International Nuclear Information System (INIS)

    Subba Ramu, M.C.

    1974-01-01

    The evaluation of the tissue dose of inhaled aerosol particles (including radioactive particles) requires a study of the behaviour of particles in the human lung. Half-micron particles (unit density spheres) of di-2-ethyl hexyl subacate have been used for carrying out the study since their deposition is mostly in the pulmonary region and they are good tracers of air flow in the lung. The deposition measured is the lowest reported so far and is affected by physiological parameters like the tidal volume, the breathing frequency and the resting expiratory level. Steady-state and single-breath aerosol experiments show that the particles inhaled remain airborne in the lung during several breaths and support the view that mechanical mixing is completely absent in the alveolated airways of the lung. Studies of the effect of breath-holding on the deposition of 0.5 μm particles in the lung show that these particles may be used for the calculation of the diameter of the alveolar space in life. (author)

  19. Technical Note: Is bulk electron density assignment appropriate for MRI-only based treatment planning for lung cancer?

    Science.gov (United States)

    Prior, Phil; Chen, Xinfeng; Gore, Elizabeth; Johnstone, Candice; Li, X Allen

    2017-07-01

    MRI-based treatment planning in radiation therapy (RT) is prohibitive, in part, due to the lack of electron density (ED) information within the image. The dosimetric differences between MRI- and CT-based planning for intensity modulated RT (IMRT) of lung cancer were investigated to assess the appropriateness of bulk ED assignment. Planning CTs acquired for six representative lung cancer patients were used to generate bulk ED IMRT plans. To avoid the effect of anatomic differences between CT and MRI, "simulated MRI-based plans" were generated by forcing the relative ED (rED) to water on CT-delineated structures using organ specific values from the ICRU Report 46 and using the mean rED value of the internal target volume (ITV) from the planning CT. The "simulated MRI-based plans" were generated using a research planning system (Monaco v5.09.07a, Elekta, AB) and employing Monte Carlo dose calculation. The following dose-volume-parameters (DVPs) were collected from both the "simulated MRI-based plans" and the original planning CT: D 95 , the dose delivered to 95% of the ITV & planning target volume (PTV), D 5 and V 5 , the volume of normal lung irradiated ≥5 Gy. The percent point difference and relative dose difference were used for comparison with the CT based plan for V 5 and D 95 respectively. A total of five plans per patient were generated; three with the ITV rED (rED ITV ) = 1.06, 1.0 and the mean value from the planning CT while the lung rED (rED lung ) was fixed at the ICRU value of 0.26 and two with rED lung = 0.1 and 0.5 while the rED ITV was fixed to the mean value from the planning CT. Noticeable differences in the ITV and PTV DVPs were observed. Variations of the normal lung V 5 can be as large as 9.6%. In some instances, varying the rED ITV between rED mean and 1.06 resulted in D 95 increases ranging from 3.9% to 6.3%. Bulk rED assignment on normal lung affected the DVPs of the ITV and PTV by 4.0-9.8% and 0.3-19.6% respectively. Dose volume histograms

  20. Role of estrogen in lung cancer based on the estrogen receptor-epithelial mesenchymal transduction signaling pathways

    Directory of Open Access Journals (Sweden)

    Zhao XZ

    2015-10-01

    Full Text Available Xiao-zhen Zhao,1,* Yu Liu,1,* Li-juan Zhou,1,* Zhong-qi Wang,1 Zhong-hua Wu,2 Xiao-yuan Yang31Department of Tumor, Longhua Hospital, 2Center of Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 3Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workBackground/aim: Estrogen is reported to promote the occurrence and development of several human cancers. Increasing evidence shows that most human lung tumors exert estrogen receptor expression. In the present study, we investigated the underlying mechanism of estrogen effect in lung cancer through estrogen receptor-epithelial–mesechymal-transition signaling pathways for the first time.Materials and methods: A total of 36 inbred C57BL/6 mice (18 male and 18 female were injected subcutaneously with human lung adenocarcinoma cell line, Lewis. After the lung tumor model was established, mice with lung adenocarcinoma were randomly divided into three groups for each sex (n=6, such as vehicle group, estrogen group, and estrogen plus tamoxifen group. The six groups of mice were sacrificed after 21 days of drug treatment. Tumor tissue was stripped and weighed, and tumor inhibition rate was calculated based on average tumor weight. Protein and messenger RNA (mRNA expressions of estrogen receptor α (ERα, estrogen receptor β (ERβ, phosphatidylinositol 3'-kinase (PI3K, AKT, E-cadherin, and vimentin were detected in both tumor tissue and lung tissue by using immunohistochemistry and real-time reverse transcription-polymerase chain reaction.Results: 1 For male mice: in the estrogen group, estrogen treatment significantly increased ERα protein and mRNA expressions in tumor tissue and protein expression of PI3K, AKT, and vimentin in both tumor tissue and lung tissue compared with the vehicle-treated group. Besides, m

  1. Non-linear behaviour of power density and exposure time of argon laser on ocular tissues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, E M; Talaat, M S; Salem, E F [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    1997-12-31

    In ophthalmology, the thermal effect of argon laser is the most widely used category of laser- tissue interaction. The rise in tissue temperature has to exceed a threshold value for photo coagulation of retinal blood vessels. This value mainly depends on the laser. The most suitable argon laser power P and exposure time (t) which would be more effective for thermal and electrical behaviour of chicken eye was studied. This was achieved by measuring the variations in ocular temperature in electroretinogram (ERG) records under the effect of argon experiment, while power density (P) and exposure time (t) were varied in four different ways for each dose (pt). Results indicated that for the same laser dose, the temperature distribution of the eye, using low power density and high exposure time was higher than that high power density and low exposure time, indicating non-linearity of the laser dose. This finding was confirmed by ERG records which showed similar variations in b-wave latency, amplitude and duration, for the laser exposure conditions. This indicates variations in retinal function due to laser-dependent temperature variations. 5 figs., 3 tabs.

  2. Neutrophil elastase-induced elastin degradation mediates macrophage influx and lung injury in 60% O2-exposed neonatal rats.

    Science.gov (United States)

    Masood, Azhar; Yi, Man; Belcastro, Rosetta; Li, Jun; Lopez, Lianet; Kantores, Crystal; Jankov, Robert P; Tanswell, A Keith

    2015-07-01

    Neutrophil (PMNL) influx precedes lung macrophage (LM) influx into the lung following exposure of newborn pups to 60% O2. We hypothesized that PMNL were responsible for the signals leading to LM influx. This was confirmed when inhibition of PMNL influx with a CXC chemokine receptor-2 antagonist, SB-265610, also prevented the 60% O2-dependent LM influx, LM-derived nitrotyrosine formation, and pruning of small arterioles. Exposure to 60% O2 was associated with increased lung contents of neutrophil elastase and α-elastin, a marker of denatured elastin, and a decrease in elastin fiber density. This led us to speculate that neutrophil elastase-induced elastin fragments were the chemokines that led to a LM influx into the 60% O2-exposed lung. Inhibition of neutrophil elastase with sivelestat or elafin attenuated the LM influx. Sivelestat also attenuated the 60% O2-induced decrease in elastin fiber density. Daily injections of pups with an antibody to α-elastin prevented the 60% O2-dependent LM influx, impaired alveologenesis, and impaired small vessel formation. This suggests that neutrophil elastase inhibitors may protect against neonatal lung injury not only by preventing structural elastin degradation, but also by blocking elastin fragment-induced LM influx, thus preventing tissue injury from LM-derived peroxynitrite formation. Copyright © 2015 the American Physiological Society.

  3. SU-E-J-24: Image-Guidance Using Cone-Beam CT for Stereotactic Body Radiotherapy (SBRT) of Lung Cancer Patients: Bony Alignment or Soft Tissue Alignment?

    Science.gov (United States)

    Wang, L; Turaka, A; Meyer, J; Spoka, D; Jin, L; Fan, J; Ma, C

    2012-06-01

    To assess the reliability of soft tissue alignment by comparing pre- and post-treatment cone-beam CT (CBCT) for image guidance in stereotactic body radiotherapy (SBRT) of lung cancers. Our lung SBRT procedures require all patients undergo 4D CT scan in order to obtain patient-specific target motion information through reconstructed 4D data using the maximum-intensity projection (MIP) algorithm. The internal target volume (ITV) was outlined directly from the MIP images and a 3-5 mm margin expansion was then applied to the ITV to create the PTV. Conformal treatment planning was performed on the helical images, to which the MIP images were fused. Prior to each treatment, CBCT was used for image guidance by comparing with the simulation CT and for patient relocalization based on the bony anatomy. Any displacement of the patient bony structure would be considered as setup errors and would be corrected by couch shifts. Theoretically, as the PTV definition included target internal motion, no further shifts other than setup corrections should be made. However, it is our practice to have treating physicians further check target localization within the PTV. Whenever the shifts based on the soft-tissue alignment (that is, target alignment) exceeded a certain value (e.g. 5 mm), a post-treatment CBCT was carried out to ensure that the tissue alignment is reliable by comparing between pre- and post-treatment CBCT. Pre- and post-CBCT has been performed for 7 patients so far who had shifts beyond 5 mm despite bony alignment. For all patients, post CBCT confirmed that the visualized target position was kept in the same position as before treatment after adjusting for soft-tissue alignment. For the patient population studied, it is shown that soft-tissue alignment is necessary and reliable in the lung SBRT for individual cases. © 2012 American Association of Physicists in Medicine.

  4. Nonrespiratory lung function

    Energy Technology Data Exchange (ETDEWEB)

    Isawa, Toyoharu [Tohoku University Research Institute for Chest Disease and Cancer, Sendai (Japan)

    1994-07-01

    The function of the lungs is primarily the function as a gas exchanger: the venous blood returning to the lungs is arterialized with oxygen in the lungs and the arterialized blood is sent back again to the peripheral tissues of the whole body to be utilized for metabolic oxygenation. Besides the gas exchanging function which we call ''respiratory lung function'' the lungs have functions that have little to do with gas exchange itself. We categorically call the latter function of the lungs as ''nonrespiratory lung function''. The lungs consist of the conductive airways, the gas exchanging units like the alveoli, and the interstitial space that surrounds the former two compartments. The interstitial space contains the blood and lymphatic capillaries, collagen and elastic fibers and cement substances. The conductive airways and the gas exchanging units are directly exposed to the atmosphere that contains various toxic and nontoxic gases, fume and biological or nonbiological particles. Because the conductive airways are equipped with defense mechanisms like mucociliary clearance or coughs to get rid of these toxic gases, particles or locally produced biological debris, we are usually free from being succumbed to ill effects of inhaled materials. By use of nuclear medicine techniques, we can now evaluate mucociliary clearance function, and other nonrespiratory lung functions as well in vivo.

  5. Nonrespiratory lung function

    International Nuclear Information System (INIS)

    Isawa, Toyoharu

    1994-01-01

    The function of the lungs is primarily the function as a gas exchanger: the venous blood returning to the lungs is arterialized with oxygen in the lungs and the arterialized blood is sent back again to the peripheral tissues of the whole body to be utilized for metabolic oxygenation. Besides the gas exchanging function which we call ''respiratory lung function'' the lungs have functions that have little to do with gas exchange itself. We categorically call the latter function of the lungs as ''nonrespiratory lung function''. The lungs consist of the conductive airways, the gas exchanging units like the alveoli, and the interstitial space that surrounds the former two compartments. The interstitial space contains the blood and lymphatic capillaries, collagen and elastic fibers and cement substances. The conductive airways and the gas exchanging units are directly exposed to the atmosphere that contains various toxic and nontoxic gases, fume and biological or nonbiological particles. Because the conductive airways are equipped with defense mechanisms like mucociliary clearance or coughs to get rid of these toxic gases, particles or locally produced biological debris, we are usually free from being succumbed to ill effects of inhaled materials. By use of nuclear medicine techniques, we can now evaluate mucociliary clearance function, and other nonrespiratory lung functions as well in vivo

  6. Enhanced tumor growth in the remaining lung after major lung resection.

    Science.gov (United States)

    Sano, Fumiho; Ueda, Kazuhiro; Murakami, Junichi; Hayashi, Masataro; Nishimoto, Arata; Hamano, Kimikazu

    2016-05-01

    Pneumonectomy induces active growth of the remaining lung in order to compensate for lost lung tissue. We hypothesized that tumor progression is enhanced in the activated local environment. We examined the effects of mechanical strain on the activation of lung growth and tumor progression in mice. The mechanical strain imposed on the right lung after left pneumonectomy was neutralized by filling the empty space that remained after pneumonectomy with a polypropylene prosthesis. The neutralization of the strain prevented active lung growth. According to an angiogenesis array, stronger monocyte chemoattractant protein-1 (MCP-1) expression was found in the strain-induced growing lung. The neutralization of the strain attenuated the release of MCP-1 from the lung cells. The intravenous injection of Lewis lung cancer cells resulted in the enhanced development of metastatic foci in the strain-induced growing lung, but the enhanced development was canceled by the neutralization of the strain. An immunohistochemical analysis revealed the prominent accumulation of tumor-associated macrophages in tumors arising in the strain-induced growing lung, and that there was a relationship between the accumulation and the MCP-1 expression status. Our results suggested that mechanical lung strain, induced by pulmonary resection, triggers active lung growth, thereby creating a tumor-friendly environment. The modification of that environment, as well as the minimizing of surgical stress, may be a meaningful strategy to improve the therapeutic outcome after lung cancer surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Creation of lung-targeted dexamethasone immunoliposome and its therapeutic effect on bleomycin-induced lung injury in rats.

