WorldWideScience

Sample records for lung mdct nodule

  1. Potential contribution of multiplanar reconstruction (MPR) to computer-aided detection of lung nodules on MDCT

    International Nuclear Information System (INIS)

    Matsumoto, Sumiaki; Ohno, Yoshiharu; Yamagata, Hitoshi; Nogami, Munenobu; Kono, Atsushi; Sugimura, Kazuro

    2012-01-01

    Purpose: To evaluate potential benefits of using multiplanar reconstruction (MPR) in computer-aided detection (CAD) of lung nodules on multidetector computed tomography (MDCT). Materials and methods: MDCT datasets of 60 patients with suspected lung nodules were retrospectively collected. Using “second-read” CAD, two radiologists (Readers 1 and 2) independently interpreted these datasets for the detection of non-calcified nodules (≥4 mm) with concomitant confidence rating. They did this task twice, first without MPR (using only axial images), and then 4 weeks later with MPR (using also coronal and sagittal MPR images), where the total reading time per dataset, including the time taken to assess the detection results of CAD software (CAD assessment time), was recorded. The total reading time and CAD assessment time without MPR and those with MPR were statistically compared for each reader. The radiologists’ performance for detecting nodules without MPR and the performance with MPR were compared using jackknife free-response receiver operating characteristic (JAFROC) analysis. Results: Compared to the CAD assessment time without MPR (mean, 69 s and 57 s for Readers 1 and 2), the CAD assessment time with MPR (mean, 46 s and 45 s for Readers 1 and 2) was significantly reduced (P < 0.001). For Reader 1, the total reading time was also significantly shorter in the case with MPR. There was no significant difference between the detection performances without MPR and with MPR. Conclusion: The use of MPR has the potential to improve the workflow in CAD of lung nodules on MDCT.

  2. MDCT-Guided Transthoracic Needle Aspiration Biopsy of the Lung Using the Transscapular Approach

    International Nuclear Information System (INIS)

    Rossi, Umberto G.; Seitun, Sara; Ferro, Carlo

    2011-01-01

    The purpose of this study is to report our preliminary experience using MDCT-guided percutaneous transthoracic needle aspiration biopsy using the transscapular approach in the upper posterolateral lung nodules, an area that it is difficult or hazardous to reach with the conventional approach. Five patients underwent CT-guided percutaneous transthoracic needle aspiration biopsy of the lung via the transscapular approach. A coaxial needle technique was used in all patients. Biopsy was successful in all patients. No major complications were encountered. One patient developed a minimal pneumothorax next to the lesion immediately after biopsy, which resolved spontaneously. MDCT-guided percutaneous transthoracic needle aspiration biopsy of the lung via the transscapular approach is an effective and safe procedure that reduces the risk of pneumothorax in selected patients.

  3. Computer-aided detection of artificial pulmonary nodules using an ex vivo lung phantom: influence of exposure parameters and iterative reconstruction.

    Science.gov (United States)

    Wielpütz, Mark O; Wroblewski, Jacek; Lederlin, Mathieu; Dinkel, Julien; Eichinger, Monika; Koenigkam-Santos, M; Biederer, Jürgen; Kauczor, Hans-Ulrich; Puderbach, Michael U; Jobst, Bertram J

    2015-05-01

    To evaluate the influence of exposure parameters and raw-data based iterative reconstruction (IR) on the performance of computer-aided detection (CAD) of pulmonary nodules on chest multidetector computed tomography (MDCT). Seven porcine lung explants were inflated in a dedicated ex vivo phantom shell and prepared with n=162 artificial nodules of a clinically relevant volume and maximum diameter (46-1063 μl, and 6.2-21.5 mm). n=118 nodules were solid and n=44 part-solid. MDCT was performed with different combinations of 120 and 80 kV with 120, 60, 30 and 12 mA*s, and reconstructed with both filtered back projection (FBP) and IR. Subsequently, 16 datasets per lung were subjected to dedicated CAD software. The rate of true positive, false negative and false positive CAD marks was measured for each reconstruction. The rate of true positive findings ranged between 88.9-91.4% for FBP and 88.3-90.1% for IR (n.s.) with most exposure settings, but was significantly lower with the combination of 80 kV and 12 mA*s (80.9% and 81.5%, respectively, pvolumes 300 μl (p<0.05). Similarly, it was significantly lower for diameters <12 mm compared to ≥12 mm (p<0.05). The rate of true positives for solid and part-solid nodules was similar. Nodule CAD on chest MDCT is robust over a wide range of exposure settings. Noise reduction by IR is not detrimental for CAD, and may be used to improve image quality in the setting of low-dose MDCT for lung cancer screening. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Clinical evaluation of a software for automated localization of lung nodules at follow-up CT examinations

    International Nuclear Information System (INIS)

    Beyer, F.; Wormanns, D.; Heindel, W.; Kohl, G.

    2004-01-01

    Purpose: To evaluate a software algorithm for automated localization of pulmonary nodules at follow-up CT examinations of the chest and to determine factors influencing the rate of correctly matched nodules. Materials and Methods: The 'real-time automatic matching' (RAM) algorithm (Siemens LungCare TM software) was applied to 22 follow-up multirow-detector CT (MDCT) examinations in 11 patients (Siemens Somatom VolumeZoom, tube voltage 120 kVp; effective tube current 20 mAs (n=18) or 100 mAs (n=4); 4 x 1 mm detector configuration, 1.25 mm slice thickness; 0.8 mm reconstruction increment; standard lung kernel B50f) with a total of 190 lung nodules (mean diameter 6.7±3.5 mm, range 2-17 mm). The following nodule features were recorded: diameter, edge definition (well- or ill-defined), location (upper, middle or lower third; central or peripheral; right of left lung) and inspiration level (considered identical if the difference of diaphragm-apex distance between baseline and follow-up examination was 2 -test was used to describe influence of nodule features on detection rate. Influence of nodule size was assessed using Mann-Whitney-U-Test. Results: RAM correctly located 164 of 190 of all lung nodules (86.3%). Detection rate did not depend on nodule location (left vs. right lung: p=0.48; upper vs. middle vs. lower third: p=0.96; peripheral vs. central: p=0.47) or diameter (p=0.30). Influence of inspiration level was highly significant (p [de

  5. Comparison of sensitivity and reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader

    International Nuclear Information System (INIS)

    Beyer, F.; Zierott, L.; Juergens, K.U.; Heindel, W.; Fallenberg, E.M.; Stoeckel, J.; Wormanns, D.

    2007-01-01

    The purpose of this study was to compare sensitivity for detection of pulmonary nodules in MDCT scans and reading time of radiologists when using CAD as the second reader (SR) respectively concurrent reader (CR). Four radiologists analyzed 50 chest MDCT scans chosen from clinical routine two times and marked all detected pulmonary nodules: first with CAD as CR (display of CAD results immediately in the reading session) and later (median 14 weeks) with CAD as SR (display of CAD markers after completion of first reading without CAD). A Siemens LungCAD prototype was used. Sensitivities for detection of nodules and reading times were recorded. Sensitivity of reading with CAD as SR was significantly higher than reading without CAD (p < 0.001) and CAD as CR (p < 0.001). For nodule size of 1.75 mm or above no significant sensitivity difference between CAD as CR and reading without CAD was observed; e.g., for nodules above 4 mm sensitivity was 68% without CAD, 68% with CAD as CR (p 0.45) and 75% with CAD as SR (p < 0.001). Reading time was significantly shorter for CR (274 s) compared to reading without CAD (294 s; p = 0.04) and SR (337 s; p < 0.001). In our study CAD could either speed up reading of chest CT cases for pulmonary nodules without relevant loss of sensitivity when used as CR, or it increased sensitivity at the cost of longer reading times when used as SR. (orig.)

  6. Lung MRI of invasive fungal infection at 3 Tesla: evaluation of five different pulse sequences and comparison with multidetector computed tomography (MDCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chenggong; Tan, Xiangliang; Li, Caixia; Wu, Yuankui; Hao, Peng; Xiong, Wei; Xu, Yikai [Southern Medical University, Department of Medical Imaging Center, Nanfang Hospital, Guangzhou, Guangdong (China); Wei, Qi; Feng, Ru; Xu, Jun [Southern Medical University, Department of Hematology, Nanfang Hospital, Guangzhou (China); Chan, Queenie [Philips Healthcare, New Territories (China)

    2014-09-18

    To evaluate the diagnostic performance of five MR sequences to detect pulmonary infectious lesions in patients with invasive fungal infection (IFI), using multidetector computed tomography (MDCT) as the reference standard. Thirty-four immunocompromised patients with suspected IFI underwent MDCT and MRI. The MR studies were performed using five pulse sequences at 3.0 T: T2-weighted turbo spin echo (TSE), short-tau inversion recovery (STIR), spectrally selective attenuated inversion recovery (SPAIR), T1-weighted high resolution isotropic volume excitation (e-THRIVE) and T1-weighted fast field echo (T1-FFE). The size, lesion-to-lung contrast ratio and the detectability of pulmonary lesions on MR images were assessed. Image quality and artefacts on different sequences were also rated. A total of 84 lesions including nodules (n = 44) and consolidation (n = 40) were present in 75 lobes. SPAIR and e-THRIVE images achieved high overall lesion-related sensitivities for the detection of pulmonary abnormalities (90.5 % and 86.9 %, respectively). STIR showed the highest lesion-to-lung contrast ratio for nodules (21.8) and consolidation (17.0), whereas TSE had the fewest physiological artefacts. MRI at 3.0 T can depict clinically significant pulmonary IFI abnormalities with high accuracy compared to MDCT. SPAIR and e-THRIVE are preferred sequences for the detection of infectious lesions of 5 mm and larger. (orig.)

  7. Can Lung Nodules Be Cancerous?

    Science.gov (United States)

    ... lung nodules be cancerous? Answers from Eric J. Olson, M.D. Yes, lung nodules can be cancerous, ... to determine if it's cancerous. With Eric J. Olson, M.D. AskMayoExpert. Pulmonary nodules. Rochester, Minn.: Mayo ...

  8. Automated lung nodule classification following automated nodule detection on CT: A serial approach

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Altman, Michael B.; Wilkie, Joel; Sone, Shusuke; Li, Feng; Doi, Kunio; Roy, Arunabha S.

    2003-01-01

    We have evaluated the performance of an automated classifier applied to the task of differentiating malignant and benign lung nodules in low-dose helical computed tomography (CT) scans acquired as part of a lung cancer screening program. The nodules classified in this manner were initially identified by our automated lung nodule detection method, so that the output of automated lung nodule detection was used as input to automated lung nodule classification. This study begins to narrow the distinction between the 'detection task' and the 'classification task'. Automated lung nodule detection is based on two- and three-dimensional analyses of the CT image data. Gray-level-thresholding techniques are used to identify initial lung nodule candidates, for which morphological and gray-level features are computed. A rule-based approach is applied to reduce the number of nodule candidates that correspond to non-nodules, and the features of remaining candidates are merged through linear discriminant analysis to obtain final detection results. Automated lung nodule classification merges the features of the lung nodule candidates identified by the detection algorithm that correspond to actual nodules through another linear discriminant classifier to distinguish between malignant and benign nodules. The automated classification method was applied to the computerized detection results obtained from a database of 393 low-dose thoracic CT scans containing 470 confirmed lung nodules (69 malignant and 401 benign nodules). Receiver operating characteristic (ROC) analysis was used to evaluate the ability of the classifier to differentiate between nodule candidates that correspond to malignant nodules and nodule candidates that correspond to benign lesions. The area under the ROC curve for this classification task attained a value of 0.79 during a leave-one-out evaluation

  9. Quantitative CT: technique dependence of volume estimation on pulmonary nodules

    Science.gov (United States)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan

    2012-03-01

    Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.

  10. CT volumetry of artificial pulmonary nodules using an ex vivo lung phantom: Influence of exposure parameters and iterative reconstruction on reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Wielpütz, Mark O., E-mail: Mark.wielpuetz@med.uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Translational Lung Research Center (TLRC-H), German Center for Lung Research (DZL), Im Neuenheimer Feld 350, 69120 Heidelberg (Germany); Lederlin, Mathieu, E-mail: mathieu.lederlin@chu-bordeaux.fr [Department of Thoracic and Cardiovascular Imaging, University Hospital of Bordeaux, Av de Magellan, 33600 Pessac (France); Department of Radiology, German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Wroblewski, Jacek, E-mail: JacekWr@gmx.net [Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Translational Lung Research Center (TLRC-H), German Center for Lung Research (DZL), Im Neuenheimer Feld 350, 69120 Heidelberg (Germany); Dinkel, Julien, E-mail: jdinkel@partners.org [Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States); Department of Radiology, German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Translational Lung Research Center (TLRC-H), German Center for Lung Research (DZL), Im Neuenheimer Feld 350, 69120 Heidelberg (Germany); Eichinger, Monika, E-mail: Monika.eichinger@thoraxklinik-heidelberg.de [Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Amalienstr. 5, 69126 Heidelberg (Germany); Translational Lung Research Center (TLRC-H), German Center for Lung Research (DZL), Im Neuenheimer Feld 350, 69120 Heidelberg (Germany); Department of Radiology, German Cancer Research Center (dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); and others

    2013-09-15

    Objectives: To evaluate the influence of exposure parameters and raw-data based iterative reconstruction (IR) on the measurement variability of computer-aided nodule volumetry on chest multidetector computed tomography (MDCT). Materials and methods: N = 7 porcine lung explants were inflated in a dedicated ex vivo phantom and prepared with n = 162 artificial nodules. MDCT was performed eight consecutive times (combinations of 120 and 80 kV with 120, 60, 30 and 12 mA s), and reconstructed with filtered back projection (FBP) and IR. Nodule volume and diameter were measured semi-automatically with dedicated software. The absolute percentage measurement error (APE) was computed in relation to the 120 kV 120 mA s acquisition. Noise was recorded for each nodule in every dataset. Results: Mean nodule volume and diameter were 0.32 ± 0.15 ml and 12.0 ± 2.6 mm, respectively. Although IR reduced noise by 24.9% on average compared to FBP (p < 0.007), APE with IR was equal to or slightly higher than with FBP. Mean APE for volume increased significantly below a volume computed tomography dose index (CTDI) of 1.0 mGy: for 120 kV 12 mA s APE was 3.8 ± 6.2% (FBP) vs. 4.0 ± 5.2% (IR) (p < 0.007); for 80 kV 12 mA s APE was 8.0 ± 13.0% vs. 9.3 ± 15.8% (n.s.), respectively. Correlating APE with image noise revealed that at identical noise APE was higher with IR than with FBP (p < 0.05). Conclusions: Computer-aided volumetry is robust in a wide range of exposure settings, and reproducibility is reduced at a CTDI below 1.0 mGy only, but the error rate remains clinically irrelevant. Noise reduction by IR is not detrimental for measurement error in the setting of semi-automatic nodule volumetry on chest MDCT.

  11. CT volumetry of artificial pulmonary nodules using an ex vivo lung phantom: Influence of exposure parameters and iterative reconstruction on reproducibility

    International Nuclear Information System (INIS)

    Wielpütz, Mark O.; Lederlin, Mathieu; Wroblewski, Jacek; Dinkel, Julien; Eichinger, Monika

    2013-01-01

    Objectives: To evaluate the influence of exposure parameters and raw-data based iterative reconstruction (IR) on the measurement variability of computer-aided nodule volumetry on chest multidetector computed tomography (MDCT). Materials and methods: N = 7 porcine lung explants were inflated in a dedicated ex vivo phantom and prepared with n = 162 artificial nodules. MDCT was performed eight consecutive times (combinations of 120 and 80 kV with 120, 60, 30 and 12 mA s), and reconstructed with filtered back projection (FBP) and IR. Nodule volume and diameter were measured semi-automatically with dedicated software. The absolute percentage measurement error (APE) was computed in relation to the 120 kV 120 mA s acquisition. Noise was recorded for each nodule in every dataset. Results: Mean nodule volume and diameter were 0.32 ± 0.15 ml and 12.0 ± 2.6 mm, respectively. Although IR reduced noise by 24.9% on average compared to FBP (p < 0.007), APE with IR was equal to or slightly higher than with FBP. Mean APE for volume increased significantly below a volume computed tomography dose index (CTDI) of 1.0 mGy: for 120 kV 12 mA s APE was 3.8 ± 6.2% (FBP) vs. 4.0 ± 5.2% (IR) (p < 0.007); for 80 kV 12 mA s APE was 8.0 ± 13.0% vs. 9.3 ± 15.8% (n.s.), respectively. Correlating APE with image noise revealed that at identical noise APE was higher with IR than with FBP (p < 0.05). Conclusions: Computer-aided volumetry is robust in a wide range of exposure settings, and reproducibility is reduced at a CTDI below 1.0 mGy only, but the error rate remains clinically irrelevant. Noise reduction by IR is not detrimental for measurement error in the setting of semi-automatic nodule volumetry on chest MDCT

  12. Vasculature surrounding a nodule: A novel lung cancer biomarker.

    Science.gov (United States)

    Wang, Xiaohua; Leader, Joseph K; Wang, Renwei; Wilson, David; Herman, James; Yuan, Jian-Min; Pu, Jiantao

    2017-12-01

    To investigate whether the vessels surrounding a nodule depicted on non-contrast, low-dose computed tomography (LDCT) can discriminate benign and malignant screen detected nodules. We collected a dataset consisting of LDCT scans acquired on 100 subjects from the Pittsburgh Lung Screening study (PLuSS). Fifty subjects were diagnosed with lung cancer and 50 subjects had suspicious nodules later proven benign. For the lung cancer cases, the location of the malignant nodule in the LDCT scans was known; while for the benign cases, the largest nodule in the LDCT scan was used in the analysis. A computer algorithm was developed to identify surrounding vessels and quantify the number and volume of vessels that were connected or near the nodule. A nonparametric receiver operating characteristic (ROC) analysis was performed based on a single nodule per subject to assess the discriminability of the surrounding vessels to provide a lung cancer diagnosis. Odds ratio (OR) were computed to determine the probability of a nodule being lung cancer based on the vessel features. The areas under the ROC curves (AUCs) for vessel count and vessel volume were 0.722 (95% CI=0.616-0.811, plung cancer group 9.7 (±9.6) compared to the non-lung cancer group 4.0 (±4.3) CONCLUSION: Our preliminary results showed that malignant nodules are often surrounded by more vessels compared to benign nodules, suggesting that the surrounding vessel characteristics could serve as lung cancer biomarker for indeterminate nodules detected during LDCT lung cancer screening using only the information collected during the initial visit. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Diffusion-weighted MR-imaging for the detection of pulmonary nodules at 1.5 Tesla: intraindividual comparison with multidetector computed tomography

    International Nuclear Information System (INIS)

    Regier, Marc; Schwarz, Dorothee; Henes, Frank Oliver; Groth, Michael; Begemann, Philipp G.C.; Adam, Gerhard; Kooijman, Hendrik

    2011-01-01

    To investigate the feasibility of diffusion-weighted imaging (DWI) MRI for detecting pulmonary nodules at 1.5 Tesla in comparison with standard multidetector computed tomography (MDCT). Twenty patients with disseminated cancer disease in which MDCT had assured the presence of at least one pulmonary nodule were examined using a respiratory-gated DWI MR-sequence. Grey scale inverted source images and coronal maximum intensity projection (MIP) images were consensually analysed by two experienced radiologists. Size and location of any nodule detected were assessed. Additionally, the readers evaluated each hemithorax for the presence of at least one nodule and applied a four-point conspicuity scale (1-hemithorax definitely affected; 4-hemithorax definitely not affected). MDCT data served as reference. At MDCT, a total of 71 pulmonary noduIes was found (size 3–5 mm, n = 16; 6–9 mm, n = 22; ≥10 mm, n = 33). For the DWI MR-sequence, a sensitivity of 86.4% was calculated for nodules ranging 6–9 mm and 97% for nodules ≥10 mm. In contrast, only 43.8% of lesions ≤5 mm was detected. The separate analysis of each hemithorax for the presence of at least one pulmonary nodule revealed a specificity rate, PPV and NPV of DWI-MR of 92.3%, 96% and 80%, respectively. The presented study is the first to confirm the diagnostic potential of DWI-MR in the detection of solid lung nodules. This technique allows for the detection of nodules ≥6 mm with reasonably high sensitivity rates (>86%). The observation of false positive findings decreases the accuracy of this approach compared with MDCT.

  14. Automatic Solitary Lung Nodule Detection in Computed Tomography Images Slices

    Science.gov (United States)

    Sentana, I. W. B.; Jawas, N.; Asri, S. A.

    2018-01-01

    Lung nodule is an early indicator of some lung diseases, including lung cancer. In Computed Tomography (CT) based image, nodule is known as a shape that appears brighter than lung surrounding. This research aim to develop an application that automatically detect lung nodule in CT images. There are some steps in algorithm such as image acquisition and conversion, image binarization, lung segmentation, blob detection, and classification. Data acquisition is a step to taking image slice by slice from the original *.dicom format and then each image slices is converted into *.tif image format. Binarization that tailoring Otsu algorithm, than separated the background and foreground part of each image slices. After removing the background part, the next step is to segment part of the lung only so the nodule can localized easier. Once again Otsu algorithm is use to detect nodule blob in localized lung area. The final step is tailoring Support Vector Machine (SVM) to classify the nodule. The application has succeed detecting near round nodule with a certain threshold of size. Those detecting result shows drawback in part of thresholding size and shape of nodule that need to enhance in the next part of the research. The algorithm also cannot detect nodule that attached to wall and Lung Chanel, since it depend the searching only on colour differences.

  15. Effect of radiation dose and iterative reconstruction on lung lesion conspicuity at MDCT: Does one size fit all?

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Marcos Paulo Ferreira; Agrawal, Rishi, E-mail: rishi.agrawal@northwestern.edu; Gonzalez-Guindalini, Fernanda Dias; Hart, Eric M.; Patel, Suresh K.; Töre, Hüseyin Gürkan; Yaghmai, Vahid

    2013-11-01

    Objective: To evaluate the effect of different acquisition parameters and reconstruction algorithms in lung lesions conspicuity in chest MDCT. Methods: An anthropomorphic chest phantom containing 6 models of lung disease (ground glass opacity, bronchial polyp, solid nodule, ground glass nodule, emphysema and tree-in-bud) was scanned using 80, 100 and 120 kVp, with fixed mAs ranging from 10 to 110. The scans were reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) algorithms. Three blinded thoracic radiologists reviewed the images and scored lesions conspicuity and overall image quality. Image noise and radiation dose parameters were recorded. Results: All acquisitions with 120 kVp received a score of 3 (acceptable) or higher for overall image quality. There was no significant difference between IR and FBP within each setting for overall image quality (p > 0.05), even though image noise was significantly lower using IR (p < 0.0001). When comparing specific lower radiation acquisition parameters 100 kVp/10 mAs [Effective Dose (ED): 0.238 mSv] vs 120 kVp/10 mAs (ED: 0.406 mSv) vs 80 kVp/40 mAs (ED: 0.434 mSv), we observed significant difference in lesions conspicuity (p < 0.02), as well as significant difference in overall image quality, independent of the reconstruction algorithm (p < 0.02), with higher scores on the 120 kV/10 mAs setting. Tree-in-bud pattern, ground glass nodule and ground glass opacity required lower radiation doses to get a diagnostic score using IR when compared to FBP. Conclusion: Designing protocols for specific lung pathologies using lower dose acquisition parameters is feasible, and by applying iterative reconstruction, radiologists may have better diagnostic confidence to evaluate some lesions in very low dose settings, preserving acceptable image quality.

  16. Lung Nodule Detection via Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Issa Ali

    2018-04-01

    Full Text Available Lung cancer is the most common cause of cancer-related death globally. As a preventive measure, the United States Preventive Services Task Force (USPSTF recommends annual screening of high risk individuals with low-dose computed tomography (CT. The resulting volume of CT scans from millions of people will pose a significant challenge for radiologists to interpret. To fill this gap, computer-aided detection (CAD algorithms may prove to be the most promising solution. A crucial first step in the analysis of lung cancer screening results using CAD is the detection of pulmonary nodules, which may represent early-stage lung cancer. The objective of this work is to develop and validate a reinforcement learning model based on deep artificial neural networks for early detection of lung nodules in thoracic CT images. Inspired by the AlphaGo system, our deep learning algorithm takes a raw CT image as input and views it as a collection of states, and output a classification of whether a nodule is present or not. The dataset used to train our model is the LIDC/IDRI database hosted by the lung nodule analysis (LUNA challenge. In total, there are 888 CT scans with annotations based on agreement from at least three out of four radiologists. As a result, there are 590 individuals having one or more nodules, and 298 having none. Our training results yielded an overall accuracy of 99.1% [sensitivity 99.2%, specificity 99.1%, positive predictive value (PPV 99.1%, negative predictive value (NPV 99.2%]. In our test, the results yielded an overall accuracy of 64.4% (sensitivity 58.9%, specificity 55.3%, PPV 54.2%, and NPV 60.0%. These early results show promise in solving the major issue of false positives in CT screening of lung nodules, and may help to save unnecessary follow-up tests and expenditures.

  17. Improved pulmonary nodule classification utilizing quantitative lung parenchyma features.

    Science.gov (United States)

    Dilger, Samantha K N; Uthoff, Johanna; Judisch, Alexandra; Hammond, Emily; Mott, Sarah L; Smith, Brian J; Newell, John D; Hoffman, Eric A; Sieren, Jessica C

    2015-10-01

    Current computer-aided diagnosis (CAD) models for determining pulmonary nodule malignancy characterize nodule shape, density, and border in computed tomography (CT) data. Analyzing the lung parenchyma surrounding the nodule has been minimally explored. We hypothesize that improved nodule classification is achievable by including features quantified from the surrounding lung tissue. To explore this hypothesis, we have developed expanded quantitative CT feature extraction techniques, including volumetric Laws texture energy measures for the parenchyma and nodule, border descriptors using ray-casting and rubber-band straightening, histogram features characterizing densities, and global lung measurements. Using stepwise forward selection and leave-one-case-out cross-validation, a neural network was used for classification. When applied to 50 nodules (22 malignant and 28 benign) from high-resolution CT scans, 52 features (8 nodule, 39 parenchymal, and 5 global) were statistically significant. Nodule-only features yielded an area under the ROC curve of 0.918 (including nodule size) and 0.872 (excluding nodule size). Performance was improved through inclusion of parenchymal (0.938) and global features (0.932). These results show a trend toward increased performance when the parenchyma is included, coupled with the large number of significant parenchymal features that support our hypothesis: the pulmonary parenchyma is influenced differentially by malignant versus benign nodules, assisting CAD-based nodule characterizations.

  18. System for automatic detection of lung nodules exhibiting growth

    Science.gov (United States)

    Novak, Carol L.; Shen, Hong; Odry, Benjamin L.; Ko, Jane P.; Naidich, David P.

    2004-05-01

    Lung nodules that exhibit growth over time are considered highly suspicious for malignancy. We present a completely automated system for detection of growing lung nodules, using initial and follow-up multi-slice CT studies. The system begins with automatic detection of lung nodules in the later CT study, generating a preliminary list of candidate nodules. Next an automatic system for registering locations in two studies matches each candidate in the later study to its corresponding position in the earlier study. Then a method for automatic segmentation of lung nodules is applied to each candidate and its matching location, and the computed volumes are compared. The output of the system is a list of nodule candidates that are new or have exhibited volumetric growth since the previous scan. In a preliminary test of 10 patients examined by two radiologists, the automatic system identified 18 candidates as growing nodules. 7 (39%) of these corresponded to validated nodules or other focal abnormalities that exhibited growth. 4 of the 7 true detections had not been identified by either of the radiologists during their initial examinations of the studies. This technique represents a powerful method of surveillance that may reduce the probability of missing subtle or early malignant disease.

  19. Use of Volumetry for Lung Nodule Management: Theory and Practice

    NARCIS (Netherlands)

    Devaraj, A.; Ginneken, B. van; Nair, A.; Baldwin, D.

    2017-01-01

    A consistent feature of many lung nodule management guidelines is the recommendation to evaluate nodule size by using diameter measurements and electronic calipers. Traditionally, the use of nodule volumetry applications has primarily been reserved for certain lung cancer screening trials rather

  20. Use of Volumetry for Lung Nodule Management: Theory and Practice.

    Science.gov (United States)

    Devaraj, Anand; van Ginneken, Bram; Nair, Arjun; Baldwin, David

    2017-09-01

    A consistent feature of many lung nodule management guidelines is the recommendation to evaluate nodule size by using diameter measurements and electronic calipers. Traditionally, the use of nodule volumetry applications has primarily been reserved for certain lung cancer screening trials rather than clinical practice. However, even before the first nodule management guidelines were published more than a decade ago, research has been ongoing into the use of nodule volumetry as a means of measuring nodule size, and this research has accelerated in recent years. This article aims to provide radiologists with an up-to-date review of the most recent literature on volumetry and volume doubling times in lung nodule management, outlining their benefits and drawbacks. A brief technical review of typical volumetry applications is also provided. © RSNA, 2017.

  1. Multidetector computed tomography analysis of benign and malignant nodules in patients with chronic lymphocytic thyroiditis.

    Science.gov (United States)

    Zhu, Caisong; Liu, Wei; Yang, Jun; Yang, Jing; Shao, Kangwei; Yuan, Lixin; Chen, Hairong; Lu, Wei; Zhu, Ying

    2016-07-01

    The aim of the present study was to compare the multidetector computed tomography (MDCT) features of benign and malignant nodules in patients with chronic lymphocytic thyroiditis (CLT). MDCT findings, including the size, solid percentage, calcification, margin, capsule, anteroposterior-transverse diameter ratio as well as the mode and the degree of enhancement of 137 thyroid nodules in 127 CLT cases were retrospectively analyzed. Furthermore, the correlation between MDCT findings and pathological results combined with the CT perfusion imaging was analyzed for the differences between benign and malignant nodules. A total of 77.5% (31/40) of malignant nodules were completely solid, and 33% (32/97) of benign nodules were predominantly cystic. Compared with the benign nodules, micro-calcification and internal calcification were more frequently observed in the malignant nodules (Pbenign and malignant nodules (P>0.05). MDCT features are useful in differentiating the benign and malignant nodules in CLT patients, and it may be essential for a radiologist to review the MDCT characteristics of nodules in the clinical practice.

  2. Clinical chest CAD system for lung cancer, COPD, and osteoporosis based on MDCT images

    International Nuclear Information System (INIS)

    Matsuhiro, Mikio; Suzuki, Hidenobu; Saita, Shinsuke

    2011-01-01

    Lung cancer kills more people than any other cancer worldwide. Lung cancer screening using low-dose CT have been performed in many countries. Comparative reading of current and past CT images is important for evaluation of pulmonary nodules in lung cancer CT screening. However, primary problem in comparative reading is mismatch of slice and nodule positions caused by lung variation. It is hard for physicians to manually match slice positions, nodule positions, and evaluate the nodule's degree of change. A system to assist smooth comparative reading is necessary. We proposed a comparative reading system for lung cancer CT screening. A distinctive feature is highly accurate matching method of region of interest based on thoracic organs registration. Pulmonary blood vessels registration using analysis of the tree structure is performed. The system is evaluated by 1 mm and 2 mm slice thickness CT images obtained from lung cancer CT screening. We show how it is useful for lung cancer CT screening. (author)

  3. Computerized detection of lung nodules in digital chest radiographs

    International Nuclear Information System (INIS)

    Giger, M.L.; Doi, K.; MacMahon, H.

    1987-01-01

    Detection of cancerous lung nodules in chest radiographs is one of the more important tasks performed by a radiologist. In addition, the ''miss rate'' associated with the radiographic detection of lung nodules is approximately 30%. A computerized scheme that alerts the radiologist to possible locations of lung nodules should allow this number of false-negative diagnoses to be reduced. The authors are developing a computer-aided nodule detection scheme based on a difference image approach. They attempt to eliminate the camouflaging background structure of the normal lung anatomy by creating, from a single-projection chest image, two images: one in which the signal-to-noise ratio (SNR) of the nodule is maximized and another in which that SNR is suppressed while the processed background remains essentially the same. Thus, the difference between these two processed images should consist of the nodule superimposed on a relatively uniform background in which the detection task may be simplified. This difference image approach is fundamentally different from conventional subtraction techniques (e.g., temporal or dual-energy subtraction) in that the two images which are subtracted arise from the same single-projection chest radiograph. Once the difference image is obtained, thresholding is performed along with tests for circularity, size and growth in order to extract the nodules. It should be noted that once an original chest image is input to the computer the nodule detection process is totally automated

  4. Lung surgery assisted by multidetector-row computed tomographic simulation

    International Nuclear Information System (INIS)

    Oizumi, Hiroyuki; Endoh, Makoto; Ota, Hiroshi; Takeda, Shinichi; Suzuki, Jun; Fukaya, Ken; Chiba, Masato; Sadahiro, Mitsuaki

    2009-01-01

    We describe the benefits of lung resection simulation using multidetector computed tomography (MDCT). Since 2004, the 1.0-mm slice digital imaging and communications in medicine (DICOM) server has been used for storing data obtained using 64-row MDCT. We observed that an abnormality could not be visualized from the pleural surface in 10 nodules of 18 lesions undergoing wedge lung resection. These 10 nodules were resected through simulation using a three-dimensional (3D) volume-rendering method by considering parameters such as the position, depth, or distance from the interlobar abnormalities, etc., without the need for any marking methods. For lung lobectomy, identification of the branching structures, diameter, and length of the arteries is useful in selecting the procedure for blood vessel treatment. However, in the initial 10 patients of this series, the preoperative identification of 2 small arterial branches was unsuccessful when this method was used. Therefore, it is important to carefully examine the original data in all 3 views, id est (i.e.), axial, sagittal, and coronal views. The visualization of venous branches in affected segments and intersegmental veins has facilitated the preoperative determination of the anatomical intersegmental plane. We divided the cases of thoracoscopic lung segmentectomy into 3 groups (level 1: simple, level 2: intermediate, and level 3: complex) on the basis of the technical complexity. Only level 1 segmentectomies were performed without MDCT simulation. Further, level 2 and 3 segmentectomies could be successfully performed because of the introduction of MDCT simulation in 25 of 35 patients. Thus, this simulation technique may be useful during a thoracoscopic procedure for lung surgery. (author)

  5. Radiographic test phantom for computed tomographic lung nodule analysis

    International Nuclear Information System (INIS)

    Zerhouni, E.A.

    1987-01-01

    This patent describes a method for evaluating a computed tomograph scan of a nodule in a lung of a human or non-human animal. The method comprises generating a computer tomograph of a transverse section of the animal containing lung and nodule tissue, and generating a second computer tomograph of a test phantom comprising a device which simulates the transverse section of the animal. The tissue simulating portions of the device are constructed of materials having radiographic densities substantially identical to those of the corresponding tissue in the simulated transverse section of the animal and have voids therein which simulate, in size and shape, the lung cavities in the transverse section and which contain a test reference nodule constructed of a material of predetermined radiographic density which simulates in size, shape and position within a lung cavity void of the test phantom the nodule in the transverse section of the animal and comparing the respective tomographs

  6. Pulmonary Nodule Management in Lung Cancer Screening: A Pictorial Review of Lung-RADS Version 1.0.

    Science.gov (United States)

    Godoy, Myrna C B; Odisio, Erika G L C; Truong, Mylene T; de Groot, Patricia M; Shroff, Girish S; Erasmus, Jeremy J

    2018-05-01

    The number of screening-detected lung nodules is expected to increase as low-dose computed tomography screening is implemented nationally. Standardized guidelines for image acquisition, interpretation, and screen-detected nodule workup are essential to ensure a high standard of medical care and that lung cancer screening is implemented safely and cost effectively. In this article, we review the current guidelines for pulmonary nodule management in the lung cancer screening setting. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A COMPREHENSIVE FRAMEWORK FOR AUTOMATIC DETECTION OF PULMONARY NODULES IN LUNG CT IMAGES

    Directory of Open Access Journals (Sweden)

    Mehdi Alilou

    2014-03-01

    Full Text Available Solitary pulmonary nodules may indicate an early stage of lung cancer. Hence, the early detection of nodules is the most efficient way for saving the lives of patients. The aim of this paper is to present a comprehensive Computer Aided Diagnosis (CADx framework for detection of the lung nodules in computed tomography images. The four major components of the developed framework are lung segmentation, identification of candidate nodules, classification and visualization. The process starts with segmentation of lung regions from the thorax. Then, inside the segmented lung regions, candidate nodules are identified using an approach based on multiple thresholds followed by morphological opening and 3D region growing algorithm. Finally, a combination of a rule-based procedure and support vector machine classifier (SVM is utilized to classify the candidate nodules. The proposed CADx method was validated on CT images of 60 patients, containing the total of 211 nodules, selected from the publicly available Lung Image Database Consortium (LIDC image dataset. Comparing to the other state of the art methods, the proposed framework demonstrated acceptable detection performance (Sensitivity: 0.80; Fp/Scan: 3.9. Furthermore, we visualize a range of anatomical structures including the 3D lung structure and the segmented nodules along with the Maximum Intensity Projection (MIP volume rendering method that will enable the radiologists to accurately and easily estimate the distance between the lung structures and the nodules which are frequently difficult at best to recognize from CT images.

  8. Computer-aided detection of small pulmonary nodules in multidetector spiral computed tomography (MSCT) in children

    International Nuclear Information System (INIS)

    Honnef, D.; Behrendt, F.F.; Hohl, C.; Mahnken, A.H.; Guenther, R.W.; Das, M.; Mertens, R.; Stanzel, S.

    2008-01-01

    Purpose: Retrospective evaluation of computer-aided detection software (CAD) for automated detection (LungCAD, Siemens Medical solutions, Forchheim, Germany) and volumetry (LungCARE) of pulmonary nodules in dose-reduced pediatric MDCT. Materials and Methods: 30 scans of 24 children (10.4±5.9 years, 13 girls, 11 boys, 39.7±29.3 kg body weight) were performed on a 16-MDCT for tumor staging (n=18), inflammation (n=9), other indications (n=3). Tube voltage 120 kVp and effective mAs were adapted to body weight. Slice thickness 2 mm, increment 1 mm. A pediatric radiologist (U1), a CAD expert (U2) and an inexperienced radiologist (U3) independently analyzed the lung window images without and with the CAD as a second reader. In a consensus decision U1 and U2 were the reference standard. Results: Five examinations had to be excluded from the study due to other underlying lung disease. A total of 24 pulmonary nodules were found in all data sets with a minimal diameter of 0.35 mm to 3.81 mm (mean 1.7±0.85 mm). The sensitivities were as follows: U1 95.8% and 100% with CAD; U2 91.7% U3 66.7%. U2 and U3 did not detect further nodules with CAD. The sensitivity of CAD alone was 41.7% with 0.32 false-positive findings per examination. Interobserver agreement between U1/U2 regarding nodule detection with CAD was good (k=0.6500) and without CAD very good (k=0.8727). For the rest (U1/U3; U2/U3 with and without CAD), it was weak (k=0.0667-0.1884). Depending on the measured value (axial measurement, volume), there is a significant correlation (p=0.0026-0.0432) between nodule size and CAD detection. Undetected pulmonary nodules (mean 1.35 mm; range 0.35-2.61 mm) were smaller than the detected ones (mean 2.19 mm; range 1.35-3.81 mm). No significant correlation was found between CAD findings and patient age (p=0.9263) and body weight (p=0.9271) as well as nodule location (subpleural, intraparenchymal; p=1.0) and noise/SNR. (orig.)

  9. Lung Nodule Detection in CT Images using Neuro Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    M. Usman Akram

    2013-07-01

    Full Text Available Automated lung cancer detection using computer aided diagnosis (CAD is an important area in clinical applications. As the manual nodule detection is very time consuming and costly so computerized systems can be helpful for this purpose. In this paper, we propose a computerized system for lung nodule detection in CT scan images. The automated system consists of two stages i.e. lung segmentation and enhancement, feature extraction and classification. The segmentation process will result in separating lung tissue from rest of the image, and only the lung tissues under examination are considered as candidate regions for detecting malignant nodules in lung portion. A feature vector for possible abnormal regions is calculated and regions are classified using neuro fuzzy classifier. It is a fully automatic system that does not require any manual intervention and experimental results show the validity of our system.

  10. Intelligent Recognition of Lung Nodule Combining Rule-based and C-SVM Classifiers

    Directory of Open Access Journals (Sweden)

    Bin Li

    2012-02-01

    Full Text Available Computer-aided detection(CAD system for lung nodules plays the important role in the diagnosis of lung cancer. In this paper, an improved intelligent recognition method of lung nodule in HRCT combing rule-based and cost-sensitive support vector machine(C-SVM classifiers is proposed for detecting both solid nodules and ground-glass opacity(GGO nodules(part solid and nonsolid. This method consists of several steps. Firstly, segmentation of regions of interest(ROIs, including pulmonary parenchyma and lung nodule candidates, is a difficult task. On one side, the presence of noise lowers the visibility of low-contrast objects. On the other side, different types of nodules, including small nodules, nodules connecting to vasculature or other structures, part-solid or nonsolid nodules, are complex, noisy, weak edge or difficult to define the boundary. In order to overcome the difficulties of obvious boundary-leak and slow evolvement speed problem in segmentatioin of weak edge, an overall segmentation method is proposed, they are: the lung parenchyma is extracted based on threshold and morphologic segmentation method; the image denoising and enhancing is realized by nonlinear anisotropic diffusion filtering(NADF method; candidate pulmonary nodules are segmented by the improved C-V level set method, in which the segmentation result of EM-based fuzzy threshold method is used as the initial contour of active contour model and a constrained energy term is added into the PDE of level set function. Then, lung nodules are classified by using the intelligent classifiers combining rules and C-SVM. Rule-based classification is first used to remove easily dismissible nonnodule objects, then C-SVM classification are used to further classify nodule candidates and reduce the number of false positive(FP objects. In order to increase the efficiency of SVM, an improved training method is used to train SVM, which uses the grid search method to search the optimal

  11. Intelligent Recognition of Lung Nodule Combining Rule-based and C-SVM Classifiers

    Directory of Open Access Journals (Sweden)

    Bin Li

    2011-10-01

    Full Text Available Computer-aided detection(CAD system for lung nodules plays the important role in the diagnosis of lung cancer. In this paper, an improved intelligent recognition method of lung nodule in HRCT combing rule-based and costsensitive support vector machine(C-SVM classifiers is proposed for detecting both solid nodules and ground-glass opacity(GGO nodules(part solid and nonsolid. This method consists of several steps. Firstly, segmentation of regions of interest(ROIs, including pulmonary parenchyma and lung nodule candidates, is a difficult task. On one side, the presence of noise lowers the visibility of low-contrast objects. On the other side, different types of nodules, including small nodules, nodules connecting to vasculature or other structures, part-solid or nonsolid nodules, are complex, noisy, weak edge or difficult to define the boundary. In order to overcome the difficulties of obvious boundary-leak and slow evolvement speed problem in segmentatioin of weak edge, an overall segmentation method is proposed, they are: the lung parenchyma is extracted based on threshold and morphologic segmentation method; the image denoising and enhancing is realized by nonlinear anisotropic diffusion filtering(NADF method;candidate pulmonary nodules are segmented by the improved C-V level set method, in which the segmentation result of EM-based fuzzy threshold method is used as the initial contour of active contour model and a constrained energy term is added into the PDE of level set function. Then, lung nodules are classified by using the intelligent classifiers combining rules and C-SVM. Rule-based classification is first used to remove easily dismissible nonnodule objects, then C-SVM classification are used to further classify nodule candidates and reduce the number of false positive(FP objects. In order to increase the efficiency of SVM, an improved training method is used to train SVM, which uses the grid search method to search the optimal parameters

  12. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably.

    NARCIS (Netherlands)

    Ashraf, H.; Hoop, B.J. de; Shaker, S.B.; Dirksen, A.; Bach, K.S.; Hansen, H.; Prokop, M.; Pedersen, J.H.