    Directory of Open Access Journals (Sweden)

    Xue-Yuan Chen

    Full Text Available OBJECTIVE: Acute lung injury (ALI, is a major cause of morbidity and mortality, which is routinely treated with the administration of systemic glucocorticoids. The current study investigated the distribution and therapeutic effect of a dexamethasone(DXM-loaded immunoliposome (NLP functionalized with pulmonary surfactant protein A (SP-A antibody (SPA-DXM-NLP in an animal model. METHODS: DXM-NLP was prepared using film dispersion combined with extrusion techniques. SP-A antibody was used as the lung targeting agent. Tissue distribution of SPA-DXM-NLP was investigated in liver, spleen, kidney and lung tissue. The efficacy of SPA-DXM-NLP against lung injury was assessed in a rat model of bleomycin-induced acute lung injury. RESULTS: The SPA-DXM-NLP complex was successfully synthesized and the particles were stable at 4°C. Pulmonary dexamethasone levels were 40 times higher with SPA-DXM-NLP than conventional dexamethasone injection. Administration of SPA-DXM-NLP significantly attenuated lung injury and inflammation, decreased incidence of infection, and increased survival in animal models. CONCLUSIONS: The administration of SPA-DXM-NLP to animal models resulted in increased levels of DXM in the lungs, indicating active targeting. The efficacy against ALI of the immunoliposomes was shown to be superior to conventional dexamethasone administration. These results demonstrate the potential of actively targeted glucocorticoid therapy in the treatment of lung disease in clinical practice.

  8. Bronchus-associated lymphoid tissue (BALT) lymphoma of the lung showing mosaic pattern of inhomogeneous attenuation on thin-section CT: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Jae; Kim, Sung Hwan; Koo, Soo Hyun; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Jang, Kee Taek; Kim, Duck Hwan [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2000-09-01

    The authors present a case of histologically proven bronchus-associated lymphoid tissue (BALT) lymphoma of the lung in a patient with primary Sjogren's syndrome that manifested on thin-section CT scan as a mosaic pattern of inhomogeneous attenuation due to mixed small airway and infiltrative abnormalities.

  9. Early structural changes in sheep lung following thoracic irradiation

    International Nuclear Information System (INIS)

    Guerry-Force, M.L.; Perkett, E.A.; Brigham, K.L.; Meyrick, B.

    1988-01-01

    Using a large animal model of radiation lung injury--the sheep exposed to bilateral thoracic irradiation--we have recently shown the development of sustained pulmonary hypertension during the first 4 weeks following radiation. This is the period prior to the onset of pneumonitis and pulmonary fibrosis. In the present study, we have examined biopsy and autopsy lung tissue from these same sheep and assessed the sequential changes in lung morphology. Six unanesthetized sheep received bilateral thoracic irradiation (a total of 15 Gy); control sheep were sham irradiated. Lung biopsy tissue was taken prior to and at weekly or biweekly intervals during the 4 weeks immediately following radiation. The lungs were also removed at autopsy for light and electron microscopic examination. Our results show early (Week 1) interstitial and progressive intraalveolar edema accompanied by endothelial and epithelial injury. A gradual increase in number of interstitial mononuclear cells was evident from Week 1, both in the lung tissue and in perivascular cuffs. The number of peripheral lung interstitial mononuclear cells was twice baseline from Week 3 and included accumulation of lymphocytes, fibroblasts, and intravascular macrophages. The increased numbers of mononuclear cells paralleled the development of chronic pulmonary hypertension, perhaps suggesting their involvement in the pathogenesis of this disease. Alternatively, it may be that increased mononuclear cell number represents a stage of lung repair

  10. Personalized medicine for non-small-cell lung cancer: implications of recent advances in tissue acquisition for molecular and histologic testing.

    Science.gov (United States)

    Moreira, Andre L; Thornton, Raymond H

    2012-09-01

    In light of recent advances in individualized therapy for non-small-cell lung cancer (NSCLC), molecular and histologic profiling is essential for guiding therapeutic decisions. Results of these analyses may have implications for both response (eg, molecular testing for EGFR [epidermal growth factor receptor] mutations) and safety (eg, contraindications for squamous histology) in NSCLC. Most patients with NSCLC present with unresectable advanced disease; therefore, greater emphasis is being placed on minimally invasive tissue acquisition techniques, such as small biopsy and cytology specimens. Due to the need for increasing histologic and molecular information and increasingly smaller tissue sample sizes, efforts must be focused on optimizing tissue acquisition and the development of more sensitive molecular assays. Recent advances in tissue acquisition techniques and specimen preservation may help to address this challenge and lead to enhanced personalized treatment in NSCLC. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    International Nuclear Information System (INIS)

    Korfiatis, P; Costaridou, L; Kalogeropoulou, C; Petsas, T; Daoussis, D; Adonopoulos, A

    2009-01-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  12. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    Science.gov (United States)

    Korfiatis, P.; Kalogeropoulou, C.; Daoussis, D.; Petsas, T.; Adonopoulos, A.; Costaridou, L.

    2009-07-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  13. Increased COX-2 expression in epithelial and stromal cells of high mammographic density tissues and in a xenograft model of mammographic density.

    Science.gov (United States)

    Chew, G L; Huo, C W; Huang, D; Hill, P; Cawson, J; Frazer, H; Hopper, J L; Haviv, I; Henderson, M A; Britt, K; Thompson, E W

    2015-08-01

    Mammographic density (MD) adjusted for age and body mass index is one of the strongest known risk factors for breast cancer. Given the high attributable risk of MD for breast cancer, chemoprevention with a safe and available agent that reduces MD and breast cancer risk would be beneficial. Cox-2 has been implicated in MD-related breast cancer risk, and was increased in stromal cells in high MD tissues in one study. Our study assessed differential Cox-2 expression in epithelial and stromal cells in paired samples of high and low MD human breast tissue, and in a validated xenograft biochamber model of MD. We also examined the effects of endocrine treatment upon Cox-2 expression in high and low MD tissues in the MD xenograft model. Paired high and low MD human breast tissue samples were immunostained for Cox-2, then assessed for differential expression and staining intensity in epithelial and stromal cells. High and low MD human breast tissues were separately maintained in biochambers in mice treated with Tamoxifen, oestrogen or placebo implants, then assessed for percentage Cox-2 staining in epithelial and stromal cells. Percentage Cox-2 staining was greater for both epithelial (p = 0.01) and stromal cells (p tissues. In high MD biochamber tissues, percentage Cox-2 staining was greater in stromal cells of oestrogen-treated versus placebo-treated tissues (p = 0.05).

  14. Boron uptake measurements in metastatic tumours in rat lung

    International Nuclear Information System (INIS)

    Bortolussi, S.; Altieri, S.; Bruschi, P.

    2006-01-01

    Lung carcinoma is the leading cause of cancer mortality worldwide; despite the introduction over the last few years of new therapeutic agents, very little progress has been made in terms of survival, and the overall prognosis for these patients remains poor. For these reasons any efforts to find and validate new effective therapeutic procedures for lung cancer are very timely and essential. To study the possibility to apply BNCT in the cure of diffuse pulmonary tumours, we created a BNCT Lung Project in Pavia, supported by Ministry of Education, University and Research (MIUR), in which Physicists, Medical Doctors and Biologists are involved. The first steps were; 1. development of an animal model for Boron uptake measurements in healthy and tumour lung tissues; 2. evaluation of the possibility to treat patients with epithermal neutron beams (See S. Altieri et al., this Conference); 3. in-vitro study of BNCT efficacy (see A. Zonta et al.). Spatial Boron distribution by neutron radiography in lung metastases from Colon Adenocarcinoma is reported; furthermore we present preliminary results of Boron concentration measures in rat lung tissues. The measures were performed using alpha spectrometry in thin tissue samples. (author)

  15. Effects of Respiration-Induced Density Variations on Dose Distributions in Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Mexner, Vanessa; Wolthaus, Jochem W.H.; Herk, Marcel van; Damen, Eugene M.F.; Sonke, Jan-Jakob

    2009-01-01

    Purpose: To determine the effect of respiration-induced density variations on the estimated dose delivered to moving structures and, consequently, to evaluate the necessity of using full four-dimensional (4D) treatment plan optimization. Methods and Materials: In 10 patients with large tumor motion (median, 1.9 cm; range, 1.1-3.6 cm), the clinical treatment plan, designed using the mid-ventilation ([MidV]; i.e., the 4D-CT frame closest to the time-averaged mean position) CT scan, was recalculated on all 4D-CT frames. The cumulative dose was determined by transforming the doses in all breathing phases to the MidV geometry using deformable registration and then averaging the results. To determine the effect of density variations, this cumulative dose was compared with the accumulated dose after similarly deforming the planned (3D) MidV-dose in each respiratory phase using the same transformation (i.e., 'blurring the dose'). Results: The accumulated tumor doses, including and excluding density variations, were almost identical. Relative differences in the minimum gross tumor volume (GTV) dose were less than 2% for all patients. The relative differences were even smaller in the mean lung dose and the V20 (<0.5% and 1%, respectively). Conclusions: The effect of respiration-induced density variations on the dose accumulated over the respiratory cycle was very small, even in the presence of considerable respiratory motion. A full 4D-dose calculation for treatment planning that takes into account such density variations is therefore not required. Planning using the MidV-CT derived from 4D-CT with an appropriate margin for geometric uncertainties is an accurate and safe method to account for respiration-induced anatomy variations.

  16. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  17. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  18. CT Densitometry of the Lung in Healthy Nonsmokers with Normal Pulmonary Function

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Tack Sun; Chae, Eun Jin; Seo, Joon Beom; Jung, Young Ju; Oh, Yeon Mok; Lee, Sang Do [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2012-09-15

    To investigate the upper normal limit of low attenuation area in healthy nonsmokers. A total of 36 nonsmokers with normal pulmonary function test underwent a CT scan. Six thresholds (-980 --930 HU) on inspiration CT and two thresholds (-950 and -910 HU) on expiration CT were used for obtaining low attenuation area. The mean lung density was obtained on both inspiration CT and expiration CT. Descriptive statistics of low attenuation area and the mean lung density, evaluation of difference of low attenuation area and the mean lung density in both sex and age groups, analysis of the relationship between demographic information and CT parameters were performed. Upper normal limit for low attenuation area was 12.96% on inspiration CT (-950 HU) and 9.48% on expiration CT (-910 HU). Upper normal limit for the mean lung density was -837.58 HU on inspiration CT and 686.82 HU on expiration CT. Low attenuation area and the mean lung density showed no significant differences in both sex and age groups. Body mass index (BMI) was negatively correlated with low attenuation area on inspiration CT (-950 HU, r = -0.398, p = 0.016) and positively correlated with the mean lung density on inspiration CT (r 0.539, p = 0.001) and expiration CT (r = 0.432, p = 0.009). Age and body surface area were not correlated with low attenuation area or the mean lung density. Low attenuation area on CT densitometry of the lung could be found in healthy nonsmokers with normal pulmonary function, and showed negative association with BMI. Reference values, such as range and upper normal limit for low attenuation area in healthy subjects could be helpful in quantitative analysis and follow up of early emphysema, using CT densitometry of the lung.

  19. Screening for Helicobacter pylori in Idiopathic Pulmonary Fibrosis Lung Biopsies.

    Science.gov (United States)

    Kreuter, Michael; Kirsten, Detlef; Bahmer, Thomas; Penzel, Roland; Claussen, Martin; Ehlers-Tenenbaum, Svenja; Muley, Thomas; Palmowski, Karin; Eichinger, Monika; Leider, Marta; Herth, Felix J F; Rabe, Klaus F; Bittmann, Iris; Warth, Arne

    2016-01-01

    Increasing evidence suggests a role of gastro-oesophageal reflux (GER) in idiopathic pulmonary fibrosis (IPF) pathogenesis. Recently, an association between serum Helicobacter pylori (HP) antibody positivity and more severe disease was described, but HP has not been directly analysed in lung tissue so far. To investigate the presence of HP in the lung tissue of IPF patients. Two tertiary interstitial lung disease care centre databases were screened for available lung biopsy material from IPF patients. Clinical and radiological data, including presence of GER and antiacid medication, were evaluated. HP-specific PCR was carried out on the IPF lung biopsy specimens. A total of 39 IPF patients were included, of whom 85% were male. The patients' median age was 66 years, their vital capacity was 79% predicted, and their diffusing capacity for carbon monoxide was 53% predicted. In all, 82% of the lung biopsies were surgical and 18% transbronchial. Comorbidities were GER disease in 23% (n = 9), sleep apnoea in 13% (n = 5) and hiatal hernia in 38% of the cases (n = 15). Proton pump inhibitors were prescribed at the time of biopsy in 21% of the cases (n = 9). After a median follow-up of 25 months (range 6-69), there were 1 death, 1 lung transplantation and 8 acute exacerbations without relevant differences between the GER and non-GER subgroups. HP DNA was not detected in any of the lung tissue samples. The fact that no HP DNA was detected in the lung tissues calls into question the proposed relevance of HP to the direct pathogenesis of IPF. © 2015 S. Karger AG, Basel.

  20. Rapid clearance of xanthines from airway and pulmonary tissues

    International Nuclear Information System (INIS)

    Kroell, F.K.; Karlsson, J.A.; Nilsson, E.; Ryrfeldt, A.; Persson, C.G.

    1990-01-01

    The airway and pulmonary fate of two antiasthma xanthines was examined in a guinea pig perfused lung preparation where the airway mechanics and airway microvascular perfusion are maintained at near normal values. 14C-theophylline or 14C-enprofylline was infused for 10, 30, and 300 s into the pulmonary artery of the guinea pig isolated lung. The radioactivity increased rapidly (within 10 s) in tracheobronchial as well as in lung tissue, confirming that the large airway microcirculation was well supplied also by the perfusion. The effluent concentrations of total 3H and 14C radioactivity at the onset, during, and after intrapulmonary infusion of 14C-labeled xanthines and 3H-sucrose were closely associated, suggesting that the xanthines, like sucrose, largely distributed in extracellular fluid and were not taken up by the tissues. No metabolites of enprofylline or theophylline could be detected in the lung tissue or lung effluent, suggesting that xanthines are not biotransformed by the guinea pig lung. After intratracheal instillation of 14C-theophylline, the peak radioactivity in the lung effluent appeared in the second 15-s fraction after instillation, and after 10 and 60 min, 68.1 +/- 4.7% and 86.9 +/- 8.4%, respectively, of the given dose had appeared in the lung effluent. The present data suggest a mainly extracellular distribution and a rapid clearance of xanthines from the lung and airway tissues. The rapid disappearance of topical theophylline may explain the lack of success of inhalation therapy with this drug

  1. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  2. MHC class II expression in lung cancer.

    Science.gov (United States)

    He, Yayi; Rozeboom, Leslie; Rivard, Christopher J; Ellison, Kim; Dziadziuszko, Rafal; Yu, Hui; Zhou, Caicun; Hirsch, Fred R

    2017-10-01

    Immunotherapy is an exciting development in lung cancer research. In this study we described major histocompatibility complex (MHC) Class II protein expression in lung cancer cell lines and patient tissues. We studied MHC Class II (DP, DQ, DR) (CR3/43, Abcam) protein expression in 55 non-small cell lung cancer (NSCLC) cell lines, 42 small cell lung cancer (SCLC) cell lines and 278 lung cancer patient tissues by immunohistochemistry (IHC). Seven (12.7%) NSCLC cell lines were positive for MHC Class II. No SCLC cell lines were found to be MHC Class II positive. We assessed 139 lung cancer samples available in the Hirsch Lab for MHC Class II. There was no positive MHC Class II staining on SCLC tumor cells. MHC Class II expression on TILs in SCLC was significantly lower than that on TILs in NSCLC (P<0.001). MHC Class II was also assessed in an additional 139 NSCLC tumor tissues from Medical University of Gdansk, Poland. Patients with positive staining of MHC Class II on TILs had longer regression-free survival (RFS) and overall survival (OS) than those whose TILs were MHC Class II negative (2.980 years, 95% CI 1.628-4.332 vs. 1.050 years, 95% CI 0.556-1.554, P=0.028) (3.230 years, 95% CI 2.617-3.843 vs. 1.390 years, 95% CI 0.629-2.151, P=0.014). MHC Class II was expressed both in NSCLC cell lines and tissues. However, MHC Class II was not detected in SCLC cell lines or tissue tumor cells. MHC Class II expression was lower on SCLC TILs than on NSCLC TILs. Loss of expression of MHC Class II on SCLC tumor cells and reduced expression on SCLC TILs may be a means of escaping anti-cancer immunity. Higher MHC Class II expression on TILs was correlated with better prognosis in patients with NSCLC. Copyright © 2017. Published by Elsevier B.V.

  3. Estimation of lung volume and pulmonary blood volume from radioisotopic images

    International Nuclear Information System (INIS)

    Kanazawa, Minoru

    1989-01-01

    Lung volume and pulmonary blood volume in man were estimated from the radioisotopic image using single photon emission computed tomography (SPECT). Six healthy volunteers were studied in a supine position with normal and altered lung volumes by applying continuous negative body-surface pressure (CNP) and by positive end-expiratory pressure (PEEP). 99m Tc labeled human serum albumin was administered as an aerosol to image the lungs. The CNP caused the diaphragm to be lowered and it increased the mean lung tissue volume obtained by SPECT from 3.09±0.49 l for baseline to 3.67±0.62 l for 10 cmH 2 O (p 2 O (p 2 O), respectively. The PEEP also increased the lung tissue volume to 3.68±0.68 l for 10 cmH 2 O as compared with the baseline (p 2 O PEEP. The lung tissue volume obtained by SPECT showed a positive correlation with functional residual capacity measured by the He dilution method (r=0.91, p 99m Tc-labeled red blood cells. The L/H ratio decreased after either the CNP or PEEP, suggesting a decrease in the blood volume per unit lung volume. However, it was suggested that the total pulmonary blood volume increased slightly either on the CNP (+7.4% for 10 cmH 2 O, p 2 O,p<0.05) when we extrapolated the L/H ratio to the whole lungs by multiplying the lung tissue volume obtained by SPECT. We concluded that SPECT could offer access to the estimation of lung volume and pulmonary blood volume in vivo. (author)

  4. Endocytic Uptake, Transport and Macromolecular Interactions of Anionic PAMAM Dendrimers within Lung Tissue.

    Science.gov (United States)

    Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark

    2017-12-01

    Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.

  5. Detection and classification of interstitial lung diseases and emphysema using a joint morphological-fuzzy approach

    Science.gov (United States)

    Chang Chien, Kuang-Che; Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise; Chang, Ruey-Feng

    2009-02-01

    Multi-detector computed tomography (MDCT) has high accuracy and specificity on volumetrically capturing serial images of the lung. It increases the capability of computerized classification for lung tissue in medical research. This paper proposes a three-dimensional (3D) automated approach based on mathematical morphology and fuzzy logic for quantifying and classifying interstitial lung diseases (ILDs) and emphysema. The proposed methodology is composed of several stages: (1) an image multi-resolution decomposition scheme based on a 3D morphological filter is used to detect and analyze the different density patterns of the lung texture. Then, (2) for each pattern in the multi-resolution decomposition, six features are computed, for which fuzzy membership functions define a probability of association with a pathology class. Finally, (3) for each pathology class, the probabilities are combined up according to the weight assigned to each membership function and two threshold values are used to decide the final class of the pattern. The proposed approach was tested on 10 MDCT cases and the classification accuracy was: emphysema: 95%, fibrosis/honeycombing: 84% and ground glass: 97%.

  6. Reduced ischemia-reperfusion injury with isoproterenol in non-heart-beating donor lungs.

    Science.gov (United States)

    Jones, D R; Hoffmann, S C; Sellars, M; Egan, T M

    1997-05-01

    Transplantation of lungs retrieved from non-heart-beating donors could expand the donor pool. Recent studies suggest that the ischemia-reperfusion injury (IRI) to the lung can be attenuated by increasing intracellular cAMP concentrations. The purpose of this study was to determine the effect of IRI on capillary permeability, as measured by Kfc, in lungs retrieved from non-heart-beating donors and reperfused with or without isoproterenol (iso). Using an in situ isolated perfused lung model, lungs were retrieved from non-heart-beating donor rats ventilated with O2 or not at varying intervals after death. The lungs were reperfused with or without iso (10 microM). Kfc, lung viability, and pulmonary hemodynamics were measured, and tissue levels of adenine nucleotides and cAMP were measured by HPLC. Iso-reperfusion decreased Kfc significantly (P Kfc in non-iso-reperfused (r = 0.65) and iso-perfused (r = 0.84) lungs. cAMP levels increased significantly with iso-reperfusion. cAMP levels correlated with Kfc (r = 0.87) in iso-reperfused lungs. Iso-reperfusion of lungs retrieved from non-heart-beating donor rats results in decreased capillary permeability and increased lung tissue cAMP levels. Pharmacologic augmentation of tissue TAN and cAMP levels may further ameliorate the increased capillary permeability seen in lungs retrieved from non-heart-beating donors.

  7. Fibroblasts are in a position to provide directional information to migrating neutrophils during pneumonia in rabbit lungs.

    Science.gov (United States)

    Behzad, A R; Chu, F; Walker, D C

    1996-05-01

    Previous findings have shown that pulmonary fibroblasts are associated with preexisting holes in the endothelial and epithelial basal laminae through which neutrophils appear to enter and leave the interstitium as they migrate from capillaries to alveoli. To determine their role in neutrophil migration, fibroblast organization within the interstitium was assessed by transmission electron microscope observations of serial-sectioned rabbit lung tissue. Interstitial fibroblasts were found to physically interconnect the endothelial basal lamina holes to epithelial basal lamina holes. Morphometric assessment of rabbit lung tissue instilled with Streptococcus pneumoniae revealed that approximately 70% of the surface area density of migrating neutrophils is in close contact (15 nm or less) with interstitial fibroblasts and extracellular matrix elements (30 and 40%, respectively). Although migrating neutrophils were close enough to adhere to both fibroblasts and extracellular elements, the interstitial fibroblasts are organized in a manner that would allow them to provide directional information to the neutrophils. A model illustrating this process is proposed.

  8. [Enterococcus faecium lung abscess: one case report and literature review].

    Science.gov (United States)

    Fang, Xiang-Qun; Liu, You-Ning

    2010-02-01

    to study the diagnosis and treatment of enterococcus faecium lung abscess. a retrospective analysis of one case of Enterococcus faecium lung abscess and literature review was conducted. this patient suffered from cough and sputum over 6 months and complicated with hemoptysis over 3 months. Pulmonary embolism and lung cancer were suspected initially. After 2 times of CT-guided percutaneous transthoracic needle aspiration biopsy the diagnosis of pneumonia was made in other hospitals. However, the consolidation in the lung progressed and cavity appeared although antibiotic therapy was conducted. After admission to our hospital, CT-guided percutaneous transthoracic needle aspiration biopsy was made and the lung tissue was sent for bacterial culture. Enterococcus faecium was cultured and it was susceptible to vancomycin, teicoplanin and linezolid. The disease improved significantly after treatment with these 3 antibiotics in turn. In addition, 13 cases of enterococcus pneumonia or lung abscess were reviewed, including 3 cases of enterococcus faecium lung abscess. enterococcus faecium is rarely a pathogen for lung abscess. The diagnosis of enterococcus faecium lung abscess could be confirmed by lung biopsy and bacterial culture of lung tissue which could also provide the susceptibility of antibiotics and guide the antibiotic therapy.

  9. Characterization of tissues equivalent to the human body by the Monte Carlo method for X-rays

    International Nuclear Information System (INIS)

    Vega R, J.; Huamani T, Y.; Mullisaca P, A. F.; Yauri C, L.

    2017-10-01

    There is a need to have materials equivalent to the human body that have the appropriate characteristics to be used as a substitute tissue in the clinical practices of radio-diagnosis, radiotherapy. In Arequipa, Peru, there are two health centers in radiotherapy applications, one with a Theratron Co-60 gamma irradiator and another with Elekta Linac; the Medical Physics Area of the School of Physics of the National University of San Agustin de Arequipa, were four equivalent materials based on epoxy resin, phenolitic spheres, calcium carbonate, etc. were built, such as bone tissue, soft tissue, adipose and lung tissue compared with water, whit the purpose of studying and applying them in future clinical applications. In this work we describe its physical and dosimetric characterization to determine its use as an equivalent material or manikin. The materials are 1 cm thick and 30 cm in diameter, the materials are non-malleable solids, they do not degrade, they have stability in their consistency due to temperature and irradiation, they are not toxic in their use, determining densities from 0.32 g/cm 3 for the lung tissue to 1.8 g/cm 3 for the bone material. These materials were analyzed by scanning electron microscopy, giving the percentages by weight of the elements found to determine their effective atomic number, the physical analysis to determine their mass absorption and energy coefficients, which were studied for energy photons between 1 KeV at 20 MeV. The simulation of the equivalent materials and the physical and dosimetric study were found using the code Penelope 2008 Monte Carlo method and validated by the Nist database. The results obtained according to their coefficients of mass attenuation of each material, show lung, bone, soft and adipose tissue with differences with respect to the same Nist materials. The range maximum and minimum Rd deviation found was 35.65 - 3.16 for bone, 28.5 - 6.74 for lung, 33.78 - 9.06 for soft tissue and 86.42 - 1.28 for

  10. HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer.

    Science.gov (United States)

    Hwang, Jung-Ah; Lee, Bo Bin; Kim, Yujin; Hong, Seung-Hyun; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Yoon, Chae-Yeong; Lee, Yeon-Su; Kim, Duk-Hwan

    2015-06-01

    This study was aimed at understanding the clinicopathological significance of HOXA9 hypermethylation in non-small cell lung cancer (NSCLC). HOXA9 hypermethylation was characterized in six lung cancer cell lines, and its clinicopathological significance was analyzed using methylation-specific PCR in 271 formalin-fixed paraffin-embedded tissues and 27 fresh-frozen tumor and matched normal tissues from 298 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA9 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA9 into H23 lung cancer cells resulted in the inhibition of cell migration but not proliferation. Conversely, sequence-specific siRNA-mediated knockdown of HOXA9 enhanced cell migration. The mRNA levels of HOXA9 in 27 fresh-frozen tumor tissues were significantly lower than in matched normal tissues (Precurrence-free survival (hazard ratio=3.98, 95% confidence interval = 1.07-17.09, P=0.01) in never-smokers, after adjusting for age, sex, tumor size, adjuvant therapy, pathologic stage, and histology. In conclusion, the present study suggests that HOXA9 inhibits migration of lung cancer cells and its hypermethylation is an independent prognostic factor for recurrence-free survival in never-smokers with NSCLC. © 2014 Wiley Periodicals, Inc.