    2010-01-01

    OBJECTIVE: We examined the reproducibility of lung nodule volumetry software that offers three different volumetry algorithms. METHODS: In a lung cancer screening trial, 188 baseline nodules >5 mm were identified. Including follow-ups, these nodules formed a study-set of 545 nodules. Nodules were

  13. Characteristic CT Findings After Percutaneous Cryoablation Treatment of Malignant Lung Nodules.

    Science.gov (United States)

    Chaudhry, Ammar; Grechushkin, Vadim; Hoshmand, Mahsa; Kim, Choo Won; Pena, Andres; Huston, Brett; Chaya, Yair; Bilfinger, Thomas; Moore, William

    2015-10-01

    Assess computed tomography (CT) imaging characteristics after percutaneous cryotherapy for lung cancer.A retrospective IRB-approved analysis of 40 patients who underwent nonsurgical treatment for primary stage 1 lung cancer performed from January 2007 to March 2011 was included in this study. All procedures were performed using general anesthesia and CT guidance. Follow-up imaging with CT of the chest was obtained at 1 month, 3 months, 6 months, and 12 months postprocedure to evaluate the ablated lung nodule. Nodule surface area, density (in Hounsfield units), and presence or absence of cavitations were recorded. In addition, the degree of nodule enhancement was also recorded. Patients who were unable to obtain the aforementioned follow-up were excluded from the study.Thirty-six patients underwent percutaneous cryoablation with men to women ratio of 75% with mean age for men 74.6 and mean age for women 74.3 years of age. The average nodule surface area preablation and postcryoablation at 1-, 3-, 6-, and 12-month follow-ups were 2.99, 7.86, 3.89, 3.18 and 3.07[REPLACEMENT CHARACTER]cm, respectively. The average precontrast nodule density before cryoablation was 8.9 and average precontrast nodule density postprocedure at 1, 3, 6, and 12 months follow-ups were 8.5, -5.9, -9.4, and -3.8 HU, respectively. There is increased attenuation of lung nodules over time with an average postcontrast enhancement of 11.4, 18.5, 16.1, and 25.7 HU at the aforementioned time intervals. Cavitations occurred in the cryoablation zone in 53% (19/36) of patients. 80.6% (29/36) of the cavitations in the cryoablation zone resolved within 12 months. Four patients (11%) had recurrence of tumor at the site of cryoablation and none of the patients had satellite or distant metastasis.Our study shows that patients who underwent cryotherapy for lung nodules treatment had characteristic changes on follow-up CT including. The surface area of the nodule increases at the 1-month follow-up with

  14. Computer-aided detection of lung nodules in digital chest radiographs

    International Nuclear Information System (INIS)

    Giger, M.L.; Doi, K.; MacMahon, H.M.

    1986-01-01

    The authors are developing an automated method to detect lung nodules by eliminating the ''camouflaging: effect of the lung background. In order to increase the conspicuity of the nodules, we created, from a single chest radiograph, two images: one in which the signal-to-noise ratio (S/N) of the nodule is maximized and another in which that S/N is suppressed. The difference between these two processed images was subjected to feature-extraction technique in order to isolate the nodules. The detection accuracy of the computer-aided detection scheme, as compared with unaided radiologists' performance, was determined using receiver operating characteristic curve analysis

  15. Automated detection of lung nodules in multidetector CT: influence of different reconstruction protocols on performance of a software prototype

    International Nuclear Information System (INIS)

    Gurung, J.; Maataoui, A.; Khan, M.; Wetter, A.; Harth, M.; Jacobi, V.; Vogl, T.J.

    2006-01-01

    Purpose: To evaluate the accuracy of software for computer-aided detection (CAD) of lung nodules using different reconstruction slice thickness protocols in multidetector CT. Materials and Methods: Raw image data sets for 15 patients who had undergone 16-row multidetector CT (MDCT) for known pulmonary nodules were reconstructed at a reconstruction thickness of 5.0, 2.0 and 1.0 mm with a reconstruction increment of 1.5, 1.0 and 0.5 mm, respectively. The ''Nodule Enhanced Viewing'' (NEV) tool of LungCare for computer-aided detection of lung nodules was applied to the reconstructed images. The reconstructed images were also blinded and then evaluated by 2 radiologists (A and B). Data from the evaluating radiologists and CAD was then compared to an independent reference standard established using the consensus of 2 independent experienced chest radiologists. The eligible nodules were grouped according to their size (diameter >10, 5 - 10, <5 mm) for assessment. Statistical analysis was performed using the receiver operating characteristic (ROC) curve analysis, t-test and two-rater Cohen's Kappa co-efficient. Results: A total of 103 nodules were included in the reference standard by the consensus panel. The performance of CAD was marginally lower than that of readers at a 5.0-mm reconstruction thickness (AUC = 0.522, 0.517 and 0.497 for A, B and CAD, respectively). In the case of 2.0-mm reconstruction slices, the performance of CAD was better than that of the readers (AUC = 0.524, 0.524 and 0.614 for A, B and CAD, respectively). CAD was found to be significantly superior to radiologists in the case of 1.0-mm reconstruction slices (AUC = 0.537, 0.531 and 0.675 for A, B and CAD, respectively). The sensitivity at a reconstruction thickness of 1.0 mm was determined to be 66.99%, 68.93% and 80.58% for A, B and CAD, respectively. The time required for detection was shortest for CAD at reconstruction slices of 1.0 mm (mean t = 4 min). The performance of radiologists was greatly

  16. Ground-Glass Opacity Lung Nodules in the Era of Lung Cancer CT Screening

    DEFF Research Database (Denmark)

    Pedersen, Jesper Holst; Saghir, Zaigham; Wille, Mathilde Marie Winkler

    2016-01-01

    The advent of computed tomography screening for lung cancer will increase the incidence of ground-glass opacity (GGO) nodules detected and referred for diagnostic evaluation and management. GGO nodules remain a diagnostic challenge; therefore, a more systematic approach is necessary to ensure...... that will yield improvements in both diagnosis and treatment. The standard-of-care surgical treatment of early lung cancer is still minimally invasive lobectomy with systematic lymph node dissection. However, recent research has shown that some GGO lesions may be treated with sublobar resections; these findings......, the National Comprehensive Cancer Network, and the British Thoracic Society. In addition, we discuss the management and follow-up of GGO nodules in the light of experience from screening trials. Minimally invasive tissue biopsies and the marking of GGO nodules for surgery are new and rapidly developing fields...

  17. Asbestos Surveillance Program Aachen (ASPA): initial results from baseline screening for lung cancer in asbestos-exposed high-risk individuals using low-dose multidetector-row CT

    International Nuclear Information System (INIS)

    Das, Marco; Muehlenbruch, Georg; Mahnken, Andreas H.; Guenther, Rolf W.; Wildberger, Joachim E.; Hering, K.G.; Sirbu, H.; Zschiesche, W.; Knoll, Lars; Felten, Michael K.; Kraus, Thomas

    2007-01-01

    The purpose of this study was to assess the prevalence of lung cancer in a high-risk asbestos-exposed cohort using low-dose MDCT. Of a population of 5,389 former power-plant workers, 316 were characterized as individuals at highest risk for lung cancer according to a lung-cancer risk model including age, asbestos exposure and smoking habits. Of these 316, 187 (mean age: 66.6 years) individuals were included in a prospective trial. Mean asbestos exposure time was 29.65 years and 89% were smokers. Screening was performed on a 16-slice MDCT (Siemens) with low-dose technique (10/20 mAs eff. ; 1 mm/0.5 mm increment). In addition to soft copy PACS reading analysis on a workstation with a dedicated lung analysis software (LungCARE; Siemens) was performed. One strongly suspicious mass and eight cases of histologically proven lung cancer were found plus 491 additional pulmonary nodules (average volume: 40.72 ml, average diameter 4.62 mm). Asbestos-related changes (pleural plaques, fibrosis) were visible in 80 individuals. Lung cancer screening in this high-risk cohort showed a prevalence of lung cancer of 4.28% (8/187) at baseline screening with an additional large number of indeterminate pulmonary nodules. Low-dose MDCT proved to be feasible in this highly selected population. (orig.)

  18. Accuracy of lung nodule volumetry in low-dose CT with iterative reconstruction: an anthropomorphic thoracic phantom study.

    Science.gov (United States)

    Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W

    2014-09-01

    The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.

  19. Radiomic features analysis in computed tomography images of lung nodule classification.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Chen

    Full Text Available Radiomics, which extract large amount of quantification image features from diagnostic medical images had been widely used for prognostication, treatment response prediction and cancer detection. The treatment options for lung nodules depend on their diagnosis, benign or malignant. Conventionally, lung nodule diagnosis is based on invasive biopsy. Recently, radiomics features, a non-invasive method based on clinical images, have shown high potential in lesion classification, treatment outcome prediction.Lung nodule classification using radiomics based on Computed Tomography (CT image data was investigated and a 4-feature signature was introduced for lung nodule classification. Retrospectively, 72 patients with 75 pulmonary nodules were collected. Radiomics feature extraction was performed on non-enhanced CT images with contours which were delineated by an experienced radiation oncologist.Among the 750 image features in each case, 76 features were found to have significant differences between benign and malignant lesions. A radiomics signature was composed of the best 4 features which included Laws_LSL_min, Laws_SLL_energy, Laws_SSL_skewness and Laws_EEL_uniformity. The accuracy using the signature in benign or malignant classification was 84% with the sensitivity of 92.85% and the specificity of 72.73%.The classification signature based on radiomics features demonstrated very good accuracy and high potential in clinical application.

  20. Quantitative assessment of lung volumes using multi-detector row computed tomography (MDCT) in patients with chronic obstructive pulmonary disease (COPD)

    International Nuclear Information System (INIS)

    Lee, Sang Min; Hur, Jin; Kim, Tae Hoon; Kim, Sang Jin; Kim, Hyung Jung

    2008-01-01

    To evaluate the clinical value of the multi-detector row computed tomography (MDCT) in the quantitative assessment of lung volumes and to assess the relationship between the MDCT results and disease severity as determined by a pulmonary function test (PFT) in Chronic Obstructive Pulmonary Disease (COPD) patients. We performed a PFT and MDCT on 39 COPD patients. Using the GOLD classifications, we divided the patients into three groups according to disease severity; stage I (mild, n = 10), stage II (moderate, n = 15), and stage III (severe, n = 14). Using the pulmo-CT software program, we measured the proportion of lung volumes with attenuation values below -910 and -950 HU. The mean FEV1 (% of predicted) and FEV1/FVC was 82.2 ± 2% and 66.2 ± 3% in stage I, 53.5 ± 11% and 52 ± 6% in stage II, and 32.3 ± 7% and 44.2% ± 13% in stage III, respectively. Differences in lung volume percentage at each of the thresholds (-910 and -950 HU) among the 3 stages were statistically significant (ρ < 0.01, ρ < 0.01) and correlated well with the FEV1 and FEV1/FVC (r = -0.803, r -0.766, r = -0.817, and r = -0.795, respectively). The volumetric measurement obtained by MDCT provides an accurate means of quantifying pulmonary emphysema

  1. Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules

    Science.gov (United States)

    Gong, Jing; Liu, Ji-Yu; Sun, Xi-Wen; Zheng, Bin; Nie, Sheng-Dong

    2018-02-01

    This study aims to develop a computer-aided diagnosis (CADx) scheme for classification between malignant and benign lung nodules, and also assess whether CADx performance changes in detecting nodules associated with early and advanced stage lung cancer. The study involves 243 biopsy-confirmed pulmonary nodules. Among them, 76 are benign, 81 are stage I and 86 are stage III malignant nodules. The cases are separated into three data sets involving: (1) all nodules, (2) benign and stage I malignant nodules, and (3) benign and stage III malignant nodules. A CADx scheme is applied to segment lung nodules depicted on computed tomography images and we initially computed 66 3D image features. Then, three machine learning models namely, a support vector machine, naïve Bayes classifier and linear discriminant analysis, are separately trained and tested by using three data sets and a leave-one-case-out cross-validation method embedded with a Relief-F feature selection algorithm. When separately using three data sets to train and test three classifiers, the average areas under receiver operating characteristic curves (AUC) are 0.94, 0.90 and 0.99, respectively. When using the classifiers trained using data sets with all nodules, average AUC values are 0.88 and 0.99 for detecting early and advanced stage nodules, respectively. AUC values computed from three classifiers trained using the same data set are consistent without statistically significant difference (p  >  0.05). This study demonstrates (1) the feasibility of applying a CADx scheme to accurately distinguish between benign and malignant lung nodules, and (2) a positive trend between CADx performance and cancer progression stage. Thus, in order to increase CADx performance in detecting subtle and early cancer, training data sets should include more diverse early stage cancer cases.

  2. The computer tomography application of LUNG CARE to detect pulmonary nodules

    International Nuclear Information System (INIS)

    Minnoso Arabi, Yaysel; Ugarte Moreno, Dayana; Jordan Gonzalez, Jose

    2011-01-01

    The pulmonary nodule multiple or unique is frequently a casual finding and it is one of lung's cancer presentation. It's known that cancer is one of the first causes of death in our country and pulmonary tumor has become in a major sanitary problem. Methods. A descriptive prospective was carried out to detect pulmonary nodules in Medical Surgical Research Center. Patients were seen in General Medicine Consultation, in the period of time between January and December 2009. An inquiry was applied to every patients and a computer tomography scan with LUNG CARE program was performed to them. LUNG CARE program is used to early diagnosis and study of pulmonary nodule (mass). The data were analyzed with statistic packet SPSS version 13.0, for Windows. The data were summarized by means of stockings, deviations standard and percent, according to the variable type. For the comparison of the detection of nodules according to technical imagenology the test Chi -square was used at a level of significance of 0,05

  3. Comparison of image features calculated in different dimensions for computer-aided diagnosis of lung nodules

    Science.gov (United States)

    Xu, Ye; Lee, Michael C.; Boroczky, Lilla; Cann, Aaron D.; Borczuk, Alain C.; Kawut, Steven M.; Powell, Charles A.

    2009-02-01

    Features calculated from different dimensions of images capture quantitative information of the lung nodules through one or multiple image slices. Previously published computer-aided diagnosis (CADx) systems have used either twodimensional (2D) or three-dimensional (3D) features, though there has been little systematic analysis of the relevance of the different dimensions and of the impact of combining different dimensions. The aim of this study is to determine the importance of combining features calculated in different dimensions. We have performed CADx experiments on 125 pulmonary nodules imaged using multi-detector row CT (MDCT). The CADx system computed 192 2D, 2.5D, and 3D image features of the lesions. Leave-one-out experiments were performed using five different combinations of features from different dimensions: 2D, 3D, 2.5D, 2D+3D, and 2D+3D+2.5D. The experiments were performed ten times for each group. Accuracy, sensitivity and specificity were used to evaluate the performance. Wilcoxon signed-rank tests were applied to compare the classification results from these five different combinations of features. Our results showed that 3D image features generate the best result compared with other combinations of features. This suggests one approach to potentially reducing the dimensionality of the CADx data space and the computational complexity of the system while maintaining diagnostic accuracy.

  4. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably

    DEFF Research Database (Denmark)

    Ashraf, Haseem; de Hoop, B; Shaker, S B

    2010-01-01

    We examined the reproducibility of lung nodule volumetry software that offers three different volumetry algorithms.......We examined the reproducibility of lung nodule volumetry software that offers three different volumetry algorithms....

  5. A computerized scheme for lung nodule detection in multiprojection chest radiography

    International Nuclear Information System (INIS)

    Guo Wei; Li Qiang; Boyce, Sarah J.; McAdams, H. Page; Shiraishi, Junji; Doi, Kunio; Samei, Ehsan

    2012-01-01

    Purpose: Our previous study indicated that multiprojection chest radiography could significantly improve radiologists' performance for lung nodule detection in clinical practice. In this study, the authors further verify that multiprojection chest radiography can greatly improve the performance of a computer-aided diagnostic (CAD) scheme. Methods: Our database consisted of 59 subjects, including 43 subjects with 45 nodules and 16 subjects without nodules. The 45 nodules included 7 real and 38 simulated ones. The authors developed a conventional CAD scheme and a new fusion CAD scheme to detect lung nodules. The conventional CAD scheme consisted of four steps for (1) identification of initial nodule candidates inside lungs, (2) nodule candidate segmentation based on dynamic programming, (3) extraction of 33 features from nodule candidates, and (4) false positive reduction using a piecewise linear classifier. The conventional CAD scheme processed each of the three projection images of a subject independently and discarded the correlation information between the three images. The fusion CAD scheme included the four steps in the conventional CAD scheme and two additional steps for (5) registration of all candidates in the three images of a subject, and (6) integration of correlation information between the registered candidates in the three images. The integration step retained all candidates detected at least twice in the three images of a subject and removed those detected only once in the three images as false positives. A leave-one-subject-out testing method was used for evaluation of the performance levels of the two CAD schemes. Results: At the sensitivities of 70%, 65%, and 60%, our conventional CAD scheme reported 14.7, 11.3, and 8.6 false positives per image, respectively, whereas our fusion CAD scheme reported 3.9, 1.9, and 1.2 false positives per image, and 5.5, 2.8, and 1.7 false positives per patient, respectively. The low performance of the conventional

  6. Preliminary evaluation of lung care software of 16-slice helical CT in the study of pulmonary nodules

    International Nuclear Information System (INIS)

    Song Wei; Jin Zhengyu; Yan Hongzhen; Wang Yun; Zhang Yunqing; Wang Linhui; Zhu Haifeng; Liang Jixiang; Qi Bing

    2005-01-01

    Objective: To evaluate the auxiliary diagnostic ability and applicability of the Lung Care software for the study of the pulmonary nodules. Methods: Fifty-six patients underwent low-dose CT scan with 1.5 mm collimation, 4 mm reconstruction interval, and 4 mm reconstruction slice in group A, and with 1.5 mm collimation, 2 mm reconstruction interval, and 2 mm reconstruction slice in group B. 12 patients underwent low-dose CT with 0.75 mm collimation, 0.75 mm reconstruction interval, and 0.75 mm reconstruction slice in group C. The nodules detected in groups A, B, and C were analyzed by r-MPR or VOI of the Lung Care software to distinguish the true pulmonary nodules from the vessels. The volume and density distribution of the true pulmonary nodules in groups A, B, and C were measured with the Lung Care software. Results: It was difficult to observe the diffuse pulmonary nodules by r-MPR or VOI of the Lung Care software. The images of each patient in group C were too many to be applied in the clinic. There was statistically consistent in the observation of pulmonary nodules between r-MPR and VOI, but the coincidence was not good (Kappa=0.369, P=0.002). There was statistically significant difference in showing faint nodules between r-MPR and VOI (P=0.001), r-MPR was better than VOI. There was statistically significant difference between group A and B in showing = 3.886, P=0.045), but no statistically significant difference in showing 5-10 mm nodules (χ 2 =0.170, P=0.680). The volume and density distribution of most 5 - ≤20 mm nodules were successfully measured with the Lung Care software, whereas those of most 2 =5.811, P=0.016) and 5-10 mm nodules (χ 2 =13.500, P 10 - ≤20 mm nodules (χ 2 =0.000, P=1.000). Conclusion: For distinguishing the true pulmonary nodules from others, the Lung Care software is suitable for the well-edged pulmonary nodules and most faint nodules, but not suitable for the nodules such as ground-glass opacity. For measuring the volume and

  7. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, H.; Bach, K.S.; Hansen, H. [Copenhagen University, Department of Radiology, Gentofte Hospital, Hellerup (Denmark); Hoop, B. de [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands); Shaker, S.B.; Dirksen, A. [Copenhagen University, Department of Respiratory Medicine, Gentofte Hospital, Hellerup (Denmark); Prokop, M. [University Medical Centre Utrecht, Department of Radiology, Utrecht (Netherlands); Radboud University Nijmegen, Department of Radiology, Nijmegen (Netherlands); Pedersen, J.H. [Copenhagen University, Department of Cardiothoracic Surgery RT, Rigshospitalet, Copenhagen (Denmark)

    2010-08-15

    We examined the reproducibility of lung nodule volumetry software that offers three different volumetry algorithms. In a lung cancer screening trial, 188 baseline nodules >5 mm were identified. Including follow-ups, these nodules formed a study-set of 545 nodules. Nodules were independently double read by two readers using commercially available volumetry software. The software offers readers three different analysing algorithms. We compared the inter-observer variability of nodule volumetry when the readers used the same and different algorithms. Both readers were able to correctly segment and measure 72% of nodules. In 80% of these cases, the readers chose the same algorithm. When readers used the same algorithm, exactly the same volume was measured in 50% of readings and a difference of >25% was observed in 4%. When the readers used different algorithms, 83% of measurements showed a difference of >25%. Modern volumetric software failed to correctly segment a high number of screen detected nodules. While choosing a different algorithm can yield better segmentation of a lung nodule, reproducibility of volumetric measurements deteriorates substantially when different algorithms were used. It is crucial even in the same software package to choose identical parameters for follow-up. (orig.)

  8. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably

    International Nuclear Information System (INIS)

    Ashraf, H.; Bach, K.S.; Hansen, H.; Hoop, B. de; Shaker, S.B.; Dirksen, A.; Prokop, M.; Pedersen, J.H.

    2010-01-01

    We examined the reproducibility of lung nodule volumetry software that offers three different volumetry algorithms. In a lung cancer screening trial, 188 baseline nodules >5 mm were identified. Including follow-ups, these nodules formed a study-set of 545 nodules. Nodules were independently double read by two readers using commercially available volumetry software. The software offers readers three different analysing algorithms. We compared the inter-observer variability of nodule volumetry when the readers used the same and different algorithms. Both readers were able to correctly segment and measure 72% of nodules. In 80% of these cases, the readers chose the same algorithm. When readers used the same algorithm, exactly the same volume was measured in 50% of readings and a difference of >25% was observed in 4%. When the readers used different algorithms, 83% of measurements showed a difference of >25%. Modern volumetric software failed to correctly segment a high number of screen detected nodules. While choosing a different algorithm can yield better segmentation of a lung nodule, reproducibility of volumetric measurements deteriorates substantially when different algorithms were used. It is crucial even in the same software package to choose identical parameters for follow-up. (orig.)

  9. Ant Colony Optimization Approaches to Clustering of Lung Nodules from CT Images

    Directory of Open Access Journals (Sweden)

    Ravichandran C. Gopalakrishnan

    2014-01-01

    Full Text Available Lung cancer is becoming a threat to mankind. Applying machine learning algorithms for detection and segmentation of irregular shaped lung nodules remains a remarkable milestone in CT scan image analysis research. In this paper, we apply ACO algorithm for lung nodule detection. We have compared the performance against three other algorithms, namely, Otsu algorithm, watershed algorithm, and global region based segmentation. In addition, we suggest a novel approach which involves variations of ACO, namely, refined ACO, logical ACO, and variant ACO. Variant ACO shows better reduction in false positives. In addition we propose black circular neighborhood approach to detect nodule centers from the edge detected image. Genetic algorithm based clustering is performed to cluster the nodules based on intensity, shape, and size. The performance of the overall approach is compared with hierarchical clustering to establish the improvisation in the proposed approach.

  10. Detection of lung nodules with low-dose spiral CT: comparison with conventional dose CT

    International Nuclear Information System (INIS)

    Zhu Tianzhao; Tang Guangjian; Jiang Xuexiang

    2004-01-01

    Objective: To investigate the effect of reducing scan dose on the lung nodules detection rate by scanning a lung nodule model at low dose and conventional dose. Methods: The lung and the thoracic cage were simulated by using a cyst filled with water surrounded by a roll bandage. Flour, butter, and paraffin wax were mixed together by a certain ratio to simulate lung nodules of 10 mm and 5 mm in diameter with the CT values ranging from -10 to 50 HU. Conventional-dose scan (240 mA, 140 kV) and low-dose scan of three different levels (43 mA, 140 kV; 50 mA, 120 kV; 75 mA, 80 kV) together with three different pitches (1.0, 1.5, and 2.0) were performed. The images of the simulated nodules were combined with the CT images of a normal adult's upper, middle, and inferior lung. Three radiologists read the images and the number of the nodules they detected including both the real ones and the false-positive ones was calculated to investigate weather there was any difference among different doses, pitch groups, and different locations. Results: The detection rate of the 10 mm and 5 mm nodules was 100% and 89.6% respectively by the low-dose scan. There was no difference between low-dose and conventional-dose CT (χ 2 =0.6907, P>0.70). The detection rate of 5 mm nodules declined when large pitch was used. Conclusion: The detection rates of 10 mm and 5 mm nodules had no difference between low-dose CT and conventional-dose CT. As the pitch augmented, the detection rate for the nodules declined

  11. Computer-Aided Detection of Malignant Lung Nodules on Chest Radiographs: Effect on Observers' Performance

    International Nuclear Information System (INIS)

    Lee, Kyung Hee; Goo, Jin Mo; Park, Chang Min; Lee, Hyun Ju; Jin, Kwang Nam

    2012-01-01

    To evaluate the effect of computer-aided detection (CAD) system on observer performance in the detection of malignant lung nodules on chest radiograph. Two hundred chest radiographs (100 normal and 100 abnormal with malignant solitary lung nodules) were evaluated. With CT and histological confirmation serving as a reference, the mean nodule size was 15.4 mm (range, 7-20 mm). Five chest radiologists and five radiology residents independently interpreted both the original radiographs and CAD output images using the sequential testing method. The performances of the observers for the detection of malignant nodules with and without CAD were compared using the jackknife free-response receiver operating characteristic analysis. Fifty-nine nodules were detected by the CAD system with a false positive rate of 1.9 nodules per case. The detection of malignant lung nodules significantly increased from 0.90 to 0.92 for a group of observers, excluding one first-year resident (p = 0.04). When lowering the confidence score was not allowed, the average figure of merit also increased from 0.90 to 0.91 (p = 0.04) for all observers after a CAD review. On average, the sensitivities with and without CAD were 87% and 84%, respectively; the false positive rates per case with and without CAD were 0.19 and 0.17, respectively. The number of additional malignancies detected following true positive CAD marks ranged from zero to seven for the various observers. The CAD system may help improve observer performance in detecting malignant lung nodules on chest radiographs and contribute to a decrease in missed lung cancer.

  12. Comparison of digital tomosynthesis and computed tomography for lung nodule detection in SOS screening program.

    Science.gov (United States)

    Grosso, Maurizio; Priotto, Roberto; Ghirardo, Donatella; Talenti, Alberto; Roberto, Emanuele; Bertolaccini, Luca; Terzi, Alberto; Chauvie, Stéphane

    2017-08-01

    To compare the lung nodules' detection of digital tomosynthesis (DTS) and computed tomography (CT) in the context of the SOS (Studio OSservazionale) prospective screening program for lung cancer detection. One hundred and thirty-two of the 1843 subjects enrolled in the SOS study underwent CT because non-calcified nodules with diameters larger than 5 mm and/or multiple nodules were present in DTS. Two expert radiologists reviewed the exams classifying the nodules based on their radiological appearance and their dimension. LUNG-RADS classification was applied to compare receiver operator characteristics curve between CT and DTS with respect to final diagnosis. CT was used as gold standard. DTS and CT detected 208 and 179 nodules in the 132 subjects, respectively. Of these 208 nodules, 189 (91%) were solid, partially solid, and ground glass opacity. CT confirmed 140/189 (74%) of these nodules but found 4 nodules that were not detected by DTS. DTS and CT were concordant in 62% of the cases applying the 5-point LUNG-RADS scale. The concordance rose to 86% on a suspicious/non-suspicious binary scale. The areas under the curve in receiver operator characteristics were 0.89 (95% CI 0.83-0.94) and 0.80 (95% CI 0.72-0.89) for CT and DTS, respectively. The mean effective dose was 0.09 ± 0.04 mSv for DTS and 4.90 ± 1.20 mSv for CT. The use of a common classification for nodule detection in DTS and CT helps in comparing the two technologies. DTS detected and correctly classified 74% of the nodules seen by CT but lost 4 nodules identified by CT. Concordance between DTS and CT rose to 86% of the nodules when considering LUNG-RADS on a binary scale.

  13. The application of MDCT in the diagnosis of chest trauma.

    Science.gov (United States)

    Błasińska-Przerwa, Katarzyna; Pacho, Ryszard; Bestry, Iwona

    2013-01-01

    Traumas are the third most common cause of death worldwide, after cardiovascular diseases and neoplasms, and the main cause of death of patients under 40 years of age. Contemporary image diagnosis of chest trauma uses chest X-ray (CXR), multidetector computed tomography (MDCT), transthoracic and transoesophageal ultrasound (USG), X-ray angiography and magnetic resonance. The aim of the present study was to evaluate MDCT results in the examination of posttraumatic chest injuries and to compare the results of CXR and MDCT in chosen chest traumatic injuries. The sixty patients with chest trauma included in the study were diagnosed at the Department of Radiology of the Institute of Tuberculosis and Lung Diseases between May 2004 and October 2007. MDCT was performed in all patients. Two groups with different types of injury (blunt or penetrating chest trauma) were distinguished. The analysis of injuries in both groups was conducted depending on the mechanism of trauma. The detection of 20 selected injuries at CXR and MDCT was compared. Moreover, the compatibility of MDCT with the results of intraoperative assessment and bronchoscopy was analysed. The influence of MDCT on the treatment modality was also assessed. History of blunt chest trauma was found in 51 patients (group 1) and of penetrating trauma in 9 patients (group 2). The most frequent injuries among group 1 were lung contusion and rib fractures, and among group 2 it was pericardial hematoma. Compared to MDCT, the sensitivity and specificity of CXR were 66.7 and 58%, respectively. Change of treatment modality was observed after MDCT in 83% of patients. The sensitivity and specificity of MDCT in diagnosing tracheobronchial injury, compared to bronchoscopy, were 72.7% and 100%, respectively. Compatibility of MDCT results and intraoperative assessment was observed in 43% of patients, and the main reason for discrepancy was underdiagnosis of diaphragm injury in MDCT. MDCT was a valuable diagnostic method in

  14. Malignancy estimation of Lung-RADS criteria for subsolid nodules on CT. Accuracy of low and high risk spectrum when using NLST nodules

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kaman; Jacobs, Colin; Scholten, Ernst T.; Dekker, Irma; Prokop, Mathias; Ginneken, Bram van [Radboud University Medical Centre, Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Mets, Onno M. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Schaefer-Prokop, Cornelia M. [Radboud University Medical Centre, Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Meander Medical Center, Department of Radiology, Amersfoort (Netherlands)

    2017-11-15

    Lung-RADS proposes malignancy probabilities for categories 2 (<1%) and 4B (>15%). The purpose of this study was to quantify and compare malignancy rates for Lung-RADS 2 and 4B subsolid nodules (SSNs) on a nodule base. We identified all baseline SSNs eligible for Lung-RADS 2 and 4B in the National Lung Screening Trial (NLST) database. Solid cores and nodule locations were annotated using in-house software. Malignant SSNs were identified by an experienced radiologist using NLST information. Malignancy rates and percentages of persistence were calculated. Of the Lung-RADS 2SSNs, 94.3% (1790/1897) could be located on chest CTs. Likewise, 95.1% (331/348) of part-solid nodules ≥6 mm in diameter could be located. Of these, 120 had a solid core ≥8 mm, corresponding to category 4B. Category 2 SSNs showed a malignancy rate of 2.5%, exceeding slightly the proposed rate of <1%. Category 4B SSNs showed a malignancy rate of 23.9%. In both categories one third of benign lesions were transient. Malignancy probabilities for Lung-RADS 2 and 4B generally match malignancy rates in SSNs. An option to include also category 2 SSNs for upgrade to 4X designed for suspicious nodules might be useful in the future. Integration of short-term follow-up to confirm persistence would prevent unnecessary invasive work-up in 4B SSNs. (orig.)

  15. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine.

    Science.gov (United States)

    Madero Orozco, Hiram; Vergara Villegas, Osslan Osiris; Cruz Sánchez, Vianey Guadalupe; Ochoa Domínguez, Humberto de Jesús; Nandayapa Alfaro, Manuel de Jesús

    2015-02-12

    Lung cancer is a leading cause of death worldwide; it refers to the uncontrolled growth of abnormal cells in the lung. A computed tomography (CT) scan of the thorax is the most sensitive method for detecting cancerous lung nodules. A lung nodule is a round lesion which can be either non-cancerous or cancerous. In the CT, the lung cancer is observed as round white shadow nodules. The possibility to obtain a manually accurate interpretation from CT scans demands a big effort by the radiologist and might be a fatiguing process. Therefore, the design of a computer-aided diagnosis (CADx) system would be helpful as a second opinion tool. The stages of the proposed CADx are: a supervised extraction of the region of interest to eliminate the shape differences among CT images. The Daubechies db1, db2, and db4 wavelet transforms are computed with one and two levels of decomposition. After that, 19 features are computed from each wavelet sub-band. Then, the sub-band and attribute selection is performed. As a result, 11 features are selected and combined in pairs as inputs to the support vector machine (SVM), which is used to distinguish CT images containing cancerous nodules from those not containing nodules. The clinical data set used for experiments consists of 45 CT scans from ELCAP and LIDC. For the training stage 61 CT images were used (36 with cancerous lung nodules and 25 without lung nodules). The system performance was tested with 45 CT scans (23 CT scans with lung nodules and 22 without nodules), different from that used for training. The results obtained show that the methodology successfully classifies cancerous nodules with a diameter from 2 mm to 30 mm. The total preciseness obtained was 82%; the sensitivity was 90.90%, whereas the specificity was 73.91%. The CADx system presented is competitive with other literature systems in terms of sensitivity. The system reduces the complexity of classification by not performing the typical segmentation stage of most CADx

  16. Pulmonary nodules and masses in lung transplant recipients: clinical and CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Morla, Olivier; Liberge, Renan; Arrigoni, Pierre Paul; Frampas, Eric [Service de Radiologie Centrale, C.H.U. Hotel Dieu, Nantes (France)

    2014-09-15

    The purpose of this study was to review the clinical and CT findings of pulmonary nodules and masses in lung transplant recipients and to determine distinguishing features among the various aetiologies. This retrospective study included 106 lung transplant recipients who had a chest CT performed over a 7-year period in a single institution. Twenty-four cases of pulmonary nodules and masses were observed on CT. Among the single lesions, three (50 %) were due to infections, one (17 %) to organizing pneumonia, and two (33 %) remained of undetermined origin. Among the multiple lesions, 14 (78 %) were due to infection, three to post-transplant lymphoproliferative disorder (17 %), and one to bronchogenic carcinoma (5 %). The two main microorganisms were P. aeruginosa and Aspergillus spp. Among 12 solid nodules > 1 cm, four (33 %) were due to malignancy: three post-transplant lymphoproliferative disorders (25 %), and one bronchogenic carcinoma (8 %). Among five cavitary nodules four (80 %) were due to aspergillosis. Infection is the most frequent aetiology of pulmonary nodules and masses in lung transplant recipients, but other causes such as post-transplant lymphoproliferative disorder, bronchogenic carcinoma, or organizing pneumonia should be considered. (orig.)

  17. Clinical Value of a One-Stop-Shop Low-Dose Lung Screening Combined with (18)F-FDG PET/CT for the Detection of Metastatic Lung Nodules from Colorectal Cancer.

    Science.gov (United States)

    Han, Yeon-Hee; Lim, Seok Tae; Jeong, Hwan-Jeong; Sohn, Myung-Hee

    2016-06-01

    The aim of this study was to evaluate the clinical usefulness of additional low-dose high-resolution lung computed tomography (LD-HRCT) combined with (18)F-fluoro-2-deoxyglucose positron emission tomography with CT ((18)F-FDG PET/CT) compared with conventional lung setting image of (18)F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer. From January 2011 to September 2011, 649 patients with colorectal cancer underwent additional LD-HRCT at maximum inspiration combined with (18)F-FDG PET/CT. Forty-five patients were finally diagnosed to have lung metastasis based on histopathologic study or clinical follow-up. Twenty-five of the 45 patients had ≤5 metastatic lung nodules and the other 20 patients had >5 metastatic nodules. One hundred and twenty nodules in the 25 patients with ≤5 nodules were evaluated by conventional lung setting image of (18)F-FDG PET/CT and by additional LD-HRCT respectively. Sensitivities, specificities, diagnostic accuracies, positive predictive values (PPVs), and negative predictive values (NPVs) of conventional lung setting image of (18)F-FDG PET/CT and additional LD-HRCT were calculated using standard formulae. The McNemar test and receiver-operating characteristic (ROC) analysis were performed. Of the 120 nodules in the 25 patients with ≤5 metastatic lung nodules, 66 nodules were diagnosed as metastatic. Eleven of the 66 nodules were confirmed histopathologically and the others were diagnosed by clinical follow-up. Conventional lung setting image of (18)F-FDG PET/CT detected 40 of the 66 nodules and additional LD-HRCT detected 55 nodules. All 15 nodules missed by conventional lung setting imaging but detected by additional LD-HRCT were LD-HRCT. By ROC analysis, the area under the ROC curve (AUC) of conventional lung setting image and additional LD-HRCT were 0.712 and 0.827 respectively. Additional LD-HRCT with maximum inspiration was superior to conventional lung setting image of (18)F-FDG PET

  18. A Computer-Aided Diagnosis for Evaluating Lung Nodules on Chest CT: the Current Status and Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Jin Mo [Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2011-04-15

    As the detection and characterization of lung nodules are of paramount importance in thoracic radiology, various tools for making a computer-aided diagnosis (CAD) have been developed to improve the diagnostic performance of radiologists in clinical practice. Numerous studies over the years have shown that the CAD system can effectively help readers identify more nodules. Moreover, nodule malignancy and the response of malignant lung tumors to treatment can also be assessed using nodule volumetry. CAD also has the potential to objectively analyze the morphology of nodules and enhance the work flow during the assessment of follow-up studies. Therefore, understanding the current status and limitations of CAD for evaluating lung nodules is essential to effectively apply CAD in clinical practice

  19. The probability of malignancy in small pulmonary nodules coexisting with potentially operable lung cancer detected by CT

    International Nuclear Information System (INIS)

    Yuan, Yue; Matsumoto, Tsuneo; Hiyama, Atsuto; Miura, Goji; Tanaka, Nobuyuki; Emoto, Takuya; Kawamura, Takeo; Matsunaga, Naofumi

    2003-01-01

    The aim of this study was to assess the probability of malignancy in one or two small nodules 1 cm or less coexisting with potentially operable lung cancer (coexisting small nodules). The preoperative helical CT scans of 223 patients with lung cancer were retrospectively reviewed. The probability of malignancy of coexisting small nodules was evaluated based on nodule size, location, and clinical stage of the primary lung cancers. Seventy-one coexisting small nodules were found on conventional CT in 58 (26%) of 223 patients, and 14 (6%) patients had malignant nodules. Eighteen (25%) of such nodules were malignant. The probability of malignancy was not significantly different between two groups of nodules larger and smaller than 0.5 cm (p=0.1). The probability of malignancy of such nodules within primary tumor lobe was significantly higher than that in the other lobes (p<0.01). Metastatic nodules were significantly fewer in clinical stage-IA patients than in the patients with the other stage (p<0.01); however, four (57%) of seven synchronous lung cancers were located in the non-primary tumor lobes in the clinical stage-I patients. Malignant coexisting small nodules are not infrequent, and such nodules in the non-primary tumor lobes should be carefully diagnosed. (orig.)

  20. Surveillance of the remaining nodules after resection of the dominant lung adenocarcinoma is an appropriate follow-up strategy

    Directory of Open Access Journals (Sweden)

    Massimo eCastiglioni

    2015-01-01

    Full Text Available IntroductionAdenocarcinomas, commonly present as a dominant lesion (DL with additional nodules in the ipsilateral or contralateral lung. We sought to determine the fate and management of the secondary nodules and to assess the risk of these nodules using the Lung CT Screening Reporting and Data System (Lung-RADS criteria and the National Comprehensive Cancer Network (NCCN guidelines to determine if surveillance is an appropriate strategy.MethodsWe retrospectively evaluated patients with lepidic growth pattern adenocarcinoma and secondary nodules from 2000 to 2013. Risk assessment of the additional lesions was completed with a simplified model of Lung-RADS and NCCN-Guidelines. ResultsEighty-seven patients underwent resection of 87 DLs (Group 1 concurrently with 60 additional pulmonary nodules (Group 2 while 157 non-DLs were radiologically surveyed over a median follow-up time of 3.2 years (Group 3. Malignancy was found in 29/60 (48% nodules in Group 2. Whereas, only 9/157 (6% of the lesions in Group 3 enlarged, 4 of which (2.5% of total were found to be malignant, and then treated, while the remaining nodules continued surveillance. After applying the Lung-RADS and NCCN simplified models, nodules in Group 2 were at higher risk for lung cancer than those in Group 3. ConclusionsIn patients with lepidic growth pattern adenocarcinoma associated with multiple secondary nodules, surveillance of the remaining nodules, after resection of the DL, is a reasonable strategy since these nodules exhibited a slow rate of growth and minimal malignancy. In contrast, nodules resected from the ipsilateral lung at the time of the DL, harbor malignancy in 48%. Risk assessment models may provide a useful and standardized tool for clinical assessment of pulmonary nodules.

  1. Automated detection of lung nodules in low-dose computed tomography

    International Nuclear Information System (INIS)

    Cascio, D.; Cheran, S.C.; Chincarini, A.; De Nunzio, G.; Delogu, P.; Fantacci, M.E.; Gargano, G.; Gori, I.; Retico, A.; Masala, G.L.; Preite Martinez, A.; Santoro, M.; Spinelli, C.; Tarantino, T.

    2007-01-01

    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector computed-tomography (CT) images has been developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, consisting in a 3D dot-enhancement filter for nodule detection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The database used in this study consists of 17 low-dose CT scans reconstructed with thin slice thickness (∝300 slices/scan). The preliminary results are shown in terms of the FROC analysis reporting a good sensitivity (85% range) for both internal and sub-pleural nodules at an acceptable level of false positive findings (1-9 FP/scan); the sensitivity value remains very high (75% range) even at 1-6 FP/scan. (orig.)

  2. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation.

    Science.gov (United States)

    Wang, Shuo; Zhou, Mu; Liu, Zaiyi; Liu, Zhenyu; Gu, Dongsheng; Zang, Yali; Dong, Di; Gevaert, Olivier; Tian, Jie

    2017-08-01

    Accurate lung nodule segmentation from computed tomography (CT) images is of great importance for image-driven lung cancer analysis. However, the heterogeneity of lung nodules and the presence of similar visual characteristics between nodules and their surroundings make it difficult for robust nodule segmentation. In this study, we propose a data-driven model, termed the Central Focused Convolutional Neural Networks (CF-CNN), to segment lung nodules from heterogeneous CT images. Our approach combines two key insights: 1) the proposed model captures a diverse set of nodule-sensitive features from both 3-D and 2-D CT images simultaneously; 2) when classifying an image voxel, the effects of its neighbor voxels can vary according to their spatial locations. We describe this phenomenon by proposing a novel central pooling layer retaining much information on voxel patch center, followed by a multi-scale patch learning strategy. Moreover, we design a weighted sampling to facilitate the model training, where training samples are selected according to their degree of segmentation difficulty. The proposed method has been extensively evaluated on the public LIDC dataset including 893 nodules and an independent dataset with 74 nodules from Guangdong General Hospital (GDGH). We showed that CF-CNN achieved superior segmentation performance with average dice scores of 82.15% and 80.02% for the two datasets respectively. Moreover, we compared our results with the inter-radiologists consistency on LIDC dataset, showing a difference in average dice score of only 1.98%. Copyright © 2017. Published by Elsevier B.V.

  3. Clinical value of a one-stop-shop low-dose lung screening combined with 18F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer

    International Nuclear Information System (INIS)

    Han, Yeon Hee; Lim, Seok Tae; Jeong, Hwan Jeong; Sohn, Myung Hee

    2016-01-01

    The aim of this study was to evaluate the clinical usefulness of additional low-dose high-resolution lung computed tomography (LD-HRCT) combined with 18F-fluoro-2-deoxyglucose positron emission tomography with CT (18F-FDG PET/CT) compared with conventional lung setting image of 18F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer. From January 2011 to September 2011, 649 patients with colorectal cancer underwent additional LD-HRCT at maximum inspiration combined with 18F-FDG PET/CT. Forty-five patients were finally diagnosed to have lung metastasis based on histopathologic study or clinical follow-up. Twenty-five of the 45 patients had ≤5 metastatic lung nodules and the other 20 patients had  >5 metastatic nodules. One hundred and twenty nodules in the 25 patients with ≤5 nodules were evaluated by conventional lung setting image of 18F-FDG PET/CT and by additional LD-HRCT respectively. Sensitivities, specificities, diagnostic accuracies, positive predictive values (PPVs), and negative predictive values (NPVs) of conventional lung setting image of 18F-FDG PET/CT and additional LD-HRCT were calculated using standard formulae. The McNemar test and receiver-operating characteristic (ROC) analysis were performed. Of the 120 nodules in the 25 patients with ≤5 metastatic lung nodules, 66 nodules were diagnosed as metastatic. Eleven of the 66 nodules were confirmed histopathologically and the others were diagnosed by clinical follow-up. Conventional lung setting image of 18F-FDG PET/CT detected 40 of the 66 nodules and additional LD-HRCT detected 55 nodules. All 15 nodules missed by conventional lung setting imaging but detected by additional LD-HRCT were <1 cm in size. The sensitivity, specificity, and diagnostic accuracy of the modalities were 60.6 %, 85.2 %, and 71.1 % for conventional lung setting image and 83.3 %, 88.9 %, and 85.8 % for additional LD-HRCT. By ROC analysis, the area under the ROC curve (AUC) of conventional

  4. Incidental perifissural nodules on routine chest computed tomography. Lung cancer or not?

    Energy Technology Data Exchange (ETDEWEB)

    Mets, Onno M.; Veldhuis, Wouter B.; Jong, Pim A. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Chung, Kaman; Scholten, Ernst T.; Ginneken, Bram van [Radboud University Nijmegen Medical Centre, Diagnostic Image Analysis Group, Nijmegen (Netherlands); Prokop, M. [Radboud University Nijmegen Medical Centre, Department of Radiology, Nijmegen (Netherlands); Schaefer-Prokop, Cornelia M. [Radboud University Nijmegen Medical Centre, Diagnostic Image Analysis Group, Nijmegen (Netherlands); Meander Medical Center, Department of Radiology, Amersfoort (Netherlands)

    2018-03-15

    Perifissural nodules (PFNs) are a common finding on chest CT, and are thought to represent non-malignant lesions. However, data outside a lung cancer-screening setting are currently lacking. In a nested case-control design, out of a total cohort of 16,850 patients ≥ 40 years of age who underwent routine chest CT (2004-2012), 186 eligible subjects with incident lung cancer and 511 controls without were investigated. All non-calcified nodules ≥ 4 mm were semi-automatically annotated. Lung cancer location and subject characteristics were recorded. Cases (56 % male) had a median age of 64 years (IQR 59-70). Controls (60 % male) were slightly younger (p<0.01), median age of 61 years (IQR 51-70). A total of 262/1,278 (21 %) unique non-calcified nodules represented a PFN. None of these were traced to a lung malignancy over a median follow-up of around 4.5 years. PFNs were most often located in the lower lung zones (72 %, p<0.001). Median diameter was 4.6 mm (range: 4.0-8.1), volume 51 mm{sup 3} (range: 32-278). Some showed growth rates < 400 days. Our data show that incidental PFNs do not represent lung cancer in a routine care, heterogeneous population. This confirms prior screening-based results. (orig.)

  5. Deep-learning derived features for lung nodule classification with limited datasets

    Science.gov (United States)

    Thammasorn, P.; Wu, W.; Pierce, L. A.; Pipavath, S. N.; Lampe, P. D.; Houghton, A. M.; Haynor, D. R.; Chaovalitwongse, W. A.; Kinahan, P. E.

    2018-02-01

    Only a few percent of indeterminate nodules found in lung CT images are cancer. However, enabling earlier diagnosis is important to avoid invasive procedures or long-time surveillance to those benign nodules. We are evaluating a classification framework using radiomics features derived with a machine learning approach from a small data set of indeterminate CT lung nodule images. We used a retrospective analysis of 194 cases with pulmonary nodules in the CT images with or without contrast enhancement from lung cancer screening clinics. The nodules were contoured by a radiologist and texture features of the lesion were calculated. In addition, sematic features describing shape were categorized. We also explored a Multiband network, a feature derivation path that uses a modified convolutional neural network (CNN) with a Triplet Network. This was trained to create discriminative feature representations useful for variable-sized nodule classification. The diagnostic accuracy was evaluated for multiple machine learning algorithms using texture, shape, and CNN features. In the CT contrast-enhanced group, the texture or semantic shape features yielded an overall diagnostic accuracy of 80%. Use of a standard deep learning network in the framework for feature derivation yielded features that substantially underperformed compared to texture and/or semantic features. However, the proposed Multiband approach of feature derivation produced results similar in diagnostic accuracy to the texture and semantic features. While the Multiband feature derivation approach did not outperform the texture and/or semantic features, its equivalent performance indicates promise for future improvements to increase diagnostic accuracy. Importantly, the Multiband approach adapts readily to different size lesions without interpolation, and performed well with relatively small amount of training data.

  6. Application of CT-PSF-based computer-simulated lung nodules for evaluating the accuracy of computer-aided volumetry.

    Science.gov (United States)

    Funaki, Ayumu; Ohkubo, Masaki; Wada, Shinichi; Murao, Kohei; Matsumoto, Toru; Niizuma, Shinji

    2012-07-01

    With the wide dissemination of computed tomography (CT) screening for lung cancer, measuring the nodule volume accurately with computer-aided volumetry software is increasingly important. Many studies for determining the accuracy of volumetry software have been performed using a phantom with artificial nodules. These phantom studies are limited, however, in their ability to reproduce the nodules both accurately and in the variety of sizes and densities required. Therefore, we propose a new approach of using computer-simulated nodules based on the point spread function measured in a CT system. The validity of the proposed method was confirmed by the excellent agreement obtained between computer-simulated nodules and phantom nodules regarding the volume measurements. A practical clinical evaluation of the accuracy of volumetry software was achieved by adding simulated nodules onto clinical lung images, including noise and artifacts. The tested volumetry software was revealed to be accurate within an error of 20 % for nodules >5 mm and with the difference between nodule density and background (lung) (CT value) being 400-600 HU. Such a detailed analysis can provide clinically useful information on the use of volumetry software in CT screening for lung cancer. We concluded that the proposed method is effective for evaluating the performance of computer-aided volumetry software.

  7. Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.

    Science.gov (United States)

    Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2012-11-08

    A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.

  8. Clinical value of a one-stop-shop low-dose lung screening combined with {sup 18}F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yeon Hee; Lim, Seok Tae; Jeong, Hwan Jeong; Sohn, Myung Hee [Dept. of Nuclear Medicine, Research Institute of Clinical Medicine, Chonbuk National University-Biomedical Research Institute, Chonbuk National University Hospital, Cyclotron Research Center, Molecular Imaging and Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of)

    2016-06-15

    The aim of this study was to evaluate the clinical usefulness of additional low-dose high-resolution lung computed tomography (LD-HRCT) combined with 18F-fluoro-2-deoxyglucose positron emission tomography with CT (18F-FDG PET/CT) compared with conventional lung setting image of 18F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer. From January 2011 to September 2011, 649 patients with colorectal cancer underwent additional LD-HRCT at maximum inspiration combined with 18F-FDG PET/CT. Forty-five patients were finally diagnosed to have lung metastasis based on histopathologic study or clinical follow-up. Twenty-five of the 45 patients had ≤5 metastatic lung nodules and the other 20 patients had  >5 metastatic nodules. One hundred and twenty nodules in the 25 patients with ≤5 nodules were evaluated by conventional lung setting image of 18F-FDG PET/CT and by additional LD-HRCT respectively. Sensitivities, specificities, diagnostic accuracies, positive predictive values (PPVs), and negative predictive values (NPVs) of conventional lung setting image of 18F-FDG PET/CT and additional LD-HRCT were calculated using standard formulae. The McNemar test and receiver-operating characteristic (ROC) analysis were performed. Of the 120 nodules in the 25 patients with ≤5 metastatic lung nodules, 66 nodules were diagnosed as metastatic. Eleven of the 66 nodules were confirmed histopathologically and the others were diagnosed by clinical follow-up. Conventional lung setting image of 18F-FDG PET/CT detected 40 of the 66 nodules and additional LD-HRCT detected 55 nodules. All 15 nodules missed by conventional lung setting imaging but detected by additional LD-HRCT were <1 cm in size. The sensitivity, specificity, and diagnostic accuracy of the modalities were 60.6 %, 85.2 %, and 71.1 % for conventional lung setting image and 83.3 %, 88.9 %, and 85.8 % for additional LD-HRCT. By ROC analysis, the area under the ROC curve (AUC) of conventional

  9. Fulminant hepatic failure in children: Etiology, histopathology and MDCT findings

    International Nuclear Information System (INIS)

    Cakir, Banu; Kirbas, Ismail; Demirhan, Beyhan; Tarhan, Nefise Cagla; Bozkurt, Alper; Ozcay, Figen; Coskun, Mehmet

    2009-01-01

    Introduction: The purpose of this study is to determine the etiologies, histopathology and MDCT findings of children with fulminant hepatic failure admitted to our institution. Materials and methods: Between June 2004 and November 2006, 15 children with fulminant hepatic failure who underwent MDCT were included retrospectively in this study. Twelve patients had liver biopsies. The patients were divided into three groups as hyperacute (Group I), acute (Group II) and subacute (Group III) depending on onset of hepatic encephalopathy. Results: Hepatitis A in 4 patients, non-A, non-E hepatitis in 4; mushroom poisoning in 3; fulminant Wilson's disease in 2; autoimmune hepatitis in 1; and both hepatitis B and toxic hepatitis (with leflunomide treatment) in 1 patient were detected. MDCT of all three groups revealed diffuse reduction in hepatic attenuation in 11 patients; ascites in 9; periportal edema in 6; edema of gallbladder wall in 6; splenomegaly in 6; heterogeneous hepatic parenchyma in 6; hepatomegaly in 3; irregular contours of liver in 2; multiple micronodules in 1 and necrotic areas and regeneration in liver parenchyma in 2 patients. Histopathologic evaluation of liver biopsies showed massive hepatic necrosis, inflammatory cell infiltration and ductular proliferation in 8 patients, periportal edema in 6, edema of gallbladder wall in 5, regenerating nodules and fibrous septa consistent with cirrhotic pattern in 2, and regenerating nodules and necrotic areas in 2 patients. Conclusion: The most common MDCT findings in fulminant hepatic failure were diffuse reduction in hepatic attenuation and ascites. Massive hepatic necrosis was the most common histopathologic finding.

  10. Fulminant hepatic failure in children: Etiology, histopathology and MDCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, Banu [Baskent University Faculty of Medicine Department of Radiology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: banutopcu@yahoo.com; Kirbas, Ismail [Baskent University Faculty of Medicine Department of Radiology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: drismailk@yahoo.com; Demirhan, Beyhan [Baskent University Faculty of Medicine Department of Pathology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: beyhand@baskent-ank.edu.tr; Tarhan, Nefise Cagla [Baskent University Faculty of Medicine Department of Radiology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: caglat@gmail.com; Bozkurt, Alper [Baskent University Faculty of Medicine Department of Radiology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: abozkurt78@hotmail.com; Ozcay, Figen [Baskent University Faculty of Medicine Department of Pediatric Gastroenterology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: fozcay@baskent.edu.tr; Coskun, Mehmet [Baskent University Faculty of Medicine Department of Radiology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: mcoskun@baskent-ank.edu.tr

    2009-11-15

    Introduction: The purpose of this study is to determine the etiologies, histopathology and MDCT findings of children with fulminant hepatic failure admitted to our institution. Materials and methods: Between June 2004 and November 2006, 15 children with fulminant hepatic failure who underwent MDCT were included retrospectively in this study. Twelve patients had liver biopsies. The patients were divided into three groups as hyperacute (Group I), acute (Group II) and subacute (Group III) depending on onset of hepatic encephalopathy. Results: Hepatitis A in 4 patients, non-A, non-E hepatitis in 4; mushroom poisoning in 3; fulminant Wilson's disease in 2; autoimmune hepatitis in 1; and both hepatitis B and toxic hepatitis (with leflunomide treatment) in 1 patient were detected. MDCT of all three groups revealed diffuse reduction in hepatic attenuation in 11 patients; ascites in 9; periportal edema in 6; edema of gallbladder wall in 6; splenomegaly in 6; heterogeneous hepatic parenchyma in 6; hepatomegaly in 3; irregular contours of liver in 2; multiple micronodules in 1 and necrotic areas and regeneration in liver parenchyma in 2 patients. Histopathologic evaluation of liver biopsies showed massive hepatic necrosis, inflammatory cell infiltration and ductular proliferation in 8 patients, periportal edema in 6, edema of gallbladder wall in 5, regenerating nodules and fibrous septa consistent with cirrhotic pattern in 2, and regenerating nodules and necrotic areas in 2 patients. Conclusion: The most common MDCT findings in fulminant hepatic failure were diffuse reduction in hepatic attenuation and ascites. Massive hepatic necrosis was the most common histopathologic finding.

  11. Early detection of lung cancer from CT images: nodule segmentation and classification using deep learning

    Science.gov (United States)

    Sharma, Manu; Bhatt, Jignesh S.; Joshi, Manjunath V.

    2018-04-01

    Lung cancer is one of the most abundant causes of the cancerous deaths worldwide. It has low survival rate mainly due to the late diagnosis. With the hardware advancements in computed tomography (CT) technology, it is now possible to capture the high resolution images of lung region. However, it needs to be augmented by efficient algorithms to detect the lung cancer in the earlier stages using the acquired CT images. To this end, we propose a two-step algorithm for early detection of lung cancer. Given the CT image, we first extract the patch from the center location of the nodule and segment the lung nodule region. We propose to use Otsu method followed by morphological operations for the segmentation. This step enables accurate segmentation due to the use of data-driven threshold. Unlike other methods, we perform the segmentation without using the complete contour information of the nodule. In the second step, a deep convolutional neural network (CNN) is used for the better classification (malignant or benign) of the nodule present in the segmented patch. Accurate segmentation of even a tiny nodule followed by better classification using deep CNN enables the early detection of lung cancer. Experiments have been conducted using 6306 CT images of LIDC-IDRI database. We achieved the test accuracy of 84.13%, with the sensitivity and specificity of 91.69% and 73.16%, respectively, clearly outperforming the state-of-the-art algorithms.

  12. Investigation of lung nodule detectability in low-dose 320-slice computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Paul, N. S.; Siewerdsen, J. H. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Imaging, Toronto General Hospital, Toronto, Ontario M5G 2C6 (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada) and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2009-05-15

    Low-dose imaging protocols in chest CT are important in the screening and surveillance of suspicious and indeterminate lung nodules. Techniques that maintain nodule detectability yet permit dose reduction, particularly for large body habitus, were investigated. The objective of this study was to determine the extent to which radiation dose can be minimized while maintaining diagnostic performance through knowledgeable selection of reconstruction techniques. A 320-slice volumetric CT scanner (Aquilion ONE, Toshiba Medical Systems) was used to scan an anthropomorphic phantom at doses ranging from {approx}0.1 mGy up to that typical of low-dose CT (LDCT, {approx}5 mGy) and diagnostic CT ({approx}10 mGy). Radiation dose was measured via Farmer chamber and MOSFET dosimetry. The phantom presented simulated nodules of varying size and contrast within a heterogeneous background, and chest thickness was varied through addition of tissue-equivalent bolus about the chest. Detectability of a small solid lung nodule (3.2 mm diameter, -37 HU, typically the smallest nodule of clinical significance in screening and surveillance) was evaluated as a function of dose, patient size, reconstruction filter, and slice thickness by means of nine-alternative forced-choice (9AFC) observer tests to quantify nodule detectability. For a given reconstruction filter, nodule detectability decreased sharply below a threshold dose level due to increased image noise, especially for large body size. However, nodule detectability could be maintained at lower doses through knowledgeable selection of (smoother) reconstruction filters. For large body habitus, optimal filter selection reduced the dose required for nodule detection by up to a factor of {approx}3 (from {approx}3.3 mGy for sharp filters to {approx}1.0 mGy for the optimal filter). The results indicate that radiation dose can be reduced below the current low-dose (5 mGy) and ultralow-dose (1 mGy) levels with knowledgeable selection of

  13. What to Do with All of These Lung Nodules?

    Directory of Open Access Journals (Sweden)

    Dmitry Rozenberg

    2014-01-01

    Full Text Available Caplan syndrome is a rare entity that is specific to rheumatoid arthritis and presents with multiple, well-defined necrotic nodules in patients with occupational dust exposure. The present report describes a case of Caplan syndrome involving a 71-year-old man with a known diagnosis of seropositive rheumatoid arthritis who presented to the authors’ centre with a five-year history of multiple, bilateral cavitary lung nodules with mild dyspnea on exertion. He was an ex-smoker (30 pack-years and had previously worked with silica. The case highlights the clinical, radiological and pathological features of this syndrome and outlines the importance of considering a broad differential in the management of pulmonary nodules, especially in patients with rheumatoid arthritis.

  14. Automated detection of lung nodules with three-dimensional convolutional neural networks

    Science.gov (United States)

    Pérez, Gustavo; Arbeláez, Pablo

    2017-11-01

    Lung cancer is the cancer type with highest mortality rate worldwide. It has been shown that early detection with computer tomography (CT) scans can reduce deaths caused by this disease. Manual detection of cancer nodules is costly and time-consuming. We present a general framework for the detection of nodules in lung CT images. Our method consists of the pre-processing of a patient's CT with filtering and lung extraction from the entire volume using a previously calculated mask for each patient. From the extracted lungs, we perform a candidate generation stage using morphological operations, followed by the training of a three-dimensional convolutional neural network for feature representation and classification of extracted candidates for false positive reduction. We perform experiments on the publicly available LIDC-IDRI dataset. Our candidate extraction approach is effective to produce precise candidates with a recall of 99.6%. In addition, false positive reduction stage manages to successfully classify candidates and increases precision by a factor of 7.000.

  15. Differentiating early malignant lung tumors from inflammatory nodules to minimize the use of video-assisted thoracoscopic surgery or open biopsy to establish a diagnosis

    International Nuclear Information System (INIS)

    Nomori, Hiroaki; Horio, Hirotoshi; Suemasu, Keiichi

    2001-01-01

    To decrease the frequency of video-assisted thoracoscopic surgery (VATS) biopsy being used to diagnose inflammatory nodules, we studied the clinicopathological findings of lung cancers and inflammatory nodules diagnosed by VATS or open-lung biopsy. We studied 46 lung cancers and 47 inflammatory nodules smaller than 30 mm in diameter diagnosed by VATS or open-lung biopsy. While the computed tomography (CT) findings were not significantly different between lung cancers and inflammatory nodules, N1 or N2 lung cancers more frequently showed distinct malignant features on CT than T1N0M0 lung cancers (P<0.05). A review of previous chest X-ray films revealed that those of inflammatory nodules showed new nodules more frequently and nodular enlargement less frequently than those of lung cancer (P<0.01). Of 13 lung cancers that showed nodular enlargement during a mean 15-month period, 12 were T1N0M0. Nondiagnosable small lung nodules, which had few malignant features on CT and had newly appeared on a chest X-ray film, were more likely to be inflammatory nodules than lung cancers; and even if they were lung cancers, the tumor stage was usually T1N0M0. Thus, to decrease the incidence of VATS biopsy being performed for inflammatory nodules, intensive follow-up by CT until slight nodular enlargement becomes evident could be a means of revealing nondiagnosable small lung nodules without distinct malignant findings, except for nodules found to be enlarging on a review of retrospective films. (author)

  16. High-pitch computed tomography of the lung in pediatric patients. An intraindividual comparison of image quality and radiation dose to conventional 64-MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Tsiflikas, I.; Thomas, C.; Ketelsen, D.; Claussen, C.D.; Schaefer, J.F. [University Hospital of Tuebingen (Germany). Diagnostic and Interventional Radiology; Seitz, G.; Warmann, S. [University Hospital of Tuebingen (Germany). Pediatric Surgery

    2014-06-15

    Purpose: The aim of this study was to investigate frequencies of typical artifacts in low-dose pediatric lung examinations using high-pitch computed tomography (HPCT) compared to MDCT, and to estimate the effective radiation dose (E{sub eff}). Materials and Methods: Institutional review board approval for this retrospective study was obtained. 35 patients (17 boys, 18 girls; mean age 112 ± 69 months) were included and underwent MDCT and follow-up scan by HPCT or vice versa (mean follow-up time 87 days), using the same tube voltage and current. The total artifact score (0-8) was defined as the sum of artifacts arising from movement, breathing or pulsation of the heart or pulmonary vessels (0 - no; 1 - moderate; 2 - severe artifacts). E{sub eff} was estimated according to the European Guidelines on Quality Criteria for Multislice Computed Tomography. The Mann-Whitney U test was used to analyze differences between the patient groups. The Spearman's rank correlation coefficient was used for correlation of ordinal variables. Results: The scan time was significantly lower for HPCT compared to MDCT (0.72 ± 0.13 s vs. 3.65 ± 0.81s; p < 0.0001). In 28 of 35 (80 %) HPCT examinations no artifacts were visible, whereas in MDCT artifacts occurred in all examinations. The frequency of pulsation artifacts and breathing artifacts was higher in MDCT compared to HPCT (100% vs. 17% and 31% vs. 6%). The total artifact score significantly correlated with the patient's age in MDCT (r=-0.42; p=0.01), but not in HPCT (r=-0.32; p=0.07). The estimated E{sub eff} was significantly lower in HPCT than in MDCT (1.29±0.31 vs. 1.47±0.37 mSv; p < 0.0001). Conclusion: Our study indicates that the use of HPCT has advantages for pediatric lung imaging with a reduction of breathing and pulsation artifacts. Moreover, the estimated E{sub eff} was lower. In addition, examinations can be performed without sedation or breath-hold without losing image quality. (orig.)

  17. Lung nodule detection by microdose CT versus chest radiography (standard and dual-energy subtracted).

    Science.gov (United States)

    Ebner, Lukas; Bütikofer, Yanik; Ott, Daniel; Huber, Adrian; Landau, Julia; Roos, Justus E; Heverhagen, Johannes T; Christe, Andreas

    2015-04-01

    The purpose of this study was to investigate the feasibility of microdose CT using a comparable dose as for conventional chest radiographs in two planes including dual-energy subtraction for lung nodule assessment. We investigated 65 chest phantoms with 141 lung nodules, using an anthropomorphic chest phantom with artificial lung nodules. Microdose CT parameters were 80 kV and 6 mAs, with pitch of 2.2. Iterative reconstruction algorithms and an integrated circuit detector system (Stellar, Siemens Healthcare) were applied for maximum dose reduction. Maximum intensity projections (MIPs) were reconstructed. Chest radiographs were acquired in two projections with bone suppression. Four blinded radiologists interpreted the images in random order. A soft-tissue CT kernel (I30f) delivered better sensitivities in a pilot study than a hard kernel (I70f), with respective mean (SD) sensitivities of 91.1%±2.2% versus 85.6%±5.6% (p=0.041). Nodule size was measured accurately for all kernels. Mean clustered nodule sensitivity with chest radiography was 45.7%±8.1% (with bone suppression, 46.1%±8%; p=0.94); for microdose CT, nodule sensitivity was 83.6%±9% without MIP (with additional MIP, 92.5%±6%; pmicrodose CT for readers 1, 2, 3, and 4 were 84.3%, 90.7%, 68.6%, and 45.0%, respectively. Sensitivities with chest radiography for readers 1, 2, 3, and 4 were 42.9%, 58.6%, 36.4%, and 90.7%, respectively. In the per-phantom analysis, respective sensitivities of microdose CT versus chest radiography were 96.2% and 75% (pmicrodose CT, the applied dose was 0.1323 mSv. Microdose CT is better than the combination of chest radiography and dual-energy subtraction for the detection of solid nodules between 5 and 12 mm at a lower dose level of 0.13 mSv. Soft-tissue kernels allow better sensitivities. These preliminary results indicate that microdose CT has the potential to replace conventional chest radiography for lung nodule detection.

  18. Role of high-resolution CT in the diagnosis of small pulmonary nodules coexisting with potentially operable lung cancer

    International Nuclear Information System (INIS)

    Yuan, Yue; Matsumoto, Tsuneo; Hiyama, Atsuto; Miura, Goji; Tanaka, Nobuyuki; Matsunaga, Naofumi

    2002-01-01

    The purpose of this study was to evaluate whether high-resolution CT (HRCT) could facilitate the preoperative diagnosis of one or two small nodules of 1 cm or less coexisting with a lung cancer, i.e., coexisting small nodule. This study included 27 coexisting small nodules in 24 potentially operable lung cancer patients. An observer study was performed by five radiologists. The observer performances in differentiating malignant from benign coexisting small nodules were evaluated on conventional CT and HRCT using receiver operating characteristic (ROC) analysis. The area under the ROC curve of five observers was 0.731 on HRCT and 0.578 on conventional CT in the differential diagnosis of coexisting small nodules. A significant diagnostic improvement was found on HRCT (p=0.031). This was especially evident for nodules of ground-glass attenuation (p=0.005). HRCT plays an important role in determining the treatment of potentially operable lung cancer patients with coexisting small nodules. (author)

  19. A mixed reality approach for stereo-tomographic quantification of lung nodules.

    Science.gov (United States)

    Chen, Mianyi; Kalra, Mannudeep K; Yun, Wenbing; Cong, Wenxiang; Yang, Qingsong; Nguyen, Terry; Wei, Biao; Wang, Ge

    2016-05-25

    To reduce the radiation dose and the equipment cost associated with lung CT screening, in this paper we propose a mixed reality based nodule measurement method with an active shutter stereo imaging system. Without involving hundreds of projection views and subsequent image reconstruction, we generated two projections of an iteratively placed ellipsoidal volume in the field of view and merging these synthetic projections with two original CT projections. We then demonstrated the feasibility of measuring the position and size of a nodule by observing whether projections of an ellipsoidal volume and the nodule are overlapped from a human observer's visual perception through the active shutter 3D vision glasses. The average errors of measured nodule parameters are less than 1 mm in the simulated experiment with 8 viewers. Hence, it could measure real nodules accurately in the experiments with physically measured projections.

  20. AUTOMATIC LUNG NODULE SEGMENTATION USING AUTOSEED REGION GROWING WITH MORPHOLOGICAL MASKING (ARGMM AND FEATURE EX-TRACTION THROUGH COMPLETE LOCAL BINARY PATTERN AND MICROSCOPIC INFORMATION PATTERN

    Directory of Open Access Journals (Sweden)

    Senthil Kumar

    2015-04-01

    Full Text Available An efficient Autoseed Region Growing with Morphological Masking(ARGMM is imple-mented in this paper on the Lung CT Slice to segment the 'Lung Nodules',which may be the potential indicator for the Lung Cancer. The segmentation of lung nodules car-ried out in this paper through Multi-Thresholding, ARGMM and Level Set Evolution. ARGMM takes twice the time compared to Level Set, but still the number of suspected segmented nodules are doubled, which make sure that no potential cancerous nodules go unnoticed at the earlier stages of diagnosis. It is very important not to panic the patient by finding the presence of nodules from Lung CT scan. Only 40 percent of nod-ules can be cancerous. Hence, in this paper an efficient Shape and Texture analysis is computed to quantitatively describe the segmented lung nodules. The Frequency spectrum of the lung nodules is developed and its frequency domain features are com-puted. The Complete Local binary pattern of lung nodules is computed in this paper by constructing the combine histogram of Sign and Magnitude Local Binary Patterns. Lo-cal Configuration Pattern is also determined in this work for lung nodules to numeri-cally model the microscopic information of nodules pattern.

  1. 3D multi-view convolutional neural networks for lung nodule classification

    Science.gov (United States)

    Kang, Guixia; Hou, Beibei; Zhang, Ningbo

    2017-01-01

    The 3D convolutional neural network (CNN) is able to make full use of the spatial 3D context information of lung nodules, and the multi-view strategy has been shown to be useful for improving the performance of 2D CNN in classifying lung nodules. In this paper, we explore the classification of lung nodules using the 3D multi-view convolutional neural networks (MV-CNN) with both chain architecture and directed acyclic graph architecture, including 3D Inception and 3D Inception-ResNet. All networks employ the multi-view-one-network strategy. We conduct a binary classification (benign and malignant) and a ternary classification (benign, primary malignant and metastatic malignant) on Computed Tomography (CT) images from Lung Image Database Consortium and Image Database Resource Initiative database (LIDC-IDRI). All results are obtained via 10-fold cross validation. As regards the MV-CNN with chain architecture, results show that the performance of 3D MV-CNN surpasses that of 2D MV-CNN by a significant margin. Finally, a 3D Inception network achieved an error rate of 4.59% for the binary classification and 7.70% for the ternary classification, both of which represent superior results for the corresponding task. We compare the multi-view-one-network strategy with the one-view-one-network strategy. The results reveal that the multi-view-one-network strategy can achieve a lower error rate than the one-view-one-network strategy. PMID:29145492

  2. Importance of scatter compensation algorithm in heterogeneous tissue for the radiation dose calculation of small lung nodules. A clinical study

    International Nuclear Information System (INIS)

    Baba, Yuji; Murakami, Ryuji; Mizukami, Naohisa; Morishita, Shoji; Yamashita, Yasuyuki; Araki, Fujio; Moribe, Nobuyuki; Hirata, Yukinori

    2004-01-01

    The purpose of this study was to compare radiation doses of small lung nodules calculated with beam scattering compensation and those without compensation in heterogeneous tissues. Computed tomography (CT) data of 34 small (1-2 cm: 12 nodules, 2-3 cm 11 nodules, 3-4 cm 11 nodules) lung nodules were used in the radiation dose measurements. Radiation planning for lung nodule was performed with a commercially available unit using two different radiation dose calculation methods: the superposition method (with scatter compensation in heterogeneous tissues), and the Clarkson method (without scatter compensation in heterogeneous tissues). The energy of the linac photon used in this study was 10 MV and 4 MV. Monitor unit (MU) to deliver 10 Gy at the center of the radiation field (center of the nodule) calculated with the two methods were compared. In 1-2 cm nodules, MU calculated by Clarkson method (MUc) was 90.0±1.1% (4 MV photon) and 80.5±2.7% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 92.9±1.1% (4 MV photon) and 86.6±2.8% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 90.5±2.0% (4 MV photon) and 90.1±1.7% (10 MV photon) compared to MUs. In 1-2 cm nodules, MU calculated without lung compensation (MUn) was 120.6±8.3% (4 MV photon) and 95.1±4.1% (10 MV photon) compared to MU calculated by superposion method (MUs), in 2-3 cm nodules, MUc was 120.3±11.5% (4 MV photon) and 100.5±4.6% (10 MV photon) compared to MUs, and in 3-4 cm nodules, MUc was 105.3±9.0% (4 MV photon) and 103.4±4.9% (10 MV photon) compared to MUs. The MU calculated without lung compensation was not significantly different from the MU calculated by superposition method in 2-3 cm nodules. We found that the conventional dose calculation algorithm without scatter compensation in heterogeneous tissues substantially overestimated the radiation dose of small nodules in the lung field. In the calculation of dose distribution of small

  3. Regenerative nodules in patients with chronic Budd-Chiari syndrome: A longitudinal study using multiphase contrast-enhanced multidetector CT

    International Nuclear Information System (INIS)

    Flor, Nicola; Zuin, Massimo; Brovelli, Francesca; Maggioni, Marco; Tentori, Augusta; Sardanelli, Francesco; Cornalba, Gian Paolo

    2010-01-01

    Objective: Our aim was to evaluate the serial evolution of regenerative nodules in patients with Budd-Chiari syndrome (BCS) treated with portal-systemic shunts, using multiphasic multidetector computed tomography (MDCT). Materials and methods: Five patients each underwent three MDCT exams over an extended period ranging from 36 to 42 months. Two radiologists in consensus retrospectively reviewed each exam for each patient. Individual nodules were grouped according to size (size I: nodules with diameter ≤15 mm; size II: >15 mm but <30 mm; size III: ≥30 mm), pattern of enhancement (A: homogeneously hypervascular or B: with central scar), and segmental location. Four nodules classified as size II, which increased in size over time, were needle-biopsied. Results: We detected 61 nodules at the first exam, 66 nodules at the second exam (7 nodules disappeared and 12 new nodules), and 85 nodules at the third exam (8 disappeared and 27 new) for a total of 212 findings. Nodules were mostly found in the right hepatic lobe. Fourteen of the 15 nodules that disappeared over time were size I and enhancement pattern A. At unenhanced MDCT, 204 (96%) of the 212 findings were isodense. Overall, 100 nodules, including the 61 initially detected, were considered newly diagnosed; of these 84 (84%) were size I and pattern A. Of 57 nodules considered size I and pattern A at the first or second exam, 24 (42%) changed to pattern B at the third exam and either size II (n = 18) or III (n = 6). The four biopsied nodules were each confirmed as benign regenerative nodule. No patient developed HCC at 5-year follow-up period. Conclusion: Hepatic nodules in BCS patients not only increase in number over time but may also increase in size and develop a central scar.

  4. Automated diagnosis of interstitial lung diseases and emphysema in MDCT imaging

    Science.gov (United States)

    Fetita, Catalin; Chang Chien, Kuang-Che; Brillet, Pierre-Yves; Prêteux, Françoise

    2007-09-01

    Diffuse lung diseases (DLD) include a heterogeneous group of non-neoplasic disease resulting from damage to the lung parenchyma by varying patterns of inflammation. Characterization and quantification of DLD severity using MDCT, mainly in interstitial lung diseases and emphysema, is an important issue in clinical research for the evaluation of new therapies. This paper develops a 3D automated approach for detection and diagnosis of diffuse lung diseases such as fibrosis/honeycombing, ground glass and emphysema. The proposed methodology combines multi-resolution 3D morphological filtering (exploiting the sup-constrained connection cost operator) and graph-based classification for a full characterization of the parenchymal tissue. The morphological filtering performs a multi-level segmentation of the low- and medium-attenuated lung regions as well as their classification with respect to a granularity criterion (multi-resolution analysis). The original intensity range of the CT data volume is thus reduced in the segmented data to a number of levels equal to the resolution depth used (generally ten levels). The specificity of such morphological filtering is to extract tissue patterns locally contrasting with their neighborhood and of size inferior to the resolution depth, while preserving their original shape. A multi-valued hierarchical graph describing the segmentation result is built-up according to the resolution level and the adjacency of the different segmented components. The graph nodes are then enriched with the textural information carried out by their associated components. A graph analysis-reorganization based on the nodes attributes delivers the final classification of the lung parenchyma in normal and ILD/emphysematous regions. It also makes possible to discriminate between different types, or development stages, among the same class of diseases.

  5. Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans

    Science.gov (United States)

    Ramachandran S., Sindhu; George, Jose; Skaria, Shibon; V. V., Varun

    2018-02-01

    Lung cancer is the leading cause of cancer related deaths in the world. The survival rate can be improved if the presence of lung nodules are detected early. This has also led to more focus being given to computer aided detection (CAD) and diagnosis of lung nodules. The arbitrariness of shape, size and texture of lung nodules is a challenge to be faced when developing these detection systems. In the proposed work we use convolutional neural networks to learn the features for nodule detection, replacing the traditional method of handcrafting features like geometric shape or texture. Our network uses the DetectNet architecture based on YOLO (You Only Look Once) to detect the nodules in CT scans of lung. In this architecture, object detection is treated as a regression problem with a single convolutional network simultaneously predicting multiple bounding boxes and class probabilities for those boxes. By performing training using chest CT scans from Lung Image Database Consortium (LIDC), NVIDIA DIGITS and Caffe deep learning framework, we show that nodule detection using this single neural network can result in reasonably low false positive rates with high sensitivity and precision.

  6. Radiological and pathological analysis of LDCT screen detected and surgically resected sub-centimetre lung nodules in 44 asymptomatic patients

    International Nuclear Information System (INIS)

    Hu, Xing; Zhao, Jiangmin; Qian, Haishan; Du, Guangyan; Kelly, Margaret; Yang, Hua

    2016-01-01

    Once lung cancer is detected due to clinical symptoms or by being visible on chest X-ray, it is usually high stage and non-operable. In order to improve mortality rates in lung cancer, low-dose CT (LDCT) screening of “high risk” individuals is gaining popularity. However, the rate of malignancy in LDCT detected sub-centimetre lung nodules is not clear. We aimed to analyze surgically resected specimens in this patient group to explore cost effectiveness and recommendations for clinical management of these nodules. Our hospital pathology database was searched for sub-centimeter lung nodules detected by LDCT screening which were resected. The patient demographics were collected and the radiologic and pathologic characteristics of those nodules were analyzed. From the records, 44 patients with 46 resected subcentimetre nodules were identified. Patients were selected for surgery based on an irregular shape, growth in size during follow up, family history of lung cancer or personal history of cancer of other sites, previous lung disease, smoking and personal anxiety. Of the 44 patients, 33 were women and the ages ranged from 43 to 76 years (56.75 ± 8.44). All nodules were equal to, or less than 10 mm with a mean diameter of 7.81 ± 1.80 mm (SD). Out of 46 nodules, the pathological diagnoses were: invasive adenocarcinoma (ACa) in 4 (8.7%); adenocarcinoma in situ (AIS) or atypical adenomatous hyperplasia (AAH) in 29 (63%); benign fibrosis/fibrotic scar with inflammation or calcification in 12 (26.1%); an intrapulmonary benign lymph node in 1 (2.2%). Of the ACa, AIS and AAH groups (a total of 31 patients), 77% were women (24 vs. 7). The cancer or pre-cancer nodules (ACa, AIS and AAH) tended to be larger than benign fibrotic scars (P = 0.039). Amongst all characteristics, significant statistical differences were found when the following radiological features were considered: reconstructed nodule shape (P = 0.011), margin (P = 0.003) and ground glass pattern (P = 0

  7. Comparison of manual and automated size measurements of lung metastases on MDCT images: Potential influence on therapeutic decisions

    International Nuclear Information System (INIS)

    Pauls, Sandra; Kuerschner, Christian; Dharaiya, Ekta; Muche, Rainer; Schmidt, Stefan A.; Krueger, Stefan; Brambs, Hans-Juergen; Aschoff, Andrik J.

    2008-01-01

    Purpose: The goal of this study was to evaluate the influence of automated measurement of diameter, area, and volume from chest CT scans on therapeutic decisions of lung nodules as compared to manual 2-D measurements. Patients and method: The retrospective study involved 25 patients with 75 lung metastases. Contrast enhanced CT scans (16 row) of the lung were performed three times during chemotherapy with a mean time interval of 67.9 days between scans. In each patient, three metastases were evaluated (n = 225). Automatic measurements were compared to manual assessment for the following parameters: diameter, area, and density. The influence on the therapeutic decisions was evaluated using the RECIST criteria. Results: The maximum diameter measured by the automatic application was on an average 27% (S.D. 39; CI: 0.22-0.32; p < 0.0001) higher than the maximum diameter with manual assessment, and the differences depended on metastases size. Based on diameter calculation, manual and automated assessment disagreed in up to 32% of therapeutic decisions. Volumetric assessment tended towards more changes in therapy as compared to diameter calculation. The calculation of mean transversal area of metastases was 36% (S.D. 0.305; CI: -0.40 to -0.32; p < 0.0001) less with automated measurement. Therapeutic strategy would be changed in up to 25.7% of nodules using automated area calculation. Automated assessment of nodules' area and volume could influence the therapeutic decisions in up to 51.4% of all nodules. Density of the nodules was not validated to determine the influence on therapeutic decisions. Conclusion: There is a discrepancy between the manual and automated size measurement of lung metastases which could be significant

  8. Comparison of manual and automated size measurements of lung metastases on MDCT images: Potential influence on therapeutic decisions

    Energy Technology Data Exchange (ETDEWEB)

    Pauls, Sandra [Department of Diagnostic and Interventional Radiology, University of Ulm, Robert-Koch-Strasse 8, 89081 Ulm (Germany)], E-mail: sandra.pauls@uni-ulm.de; Kuerschner, Christian [Department of Diagnostic and Interventional Radiology, University of Ulm, Robert-Koch-Strasse 8, 89081 Ulm (Germany)], E-mail: chris.kuerschner@web.de; Dharaiya, Ekta [CT-Clinical Science, Philips Medical Systems, Highland Heights, OH 44143 (United States)], E-mail: ekta.shah@philips.com; Muche, Rainer [Institute of Biometrics, University of Ulm, Schwabstrasse 13, 89075 Ulm (Germany)], E-mail: rainer.muche@uni-ulm.de; Schmidt, Stefan A. [Department of Diagnostic and Interventional Radiology, University of Ulm, Robert-Koch-Strasse 8, 89081 Ulm (Germany)], E-mail: stefan-a.schmidt@gmx.de; Krueger, Stefan [Department of Internal Medicine II, University of Ulm, Robert-Koch-Strasse 8, 89081 Ulm (Germany)], E-mail: s.krueger@uniklinik-ulm.de; Brambs, Hans-Juergen [Department of Diagnostic and Interventional Radiology, University of Ulm, Robert-Koch-Strasse 8, 89081 Ulm (Germany)], E-mail: hans-juergen.brambs@uniklinik-ulm.de; Aschoff, Andrik J. [Department of Diagnostic and Interventional Radiology, University of Ulm, Robert-Koch-Strasse 8, 89081 Ulm (Germany)], E-mail: andrik.aschoff@uni-ulm.de

    2008-04-15

    Purpose: The goal of this study was to evaluate the influence of automated measurement of diameter, area, and volume from chest CT scans on therapeutic decisions of lung nodules as compared to manual 2-D measurements. Patients and method: The retrospective study involved 25 patients with 75 lung metastases. Contrast enhanced CT scans (16 row) of the lung were performed three times during chemotherapy with a mean time interval of 67.9 days between scans. In each patient, three metastases were evaluated (n = 225). Automatic measurements were compared to manual assessment for the following parameters: diameter, area, and density. The influence on the therapeutic decisions was evaluated using the RECIST criteria. Results: The maximum diameter measured by the automatic application was on an average 27% (S.D. 39; CI: 0.22-0.32; p < 0.0001) higher than the maximum diameter with manual assessment, and the differences depended on metastases size. Based on diameter calculation, manual and automated assessment disagreed in up to 32% of therapeutic decisions. Volumetric assessment tended towards more changes in therapy as compared to diameter calculation. The calculation of mean transversal area of metastases was 36% (S.D. 0.305; CI: -0.40 to -0.32; p < 0.0001) less with automated measurement. Therapeutic strategy would be changed in up to 25.7% of nodules using automated area calculation. Automated assessment of nodules' area and volume could influence the therapeutic decisions in up to 51.4% of all nodules. Density of the nodules was not validated to determine the influence on therapeutic decisions. Conclusion: There is a discrepancy between the manual and automated size measurement of lung metastases which could be significant.

  9. Difficulties encountered managing nodules detected during a computed tomography lung cancer screening program.

    Science.gov (United States)

    Veronesi, Giulia; Bellomi, Massimo; Scanagatta, Paolo; Preda, Lorenzo; Rampinelli, Cristiano; Guarize, Juliana; Pelosi, Giuseppe; Maisonneuve, Patrick; Leo, Francesco; Solli, Piergiorgio; Masullo, Michele; Spaggiari, Lorenzo

    2008-09-01

    The main challenge of screening a healthy population with low-dose computed tomography is to balance the excessive use of diagnostic procedures with the risk of delayed cancer detection. We evaluated the pitfalls, difficulties, and sources of mistakes in the management of lung nodules detected in volunteers in the Cosmos single-center screening trial. A total of 5201 asymptomatic high-risk volunteers underwent screening with multidetector low-dose computed tomography. Nodules detected at baseline or new nodules at annual screening received repeat low-dose computed tomography at 1 year if less than 5 mm, repeat low-dose computed tomography 3 to 6 months later if between 5 and 8 mm, and fluorodeoxyglucose positron emission tomography if more than 8 mm. Growing nodules at the annual screening received low-dose computed tomography at 6 months and computed tomography-positron emission tomography or surgical biopsy according to doubling time, type, and size. During the first year of screening, 106 patients underwent lung biopsy and 91 lung cancers were identified (70% were stage I). Diagnosis was delayed (false-negative) in 6 patients (stage IIB in 1 patient, stage IIIA in 3 patients, and stage IV in 2 patients), including 2 small cell cancers and 1 central lesion. Surgical biopsy revealed benign disease (false-positives) in 15 cases (14%). Positron emission tomography sensitivity was 88% for prevalent cancers and 70% for cancers diagnosed after first annual screening. No needle biopsy procedures were performed in this cohort of patients. Low-dose computed tomography screening is effective for the early detection of lung cancers, but nodule management remains a challenge. Computed tomography-positron emission tomography is useful at baseline, but its sensitivity decreases significantly the subsequent year. Multidisciplinary management and experience are crucial for minimizing misdiagnoses.

  10. Lung Nodule Image Classification Based on Local Difference Pattern and Combined Classifier.

    Science.gov (United States)

    Mao, Keming; Deng, Zhuofu

    2016-01-01

    This paper proposes a novel lung nodule classification method for low-dose CT images. The method includes two stages. First, Local Difference Pattern (LDP) is proposed to encode the feature representation, which is extracted by comparing intensity difference along circular regions centered at the lung nodule. Then, the single-center classifier is trained based on LDP. Due to the diversity of feature distribution for different class, the training images are further clustered into multiple cores and the multicenter classifier is constructed. The two classifiers are combined to make the final decision. Experimental results on public dataset show the superior performance of LDP and the combined classifier.

  11. Lung Nodule Image Classification Based on Local Difference Pattern and Combined Classifier

    Directory of Open Access Journals (Sweden)

    Keming Mao

    2016-01-01

    Full Text Available This paper proposes a novel lung nodule classification method for low-dose CT images. The method includes two stages. First, Local Difference Pattern (LDP is proposed to encode the feature representation, which is extracted by comparing intensity difference along circular regions centered at the lung nodule. Then, the single-center classifier is trained based on LDP. Due to the diversity of feature distribution for different class, the training images are further clustered into multiple cores and the multicenter classifier is constructed. The two classifiers are combined to make the final decision. Experimental results on public dataset show the superior performance of LDP and the combined classifier.