  11. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    International Nuclear Information System (INIS)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C.; Koenig, J.; Liu Li; Schuck, A.; Willich, N.

    2004-01-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-)α, interleukin-(IL)-1α and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-α, IL-1α and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-α and at 6 h p.i. for IL-1α and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-α, IL-1α and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute pneumonitis. (orig.)

  12. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C. [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Koenig, J. [Inst. of Medical Biometrics, Epidemiology and Medical Informatics, Saarland Univ., Homburg/Saar (Germany); Liu Li [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Cancer Center, Union Hospital Tongji Medical Coll., Huazhong Univ. of Science and Technology, Wuhan (China); Schuck, A.; Willich, N. [Dept. of Radiotherapy - Radiooncology, Univ. of Muenster (Germany)

    2004-07-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-){alpha}, interleukin-(IL)-1{alpha} and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-{alpha}, IL-1{alpha} and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-{alpha} and at 6 h p.i. for IL-1{alpha} and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-{alpha}, IL-1{alpha} and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute

  13. Role of heme in bromine-induced lung injury

    Science.gov (United States)

    Lam, Adam; Vetal, Nilam; Matalon, Sadis; Aggarwal, Saurabh

    2016-01-01

    Bromine (Br2) gas inhalation poses an environmental and occupational hazard resulting in high morbidity and mortality. In this review, we underline the acute lung pathology (within 24 hours of exposure) and potential therapeutic interventions that may be utilized to mitigate Br2-induced human toxicity. We will discuss our latest published data, which suggests that an increase in heme-dependent tissue injury underlies the pathogenesis of Br2 toxicity. Our study was based on previous findings that demonstrated that Br2 upregulates the heme-degrading enzyme heme oxygenase-1 (HO-1), which converts toxic heme into billiverdin. Interestingly, following Br2 inhalation, heme levels were indeed elevated in bronchoalveolar lavage fluid, plasma, and whole lung tissue in C57BL/6 mice. High heme levels correlated with increased lung oxidative stress, lung inflammation, respiratory acidosis, lung edema, higher airway resistance, and mortality. However, therapeutic reduction of heme levels, by either scavenging with hemopexin or degradation by HO-1, improved lung function and survival. Therefore, heme attenuation may prove a useful adjuvant therapy to treat patients after Br2 exposure. PMID:27244263

  14. Contribution of neutrophils to acute lung injury.

    Science.gov (United States)

    Grommes, Jochen; Soehnlein, Oliver

    2011-01-01

    Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.

  15. Boron absorption imaging in rat lung colon adenocarcinoma metastases

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Bortolussi, S [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Bruschi, P [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Fossati, F [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Vittor, K [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Nano, R [Dipartimento di Biologia Animale Universita degli Studi di Pavia (Italy); Facoetti, A [Dipartimento di Biologia Animale Universita degli Studi di Pavia (Italy); Chiari, P [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Bakeine, J [Dipartimento di Scienze Biomediche e Biotecnologie Universita degli Studi di Brescia (Italy); Clerici, A [Dipartimento di Chirurgia Universita degli Studi di Pavia (Italy); Ferrari, C [Dipartimento di Chirurgia Universita degli Studi di Pavia (Italy); Salvucci, O [Dipartimento di Scienze Biomediche e Biotecnologie Universita degli Studi di Brescia (Italy)

    2006-05-15

    Given the encouraging results from our previous work on the clinical application of BNCT on non-resectable, chemotherapy resistant liver metastases, we explore the possibility to extend our technique to lung metastases. A fundamental requirement for BNCT is achieving higher {sup 10}B concentrations in the metastases compared to those in healthy tissue. For this reason we developed a rat model with lung metastases in order to study the temporal distribution of {sup 10}B concentration in tissues and tumoral cells. Rats with induced lung metastases from colon adenocarcinoma were sacrificed two hours after intraperitoneal Boronphenylalanine infusion. The lungs were harvested, frozen in liquid nitrogen and subsequently histological sections underwent neutron autoradiography in the nuclear reactor Triga Mark II, University of Pavia. Our findings demonstrate higher Boron uptake in tumoral nodules compared to healthy lung parenchyma 2 hours after Boronphenylalanine infusion.

  16. An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.

    Science.gov (United States)

    Zhang, Xiaoming; Zhou, Boran; Kalra, Sanjay; Bartholmai, Brian; Greenleaf, James; Osborn, Thomas

    2018-02-01

    Systemic sclerosis (SSc) is a multi-organ connective tissue disease characterized by immune dysregulation and organ fibrosis. Severe organ involvement, especially of the skin and lung, is the cause of morbidity and mortality in SSc. Interstitial lung disease (ILD) includes multiple lung disorders in which the lung tissue is fibrotic and stiffened. The purpose of this study was to translate ultrasound surface wave elastography (USWE) for assessing patients with SSc and/or ILD via measuring surface wave speeds of both skin and superficial lung tissue. Forty-one patients with both SSc and ILD and 30 healthy patients were enrolled in this study. An external harmonic vibration was used to generate the wave propagation on the skin or lung. Three excitation frequencies of 100, 150 and 200 Hz were used. An ultrasound probe was used to measure the wave propagation in the tissue non-invasively. Surface wave speeds were measured on the forearm and upper arm of both left and right arm, as well as the upper and lower lungs, through six intercostal spaces of patients and healthy patients. Viscoelasticity of the skin was calculated by the wave speed dispersion with frequency using the Voigt model. The magnitudes of surface wave speed and viscoelasticity of patients' skin were significantly higher than those of healthy patients (p wave speeds of patients' lung were significantly higher than those of healthy patients (p ionizing technique for measuring both skin and lung surface wave speed and may be useful for quantitative assessment of SSc and/or ILD. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  17. SU-E-J-55: Dosimetric Evaluation of Centrally Located Lung Tumors: A Monte Carlo (MC) Study of Lung SBRT Planning

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, D; Badkul, R; Jiang, H; Saleh, H; Estes, C; Park, J; Kumar, P; Wang, F [University Kansas Medical Center, Kansas City, KS (United States)

    2014-06-01

    tissue-heterogeneities.The magnitude of variation significantly varies with ‘small-island-tumor’ surrounded by low-density lung tissues -PB algorithms lacks later electron scattering. Dose calculation with XVMC for lung SBRT is routinely performed in our clinic, its performance for head'neck/sinus cases will also be investigated.

  18. A comparison of two photon planning algorithms for 8 MV and 25 MV X-ray beams in lung

    International Nuclear Information System (INIS)

    Kan, M.W.K.; Young, E.C.M.; Yu, P.K.N.

    1995-01-01

    The results of a comparison of two photon planning algorithms, the Clarkson Scatter Integration algorithm and the Equivalent Tissue-air Ratio algorithm are reported, using a simple lung phantom for 8 MV and 25 MV X-ray beams of field sizes 5 cm x 5 cm and 10 cm x 10 cm. Central axis depth-dose distributions were measured with a thimble chamber or a Markus parallel-plate chamber. Dose profile distributions were measured with TLD rods and films. Measured dose distributions were then compared to predicted dose distributions. Both algorithms overestimate the dose at mid-lung as they do not account for the effect of electronic disequilibrium. The Clarkson algorithm consistently shows less accurate results in comparison with the ETAR algorithm. There is additional error in the case of the Clarkson algorithm because of the assumption of a unit density medium in calculating scatter, which gives an overestimate in the effective scatter-air ratios in lung. For a 5 cm x 5 cm field, the error of dose prediction for 25 MV x-ray beam at mid-lung is 15.8 % and 12.8 % for Clarkson and ETAR algorithm respectively. At 8 MV the error is 9.3 % and 5.1 % respectively. In addition, both algorithms underestimate the penumbral width at mid-lung as they do not account for the penumbral flaring effect in low density medium. 25 refs., 2 tabs., 5 figs

  19. Effect of multiple cycles of freeze-thawing on the RNA quality of lung cancer tissues.

    Science.gov (United States)

    Yu, Keke; Xing, Jie; Zhang, Jie; Zhao, Ruiying; Zhang, Ye; Zhao, Lanxiang

    2017-09-01

    RNA degradation is a major problem in tissue banking. We explored the effect of thawing flash-frozen biospecimens on the quality and integrity of RNA for genetic testing as well as for other cancer research studies. The histological quality of the frozen tumor sections was evaluated by using hematoxylin and eosin staining. RNA extraction from 60 lung cancer tissue samples subjected to various freeze/thaw cycles was performed using the RNeasy Plus isolation kit. RNA integrity was assessed by using an Agilent bioanalyzer to obtain RNA integrity numbers (RIN). Furthermore, RNA from different groups was used for fluorescence Reverse transcription-polymerase chain reaction (RT-PCR) analysis of the echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase (EML4-ALK) fusion gene mutation to verify whether it can be used for research or clinical testing. Highly variable RIN values were observed among the samples, which showed no correlation with the number of freeze/thaw cycles conducted. However, after 3 freeze/thaw cycles (each thaw event lasted for 10 min), an increasing number of changes in peak intensity in RINs were observed. After 5 freeze/thaw cycles, RNA integrity decreased to approximately 35%. After 3 freeze/thaw cycles, the RNA could still be used for RT-PCR analysis of EML4-ALK fusion gene mutations; whereas those subjected to 5 freeze/thaw cycles could not. Limited (cycles did not adversely affect the quality of RNA extracted from tumor tissues and subsequent RT-PCR analysis. Our data could be utilized in the establishment of a standardized procedure for tissue biospecimen collection and storage.

  20. iASPP is over-expressed in human non-small cell lung cancer and regulates the proliferation of lung cancer cells through a p53 associated pathway

    International Nuclear Information System (INIS)

    Chen, Jinfeng; Xie, Fei; Zhang, Lijian; Jiang, Wen G

    2010-01-01

    iASPP is a key inhibitor of tumour suppressor p53 and is found to be up-regulated in certain malignant conditions. The present study investigated the expression of iASPP in clinical lung cancer, a leading cancer type in the world, and the biological impact of this molecule on lung cancer cells. iASPP protein levels in lung cancer tissues were evaluated using an immunohistochemical method. In vitro, iASPP gene expression was suppressed with a lentvirus-mediated shRNA method and the biological impact after knocking down iASSP on lung cancer cell lines was investigated in connection with the p53 expression status. We showed here that the expression of iASPP was significantly higher in lung cancer tissues compared with the adjacent normal tissues. iASPP shRNA treatment resulted in a down-regulation of iASPP in lung cancer cells. There was a subsequent reduction of cell proliferation of the two lung tumour cell lines A459 and 95D both of which had wild-type p53 expression. In contrast, reduction of iASPP in H1229 cells, a cell with little p53 expression, had no impact on its growth rate. iASPP regulates the proliferation and motility of lung cancer cells. This effect is intimately associated with the p53 pathway. Together with the pattern of the over-expression in clinical lung cancers, it is concluded that iASPP plays an pivotal role in the progression of lung cancer and is a potential target for lung cancer therapy

  1. Lung cancer development in patients with connective tissue disease-related interstitial lung disease: A retrospective observational study.

    Science.gov (United States)

    Enomoto, Yasunori; Inui, Naoki; Yoshimura, Katsuhiro; Nishimoto, Koji; Mori, Kazutaka; Kono, Masato; Fujisawa, Tomoyuki; Enomoto, Noriyuki; Nakamura, Yutaro; Iwashita, Toshihide; Suda, Takafumi

    2016-12-01

    Previous studies have reported that patients with idiopathic pulmonary fibrosis occasionally develop lung cancer (LC). However, in connective tissue disease (CTD)-related interstitial lung disease (ILD), there are few data regarding the LC development. The aim of the present study was to evaluate the clinical significance of LC development in patients with CTD-ILD. A retrospective review of our database of 562 patients with ILD between 2000 and 2014 identified 127 patients diagnosed with CTD-ILD. The overall and cumulative incidences of LC were calculated. In addition, the risk factors and prognostic impact of LC development were evaluated. The median age at the ILD diagnosis was 63 years (range 37-84 years), and 73 patients (57.5%) were female. The median follow-up period from the ILD diagnosis was 67.4 months (range 10.4-322.1 months). During the period, 7 out of the 127 patients developed LC (overall incidence 5.5%). The cumulative incidences at 1, 3, and 5 years were 0.0%, 1.8%, and 2.9%, respectively. The risk of LC development was significantly higher in patients with higher smoking pack-year (odds ratio [OR] 1.028; 95% confidence interval [CI] 1.008-1.049; P = 0.007) and emphysema on chest high-resolution computed tomography (OR 14.667; 95% CI 2.871-74.926; P = 0.001). The median overall survival time after developing LC was 7.0 months (95% CI 4.9-9.1 months), and the most common cause of death was LC, not ILD. According to the Cox proportional hazard model analysis with time-dependent covariates, patients who developed LC showed significantly poorer prognosis than those who did not (hazard ratio 87.86; 95% CI 19.56-394.67; P < 0.001). In CTD-ILD, clinicians should be careful with the risk of LC development in patients with a heavy smoking history and subsequent emphysema. Although not so frequent, the complication could be a poor prognostic determinant.