  12. Outcomes of Stereotactic Body Radiotherapy (SBRT) treatment of multiple synchronous and recurrent lung nodules

    International Nuclear Information System (INIS)

    Owen, Dawn; Olivier, Kenneth R; Mayo, Charles S; Miller, Robert C; Nelson, Kathryn; Bauer, Heather; Brown, Paul D; Park, Sean S; Ma, Daniel J; Garces, Yolanda I

    2015-01-01

    Stereotactic body radiotherapy (SBRT) is evolving into a standard of care for unresectable lung nodules. Local control has been shown to be in excess of 90% at 3 years. However, some patients present with synchronous lung nodules in the ipsilateral or contralateral lobe or metasynchronous disease. In these cases, patients may receive multiple courses of lung SBRT or a single course for synchronous nodules. The toxicity of such treatment is currently unknown. Between 2006 and 2012, 63 subjects with 128 metasynchronous and synchronous lung nodules were treated at the Mayo Clinic with SBRT. Demographic patient data and dosimetric data regarding SBRT treatments were collected. Acute toxicity (defined as toxicity < 90 days) and late toxicity (defined as toxicity > = 90 days) were reported and graded as per standardized CTCAE 4.0 criteria. Local control, progression free survival and overall survival were also described. The median age of patients treated was 73 years. Sixty five percent were primary or recurrent lung cancers with the remainder metastatic lung nodules of varying histologies. Of 63 patients, 18 had prior high dose external beam radiation to the mediastinum or chest. Dose and fractionation varied but the most common prescriptions were 48 Gy/4 fractions, 54 Gy/3 fractions, and 50 Gy/5 fractions. Only 6 patients demonstrated local recurrence. With a median follow up of 12.6 months, median SBRT specific overall survival and progression free survival were 35.7 months and 10.7 months respectively. Fifty one percent (32/63 patients) experienced acute toxicity, predominantly grade 1 and 2 fatigue. One patient developed acute grade 3 radiation pneumonitis at 75 days. Forty six percent (29/63 patients) developed late effects. Most were grade 1 dyspnea. There was one patient with grade 5 pneumonitis. Multiple courses of SBRT and SBRT delivery after external beam radiotherapy appear to be feasible and safe. Most toxicity was grade 1 and 2 but the risk was

  13. Dynamic Gd-DTPA enhanced breath-hold 1.5 t MRI of normal lungs and patients with interstitial lung disease and pulmonary nodules: preliminary results

    International Nuclear Information System (INIS)

    Semelka, R.C.; Maycher, B.; Shoenut, J.P.; Kroeker, R.; Griffin, P.; Lertzman, M.

    1992-01-01

    A FLASH technique was used, which encompassed the entire thorax in the transverse plane, before and after dynamic intravenous injection of godalinium DTPA (Gd-DTPA) to study 7 patients with normal lungs, 12 patients with interstitial lung disease (ILD), and 11 patients with pulmonary nodules. Comparative CT studies were obtained within 2 weeks of the MRI study in the patients with lung disease. Quantitative signal intensity (SI) measurements were performed. Qualitative evaluation of lung parenchyma was determined in a prospective blinded fashion, and in the normal group comparison was made with the CT images. In normal patients, SI of lung parenchyma increased by 7.7±1.3%. On precontrast images, second-order pulmonary branchings were visible while post-contrast, fifth- to sixth-order branches were apparent. In patients with ILD, interstitial changes enhanced to a variable extent, increases in SI ranging from minimal (49.9%) to substantial (308.4%). Detection of pulmonary nodules improved following contrast injection. The minimum lesion size detectable decreased from 8 mm precontrast to 5 mm post-contrast. Percentage contrast enhancement was greater for malignant nodules (124.2±79.7%) than benign nodules (5.8±4.7%) (p<0.01). (orig.)

  14. Towards automatic pulmonary nodule management in lung cancer screening with deep learning.

    Science.gov (United States)

    Ciompi, Francesco; Chung, Kaman; van Riel, Sarah J; Setio, Arnaud Arindra Adiyoso; Gerke, Paul K; Jacobs, Colin; Scholten, Ernst Th; Schaefer-Prokop, Cornelia; Wille, Mathilde M W; Marchianò, Alfonso; Pastorino, Ugo; Prokop, Mathias; van Ginneken, Bram

    2017-04-19

    The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy. According to the current guidelines, the workup of screen-detected nodules strongly relies on nodule size and nodule type. In this paper, we present a deep learning system based on multi-stream multi-scale convolutional networks, which automatically classifies all nodule types relevant for nodule workup. The system processes raw CT data containing a nodule without the need for any additional information such as nodule segmentation or nodule size and learns a representation of 3D data by analyzing an arbitrary number of 2D views of a given nodule. The deep learning system was trained with data from the Italian MILD screening trial and validated on an independent set of data from the Danish DLCST screening trial. We analyze the advantage of processing nodules at multiple scales with a multi-stream convolutional network architecture, and we show that the proposed deep learning system achieves performance at classifying nodule type that surpasses the one of classical machine learning approaches and is within the inter-observer variability among four experienced human observers.

  15. Lung nodule detection in pediatric chest CT: quantitative relationship between image quality and radiologist performance.

    Science.gov (United States)

    Li, Xiang; Samei, Ehsan; Barnhart, Huiman X; Gaca, Ana Maria; Hollingsworth, Caroline L; Maxfield, Charles M; Carrico, Caroline W T; Colsher, James G; Frush, Donald P

    2011-05-01

    To determine the quantitative relationship between image quality and radiologist performance in detecting small lung nodules in pediatric CT. The study included clinical chest CT images of 30 pediatric patients (0-16 years) scanned at tube currents of 55-180 mA. Calibrated noise addition software was used to simulate cases at three nominal mA settings: 70, 35, and 17.5 mA, resulting in quantum noise of 7-32 Hounsfield Unit (HU). Using a validated nodule simulation technique, lung nodules with diameters of 3-5 mm and peak contrasts of 200-500 HU were inserted into the cases, which were then randomized and rated independently by four experienced pediatric radiologists for nodule presence on a continuous scale from 0 (definitely absent) to 100 (definitely present). The receiver operating characteristic (ROC) data were analyzed to quantify the relationship between diagnostic accuracy (area under the ROC curve, AUC) and image quality (the product of nodule peak contrast and displayed diameter to noise ratio, CDNR display). AUC increased rapidly from 0.70 to 0.87 when CDNR display increased from 60 to 130 mm, followed by a slow increase to 0.94 when CDNR display further increased to 257 mm. For the average nodule diameter (4 mm) and contrast (350 HU), AUC decreased from 0.93 to 0.71 with noise increased from 7 to 28 HU. We quantified the relationship between image quality and the performance of radiologists in detecting lung nodules in pediatric CT. The relationship can guide CT protocol design to achieve the desired diagnostic performance at the lowest radiation dose.

  16. AUTOMATIC LUNG NODULE DETECTION BASED ON STATISTICAL REGION MERGING AND SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    Elaheh Aghabalaei Khordehchi

    2017-06-01

    Full Text Available Lung cancer is one of the most common diseases in the world that can be treated if the lung nodules are detected in their early stages of growth. This study develops a new framework for computer-aided detection of pulmonary nodules thorough a fully-automatic analysis of Computed Tomography (CT images. In the present work, the multi-layer CT data is fed into a pre-processing step that exploits an adaptive diffusion-based smoothing algorithm in which the parameters are automatically tuned using an adaptation technique. After multiple levels of morphological filtering, the Regions of Interest (ROIs are extracted from the smoothed images. The Statistical Region Merging (SRM algorithm is applied to the ROIs in order to segment each layer of the CT data. Extracted segments in consecutive layers are then analyzed in such a way that if they intersect at more than a predefined number of pixels, they are labeled with a similar index. The boundaries of the segments in adjacent layers which have the same indices are then connected together to form three-dimensional objects as the nodule candidates. After extracting four spectral, one morphological, and one textural feature from all candidates, they are finally classified into nodules and non-nodules using the Support Vector Machine (SVM classifier. The proposed framework has been applied to two sets of lung CT images and its performance has been compared to that of nine other competing state-of-the-art methods. The considerable efficiency of the proposed approach has been proved quantitatively and validated by clinical experts as well.

  17. Evaluation of radiographic imaging techniques in lung nodule detection

    International Nuclear Information System (INIS)

    Ho, J.T.; Kruger, R.A.

    1989-01-01

    Dual-energy radiography appears to be the most effective technique to address bone superposition that compromises conventional chest radiography. A dual-energy, single-exposure, film-based technique was compared with a dual-energy, dual-exposure technique and conventional chest radiography in a simulated lung nodule detection study. Observers detected more nodules on images produced by dual-energy techniques than on images produced by conventional chest radiography. The difference between dual-energy and conventional chest radiography is statistically significant and the difference between dual-energy, dual-exposure and single-exposure techniques is statistically insignificant. The single-exposure technique has the potential to replace the dual-exposure technique in future clinical application

  18. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Science.gov (United States)

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-01-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749

  19. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  20. Nodule detection by chest X-ray and evaluation of computer-aided detection (CAD) software using an originally developed phantom for instructional purposes

    International Nuclear Information System (INIS)

    Nitta, Norihisa; Takahashi, Masashi; Takazakura, Ryutaro

    2006-01-01

    Chest X-ray and computed tomography (CT) are indispensable modalities for lung cancer examinations. CT technologies have dramatically improved and small nodules and obscure shadows have been detected more frequently. The new generation of radiologists feels that chest X-rays are not as useful as chest CT. Experiments using a newly-developed chest phantom were conducted to reconfirm blind spots in chest X-rays. Recent technological advances and high-definition capability have made chest X-rays more useful than ever. Even though development of multi-detector CT (MDCT) has facilitated detection of nodules, it has conversely incurred a problem of increasing data for analysis, taking tremendous time and effort. Here, employing a chest phantom and clinical samples, we evaluated the utility of two kinds of computer-aided detection (CAD) software (Image Checker CT and LungCARE NEV) as well as GGO CAD software that we have developed. More development of chest CT diagnostic software is urgently needed. (author)

  1. An Unusual Radiologic Manifestation of Pulmonary Tuberculosis with Bilateral Multiple Lung Nodules and Diffuse Alveolar Hemorrhage: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seo In; Seon, Hyun Ju; Kim, Yun Hyeon [Dept. of Radiology, Chunnam National University Hospital, Gwangju (Korea, Republic of); Choi, Sung [Dept. of Radiology, Chunnam National University Hwasun Hospital, Hwasun(Korea, Republic of)

    2011-12-15

    Pulmonary tuberculosis presenting as bilateral multiple lung nodules or diffuse alveolar hemorrhage is very rare. Here, we report a case of pulmonary tuberculosis presenting as bilateral multiple lung nodules and diffuse alveolar hemorrhage mimicking granulomatous vasculitis, such as Wegener's granulomatosis.

  2. Radiofrequency thermal ablation of a metastatic lung nodule

    Energy Technology Data Exchange (ETDEWEB)

    Highland, Adrian M. [Department of Clinical Radiology, Hull Royal Infirmary, Anlaby Road, Hull, HU3 2JZ (United Kingdom); Mack, Paul [Diana Princess of Wales Hospital, Scartho Road, Grimsby, DN33 2BA (United Kingdom); Breen, David J. [Department of Radiology, Southampton University Hospitals, Tremona Road, Southampton, SO16 6YD (United Kingdom)

    2002-07-01

    Pulmonary metastases are a common finding in patients with colonic adenocarcinoma. We report the treatment of a metastatic lung nodule with radiofrequency (RF) ablation under CT guidance. This case illustrates the use of RF ablation in a patient in whom surgical resection was no longer possible and where chemotherapy was unlikely to produce benefit. This technique may offer a viable method of cytoreduction when other treatments have not succeeded. (orig.)

  3. Radiofrequency thermal ablation of a metastatic lung nodule

    International Nuclear Information System (INIS)

    Highland, Adrian M.; Mack, Paul; Breen, David J.

    2002-01-01

    Pulmonary metastases are a common finding in patients with colonic adenocarcinoma. We report the treatment of a metastatic lung nodule with radiofrequency (RF) ablation under CT guidance. This case illustrates the use of RF ablation in a patient in whom surgical resection was no longer possible and where chemotherapy was unlikely to produce benefit. This technique may offer a viable method of cytoreduction when other treatments have not succeeded. (orig.)

  4. Cryptogenic Organizing Pneumonia With Lung Nodules Secondary to Pulmonary Manifestation of Crohn Disease

    Directory of Open Access Journals (Sweden)

    Taufiq Zaman

    2017-05-01

    Full Text Available Crohn disease is an immune-mediated inflammatory condition with gastrointestinal and extraintestinal manifestations in patients. Pulmonary involvement of Crohn disease is one manifestation. There have been case reports which have shown Crohn disease and lung nodules which were noted to be histopathological as cryptogenic organizing pneumonia (COP. In our case, a 22-year-old woman with Crohn disease was seen with complaints of chest pain and cough. Computed tomographic scan of chest showed multiple bilateral lung nodules, for which biopsy was done, which showed COP. The case study is followed by a deeper discussion of COP and the extraintestinal manifestation seen in inflammatory bowel disease.

  5. Differential diagnosis and cancer staging of a unique case with multiple nodules in the lung - lung adenocarcinoma, metastasis of colon adenocarcinoma, and colon adenocarcinoma metastasizing to lung adenocarcinoma.

    Science.gov (United States)

    Bai, Yun; Qiu, Jianxing; Shang, Xueqian; Liu, Ping; Zhang, Ying; Wang, Ying; Xiong, Yan; Li, Ting

    2015-05-01

    Lung cancer is the most common cancer in the world. Despite this, there have been few cases of simultaneous primary and metastatic cancers in the lung reported, let alone coexisting with tumor-to-tumor metastasis. Herein, we describe an extremely unusual case. A 61-year-old man with a history of colon adenocarcinoma was revealed as having three nodules in the lung 11 months after colectomy. The nodule in the left upper lobe was primary lung adenocarcinoma, the larger one in the right upper lobe was a metastasis of colon adenocarcinoma, and the smaller one in the right upper lobe was colon adenocarcinoma metastasizing to lung adenocarcinoma. Our paper focused on the differential diagnosis and cancer staging of this unique case, and discussed the uncommon phenomenon of the lung acting as a recipient in tumor-to-tumor metastasis.

  6. Evaluation of an improved method of simulating lung nodules in chest tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Allansdotter Johnsson, Aase; Vikgren, Jenny

    2012-01-01

    Background Simulated pathology is a valuable complement to clinical images in studies aiming at evaluating an imaging technique. In order for a study using simulated pathology to be valid, it is important that the simulated pathology in a realistic way reflect the characteristics of real pathology. Purpose To perform a thorough evaluation of a nodule simulation method for chest tomosynthesis, comparing the detection rate and appearance of the artificial nodules with those of real nodules in an observer performance experiment. Material and Methods A cohort consisting of 64 patients, 38 patients with a total of 129 identified pulmonary nodules and 26 patients without identified pulmonary nodules, was used in the study. Simulated nodules, matching the real clinically found pulmonary nodules by size, attenuation, and location, were created and randomly inserted into the tomosynthesis section images of the patients. Three thoracic radiologists and one radiology resident reviewed the images in an observer performance study divided into two parts. The first part included nodule detection and the second part included rating of the visual appearance of the nodules. The results were evaluated using a modified receiver-operating characteristic (ROC) analysis. Results The sensitivities for real and simulated nodules were comparable, as the area under the modified ROC curve (AUC) was close to 0.5 for all observers (range, 0.43-0.55). Even though the ratings of visual appearance for real and simulated nodules overlapped considerably, the statistical analysis revealed that the observers to were able to separate simulated nodules from real nodules (AUC values range 0.70-0.74). Conclusion The simulation method can be used to create artificial lung nodules that have similar detectability as real nodules in chest tomosynthesis, although experienced thoracic radiologists may be able to distinguish them from real nodules

  7. Computer-aided detection of lung nodules on chest CT: issues to be solved before clinical use

    International Nuclear Information System (INIS)

    Goo, Jin Mo

    2005-01-01

    Given the increasing resolution of modern CT scanners, and the requirements for large-scale lung-screening examinations and diagnostic studies, there is an increased need for the accurate and reproducible analysis of the large number of images. Nodule detection is one of the main challenges of CT imaging, as they can be missed due to their small size, low relative contrast, or because they are located in an area with complex anatomy. Recent developments in computer-aided diagnosis (CAD) schemes are expected to aid radiologists in various tasks of chest imaging. In this era of multidetector row CT, the thoracic applications of greatest interest include the detection and volume measurement of lung nodules (1-7). Technology for CAD as applied to lung nodule detection on chest CT has been approved by the Food and Drug Administration and is currently commercially available. The article by Lee et al. (5) in this issue of the Korean Journal of Radiology is one of the few studies to examine the influence of a commercially available CAD system on the detection of lung nodules. In this study, some additional nodules were detected with the help of a CAD system, but at the expense of increased false positivity. The nodule detection rate of the CAD system in this study was lower than that achieved by radiologist, and the authors insist that the CAD system should be improved further. Compared to the use of CAD on mammograms, CAD evaluations of chest CTs remain limited to the laboratory setting. In this field, apart from the issues of detection rate and false positive detections, many obstacles must be overcome before CAD can be used in a true clinical reading environment. In this editorial, I will list some of these issues, but I emphasize now that I believe these issues will be solved by improved CAD versions in the near future

  8. Fusobacterium necrophorum presenting as isolated lung nodules

    Directory of Open Access Journals (Sweden)

    Rajiv Sonti

    2015-01-01

    Full Text Available Fusobacterium necrophorum causes Lemierre's syndrome - a dramatic and distinct condition beginning with pharyngitis before proceeding to internal jugular vein septic thrombophlebitis and respiratory tract infection in otherwise healthy individuals. It is rare, but by far the most common pathway to parenchymal lung disease with this organism. Here we describe we a 34 year old healthy lady who was nontoxic without any antecedent illness who presented with lung nodules due to fusobacterium necrophorum as the sole manifestation of disease. Leading diagnostic consideration prior to culture data was pulmonary vasculitis. Identifying her disease process was a somewhat chance occurrence, and it began to resolve prior to antibiotic therapy. Though it would be difficult to recommend keen awareness of this organism given its rarity, it is important to consider that its scope may be broader than traditionally considered.

  9. Inter- and intrascanner variability of pulmonary nodule volumetry on low-dose 64-row CT: an anthropomorphic phantom study

    Science.gov (United States)

    Xie, X; Willemink, M J; Zhao, Y; de Jong, P A; van Ooijen, P M A; Oudkerk, M; Greuter, M J W

    2013-01-01

    Objective: To assess inter- and intrascanner variability in volumetry of solid pulmonary nodules in an anthropomorphic thoracic phantom using low-dose CT. Methods: Five spherical solid artificial nodules [diameters 3, 5, 8, 10 and 12 mm; CT density +100 Hounsfield units (HU)] were randomly placed inside an anthropomorphic thoracic phantom in different combinations. The phantom was examined on two 64-row multidetector CT (64-MDCT) systems (CT-A and CT-B) from different vendors with a low-dose protocol. Each CT examination was performed three times. The CT examinations were evaluated twice by independent blinded observers. Nodule volume was semi-automatically measured by dedicated software. Interscanner variability was evaluated by Bland–Altman analysis and expressed as 95% confidence interval (CI) of relative differences. Intrascanner variability was expressed as 95% CI of relative variation from the mean. Results: No significant difference in CT-derived volume was found between CT-A and CT-B, except for the 3-mm nodules (pvolumetry of artificial pulmonary nodules between 5 mm and 12 mm in diameter. Inter- and intrascanner variability decreases at a larger nodule size to a maximum of 4.9% for ≥8 mm nodules. Advances in knowledge: The commonly accepted cut-off of 25% to determine nodule growth has the potential to be reduced for ≥8 mm nodules. This offers the possibility of reducing the interval for repeated CT scans in lung cancer screenings. PMID:23884758

  10. Toxocariasis masquerading as liver and lung metastatic nodules in patents with gastrointestinal cancer: clinicopathologic study of five cases.

    Science.gov (United States)

    Park, Sanghui; Kim, Yun Soo; Kim, Yu Jin; Kyung, Sun Young; Park, Jeong-Woong; Jeong, Sung Hwan; Lee, Sang Pyo

    2012-01-01

    There are sporadic reports in the literature in which radiologic liver and lung lesions found incidentally during follow-up metastatic surveillance were shown to be caused by toxocariasis. The objective of the work discussed in this report was to identify common clinical and histopathological features of toxocariasis resembling metastatic nodules in five patients with gastrointestinal cancer. We retrospectively analyzed clinical features of five gastrointestinal cancer patients with liver or lung nodules mimicking metastasis. Serologic tests for parasitic infestations and pathologic examinations were performed. All five patients were males and three patients had gastric cancer and two had colorectal cancer. All the cases of toxocariasis were confirmed serologically. On follow-up imaging, the lesions improved or resolved, suggestive of the phenomenon of visceral larva migrans. In two patients, liver biopsy was performed and showed eosinophilic abscess. Serologic tests and liver or lung biopsy should be performed aggressively to exclude toxocariasis when patients with underlying gastrointestinal cancer present with hepatic or pulmonary nodules associated with eosinophilia, particularly if the patients have a clinical history of raw animal liver ingestion. Curative surgical intervention should not be excluded just because of multiple nodules in the liver or the lungs.

  11. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule{>=}3 mm,''''nodule<3 mm,'' and ''non-nodule{>=}3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule

  12. Aquamous cell carcinomas of the lung which presented as numerous polypoid nodules in the tracheobronchial tree: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Gyu; Choi, Yo Won; Yoon, Hyun Jung; Paik, Seung Sam [Hanyang University Hospital, Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2017-03-15

    We report a case of squamous cell carcinomas of the lung, which presented as numerous polypoid nodules in the tracheobronchial tree. They occurred at two years and 7 months after resection of squamous cell carcinoma, which presented as a lung nodule in the left lower lobe, and at 7 months after resection of tracheal squamous cell carcinoma.

  13. Aquamous cell carcinomas of the lung which presented as numerous polypoid nodules in the tracheobronchial tree: A case report

    International Nuclear Information System (INIS)

    Lee, Hyun Gyu; Choi, Yo Won; Yoon, Hyun Jung; Paik, Seung Sam

    2017-01-01

    We report a case of squamous cell carcinomas of the lung, which presented as numerous polypoid nodules in the tracheobronchial tree. They occurred at two years and 7 months after resection of squamous cell carcinoma, which presented as a lung nodule in the left lower lobe, and at 7 months after resection of tracheal squamous cell carcinoma

  14. Volumetry of Artificial Pulmonary Nodules in Ex Vivo Porcine Lungs: Comparison of Semi-automated Volumetry and Radiologists' Performance

    International Nuclear Information System (INIS)

    Jeong, Ju Hyeon; Kim, Jin Hwan; Kim, Song Soo; Jeon, Ho Sang; Lee, Hyun Ju; Park, Noh Hyuck; Cho, Gyu Seong

    2010-01-01

    With the advent of MSCT, the detection rate of small pulmonary nodules is markedly greater. However, there is no definite diagnostic clue to differentiate between malignant and benign nodules, except for the interval growth in small nodule less than 1 cm in diameter. We evaluated the accuracy of computer aided volumetry (CAV) and compared it with 4 radiologists' measurement. Fifteen artificial nodules that were embedded in the ex vivo porcine lung were scanned by MSCT. The diameters and volumes of nodules were independently measured three times, at 5-day intervals, and by four radiologists as well as by CAV. We evaluated the accuracy of the measurements on the basis of the true diameter and volume of the nodules. Using a paired t-test and a Bland-Altman plot, we evaluated whether there was a statistically significant difference between the radiologists' measurements and the CAV. The accuracy of the manual measurements by radiologists revealed a statistically significant difference from the true diameter and volume of the artificial nodules (p 0.01) The results of this study suggest that CAV is an accurate and useful tool to evaluate the volume of pulmonary nodules and can eventually be used to differentiate malignant and benign nodules as well as evaluate the therapeutic response of lung cancer

  15. Incidentally detected lung nodules: clinical predictors of adherence to fleischner society surveillance guidelines.

    LENUS (Irish Health Repository)

    Ridge, Carole A

    2014-02-28

    The objective of this study was to determine adherence to incidentally detected lung nodule computed tomographic (CT) surveillance recommendations and identify demographic and clinical factors that increase the likelihood of CT surveillance.

  16. Pulmonary cavitary mass containing a mural nodule: differential diagnosis between intracavitary aspergilloma and cavitating lung cancer on contrast-enhanced computed tomography

    International Nuclear Information System (INIS)

    Park, Y.; Kim, T.S.; Yi, C.A.; Cho, E.Y.; Kim, H.; Choi, Y.S.

    2007-01-01

    Aim: The objective of this study was to identify whether there were any significant differences in the computed tomography (CT) findings of an intracavitary aspergilloma and a cavitating lung cancer containing a mural nodule. Materials and methods: The CT and histopathological findings of 12 patients (male:female ratio 3:9; aged 51-76 years) with cavitating lung cancer containing a mural nodule and 26 patients (male:female ratio 14:12; aged 29-72 years) with intracavitary aspergilloma were retrospectively reviewed. Results: The mural nodules within cavitating lung cancer were more enhanced (p < 0.001) and showed a nondependent location more frequently (p = 0.012) than those of intracavitary aspergillomas. The cavitary walls were thicker in cavitating lung cancer (mean 5.8 mm thick) than those in intracavitary aspergillomas (mean 2.6 mm thick; p = 0.035). Adjacent bronchiectasis and volume decrease of the involved lobe were observed more frequently in intracavitary aspergillomas than in cavitating lung cancers (p < 0.001 and p = 0.008, respectively). Conclusion: Whether a mural nodule within a cavitary lesion is contrast-enhanced or not is one of the most important features in making a differential diagnosis between an intracavitary aspergilloma and a cavitating lung cancer. Assessment of dependent location of a mural nodule within the cavity and wall thickness of the cavity itself can also be helpful for differentiation

  17. Pulmonary cavitary mass containing a mural nodule: differential diagnosis between intracavitary aspergilloma and cavitating lung cancer on contrast-enhanced computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, T.S. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of)]. E-mail: tskim.kim@samsung.com; Yi, C.A. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Cho, E.Y. [Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, H. [Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Choi, Y.S. [Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of)

    2007-03-15

    Aim: The objective of this study was to identify whether there were any significant differences in the computed tomography (CT) findings of an intracavitary aspergilloma and a cavitating lung cancer containing a mural nodule. Materials and methods: The CT and histopathological findings of 12 patients (male:female ratio 3:9; aged 51-76 years) with cavitating lung cancer containing a mural nodule and 26 patients (male:female ratio 14:12; aged 29-72 years) with intracavitary aspergilloma were retrospectively reviewed. Results: The mural nodules within cavitating lung cancer were more enhanced (p < 0.001) and showed a nondependent location more frequently (p = 0.012) than those of intracavitary aspergillomas. The cavitary walls were thicker in cavitating lung cancer (mean 5.8 mm thick) than those in intracavitary aspergillomas (mean 2.6 mm thick; p = 0.035). Adjacent bronchiectasis and volume decrease of the involved lobe were observed more frequently in intracavitary aspergillomas than in cavitating lung cancers (p < 0.001 and p = 0.008, respectively). Conclusion: Whether a mural nodule within a cavitary lesion is contrast-enhanced or not is one of the most important features in making a differential diagnosis between an intracavitary aspergilloma and a cavitating lung cancer. Assessment of dependent location of a mural nodule within the cavity and wall thickness of the cavity itself can also be helpful for differentiation.

  18. Application of a kernel-based online learning algorithm to the classification of nodule candidates in computer-aided detection of CT lung nodules

    International Nuclear Information System (INIS)

    Matsumoto, S.; Ohno, Y.; Takenaka, D.; Sugimura, K.; Yamagata, H.

    2007-01-01

    Classification of the nodule candidates in computer-aided detection (CAD) of lung nodules in CT images was addressed by constructing a nonlinear discriminant function using a kernel-based learning algorithm called the kernel recursive least-squares (KRLS) algorithm. Using the nodule candidates derived from the processing by a CAD scheme of 100 CT datasets containing 253 non-calcified nodules or 3 mm or larger as determined by the consensus of two thoracic radiologists, the following trial were carried out 100 times: by randomly selecting 50 datasets for training, a nonlinear discriminant function was obtained using the nodule candidates in the training datasets and tested with the remaining candidates; for comparison, a rule-based classification was tested in a similar manner. At the number of false positives per case of about 5, the nonlinear classification method showed an improved sensitivity of 80% (mean over the 100 trials) compared with 74% of the rule-based method. (orig.)

  19. Computer-aided detection (CAD) of lung nodules in CT scans: radiologist performance and reading time with incremental CAD assistance

    International Nuclear Information System (INIS)

    Roos, Justus E.; Paik, David; Olsen, David; Liu, Emily G.; Leung, Ann N.; Mindelzun, Robert; Choudhury, Kingshuk R.; Napel, Sandy; Rubin, Geoffrey D.; Chow, Lawrence C.; Naidich, David P.

    2010-01-01

    The diagnostic performance of radiologists using incremental CAD assistance for lung nodule detection on CT and their temporal variation in performance during CAD evaluation was assessed. CAD was applied to 20 chest multidetector-row computed tomography (MDCT) scans containing 190 non-calcified ≥3-mm nodules. After free search, three radiologists independently evaluated a maximum of up to 50 CAD detections/patient. Multiple free-response ROC curves were generated for free search and successive CAD evaluation, by incrementally adding CAD detections one at a time to the radiologists' performance. The sensitivity for free search was 53% (range, 44%-59%) at 1.15 false positives (FP)/patient and increased with CAD to 69% (range, 59-82%) at 1.45 FP/patient. CAD evaluation initially resulted in a sharp rise in sensitivity of 14% with a minimal increase in FP over a time period of 100 s, followed by flattening of the sensitivity increase to only 2%. This transition resulted from a greater prevalence of true positive (TP) versus FP detections at early CAD evaluation and not by a temporal change in readers' performance. The time spent for TP (9.5 s ± 4.5 s) and false negative (FN) (8.4 s ± 6.7 s) detections was similar; FP decisions took two- to three-times longer (14.4 s ± 8.7 s) than true negative (TN) decisions (4.7 s ± 1.3 s). When CAD output is ordered by CAD score, an initial period of rapid performance improvement slows significantly over time because of non-uniformity in the distribution of TP CAD output and not to a changing reader performance over time. (orig.)

  20. Cloud-Based NoSQL Open Database of Pulmonary Nodules for Computer-Aided Lung Cancer Diagnosis and Reproducible Research.

    Science.gov (United States)

    Ferreira Junior, José Raniery; Oliveira, Marcelo Costa; de Azevedo-Marques, Paulo Mazzoncini

    2016-12-01

    Lung cancer is the leading cause of cancer-related deaths in the world, and its main manifestation is pulmonary nodules. Detection and classification of pulmonary nodules are challenging tasks that must be done by qualified specialists, but image interpretation errors make those tasks difficult. In order to aid radiologists on those hard tasks, it is important to integrate the computer-based tools with the lesion detection, pathology diagnosis, and image interpretation processes. However, computer-aided diagnosis research faces the problem of not having enough shared medical reference data for the development, testing, and evaluation of computational methods for diagnosis. In order to minimize this problem, this paper presents a public nonrelational document-oriented cloud-based database of pulmonary nodules characterized by 3D texture attributes, identified by experienced radiologists and classified in nine different subjective characteristics by the same specialists. Our goal with the development of this database is to improve computer-aided lung cancer diagnosis and pulmonary nodule detection and classification research through the deployment of this database in a cloud Database as a Service framework. Pulmonary nodule data was provided by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), image descriptors were acquired by a volumetric texture analysis, and database schema was developed using a document-oriented Not only Structured Query Language (NoSQL) approach. The proposed database is now with 379 exams, 838 nodules, and 8237 images, 4029 of them are CT scans and 4208 manually segmented nodules, and it is allocated in a MongoDB instance on a cloud infrastructure.

  1. Computer-aided detection of lung nodules via 3D fast radial transform, scale space representation, and Zernike MIP classification.

    Science.gov (United States)

    Riccardi, Alessandro; Petkov, Todor Sergueev; Ferri, Gianluca; Masotti, Matteo; Campanini, Renato

    2011-04-01

    The authors presented a novel system for automated nodule detection in lung CT exams. The approach is based on (1) a lung tissue segmentation preprocessing step, composed of histogram thresholding, seeded region growing, and mathematical morphology; (2) a filtering step, whose aim is the preliminary detection of candidate nodules (via 3D fast radial filtering) and estimation of their geometrical features (via scale space analysis); and (3) a false positive reduction (FPR) step, comprising a heuristic FPR, which applies thresholds based on geometrical features, and a supervised FPR, which is based on support vector machines classification, which in turn, is enhanced by a feature extraction algorithm based on maximum intensity projection processing and Zernike moments. The system was validated on 154 chest axial CT exams provided by the lung image database consortium public database. The authors obtained correct detection of 71% of nodules marked by all radiologists, with a false positive rate of 6.5 false positives per patient (FP/patient). A higher specificity of 2.5 FP/patient was reached with a sensitivity of 60%. An independent test on the ANODE09 competition database obtained an overall score of 0.310. The system shows a novel approach to the problem of lung nodule detection in CT scans: It relies on filtering techniques, image transforms, and descriptors rather than region growing and nodule segmentation, and the results are comparable to those of other recent systems in literature and show little dependency on the different types of nodules, which is a good sign of robustness.

  2. A approach for differential diagnosis of primary lung cancer and breast cancer relapse presenting as a solitary pulmonary nodule in patients after breast surgery

    International Nuclear Information System (INIS)

    Fujita, Takashi; Iwata, Hiroharu; Yatabe, Yasushi

    2009-01-01

    The differential diagnosis of primary lung cancer from metastatic breast cancer is crucial in patients presenting with a solitary pulmonary nodule after breast surgery. However definitive diagnosis of these nodules is often difficult due to similar radiological and pathological features in primary lung and metastatic breast cancer nodules. We assessed the feasibility of our diagnostic approach for these nodules by morphopathological and immunohistochemical examination (thyroid transcription factor-1 (TTF-1), surfactant pro-protein B (SPPB), estrogen receptor (ER), mammaglobin-1 (MGB1)), and estimated the frequency of primary lung cancer occurrence in 23 breast cancer patients. Biopsy specimens were obtained using CT-guided needle biopsy (NB) and transbronchial lung biopsy (TBLB) in 21 patients (91.3%). Surgical resection was performed for diagnosis and treatment in two patients. Differential diagnosis was obtained by morphopathological methods alone in 17 patients (73.9%, primary lung cancer: 6 cases, metastatic breast cancer: 11 cases) and by immunohistochemical examination in the remaining 6 (26.1%, primary lung cancer: 1 case, metastatic breast cancer: 5 cases). Our results show the clinical feasibility of our approach to the differential diagnosis of breast cancer relapse and primary lung cancer presenting as a solitary nodule in breast cancer patients. (author)

  3. Whether and under what conditions FDG-PET might be cost-effective in evaluating solitary pulmonary nodules depicted on lung cancer screening in Japan

    International Nuclear Information System (INIS)

    Tsushima, Yoshito; Aoki, Jun; Endo, Keigo

    2003-01-01

    The purpose of this study was to determine whether and under what conditions fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) may be cost-effective in evaluating solitary pulmonary nodules depicted on lung cancer screening in Japan. Three decision models for differentiating lung cancer from benign nodules were compared: CT alone, PET alone, and CT plus PET. The various paths of each strategy were dependent on variables determined from a review of the medical literature. Costs were based on Japanese health insurance. The prevalence of lung cancer among solitary pulmonary nodules detected on lung cancer screening was less than 10%. For this prevalence, the CT-plus-PET model was the cost-effective alternative to the CT-alone model (cost savings were 64,000 yen per patient) and provided greater accuracy (0.90 vs. 0.84). Both of these effects were the result of reducing the number of candidates who undergo unnecessary CT-guided or bronchofiberscopic biopsies or thoracotomy for a benign pulmonary nodule. The CT-plus-PET strategy is accurate and cost-effective for the characterization of solitary pulmonary nodules detected on lung cancer screening in Japan. (author)

  4. Variability in CT lung-nodule volumetry: Effects of dose reduction and reconstruction methods.

    Science.gov (United States)

    Young, Stefano; Kim, Hyun J Grace; Ko, Moe Moe; Ko, War War; Flores, Carlos; McNitt-Gray, Michael F

    2015-05-01

    Measuring the size of nodules on chest CT is important for lung cancer staging and measuring therapy response. 3D volumetry has been proposed as a more robust alternative to 1D and 2D sizing methods. There have also been substantial advances in methods to reduce radiation dose in CT. The purpose of this work was to investigate the effect of dose reduction and reconstruction methods on variability in 3D lung-nodule volumetry. Reduced-dose CT scans were simulated by applying a noise-addition tool to the raw (sinogram) data from clinically indicated patient scans acquired on a multidetector-row CT scanner (Definition Flash, Siemens Healthcare). Scans were simulated at 25%, 10%, and 3% of the dose of their clinical protocol (CTDIvol of 20.9 mGy), corresponding to CTDIvol values of 5.2, 2.1, and 0.6 mGy. Simulated reduced-dose data were reconstructed with both conventional filtered backprojection (B45 kernel) and iterative reconstruction methods (SAFIRE: I44 strength 3 and I50 strength 3). Three lab technologist readers contoured "measurable" nodules in 33 patients under each of the different acquisition/reconstruction conditions in a blinded study design. Of the 33 measurable nodules, 17 were used to estimate repeatability with their clinical reference protocol, as well as interdose and inter-reconstruction-method reproducibilities. The authors compared the resulting distributions of proportional differences across dose and reconstruction methods by analyzing their means, standard deviations (SDs), and t-test and F-test results. The clinical-dose repeatability experiment yielded a mean proportional difference of 1.1% and SD of 5.5%. The interdose reproducibility experiments gave mean differences ranging from -5.6% to -1.7% and SDs ranging from 6.3% to 9.9%. The inter-reconstruction-method reproducibility experiments gave mean differences of 2.0% (I44 strength 3) and -0.3% (I50 strength 3), and SDs were identical at 7.3%. For the subset of repeatability cases, inter

  5. Systematic Error in Lung Nodule Volumetry : Effect of Iterative Reconstruction Versus Filtered Back Projection at Different CT Parameters

    NARCIS (Netherlands)

    Willemink, Martin J.; Leiner, Tim; Budde, Ricardo P. J.; de Kort, Freek P. L.; Vliegenthart, Rozemarijn; van Ooijen, Peter M. A.; Oudkerk, Matthijs; de Jong, Pim A.

    2012-01-01

    OBJECTIVE. Iterative reconstruction potentially can reduce radiation dose compared with filtered back projection (FBP) for chest CT. This is especially important for repeated CT scanning, as is the case in patients with indeterminate lung nodules. It is currently unknown whether absolute nodule

  6. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    International Nuclear Information System (INIS)

    2011-01-01

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule≥3 mm,''''nodule<3 mm,'' and ''non-nodule≥3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule≥3 mm'' by at least one radiologist, of which 928 (34.7%) received such marks from all

  7. Towards automatic pulmonary nodule management in lung cancer screening with deep learning

    NARCIS (Netherlands)

    Ciompi, F.; Chung, K; Riel, S.J. van; Setio, A.A.A.; Gerke, P.K.; Jacobs, C.; Scholten, E.T.; Schaefer-Prokop, C.M.; Wille, M.M.W.; Marchiano, A.; Pastorino, U.; Prokop, M.; Ginneken, B. van

    2017-01-01

    The introduction of lung cancer screening programs will produce an unprecedented amount of chest CT scans in the near future, which radiologists will have to read in order to decide on a patient follow-up strategy. According to the current guidelines, the workup of screen-detected nodules strongly

  8. SPECT/CT of lung nodules using 111In-DOTA-c(RGDfK) in a mouse lung carcinogenesis model.

    Science.gov (United States)

    Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuta, Koji; Yanaka, Akinori; Fujii, Hirofumi; Yoshimoto, Mitsuyoshi

    2013-08-01

    Lung cancer is one of the leading causes of cancer-related deaths worldwide, including Japan. Although computed tomography (CT) can detect small lung lesions such as those appearing as ground glass opacity, it cannot differentiate between malignant and non-malignant lesions. Previously, we have shown that single photon emission computed tomography (SPECT) imaging using (111)In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-D-Phe-Lys) (DOTA-c(RGDfK)), an imaging probe of αvβ3 integrin, is useful for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. In this study, we aimed to assess the usefulness of SPECT/CT with (111)In-DOTA-c(RGDfK) for the evaluation of the malignancy of lung cancer. Lung tumors were induced by a single intraperitoneal injection (250 mg/kg) of urethane in male A/J mice. Twenty-six weeks after the urethane treatment, SPECT was performed an hour after injection of (111)In-DOTA-c(RGDfK). Following this, the radioactivity ratios of tumor to normal lung tissue were measured by autoradiography (ARG) in the excised lung samples. We also examined the expression of αvβ3 integrin in mouse and human lung samples. Urethane treatment induced 5 hyperplasias, 41 adenomas and 12 adenocarcinomas in the lungs of 8 A/J mice. SPECT with (111)In-DOTA-c(RGDfK) could clearly visualize lung nodules, though we failed to detect small lung nodules like adenoma and hyperplasias (adenocarcinoma: 66.7%, adenoma: 33.6%, hyperplasia: 0.0%). ARG analysis revealed significant uptake of (111)In-DOTA-c(RGDfK) in all the lesions. Moreover, tumor to normal lung tissue ratios increased along with the progression of carcinogenesis. Histopathological examination using human lung tissue samples revealed clear up-regulation of αvβ3 integrin in well-differentiated adenocarcinoma (Noguchi type B and C) rather than atypical adenomatous hyperplasia. Although there are some limitations in evaluating the malignancy of

  9. Clinical, pathological, and radiological characteristics of solitary ground-glass opacity lung nodules on high-resolution computed tomography

    Directory of Open Access Journals (Sweden)

    Qiu ZX

    2016-09-01

    Full Text Available Zhi-Xin Qiu,1 Yue Cheng,1 Dan Liu,1 Wei-Ya Wang,2 Xia Wu,2 Wei-Lu Wu,2 Wei-Min Li1,2 1Department of Respiratory Medicine, 2Department of Pathology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Background: Lung nodules are being detected at an increasing rate year by year with high-resolution computed tomography (HRCT being widely used. Ground-glass opacity nodule is one of the special types of pulmonary nodules that is confirmed to be closely associated with early stage of lung cancer. Very little is known about solitary ground-glass opacity nodules (SGGNs. In this study, we analyzed the clinical, pathological, and radiological characteristics of SGGNs on HRCT.Methods: A total of 95 resected SGGNs were evaluated with HRCT scan. The clinical, pathological, and radiological characteristics of these cases were analyzed.Results: Eighty-one adenocarcinoma and 14 benign nodules were observed. The nodules included 12 (15% adenocarcinoma in situ (AIS, 14 (17% minimally invasive adenocarcinoma (MIA, and 55 (68% invasive adenocarcinoma (IA. No patients with recurrence till date have been identified. The positive expression rates of anaplastic lymphoma kinase and ROS-1 (proto-oncogene tyrosine-protein kinase ROS were only 2.5% and 8.6%, respectively. The specificity and accuracy of HRCT of invasive lung adenocarcinoma were 85.2% and 87.4%. The standard uptake values of only two patients determined by 18F-FDG positron emission tomography/computed tomography (PET/CT were above 2.5. The size, density, shape, and pleural tag of nodules were significant factors that differentiated IA from AIS and MIA. Moreover, the size, shape, margin, pleural tag, vascular cluster, bubble-like sign, and air bronchogram of nodules were significant determinants for mixed ground-glass opacity nodules (all P<0.05.Conclusion: We analyzed the clinical, pathological, and radiological characteristics of SGGNs on HRCT and found that the size, density

  10. Volumetry of Artificial Pulmonary Nodules in Ex Vivo Porcine Lungs: Comparison of Semi-automated Volumetry and Radiologists' Performance

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ju Hyeon; Kim, Jin Hwan; Kim, Song Soo [Chungnam National University Hospital, Daejeon (Korea, Republic of); Jeon, Ho Sang [Pusan National University Yangsan Hospital, Yangsan (Korea, Republic of); Lee, Hyun Ju [Seoul National University Hospital, Seoul (Korea, Republic of); Park, Noh Hyuck [Kwandong University College of Medicine, Myungji Hospital, Goyang (Korea, Republic of); Cho, Gyu Seong [KAIST, Daejeon (Korea, Republic of)

    2010-10-15

    With the advent of MSCT, the detection rate of small pulmonary nodules is markedly greater. However, there is no definite diagnostic clue to differentiate between malignant and benign nodules, except for the interval growth in small nodule less than 1 cm in diameter. We evaluated the accuracy of computer aided volumetry (CAV) and compared it with 4 radiologists' measurement. Fifteen artificial nodules that were embedded in the ex vivo porcine lung were scanned by MSCT. The diameters and volumes of nodules were independently measured three times, at 5-day intervals, and by four radiologists as well as by CAV. We evaluated the accuracy of the measurements on the basis of the true diameter and volume of the nodules. Using a paired t-test and a Bland-Altman plot, we evaluated whether there was a statistically significant difference between the radiologists' measurements and the CAV. The accuracy of the manual measurements by radiologists revealed a statistically significant difference from the true diameter and volume of the artificial nodules (p<0.01). Conversely, the accuracy of CAV did not show a statistically significant difference with the true nodule diameter and volume (p>0.01) The results of this study suggest that CAV is an accurate and useful tool to evaluate the volume of pulmonary nodules and can eventually be used to differentiate malignant and benign nodules as well as evaluate the therapeutic response of lung cancer.

  11. 68Ga-DOTATATE PET/CT imaging of indeterminate pulmonary nodules and lung cancer.

    Directory of Open Access Journals (Sweden)

    Ronald Walker

    Full Text Available 18F-FDG PET/CT is widely used to evaluate indeterminate pulmonary nodules (IPNs. False positive results occur, especially from active granulomatous nodules. A PET-based imaging agent with superior specificity to 18F-FDG for IPNs, is badly needed, especially in areas of endemic granulomatous nodules. Somatostatin receptors (SSTR are expressed in many malignant cells including small cell and non-small cell lung cancers (NSCLCs. 68Ga-DOTATATE, a positron emitter labeled somatostatin analog, combined with PET/CT imaging, may improve the diagnosis of IPNs over 18F-FDG by reducing false positives. Our study purpose was to test this hypothesis in our region with high endemic granulomatous IPNs.We prospectively performed 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT scans in the same 30 patients with newly diagnosed, treatment-naïve lung cancer (N = 14 or IPNs (N = 15 and one metastatic nodule. 68Ga-DOTATATE SUVmax levels at or above 1.5 were considered likely malignant. We analyzed the scan results, correlating with ultimate diagnosis via biopsy or 2-year chest CT follow-up. We also correlated 68Ga-DOTATATE uptake with immunohistochemical (IHC staining for SSTR subtype 2A (SSTR2A in pathological specimens.We analyzed 31 lesions in 30 individuals, with 14 (45% being non-neuroendocrine lung cancers and 1 (3% being metastatic disease. McNemar's result comparing the two radiopharmaceuticals (p = 0.65 indicates that their accuracy of diagnosis in this indication are equivalent. 68Ga-DOTATATE was more specific (94% compared to 81% and less sensitive 73% compared to 93% than 18F-FDG. 68Ga-DOTATATE uptake correlated with SSTR2A expression in tumor stroma determined by immunohistochemical (IHC staining in 5 of 9 (55% NSCLCs.68Ga-DOTATATE and 18F-FDG PET/CT had equivalent accuracy in the diagnosis of non-neuroendocrine lung cancer and 68Ga-DOTATATE was more specific than 18F-FDG for the diagnosis of IPNs. IHC staining for SSTR2A receptor expression correlated with

  12. Roles of computed tomography and [18F]fluorodeoxyglucose-positron emission tomography/computed tomography in the characterization of multiple solitary solid lung nodules

    OpenAIRE

    Travaini, LL; Trifirò, G; Vigna, PD; Veronesi, G; De Pas, TM; Spaggiari, L; Paganelli, G; Bellomi, M

    2012-01-01

    The purpose of this study is to compare the performance of multidetector computed tomography (CT) and positron emission tomography/CT (PET/CT) with [18F]fluorodeoxyglucose in the diagnosis of multiple solitary lung nodules in 14 consecutive patients with suspicious lung cancer. CT and PET/CT findings were reviewed by a radiologist and nuclear medicine physician, respectively, blinded to the pathological diagnoses of lung cancer, considering nodule size, shape, and location (CT) and maximum st...

  13. Malignancy risk estimation of screen-detected nodules at baseline CT: comparison of the PanCan model, Lung-RADS and NCCN guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Riel, Sarah J. van; Ciompi, Francesco; Jacobs, Colin; Scholten, Ernst T.; Prokop, Mathias; Ginneken, Bram van [Radboud University Nijmegen Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Winkler Wille, Mathilde M.; Naqibullah, Matiullah [University of Copenhagen, Department of Pulmonology Gentofte Hospital, Hellerup (Denmark); Lam, Stephen [British Columbia Cancer Agency, Department of Integrative Oncology, Vancouver, British Columbia (Canada); Schaefer-Prokop, Cornelia [Radboud University Nijmegen Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Meander Medical Center, Department of Radiology, Amersfoort (Netherlands)

    2017-10-15

    To compare the PanCan model, Lung-RADS and the 1.2016 National Comprehensive Cancer Network (NCCN) guidelines for discriminating malignant from benign pulmonary nodules on baseline screening CT scans and the impact diameter measurement methods have on performances. From the Danish Lung Cancer Screening Trial database, 64 CTs with malignant nodules and 549 baseline CTs with benign nodules were included. Performance of the systems was evaluated applying the system's original diameter definitions: D{sup longest-C} (PanCan), D{sup meanAxial} (NCCN), both obtained from axial sections, and D{sup mean3D} (Lung-RADS). Subsequently all diameter definitions were applied uniformly to all systems. Areas under the ROC curves (AUC) were used to evaluate risk discrimination. PanCan performed superiorly to Lung-RADS and NCCN (AUC 0.874 vs. 0.813, p = 0.003; 0.874 vs. 0.836, p = 0.010), using the original diameter specifications. When uniformly applying D{sup longest-C}, D{sup mean3D} and D{sup meanAxial}, PanCan remained superior to Lung-RADS (p < 0.001 - p = 0.001) and NCCN (p < 0.001 - p = 0.016). Diameter definition significantly influenced NCCN's performance with D{sup longest-C} being the worst (D{sup longest-C} vs. D{sup mean3D}, p = 0.005; D{sup longest-C} vs. D{sup meanAxial}, p = 0.016). Without follow-up information, the PanCan model performs significantly superiorly to Lung-RADS and the 1.2016 NCCN guidelines for discriminating benign from malignant nodules. The NCCN guidelines are most sensitive to nodule size definition. (orig.)

  14. VATS intraoperative tattooing to facilitate solitary pulmonary nodule resection

    Directory of Open Access Journals (Sweden)

    Boutros Cherif

    2008-03-01

    Full Text Available Abstract Introduction Video-assisted thoracic surgery (VATS has become routine and widely accepted for the removal of solitary pulmonary nodules of unknown etiology. Thoracosopic techniques continue to evolve with better instruments, robotic applications, and increased patient acceptance and awareness. Several techniques have been described to localize peripheral pulmonary nodules, including pre-operative CT-guided tattooing with methylene blue, CT scan guided spiral/hook wire placement, and transthoracic ultrasound. As pulmonary surgeons well know, the lung and visceral pleura may appear featureless on top of a pulmonary nodule. Case description This paper presents a rapid, direct and inexpensive approach to peripheral lung lesion resection by marking the lung parenchyma on top of the nodule using direct methylene blue injection. Methods In two patients with peripherally located lung nodules (n = 3 scheduled for VATS, we used direct methylene blue injection for intraoperative localization of the pulmonary nodule. Our technique was the following: After finger palpation of the lung, a spinal 25 gauge needle was inserted through an existing port and 0.1 ml of methylene blue was used to tattoo the pleura perpendicular to the localized nodule. The methylene blue tattoo immediately marks the lung surface over the nodule. The surgeon avoids repeated finger palpation, while lining up stapler, graspers and camera, because of the visible tattoo. Our technique eliminates regrasping and repalpating the lung once again to identify a non marked lesion. Results Three lung nodules were resected in two patients. Once each lesion was palpated it was marked, and the area was resected with security of accurate localization. All lung nodules were resected in totality with normal lung parenchymal margins. Our technique added about one minute to the operative time. The two patients were discharged home on the second postoperative day, with no morbidity. Conclusion

  15. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR).

    Science.gov (United States)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Robins, Marthony; Colsher, James; Samei, Ehsan

    2013-11-01

    Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables. Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision. Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A. The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of accuracy on reconstruction algorithms

  16. Role of digital tomosynthesis and dual energy subtraction digital radiography in detecting pulmonary nodules

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvana G. [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Garg, Mandeep Kumar, E-mail: gargmandeep01@gmail.com [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Khandelwal, Niranjan; Gupta, Pankaj [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Gupta, Dheeraj; Aggarwal, Ashutosh Nath [Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India); Bansal, Subash Chand [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh 160012 (India)

    2015-07-15

    Highlights: • Accuracy of digital tomosynthesis for nodule detection is substantially higher. • Improvement in diagnostic accuracy is most pronounced for nodules <10 mm. • There is five times increase in radiation dose compared to DR. - Abstract: Objective: Digital tomosynthesis (DT) and dual-energy subtraction digital radiography (DES-DR) are known to perform better than conventional radiography in the detection of pulmonary nodules. Yet the comparative diagnostic performances of DT, DES-DR and digital radiography (DR) is not known. The present study compares the diagnostic performances of DT, DES-DR and DR in detecting pulmonary nodules. Subjects and methods: The institutional Review Board approved the study and informed written consent was obtained. Fifty-five patients (30 with pulmonary nodules, 25 with non-nodular focal chest pathology) were included in the study. DT and DES-DR were performed within14 days of MDCT. Composite images acquired at high kVp as part of DES-DR were used as DR images. Images were analyzed for presence of nodules and calcification in nodules. Interpretations were assigned confidence levels from 1 to 5 according to Five-Point rating scale. Areas under the receiver operating characteristic curves were compared using Z test. Results: A total of 110 (88 non-calcified, 22 calcified) nodules were identified on MDCT. For detection of nodules, DR showed cumulative sensitivity and specificity of 25.45% and 67.97%, respectively. DT showed a cumulative sensitivity and specificity of 60.9% and 85.07%, respectively. The performance was significantly better than DR (p < 0.003). DES-DR showed sensitivity and specificity of 27.75% and 82.64%, not statistically different from those of DR (p—0.92). In detection of calcification, there was no statistically significant difference between DT, DES-DR and DR. Conclusions: DT performs significantly better than DES-DR and DR at the cost of moderate increase in radiation dose.

  17. Soft computing approach to 3D lung nodule segmentation in CT.

    Science.gov (United States)

    Badura, P; Pietka, E

    2014-10-01

    This paper presents a novel, multilevel approach to the segmentation of various types of pulmonary nodules in computed tomography studies. It is based on two branches of computational intelligence: the fuzzy connectedness (FC) and the evolutionary computation. First, the image and auxiliary data are prepared for the 3D FC analysis during the first stage of an algorithm - the masks generation. Its main goal is to process some specific types of nodules connected to the pleura or vessels. It consists of some basic image processing operations as well as dedicated routines for the specific cases of nodules. The evolutionary computation is performed on the image and seed points in order to shorten the FC analysis and improve its accuracy. After the FC application, the remaining vessels are removed during the postprocessing stage. The method has been validated using the first dataset of studies acquired and described by the Lung Image Database Consortium (LIDC) and by its latest release - the LIDC-IDRI (Image Database Resource Initiative) database. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding

    International Nuclear Information System (INIS)

    Ozekes, Serhat; Osman, Onur; Ucan, N.

    2008-01-01

    The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer aided detection of lung nodules

  19. TH-AB-207A-09: Tailoring TCM Schemes to a Task: Evaluating the Impact of Customized TCM Profiles On Detection of Lung Nodules in Simulated CT Lung Cancer Screening

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, J; McNitt-Gray, M [Departments of Biomedical Physics and Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Noo, F [University of Utah, Salt Lake City, UT (United States); Young, S [Department of Radiology, UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Recent work has shown that current TCM profile designs boost detection of low-contrast lung lesions in the lung apices, but yield reduced detection performance in the mid and lower lung regions relative to fixed tube current cases. This observed imbalance suggests that the TCM scheme might be tailored in new ways to maximize nodule detection throughout the entire lung. In this work, we begin a preliminary investigation into custom TCM profiles in an attempt to achieve uniform lesion detection throughout the extent of the lung. Methods: Low-contrast (25HU), 6mm nodules representing ground glass opacities were simulated at 1mm intervals over the length the lungs in a voxelized model of the XCAT phantom, one nodule per lung, per simulated scan. Voxel values represented attenuation values at 80keV. CT projection data was created by simulating a finite focal spot and using Joseph’s method for forward projection; scanner geometry was that of the Siemens Sensation 64 and the X-ray source was simulated as an 80keV monochromatic beam. Noise realizations were created using Poisson statistics, a realistic bowtie filter and varying tube current. 500 noise realizations were created for the custom TCM designs. All reconstruction was done with FreeCT-wFBP. An SKE/BKE task was used in conjunction with a 2D Hotelling Observer to calculate area-under-the-curve (AUC) as a proxy for “detectability.” AUC was plotted as a function of nodule Z-location to create a “detectability map.” The detectability map for the custom TCM curve was qualitatively assessed relative to previous results for the fixed TC and clinical TCM cases for uniformity. Results: Detection uniformity was improved throughout the mid and lower lungs, however detection remained disproportionately high in the upper lung region. Conclusion: Detection uniformity was improved with a custom TC profile. Future work will incorporate an analytic, task-specific approach to optimize the TC scheme for nodule

  20. TH-AB-207A-09: Tailoring TCM Schemes to a Task: Evaluating the Impact of Customized TCM Profiles On Detection of Lung Nodules in Simulated CT Lung Cancer Screening

    International Nuclear Information System (INIS)

    Hoffman, J; McNitt-Gray, M; Noo, F; Young, S

    2016-01-01

    Purpose: Recent work has shown that current TCM profile designs boost detection of low-contrast lung lesions in the lung apices, but yield reduced detection performance in the mid and lower lung regions relative to fixed tube current cases. This observed imbalance suggests that the TCM scheme might be tailored in new ways to maximize nodule detection throughout the entire lung. In this work, we begin a preliminary investigation into custom TCM profiles in an attempt to achieve uniform lesion detection throughout the extent of the lung. Methods: Low-contrast (25HU), 6mm nodules representing ground glass opacities were simulated at 1mm intervals over the length the lungs in a voxelized model of the XCAT phantom, one nodule per lung, per simulated scan. Voxel values represented attenuation values at 80keV. CT projection data was created by simulating a finite focal spot and using Joseph’s method for forward projection; scanner geometry was that of the Siemens Sensation 64 and the X-ray source was simulated as an 80keV monochromatic beam. Noise realizations were created using Poisson statistics, a realistic bowtie filter and varying tube current. 500 noise realizations were created for the custom TCM designs. All reconstruction was done with FreeCT_wFBP. An SKE/BKE task was used in conjunction with a 2D Hotelling Observer to calculate area-under-the-curve (AUC) as a proxy for “detectability.” AUC was plotted as a function of nodule Z-location to create a “detectability map.” The detectability map for the custom TCM curve was qualitatively assessed relative to previous results for the fixed TC and clinical TCM cases for uniformity. Results: Detection uniformity was improved throughout the mid and lower lungs, however detection remained disproportionately high in the upper lung region. Conclusion: Detection uniformity was improved with a custom TC profile. Future work will incorporate an analytic, task-specific approach to optimize the TC scheme for nodule

  1. Usefulness of computerized method for lung nodule detection on digital chest radiographs using similar subtraction images from different patients

    International Nuclear Information System (INIS)

    Aoki, Takatoshi; Oda, Nobuhiro; Yamashita, Yoshiko; Yamamoto, Keiji; Korogi, Yukunori

    2012-01-01

    Purpose: The purpose of this study is to evaluate the usefulness of a novel computerized method to select automatically the similar chest radiograph for image subtraction in the patients who have no previous chest radiographs and to assist the radiologists’ interpretation by presenting the “similar subtraction image” from different patients. Materials and methods: Institutional review board approval was obtained, and the requirement for informed patient consent was waived. A large database of approximately 15,000 normal chest radiographs was used for searching similar images of different patients. One hundred images of candidates were selected according to two clinical parameters and similarity of the lung field in the target image. We used the correlation value of chest region in the 100 images for searching the most similar image. The similar subtraction images were obtained by subtracting the similar image selected from the target image. Thirty cases with lung nodules and 30 cases without lung nodules were used for an observer performance test. Four attending radiologists and four radiology residents participated in this observer performance test. Results: The AUC for all radiologists increased significantly from 0.925 to 0.974 with the CAD (P = .004). When the computer output images were available, the average AUC for the residents was more improved (0.960 vs. 0.890) than for the attending radiologists (0.987 vs. 0.960). Conclusion: The novel computerized method for lung nodule detection using similar subtraction images from different patients would be useful to detect lung nodules on digital chest radiographs, especially for less experienced readers.

  2. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening

    Science.gov (United States)

    Tu, Shu-Ju; Wang, Chih-Wei; Pan, Kuang-Tse; Wu, Yi-Cheng; Wu, Chen-Te

    2018-03-01

    Lung cancer screening aims to detect small pulmonary nodules and decrease the mortality rate of those affected. However, studies from large-scale clinical trials of lung cancer screening have shown that the false-positive rate is high and positive predictive value is low. To address these problems, a technical approach is greatly needed for accurate malignancy differentiation among these early-detected nodules. We studied the clinical feasibility of an additional protocol of localized thin-section CT for further assessment on recalled patients from lung cancer screening tests. Our approach of localized thin-section CT was integrated with radiomics features extraction and machine learning classification which was supervised by pathological diagnosis. Localized thin-section CT images of 122 nodules were retrospectively reviewed and 374 radiomics features were extracted. In this study, 48 nodules were benign and 74 malignant. There were nine patients with multiple nodules and four with synchronous multiple malignant nodules. Different machine learning classifiers with a stratified ten-fold cross-validation were used and repeated 100 times to evaluate classification accuracy. Of the image features extracted from the thin-section CT images, 238 (64%) were useful in differentiating between benign and malignant nodules. These useful features include CT density (p  =  0.002 518), sigma (p  =  0.002 781), uniformity (p  =  0.032 41), and entropy (p  =  0.006 685). The highest classification accuracy was 79% by the logistic classifier. The performance metrics of this logistic classification model was 0.80 for the positive predictive value, 0.36 for the false-positive rate, and 0.80 for the area under the receiver operating characteristic curve. Our approach of direct risk classification supervised by the pathological diagnosis with localized thin-section CT and radiomics feature extraction may support clinical physicians in determining

  3. Correlation of emphysema score with perceived malignancy of pulmonary nodules: a multi-observer study using the LIDC-IDRI CT lung database

    Science.gov (United States)

    Wiemker, Rafael; Bülow, Thomas; Blaffert, Thomas; Dharaiya, Ekta

    2009-02-01

    Presence of emphysema is recognized to be one of the single most significant risk factors in risk models for the prediction of lung cancer. Therefore, an automatically computed emphysema score would be a prime candidate as an additional numerical feature for computer aided diagnosis (CADx) for indeterminate pulmonary nodules. We have applied several histogram-based emphysema scores to 460 thoracic CT scans from the IDRI CT lung image database, and analyzed the emphysema scores in conjunction with 3000 nodule malignancy ratings of 1232 pulmonary nodules made by expert observers. Despite the emphysema being a known risk factor, we have not found any impact on the readers' malignancy rating of nodules found in a patient with higher emphysema score. We have also not found any correlation between the number of expert-detected nodules in a patient and his emphysema score, or the relative craniocaudal location of the nodules and their malignancy rating. The inter-observer agreement of the expert ratings was excellent on nodule diameter (as derived from manual delineations), good for calcification, and only modest for malignancy and shape descriptions such as spiculation, lobulation, margin, etc.

  4. Detection of pulmonary nodules at paediatric CT: maximum intensity projections and axial source images are complementary

    International Nuclear Information System (INIS)

    Kilburn-Toppin, Fleur; Arthurs, Owen J.; Tasker, Angela D.; Set, Patricia A.K.

    2013-01-01

    Maximum intensity projection (MIP) images might be useful in helping to differentiate small pulmonary nodules from adjacent vessels on thoracic multidetector CT (MDCT). The aim was to evaluate the benefits of axial MIP images over axial source images for the paediatric chest in an interobserver variability study. We included 46 children with extra-pulmonary solid organ malignancy who had undergone thoracic MDCT. Three radiologists independently read 2-mm axial and 10-mm MIP image datasets, recording the number of nodules, size and location, overall time taken and confidence. There were 83 nodules (249 total reads among three readers) in 46 children (mean age 10.4 ± 4.98 years, range 0.3-15.9 years; 24 boys). Consensus read was used as the reference standard. Overall, three readers recorded significantly more nodules on MIP images (228 vs. 174; P < 0.05), improving sensitivity from 67% to 77.5% (P < 0.05) but with lower positive predictive value (96% vs. 85%, P < 0.005). MIP images took significantly less time to read (71.6 ± 43.7 s vs. 92.9 ± 48.7 s; P < 0.005) but did not improve confidence levels. Using 10-mm axial MIP images for nodule detection in the paediatric chest enhances diagnostic performance, improving sensitivity and reducing reading time when compared with conventional axial thin-slice images. Axial MIP and axial source images are complementary in thoracic nodule detection. (orig.)

  5. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    Directory of Open Access Journals (Sweden)

    Hua KL

    2015-08-01

    Full Text Available Kai-Lung Hua,1 Che-Hao Hsu,1 Shintami Chusnul Hidayati,1 Wen-Huang Cheng,2 Yu-Jen Chen3 1Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 2Research Center for Information Technology Innovation, Academia Sinica, 3Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan Abstract: Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. Keywords: nodule classification, deep learning, deep belief network, convolutional neural network

  6. Diagnostic feasibility and safety of CT-guided core biopsy for lung nodules less than or equal to 8 mm. A single-institution experience

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ying-Yueh [Taipei Veterans General Hospital, Department of Radiology, Taipei (China); Chen, Chun-Ku [Taipei Veterans General Hospital, Department of Radiology, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China); National Yang-Ming University, Institute of Clinical Medicine, Taipei (China); Yeh, Yi-Chen [National Yang-Ming University, School of Medicine, Taipei (China); Taipei Veterans General Hospital, Department of Pathology and Laboratory Medicine, Taipei (China); Wu, Mei-Han [Taipei Veterans General Hospital, Department of Radiology, Taipei (China); National Yang-Ming University, School of Medicine, Taipei (China)

    2018-02-15

    This retrospective study evaluated the diagnostic yield and safety of CT-guided core biopsy of pulmonary nodules ≤8 mm. We determined the diagnostic yield and safety profile of CT-guided lung biopsies for 125 pulmonary nodules ≤8 mm. Pathological diagnoses were made by a combination of histopathological examination and imprint cytology. Results were compared with biopsy results for 134 pulmonary nodules >8 and ≤10 mm. Final diagnoses were established in 94 nodules ≤8 mm. The sensitivity, specificity and diagnostic accuracy of CT-guided core biopsy for nodules ≤8 mm were 87.1 % (61/70 nodules), 100 % (24/24) and 90.4 % (85/94), respectively. Diagnostic failure rates were comparable for nodules ≤8 mm and nodules >8 mm and ≤10 mm (9/94, 9.6 % and 7/111, 6.3 %, respectively, P=0.385). The rate of tube thoracostomy for nodules ≤8 mm was comparable to that for nodules >8 and ≤10 mm (1.6 % vs. 0.7 %, P=0.611). Nodules ≤6 mm had a higher non-diagnostic result rate of 15.4 % (6/39) than did nodules >8 and ≤10 mm (3.7 %, 5/134, P=0.017). CT-guided pulmonary biopsy is feasible for lung nodules ≤8 mm, especially those >6 mm, and has an acceptable diagnostic yield and safety profile. (orig.)

  7. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baiyu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Barnhart, Huiman [Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina 27705 (United States); Richard, Samuel [Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Robins, Marthony [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Colsher, James [Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Samei, Ehsan [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke University, Durham, North Carolina 27705 (United States); Department of Physics, Department of Biomedical Engineering, and Department of Electronic and Computer Engineering, Duke University, Durham, North Carolina 27705 (United States)

    2013-11-15

    Purpose: Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables.Methods: Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision.Results: Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A.Conclusions: The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of

  8. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR)

    International Nuclear Information System (INIS)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Robins, Marthony; Colsher, James; Samei, Ehsan

    2013-01-01

    Purpose: Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables.Methods: Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision.Results: Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A.Conclusions: The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of

  9. Lung nodule detection on chest CT: evaluation of a computer-aided detection (CAD) system

    International Nuclear Information System (INIS)

    Lee, In Jae; Gamsu, Gordon; Czum, Julianna; Johnson, Rebecca; Chakrapani, Sanjay; Wu, Ning

    2005-01-01

    To evaluate the capacity of a computer-aided detection (CAD) system to detect lung nodules in clinical chest CT. A total of 210 consecutive clinical chest CT scans and their reports were reviewed by two chest radiologists and 70 were selected (33 without nodules and 37 with 1-6 nodules, 4-15.4 mm in diameter). The CAD system (ImageChecker CT LN-1000) developed by R2 Technology, Inc. (Sunnyvale, CA) was used. Its algorithm was designed to detect nodules with a diameter of 4-20 mm. The two chest radiologists working with the CAD system detected a total of 78 nodules. These 78 nodules form the database for this study. Four independent observers interpreted the studies with and without the CAD system. The detection rates of the four independent observers without CAD were 81% (63/78), 85% (66/78), 83% (65/78), and 83% (65/78), respectively. With CAD their rates were 87% (68/78), 85% (66/78), 86% (67/78), and 85% (66/78), respectively. The differences between these two sets of detection rates did not reach statistical significance. In addition, CAD detected eight nodules that were not mentioned in the original clinical radiology reports. The CAD system produced 1.56 false-positive nodules per CT study. The four test observers had 0, 0.1, 0.17, and 0.26 false-positive results per study without CAD and 0.07, 0.2, 0.23, and 0.39 with CAD, respectively. The CAD system can assist radiologists in detecting pulmonary nodules in chest CT, but with a potential increase in their false positive rates. Technological improvements to the system could increase the sensitivity and specificity for the detection of pulmonary nodules and reduce these false-positive results

  10. An Innocent Appearing Subcutaneous Nodule Diagnoses a Small Cell Lung Cancer in a Never-Smoker Female

    Directory of Open Access Journals (Sweden)

    Nupur Sinha

    2014-01-01

    Full Text Available Lung cancer among never-smokers is recognized as the 7th most common cause of cancer death globally. Adenocarcinoma is the most commonly reported histology. Small cell lung cancer (SCLC has the strongest association with smoking and is rarely reported in never-smokers. Although lung cancer in never-smokers is more common in women, the overall incidence of SCLC in female never-smokers still remains low. Soft tissue metastases from any cancer are rare with an overall prevalence of 1.8%. Soft tissue metastases from lung primary are uncommon, mostly from adenocarcinoma, and portend a poor prognosis. Cutaneous metastases from SCLC are exceptionally rare with reported incidence of 0.3% to 0.8%. We believe ours is the first reported case of SCLC presenting as subcutaneous nodule, in a never-smoker, otherwise asymptomatic female. The diagnosis of SCLC was made incidentally by the excisional biopsy of the subcutaneous nodule. Subsequent CT chest and PET scan revealed a hypermetabolic right lower lobe spiculated lung mass with adrenal and liver involvement. Platinum and etoposide chemotherapy with prophylactic cranial irradiation was initiated for advanced SCLC, and she required further irinotecan and taxol for subsequent pancreatic and adrenal metastases. With continued deterioration, she died approximately 36 months from diagnosis, while under hospice care.

  11. The calcified lung nodule: What does it mean?

    Directory of Open Access Journals (Sweden)

    Khan Ali

    2010-01-01

    Full Text Available The aim of this review is to present a pictorial essay emphasizing the various patterns of calcification in pulmonary nodules (PN to aid diagnosis and to discuss the differential diagnosis and the pathogenesis where it is known. The imaging evaluation of PN is based on clinical history, size, distribution and the gross appearance of the nodule as well as feasibility of obtaining a tissue diagnosis. Imaging is instrumental in the management of PN and one should strive not only to identify small malignant tumors with high survival rates but to spare patients with benign PN from undergoing unnecessary surgery. The review emphasizes how to achieve these goals. One of the most reliable imaging features of a benign lesion is a benign pattern of calcification and periodic follow-up with computed tomography showing no growth for 2 years. Calcification in PN is generally considered as a pointer toward a possible benign disease. However, as we show here, calcification in PN as a criterion to determine benign nature is fallacious and can be misleading. The differential considerations of a calcified lesion include calcified granuloma, hamartoma, carcinoid, osteosarcoma, chondrosarcoma and lung metastases or a primary bronchogenic carcinoma among others. We describe and illustrate different patterns of calcification as seen in PN on imaging.

  12. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography

    International Nuclear Information System (INIS)

    Suzuki, Kenji; Armato, Samuel G. III; Li, Feng; Sone, Shusuke; Doi, Kunio

    2003-01-01

    In this study, we investigated a pattern-recognition technique based on an artificial neural network (ANN), which is called a massive training artificial neural network (MTANN), for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography (CT) images. The MTANN consists of a modified multilayer ANN, which is capable of operating on image data directly. The MTANN is trained by use of a large number of subregions extracted from input images together with the teacher images containing the distribution for the 'likelihood of being a nodule'. The output image is obtained by scanning an input image with the MTANN. The distinction between a nodule and a non-nodule is made by use of a score which is defined from the output image of the trained MTANN. In order to eliminate various types of non-nodules, we extended the capability of a single MTANN, and developed a multiple MTANN (Multi-MTANN). The Multi-MTANN consists of plural MTANNs that are arranged in parallel. Each MTANN is trained by using the same nodules, but with a different type of non-nodule. Each MTANN acts as an expert for a specific type of non-nodule, e.g., five different MTANNs were trained to distinguish nodules from various-sized vessels; four other MTANNs were applied to eliminate some other opacities. The outputs of the MTANNs were combined by using the logical AND operation such that each of the trained MTANNs eliminated none of the nodules, but removed the specific type of non-nodule with which the MTANN was trained, and thus removed various types of non-nodules. The Multi-MTANN consisting of nine MTANNs was trained with 10 typical nodules and 10 non-nodules representing each of nine different non-nodule types (90 training non-nodules overall) in a training set. The trained Multi-MTANN was applied to the reduction of false positives reported by our current computerized scheme for lung nodule detection based on a database of 63 low-dose CT scans (1765

  13. Lung cancer risk and cancer-specific mortality in subjects undergoing routine imaging test when stratified with and without identified lung nodule on imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Saez, Noemi [Miguel Hernandez University, Public Health, History of Science and Ginecology Department, Alicante (Spain); Hernandez-Aguado, Ildefonso; Pastor Valero, Maria; Parker, Lucy Anne; Lumbreras, Blanca [Miguel Hernandez University, Public Health, History of Science and Ginecology Department, Alicante (Spain); CIBER en Epidemiologia y Salud Publica, Madrid (Spain); Vilar, Jose; Domingo, Maria Luisa [Peset Hospital, Radiodiagnostic Department, Valencia (Spain); Gonzalez-Alvarez, Isabel; Lorente, Maria Fermina [San Juan Hospital, Radiodiagnostic Department, San Juan de Alicante (Spain)

    2015-12-15

    To assess the risk of lung cancer and specific mortality rate in patients with and without solitary pulmonary nodules (SPN) on chest radiograph and CT. This prospective study included 16,078 patients ≥35 years old (893 of them had an SPN detected with either chest radiograph or CT) and 15,185 without SPN. Patients were followed up for 18 months or until being diagnosed with lung cancer. Risk and mortality lung cancer were calculated in both groups with Poisson regression. In patients with SPN, incidence of lung cancer was 8.3 % (95 % CI 6.0-11.2) on radiograph and 12.4 % (95 % CI 9.3-15.9) on CT. A chronic obstructive pulmonary disease in patients with radiographs (odds ratio 2.62; 95 % CI 1.03, 6.67) and smoking habit (odds ratio 20.63; 95 % CI 3.84, 110.77) in patients with CT were associated with a higher probability of lung cancer. Large nodule size and spiculated edge were associated with lung cancer on both CT and radiograph. Lung cancer-specific mortality was lower in patients with SPN than in those without SPN (1.73/1000 person-years, 95 % CI 1.08-2.88 vs. 2.15/1000 person-years, 95 % CI 1.25-3.96). The risk of lung cancer for patients with SPN is higher in clinical populations than in screening studies. Moreover, patients with SPN showed lower mortality than those without SPN. (orig.)

  14. Lung cancer risk and cancer-specific mortality in subjects undergoing routine imaging test when stratified with and without identified lung nodule on imaging study

    International Nuclear Information System (INIS)

    Gomez-Saez, Noemi; Hernandez-Aguado, Ildefonso; Pastor Valero, Maria; Parker, Lucy Anne; Lumbreras, Blanca; Vilar, Jose; Domingo, Maria Luisa; Gonzalez-Alvarez, Isabel; Lorente, Maria Fermina

    2015-01-01

    To assess the risk of lung cancer and specific mortality rate in patients with and without solitary pulmonary nodules (SPN) on chest radiograph and CT. This prospective study included 16,078 patients ≥35 years old (893 of them had an SPN detected with either chest radiograph or CT) and 15,185 without SPN. Patients were followed up for 18 months or until being diagnosed with lung cancer. Risk and mortality lung cancer were calculated in both groups with Poisson regression. In patients with SPN, incidence of lung cancer was 8.3 % (95 % CI 6.0-11.2) on radiograph and 12.4 % (95 % CI 9.3-15.9) on CT. A chronic obstructive pulmonary disease in patients with radiographs (odds ratio 2.62; 95 % CI 1.03, 6.67) and smoking habit (odds ratio 20.63; 95 % CI 3.84, 110.77) in patients with CT were associated with a higher probability of lung cancer. Large nodule size and spiculated edge were associated with lung cancer on both CT and radiograph. Lung cancer-specific mortality was lower in patients with SPN than in those without SPN (1.73/1000 person-years, 95 % CI 1.08-2.88 vs. 2.15/1000 person-years, 95 % CI 1.25-3.96). The risk of lung cancer for patients with SPN is higher in clinical populations than in screening studies. Moreover, patients with SPN showed lower mortality than those without SPN. (orig.)

  15. Subsolid pulmonary nodules: imaging evaluation and strategic management.

    Science.gov (United States)

    Godoy, Myrna C B; Sabloff, Bradley; Naidich, David P

    2012-07-01

    Given the higher rate of malignancy of subsolid pulmonary nodules and the considerably lower growth rate of ground-glass nodules (GGNs), dedicated standardized guidelines for management of these nodules have been proposed, including long-term low-dose computed tomography (CT) follow-up (≥3 years). Physicians must be familiar with the strategic management of subsolid pulmonary nodules, and should be able to identify imaging features that suggest invasive adenocarcinoma requiring a more aggressive management. Low-dose CT screening studies for early detection of lung cancer have increased our knowledge of pulmonary nodules, and in particular our understanding of the strong although imperfect correlation of the subsolid pulmonary nodules, including pure GGNs and part-solid nodules, with the spectrum of preinvasive to invasive lung adenocarcinoma. Serial CT imaging has shown stepwise progression in a subset of these nodules, characterized by increase in size and density of pure GGNs and development of a solid component, the latter usually indicating invasive adenocarcinoma. There is close correlation between the CT features of subsolid nodules (SSNs) and the spectrum of lung adenocarcinoma. Standardized guidelines are suggested for management of SSNs.

  16. Digital tomosynthesis for evaluating metastatic lung nodules: nodule visibility, learning curves, and reading times.

    Science.gov (United States)

    Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyungjin; Song, Yong Sub; Hwang, Eui Jin

    2015-01-01

    To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, ≤ 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.

  17. Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial.

    Science.gov (United States)

    Peikert, Tobias; Duan, Fenghai; Rajagopalan, Srinivasan; Karwoski, Ronald A; Clay, Ryan; Robb, Richard A; Qin, Ziling; Sicks, JoRean; Bartholmai, Brian J; Maldonado, Fabien

    2018-01-01

    Optimization of the clinical management of screen-detected lung nodules is needed to avoid unnecessary diagnostic interventions. Herein we demonstrate the potential value of a novel radiomics-based approach for the classification of screen-detected indeterminate nodules. Independent quantitative variables assessing various radiologic nodule features such as sphericity, flatness, elongation, spiculation, lobulation and curvature were developed from the NLST dataset using 726 indeterminate nodules (all ≥ 7 mm, benign, n = 318 and malignant, n = 408). Multivariate analysis was performed using least absolute shrinkage and selection operator (LASSO) method for variable selection and regularization in order to enhance the prediction accuracy and interpretability of the multivariate model. The bootstrapping method was then applied for the internal validation and the optimism-corrected AUC was reported for the final model. Eight of the originally considered 57 quantitative radiologic features were selected by LASSO multivariate modeling. These 8 features include variables capturing Location: vertical location (Offset carina centroid z), Size: volume estimate (Minimum enclosing brick), Shape: flatness, Density: texture analysis (Score Indicative of Lesion/Lung Aggression/Abnormality (SILA) texture), and surface characteristics: surface complexity (Maximum shape index and Average shape index), and estimates of surface curvature (Average positive mean curvature and Minimum mean curvature), all with Pscreen-detected nodule characterization appears extremely promising however independent external validation is needed.

  18. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yingru; Vliegenthart, Rozemarijn; Wang, Ying; Ooijen, Peter M.A. van; Oudkerk, Matthijs [University of Groningen/University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, Department of Radiology, P.O. Box 30.001, Groningen (Netherlands); Bock, Geertruida H. de [University of Groningen/University Medical Center Groningen, Department of Epidemiology, P.O. Box 30.001, Groningen (Netherlands); Klaveren, Rob J. van [Lievensberg Hospital, Department of Pulmonology, P.O. Box 135, Bergen op Zoom (Netherlands); Bogoni, Luca [CAD Group, Siemens Medical Solutions USA, Inc., Malvern, PA (United States); Jong, Pim A. de; Mali, Willem P. [University of Utrecht, Department of Radiology, University Medical Center Utrecht, P.O. Box 85500, Utrecht (Netherlands)

    2012-10-15

    To evaluate performance of computer-aided detection (CAD) beyond double reading for pulmonary nodules on low-dose computed tomography (CT) by nodule volume. A total of 400 low-dose chest CT examinations were randomly selected from the NELSON lung cancer screening trial. CTs were evaluated by two independent readers and processed by CAD. A total of 1,667 findings marked by readers and/or CAD were evaluated by a consensus panel of expert chest radiologists. Performance was evaluated by calculating sensitivity of pulmonary nodule detection and number of false positives, by nodule characteristics and volume. According to the screening protocol, 90.9 % of the findings could be excluded from further evaluation, 49.2 % being small nodules (less than 50 mm{sup 3}). Excluding small nodules reduced false-positive detections by CAD from 3.7 to 1.9 per examination. Of 151 findings that needed further evaluation, 33 (21.9 %) were detected by CAD only, one of them being diagnosed as lung cancer the following year. The sensitivity of nodule detection was 78.1 % for double reading and 96.7 % for CAD. A total of 69.7 % of nodules undetected by readers were attached nodules of which 78.3 % were vessel-attached. CAD is valuable in lung cancer screening to improve sensitivity of pulmonary nodule detection beyond double reading, at a low false-positive rate when excluding small nodules. circle Computer-aided detection (CAD) has known advantages for computed tomography (CT). (orig.)

  19. Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume

    International Nuclear Information System (INIS)

    Zhao, Yingru; Vliegenthart, Rozemarijn; Wang, Ying; Ooijen, Peter M.A. van; Oudkerk, Matthijs; Bock, Geertruida H. de; Klaveren, Rob J. van; Bogoni, Luca; Jong, Pim A. de; Mali, Willem P.

    2012-01-01

    To evaluate performance of computer-aided detection (CAD) beyond double reading for pulmonary nodules on low-dose computed tomography (CT) by nodule volume. A total of 400 low-dose chest CT examinations were randomly selected from the NELSON lung cancer screening trial. CTs were evaluated by two independent readers and processed by CAD. A total of 1,667 findings marked by readers and/or CAD were evaluated by a consensus panel of expert chest radiologists. Performance was evaluated by calculating sensitivity of pulmonary nodule detection and number of false positives, by nodule characteristics and volume. According to the screening protocol, 90.9 % of the findings could be excluded from further evaluation, 49.2 % being small nodules (less than 50 mm 3 ). Excluding small nodules reduced false-positive detections by CAD from 3.7 to 1.9 per examination. Of 151 findings that needed further evaluation, 33 (21.9 %) were detected by CAD only, one of them being diagnosed as lung cancer the following year. The sensitivity of nodule detection was 78.1 % for double reading and 96.7 % for CAD. A total of 69.7 % of nodules undetected by readers were attached nodules of which 78.3 % were vessel-attached. CAD is valuable in lung cancer screening to improve sensitivity of pulmonary nodule detection beyond double reading, at a low false-positive rate when excluding small nodules. circle Computer-aided detection (CAD) has known advantages for computed tomography (CT). (orig.)

  20. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: Localized search method based on anatomical classification

    International Nuclear Information System (INIS)

    Shiraishi, Junji; Li Qiang; Suzuki, Kenji; Engelmann, Roger; Doi, Kunio

    2006-01-01

    We developed an advanced computer-aided diagnostic (CAD) scheme for the detection of various types of lung nodules on chest radiographs intended for implementation in clinical situations. We used 924 digitized chest images (992 noncalcified nodules) which had a 500x500 matrix size with a 1024 gray scale. The images were divided randomly into two sets which were used for training and testing of the computerized scheme. In this scheme, the lung field was first segmented by use of a ribcage detection technique, and then a large search area (448x448 matrix size) within the chest image was automatically determined by taking into account the locations of a midline and a top edge of the segmented ribcage. In order to detect lung nodule candidates based on a localized search method, we divided the entire search area into 7x7 regions of interest (ROIs: 64x64 matrix size). In the next step, each ROI was classified anatomically into apical, peripheral, hilar, and diaphragm/heart regions by use of its image features. Identification of lung nodule candidates and extraction of image features were applied for each localized region (128x128 matrix size), each having its central part (64x64 matrix size) located at a position corresponding to a ROI that was classified anatomically in the previous step. Initial candidates were identified by use of the nodule-enhanced image obtained with the average radial-gradient filtering technique, in which the filter size was varied adaptively depending on the location and the anatomical classification of the ROI. We extracted 57 image features from the original and nodule-enhanced images based on geometric, gray-level, background structure, and edge-gradient features. In addition, 14 image features were obtained from the corresponding locations in the contralateral subtraction image. A total of 71 image features were employed for three sequential artificial neural networks (ANNs) in order to reduce the number of false-positive candidates. All

  1. Digital tomosynthesis for evaluating metastatic lung nodules: Nodule visibility, learning curves, and reading times

    International Nuclear Information System (INIS)

    Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyung Jin; Song, Yong Sub; Hwang, Eui Jin

    2015-01-01

    To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, < or = 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p < 0.001). Area under the curve (AUC) values at the initial session were > 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.

  2. Digital tomosynthesis for evaluating metastatic lung nodules: Nodule visibility, learning curves, and reading times

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hee; Goo, Jin Mo; Lee, Sang Min; Park, Chang Min; Bahn, Young Eun; Kim, Hyung Jin; Song, Yong Sub; Hwang, Eui Jin [Dept. of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2015-04-15

    To evaluate nodule visibility, learning curves, and reading times for digital tomosynthesis (DT). We included 80 patients who underwent computed tomography (CT) and DT before pulmonary metastasectomy. One experienced chest radiologist annotated all visible nodules on thin-section CT scans using computer-aided detection software. Two radiologists used CT as the reference standard and retrospectively graded the visibility of nodules on DT. Nodule detection performance was evaluated in four sessions of 20 cases each by six readers. After each session, readers were unblinded to the DT images by revealing the true-positive markings and were instructed to self-analyze their own misreads. Receiver-operating-characteristic curves were determined. Among 414 nodules on CT, 53.3% (221/414) were visible on DT. The main reason for not seeing a nodule on DT was small size (93.3%, < or = 5 mm). DT revealed a substantial number of malignant nodules (84.1%, 143/170). The proportion of malignant nodules among visible nodules on DT was significantly higher (64.7%, 143/221) than that on CT (41.1%, 170/414) (p < 0.001). Area under the curve (AUC) values at the initial session were > 0.8, and the average detection rate for malignant nodules was 85% (210/246). The inter-session analysis of the AUC showed no significant differences among the readers, and the detection rate for malignant nodules did not differ across sessions. A slight improvement in reading times was observed. Most malignant nodules > 5 mm were visible on DT. As nodule detection performance was high from the initial session, DT may be readily applicable for radiology residents and board-certified radiologists.

  3. Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction

    Directory of Open Access Journals (Sweden)

    Jinke Wang

    2016-01-01

    Full Text Available This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD 11.15±69.63 cm3, volume overlap error (VOE 3.5057±1.3719%, average surface distance (ASD 0.7917±0.2741 mm, root mean square distance (RMSD 1.6957±0.6568 mm, maximum symmetric absolute surface distance (MSD 21.3430±8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.

  4. Data-driven decision support for radiologists: re-using the National Lung Screening Trial dataset for pulmonary nodule management.

    Science.gov (United States)

    Morrison, James J; Hostetter, Jason; Wang, Kenneth; Siegel, Eliot L

    2015-02-01

    Real-time mining of large research trial datasets enables development of case-based clinical decision support tools. Several applicable research datasets exist including the National Lung Screening Trial (NLST), a dataset unparalleled in size and scope for studying population-based lung cancer screening. Using these data, a clinical decision support tool was developed which matches patient demographics and lung nodule characteristics to a cohort of similar patients. The NLST dataset was converted into Structured Query Language (SQL) tables hosted on a web server, and a web-based JavaScript application was developed which performs real-time queries. JavaScript is used for both the server-side and client-side language, allowing for rapid development of a robust client interface and server-side data layer. Real-time data mining of user-specified patient cohorts achieved a rapid return of cohort cancer statistics and lung nodule distribution information. This system demonstrates the potential of individualized real-time data mining using large high-quality clinical trial datasets to drive evidence-based clinical decision-making.