  2. Effects of sevoflurane on ventilator induced lung injury in a healthy lung experimental model.

    Science.gov (United States)

    Romero, A; Moreno, A; García, J; Sánchez, C; Santos, M; García, J

    2016-01-01

    Ventilator-induced lung injury (VILI) causes a systemic inflammatory response in tissues, with an increase in IL-1, IL-6 and TNF-α in blood and tissues. Cytoprotective effects of sevoflurane in different experimental models are well known, and this protective effect can also be observed in VILI. The objective of this study was to assess the effects of sevoflurane in VILI. A prospective, randomized, controlled study was designed. Twenty female rats were studied. The animals were mechanically ventilated, without sevoflurane in the control group and sevoflurane 3% in the treated group (SEV group). VILI was induced applying a maximal inspiratory pressure of 35 cmH2O for 20 min without any positive end-expiratory pressure for 20 min (INJURY time). The animals were then ventilated 30 min with a maximal inspiratory pressure of 12 cmH2O and 3 cmH2O positive end-expiratory pressure (time 30 min POST-INJURY), at which time the animals were euthanized and pathological and biomarkers studies were performed. Heart rate, invasive blood pressure, pH, PaO2, and PaCO2 were recorded. The lung wet-to-dry weight ratio was used as an index of lung edema. No differences were found in the blood gas analysis parameters or heart rate between the 2 groups. Blood pressure was statistically higher in the control group, but still within the normal clinical range. The percentage of pulmonary edema and concentrations of TNF-α and IL-6 in lung tissue in the SEV group were lower than in the control group. Sevoflurane attenuates VILI in a previous healthy lung in an experimental subclinical model in rats. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Use of archived tissues for studies of plutonium-induced lung tumors

    International Nuclear Information System (INIS)

    Sanders, C.L.; McDonald, K.E.; Lauhala, K.E.; Frazier, M.E.

    1988-10-01

    Previous lifespan studies in rats exposed to plutonium-239 aerosols indicated that lung tumor incidence might be increased at radiation doses to the lung comparable to doses received by humans from a maximum permissible occupational lung deposition of 0.6 kBq 239 Pu. A total of 3,192 young adults, female, SPF, Wistar rats were used in the initial lifespan study: 2,134 were exposed to 239 PuO 2 at initial lung burdens (ILB) ranging from 0.009 to 6.7 kBq, and 1,058 were sham-exposed controls. Histopathological analyses have been completed on 1707 of the 3,192 rats, including 54 sham-exposed control sand 1153 exposed animals. Cell kinetics, autoradiographic and morphometric techniques are being used to evaluate the spatial-temporal dose-distribution patterns and the cellular events leadings up to lung tumor formation in 140 serially sacrificed female, Wistar rats given a single exposure to 239 PuO 2 (ILB, 3.9 kBq). Protooncogene activation, growth factors and growth factor receptors, DNA cell content (by cell flow cytometry and microspectrophotometry) and cell proliferation (by 3 H-TdR nuclear labeling) are being examined in archival paraffin-block sections. 27 refs., 2 figs

  4. The importance of surrounding tissues and window settings for contouring of moving targets

    Energy Technology Data Exchange (ETDEWEB)

    Borm, Kai Joachim [Technische Universitaet Muenchen, Medical School, Munich (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany); Oechsner, Markus; Berndt, Johannes; Combs, Stephanie Elisabeth; Molls, Michael; Duma, Marciana Nona [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany)

    2015-09-15

    The aim of the study was to assess the importance of surrounding tissues for the delineation of moving targets in tissue-specific phantoms and to find optimal settings for lung, soft tissue, and liver tumors. Tumor movement was simulated by a water-filled table tennis ball (target volume, TV). Three phantoms were created: corkboards to simulate lung tissue (lung phantom, LunPh), animal fat as fatty soft tissue (fatty tissue phantom, FatPh), and water enhanced with contrast medium as the liver tissue (liver phantom, LivPh). Slow planning three-dimensional compute tomography images (3D-CTs) were acquired with and without phantom movements. One-dimensional tumor movement (1D), three-dimensional tumor movement (3D), as well as a real patient's tumor trajectories were simulated. The TV was contoured using two lung window settings, two soft-tissue window settings, and one liver window setting. The volumes were compared to mathematical calculated values. TVs were underestimated in all phantoms due to movement. The use of soft-tissue windows in the LivPh led to a significantunderestimation of the TV (70.8 % of calculated TV). When common window settings [LunPh + 200 HU/-1,000 HU (upper window/lower window threshold); FatPh: + 240 HU/-120 HU; LivPh: + 175 HU/+ 50 HU] were used, the contoured TVs were: LivPh, 84.0 %; LunPh, 93.2 %, and FatPh, 92.8 %. The lower window threshold had a significant impact on the size of the delineated TV, whereas changes of the upper threshold led only to small differences. The decisive factor for window settings is the lower window threshold (for adequate TV delineation in the lung and fatty-soft tissue it should be lower than density values of surrounding tissue). The use of a liver window should be considered. (orig.) [German] Das Ziel dieser Arbeit war es, den Einfluss des umgebenden Gewebes auf die Konturierung bewegter Objekte zu untersuchen. Um die optimalen CT-Fensterungen fuer Lungen-, Weichteil- und Lebertumoren zu bestimmen

  5. On the radiation dose to lung tissues from radon daughters

    International Nuclear Information System (INIS)

    Wise, K.N.

    1980-04-01

    The work of Harley and Pasternak on calculating dose conversion factors for radon daughters is re-examined. It is found that their estimates of the deposit of radon daughters on the lung airways are too low and the factor for converting from equilibrium activity of radon daughters on the airways to dose to basal cells is too high; these are re-calculated. However, it is shown that inter-subject variability of the depth of the basal cells leads to considerable uncertainty in the individual dose. Finally average dose conversion factors are re-calculated for atmospheres which may be charactersitic of underground mines; the dose conversion factors range from 8 mGy/WLM to 40 mGy/WLM as calculated from the Weibel lung model and from 3 mGy/WLM to 17 mGy/WLM as calculated from the Landahl lung model

  6. Experimental validation of the van Herk margin formula for lung radiation therapy

    International Nuclear Information System (INIS)

    Ecclestone, Gillian; Heath, Emily; Bissonnette, Jean-Pierre

    2013-01-01

    Purpose: To validate the van Herk margin formula for lung radiation therapy using realistic dose calculation algorithms and respiratory motion modeling. The robustness of the margin formula against variations in lesion size, peak-to-peak motion amplitude, tissue density, treatment technique, and plan conformity was assessed, along with the margin formula assumption of a homogeneous dose distribution with perfect plan conformity.Methods: 3DCRT and IMRT lung treatment plans were generated within the ORBIT treatment planning platform (RaySearch Laboratories, Sweden) on 4DCT datasets of virtual phantoms. Random and systematic respiratory motion induced errors were simulated using deformable registration and dose accumulation tools available within ORBIT for simulated cases of varying lesion sizes, peak-to-peak motion amplitudes, tissue densities, and plan conformities. A detailed comparison between the margin formula dose profile model, the planned dose profiles, and penumbra widths was also conducted to test the assumptions of the margin formula. Finally, a correction to account for imperfect plan conformity was tested as well as a novel application of the margin formula that accounts for the patient-specific motion trajectory.Results: The van Herk margin formula ensured full clinical target volume coverage for all 3DCRT and IMRT plans of all conformities with the exception of small lesions in soft tissue. No dosimetric trends with respect to plan technique or lesion size were observed for the systematic and random error simulations. However, accumulated plans showed that plan conformity decreased with increasing tumor motion amplitude. When comparing dose profiles assumed in the margin formula model to the treatment plans, discrepancies in the low dose regions were observed for the random and systematic error simulations. However, the margin formula respected, in all experiments, the 95% dose coverage required for planning target volume (PTV) margin derivation, as

  7. Histological findings and lung dust analysis as the basis for occupational disease compensation in asbestos-related lung cancer in Germany.

    Science.gov (United States)

    Feder, Inke Sabine; Theile, Anja; Tannapfel, Andrea

    2018-01-15

    This study has researched the significance of histologically raised findings and lung dust analyses in the context of claiming the recognition of and thus compensation for an asbestos-associated occupational disease. For this approach, all findings from the German Mesothelioma Register in 2015 that included lung dust analyses were evaluated and were compared with information on asbestos fiber exposure at work based on fiber years, and with the results of radiological findings. For 68 insured persons, recognition of an asbestos-induced lung disease according to Section 4104 of the German Ordinance on Occupational Diseases (Berufskrankheitenverordnung - BKV) could be recommended solely on the basis of the histological examinations of lung tissues and complementary lung dust analyses. Neither did the calculation of the cumulative asbestos dust exposure at work yield 25 fiber years, nor could bridge findings (e.g., plaques) be identified. In addition, the autopsies of 12 patients revealed plaques that had not been diagnosed during radiological examinations. These results show that - irrespective of the prescribed working techniques and radiological diagnosis - pathological/anatomical and histological diagnostics are often the only way for the insureds to demonstrate the causal connection between asbestos and their disease. Even after long intervals of up to 40 years post last exposure, the asbestos fibers would still be easily detectable in the lung tissues evaluated. Whenever suitable tissue is available, it should be examined for mild asbestosis with the aid of a lung dust analysis. Otherwise there is a risk that an occupational disease is wrongfully rejected. In the context of health insurance, the lung dust analysis and the resulting proof of the presence of asbestosis often constitute one option of providing evidence of an occupational disease. Int J Occup Med Environ Health 2018;31(3):293-305. This work is available in Open Access model and licensed under a CC BY

  8. Current lung water measurement methods in man

    International Nuclear Information System (INIS)

    Basset, G.; Moreau, F.; Marsac, J.; Capitini, R.; Botter, F.

    1979-01-01

    Two kinds of tracer method are used to estimate the lung water pools differing by the tracer intake and the sector observed. Airborne intake gives an estimate of the tissues irrigated by the lung and bronchial circulation, whereas vascular intake only shows the sectors perfused by the lung flow. Either of these methods is suitable for a general or regional analysis. In general methods the tracer is followed at the lung exit on expired air for the first method, on peripheral arterial blood for the second. Regional methods imply partial or whole-lung external detection systems [fr

  9. Nucleic Acid Amplification Testing and Sequencing Combined with Acid-Fast Staining in Needle Biopsy Lung Tissues for the Diagnosis of Smear-Negative Pulmonary Tuberculosis.

    Science.gov (United States)

    Jiang, Faming; Huang, Weiwei; Wang, Ye; Tian, Panwen; Chen, Xuerong; Liang, Zongan

    2016-01-01

    Smear-negative pulmonary tuberculosis (PTB) is common and difficult to diagnose. In this study, we investigated the diagnostic value of nucleic acid amplification testing and sequencing combined with acid-fast bacteria (AFB) staining of needle biopsy lung tissues for patients with suspected smear-negative PTB. Patients with suspected smear-negative PTB who underwent percutaneous transthoracic needle biopsy between May 1, 2012, and June 30, 2015, were enrolled in this retrospective study. Patients with AFB in sputum smears were excluded. All lung biopsy specimens were fixed in formalin, embedded in paraffin, and subjected to acid-fast staining and tuberculous polymerase chain reaction (TB-PCR). For patients with positive AFB and negative TB-PCR results in lung tissues, probe assays and 16S rRNA sequencing were used for identification of nontuberculous mycobacteria (NTM). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy of PCR and AFB staining were calculated separately and in combination. Among the 220 eligible patients, 133 were diagnosed with TB (men/women: 76/57; age range: 17-80 years, confirmed TB: 9, probable TB: 124). Forty-eight patients who were diagnosed with other specific diseases were assigned as negative controls, and 39 patients with indeterminate final diagnosis were excluded from statistical analysis. The sensitivity, specificity, PPV, NPV, and accuracy of histological AFB (HAFB) for the diagnosis of smear-negative were 61.7% (82/133), 100% (48/48), 100% (82/82), 48.5% (48/181), and 71.8% (130/181), respectively. The sensitivity, specificity, PPV, and NPV of histological PCR were 89.5% (119/133), 95.8% (46/48), 98.3% (119/121), and 76.7% (46/60), respectively, demonstrating that histological PCR had significantly higher accuracy (91.2% [165/181]) than histological acid-fast staining (71.8% [130/181]), P pulmonary tuberculosis. For patients with positive histological AFB and

  10. Evidence for reduced arterial plasma input, prolonged lung retention and reduced lung monoamine oxidase in smokers

    International Nuclear Information System (INIS)

    Logan, Jean; Fowler, Joanna S.