  5. Computer-assisted solid lung nodule 3D volumetry on CT : influence of scan mode and iterative reconstruction: a CT phantom study

    NARCIS (Netherlands)

    Coenen, Adriaan; Honda, Osamu; van der Jagt, Eric J.; Tomiyama, Noriyuki

    2013-01-01

    To evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution

  6. Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants

    International Nuclear Information System (INIS)

    Regier, M.; Kaul, M.G.; Ittrich, H.; Bansmann, P.M.; Kemper, J.; Nolte-Ernsting, C.; Adam, G.; Kandel, S.; Hoffmann, B.; Heller, M.; Biederer, J.

    2007-01-01

    To evaluate two MR imaging sequences for the detection of artificial pulmonary nodules inside porcine lung explants. 67 agarose nodules ranging 3-20 mm were injected into ten porcine lungs within a dedicated chest phantom. The signal on T1-weighted images and radiopacity were adjusted by adding 0.125 mmol/l Gd-DTPA and 1.5 g/l of iodine. A T1-weighted three-dimensional gradient-echo (T1-3D-GRE; TR/TE:3.3/1.1 ms, slice:8 mm, flip-angle:10 ) and a T2-weighted half-Fourier fast-spin echo sequence (T2-HF-FSE; TR/TE:2000/66 ms, slice:7 mm, flip-angle:90 ) were applied in axial orientation using a 3-T system (Intera, Philips Medical Systems, Best, The Netherlands), followed by CT (16 x 0.5 mm) as reference. Nodule sizes and locations were assessed by three blinded observers. In nodules of >10 mm, sensitivity was 100% using 3D-GRE-MRI and 94% using the HF-FSE sequence. For nodules 6-10 mm, the sensitivity of MRI was lower than with CT (3D-GRE:92%; T2-HF-FSE:83%). In lesions smaller than 5 mm, the sensitivity declined to 80% (3D-GRE) and 53% (HF-FSE). Small lesion diameters were overestimated with both sequences, particularly with HF-FSE. This study confirms the feasibility of 3 T-MRI for lung nodule detection. In lesions greater than 5 mm, the sensitivity of the 3D-GRE sequence approximated CT (>90%), while sensitivity and PPV with the HF-FSE sequence were slightly inferior. (orig.)

  7. Techniques for virtual lung nodule insertion: volumetric and morphometric comparison of projection-based and image-based methods for quantitative CT

    Science.gov (United States)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Sedlmair, Martin; Choudhury, Kingshuk Roy; Pezeshk, Aria; Sahiner, Berkman; Samei, Ehsan

    2017-09-01

    Virtual nodule insertion paves the way towards the development of standardized databases of hybrid CT images with known lesions. The purpose of this study was to assess three methods (an established and two newly developed techniques) for inserting virtual lung nodules into CT images. Assessment was done by comparing virtual nodule volume and shape to the CT-derived volume and shape of synthetic nodules. 24 synthetic nodules (three sizes, four morphologies, two repeats) were physically inserted into the lung cavity of an anthropomorphic chest phantom (KYOTO KAGAKU). The phantom was imaged with and without nodules on a commercial CT scanner (SOMATOM Definition Flash, Siemens) using a standard thoracic CT protocol at two dose levels (1.4 and 22 mGy CTDIvol). Raw projection data were saved and reconstructed with filtered back-projection and sinogram affirmed iterative reconstruction (SAFIRE, strength 5) at 0.6 mm slice thickness. Corresponding 3D idealized, virtual nodule models were co-registered with the CT images to determine each nodule’s location and orientation. Virtual nodules were voxelized, partial volume corrected, and inserted into nodule-free CT data (accounting for system imaging physics) using two methods: projection-based Technique A, and image-based Technique B. Also a third Technique C based on cropping a region of interest from the acquired image of the real nodule and blending it into the nodule-free image was tested. Nodule volumes were measured using a commercial segmentation tool (iNtuition, TeraRecon, Inc.) and deformation was assessed using the Hausdorff distance. Nodule volumes and deformations were compared between the idealized, CT-derived and virtual nodules using a linear mixed effects regression model which utilized the mean, standard deviation, and coefficient of variation (Mea{{n}RHD} , ST{{D}RHD} and C{{V}RHD}{) }~ of the regional Hausdorff distance. Overall, there was a close concordance between the volumes of the CT-derived and

  8. Data-Driven Decision Support for Radiologists: Re-using the National Lung Screening Trial Dataset for Pulmonary Nodule Management

    OpenAIRE

    Morrison, James J.; Hostetter, Jason; Wang, Kenneth; Siegel, Eliot L.

    2014-01-01

    Real-time mining of large research trial datasets enables development of case-based clinical decision support tools. Several applicable research datasets exist including the National Lung Screening Trial (NLST), a dataset unparalleled in size and scope for studying population-based lung cancer screening. Using these data, a clinical decision support tool was developed which matches patient demographics and lung nodule characteristics to a cohort of similar patients. The NLST dataset was conve...

  9. Advances in intelligent diagnosis methods for pulmonary ground-glass opacity nodules.

    Science.gov (United States)

    Yang, Jing; Wang, Hailin; Geng, Chen; Dai, Yakang; Ji, Jiansong

    2018-02-07

    Pulmonary nodule is one of the important lesions of lung cancer, mainly divided into two categories of solid nodules and ground glass nodules. The improvement of diagnosis of lung cancer has significant clinical significance, which could be realized by machine learning techniques. At present, there have been a lot of researches focusing on solid nodules. But the research on ground glass nodules started late, and lacked research results. This paper summarizes the research progress of the method of intelligent diagnosis for pulmonary nodules since 2014. It is described in details from four aspects: nodular signs, data analysis methods, prediction models and system evaluation. This paper aims to provide the research material for researchers of the clinical diagnosis and intelligent analysis of lung cancer, and further improve the precision of pulmonary ground glass nodule diagnosis.

  10. Parametric features of image textures in 18F-FDG PET/CT evaluation of lung nodules

    International Nuclear Information System (INIS)

    Wang Changmei; Guan Yihui; Zhang Wenqiang; Zuo Chuantao; Hua Fengchun

    2013-01-01

    Objective: To evaluate the parametric features of image textures on 18 F-FDG PET/CT for the differentiation between malignant and benign pulmonary nodules and compare the diagnostic performance of these parameters with SUV max . Methods: 18 F-FDG PET/CT images of 170 patients (102 males, 68 females, age range: 29-81 (mean 59) years) with pulmonary nodules were retrospectively evaluated. Eighty-nine pulmonary nodules (230 slices) were malignant and 81 (193 slices) were benign. The pulmonary nodules were contoured on CT images and mapped to the co-registered PET images. Thirteen parameters of textural features were extracted and SUV max was measured. Logistic regression analysis was used to identify the significant texture parameters and create a regression model. The efficacy of the textural features and SUV max to distinguish between malignant and benign pulmonary nodules was evaluated by ROC curve analysis. The textural features of squamous cell carcinoma and adenocarcinoma were compared via the Mann-Whitney u test. The sensitivity and specificity of the textural features and SUV max for the differential diagnosis were compared with χ 2 test. Results: Logistic regression model identified 4 textural features (skewness (β=1.7058), kurtosis (β=-1.0989), angular second moment (ASM, 3=-4.4140) and strength (β=0.5626); all P<0.05) to have significant correlation with the malignancy of lung nodules. The AUC of ROC curve was 0.775 (95% CI 0.732-0.819; P<0.001) with the sensitivity of 89.6% (206/230) and specificity of 50.8% (98/193). ASM and strength had statistically significant differences between squamous cell carcinoma and adenocarcinoma [ASM: 0.0303 (95% CI 0.0392-0.0724) vs 0.0594 (95% CI 0.0721-0.0947); strength: 2.4714 (95% CI 2.4632-4.1050) vs 1.5945 (95% CI 1.9003-2.4652); u=3082.0 and 3115.0, both P<0.01]. The AUC of SUV max -based diagnosis was 0.757 (95% CI 0.711-0.802; P<0.001) with the sensitivity of 80.9% (186/230) and specificity of 50.3% (97/193) at

  11. Clinical impact of abnormal FDG uptake in pulmonary nodules detected by CT in patients with only history of non-lung cancers

    International Nuclear Information System (INIS)

    Wong, C.O.; Nunez, R.; Welsh, R.J.; Chmielewski, G.W.; Hill, E.A.; Hill, J.C.; Ravikrishnan, K.P.; Darlene Fink-Bennett; Dworkin, H.J.

    2001-01-01

    Objective: The aim is to assess the clinical impact of positive FDG uptake in single (SPN) or multiple (MPN) pulmonary nodules detected by CT in patients with known past history of non-lung cancers (but no known lung cancers). Materials and Methods: Twenty-eight sequential patients with non-lung cancers (15 breast, 8 colon, 5 prostate) referred for evaluation of SPN or MPN by PET over a period of two years were included. F-18 FDG PET images, covering chest and upper abdomen, were interpreted blindly and then correlated with CT findings for the precise location of abnormal FDG uptake in the chest. Results: There was a significant number of abnormal FDG uptake in both SPN or MPN. Positive abnormal uptake suggestive of malignancy was found in 25% of patients in the form of SPN and 39% of patients in the form of MPN (p<0.03). Positive cases in the pattern of multiple foci of pulmonary uptake were attributed to metastatic disease. Otherwise positive cases were followed by tissue diagnosis and/or surgical attention. The negative cases were followed clinically. Of the 11 positive cases of MPN, 2 patients (18%) showed only abnormal FDG uptake in just one of the nodules, which was later confirmed at surgery to be a primary cancer of lung in both patients. Conclusion: These results suggest that PET scan would be just as useful in patients with SPN and known non-lung cancers as other patients with no history of any cancers. Not all patients with non-lung cancer and MPN have pulmonary metastasis by PET criteria. PET may single out a primary lung malignancy in patients with non-lung cancer and MPN. PET has thus great clinical impact in these patients with pulmonary nodules and known non-lung cancers as the management would otherwise be completely different in situations revealed by the study

  12. Use of morphologic filters in the computerized detection of lung nodules in digital chest images

    International Nuclear Information System (INIS)

    Yoshimura, H.; Giger, M.L.; Doi, K.; Ahn, N.; MacMahon, H.

    1989-01-01

    The authors have previously described a computerized scheme for the detection of lung nodules based on a difference-image approach, which had a detection accuracy of 70% with 7--8 false positives per image. Currently, they are investigating morphologic filters for the further enhancement/suppression of nodule-signals and the removal of false-positives. Gray-level morphologic filtering is performed on clinical chest radiographs digitized with an optical drum scanner. Various shapes and sequences of erosion and dilation filters (i.e., determination of the minimum and maximum gray levels, respectively) were examined for signal enhancement and suppression for sue in the difference- image approach

  13. Improvement in visibility of simulated lung nodules on computed radiography (CR) chest images by use of temporal subtraction technique

    International Nuclear Information System (INIS)

    Oda, Nobuhiro; Fujimoto, Keiji; Murakami, Seiichi; Katsuragawa, Shigehiko; Doi, Kunio; Nakata, Hajime

    1999-01-01

    A temporal subtraction image obtained by subtraction of a previous image from a current one can enhance interval change on chest images. In this study, we compared the visibility of simulated lung nodules on CR images with and without temporal subtraction. Chest phantom images without and with simulated nodules were obtained as previous and current images, respectively, by a CR system. Then, subtraction images were produced with an iterative image warping technique. Twelve simulated nodules were attached on various locations of the chest phantom. The diameter of nodules having a CT number of 47 ranged from 3 mm to 10 mm. Seven radiologists subjectively evaluated the visibility of simulated nodules on CR images with and without temporal subtraction using a three-point rating scale (0: invisible, +1: questionable, +2:visible). The minimum diameter of simulated nodules visible at a frequency greater than 50% was 4 mm on the CR images with temporal subtraction and 6 mm on those without. Our results indicated that the subtraction images clearly improved the visibility of simulated nodules. (author)

  14. Thin-section CT of lung without ECG gating: 64-detector row CT can markedly reduce cardiac motion artifact which can simulate lung lesions

    International Nuclear Information System (INIS)

    Yanagawa, Masahiro; Tomiyama, Noriyuki; Sumikawa, Hiromitsu; Inoue, Atsuo; Daimon, Tadahisa; Honda, Osamu; Mihara, Naoki; Johkoh, Takeshi; Nakamura, Hironobu

    2009-01-01

    Purpose: Motion artifacts, which can mimic thickened bronchial wall and the cystic appearance of bronchiectasis, constitute a potential pitfall in the diagnosis of interstitial or bronchial disease. Therefore, purpose of our study was to evaluate whether 64-detector row CT (64-MDCT) enables a reduction in respiratory or cardiac motion artifacts in the lung area on thin-section CT without ECG gating, and to examine the correlation between cardiac motion artifact and heart rate. Materials and methods: Thirty-two patients with suspected diffuse lung disease, who underwent both 8- and 64-MDCT (gantry rotation time, 0.5 and 0.4 s, respectively), were included. The heart rates of an additional 155 patients were measured (range, 48-126 beats per minute; mean, 76 beats per minute) immediately prior to 64-MDCT, and compared to the degree of cardiac motion artifact. Two independent observers evaluated the following artifacts on a monitor without the knowledge of relevant clinical information: (1) artifacts on 8- and 64-MDCT images with 1.25-mm thickness and those on 64-MDCT images with 0.625-mm thickness in 32 patients; and (2) artifacts on 64-MDCT images with 0.625-mm thickness in 155 patients. Results: Interobserver agreement was good in evaluating artifacts on 8-MDCT images with 1.25-mm thickness (weighted Kappa test, κ = 0.61-0.71), and fair or poor in the other evaluations (κ < 0.31). Two observers stated that cardiac motion artifacts were more significant on 8-MDCT than on 64-MDCT in all 32 patients. Statistically significant differences were found at various checkpoints only in comparing artifacts between 8- and 64-MDCT for 1.25-mm thickness (Wilcoxon's signed-rank test, p < 0.0017). Cardiac motion artifacts on 64-MDCT had no significant correlation with heart rate (Spearman's correlation coefficient by rank test). Conclusion: The high temporal resolution of 64-MDCT appears to reduce cardiac motion artifact that can affect thin-section scans of the lung parenchyma

  15. Thin-section CT of lung without ECG gating: 64-detector row CT can markedly reduce cardiac motion artifact which can simulate lung lesions

    Energy Technology Data Exchange (ETDEWEB)

    Yanagawa, Masahiro [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan)], E-mail: m-yanagawa@radiol.med.osaka-u.ac.jp; Tomiyama, Noriyuki; Sumikawa, Hiromitsu; Inoue, Atsuo [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Daimon, Tadahisa [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Department of Medicine, Division of Pulmonary Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 (Japan); Honda, Osamu [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Mihara, Naoki [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Department of Radiology, Osaka Advanced Medical Imaging Center, 5-20-1 Momoyamadai, Suita-city, Osaka 565-0854 (Japan); Johkoh, Takeshi [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Department of Medical Physics, Osaka University Graduate School of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan); Nakamura, Hironobu [Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-city, Osaka 565-0871 (Japan)

    2009-01-15

    Purpose: Motion artifacts, which can mimic thickened bronchial wall and the cystic appearance of bronchiectasis, constitute a potential pitfall in the diagnosis of interstitial or bronchial disease. Therefore, purpose of our study was to evaluate whether 64-detector row CT (64-MDCT) enables a reduction in respiratory or cardiac motion artifacts in the lung area on thin-section CT without ECG gating, and to examine the correlation between cardiac motion artifact and heart rate. Materials and methods: Thirty-two patients with suspected diffuse lung disease, who underwent both 8- and 64-MDCT (gantry rotation time, 0.5 and 0.4 s, respectively), were included. The heart rates of an additional 155 patients were measured (range, 48-126 beats per minute; mean, 76 beats per minute) immediately prior to 64-MDCT, and compared to the degree of cardiac motion artifact. Two independent observers evaluated the following artifacts on a monitor without the knowledge of relevant clinical information: (1) artifacts on 8- and 64-MDCT images with 1.25-mm thickness and those on 64-MDCT images with 0.625-mm thickness in 32 patients; and (2) artifacts on 64-MDCT images with 0.625-mm thickness in 155 patients. Results: Interobserver agreement was good in evaluating artifacts on 8-MDCT images with 1.25-mm thickness (weighted Kappa test, {kappa} = 0.61-0.71), and fair or poor in the other evaluations ({kappa} < 0.31). Two observers stated that cardiac motion artifacts were more significant on 8-MDCT than on 64-MDCT in all 32 patients. Statistically significant differences were found at various checkpoints only in comparing artifacts between 8- and 64-MDCT for 1.25-mm thickness (Wilcoxon's signed-rank test, p < 0.0017). Cardiac motion artifacts on 64-MDCT had no significant correlation with heart rate (Spearman's correlation coefficient by rank test). Conclusion: The high temporal resolution of 64-MDCT appears to reduce cardiac motion artifact that can affect thin-section scans of

  16. Development and validation of a prediction model for measurement variability of lung nodule volumetry in patients with pulmonary metastases.

    Science.gov (United States)

    Hwang, Eui Jin; Goo, Jin Mo; Kim, Jihye; Park, Sang Joon; Ahn, Soyeon; Park, Chang Min; Shin, Yeong-Gil

    2017-08-01

    To develop a prediction model for the variability range of lung nodule volumetry and validate the model in detecting nodule growth. For model development, 50 patients with metastatic nodules were prospectively included. Two consecutive CT scans were performed to assess volumetry for 1,586 nodules. Nodule volume, surface voxel proportion (SVP), attachment proportion (AP) and absolute percentage error (APE) were calculated for each nodule and quantile regression analyses were performed to model the 95% percentile of APE. For validation, 41 patients who underwent metastasectomy were included. After volumetry of resected nodules, sensitivity and specificity for diagnosis of metastatic nodules were compared between two different thresholds of nodule growth determination: uniform 25% volume change threshold and individualized threshold calculated from the model (estimated 95% percentile APE). SVP and AP were included in the final model: Estimated 95% percentile APE = 37.82 · SVP + 48.60 · AP-10.87. In the validation session, the individualized threshold showed significantly higher sensitivity for diagnosis of metastatic nodules than the uniform 25% threshold (75.0% vs. 66.0%, P = 0.004) CONCLUSION: Estimated 95% percentile APE as an individualized threshold of nodule growth showed greater sensitivity in diagnosing metastatic nodules than a global 25% threshold. • The 95 % percentile APE of a particular nodule can be predicted. • Estimated 95 % percentile APE can be utilized as an individualized threshold. • More sensitive diagnosis of metastasis can be made with an individualized threshold. • Tailored nodule management can be provided during nodule growth follow-up.

  17. The influence of inspiratory effort and emphysema on pulmonary nodule volumetry reproducibility.

    Science.gov (United States)

    Moser, J B; Mak, S M; McNulty, W H; Padley, S; Nair, A; Shah, P L; Devaraj, A

    2017-11-01

    To evaluate the impact of inspiratory effort and emphysema on reproducibility of pulmonary nodule volumetry. Eighty-eight nodules in 24 patients with emphysema were studied retrospectively. All patients had undergone volumetric inspiratory and end-expiratory thoracic computed tomography (CT) for consideration of bronchoscopic lung volume reduction. Inspiratory and expiratory nodule volumes were measured using commercially available software. Local emphysema extent was established by analysing a segmentation area extended circumferentially around each nodule (quantified as percent of lung with density of -950 HU or less). Lung volumes were established using the same software. Differences in inspiratory and expiratory nodule volumes were illustrated using the Bland-Altman test. The influences of percentage reduction in lung volume at expiration, local emphysema extent, and nodule size on nodule volume variability were tested with multiple linear regression. The majority of nodules (59/88 [67%]) showed an increased volume at expiration. Mean difference in nodule volume between expiration and inspiration was +7.5% (95% confidence interval: -24.1, 39.1%). No relationships were demonstrated between nodule volume variability and emphysema extent, degree of expiration, or nodule size. Expiration causes a modest increase in volumetry-derived nodule volumes; however, the effect is unpredictable. Local emphysema extent had no significant effect on volume variability in the present cohort. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Computer-aided detection of lung nodules on multidetector CT in concurrent-reader and second-reader modes: A comparative study

    International Nuclear Information System (INIS)

    Matsumoto, Sumiaki; Ohno, Yoshiharu; Aoki, Takatoshi; Yamagata, Hitoshi; Nogami, Munenobu; Matsumoto, Keiko; Yamashita, Yoshiko; Sugimura, Kazuro

    2013-01-01

    Purpose: To compare the reading times and detection performances of radiologists in concurrent-reader and second-reader modes of computer-aided detection (CAD) for lung nodules on multidetector computed tomography (CT). Materials and Methods: Fifty clinical multidetector CT datasets containing nodules up to 20 mm in diameter were retrospectively collected. For the detection and rating of non-calcified nodules larger than 4 mm in diameter, 6 radiologists (3 experienced radiologists and 3 resident radiologists) independently interpreted these datasets twice, once with concurrent-reader CAD and once with second-reader CAD. The reference standard of nodules in the datasets was determined by the consensus of two experienced chest radiologists. The reading times and detection performances in the two modes of CAD were statistically compared, where jackknife free-response receiver operating characteristic (JAFROC) analysis was used for the comparison of detection performances. Results: Two hundreds and seven nodules constituted the reference standard. Reading time was significantly shorter in the concurrent-reader mode than in the second-reader mode, with the mean reading time for the 6 radiologists being 132 s with concurrent-reader CAD and 210 s with second-reader CAD (p < 0.01). JAFROC analysis revealed no significant difference between the detection performances in the two modes, with the average figure-of-merit value for the 6 radiologists being 0.70 with concurrent-reader CAD and 0.72 with second-reader CAD (p = 0.35). Conclusion: In CAD for lung nodules on multidetector CT, the concurrent-reader mode is more time-efficient than the second-reader mode, and there can be no significant difference between the two modes in terms of detection performance of radiologists

  19. 3D pulmonary nodules detection using fast marching segmentation ...

    African Journals Online (AJOL)

    This paper proposes an automated computer aided diagnosis system for detection of pulmonary nodules based on three dimensional (3D) structures. Lung ... The proposed detection methodology can give the accuracy of 92%. Keywords: lung cancer; pulmonary nodule; fast marching; 3D features; random forest classifier.

  20. Assessing the use of digital radiography and a real-time interactive pulmonary nodule analysis system for large population lung cancer screening

    International Nuclear Information System (INIS)

    Xu Yan; Ma Daqing; He Wen

    2012-01-01

    Rationale and objectives: To assess the use of chest digital radiograph (DR) assisted with a real-time interactive pulmonary nodule analysis system in large population lung cancer screening. Materials and methods: 346 DR/CR patient studies with corresponding CT images were selected from 12,500 patients screened for lung cancer from year 2007 to 2009. Two expert chest radiologists established CT-confirmed Gold Standard of nodules on DR/CR images with consensus. These cases were read by eight other chest radiologists (participating radiologists) first without using a real-time interactive pulmonary nodule analysis system and then re-read using the system. Performances of participating radiologists and the computer system were analyzed. Results: The computer system achieved similar performance on DR and CR images, with a detection rate of 76% and an average FPs of 2.0 per image. Before and after using the computer-aided detection system, the nodule detection sensitivities of the participating radiologists were 62.3% and 77.3% respectively, and the A z values increased from 0.794 to 0.831. Statistical analysis demonstrated statically significant improvement for the participating radiologists after using the computer analysis system with a P-value 0.05. Conclusion: The computer system could help radiologists identify more lesions, especially small ones that are more likely to be overlooked on chest DR/CR images, and could help reduce inter-observer diagnostic variations, while its FPs were easy to recognize and dismiss. It is suggested that DR/CR assisted by the real-time interactive pulmonary nodule analysis system may be an effective means to screen large populations for lung cancer.

  1. MDCT for computerized volumetry of pneumothoraces in pediatric patients.

    Science.gov (United States)

    Cai, Wenli; Lee, Edward Y; Vij, Abhinav; Mahmood, Soran A; Yoshida, Hiroyuki

    2011-03-01

    Our purpose in this study was to develop an automated computer-aided volumetry (CAV) scheme for quantifying pneumothorax in multidetector computed tomography (MDCT) images for pediatric patients and to investigate the imaging parameters that may affect its accuracy. Fifty-eight consecutive pediatric patients (mean age 12 ± 6 years) with pneumothorax who underwent MDCT for evaluation were collected retrospectively for this study. All cases were imaged by a 16- or 64-MDCT scanner with weight-based kilovoltage, low-dose tube current, 1.0-1.5 pitch, 0.6-5.0 mm slice thickness, and a B70f (sharp) or B31f (soft) reconstruction kernel. Sixty-three pneumothoraces ≥1 mL were visually identified in the left (n = 30) and right (n = 33) lungs. Each identified pneumothorax was contoured manually on an Amira workstation V4.1.1 (Mercury Computer Systems, Chelmsford, MA) by two radiologists in consensus. The computerized volumes of the pneumothoraces were determined by application of our CAV scheme. The accuracy of our automated CAV scheme was evaluated by comparison between computerized volumetry and manual volumetry, for the total volume of pneumothoraces in the left and right lungs. The mean difference between the computerized volumetry and the manual volumetry for all 63 pneumothoraces ≥1 mL was 8.2%. For pneumothoraces ≥10 mL, ≥50 mL, and ≥200 mL, the mean differences were 7.7% (n = 57), 7.3% (n = 33), and 6.4% (n = 13), respectively. The correlation coefficient was 0.99 between the computerized volume and the manual volume of pneumothoraces. Bland-Altman analysis showed that computerized volumetry has a mean difference of -5.1% compared to manual volumetry. For all pneumothoraces ≥10 mL, the mean differences for slice thickness ≤1.25 mm, = 1.5 mm, and = 5.0 mm were 6.1% (n = 28), 3.5% (n = 10), and 12.2% (n = 19), respectively. For the two reconstruction kernels, B70f and B31f, the mean differences were 6.3% (n = 42, B70f) and 11.7% (n = 15, B31f

  2. Computed tomography of pulmonary nodules

    International Nuclear Information System (INIS)

    Nakata, Hajime; Honda, Hiroshi; Nakayama, Chikashi; Kimoto, Tatsuya; Nakayama, Takashi

    1983-01-01

    We have evaluated the value of computed tomography (CT) in distinguishing benign and malignant pulmonary nodules. CT was performed on 30 cases of solitary pulmonary nodules consisting of 17 primary lung cancers, 3 metastatic tumors and 10 benign nodules. The CT number was calculated for each lesion. Three benign nodules showed CT numbers well above the range of malignant nodules, and only in one of them was calcification visible on conventional tomography. In 6 benign nodules, the CT numbers overlapped those of malignant lesion and could not be differentiated. Thus the measurement of CT number can be useful to confirm the benign nature of certain nodules when calcification is unclear or not visible on conventional tomography. As for the morphological observation of the nodule, CT was not superior to conventional tomography and its value seems to be limited. (author)

  3. Computer-assisted lung nodule volumetry from multi-detector row CT: Influence of image reconstruction parameters

    International Nuclear Information System (INIS)

    Honda, Osamu; Sumikawa, Hiromitsu; Johkoh, Takeshi; Tomiyama, Noriyuki; Mihara, Naoki; Inoue, Atsuo; Tsubamoto, Mitsuko; Natsag, Javzandulam; Hamada, Seiki; Nakamura, Hironobu

    2007-01-01

    Purpose: To investigate differences in volumetric measurement of pulmonary nodules caused by changing the reconstruction parameters for multi-detector row CT. Materials and methods: Thirty-nine pulmonary nodules less than 2 cm in diameter were examined by multi-slice CT. All nodules were solid, and located in the peripheral part of the lungs. The resultant 48 parameters images were reconstructed by changing slice thickness (1.25, 2.5, 3.75, or 5 mm), field of view (FOV: 10, 20, or 30 cm), algorithm (high-spatial frequency algorithm or low-spatial frequency algorithm) and reconstruction interval (reconstruction with 50% overlapping of the reconstructed slices or non-overlapping reconstruction). Volumetric measurements were calculated using commercially available software. The differences between nodule volumes were analyzed by the Kruskal-Wallis test and the Wilcoxon Signed-Ranks test. Results: The diameter of the nodules was 8.7 ± 2.7 mm on average, ranging from 4.3 to 16.4 mm. Pulmonary nodule volume did not change significantly with changes in slice thickness or FOV (p > 0.05), but was significantly larger with the high-spatial frequency algorithm than the low-spatial frequency algorithm (p < 0.05), except for one reconstruction parameter. The volumes determined by non-overlapping reconstruction were significantly larger than those of overlapping reconstruction (p < 0.05), except for a 1.25 mm thickness with 10 cm FOV with the high-spatial frequency algorithm, and 5 mm thickness. The maximum difference in measured volume was 16% on average between the 1.25 mm slice thickness/10 cm FOV/high-spatial frequency algorithm parameters and overlapping reconstruction. Conclusion: Volumetric measurements of pulmonary nodules differ with changes in the reconstruction parameters, with a tendency toward larger volumes in high-spatial frequency algorithm and non-overlapping reconstruction compared to the low-spatial frequency algorithm and overlapping reconstruction

  4. Determining gastric cancer resectability by dynamic MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zilai; Zhang, Huan; Du, Lianjun; Ding, Bei; Song, Qi; Ling, Huawei; Huang, Baisong; Chen, Kemin [Jiaotong University, Department of Radiology, Shanghai (China); Yan, Chao [Jiaotong University, Department of Surgery, Shanghai (China)

    2010-03-15

    Multi-detector row CT (MDCT) has been widely used to detect primary lesions and to evaluate TNM staging. In this study we evaluated the accuracy of dynamic MDCT in the preoperative determination of the resectability of gastric cancer. MDCT was used to image 350 cases of gastric cancer diagnosed by biopsy before surgery. MDCT findings regarding TNM staging and resectability were correlated with surgical and pathological findings. The accuracy of MDCT for staging gastric cancer was high, especially for tumour stage T1 (94.3%), lymph node stage N2 (87.3%), and for predicting distant metastases (>96.6%). When resectability was considered to be the outcome, the total accuracy of MDCT was 87.4%, sensitivity was 89.7% and specificity was 76.7%. Results showed high sensitivity for identifying peritoneal seeding (90.0%) and for predicting liver metastasis (80.0%). Dynamic enhanced MDCT is useful for TNM staging of gastric cancers and for predicting tumour respectability preoperatively. (orig.)

  5. Determining gastric cancer resectability by dynamic MDCT

    International Nuclear Information System (INIS)

    Pan, Zilai; Zhang, Huan; Du, Lianjun; Ding, Bei; Song, Qi; Ling, Huawei; Huang, Baisong; Chen, Kemin; Yan, Chao

    2010-01-01

    Multi-detector row CT (MDCT) has been widely used to detect primary lesions and to evaluate TNM staging. In this study we evaluated the accuracy of dynamic MDCT in the preoperative determination of the resectability of gastric cancer. MDCT was used to image 350 cases of gastric cancer diagnosed by biopsy before surgery. MDCT findings regarding TNM staging and resectability were correlated with surgical and pathological findings. The accuracy of MDCT for staging gastric cancer was high, especially for tumour stage T1 (94.3%), lymph node stage N2 (87.3%), and for predicting distant metastases (>96.6%). When resectability was considered to be the outcome, the total accuracy of MDCT was 87.4%, sensitivity was 89.7% and specificity was 76.7%. Results showed high sensitivity for identifying peritoneal seeding (90.0%) and for predicting liver metastasis (80.0%). Dynamic enhanced MDCT is useful for TNM staging of gastric cancers and for predicting tumour respectability preoperatively. (orig.)

  6. Computer-aided detection and automated CT volumetry of pulmonary nodules

    International Nuclear Information System (INIS)

    Marten, Katharina; Engelke, Christoph

    2007-01-01

    With use of multislice computed tomography (MSCT), small pulmonary nodules are being detected in vast numbers, constituting the majority of all noncalcified lung nodules. Although the prevalence of lung cancers among such lesions in lung cancer screening populations is low, their isolation may contribute to increased patient survival. Computer-aided diagnosis (CAD) has emerged as a diverse set of diagnostic tools to handle the large number of images in MSCT datasets and most importantly, includes automated detection and volumetry of pulmonary nodules. Current CAD systems can significantly enhance experienced radiologists' performance and outweigh human limitations in identifying small lesions and manually measuring their diameters, augment observer consistency in the interpretation of such examinations and may thus help to detect significantly higher rates of early malignomas and give more precise estimates on chemotherapy response than can radiologists alone. In this review, we give an overview of current CAD in lung nodule detection and volumetry and discuss their relative merits and limitations. (orig.)

  7. The usefulness of F-18 FDG PET to discriminate between malignant and benign nodule in idiopathic pulmonary fibrosis

    International Nuclear Information System (INIS)

    Kim, Bom Sahn; Kang, Won Jun; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2006-01-01

    Incidence of lung cancer in patients with idiopathic pulmonary fibrosis (IPF) is known to be higher than that in general population. However, it is difficult to discriminate pulmonary nodule in patients with IPF, because underlying IPF can be expressed as lung nodules. We evaluated the diagnostic performance of FDG PET in discriminating lung nodule in patients with IPF. We retrospectively reviewed 28 lung nodules in 16 subjects (age; 67.53 ± 9.83, M:F = 14:2). Two patients had previous history of malignant cancer (small cell lung cancer and subglottic cancer). The diagnostic criteria on chest CT were size, morphology and serial changes of size. FDG PET was visually interpreted, and maximal SUV was calculated for quantitative analysis. From 28 nodules, 18 nodules were interpreted as benign nodules, 10 nodules as malignant nodules by histopathology or follow-up chest CT. The sensitivity and specificity of FDG PET were 100% and 94.4%, while those of CT were 70.0% and 44.4% respectively. Malignant nodule was higher maxSUV than that of benign lung nodules (7.68 ± 3.96 vs 1.22 ± 0.65, p < 0.001). Inflammatory lesion in underlying IPF was significantly lower masSUV than that of malignant nodules (1.80 ± 0.43, p < 0.001). The size of malignant and benign nodule were 23.95 ± 10.15 mm and 10.83 ± 5.23 mm p < 0.01) FDG PET showed superior diagnostic performance to chest CT in differentiating lung nodules in patients with underlying IPF. FDG PET could be used to evaluate suspicious malignant nodule detected by chest in patients with IPF

  8. The usefulness of F-18 FDG PET to discriminate between malignant and benign nodule in idiopathic pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sahn; Kang, Won Jun; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2006-06-15

    Incidence of lung cancer in patients with idiopathic pulmonary fibrosis (IPF) is known to be higher than that in general population. However, it is difficult to discriminate pulmonary nodule in patients with IPF, because underlying IPF can be expressed as lung nodules. We evaluated the diagnostic performance of FDG PET in discriminating lung nodule in patients with IPF. We retrospectively reviewed 28 lung nodules in 16 subjects (age; 67.53 {+-} 9.83, M:F = 14:2). Two patients had previous history of malignant cancer (small cell lung cancer and subglottic cancer). The diagnostic criteria on chest CT were size, morphology and serial changes of size. FDG PET was visually interpreted, and maximal SUV was calculated for quantitative analysis. From 28 nodules, 18 nodules were interpreted as benign nodules, 10 nodules as malignant nodules by histopathology or follow-up chest CT. The sensitivity and specificity of FDG PET were 100% and 94.4%, while those of CT were 70.0% and 44.4% respectively. Malignant nodule was higher maxSUV than that of benign lung nodules (7.68 {+-} 3.96 vs 1.22 {+-} 0.65, p < 0.001). Inflammatory lesion in underlying IPF was significantly lower masSUV than that of malignant nodules (1.80 {+-} 0.43, p < 0.001). The size of malignant and benign nodule were 23.95 {+-} 10.15 mm and 10.83 {+-} 5.23 mm p < 0.01) FDG PET showed superior diagnostic performance to chest CT in differentiating lung nodules in patients with underlying IPF. FDG PET could be used to evaluate suspicious malignant nodule detected by chest in patients with IPF.

  9. Adaptive Statistical Iterative Reconstruction-Applied Ultra-Low-Dose CT with Radiography-Comparable Radiation Dose: Usefulness for Lung Nodule Detection.

    Science.gov (United States)

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Moon, Jung Won; Lee, Kyung Soo

    2015-01-01

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, ASIR-driven ULDCT in three out of the five observers (p ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT.

  10. Designing a new CAD system for pulmonary nodule detection in High Resolution Computed Tomography (HRCT images

    Directory of Open Access Journals (Sweden)

    Parsa Hosseini M

    2012-07-01

    Conclusion: Considering the complexity and different shapes of lung nodules and large number of CT images to evaluate, finding lung nodules are difficult and time consuming for physicians and include human error. Experimental results showed the accuracy of the proposed method to be appropriate (P<0.05 for lung nodule detection.

  11. Perfusion CT of the Brain and Liver and of Lung Tumors: Use of Monte Carlo Simulation for Patient Dose Estimation for Examinations With a Cone-Beam 320-MDCT Scanner.

    Science.gov (United States)

    Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal

    2016-01-01

    The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.

  12. Rapid lung MRI in children with pulmonary infections: Time to change our diagnostic algorithms.

    Science.gov (United States)

    Sodhi, Kushaljit Singh; Khandelwal, Niranjan; Saxena, Akshay Kumar; Singh, Meenu; Agarwal, Ritesh; Bhatia, Anmol; Lee, Edward Y

    2016-05-01

    To determine the diagnostic utility of a new rapid MRI protocol, as compared with computed tomography (CT) for the detection of various pulmonary and mediastinal abnormalities in children with suspected pulmonary infections. Seventy-five children (age range of 5 to 15 years) with clinically suspected pulmonary infections were enrolled in this prospective study, which was approved by the institutional ethics committee. All patients underwent thoracic MRI (1.5T) and CT (64 detector) scan within 48 h of each other. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MRI were evaluated with CT as a standard of reference. Inter-observer agreement was measured with the kappa coefficient. MRI with a new rapid MRI protocol demonstrated sensitivity, specificity, PPV, and NPV of 100% for detecting pulmonary consolidation, nodules (>3 mm), cyst/cavity, hyperinflation, pleural effusion, and lymph nodes. The kappa-test showed almost perfect agreement between MRI and multidetector CT (MDCT) in detecting thoracic abnormalities (k = 0.9). No statistically significant difference was observed between MRI and MDCT for detecting thoracic abnormalities by the McNemar test (P = 0.125). Rapid lung MRI was found to be comparable to MDCT for detecting thoracic abnormalities in pediatric patients with clinically suspected pulmonary infections. It has a great potential as the first line cross-sectional imaging modality of choice in this patient population. However, further studies will be helpful for confirmation of our findings. © 2015 Wiley Periodicals, Inc.

  13. TU-G-204-09: The Effects of Reduced- Dose Lung Cancer Screening CT On Lung Nodule Detection Using a CAD Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Young, S; Lo, P; Kim, G; Hsu, W; Hoffman, J; Brown, M; McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: While Lung Cancer Screening CT is being performed at low doses, the purpose of this study was to investigate the effects of further reducing dose on the performance of a CAD nodule-detection algorithm. Methods: We selected 50 cases from our local database of National Lung Screening Trial (NLST) patients for which we had both the image series and the raw CT data from the original scans. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. 10 of the cases had at least one nodule reported on the NLST reader forms. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, the CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST reports. Subject-level mean sensitivities and false-positive rates were calculated for each dose level. Results: The mean sensitivities of the CAD algorithm were 35% at the original dose, 20% at 50% dose, and 42.5% at 25% dose. The false-positive rates, in decreasing-dose order, were 3.7, 2.9, and 10 per case. In certain cases, particularly in larger patients, there were severe photon-starvation artifacts, especially in the apical region due to the high-attenuating shoulders. Conclusion: The detection task was challenging for the CAD algorithm at all dose levels, including the original NLST dose. However, the false-positive rate at 25% dose approximately tripled, suggesting a loss of CAD robustness somewhere between 0.5 and 1.0 mGy. NCI grant U01 CA181156 (Quantitative Imaging Network); Tobacco Related Disease Research Project grant 22RT-0131.

  14. TU-G-204-09: The Effects of Reduced- Dose Lung Cancer Screening CT On Lung Nodule Detection Using a CAD Algorithm

    International Nuclear Information System (INIS)

    Young, S; Lo, P; Kim, G; Hsu, W; Hoffman, J; Brown, M; McNitt-Gray, M

    2015-01-01

    Purpose: While Lung Cancer Screening CT is being performed at low doses, the purpose of this study was to investigate the effects of further reducing dose on the performance of a CAD nodule-detection algorithm. Methods: We selected 50 cases from our local database of National Lung Screening Trial (NLST) patients for which we had both the image series and the raw CT data from the original scans. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. 10 of the cases had at least one nodule reported on the NLST reader forms. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, the CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST reports. Subject-level mean sensitivities and false-positive rates were calculated for each dose level. Results: The mean sensitivities of the CAD algorithm were 35% at the original dose, 20% at 50% dose, and 42.5% at 25% dose. The false-positive rates, in decreasing-dose order, were 3.7, 2.9, and 10 per case. In certain cases, particularly in larger patients, there were severe photon-starvation artifacts, especially in the apical region due to the high-attenuating shoulders. Conclusion: The detection task was challenging for the CAD algorithm at all dose levels, including the original NLST dose. However, the false-positive rate at 25% dose approximately tripled, suggesting a loss of CAD robustness somewhere between 0.5 and 1.0 mGy. NCI grant U01 CA181156 (Quantitative Imaging Network); Tobacco Related Disease Research Project grant 22RT-0131

  15. The usefulness of MDCT in acute intestinal bleeding

    International Nuclear Information System (INIS)

    Kim, Kum Rae; Park, Won Kyu; Kim, Jae Woon; Chang, Jay Chun; Jang, Han Won

    2006-01-01

    We wanted to evaluate the usefulness of MDCT for localizing a bleeding site and for helping make a decision on further management for acute intestinal bleeding. We conducted a retrospective review of 17 consecutive patients who presented with acute intestinal bleeding and who also underwent MDCT before angiography or surgery. The sensitivity of MDCT for detecting acute intestinal bleeding was assessed and compared with that of conventional angiography. The sensitivity of MDCT for the detection of acute intestinal bleeding was 77% (13 or 17), whereas that of angiography was 46% (6 or 13). All the bleeding points that were subsequently detected on angiography were visualized on MDCT. In three cases, the bleeding focus was detected on MDCT and not on angiography. In four cases, both MDCT and angiography did not detect the bleeding focus; for one of these cases, CT during SMA angiography was performed and this detected the active bleeding site. In patients with acute intestinal bleeding, MDCT is a useful image modality to detect the bleeding site and to help decide on further management before performing angiography or surgery. When tumorous lesions are detected, invasive angiography can be omitted

  16. Surgical resection of highly suspicious pulmonary nodules without a tissue diagnosis

    International Nuclear Information System (INIS)

    Heo, Eun-Young; Lee, Kyung-Won; Jheon, Sanghoon; Lee, Jae-Ho; Lee, Choon-Taek; Yoon, Ho-II

    2011-01-01

    The safety and efficacy of surgical resection of lung nodule without tissue diagnosis is controversial. We evaluated direct surgical resection of highly suspicious pulmonary nodules and the clinical and radiological predictors of malignancy. Retrospective analyses were performed on 113 patients who underwent surgical resection without prior tissue diagnosis for highly suspicious pulmonary nodules. Clinical and radiological characteristics were compared between histologically proven benign and malignant nodules after resection. Total costs, length of hospitalization and waiting time to surgery were compared with those of patients who had tissue diagnosis prior to surgery. Among 280 patients with pulmonary nodules suspicious for lung cancer, 113 (40.4%) underwent operation without prior tissue diagnosis. Lung nodules were diagnosed as malignant in 96 (85%) of the 113 patients. Except for forced expiratory volume in 1 s, clinical characteristics were not significantly different according to the pathologic results. Forty-five (90%) of 50 patients with ground-glass opacity nodules had a malignancy. Mixed ground-glass opacity, bubble lucency, irregular margin and larger size correlated with malignancy in ground-glass opacity nodules (P<0.05). Fifty-one (81%) of 67 patients with solid nodules had a malignancy. Spiculation, pre-contrast attenuation and contrast enhancement significantly correlated with malignancy in solid nodules (P<0.05). Surgical resection without tissue diagnosis significantly decreased total costs, hospital stay and waiting time (P<0.05). Direct surgical resection of highly suspicious pulmonary nodules can be a valid procedure. However, careful patient selection and further investigations are required to justify direct surgical resection. (author)

  17. Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification

    International Nuclear Information System (INIS)

    Chen Sheng; Suzuki, Kenji; MacMahon, Heber

    2011-01-01

    Purpose: To develop a computer-aided detection (CADe) scheme for nodules in chest radiographs (CXRs) with a high sensitivity and a low false-positive (FP) rate. Methods: The authors developed a CADe scheme consisting of five major steps, which were developed for improving the overall performance of CADe schemes. First, to segment the lung fields accurately, the authors developed a multisegment active shape model. Then, a two-stage nodule-enhancement technique was developed for improving the conspicuity of nodules. Initial nodule candidates were detected and segmented by using the clustering watershed algorithm. Thirty-one shape-, gray-level-, surface-, and gradient-based features were extracted from each segmented candidate for determining the feature space, including one of the new features based on the Canny edge detector to eliminate a major FP source caused by rib crossings. Finally, a nonlinear support vector machine (SVM) with a Gaussian kernel was employed for classification of the nodule candidates. Results: To evaluate and compare the scheme to other published CADe schemes, the authors used a publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs. The CADe scheme based on the SVM classifier achieved sensitivities of 78.6% (110/140) and 71.4% (100/140) with averages of 5.0 (1165/233) FPs/image and 2.0 (466/233) FPs/image, respectively, in a leave-one-out cross-validation test, whereas the CADe scheme based on a linear discriminant analysis classifier had a sensitivity of 60.7% (85/140) at an FP rate of 5.0 FPs/image. For nodules classified as ''very subtle'' and ''extremely subtle,'' a sensitivity of 57.1% (24/42) was achieved at an FP rate of 5.0 FPs/image. When the authors used a database developed at the University of Chicago, the sensitivities was 83.3% (40/48) and 77.1% (37/48) at an FP rate of 5.0 (240/48) FPs/image and 2.0 (96/48) FPs /image, respectively. Conclusions: These results compare favorably to those described for

  18. A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: What is the minimum increase in size to detect growth in repeated CT examinations

    International Nuclear Information System (INIS)

    Hoop, Bartjan de; Gietema, Hester; Prokop, Mathias; Ginneken, Bram van; Zanen, Pieter; Groenewegen, Gerard

    2009-01-01

    We compared interexamination variability of CT lung nodule volumetry with six currently available semi-automated software packages to determine the minimum change needed to detect the growth of solid lung nodules. We had ethics committee approval. To simulate a follow-up examination with zero growth, we performed two low-dose unenhanced CT scans in 20 patients referred for pulmonary metastases. Between examinations, patients got off and on the table. Volumes of all pulmonary nodules were determined on both examinations using six nodule evaluation software packages. Variability (upper limit of the 95% confidence interval of the Bland-Altman plot) was calculated for nodules for which segmentation was visually rated as adequate. We evaluated 214 nodules (mean diameter 10.9 mm, range 3.3 mm-30.0 mm). Software packages provided adequate segmentation in 71% to 86% of nodules (p < 0.001). In case of adequate segmentation, variability in volumetry between scans ranged from 16.4% to 22.3% for the various software packages. Variability with five to six software packages was significantly less for nodules ≥8 mm in diameter (range 12.9%-17.1%) than for nodules <8 mm (range 18.5%-25.6%). Segmented volumes of each package were compared to each of the other packages. Systematic volume differences were detected in 11/15 comparisons. This hampers comparison of nodule volumes between software packages. (orig.)

  19. Optimal dose levels in screening chest CT for unimpaired detection and volumetry of lung nodules, with and without computer assisted detection at minimal patient radiation.

    Directory of Open Access Journals (Sweden)

    Andreas Christe

    Full Text Available OBJECTIVES: The aim of this phantom study was to minimize the radiation dose by finding the best combination of low tube current and low voltage that would result in accurate volume measurements when compared to standard CT imaging without significantly decreasing the sensitivity of detecting lung nodules both with and without the assistance of CAD. METHODS: An anthropomorphic chest phantom containing artificial solid and ground glass nodules (GGNs, 5-12 mm was examined with a 64-row multi-detector CT scanner with three tube currents of 100, 50 and 25 mAs in combination with three tube voltages of 120, 100 and 80 kVp. This resulted in eight different protocols that were then compared to standard CT sensitivity (100 mAs/120 kVp. For each protocol, at least 127 different nodules were scanned in 21-25 phantoms. The nodules were analyzed in two separate sessions by three independent, blinded radiologists and computer-aided detection (CAD software. RESULTS: The mean sensitivity of the radiologists for identifying solid lung nodules on a standard CT was 89.7% ± 4.9%. The sensitivity was not significantly impaired when the tube and current voltage were lowered at the same time, except at the lowest exposure level of 25 mAs/80 kVp [80.6% ± 4.3% (p = 0.031]. Compared to the standard CT, the sensitivity for detecting GGNs was significantly lower at all dose levels when the voltage was 80 kVp; this result was independent of the tube current. The CAD significantly increased the radiologists' sensitivity for detecting solid nodules at all dose levels (5-11%. No significant volume measurement errors (VMEs were documented for the radiologists or the CAD software at any dose level. CONCLUSIONS: Our results suggest a CT protocol with 25 mAs and 100 kVp is optimal for detecting solid and ground glass nodules in lung cancer screening. The use of CAD software is highly recommended at all dose levels.

  20. Management of an incidentally discovered pulmonary nodule

    International Nuclear Information System (INIS)

    Beigelman-Aubry, Catherine; Hill, Catherine; Grenier, Philippe A.

    2007-01-01

    The incidental finding of a pulmonary nodule on computed tomography (CT) is becoming an increasingly frequent event. The discovery of such a nodule should evoke the possibility of a small bronchogenic carcinoma, for which excision is indicated without delay. However, invasive diagnostic procedures should be avoided in the case of a benign lesion. The objectives of this review article are: (1) to analyze the CT criteria defining benign nodules, nodules of high suspicion of malignancy and indeterminate nodules, (2) to analyze the diagnostic performances and limitations of complementary investigations requested to characterize indeterminate lung nodules, (3) to review the criteria permitting to assess the probability of malignancy of indeterminate nodules and (4) to report on the new guidelines provided by the Fleischner Society for the management of small indeterminate pulmonary nodules, according to their prior probability of malignancy. (orig.)

  1. Subtle pulmonary nodules: detection and identification with storage phosphor radiographs and conventional chest films

    International Nuclear Information System (INIS)

    Scheck, R.J.; Schaetzl, M.; Kandziora, C.; Panzer, M.; Rienmueller, R.

    1994-01-01

    To determine the value of digital storagephosphor radiography (SR) on the detection and identification of subtle lung nodules, postero-anterior (PA) and lateral (LAT) film-screen (FR) chest radiographs were compared with isodose SR images of 45 patients with metastatic malignancies. The SR postprocessing was done with a particular mode previously optimized for routine chest radiography. Pulmonary metastases were found in 34 patients and were proved or excluded by CT (n=28) or longterm follow-up FR (n=17). Chest images were divided into four regions for evaluation of image quality, number of lung nodules per region and marked pulmonary structures by receiver-operating characteristics (ROC) analysis (45 patients; 125 nodules; 2810 observations; five readers). Of the nodules selected for an ROC study 82% were 0.5-1.0 cm in diameter. Overall image quality was rated better for FR concerning lung fields (PA) and mediastinum/hilum (LAT). More lung-field nodules were detected on FR than on SR chest images. Use of FR was superior to SR in the general identification of nodules (PA chest), especially concerning intermediate and subtle abnormalities, whereas there was no significant difference for LAT chest images. Our results show, that currently FR still has advantages over SR in the detection and identification of subtle lung nodules in routine clinical radiography. (orig.)

  2. On the computed tomographic diagnosis of pulmonary nodules

    International Nuclear Information System (INIS)

    Higashi, Yuuichirou

    1988-01-01

    Computed tomography (CT) was used to examine 53 pulmonary nodules which were considered not definitely calcified on plain radiographs or conventional tomograms. An average CT number was calculate for each lesion. For the primary lung cancers, the average CT number was 36 HU with a standard deviation of 6.6 HU, while the benign lesions had the mean CT number of 69 HU, with a standard deviation of 42.8 HU. The mean CT number separating lung malignancies from benign lesions was 78.8 HU. To evaluate the attenuation values within each nodule, iso-CT value map was obtained by using Siemens therapy planning system, MEVAPLAN. Nodules were classified into five categories, Type I to V. All of three nodules classified as Type IV were benign. Iso-CT value map was effective in establishing the benignancy of nodules. The quantitative computed tomographic analysis of pulmonary nodules was evaluated by dual-energy CT. Dual-energy CT has the potential to eliminate the effect of spectral hardening by use of monoenergic images derived from dual-kV data and to separate high CT numbers due to calcium from those due to high density organic material. (author)

  3. Development of a multivariate model to predict the likelihood of carcinoma in patients with indeterminate peripheral lung nodules after a nondiagnostic bronchoscopic evaluation.

    Science.gov (United States)

    Voss, Jesse S; Iqbal, Seher; Jenkins, Sarah M; Henry, Michael R; Clayton, Amy C; Jett, James R; Kipp, Benjamin R; Halling, Kevin C; Maldonado, Fabien

    2014-01-01

    Studies have shown that fluorescence in situ hybridization (FISH) testing increases lung cancer detection on cytology specimens in peripheral nodules. The goal of this study was to determine whether a predictive model using clinical features and routine cytology with FISH results could predict lung malignancy after a nondiagnostic bronchoscopic evaluation. Patients with an indeterminate peripheral lung nodule that had a nondiagnostic bronchoscopic evaluation were included in this study (N = 220). FISH was performed on residual bronchial brushing cytology specimens diagnosed as negative (n = 195), atypical (n = 16), or suspicious (n = 9). FISH results included hypertetrasomy (n = 30) and negative (n = 190). Primary study end points included lung cancer status along with time to diagnosis of lung cancer or date of last clinical follow-up. Hazard ratios (HRs) were calculated using Cox proportional hazards regression model analyses, and P values < .05 were considered statistically significant. The mean age of the 220 patients was 66.7 years (range, 35-91), and most (58%) were men. Most patients (79%) were current or former smokers with a mean pack year history of 43.2 years (median, 40; range, 1-200). After multivariate analysis, hypertetrasomy FISH (HR = 2.96, P < .001), pack years (HR = 1.03 per pack year up to 50, P = .001), age (HR = 1.04 per year, P = .02), atypical or suspicious cytology (HR = 2.02, P = .04), and nodule spiculation (HR = 2.36, P = .003) were independent predictors of malignancy over time and were used to create a prediction model (C-statistic = 0.78). These results suggest that this multivariate model including test results and clinical features may be useful following a nondiagnostic bronchoscopic examination. © 2013.

  4. Benefit of computer-aided detection analysis for the detection of subsolid and solid lung nodules on thin- and thick-section CT.

    Science.gov (United States)

    Godoy, Myrna C B; Kim, Tae Jung; White, Charles S; Bogoni, Luca; de Groot, Patricia; Florin, Charles; Obuchowski, Nancy; Babb, James S; Salganicoff, Marcos; Naidich, David P; Anand, Vikram; Park, Sangmin; Vlahos, Ioannis; Ko, Jane P

    2013-01-01

    The objective of our study was to evaluate the impact of computer-aided detection (CAD) on the identification of subsolid and solid lung nodules on thin- and thick-section CT. For 46 chest CT examinations with ground-glass opacity (GGO) nodules, CAD marks computed using thin data were evaluated in two phases. First, four chest radiologists reviewed thin sections (reader(thin)) for nodules and subsequently CAD marks (reader(thin) + CAD(thin)). After 4 months, the same cases were reviewed on thick sections (reader(thick)) and subsequently with CAD marks (reader(thick) + CAD(thick)). Sensitivities were evaluated. Additionally, reader(thick) sensitivity with assessment of CAD marks on thin sections was estimated (reader(thick) + CAD(thin)). For 155 nodules (mean, 5.5 mm; range, 4.0-27.5 mm)-74 solid nodules, 22 part-solid (part-solid nodules), and 59 GGO nodules-CAD stand-alone sensitivity was 80%, 95%, and 71%, respectively, with three false-positives on average (0-12) per CT study. Reader(thin) + CAD(thin) sensitivities were higher than reader(thin) for solid nodules (82% vs 57%, p thick), reader(thick) + CAD(thick), reader(thick) + CAD(thin) were 40%, 58% (p thick); false-positive rates were 1.17, 1.19, and 1.26 per case for reader(thick), reader(thick) + CAD(thick), and reader(thick) + CAD(thin), respectively. Detection of GGO nodules and solid nodules is significantly improved with CAD. When interpretation is performed on thick sections, the benefit is greater when CAD marks are reviewed on thin rather than thick sections.

  5. Generation of realistic virtual nodules based on three-dimensional spatial resolution in lung computed tomography: A pilot phantom study.

    Science.gov (United States)

    Narita, Akihiro; Ohkubo, Masaki; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2017-10-01

    The aim of this feasibility study using phantoms was to propose a novel method for obtaining computer-generated realistic virtual nodules in lung computed tomography (CT). In the proposed methodology, pulmonary nodule images obtained with a CT scanner are deconvolved with the point spread function (PSF) in the scan plane and slice sensitivity profile (SSP) measured for the scanner; the resultant images are referred to as nodule-like object functions. Next, by convolving the nodule-like object function with the PSF and SSP of another (target) scanner, the virtual nodule can be generated so that it has the characteristics of the spatial resolution of the target scanner. To validate the methodology, the authors applied physical nodules of 5-, 7- and 10-mm-diameter (uniform spheres) included in a commercial CT test phantom. The nodule-like object functions were calculated from the sphere images obtained with two scanners (Scanner A and Scanner B); these functions were referred to as nodule-like object functions A and B, respectively. From these, virtual nodules were generated based on the spatial resolution of another scanner (Scanner C). By investigating the agreement of the virtual nodules generated from the nodule-like object functions A and B, the equivalence of the nodule-like object functions obtained from different scanners could be assessed. In addition, these virtual nodules were compared with the real (true) sphere images obtained with Scanner C. As a practical validation, five types of laboratory-made physical nodules with various complicated shapes and heterogeneous densities, similar to real lesions, were used. The nodule-like object functions were calculated from the images of these laboratory-made nodules obtained with Scanner A. From them, virtual nodules were generated based on the spatial resolution of Scanner C and compared with the real images of laboratory-made nodules obtained with Scanner C. Good agreement of the virtual nodules generated from

  6. Nodule detection methods using autocorrelation features on 3D chest CT scans

    International Nuclear Information System (INIS)

    Hara, T.; Zhou, X.; Okura, S.; Fujita, H.; Kiryu, T.; Hoshi, H.

    2007-01-01

    Lung cancer screening using low dose X-ray CT scan has been an acceptable examination to detect cancers at early stage. We have been developing an automated detection scheme for lung nodules on CT scan by using second-order autocorrelation features and the initial performance for small nodules (< 10 mm) shows a high true-positive rate with less than four false-positive marks per case. In this study, an open database of lung images, LIDC (Lung Image Database Consortium), was employed to evaluate our detection scheme as an consistency test. The detection performance for solid and solitary nodules in LIDC, included in the first data set opened by the consortium, was 83% (10/12) true-positive rate with 3.3 false-positive marks per case. (orig.)

  7. Lung nodules after whole lung radiation

    International Nuclear Information System (INIS)

    Cohen, M.D.; Mirkin, D.L.; Provisor, A.; Hornback, N.B.; Smith, J.A.; Slabaugh, R.D.

    1983-01-01

    It is essential to recognize radiation pneumonitis after whole lung irradiation, or nodular changes in response to chemotherapy, so that such conditions are not mistaken for tumor metastases, causing grave error in patient management and the possibility of further lung damage

  8. Nodule detection in digital chest radiography: Introduction to the radius chest trial

    International Nuclear Information System (INIS)

    Baath, M.; Haakansson, M.; Boerjesson, S.; Kheddache, S.; Grahn, A.; Ruschin, M.; Tingberg, A.; Mattsson, S.; Maansson, L. G.

    2005-01-01

    Most digital radiographic systems of today have wide latitude and are hence able to provide images with a small constraint on dose level. This opens up for an unprejudiced dose optimisation. However, in order to succeed in the optimisation task, good knowledge of the imaging and detection processes is needed. As a part of the European-wide research project 'unification of physical and clinical requirements for medical X-ray imaging - governed by the Radiological Imaging Unification Strategies (RADIUS) Group - a major image quality trial was conducted by members of the group. The RADIUS chest trial was focused on the detection of lung nodules in digital chest radiography with the aims of determining to what extent (1) the detection of a nodule is dependent on its location, (2) the system noise disturbs the detection of lung nodules, (3) the anatomical noise disturbs the detection of lung nodules and (4) the image background and anatomical background act as pure noise for the detection of lung nodules. The purpose of the present paper is to give an introduction to the trial and describe the framework and set-up of the investigation. (authors)

  9. Emphysema and soluble CD14 are associated with pulmonary nodules in HIV-infected patients: implications for lung cancer screening.

    Science.gov (United States)

    Triplette, Matthew; Sigel, Keith M; Morris, Alison; Shahrir, Shahida; Wisnivesky, Juan P; Kong, Chung Y; Diaz, Phillip T; Petraglia, Alycia; Crothers, Kristina

    2017-07-31

    Lung cancer screening may benefit HIV-infected (HIV) smokers because of an elevated risk of lung cancer, but may have unique harms because of HIV-specific risk factors for false-positive screens. This study seeks to understand whether inflammatory biomarkers and markers of chronic lung disease are associated with noncalcified nodules at least 4 mm (NCN) in HIV compared with uninfected patients. This is a cohort study of Examinations of HIV-Associated Lung Emphysema (EXHALE), including 158 HIV and 133 HIV-uninfected participants. Participants underwent a laboratory assessment [including measurement of D-dimer, interleukin 6, and soluble CD14 (sCD14)], chest computed tomography (CT), and pulmonary function testing. We created multivariable logistic regression models to determine predictors of NCN in the participants stratified by HIV status, with attention to semiqualitative scoring of radiographic emphysema, markers of pulmonary function, and inflammatory biomarkers. Of the 291 participants, 69 had NCN on chest CT. As previously reported, there was no difference in prevalence of these nodules by HIV status. Emphysema and elevated sCD14 demonstrated an association with NCN in HIV participants independent of smoking status, CD4 cell count, HIV viral load, and pulmonary function. Emphysema and sCD14, a marker of immune activation, was associated with a higher prevalence of NCN on chest CT in HIV participants. Patients with chronic immune activation and emphysema may be at higher risk for both false-positive findings and incident lung cancer, thus screening in this group requires further study to understand the balance of benefits and harms.

  10. Lung nodule assessment in computed tomography. Precision of attenuation measurement based on computer-aided volumetry

    International Nuclear Information System (INIS)

    Knoess, Naomi; Hoffmann, B.; Fabel, M.; Wiese, C.; Bolte, H.; Heller, M.; Biederer, J.; Jochens, A.

    2009-01-01

    Purpose: to compare the reproducibility (r) of CT value measurement of pulmonary nodules using volumetry software (LungCare, LC) and manual ROIs (mROI). Materials and methods: 54 artificial nodules in a chest phantom were scanned three times with CT. CT values were measured with LC and mROI. The intrascan-r was assessed with three measurements in the first scan, and the interscan-r with measurements in three consecutive scans (one observer). Intrascan-r und interobserver-r (two obs.) were assessed in the first scan and in contrast-enhanced CT of 51 nodules from 15 patients (kernels b50f and b80f). Intrascan-r and interscan-r were described as the mean range and interobserver-r as the mean difference of CT values. The significance of differences was tested using t-test and sign test. Results: reproducibility was significantly higher for volumetry-based measurements in both artificial and patient nodules (range 0.11 vs. 6.16 HU for intrascan-r, 2.22 vs. 7.03 HU for interscan-r, difference 0.11 vs. 18.42 HU for interobserver-r; patients: 1.78 vs. 13.19 HU (b50f-Kernel) and 1.88 vs. 27.4 HU (b80f-Kernel) for intrascan-r, 3.71 vs. 22.43 HU for interobserver-r). Absolute CT values differed significantly between convolution kernels (pat./mROI: 29.3 [b50f] and 151.9 HU [b80f] pat./LC: 5 [b50f] and 147 HU [b80f]). Conclusion: the reproducibility of volumetry-based measurements of CT values in pulmonary nodules is significantly higher and should therefore be recommended, e.g. in dynamic chest CT protocols. Reproducibility does not depend on absolute CT values. (orig.)

  11. CT-guided marking of pulmonary nodules with a special lung marking wire before video-assisted thoracoscopic surgery. Review of 184 cases; CT-gestuetzte Drahtmarkierung vor videoassistierter thorakoskopischer OP von pulmonalen Rundherden. Eine Auswertung von 184 Faellen

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, M.K.; Eichfeld, U.; Kahn, T.; Stumpp, P. [Universitaetsklinikum Leipzig AoeR (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie

    2012-06-15

    Purpose: Minimally invasive techniques like video-assisted thoracoscopic surgery (VATS) are currently the method of choice for the resection of small pulmonary nodules, when they are located in the periphery of the lungs. To guarantee quick and safe intraoperative identification of the nodule, preoperative marking is necessary and sensible. We report about our experiences in 184 markings with a special lung marking wire, which is placed in or around the pulmonary nodule using CT guidance. Materials and Methods: In 184 patients (97 m, 87f, mean age: 58.1 {+-} 13.7 years) with pulmonary nodules, scheduled for resection with VATS, a special lung marking wire was placed preoperatively under CT guidance. We evaluated the technical success, safety, necessity of conversion to thoracotomy and histology in all patients. Results: The marking wire could be positioned successfully in 181 cases (98.4 %). There was one major complication (uncontrollable pneumothorax). Minor adverse events like small pneumothorax (53.3 %) or a perifocal bleeding (30.4 %) did not necessitate treatment. Complete resection of the marked nodule was successful in 98.4 % of the patients. Conversion to thoracotomy was necessary in 29 patients (15.9 %) due to bleeding, adhesions, malignancy or wire dislocation. Histology revealed a benign nodule in 96 cases (54.4 %) and a malignant lesion in 78 cases (45.6 %), of which only 21 nodules (11.5 %) turned out to present a primary pulmonary carcinoma. Conclusion: CT-guided marking of pulmonary nodules using a special marking wire followed by thoracoscopic resection is an efficient and safe method for diagnosing suspicious nodules in the periphery of the lung. (orig.)

  12. Diagnosis and management of solitary pulmonary nodules.

    Science.gov (United States)

    Jeong, Yeon Joo; Lee, Kyung Soo; Kwon, O Jung

    2008-12-01

    The advent of computed tomography (CT) screening with or without the help of computer-aided detection systems has increased the detection rate of solitary pulmonary nodules (SPNs), including that of early peripheral lung cancer. Helical dynamic (HD)CT, providing the information on morphologic and hemodynamic characteristics with high specificity and reasonably high accuracy, can be used for the initial assessment of SPNs. (18)F-fluorodeoxyglucose PET/CT is more sensitive at detecting malignancy than HDCT. Therefore, PET/CT may be selectively performed to characterize SPNs when HDCT gives an inconclusive diagnosis. Serial volume measurements are currently the most reliable methods for the tissue characterization of subcentimeter nodules. When malignant nodule is highly suspected for subcentimeter nodules, video-assisted thoracoscopic surgery nodule removal after nodule localization using the pulmonary nodule-marker system may be performed for diagnosis and treatment.

  13. Discriminative Localization in CNNs for Weakly-Supervised Segmentation of Pulmonary Nodules.

    Science.gov (United States)

    Feng, Xinyang; Yang, Jie; Laine, Andrew F; Angelini, Elsa D

    2017-09-01

    Automated detection and segmentation of pulmonary nodules on lung computed tomography (CT) scans can facilitate early lung cancer diagnosis. Existing supervised approaches for automated nodule segmentation on CT scans require voxel-based annotations for training, which are labor- and time-consuming to obtain. In this work, we propose a weakly-supervised method that generates accurate voxel-level nodule segmentation trained with image-level labels only. By adapting a convolutional neural network (CNN) trained for image classification, our proposed method learns discriminative regions from the activation maps of convolution units at different scales, and identifies the true nodule location with a novel candidate-screening framework. Experimental results on the public LIDC-IDRI dataset demonstrate that, our weakly-supervised nodule segmentation framework achieves competitive performance compared to a fully-supervised CNN-based segmentation method.

  14. Differential diagnosis of a solitary pulmonary nodule of the lung on the grounds of selected laboratory tests and radiological examination

    International Nuclear Information System (INIS)

    Szlachcinska, A.; Kozak, J.

    2011-01-01

    Objective: To present in detail the diagnosis of solitary pulmonary nodule and especially evaluation of: clinical data, analysis of radiological images, selected laboratory tests. Material and methods: There were 50 patients - 31 men and 19 women at the mean age 58.7 ± 11.4 years old who underwent surgical treatment because of a solitary pulmonary nodule. Interview, physical examination, computed tomography, bronchoscopy, spirometry, and laboratory tests needed for the operation were performed in all these patients. Additionally LDH, fibrinogen, ESR, and the tumour markers CEA, Ca 15-3, Ca 19-9, NSE, SCC, and Cyfra 21-1 were measured from the blood sample collected during admission. Results: Malignant tumour was diagnosed in 24 patients, benign in 26. There is a significant difference between patients with malignant and nonmalignant tumours in age (54.46 years vs. 63.33 years), size of the tumour in the lung scan of chest CT (1.53 cm vs. 1.91 cm) and location (lower right lobe vs. upper right lobe). There is no significant difference between type of tumour and sex, clinical symptoms and laboratory tests. Conclusions: 1. The risk factors of malignancy in patient with solitary pulmonary nodule are: age ≥ 56.5 years, size of the tumour in the lung scan of chest CT ≥ 1.45 cm, location in upper right lobe. 2. LDH, fibrinogen, ESR, and the tumour markers CEA, Ca 15-3, Ca 19-9, NSE, SCC, and Cyfra 21-1 are not useful in differential diagnosis of solitary pulmonary nodule. (authors)

  15. Radio-guided thoracoscopic surgery (RGTS) of small pulmonary nodules.

    Science.gov (United States)

    Ambrogi, Marcello Carlo; Melfi, Franca; Zirafa, Carmelina; Lucchi, Marco; De Liperi, Annalisa; Mariani, Giuliano; Fanucchi, Olivia; Mussi, Alfredo

    2012-04-01

    The demand for adequate tissue sampling to determine individual tumor behavior is increasing the number of lung nodule resections, even when the diagnosis is already recognized. Video-assisted thoracic surgery (VATS) is the procedure of choice for diagnosis and treatment of small pulmonary nodules. Difficulties in localizing smaller and deeper nodules have been approached with different techniques. Herein we report our 13-years' experience with radio-guided thoracoscopic resection. Patients with pulmonary nodules smaller than 1 cm and/or deeper than 1 cm, below the visceral pleura, underwent computed tomography (CT)-guided injection of a solution, composed of 0.2 ml (99)Tc-labeled human serum albumin microspheres and 0.1 ml nonionic contrast, into the nodule. During the VATS procedure, an 11-mm-diameter collimated probe connected to a gamma ray detector was introduced to scan the lung surface. The area of major radioactivity, which matched with the area of the nodule, was resected. From 1997 to 2009, 573 patients underwent thoracoscopic resection of small pulmonary nodules, 211 with the radio-guided technique. There were 159 men and 52 women, with an average age of 60.6 years (range = 12-83). The mean duration of the surgical procedure was 41 min (range = 20-100). The procedure was successful in 208/211 cases. Three patients (0.5%) required conversion to a minithoracotomy. The mean length of pleural drainage and hospital stay was 2.3 and 3.7 days, respectively. Histological examination showed 98 benign lesions and 113 malignant lesions (61 metastases and 52 primary lung cancers). This study confirms that radio-guided localization of small pulmonary nodules is a feasible, safe, and quick procedure, with a high rate of success. The spread of the sentinel lymph node technique has increased the availability of technology required for RGTS.

  16. Utility of multidetector row computed tomography and virtual bronchoscopy in evaluation of hemoptysis due to lung cancer

    Directory of Open Access Journals (Sweden)

    Sherif A.A. Mohamed

    2016-01-01

    Conclusion: MDCT angiography is a useful and non invasive method that allows a rapid and detailed identification of abnormal vasculature responsible for hemoptysis in patients with lung cancer. MDCT-generated virtual bronchoscopy is an accurate, and non invasive method for evaluating obstructions, endoluminal masses, and external compressions in patients with hemoptysis due to lung cancer.

  17. Additional effects of FDG-PET to thin-section CT for the differential diagnosis of lung nodules. A Japanese multicenter clinical study

    International Nuclear Information System (INIS)

    Kubota, Kazuo; Murakami, Koji; Inoue, Tomio; Saga, Tsuneo; Shiomi, Susumu

    2011-01-01

    This study was a controlled multicenter clinical study on patients with peripheral lung nodules to verify the improvement in the diagnostic ability of fluorodeoxyglucose-positron emission tomography (FDG-PET) when used in combination with thin-section CT (TS-CT). Patients with peripheral lung nodules (long maximal diameter: 10-30 mm) detected using CT were examined using TS-CT and FDG-PET for the differential diagnosis of benign or malignant lesions. The primary endpoint was the specificity of the results using a combination of TS-CT and FDG-PET, compared with the results for TS-CT alone. Images were interpreted by investigators at each institution. Blind readings were also performed by an independent image interpretation committee. The gold standard was a pathological diagnosis determined using a surgical or biopsy specimen obtained after PET; and the patients in whom a pathological diagnosis could not be obtained were diagnosed based on a follow-up TS-CT performed more than 6 months later. Adverse reactions to FDG were also evaluated. The blind reading results for 82 lesions in 81 subjects eligible for analysis among the 90 subjects included in the study showed a specificity of 91.2% (31/34) (95% confidence interval (CI): 76.3-98.1) for TS-CT + PET, compared with a specificity of 67.6% (23/34) (95% CI: 49.5-82.6) for TS-CT alone. The specificity was significantly improved by the addition of the PET findings (p<0.05). The sensitivity improved from 89.6% (43/48) for TS-CT to 91.7% (44/48) for TS-CT + PET; the addition of PET increased the level of confidence in the diagnosis, but the difference was not significant. The results reported by the institutional investigators were not significantly different. No serious adverse reactions occurred, although two of the 90 subjects exhibited mild adverse reactions. The addition of FDG-PET to TS-CT for the differential diagnosis of benign or malignant peripheral lung nodules resulted in a significant improvement in

  18. Paediatric CT: the effects of increasing image noise on pulmonary nodule detection

    International Nuclear Information System (INIS)

    Punwani, Shonit; Davies, Warren; Greenhalgh, Rebecca; Humphries, Paul; Zhang, Jie

    2008-01-01

    A radiation dose of any magnitude can produce a detrimental effect manifesting as an increased risk of cancer. Cancer development may be delayed for many years following radiation exposure. Minimizing radiation dose in children is particularly important. However, reducing the dose can reduce image quality and may, therefore, hinder lesion detection. We investigated the effects of reducing the image signal-to-noise ratio (SNR) on CT lung nodule detection for a range of nodule sizes. A simulated nodule was placed at the periphery of the lung on an axial CT slice using image editing software. Multiple copies of the manipulated image were saved with various levels of superimposed noise. The image creation process was repeated for a range of nodule sizes. For a given nodule size, output images were read independently by four Fellows of The Royal College of Radiologists. The overall sensitivities in detecting nodules for the SNR ranges 0.8-0.99, 1-1.49, and 1.5-2.35 were 40.5%, 77.3% and 90.3%, respectively, and the specificities were 47.9%, 73.3% and 75%, respectively. The sensitivity for detecting lung nodules increased with nodule size and increasing SNR. There was 100% sensitivity for the detection of nodules of 4-10 mm in diameter at SNRs greater than 1.5. Reducing medical radiation doses in children is of paramount importance. For chest CT examinations this may be counterbalanced by reduced sensitivity and specificity combined with an increased uncertainty of pulmonary nodule detection. This study demonstrates that pulmonary nodules of 4 mm and greater in diameter can be detected with 100% sensitivity provided that the perceived image SNR is greater than 1.5. (orig.)

  19. Adaptive statistical iterative reconstruction-applied ultra-low-dose CT with radiography- comparable radiation dose: Usefulness for lung nodule detection

    International Nuclear Information System (INIS)

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Lee, Kyung Soo; Moon, Jung Won

    2015-01-01

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, < 0.01, 0.038, and < 0.868 for observers 1, 2, 3, 4, and 5, respectively). The sensitivity of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT in three out of the five observers (p < 0.01 for three observers, and p = 0.064 and 0.146 for two observers). In jackknife alternative free-response receiver operating characteristic analysis, the mean values of figure-of-merit (FOM) for FBP, ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT

  20. Adaptive statistical iterative reconstruction-applied ultra-low-dose CT with radiography- comparable radiation dose: Usefulness for lung nodule detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Lee, Kyung Soo [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Moon, Jung Won [Dept. of Radiology, Kangbuk Samsung Hospital, Seoul (Korea, Republic of)

    2015-10-15

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, < 0.01, 0.038, and < 0.868 for observers 1, 2, 3, 4, and 5, respectively). The sensitivity of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT in three out of the five observers (p < 0.01 for three observers, and p = 0.064 and 0.146 for two observers). In jackknife alternative free-response receiver operating characteristic analysis, the mean values of figure-of-merit (FOM) for FBP, ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT.

  1. Pulmonary nodules in workers exposed to urban stressor

    Energy Technology Data Exchange (ETDEWEB)

    Sancini, A. [University of Rome ' Sapienza' , Department of Occupational Medicine, Viale Regina Elena 336, 00161 Rome (Italy); Fioravanti, M. [University of Rome ' Sapienza' , Department of Psychiatric Science and Psychological Medicine, Piazzale Aldo Moro 5, 00185 Rome (Italy); Ciarrocca, M.; Palermo, P.; Fiaschetti, M.; Schifano, M.P. [University of Rome ' Sapienza' , Department of Occupational Medicine, Viale Regina Elena 336, 00161 Rome (Italy); Tomei, G. [University of Rome ' Sapienza' , Department of Psychiatric Science and Psychological Medicine, Piazzale Aldo Moro 5, 00185 Rome (Italy); Tomei, F., E-mail: francesco.tomei@uniroma1.it [University of Rome ' Sapienza' , Department of Occupational Medicine, Viale Regina Elena 336, 00161 Rome (Italy)

    2010-07-15

    By multilayer spiral low-dose computed tomography (LD-CT) of the chest this study assesses the early detection of lung lesions on a sample of 100 traffic policemen of a big Italian city professionally exposed to urban pollutants and 100 controls non-occupationally exposed to urban pollutants matched by sex, age, length of service and cigarette smoking habit. Exposure to urban pollutants in traffic policemen was characterized using the annual average concentrations of PM{sub 10}, NO{sub 2} and benzene in the period 1998-2008 measured by fixed monitoring stations located in different areas of the city. A significant and increasing number of suspicious lung nodules with diameters between 5 and 10 mm was observed: in traffic policemen (including smokers and non-smokers) vs. controls (including smokers and non-smokers); in total smokers (including traffic policemen and controls) vs. total non-smokers (traffic policemen and controls); in smoker traffic policemen vs. smoker controls and vs. non-smoker traffic policemen; in non-smoker traffic policemen vs. non-smoker controls. The RR of finding cases with at least one lung nodule with diameters between 5 and 10 mm in traffic policemen (including smokers and non-smokers) compared to controls (including smokers and non-smokers) is 1.94 (CI 1.13-3.31); in total smokers vs. non-smokers the RR is 1.96 (CI 1.20-3.19). The comparison between the interaction exposure and smoking shows an increase in smoker traffic policemen than in smoker controls (RR=2.14; CI 1.02-4.52). The RR for smoker traffic policemen was higher than in non-smoker traffic policemen (RR=2.09; CI 1.19-3.66). The results of our study show that: (1) while smoker workers have a higher risk for developing solid suspicious lung nodules, the simple routinely exposure to urban pollutants is unable to produce the same kind of increased risk; (2) the interaction of smoking and exposure to urban pollutants greatly increases the risk for the development of solid

  2. Pulmonary nodules in workers exposed to urban stressor

    International Nuclear Information System (INIS)

    Sancini, A.; Fioravanti, M.; Ciarrocca, M.; Palermo, P.; Fiaschetti, M.; Schifano, M.P.; Tomei, G.; Tomei, F.

    2010-01-01

    By multilayer spiral low-dose computed tomography (LD-CT) of the chest this study assesses the early detection of lung lesions on a sample of 100 traffic policemen of a big Italian city professionally exposed to urban pollutants and 100 controls non-occupationally exposed to urban pollutants matched by sex, age, length of service and cigarette smoking habit. Exposure to urban pollutants in traffic policemen was characterized using the annual average concentrations of PM 10 , NO 2 and benzene in the period 1998-2008 measured by fixed monitoring stations located in different areas of the city. A significant and increasing number of suspicious lung nodules with diameters between 5 and 10 mm was observed: in traffic policemen (including smokers and non-smokers) vs. controls (including smokers and non-smokers); in total smokers (including traffic policemen and controls) vs. total non-smokers (traffic policemen and controls); in smoker traffic policemen vs. smoker controls and vs. non-smoker traffic policemen; in non-smoker traffic policemen vs. non-smoker controls. The RR of finding cases with at least one lung nodule with diameters between 5 and 10 mm in traffic policemen (including smokers and non-smokers) compared to controls (including smokers and non-smokers) is 1.94 (CI 1.13-3.31); in total smokers vs. non-smokers the RR is 1.96 (CI 1.20-3.19). The comparison between the interaction exposure and smoking shows an increase in smoker traffic policemen than in smoker controls (RR=2.14; CI 1.02-4.52). The RR for smoker traffic policemen was higher than in non-smoker traffic policemen (RR=2.09; CI 1.19-3.66). The results of our study show that: (1) while smoker workers have a higher risk for developing solid suspicious lung nodules, the simple routinely exposure to urban pollutants is unable to produce the same kind of increased risk; (2) the interaction of smoking and exposure to urban pollutants greatly increases the risk for the development of solid suspicious lung

  3. MDCT assessment of resectability in hilar cholangiocarcinoma.

    Science.gov (United States)

    Ni, Qihong; Wang, Haolu; Zhang, Yunhe; Qian, Lijun; Chi, Jiachang; Liang, Xiaowen; Chen, Tao; Wang, Jian

    2017-03-01

    The purpose of this study is to investigate the value of multidetector computed tomography (MDCT) assessment of resectability in hilar cholangiocarcinoma, and to identify the factors associated with unresectability and accurate evaluation of resectability. From January 2007 to June 2015, a total of 77 consecutive patients were included. All patients had preoperative MDCT (with MPR and MinIP) and surgical treatment, and were pathologically proven with hilar cholangiocarcinoma. The MDCT images were reviewed retrospectively by two senior radiologists and one hepatobiliary surgeon. The surgical findings and pathologic results were considered to be the gold standard. The Chi square test was used to identify factors associated with unresectability and accurate evaluation of resectability. The sensitivity, specificity, and overall accuracy of MDCT assessment were 83.3 %, 75.9 %, and 80.5 %, respectively. The main causes of inaccuracy were incorrect evaluation of N2 lymph node metastasis (4/15) and distant metastasis (4/15). Bismuth type IV tumor, main or bilateral hepatic artery involvement, and main or bilateral portal vein involvement were highly associated with unresectability (P hilar cholangiocarcinoma. Bismuth type IV tumor and main or bilateral vascular involvement highly suggest the unresectability of hilar cholangiocarcinoma. Patients without biliary drainage have a more accurate MDCT evaluation of resectability. We suggest MDCT should be performed before biliary drainage to achieve an accurate evaluation of resectability in hilar cholangiocarcinoma.

  4. TH-CD-207B-10: Effect of CT Reconstruction Filter On Measured Hounsfield Values in Lung Nodules

    Energy Technology Data Exchange (ETDEWEB)

    Little, K; Reiser, I; Sanchez, A; Chung, J; MacMahon, H; Lu, Z [The University of Chicago, Chicago, IL (United States)

    2016-06-15

    Purpose: Measured Hounsfield numbers in CT are used by radiologists to determine the presence of calcium or fat in lung nodules, either of which suggests a benign diagnosis. However, substantial variations in Hounsfield number may arise due to the use of different reconstruction parameters such as the filter/kernel, leading to measurement inaccuracies. This quality improvement project was developed to demonstrate measurement pitfalls and to identify acceptable conditions for incorporating Hounsfield values as a factor in lung nodule diagnosis. Methods: 12 mm-diameter spheres of polyurethane and urethane foam were placed into an anthropomorphic chest phantom, and 10 mm-diameter tubes with varying iodine concentrations were placed into a 16 cm PMMA cylindrical phantom. Additionally, 11 mm-diameter PMMA and HDPE spheres were placed in a 10 cm PMMA cylindrical phantom. Phantoms were scanned at 120 kVp using a Siemens Biograph mCT and on a Philips iCT and reconstructed using various reconstruction filters. Results: For the Siemens system, both sharp kernels and smooth kernels altered the Hounsfield numbers. Hounsfield numbers varied within a range of 8.9 HU for urethane foam and varied within 58.7 HU for polyurethane. The iodine measurements varied up to 37.9 HU for the lowest concentration. For the Philips system, Hounsfield numbers were relatively consistent but were higher for the “Detail” and “Lung Enhanced” filters, varying by 36.9 HU for PMMA and 15.9 HU for HDPE. Conclusion: Reconstruction filters can change the measured Hounsfield numbers of nodular objects, especially with detail-enhancing (sharpening) filters commonly used in lung imaging. Measured values should only be used for diagnostic decision support with filters that have demonstrated accuracy and consistency. While filter accuracy statements are available from manufacturers, radiologists are likely not aware of the extent of potential variations that can occur in a clinical setting.

  5. Benign metastasizing leiomyoma presenting as multiple cystic pulmonary nodules: a case report.

    Science.gov (United States)

    Choe, Yeong Hun; Jeon, So Yeon; Lee, Yoon Chae; Chung, Myung Ja; Park, Seung Yong; Lee, Yong Chul; Kim, So Ri

    2017-09-12

    Benign metastatic leiomyoma (BML) is an extremely rare disease. Although uterine leiomyomas are benign histologically, they can metastasize to distant sites. While the incidence is very low, the lung is the organ most frequently affected by BML. Pulmonary BML usually presents as numerous well-defined nodules of various sizes, while the cavitary or cystic features in the nodules are rarely observed on radiologic images. A 52-year-old woman complained of cough and dyspnea for one month. She had been previously diagnosed with uterine leiomyoma and had undergone total hysterectomy about 14 years prior. High-resolution computed tomography (CT) images showed that there were multiple cystic nodules of various sizes in both lungs. Pathologic examination revealed that the pulmonary nodule had complex branching glandular structures lined by a single layer of simple cuboidal to columnar epithelium that was surrounded by abundant spindle cells. Additional immunohistochemistry data suggested that pulmonary nodule diagnosis was BML-associated uterine leiomyoma. In this report, we introduce an interesting case of pulmonary BML that presented as a combination of various kinds of nodules including simple round nodules, simple cysts, and cysts with a solid portion, which are very rare radiologic features of BML in lung. In addition, when the patient is a woman of reproductive age, physicians should meticulously review the gynecological history and suspect BML when there are various cystic pulmonary lesions.

  6. Fate of pulmonary nodules detected by computer-aided diagnosis and physician review on the computed tomography simulation images for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Park, Hyo Jung; Kim, Jin Sung; Park, Hee Chul; Oh, Dong Ryul

    2014-01-01

    To investigate the frequency and clinical significance of detected incidental lung nodules found on computed tomography (CT) simulation images for hepatocellular carcinoma (HCC) using computer-aided diagnosis (CAD) and a physician review. Sixty-seven treatment-naive HCC patients treated with transcatheter arterial chemoembolization and radiotherapy (RT) were included for the study. Portal phase of simulation CT images was used for CAD analysis and a physician review for lung nodule detection. For automated nodule detection, a commercially available CAD system was used. To assess the performance of lung nodule detection for lung metastasis, the sensitivity, negative predictive value (NPV), and positive predictive value (PPV) were calculated. Forty-six patients had incidental nodules detected by CAD with a total of 109 nodules. Only 20 (18.3%) nodules were considered to be significant nodules by a physician review. The number of significant nodules detected by both of CAD or a physician review was 24 in 9 patients. Lung metastases developed in 11 of 46 patients who had any type of nodule. The sensitivities were 58.3% and 100% based on patient number and on the number of nodules, respectively. The NPVs were 91.4% and 100%, respectively. And the PPVs were 77.8% and 91.7%, respectively. Incidental detection of metastatic nodules was not an uncommon event. From our study, CAD could be applied to CT simulation images allowing for an increase in detection of metastatic nodules.