    2005-01-01

    We have previously found that smokers have reduced brain monoamine oxidase (MAO) A and B using positron emission tomography (PET) and the irreversible mechanism-based radiotracers [ 11 C]-labeled clorgyline (CLG) and deprenyl (DEP) and their deuterated analogs (D CLG, D DEP). More recently, we have estimated MAO A and B activity in other organs using the deuterium isotope effect to determine binding specificity for MAO and a three-compartment model to estimate k 3 , the model term proportional to MAO A activity. Here, we have investigated the robustness of the model term k 3 for estimating lung MAO A and B in light of our unexpected finding that lung MAO activity (k 3 ) was reduced for smokers relative to nonsmokers, although radiotracer uptake in the lungs was similar at peak and plateau for the two groups. Methods: Time-activity data from lung and arterial plasma were used from seven nonsmokers and seven smokers scanned previously with CLG and D CLG, and five nonsmokers and nine smokers scanned previously with DEP and D DEP. The measured time-activity curves for lung and plasma and the integrals for the arterial plasma time-activity curves were compared at an early time point (2.5 min) and at the end of the study (55 min). A three-compartment irreversible model was used to estimate the differences between smokers and nonsmokers, and the stability of the parameter (k 3 ) while varying model assumptions for the relative fractions of lung tissue, blood and air in the PET voxel. Results: The peak in the arterial plasma input function and the integral of the arterial plasma time-activity curve over the first 2.5 min after radiotracer injection were significantly lower for smokers relative to nonsmokers for all four tracers. However, although the peak and plateau of the lung time-activity curves were similar for smokers and nonsmokers, the decline in radioactivity from peak to plateau was slower for smokers for all tracers. Using a three-compartment irreversible model

  11. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.

    Science.gov (United States)

    Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama

    2009-04-15

    Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.

  12. Matrix metalloproteinases in lung biology

    Directory of Open Access Journals (Sweden)

    Parks William C

    2000-12-01

    Full Text Available Abstract Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.

  13. Lung-derived growth factors: possible paracrine effectors of fetal lung development

    International Nuclear Information System (INIS)

    Montes, A.M.

    1985-01-01

    A potential role for paracrine secretions in lung organogenesis has been hypothesized (Alescio and Piperno, 1957). These studies present direct support for the paracrine model by demonstrating the presence of locally produced mitogenic/maturational factors in fetal rat lung tissue. Conditioned serum free medium (CSFM) from nineteen-day fetal rat lung cultures was shown to contain several bioactive peptides as detected by 3 H-Thymidine incorporation into chick embryo and rat lung fibroblasts, as well as 14 C-choline incorporation into surfactant in mixed cell cultures. Using ion-exchange chromatography and Sephadex gel filtration, a partially purified mitogen, 11-III, was obtained. The partially purified 11-III stimulates mitosis in chick embryo fibroblasts and post-natal rat lung fibroblasts. Multiplication in fetal rat lung fibroblasts cultures is stimulated only when these are pre-incubated with a competence factor or unprocessed CSFM. This suggests the existence of an endogenously produced competence factor important in the regulation of fetal lung growth. Preparation 11-III does not possess surfactant stimulating activity as assessed by 3 H-choline incorporation into lipids in predominantly type-II cell cultures. These data demonstrate the presence of a maturational/mitogenic factor, influencing type-II mixed cell cultures. In addition, 11-III had been shown to play an autocrine role stimulating the proliferation of fetal lung fibroblasts. Finally, these data suggest the existence of a local produced competence factor

  14. Peribronchial innervation of the rat lung.

    Science.gov (United States)

    Artico, Marco; Bosco, Sandro; Bronzetti, Elena; Felici, Laura M; Pelusi, Giuseppe; Lo Vasco, Vincenza Rita; Vitale, Marco

    2004-10-01

    Mammalian peribronchial tissue is supplied by several peptide-containing nerve fibers. Although it is well established that different neuropeptides exert significant effects on bronchial and vascular tone in the lungs, the role played by some neuromediators on the general regulation, differentiation and release of locally active substances is still controversial. We studied the innervation of rat peribronchial tissue by immunohistochemical techniques. The immunoperoxidase method with nickel amplification was applied to detect the distribution of nerve fibers using antibodies against the general neuronal marker PGP 9.5 (neuron-specific cytoplasmic protein), while the cholinacetyltransferase immunoreactivity was studied by immunohistochemistry. A slight immunoreactivity for NT receptors is observed in lung bronchial epithelium. There is increasing evidence that NTs may act with a paracrine mechanism regulating functional activity of neuronal and non-neuronal structures. A specific immunoreactivity for NTs and NT receptors was also demonstrated within different layers of large, medium and small sized intrapulmonary arteries and veins, according to a recent study of our group. Moreover our data describe the expression of NTs and NT receptors in lymphoid aggregates of the lung (BALT) in which both lymphocytes and macrophages express TrkA receptor and synthesize NTs. Our results show the presence of an extensive network of innervation in the rat peribronchial tissue, confirming a morphological basis for a possible neural modulation of the respiratory mucosa and the physiological/pathophysiological mechanisms of the lung.

  15. SU-F-BRD-15: The Impact of Dose Calculation Algorithm and Hounsfield Units Conversion Tables On Plan Dosimetry for Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, L; Yorke, E; Lim, S; Mechalakos, J; Rimner, A [Memorial Sloan-Kettering Cancer Center, NY, NY (United States)

    2014-06-15

    Purpose: To assess dosimetric differences in IMRT lung stereotactic body radiotherapy (SBRT) plans calculated with Varian AAA and Acuros (AXB) and with vendor-supplied (V) versus in-house (IH) measured Hounsfield units (HU) to mass and HU to electron density conversion tables. Methods: In-house conversion tables were measured using Gammex 472 density-plug phantom. IMRT plans (6 MV, Varian TrueBeam, 6–9 coplanar fields) meeting departmental coverage and normal tissue constraints were retrospectively generated for 10 lung SBRT cases using Eclipse Vn 10.0.28 AAA with in-house tables (AAA/IH). Using these monitor units and MLC sequences, plans were recalculated with AAA and vendor tables (AAA/V) and with AXB with both tables (AXB/IH and AXB/V). Ratios to corresponding AAA/IH values were calculated for PTV D95, D01, D99, mean-dose, total and ipsilateral lung V20 and chestwall V30. Statistical significance of differences was judged by Wilcoxon Signed Rank Test (p<0.05). Results: For HU<−400 the vendor HU-mass density table was notably below the IH table. PTV D95 ratios to AAA/IH, averaged over all patients, are 0.963±0.073 (p=0.508), 0.914±0.126 (p=0.011), and 0.998±0.001 (p=0.005) for AXB/IH, AXB/V and AAA/V respectively. Total lung V20 ratios are 1.006±0.046 (p=0.386), 0.975±0.080 (p=0.514) and 0.998±0.002 (p=0.007); ipsilateral lung V20 ratios are 1.008±0.041(p=0.284), 0.977±0.076 (p=0.443), and 0.998±0.018 (p=0.005) for AXB/IH, AXB/V and AAA/V respectively. In 7 cases, ratios to AAA/IH were within ± 5% for all indices studied. For 3 cases characterized by very low lung density and small PTV (19.99±8.09 c.c.), PTV D95 ratio for AXB/V ranged from 67.4% to 85.9%, AXB/IH D95 ratio ranged from 81.6% to 93.4%; there were large differences in other studied indices. Conclusion: For AXB users, careful attention to HU conversion tables is important, as they can significantly impact AXB (but not AAA) lung SBRT plans. Algorithm selection is also important for

  16. Organotypic lung culture: A new model for studying ischemia and ex vivo perfusion in lung transplantation.

    Science.gov (United States)

    Baste, Jean-Marc; Gay, Arnaud; Smail, Hassiba; Noël, Romain; Bubenheim, Michael; Begueret, Hugues; Morin, Jean-Paul; Litzler, Pierre-Yves

    2015-01-01

    Donors after cardiac death (DCD) in lung transplantation is considered as a solution for organ shortage. However, it is characterized by warm ischemic period, which could be involved in severe Ischemia-Reperfusion lesion (IR) with early graft dysfunction. We describe a new hybrid model combining in vivo ischemia followed by in vitro reoxygenation using organ-specific culture. A hybrid model using in vivo ischemic period followed by in vitro lung slice reoxygenation was set up in rat to mimic DCD in lung transplantation with in vitro perfusion. Different markers (bioenergetics, oxidant stress assays, and histology) were measured to evaluate the viability of lung tissue after different ischemic times (I-0, I-1, I-2, I-4, I-15 hours) and reoxygenation times (R-0, R-1, R-4, R-24 hours). No differences were found in cell viability, ATP concentrations, extracellular LDH assays or histology, demonstrating extensive viability of up to 4 hours in lung tissue warm ischemia. We found oxidative stress mainly during the ischemic period with no burst at reoxygenation. Cytosolic anti-oxidant system was involved first (I-0,I-1,I-2) followed by mitochondrial anti-oxidant system for extensive ischemia (I-4). Histological features showed differences in this model of ischemia-reoxygenation between bronchial epithelium and lung parenchymal cells, with epithelium regeneration after 2 hours of warm ischemia and 24 hours of perfusion. The results of our hybrid model experiment suggest extensive lung viability of up to 4 hours ischemia. Our model could be an interesting tool to evaluate ex vivo reconditioning techniques after different in vivo lung insults.

  17. Lung Nodule Detection in CT Images using Neuro Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    M. Usman Akram

    2013-07-01

    Full Text Available Automated lung cancer detection using computer aided diagnosis (CAD is an important area in clinical applications. As the manual nodule detection is very time consuming and costly so computerized systems can be helpful for this purpose. In this paper, we propose a computerized system for lung nodule detection in CT scan images. The automated system consists of two stages i.e. lung segmentation and enhancement, feature extraction and classification. The segmentation process will result in separating lung tissue from rest of the image, and only the lung tissues under examination are considered as candidate regions for detecting malignant nodules in lung portion. A feature vector for possible abnormal regions is calculated and regions are classified using neuro fuzzy classifier. It is a fully automatic system that does not require any manual intervention and experimental results show the validity of our system.

  18. β2-Microglobulin participates in development of lung emphysema by inducing lung epithelial cell senescence.

    Science.gov (United States)

    Gao, Na; Wang, Ying; Zheng, Chun-Ming; Gao, Yan-Li; Li, Hui; Li, Yan; Fu, Ting-Ting; Xu, Li-Li; Wang, Wei; Ying, Sun; Huang, Kewu

    2017-05-01

    β 2 -Microglobulin (β 2 M), the light chain of the major histocompatibility complex class I (MHC I), has been identified as a proaging factor and is involved in the pathogenesis of neurodegenerative disorders by driving cognitive and regenerative impairments. However, little attention has focused on the effect of β 2 M in the development of lung emphysema. Here, we found that concentrations of β 2 M in plasma were significantly elevated in patients with lung emphysema than those in normal control subjects (1.89 ± 0.12 vs. 1.42 ± 0.06 mg/l, P lung tissue of emphysema (39.90 ± 1.97 vs. 23.94 ± 2.11%, P lung emphysema through induction of lung epithelial cell senescence and inhibition. Copyright © 2017 the American Physiological Society.

  19. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival.

    Directory of Open Access Journals (Sweden)

    Maria Teresa Landi

    2008-02-01

    Full Text Available Tobacco smoking is responsible for over 90% of lung cancer cases, and yet the precise molecular alterations induced by smoking in lung that develop into cancer and impact survival have remained obscure.We performed gene expression analysis using HG-U133A Affymetrix chips on 135 fresh frozen tissue samples of adenocarcinoma and paired noninvolved lung tissue from current, former and never smokers, with biochemically validated smoking information. ANOVA analysis adjusted for potential confounders, multiple testing procedure, Gene Set Enrichment Analysis, and GO-functional classification were conducted for gene selection. Results were confirmed in independent adenocarcinoma and non-tumor tissues from two studies. We identified a gene expression signature characteristic of smoking that includes cell cycle genes, particularly those involved in the mitotic spindle formation (e.g., NEK2, TTK, PRC1. Expression of these genes strongly differentiated both smokers from non-smokers in lung tumors and early stage tumor tissue from non-tumor tissue (p1.5, for each comparison, consistent with an important role for this pathway in lung carcinogenesis induced by smoking. These changes persisted many years after smoking cessation. NEK2 (p<0.001 and TTK (p = 0.002 expression in the noninvolved lung tissue was also associated with a 3-fold increased risk of mortality from lung adenocarcinoma in smokers.Our work provides insight into the smoking-related mechanisms of lung neoplasia, and shows that the very mitotic genes known to be involved in cancer development are induced by smoking and affect survival. These genes are candidate targets for chemoprevention and treatment of lung cancer in smokers.

  20. Microstructural Consequences of Blast Lung Injury Characterized with Digital Volume Correlation

    Directory of Open Access Journals (Sweden)

    Hari Arora

    2017-12-01

    Full Text Available This study focuses on microstructural changes that occur within the mammalian lung when subject to blast and how these changes influence strain distributions within the tissue. Shock tube experiments were performed to generate the blast injured specimens (cadaveric Sprague-Dawley rats. Blast overpressures of 100 and 180 kPa were studied. Synchrotron tomography imaging was used to capture volumetric image data of lungs. Specimens were ventilated using a custom-built system to study multiple inflation pressures during each tomography scan. These data enabled the first digital volume correlation (DVC measurements in lung tissue to be performed. Quantitative analysis was performed to describe the damaged architecture of the lung. No clear changes in the microstructure of the tissue morphology were observed due to controlled low- to moderate-level blast exposure. However, significant focal sites of injury were observed using DVC, which allowed the detection of bias and concentration in the patterns of strain level. Morphological analysis corroborated the findings, illustrating that the focal damage caused by a blast can give rise to diffuse influence across the tissue. It is important to characterize the non-instantly fatal doses of blast, given the transient nature of blast lung in the clinical setting. This research has highlighted the need for better understanding of focal injury and its zone of influence (alveolar interdependency and neighboring tissue burden as a result of focal injury. DVC techniques show great promise as a tool to advance this endeavor, providing a new perspective on lung mechanics after blast.

  1. Longitudinal micro-CT as an outcome measure of interstitial lung disease in TNF-transgenic mice.

    Directory of Open Access Journals (Sweden)

    Richard D Bell

    Full Text Available Rheumatoid arthritis associated interstitial lung disease (RA-ILD is a debilitating condition with poor survival prognosis. High resolution computed tomography (CT is a common clinical tool to diagnose RA-ILD, and is increasingly being adopted in pre-clinical studies. However, murine models recapitulating RA-ILD are lacking, and CT outcomes for inflammatory lung disease have yet to be formally validated. To address this, we validate μCT outcomes for ILD in the tumor necrosis factor transgenic (TNF-Tg mouse model of RA.Cross sectional μCT was performed on cohorts of male TNF-Tg mice and their WT littermates at 3, 4, 5.5 and 12 months of age (n = 4-6. Lung μCT outcomes measures were determined by segmentation of the μCT datasets to generate Aerated and Tissue volumes. After each scan, lungs were obtained for histopathology and 3 sections stained with hematoxylin and eosin. Automated histomorphometry was performed to quantify the tissue area (nuclei, cytoplasm, and extracellular matrix and aerated area (white space within the tissue sections. Spearman's correlation coefficients were used to evaluate the extent of association between μCT imaging and histopathology endpoints.TNF-Tg mice had significantly greater tissue volume, total lung volume and mean intensity at all timepoints compared to age matched WT littermates. Histomorphometry also demonstrated a significant increase in tissue area at 3, 4, and 5.5 months of age in TNF-Tg mice. Lung tissue volume was correlated with lung tissue area (ρ = 0.81, p<0.0001, and normalize lung aerated volume was correlated with normalized lung air area (ρ = 0.73, p<0.0001.We have validated in vivo μCT as a quantitative biomarker of ILD in mice. Further, development of longitudinal measures is critical for dissecting pathologic progression of ILD, and μCT is a useful non-invasive method to study lung inflammation in the TNF-Tg mouse model.

  2. SU-E-J-203: Investigation of 1.5T Magnetic Field Dose Effects On Organs of Different Density

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H; Rubinstein, A; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: For the combined 1.5T/6MV MRI-linac system, the perpendicular magnetic field to the radiation beam results in altered radiation dose distributions. This Monte Carlo study investigates the change in dose at interfaces for common organs neighboring soft tissue. Methods: MCNP6 was used to simulate the effects of a 1.5T magnetic field when irradiating tissues with a 6 MV beam. The geometries used in this study were not necessarily anatomically representative in size in order to directly compare quantitative dose effects for each tissue at the same depths. For this purpose, a 512 cm{sup 3} cubic material was positioned at the center of a 2744 cm{sup 3} cubic soft tissue material phantom. The following tissue materials and their densities were used in this study: lung (0.296 g/cm{sup 3}), fat (0.95), spinal cord (1.038), soft tissue (1.04), muscle (1.05), eye (1.076), trabecular bone (1.40), and cortical bone (1.85). Results: The addition of a 1.5T magnetic field caused dose changes of +46.5%, +2.4%, −0.9%, −0.8%, −1.5%, −6.5%, and −8.8% at the entrance interface between soft tissue and lung, fat, spinal cord, muscle, eye, trabecular bone, and cortical bone tissues respectively. Dose changes of −39.4%, −4.1%, −0.8%, −0.8%, +0.5%, +6.7%, and +10.9% were observed at the second interface between the same tissues respectively and soft tissue. On average, the build-up distance was reduced by 0.6 cm, and a dose increase of 62.7% was observed at the exit interface between soft tissue and air of the entire phantom. Conclusion: The greatest changes in dose were observed at interfaces containing lung and bone tissues. Due to the prevalence and proximity of bony anatomy to soft tissues throughout the human body, these results encourage further examination of these tissues with anatomically representative geometries using multiple beam configurations for safe treatment using the MRI-linac system.

  3. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    International Nuclear Information System (INIS)

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-01-01

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E 2 ), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression

  4. Mechanisms of alveolar fibrosis after acute lung injury.

    Science.gov (United States)

    Marinelli, W A; Henke, C A; Harmon, K R; Hertz, M I; Bitterman, P B

    1990-12-01

    In patients who die after severe acute lung injury, a dramatic fibroproliferative response occurs within the alveolar air space, interstitium, and microvessels. Profound shunt physiology, dead space ventilation, and pulmonary hypertension are the physiologic consequences of this fibroproliferative response. The anatomic pattern of the response is unique within each alveolar compartment. For example, the air space is obliterated by granulation tissue, with replicating mesenchymal cells, their connective tissue products, and an expanding network of intra-alveolar capillaries. In contrast, the vascular fibroproliferative response is dominated by mesenchymal cell replication and connective tissue deposition within the walls of microvessels. Despite the unique anatomic features of these fibroproliferative processes, the regulatory signals involved are likely to be similar. Although our current understanding of the signals regulating the fibroproliferative response to acute lung injury is limited, inferences can be made from in vitro studies of mesenchymal cell behavior and several better understood fibroproliferative processes, including wound healing and chronic fibrotic lung diseases. As clinicians, our future ability to enhance effective lung repair will likely utilize therapeutic strategies specifically targeted to the signals that regulate the fibroproliferative process within the alveolar microenvironment.

  5. Double-blind randomized 12-month soy intervention had no effects on breast MRI fibroglandular tissue density or mammographic density

    Science.gov (United States)

    Wu, Anna H.; Spicer, Darcy; Garcia, Agustin; Tseng, Chiu-Chen; Hovanessian-Larsen, Linda; Sheth, Pulin; Martin, Sue Ellen; Hawes, Debra; Russell, Christy; McDonald, Heather; Tripathy, Debu; Su, Min-Ying; Ursin, Giske; Pike, Malcolm C.

    2015-01-01

    Soy supplementation by breast cancer patients remains controversial. No controlled intervention studies have investigated the effects of soy supplementation on mammographic density in breast cancer patients. We conducted a double-blind, randomized, placebo-controlled intervention study in previously treated breast cancer patients (n=66) and high-risk women (n=29). We obtained digital mammograms and breast magnetic resonance imaging (MRI) scans at baseline and after 12 months of daily soy (50 mg isoflavones per day) (n=46) or placebo (n=49) tablet supplementation. The total breast area (MA) and the area of mammographic density (MD) on the mammogram was measured using a validated computer-assisted method, and mammographic density percent (MD% = 100 × MD/MA) was determined. A well-tested computer algorithm was used to quantitatively measure the total breast volume (TBV) and fibroglandular tissue volume (FGV) on the breast MRI, and the FGV percent (FGV% = 100 × FGV/TBV) was calculated. On the basis of plasma soy isoflavone levels, compliance was excellent. Small decreases in MD% measured by the ratios of month 12 to baseline levels, were seen in the soy (0.95) and the placebo (0.87) groups; these changes did not differ between the treatments (P=0.38). Small decreases in FGV% were also found in both the soy (0.90) and the placebo (0.92) groups; these changes also did not differ between the treatments (P=0.48). Results were comparable in breast cancer patients and high-risk women. We found no evidence that soy supplementation would decrease mammographic density and that MRI might be more sensitive to changes in density than mammography. PMID:26276750

  6. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  7. Extracellular matrix as a driver for lung regeneration.

    Science.gov (United States)

    Balestrini, Jenna L; Niklason, Laura E

    2015-03-01

    Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a "footprint" within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.

  8. Measurement of hard tissue density of head phantom based on the HU by using CBCT

    International Nuclear Information System (INIS)

    Kim, Moon Sun; Kang, Dong Wan; Kim, Jae Duk

    2009-01-01

    The purpose of this study was to determine a conversion coefficient for Hounsfield Units(HU) to material density (g cm -3 ) obtained from cone-beam computed tomography (CBMercuRay TM ) data and to measure the hard tissue density based on the Hounsfield scale on dental head phantom. CT Scanner Phantom (AAPM) equipped with CT Number Insert consists of five cylindrical pins of materials with different densities and teflon ring was scanned by using the CBMercuRay TM (Hitachi, Tokyo, Japan) volume scanner. The raw data were converted into DICOM format and the HU of different areas of CT number insert measured by using CBWorks TM . Linear regression analysis and Student t-test were performed statistically. There was no significant difference (P>0.54) between real densities and measured densities. A linear regression was performed using the density, ρ (g cm -3 ), as the dependent variable in terms of the HU (H). The regression equation obtained was ρ=0.00072 H-0.01588 with an R2 value of 0.9968. Density values based on the Hounsfield scale was 1697.1 ± 24.9 HU in cortical bone, 526.5 ± 44.4 HU in trabecular bone, 2639.1 ± 48.7 HU in enamel, 1246.1 ± 39.4 HU in dentin of dental head phantom. CBCT provides an effective option for determination of material density expressed as Hounsfield Units.

  9. Biomedical risks of multiple lung lavages in beagle dogs

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Mauderly, J.L.; Slauson, D.O.; Halliwell, W.H.

    1976-01-01

    The biomedical risk of a series of 10 lung lavages was evaluated in 10 Beagle dogs. The dogs were divided into three groups: one group of six dogs was given 10 lung lavages over a 49-day period and sacrificed at 77 days of the study; the second group contained two dogs that were controls that were not treated, but sacrificed on day 77 of the study; and the third group contained two dogs that were control dogs that were sacrificed 56 days into the study. The dogs were evaluated by cardiopulmonary function tests, clinical studies, and studies of the tissues at sacrifice. No significant changes were detected in the cardiopulmonary function tests of the dogs in the study. Clinical studies revealed a very mild, transient reaction to some of the lavage procedures. The reaction was mainly mild, scattered, moist rales heard on auscultation of the chest and a slight rise in body temperature. A mild, scattered tissue reaction was also observed on histologic examination of selected lung tissues. The observed tissue reactions did not appear to be chronic, permanent or progressive. Results of this study indicate that multiple lung lavages carry little biomedical risk and that the primary risk is that associated with general anesthesia

  10. Monte Carlo dose calculation of microbeam in a lung phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Mino, C.; Mino, F.

    1998-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed techniques takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depth and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. Relatively high peak to valley ratios are observed in the lung region, suggesting an ideal environment for microbeam radiotherapy. For a single field, the ratio at the tissue/lung interface will set the maximum dose to the target volume. However, in clinical application, several fields would be involved allowing much greater doses to be applied for the elimination of cancer cells. We conclude therefore that multifield microbeam therapy has the potential to achieve useful therapeutic ratios for the treatment of lung cancer

  11. [Pulmonary involvement in connective tissue disease].

    Science.gov (United States)

    Bartosiewicz, Małgorzata

    2016-01-01

    The connective tissue diseases are a variable group of autoimmune mediated disorders characterized by multiorgan damage. Pulmonary complications are common, usually occur after the onset of joint symptoms, but can also be initially presenting complaint. The respiratory system may be involved in all its component: airways, vessels, parenchyma, pleura and respiratory muscles. Lung involvement is an increasing cause of morbidity and mortality in the connective tissue diseases. Clinical course is highly variable - can range from mild to rapidly progressive, some processes are reversible, while others are irreversible. Thus, the identification of reversible disease , and separately progressive disease, are important clinical issues. The frequency, clinical presentation, prognosis and responce to therapy are different, depending on the pattern of involvement as well as on specyfic diagnostic method used to identify it. High- resolution computed tompography plays an important role in identifying patients with respiratory involvement. Pulmonary function tests are a sensitive tool detecting interstitial lung disease. In this article, pulmonary lung involvement accompanying most frequently apperaing connective tissue diseases - rheumatoid arthritis, systemic sclerosis, lupus erythematosus, polymyositis/dermatomyositis, Sjögrens syndrome and mixed connective tissue disaese are reviewed.

  12. Cigarette smoke alters the secretome of lung epithelial cells.

    Science.gov (United States)

    Mossina, Alessandra; Lukas, Christina; Merl-Pham, Juliane; Uhl, Franziska E; Mutze, Kathrin; Schamberger, Andrea; Staab-Weijnitz, Claudia; Jia, Jie; Yildirim, Ali Ö; Königshoff, Melanie; Hauck, Stefanie M; Eickelberg, Oliver; Meiners, Silke

    2017-01-01

    Cigarette smoke is the most relevant risk factor for the development of lung cancer and chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly reactive, thereby altering protein structure and function. Here, we used subcellular fractionation coupled to label-free quantitative MS to globally assess alterations in the proteome of different compartments of lung epithelial cells upon exposure to cigarette smoke extract. Proteomic profiling of the human alveolar derived cell line A549 revealed the most pronounced changes within the cellular secretome with preferential downregulation of proteins involved in wound healing and extracellular matrix organization. In particular, secretion of secreted protein acidic and rich in cysteine, a matricellular protein that functions in tissue response to injury, was consistently diminished by cigarette smoke extract in various pulmonary epithelial cell lines and primary cells of human and mouse origin as well as in mouse ex vivo lung tissue cultures. Our study reveals a previously unrecognized acute response of lung epithelial cells to cigarette smoke that includes altered secretion of proteins involved in extracellular matrix organization and wound healing. This may contribute to sustained alterations in tissue remodeling as observed in lung cancer and chronic obstructive pulmonary disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bilateral Tubercular Lung Abscess in a Diabetic Female

    Directory of Open Access Journals (Sweden)

    N.S Neki

    2017-07-01

    Full Text Available Liquefactive necrosis of the lung tissue caused by microbial infection, lung abscess is characterised by formation of cavities containing necrotic debris. In the vast majority of cases of lung abscess, polymicrobial bacteria can be found with predominance of anaerobes. Mycobacterium has been described as a very rare causative agent of community acquired lung abscess. We are presenting a case of middle aged diabetic female, who had bilateral lung abscesses, aetiology of which was established to be tubercular. Astonishing it may sound; based upon extensive web and library search, it's the first case report on tubercular lung abscess in a diabetic from India, and perhaps from the world itself.

  14. Occupational lung diseases.

    Science.gov (United States)

    Furlow, Bryant

    2011-01-01

    Chest radiography and high-resolution computed tomography are indispensable tools in the detection, classification and characterization of occupational lung diseases that are caused by inhaling mineral particles such as asbestos, silicon-containing rock dust and other tissue-damaging antigens, nanomaterials and toxins. Radiographic evidence of occupational lung disease is interpreted with a patient's clinical signs and symptoms and a detailed occupational history in mind because of high variability in radiographic findings. This Directed Reading reviews the history, epidemiology, functional anatomy, pathobiology and medical diagnostic imaging of occupational lung diseases associated with inhalation of fine particulates in the workplace. This article is a Directed Reading. Your access to Directed Reading quizzes for continuing education credit is determined by your CE preference. For access to other quizzes, go to www.asrt.org/store.

  15. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Krstic, D.; Markovic, V.M.; Jovanovic, Z.; Milenkovic, B.; Nikezic, D.; Atanackovic, J.

    2014-01-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. The difference in evaluated dose in cancer and normal lung tissue suggests that BNCT could be applied for the treatment of cancers. The difference in exposure of cancer and healthy tissue can be observed, so the healthy tissue can be spared from damage. An absorbed dose ratio of metastatic tissue-to-the healthy tissue was ∼5. Absorbed dose to all other organs was low when compared with the lung dose. Absorbed dose depth distribution shows that BNC therapy can be very useful in the treatments for tumour. The ratio of the tumour absorbed dose and irradiated healthy tissue absorbed dose was also ∼5. It was seen that an elliptical neutron field was better irradiation choice. (authors)

  16. [Effects of hydrogen on the lung damage of mice at early stage of severe burn].

    Science.gov (United States)

    Qin, C; Bian, Y X; Feng, T T; Zhang, J H; Yu, Y H

    2017-11-20

    Objective: To investigate the effects of hydrogen on the lung damage of mice at early stage of severe burn. Methods: One hundred and sixty ICR mice were divided into sham injury, hydrogen, pure burn, and burn+ hydrogen groups according to the random number table, with 40 mice in each group. Mice in pure burn group and burn+ hydrogen group were inflicted with 40% total body surface area full-thickness scald (hereafter referred to as burn) on the back, while mice in sham injury group and hydrogen group were sham injured. Mice in hydrogen group and burn+ hydrogen group inhaled 2% hydrogen for 1 h at post injury hour (PIH) 1 and 6, respectively, while mice in sham injury group and pure burn group inhaled air for 1 h. At PIH 24, lung tissue of six mice in each group was harvested, and then pathological changes of lung tissue were observed by HE staining and the lung tissue injury pathological score was calculated. Inferior vena cava blood and lung tissue of other eight mice in each group were obtained, and then content of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) in serum and lung tissue was determined by enzyme-linked immunosorbent assay. Activity of superoxide dismutase (SOD) in serum and lung tissue was detected by spectrophotometry. After arterial blood of other six mice in each group was collected for detection of arterial partial pressure of oxygen (PaO(2)), the wet and dry weight of lung tissue were weighted to calculate lung wet to dry weight ratio. The survival rates of the other twenty mice in each group during post injury days 7 were calculated. Data were processed with one-way analysis of variance, LSD test and log-rank test. Results: (1) At PIH 24, lung tissue of mice in sham injury group and hydrogen group showed no abnormality. Mice in pure burn group were with pulmonary interstitial edema, serious rupture of alveolar capillary wall, and infiltration of a large number of inflammatory cells. Mice in burn+ hydrogen group were with mild

  17. Association of serum KL-6 levels with interstitial lung disease in patients with connective tissue disease: a cross-sectional study.

    Science.gov (United States)

    Oguz, Ekin Oktay; Kucuksahin, Orhan; Turgay, Murat; Yildizgoren, Mustafa Turgut; Ates, Askin; Demir, Nalan; Kumbasar, Ozlem Ozdemir; Kinikli, Gulay; Duzgun, Nursen

    2016-03-01

    It was aimed to evaluate KL-6 glycoprotein levels to determine if it may be a diagnostic marker for the connective tissue diseases (CTDs) predicting CTD-related interstitial lung diseases (ILDs) (CTD-ILD) development and to examine if there was a difference between patients and healthy controls. The study included 113 patients with CTD (45 CTD without lung involvement, 68 CTD-ILD) and 45 healthy control subjects. KL-6 glycoprotein levels were analyzed with ELISA in patients and the control group. The relationship between KL-6 glycoprotein levels and CTD-ILD was assessed. In the comparison of all the groups in the study, significantly higher levels of KL-6 were determined in the CTD-ILD group than in either the CTD without pulmonary involvement group or the healthy control group (p connective tissue diseases in the diagnostic groups (systemic lupus erythematosus, Sjögren's syndrome, rheumatoid arthritis, mixed connective tissue disease, scleroderma, polymyositis/ dermatomyositis). In the healthy control group, there was a statistically significant difference between KL-6 levels in smokers and non-smokers. Smokers had significantly higher serum KL-6 levels compared with non-smokers (p < 0.05). There was no statistically significant difference between smoking status (pack-year) and serum KL-6 levels. There was no statistically significant correlation between serum KL-6 levels and time since diagnosis of CTD and CTD-ILD. The level of KL-6 as a predictive factor could be used to identify the clinical development of ILD before it is detected on imaging modality. Further prospective clinical studies are needed to define whether levels of KL-6 might have prognostic value or might predict progressive ILD.

  18. Experimental Infection of Taenia saginata eggs in Bali Cattle: Distribution and Density of Cysticercus bovis

    Directory of Open Access Journals (Sweden)

    Nyoman Sadra Dharmawan

    2009-12-01

    Full Text Available The objective of this study was to observe the development, distribution, and infection density ofTaenia saginata metacestodes in Bali cattle. Three Bali cattle were experimentally infected with T. saginataeggs which were collected from taeniasis patients. The experimental animal was inoculated with : i1000,00 T. saginata; ii 500,000 eggs; and iii 1,000,000 eggs, respectivelly 100,000 (cattle 1, 500,000(cattle 2, and 1,000,000 (cattle 3 T. saginata eggs, respectively. To observe the development of cysticerci,all cattle were slaughtered at 24 weeks post infection. To observe their distribution and density, slicingwas done to the cattle?s tissues. The study results showed that cysts were found distributed to all muscletissues and some visceral organs such as heart, diaphragm, lungs, and kidney of the cattle infected with100,000 and 500,000 T. saginata eggs. Density of the cyst was in the range of 11 to 95 cysts per 100 gramsof tissue. The highest density was noted in the heart (58/100 grams and in diaphragm (55/100 grams.This study has confirmed that T. saginata eggs derived from taeniasis patient in Bali, if infected to Balicattle can develop and spread to all muscle tissues and some visceral organs. From this study it wasconcluded that it is necessary to include the heart in the meat inspection at slaughter house for possibilityof T. saginata cyst infection.$?

  19. Pulmonary lymphangioleiomyomatosis: Analysis of disease manifestation by region-based quantification of lung parenchyma

    Energy Technology Data Exchange (ETDEWEB)

    Theilig, D., E-mail: dorothea.theilig@charite.de [Charité, Universitätsmedizin Berlin, Department of Radiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin (Germany); Doellinger, F. [Charité, Universitätsmedizin Berlin, Department of Radiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin (Germany); Kuhnigk, J.M. [Fraunhofer MEVIS, Universitaetsallee 29, 28359 Bremen (Germany); Temmesfeld-Wollbrueck, B.; Huebner, R.H. [Charité, Department of Pneumology, Augustenburger Platz 1, 13353 Berlin (Germany); Schreiter, N.; Poellinger, A. [Charité, Universitätsmedizin Berlin, Department of Radiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin (Germany)

    2015-04-15

    Highlights: •The distribution of cystic lesions in LAM was evaluated with quantitative CT. •There were more cystic lesions in the central lung compared to peripheral areas. •Cystic changes were more frequent in apical two thirds compared to lower third. •Results might help to obviate the need for biopsy in more cases. -- Abstract: Purpose: Lymphangioleiomyomatosis (LAM) is characterized by proliferation of smooth muscle tissue that causes bronchial obstruction and secondary cystic destruction of lung parenchyma. The aim of this study was to evaluate the typical distribution of cystic defects in LAM with quantitative volumetric chest computed tomography (CT). Materials and methods: CT examinations of 20 patients with confirmed LAM were evaluated with region-based quantification of lung parenchyma. Additionally, 10 consecutive patients were identified who had recently undergone CT imaging of the lung at our institution, in which no pathologies of the lung were found, to serve as a control group. Each lung was divided into three regions (upper, middle and lower thirds) with identical number of slices. In addition, we defined a “peel” and “core” of the lung comprising the 2 cm subpleural space and the remaining inner lung area. Computerized detection of lung volume and relative emphysema was performed with the PULMO 3D software (v3.42, Fraunhofer MEVIS, Bremen, Germany). This software package enables the quantification of emphysematous lung parenchyma by calculating the pixel index, which is defined as the ratio of lung voxels with a density <−950 HU to the total number of voxels in the lung. Results: Cystic changes accounted for 0.1–39.1% of the total lung volume in patients with LAM. Disease manifestation in the central lung was significantly higher than in peripheral areas (peel median: 15.1%, core median: 20.5%; p = 0.001). Lower thirds of lung parenchyma showed significantly less cystic changes than upper and middle lung areas combined (lower

  20. Cordycepin alleviates lipopolysaccharide-induced acute lung injury via Nrf2/HO-1 pathway.

    Science.gov (United States)

    Qing, Rui; Huang, Zezhi; Tang, Yufei; Xiang, Qingke; Yang, Fan

    2018-04-24

    The present study is to investigate the protective effect of cordycepin on inflammatory reactions in rats with acute lung injury (ALI) induced by lipopolysaccharide (LPS), as well as the underlying mechanism. Wistar rat model of ALI was induced by intravenous injection of LPS (30 mg/kg body weight). One hour later, intravenous injection of cordycepin (1, 10 or 30 mg/kg body weight) was administered. The wet-to-dry weight ratio of lung tissues and myeloperoxidase activity in the lung tissues were measured. The contents of nitrite and nitrate were measured by reduction method, while chemiluminescence was used to determine the content of superoxide. Quantitative real-time polymerase chain reaction and Western blotting were used to determine the expression of mRNA and protein, respectively. Colorimetry was performed to determine the enzymatic activity of heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 was identified by Western blotting. The plasma contents of cytokines were measured by enzyme-linked immunosorbent assay. Cordycepin enhanced the expression and enzymatic activity of HO-1 in ALI rats, and activated Nrf2 by inducing the translocation of Nrf2 from cytoplasm to nucleus. In addition, cordycepin regulated the secretion of TNF-α, IL-6 and IL-10 via HO-1, and suppressed inflammation in lung tissues of ALI rats by inducing the expression of HO-1. HO-1 played important roles in the down-regulation of superoxide levels in lung tissues by cordycepin, and HO-1 expression induced by cordycepin affected nitrite and nitrate concentrations in plasma and iNOS protein expression in lung tissues. Cordycepin showed protective effect on injuries in lung tissues. The present study demonstrates that cordycepin alleviates inflammation induced by LPS via the activation of Nrf2 and up-regulation of HO-1 expression. Copyright © 2018. Published by Elsevier B.V.