  7. Detection of the anatomic structure and pathology in animal lung specimens: comparison of micro CT and multi-detector row CT

    International Nuclear Information System (INIS)

    Lim, Kun Young; Lee, Hyun Ju; Lee, Chang Hyun; Son, Kyu Ri; Goo, Jin Mo; Im, Jung Gi; Seo, Joon Beom

    2006-01-01

    We wanted to compare the capability of micro CT and the clinically available thin-slice multi-detector row CT (MDCT) for demonstrating fine anatomic structures and pathological lesions in formalin-fixed lung specimens. The porcine lung with shark liver oil-induced lipoid pneumonia and the canine lung with pulmonary paragonimiasis were fixed by ventilating them with formalin vapor, and they were then sliced into one-centimeter thick sections. Micro CT (section thickness, 18 micrometer) and MDCT (section thickness, 0.75 mm) images were acquired in four of the lung slices of the lipoid pneumonia specimen and in five of the lung slices of the paragonimiasis specimen. On 62 pairs of micro CT and MDCT images, 169 pairs of rectangular ROIs were manually drawn in the corresponding locations. Two chest radiologists recorded the detectability of three kinds of anatomic structures (lobular core structure, interlobular septum and small bronchiolar lumen) and two kinds of pathological lesions (ground-glass opacity and consolidation) with using a five-point scale. The statistical comparison was performed by using the Wilcoxon signed rank test. Interobserver agreement was evaluated with kappa statistics. For all observers, all the kinds of anatomic structures and pathological lesions were detected better on the micro CT images than on the MDCT images (ρ < 0.01). Agreement was fair between two observers (κ = 0.38, ρ < 0.001). The fine anatomic structures and pathological lesions of the lung were more accurately demonstrated on micro CT than on thin-slice MDCT in the inflated and fixed lung specimens

  8. Detection of the anatomic structure and pathology in animal lung specimens: comparison of micro CT and multi-detector row CT

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kun Young [National Cancer Center, Goyang (Korea, Republic of); Lee, Hyun Ju; Lee, Chang Hyun; Son, Kyu Ri; Goo, Jin Mo; Im, Jung Gi [Seoul National University Hospital and the Institute of Radiation Medicine, Seoul (Korea, Republic of); Seo, Joon Beom [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2006-05-15

    We wanted to compare the capability of micro CT and the clinically available thin-slice multi-detector row CT (MDCT) for demonstrating fine anatomic structures and pathological lesions in formalin-fixed lung specimens. The porcine lung with shark liver oil-induced lipoid pneumonia and the canine lung with pulmonary paragonimiasis were fixed by ventilating them with formalin vapor, and they were then sliced into one-centimeter thick sections. Micro CT (section thickness, 18 micrometer) and MDCT (section thickness, 0.75 mm) images were acquired in four of the lung slices of the lipoid pneumonia specimen and in five of the lung slices of the paragonimiasis specimen. On 62 pairs of micro CT and MDCT images, 169 pairs of rectangular ROIs were manually drawn in the corresponding locations. Two chest radiologists recorded the detectability of three kinds of anatomic structures (lobular core structure, interlobular septum and small bronchiolar lumen) and two kinds of pathological lesions (ground-glass opacity and consolidation) with using a five-point scale. The statistical comparison was performed by using the Wilcoxon signed rank test. Interobserver agreement was evaluated with kappa statistics. For all observers, all the kinds of anatomic structures and pathological lesions were detected better on the micro CT images than on the MDCT images ({rho} < 0.01). Agreement was fair between two observers ({kappa} = 0.38, {rho} < 0.001). The fine anatomic structures and pathological lesions of the lung were more accurately demonstrated on micro CT than on thin-slice MDCT in the inflated and fixed lung specimens.

  9. Comparison of capability of dynamic O2-enhanced MRI and quantitative thin-section MDCT to assess COPD in smokers

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Keiko; Aoyama, Nobukazu; Onishi, Yumiko; Takenaka, Daisuke; Matsumoto, Sumiaki; Nishimura, Yoshihiro; Sugimura, Kazuro

    2012-01-01

    Purpose: The purpose of this study was to directly and prospectively compare the capability of dynamic O 2 -enhanced MRI and quantitatively assessed thin-section MDCT to assess smokers’ COPD in a large prospective cohort. Materials and methods: The GOLD criteria for smokers were used to classify 187 smokers into four clinical stage groups as follows: smokers without COPD (n = 56) and with mild (n = 54), moderate (n = 52) and severe or very severe COPD (n = 24). All smokers underwent dynamic O 2 -enhanced MRI, MDCT and pulmonary function tests. Mean relative enhancement ratio and mean wash-in time on MRI and CT-based functional lung volume (CT-based FLV) as well as the ratio of airway wall area to total airway area on MDCT were computationally calculated. Then, all indexes were significantly correlated with functional parameters. To determine the efficacy of all indexes for clinical stage classification, the indexes for the four clinical groups were statistically compared by using Tukey's honestly significant difference multiple comparison test. Results: All indexes had significant correlations with functional parameters (p 2 -enhanced MRI for assessment of COPD in smokers is potentially as efficacious as quantitatively assessed thin-section MDCT.

  10. Computer-assisted solid lung nodule 3D volumetry on CT. Influence of scan mode and iterative reconstruction. A CT phantom study

    International Nuclear Information System (INIS)

    Coenen, Adriaan; Honda, Osamu; Tomiyama, Noriyuki; Jagt, Eric J. van der

    2013-01-01

    The objective of this study was to evaluate the effect of high-resolution scan mode and iterative reconstruction on lung nodule 3D volumetry. Solid nodules with various sizes (5, 8, 10 and 12 mm) were placed inside a chest phantom. CT images were obtained with various tube currents, scan modes (conventional mode, high-resolution mode) and iterative reconstructions [0, 50 and 100% blending of adaptive statistical iterative reconstruction (ASiR) and filtered back projection]. The nodule volumes were calculated using semiautomatic software and compared with the assumed volume from the nodules. The mean absolute and relative percentage error improved when using iterative reconstruction especially when using the conventional scan mode; however, this effect was not significant. Significant reduction in volume overestimation was observed when using high-resolution scan mode (P=0.011). The high-resolution mode significantly reduces the volume overestimation of 3D volumetry. Iterative reconstruction shows a reduction in volume overestimation and error margin especially with the conventional scan mode; however, this effect was not significant. (author)

  11. [Lung abscess which needed to be distinguished from lung cancer; report of a case].

    Science.gov (United States)

    Kamiya, Kazunori; Yoshizu, Akira; Misumi, Yuki; Hida, Naoya; Okamoto, Hiroaki; Yoshida, Sachiko

    2011-12-01

    Differential diagnosis of lung abscess from lung cancer is sometimes difficult. In February 2009, a 57-year-old man consulted our hospital complaining of bloody sputum. Chest computed tomography (CT) demonstrated a 2.5 cm nodule with pleural indentation, spicula and vascular involvement in the right S(3). Bronchofiberscope could not establish a definitive diagnosis. Blood test showed no abnormality. Three months later, progression of the nodule to the adjacent middle lobe was demonstrated by follow-up CT, and F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) showed isotope accumulation in the nodule and hilar lymph node. A diagnosis of lung cancer was suspected and surgery was performed. The diagnosis of possible lung cancer was made by needle biopsy, and the patient underwent right upper lobectomy and partial resection of middle lobe with standard nodal dissection. The final pathological diagnosis was lung abscess. Lung abscess must be kept in mind as a possible differential diagnosis when abnormal shadow suspected of lung cancer is observed.

  12. A Comparison of Two Commercial Volumetry Software Programs in the Analysis of Pulmonary Ground-Glass Nodules: Segmentation Capability and Measurement Accuracy

    Science.gov (United States)

    Kim, Hyungjin; Lee, Sang Min; Lee, Hyun-Ju; Goo, Jin Mo

    2013-01-01

    Objective To compare the segmentation capability of the 2 currently available commercial volumetry software programs with specific segmentation algorithms for pulmonary ground-glass nodules (GGNs) and to assess their measurement accuracy. Materials and Methods In this study, 55 patients with 66 GGNs underwent unenhanced low-dose CT. GGN segmentation was performed by using 2 volumetry software programs (LungCARE, Siemens Healthcare; LungVCAR, GE Healthcare). Successful nodule segmentation was assessed visually and morphologic features of GGNs were evaluated to determine factors affecting segmentation by both types of software. In addition, the measurement accuracy of the software programs was investigated by using an anthropomorphic chest phantom containing simulated GGNs. Results The successful nodule segmentation rate was significantly higher in LungCARE (90.9%) than in LungVCAR (72.7%) (p = 0.012). Vascular attachment was a negatively influencing morphologic feature of nodule segmentation for both software programs. As for measurement accuracy, mean relative volume measurement errors in nodules ≥ 10 mm were 14.89% with LungCARE and 19.96% with LungVCAR. The mean relative attenuation measurement errors in nodules ≥ 10 mm were 3.03% with LungCARE and 5.12% with LungVCAR. Conclusion LungCARE shows significantly higher segmentation success rates than LungVCAR. Measurement accuracy of volume and attenuation of GGNs is acceptable in GGNs ≥ 10 mm by both software programs. PMID:23901328

  13. A comparison of two commercial volumetry software programs in the analysis of pulmonary ground-glass nodules: Segmentation capability and measurement accuracy

    International Nuclear Information System (INIS)

    Kim, Hyung Jin; Park, Chang Min; Lee, Sang Min; Lee, Hyun Joo; Goo, Jin Mo

    2013-01-01

    To compare the segmentation capability of the 2 currently available commercial volumetry software programs with specific segmentation algorithms for pulmonary ground-glass nodules (GGNs) and to assess their measurement accuracy. In this study, 55 patients with 66 GGNs underwent unenhanced low-dose CT. GGN segmentation was performed by using 2 volumetry software programs (LungCARE, Siemens Healthcare; LungVCAR, GE Healthcare). Successful nodule segmentation was assessed visually and morphologic features of GGNs were evaluated to determine factors affecting segmentation by both types of software. In addition, the measurement accuracy of the software programs was investigated by using an anthropomorphic chest phantom containing simulated GGNs. The successful nodule segmentation rate was significantly higher in LungCARE (90.9%) than in LungVCAR (72.7%) (p = 0.012). Vascular attachment was a negatively influencing morphologic feature of nodule segmentation for both software programs. As for measurement accuracy, mean relative volume measurement errors in nodules ≥ 10 mm were 14.89% with LungCARE and 19.96% with LungVCAR. The mean relative attenuation measurement errors in nodules ≥ 10 mm were 3.03% with LungCARE and 5.12% with LungVCAR. LungCARE shows significantly higher segmentation success rates than LungVCAR. Measurement accuracy of volume and attenuation of GGNs is acceptable in GGNs ≥ 10 mm by both software programs.

  14. A comparison of two commercial volumetry software programs in the analysis of pulmonary ground-glass nodules: Segmentation capability and measurement accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jin; Park, Chang Min; Lee, Sang Min; Lee, Hyun Joo; Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2013-08-15

    To compare the segmentation capability of the 2 currently available commercial volumetry software programs with specific segmentation algorithms for pulmonary ground-glass nodules (GGNs) and to assess their measurement accuracy. In this study, 55 patients with 66 GGNs underwent unenhanced low-dose CT. GGN segmentation was performed by using 2 volumetry software programs (LungCARE, Siemens Healthcare; LungVCAR, GE Healthcare). Successful nodule segmentation was assessed visually and morphologic features of GGNs were evaluated to determine factors affecting segmentation by both types of software. In addition, the measurement accuracy of the software programs was investigated by using an anthropomorphic chest phantom containing simulated GGNs. The successful nodule segmentation rate was significantly higher in LungCARE (90.9%) than in LungVCAR (72.7%) (p = 0.012). Vascular attachment was a negatively influencing morphologic feature of nodule segmentation for both software programs. As for measurement accuracy, mean relative volume measurement errors in nodules ≥ 10 mm were 14.89% with LungCARE and 19.96% with LungVCAR. The mean relative attenuation measurement errors in nodules ≥ 10 mm were 3.03% with LungCARE and 5.12% with LungVCAR. LungCARE shows significantly higher segmentation success rates than LungVCAR. Measurement accuracy of volume and attenuation of GGNs is acceptable in GGNs ≥ 10 mm by both software programs.

  15. Solitary pulmonary nodule by pulmonary hematoma under warfarin therapy

    International Nuclear Information System (INIS)

    Scheppach, W.; Kulke, H.; Liebau, G.; Braun, H.; Wuerzburg Univ.

    1983-01-01

    Pulmonary hematoma is a rare cause of a pulmonary nodule. Mostly it results from penetrating or blunt chest injuries. The case of a patient is reported, whose chest X-ray showed a pulmonary nodule suspected of malignancy. This patient was maintained permanently on anticoagulants (warfarin derivates) after cardiac valve replacement with a prosthesis. A definite diagnosis could not be established by non-invasive methods. A needle biopsy of the lung was impracticable because of the location of the pulmonary lesion; an exploratory thoracotomy could not be carried out due to a general indication of nonoperability. Control examinations showed that the pulmonary nodule had vanished completely within four months. In consideration of the patient's clinical situation it can be concluded that the pulmonary lesion was caused by a hematoma of the lung. (orig.) [de

  16. Solitary pulmonary nodule by pulmonary hematoma under warfarin therapy

    Energy Technology Data Exchange (ETDEWEB)

    Scheppach, W.; Kulke, H.; Liebau, G.; Braun, H.

    1983-06-01

    Pulmonary hematoma is a rare cause of a pulmonary nodule. Mostly it results from penetrating or blunt chest injuries. The case of a patient is reported, whose chest X-ray showed a pulmonary nodule suspected of malignancy. This patient was maintained permanently on anticoagulants (warfarin derivates) after cardiac valve replacement with a prosthesis. A definite diagnosis could not be established by non-invasive methods. A needle biopsy of the lung was impracticable because of the location of the pulmonary lesion; an exploratory thoracotomy could not be carried out due to a general indication of nonoperability. Control examinations showed that the pulmonary nodule had vanished completely within four months. In consideration of the patient's clinical situation it can be concluded that the pulmonary lesion was caused by a hematoma of the lung.

  17. Prognostic importance of pleural attachment status measured by pretreatment CT images in patients with stage IA lung adenocarcinoma: measurement of the ratio of the interface between nodule and neighboring pleura to nodule surface area

    Science.gov (United States)

    Kawata, Y.; Niki, N.; Kusumoto, M.; Ohmatsu, H.; Aokage, K.; Ishii, G.; Matsumoto, Y.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2018-02-01

    Screening for lung cancer with low-dose computed tomography (CT) has led to increased recognition of small lung cancers and is expected to increase the rate of detection of early-stage lung cancer. Major concerns in the implementation of the CT screening of large populations include determining the appropriate management of pulmonary nodules found on a scan. The identification of patients with early-stage lung cancer who have a higher risk for relapse and who require more aggressive surveillance has been a target of intense investigation. This study was performed to investigate whether image features of internal intensity in combination with surrounding structure characteristics are associated with an increased risk of relapse in patients with stage IA lung adenocarcinoma. We focused on pleural attachment status which is one of morphological characteristics associated with prognosis in three-dimensional thoracic CT images.

  18. Seven-microRNA panel for lung adenocarcinoma early diagnosis in patients presenting with ground-glass nodules

    Directory of Open Access Journals (Sweden)

    He Y

    2017-12-01

    Full Text Available Yayi He,1,2,* Yang Yang,3,* Peng Kuang,1 Shengxiang Ren,1 Leslie Rozeboom,2 Christopher J Rivard,2 Xuefei Li,4 Caicun Zhou,1 Fred R Hirsch2 1Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China; 2Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; 3Department of Surgery, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, 4Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: MicroRNA (miRNA expression is correlated with tumor histology, differentiation, invasiveness and treatment outcome. We aimed to identify miRNAs whose differential expression might enable early diagnosis of lung adenocarcinoma in patients presenting with ground-glass nodules (GGNs.Methods: To identify potential miRNAs of interest, we analyzed the miRNA expression profile of tumor and adjacent non-para-tumor tissue in three participants by next-generation sequencing (NGS. We then assessed the expression levels of the miRNAs of interest in 73 lung adenocarcinomas presenting with GGNs with matched adjacent non-tumor tissue by quantitative real-time polymerase chain reaction (qRT-PCR. We also detected the miRNA panel in 66 lung benign diseases and 66 lung adenocarcinomas presenting with GGN lesion tissues by qRT-PCR. Target genes of our selected miRNA panel were predicted using Miranda with default parameters.Results: Twenty-three miRNAs showed differential expression between tumor and adjacent non-tumor tissue by NGS. Five miRNAs exhibited higher expression in tumor tissue compared to adjacent non-tumor tissue (P

  19. Automatic detection of spiculation of pulmonary nodules in computed tomography images

    DEFF Research Database (Denmark)

    Ciompi, F; Jacobs, C; Scholten, E.T.

    2015-01-01

    to classify spiculated nodules via supervised learning. We tested our approach on a set of nodules from the Danish Lung Cancer Screening Trial (DLCST) dataset. Our results show that the proposed method outperforms other 3-D descriptors of morphology in the automatic assessment of spiculation. © (2015......-up procedure. For this reason, lung cancer screening scenario would benefit from the presence of a fully automatic system for the assessment of spiculation. The presented framework relies on the fact that spiculated nodules mainly differ from non-spiculated ones in their morphology. In order to discriminate....... A library of spectra is created by clustering data via unsupervised learning. The centroids of the clusters are used to label back each spectrum in the sampling pattern. A compact descriptor encoding the nodule morphology is obtained as the histogram of labels along all the spherical surfaces and used...

  20. Computerized detection of lung nodules by means of "virtual dual-energy" radiography.

    Science.gov (United States)

    Chen, Sheng; Suzuki, Kenji

    2013-02-01

    Major challenges in current computer-aided detection (CADe) schemes for nodule detection in chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose in this study was to develop a CADe scheme with improved sensitivity and specificity by use of "virtual dual-energy" (VDE) CXRs where ribs and clavicles are suppressed with massive-training artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the MTANN technique that had been trained with real dual-energy imaging. Our scheme detected nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic and gray-level-based features were extracted from each candidate from both original and VDE CXRs. A nonlinear support vector classifier was employed for classification of the nodule candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs was used for testing our CADe scheme. All nodules were confirmed by computed tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent (42/140) of the nodules were rated "extremely subtle" or "very subtle" by a radiologist. The original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 (1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 (583/233) per image at the same sensitivity level as the

  1. Evaluation of effectiveness of a computer system (CAD) in the identification of lung nodules with low-dose MSCT: scanning technique and preliminary results

    International Nuclear Information System (INIS)

    Fraioli, Francesco; Catalano, Carlo; Almberger, Maria; Bertoletti, Linda; Cantisani, Vito; Danti, Massimiliano; Pediconi, Federica; Passariello, Roberto

    2005-01-01

    Purpose: Evaluation of the effectiveness of a computer-aided diagnosis (CAD) in the identification of pulmonary nodules. Materials and methods: Two observers (A1, A2) with different levels of experience independently evaluated 20 chest MSCT studies with and without the aid of a CAD system (LungCheck, R2 Technology, Inc.). The study parameters were as follows: 140 kVs, 40 mAs, collimation 4x1 mm, slice thickness 1.25 mm, reconstruction interval 1.0 mm. The observers analysed the images with and without CAD and evaluated: 1) nodule size (longer axis); 2) number and location of nodules; 3) reading time for each observer. The gold standard was represented by the evaluation of both readers in consensus with the aid of the CAD system. Results: Without CAD support the two readers identified 77 (A1) and 79 (A2) nodules and with CAD 81 (A1) and 82 (A2) nodules. Working in consensus the two observers identified 81 nodules without the aid of CAD and 84 nodules with the aid of CAD. Total number of nodules identified by CAD was 104, 25 of which were false positive and 5 false negative. The average reading time with the aid of CAD decreased by as much as 40% for both the observers. Conclusions: The preliminary results of our study suggest that the CAD technique is an accurate automatic support tool in the identification of pulmonary nodules. It reduces reading time and automatically supplies the size, volume, density and number of nodules, thus being useful both in screening programmes and in the follow-up of cancer patients, in whom comparison of the images is particularly difficult [it

  2. MDCT angiography and transcatheter embolization in management ...

    African Journals Online (AJOL)

    Hassan Abdelsalam

    2015-12-18

    Dec 18, 2015 ... 14 patients did not have a MDCT and proceeded straight to angiography;. 6 of them showed active bleeding on angiography. Conclusion: MDCT is an excellent technique before angiography and embolization in cases with acute gastrointestinal bleeding. Transcatheter embolization is an effective tool for ...

  3. Approaches to juxta-pleural nodule detection in CT images within the MAGIC-5 Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    De Nunzio, G., E-mail: giorgio.denunzio@unisalento.it [University of Salento, Materials Science Department and Istituto Nazionale di Fisica Nucleare (INFN), Lecce (Italy); Massafra, A. [University of Salento, Physics Department and Istituto Nazionale di Fisica Nucleare (INFN), Lecce (Italy); Cataldo, R. [University of Salento, Materials Science Department and Istituto Nazionale di Fisica Nucleare (INFN), Lecce (Italy); De Mitri, I.; Peccarisi, M. [University of Salento, Physics Department and Istituto Nazionale di Fisica Nucleare (INFN), Lecce (Italy); Fantacci, M.E. [University of Pisa, Physics Department and Istituto Nazionale di Fisica Nucleare (INFN), Pisa (Italy); Gargano, G. [University of Bari, Physics Department and Istituto Nazionale di Fisica Nucleare (INFN), Bari (Italy); Lopez Torres, E. [CEADEN, Havana (Cuba)

    2011-08-21

    This work is a part of the MAGIC-5 (Medical Applications on a Grid Infrastructure Connection) experiment of the Italian INFN (Istituto Nazionale di Fisica Nucleare). A simple CAD (Computer-Assisted Detection) system for juxta-pleural lung nodules in CT images is presented, with the purpose of comparing different 2D concavity-patching techniques and assessing the respective efficiency in locating nodules. After a short introduction on the motivation, and a review of some CAD systems for lung nodules already published by the MAGIC-5 Collaboration, the paper describes the main lines of this particular approach, giving preliminary results and comments. In our procedure, candidate nodules are identified by patching lung border concavities in a hierarchical multiscale framework. Once located, they are fed to an artificial neural network for false positive reduction. The system has a modular structure that easily allows the insertion of arbitrary border-smoothing functions for concavity detection and nodule searching. In this paper the {alpha}-hull and morphological closing are compared, proving the higher sensitivity of the former, which also appears computationally less heavy.

  4. Imaging of Combat-Related Thoracic Trauma - Blunt Trauma and Blast Lung Injury.

    Science.gov (United States)

    Lichtenberger, John P; Kim, Andrew M; Fisher, Dane; Tatum, Peter S; Neubauer, Brian; Peterson, P Gabriel; Carter, Brett W

    2018-03-01

    Combat-related thoracic trauma (CRTT) is a significant contributor to morbidity and mortality of the casualties from Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF). Penetrating, blunt, and blast injuries are the most common mechanisms of trauma to the chest. Imaging plays a key role in the battlefield management of CRTT casualties. This work discusses the imaging manifestations of thoracic injuries from blunt trauma and blast injury, emphasizing epidemiology and diagnostic clues seen during OEF and OIF. The assessment of radiologic findings in patients who suffer from combat-related blunt thoracic trauma and blast injury is the basis of this work. The imaging modalities for this work include multi-detector computed tomography (MDCT) and chest radiography. Multiple imaging modalities are available to imagers on or near the battlefront, including radiography, fluoroscopy, and MDCT. MDCT with multi-planar reconstructions is the most sensitive imaging modality available in combat hospitals for the evaluation of CRTT. In modern combat, blunt and blast injuries account for a significant portion of CRTT. Individual body armor converts penetrating trauma to blunt trauma, leading to pulmonary contusion that accounted for 50.2% of thoracic injuries during OIF and OEF. Flail chest, a subset of blunt chest injury, is caused by significant blunt force to the chest and occurs four times as frequently in combat casualties when compared with the civilian population. Imaging features of CRTT have significant diagnostic and prognostic value. Pulmonary contusions on chest radiography appear as patchy consolidations in the acute setting with ill-defined and non-segmental borders. MDCT of the chest is a superior imaging modality in diagnosing and evaluating pulmonary contusion. Contusions on MDCT appear as crescentic ground-glass opacities (opacities through which lung interstitium and vasculature are still visible) and areas of consolidation that often do not

  5. The incidental pulmonary nodule in a child. Part 2: Commentary and suggestions for clinical management, risk communication and prevention

    International Nuclear Information System (INIS)

    Westra, Sjirk J.; Thacker, Paul G.; Podberesky, Daniel J.; Lee, Edward Y.; Iyer, Ramesh S.; Hegde, Shilpa V.; Guillerman, R.P.; Mahani, Maryam Ghadimi

    2015-01-01

    The incidental detection of small lung nodules in children is a vexing consequence of an increased reliance on CT. We present an algorithm for the management of lung nodules detected on CT in children, based on the presence or absence of symptoms, the presence or absence of elements in the clinical history that might explain these nodules, and the imaging characteristics of the nodules (such as attenuation measurements within the nodule). We provide suggestions on how to perform a thoughtfully directed and focused search for clinically occult extrathoracic disease processes (including malignant disease) that may present as an incidentally detected lung nodule on CT. This algorithm emphasizes that because of the lack of definitive information on the natural history of small solid nodules that are truly detected incidentally, their clinical management is highly dependent on the caregivers' individual risk tolerance. In addition, we present strategies to reduce the prevalence of these incidental findings, by preventing unnecessary chest CT scans or inadvertent inclusion of portions of the lungs in scans of adjacent body parts. Application of these guidelines provides pediatric radiologists with an important opportunity to practice patient-centered and evidence-based medicine. (orig.)

  6. Evaluation of chest tomosynthesis for the detection of pulmonary nodules: effect of clinical experience and comparison with chest radiography

    Science.gov (United States)

    Zachrisson, Sara; Vikgren, Jenny; Svalkvist, Angelica; Johnsson, Åse A.; Boijsen, Marianne; Flinck, Agneta; Månsson, Lars Gunnar; Kheddache, Susanne; Båth, Magnus

    2009-02-01

    Chest tomosynthesis refers to the technique of collecting low-dose projections of the chest at different angles and using these projections to reconstruct section images of the chest. In this study, a comparison of chest tomosynthesis and chest radiography in the detection of pulmonary nodules was performed and the effect of clinical experience of chest tomosynthesis was evaluated. Three senior thoracic radiologists, with more than ten years of experience of chest radiology and 6 months of clinical experience of chest tomosynthesis, acted as observers in a jackknife free-response receiver operating characteristics (JAFROC-1) study, performed on 42 patients with and 47 patients without pulmonary nodules examined with both chest tomosynthesis and chest radiography. MDCT was used as reference and the total number of nodules found using MDCT was 131. To investigate the effect of additional clinical experience of chest tomosynthesis, a second reading session of the tomosynthesis images was performed one year after the initial one. The JAFROC-1 figure of merit (FOM) was used as the principal measure of detectability. In comparison with chest radiography, chest tomosynthesis performed significantly better with regard to detectability. The observer-averaged JAFROC-1 FOM was 0.61 for tomosynthesis and 0.40 for radiography, giving a statistically significant difference between the techniques of 0.21 (p<0.0001). The observer-averaged JAFROC-1 FOM of the second reading of the tomosynthesis cases was not significantly higher than that of the first reading, indicating no improvement in detectability due to additional clinical experience of tomosynthesis.

  7. The feasibility of 11C-methionine-PET in diagnosis of solitary lung nodules/masses when compared with 18F-FDG-PET

    International Nuclear Information System (INIS)

    Hsieh Hungjen; Lin Shenghsiang; Lin Kohan; Lee Chienying; Chang Chengpei; Wang Shyhjen

    2008-01-01

    The objective of this study was to differentiate between benign and malignant lesions of the lung, 18 F-fluorodeoxyglucose positron emission tomography ( 18 F-FDG-PET) has limitations such as a lower specificity in cases of non-specific inflammation. The positive predictive value is unsatisfactory in countries where inflammatory lung disorders are prevalent. We present the preliminary results of the usefulness of combining 11 C-methionine-PET and 18 F-FDG-PET in this context. Fifteen patients with indeterminate solitary pulmonary nodules/masses (10 men, 5 women; average age 64.7±14.0 years, ranging from 25 to 87 years) were studied using 11 C-methionine- and 18 F-FDG-PET. Interpretations were primarily made on visual analysis with five-point scale and a consensus of two nuclear medicine physicians, using standardized uptake value as an accessory reference. Foci of abnormal radiotracer uptake were subsequently correlated with clinical follow-up, imaging modalities such as chest radiography, chest computed tomography (CT), serial PET studies, and pathology results from bronchoscopic biopsy and/or surgical specimen. Diagnoses were established in 14 patients. The 11 C-methionine-PET and 18 F-FDG-PET studies were both true positive in two cases of adenocarcinoma and true negative in two cases of clinical benign nodules. In one case of lymphoid hyperplasia both 11 C-methionine-PET and 18 F-FDG-PET showed false-positive findings. Discordant results were obtained in nine cases. In spite of the false-positive results of 18 F-FDG-PET, 11 C-methionine-PET was true negative in four cases with chronic inflammatory nodules and three cases of pulmonary tuberculosis. Furthermore, 11 C-methionine-PET was true positive in one case of lung metastasis of thyroid cancer, and in another with recurrence of gastric cancer, respectively, for which 18 F-FDG-PET imaging was false negative. Our experience indicates that 11 C-methionine-PET seems more specific and sensitive when compared with

  8. The MAGIC-5 CAD for nodule detection in low dose and thin slice lung CTs

    International Nuclear Information System (INIS)

    Cerello, Piergiorgio

    2010-01-01

    Lung cancer is the leading cause of cancer-related mortality in developed countries. Only 10-15% of all men and women diagnosed with lung cancer live 5 years after the diagnosis. However, the 5-year survival rate for patients diagnosed in the early asymptomatic stage of the disease can reach 70%. Early-stage lung cancers can be diagnosed by detecting non-calcified small pulmonary nodules with computed tomography (CT). Computer-aided detection (CAD) could support radiologists in the analysis of the large amount of noisy images generated in screening programs, where low-dose and thin-slice settings are used. The MAGIC-5 project, funded by the Istituto Nazionale di Fisica Nucleare (INFN, Italy) and Ministero dell'Universita e della Ricerca (MUR, Italy), developed a multi-method approach based on three CAD algorithms to be used in parallel with a merging of their results: the Channeler Ant Model (CAM), based on Virtual Ant Colonies, the Dot-Enhancement/Pleura Surface Normals/VBNA (DE-PSN-VBNA), and the Region Growing Volume Plateau (RGVP). Preliminary results show quite good performances, to be improved with the refining of the single algorithm and the added value of the results merging.

  9. CT and histopathologic characteristics of lung adenocarcinoma with pure ground-glass nodules 10 mm or less in diameter

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fang [Chinese PLA General Hospital, Department of Radiology, Beijing (China); Capital Medical University, Department of Radiology, Xuanwu Hospital, Beijing (China); Tian, Shu-ping [Navy General Hospital, Department of Radiology, Beijing (China); Jin, Xin; Jing, Rui; Yang, Yue-qing; Jin, Mei; Zhao, Shao-hong [Chinese PLA General Hospital, Department of Radiology, Beijing (China)

    2017-10-15

    To evaluate CT and histopathologic features of lung adenocarcinoma with pure ground-glass nodule (pGGN) ≤10 mm in diameter. CT appearances of 148 patients (150 lesions) who underwent curative resection of lung adenocarcinoma with pGGN ≤10 mm (25 atypical adenomatous hyperplasias, 42 adenocarcinoma in situs, 38 minimally invasive adenocarcinomas, and 45 invasive pulmonary adenocarcinomas) were analyzed for lesion size, density, bubble-like sign, air bronchogram, vessel changes, margin, and tumour-lung interface. CT characteristics were compared among different histopathologic subtypes. Univariate and multivariate analysis were used to assess the relationship between CT characteristics of pGGN and lesion invasiveness, respectively. There were statistically significant differences among histopathologic subtypes in lesion size, vessel changes, and tumour-lung interface (P<0.05). Univariate analysis revealed significant differences of vessel changes, margin and tumour-lung interface between preinvasive and invasive lesions (P<0.05). Logistic regression analysis showed that the vessel changes, unsmooth margin and clear tumour-lung interface were significant predictive factors for lesion invasiveness, with odds ratios (95% CI) of 2.57 (1.17-5.62), 1.83 (1.25-2.68) and 4.25 (1.78-10.14), respectively. Invasive lesions are found in 55.3% of subcentimeter pGGNs in our cohort. Vessel changes, unsmooth margin, and clear lung-tumour interface may indicate the invasiveness of lung adenocarcinoma with subcentimeter pGGN. (orig.)

  10. Mushroom poisoning in children: liver MDCT findings in three cases

    International Nuclear Information System (INIS)

    Cakir, Banu; Kirbas, Ismail; Cevik, Belma; Teksam, Mehmet; Coskun, Mehmet

    2007-01-01

    Wild mushroom poisoning occurs quite frequently in Turkey, usually during late summer and autumn when climatic conditions favour fungal growth. We report the MDCT findings of the liver in three children after mushroom poisoning. In all three patients, precontrast MDCT findings showed diffuse reduction of hepatic attenuation compared with the spleen. Contrast-enhanced MDCT images showed homogeneous contrast enhancement of the liver. All three patients recovered after medical treatment. A follow-up precontrast MDCT examination was performed in one patient in whom the density of the liver parenchyma had returned to normal. (orig.)

  11. Multiphasic MDCT in small bowel volvulus

    International Nuclear Information System (INIS)

    Feng Shiting; Chan Tao; Sun Canhui; Li Ziping; Guo Huanyi; Yang Guangqi; Peng Zhenpeng; Meng Quanfei

    2010-01-01

    Objective: Evaluate the use of MDCT with 3D CT angiography (CTA) and CT portal venography (CTPV) reconstruction for the diagnosis of small bowel volvulus (SBV). Methods: Multiphasic MDCT findings in nine patients (seven males and two females, age range 2-70) with surgically proven SBV were retrospectively reviewed. Non-contrast and double phase contrast enhanced MDCT including 3D CTA and CTPV reconstruction were performed in all the patients. Two experienced abdominal radiologists evaluated the images and defined the location, direction and degree of SBV. Results: On axial MDCT images, all cases show segmental or global dilatation of small intestine. Other findings include circumferential bowel wall thickening in eight cases, halo appearance and hyperemia in seven cases, whirl sign in six cases, beak-like appearance in six cases, closed loops in six cases and ascites in one case. CTA/CTPV showed abnormal courses involving main trunks of superior mesenteric artery (SMA) and superior mesenteric vein (SMV) in seven cases, with or without distortion of their tributaries. Normal course of SMA but abnormal course of SMV was seen in the other two cases. Of all the nine cases, whirl sign was seen in six cases and barber's pole sign in five cases. Dilated SMV was observed in eight cases and abrupt termination of SMA was found in one case. Compared with surgical findings, the location, direction and degree of SBV were correctly estimated in all cases based on CTA/CTPV. Conclusion: Multiphasic MDCT with CTA/CTPV reconstruction can play an important role in the diagnosis of SBV. The location, direction and degree of SBV can all be defined preoperatively using this method.

  12. Multiphasic MDCT in small bowel volvulus

    Energy Technology Data Exchange (ETDEWEB)

    Feng Shiting, E-mail: fst1977@163.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Chan Tao, E-mail: taochan@hku.hk [Department of Diagnostic Radiology, University of Hong Kong, Room 406, Block K, Queen Mary Hospital (Hong Kong); Sun Canhui, E-mail: canhuisun@sina.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Li Ziping, E-mail: liziping163@tom.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Guo Huanyi, E-mail: guohuanyi@163.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Yang Guangqi, E-mail: shwy03@126.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Peng Zhenpeng, E-mail: ppzhen@21cn.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China); Meng Quanfei, E-mail: mzycoco@gmail.com [Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th The Second Zhongshan Road, Guangzhou 510080 (China)

    2010-11-15

    Objective: Evaluate the use of MDCT with 3D CT angiography (CTA) and CT portal venography (CTPV) reconstruction for the diagnosis of small bowel volvulus (SBV). Methods: Multiphasic MDCT findings in nine patients (seven males and two females, age range 2-70) with surgically proven SBV were retrospectively reviewed. Non-contrast and double phase contrast enhanced MDCT including 3D CTA and CTPV reconstruction were performed in all the patients. Two experienced abdominal radiologists evaluated the images and defined the location, direction and degree of SBV. Results: On axial MDCT images, all cases show segmental or global dilatation of small intestine. Other findings include circumferential bowel wall thickening in eight cases, halo appearance and hyperemia in seven cases, whirl sign in six cases, beak-like appearance in six cases, closed loops in six cases and ascites in one case. CTA/CTPV showed abnormal courses involving main trunks of superior mesenteric artery (SMA) and superior mesenteric vein (SMV) in seven cases, with or without distortion of their tributaries. Normal course of SMA but abnormal course of SMV was seen in the other two cases. Of all the nine cases, whirl sign was seen in six cases and barber's pole sign in five cases. Dilated SMV was observed in eight cases and abrupt termination of SMA was found in one case. Compared with surgical findings, the location, direction and degree of SBV were correctly estimated in all cases based on CTA/CTPV. Conclusion: Multiphasic MDCT with CTA/CTPV reconstruction can play an important role in the diagnosis of SBV. The location, direction and degree of SBV can all be defined preoperatively using this method.

  13. Noninvasive Computed Tomography-based Risk Stratification of Lung Adenocarcinomas in the National Lung Screening Trial.

    Science.gov (United States)

    Maldonado, Fabien; Duan, Fenghai; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Karwoski, Ronald A; Garg, Kavita; Greco, Erin; Nath, Hrudaya; Robb, Richard A; Bartholmai, Brian J; Peikert, Tobias

    2015-09-15

    Screening for lung cancer using low-dose computed tomography (CT) reduces lung cancer mortality. However, in addition to a high rate of benign nodules, lung cancer screening detects a large number of indolent cancers that generally belong to the adenocarcinoma spectrum. Individualized management of screen-detected adenocarcinomas would be facilitated by noninvasive risk stratification. To validate that Computer-Aided Nodule Assessment and Risk Yield (CANARY), a novel image analysis software, successfully risk stratifies screen-detected lung adenocarcinomas based on clinical disease outcomes. We identified retrospective 294 eligible patients diagnosed with lung adenocarcinoma spectrum lesions in the low-dose CT arm of the National Lung Screening Trial. The last low-dose CT scan before the diagnosis of lung adenocarcinoma was analyzed using CANARY blinded to clinical data. Based on their parametric CANARY signatures, all the lung adenocarcinoma nodules were risk stratified into three groups. CANARY risk groups were compared using survival analysis for progression-free survival. A total of 294 patients were included in the analysis. Kaplan-Meier analysis of all the 294 adenocarcinoma nodules stratified into the Good, Intermediate, and Poor CANARY risk groups yielded distinct progression-free survival curves (P < 0.0001). This observation was confirmed in the unadjusted and adjusted (age, sex, race, and smoking status) progression-free survival analysis of all stage I cases. CANARY allows the noninvasive risk stratification of lung adenocarcinomas into three groups with distinct post-treatment progression-free survival. Our results suggest that CANARY could ultimately facilitate individualized management of incidentally or screen-detected lung adenocarcinomas.

  14. High resolution spiral CT for determining the malignant potential of solitary pulmonary nodules: refining and testing the test

    Energy Technology Data Exchange (ETDEWEB)

    Harders, Stefan Walbom; Madsen, Hans Henrik; Rasmussen, Finn (Dept. of Radiology, Aarhus Univ. Hospital, Aarhus (Denmark)), Email: stefhard@rm.dk; Rasmussen, Torben Riis (Dept. of Pulmonology, Aarhus Univ. Hospital, Aarhus (Denmark)); Hager, Henrik (Dept. of Pathology, Aarhus Univ. Hospital, Aarhus (Denmark))

    2011-05-15

    Background A solitary pulmonary nodule (SPN) may represent early stage lung cancer. Lung cancer is a devastating disease with an overall 5-year mortality rate of approximately 84% but with early detection and surgery as low as 47%. Currently a contrast-enhanced multiple-row detector CT (MDCT) scan is the first examination when evaluating patients with suspected lung cancer. Purpose To apply an additional high resolution CT (HRCT) to SPNs to test whether certain morphological characteristics are associated with malignancy, to assess the diagnostic accuracy of HRCT in the characterization of SPNs, and to address the reproducibility of all measures. Material and Method Two hundred and thirteen participants with SPNs were included in a follow-up study. Blinded HRCT images were assessed with regard to margin risk categories (MRCs), calcification patterns and certain other characteristics and overall malignancy potential ratings (MPRs) were given. Morphological characteristics were tested against reference standard and ROC methodology was applied to assess diagnostic accuracy. Reproducibility was measured with Kappa statistics and 95% confidence intervals were computed for all results. Histopathology (90%) and CT follow-up (10%) were used as reference standard. Results MRCs (P < 0.001), calcification patterns (P = 0.003), and pleural retraction (P < 0.001) were all statistically significantly associated to malignancy. Reproducibility was moderate to substantial. Sensitivity, specificity, and overall diagnostic accuracy of HRCT were 98%, 23% and 87%, respectively. Reproducibility was substantial. Conclusion Statistically significant associations between SPN MRCs, calcification patterns, pleural retraction and malignancy were found. HRCT yielded a very high sensitivity and a somewhat lower specificity for malignancy. Reproducibility was high

  15. High resolution spiral CT for determining the malignant potential of solitary pulmonary nodules: refining and testing the test

    International Nuclear Information System (INIS)

    Harders, Stefan Walbom; Madsen, Hans Henrik; Rasmussen, Finn; Rasmussen, Torben Riis; Hager, Henrik

    2011-01-01

    Background A solitary pulmonary nodule (SPN) may represent early stage lung cancer. Lung cancer is a devastating disease with an overall 5-year mortality rate of approximately 84% but with early detection and surgery as low as 47%. Currently a contrast-enhanced multiple-row detector CT (MDCT) scan is the first examination when evaluating patients with suspected lung cancer. Purpose To apply an additional high resolution CT (HRCT) to SPNs to test whether certain morphological characteristics are associated with malignancy, to assess the diagnostic accuracy of HRCT in the characterization of SPNs, and to address the reproducibility of all measures. Material and Method Two hundred and thirteen participants with SPNs were included in a follow-up study. Blinded HRCT images were assessed with regard to margin risk categories (MRCs), calcification patterns and certain other characteristics and overall malignancy potential ratings (MPRs) were given. Morphological characteristics were tested against reference standard and ROC methodology was applied to assess diagnostic accuracy. Reproducibility was measured with Kappa statistics and 95% confidence intervals were computed for all results. Histopathology (90%) and CT follow-up (10%) were used as reference standard. Results MRCs (P < 0.001), calcification patterns (P = 0.003), and pleural retraction (P < 0.001) were all statistically significantly associated to malignancy. Reproducibility was moderate to substantial. Sensitivity, specificity, and overall diagnostic accuracy of HRCT were 98%, 23% and 87%, respectively. Reproducibility was substantial. Conclusion Statistically significant associations between SPN MRCs, calcification patterns, pleural retraction and malignancy were found. HRCT yielded a very high sensitivity and a somewhat lower specificity for malignancy. Reproducibility was high

  16. Contrast enhanced chest-MDCT in oncologic patients. Prospective evaluation of the prevalence of incidental pulmonary embolism and added value of thin reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Tresoldi, Silvia; Flor, Nicola [Azienda Ospedaliera San Paolo, Dipartimento di Radiologia Diagnostica ed Interventistica, Milano (Italy); Luciani, Andrea [Azienda Ospedaliera San Paolo, Oncologia, Dipartimento di Medicina, Milano (Italy); Lombardi, Maria Antonietta; Colombo, Bernardo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Facolta di Medicina e Chirurgia, Milano (Italy); Cornalba, Gianpaolo [Azienda Ospedaliera San Paolo, Dipartimento di Radiologia Diagnostica ed Interventistica, Milano (Italy); Universita degli Studi di Milano, Dipartimento di Scienze della Salute, Milano (Italy)

    2015-11-15

    To prospectively assess prevalence/characteristics of clinically unsuspected pulmonary embolism (PE) in cancer patients undergoing follow-up chest MDCT and investigate MDCT protocol. We evaluated 1013 oncologic patients. MDCT images at 5 and 1.25 mm thickness were independently evaluated. Pulmonary artery opacification degree was assessed. Presence, level, and site of PE were reported. Type of malignancy and metastases were reported for PE-positive patients. After excluding 1.4 % (14/1013) of examinations due to inadequate vessel opacification, 999 patients (572 male; mean age:68 ± 12 years; range:26-93 years) entered the study. Prevalence of PE was 5 %. There was significant improvement in the sensitivity for both readers in the evaluation of 1.25 mm compared to 5 mm images (46-50 % to 82-92 %). 30 % (15/51) PE were not described by the radiologist in the prospectively issued report; 53 % (27/51) of PE were segmental, 72.5 % (37/51) unilateral. The right lower lobe was the most involved (59 %). 27 % patients had colon cancer, 18 % lung cancer. Among PE-positive patients (25 male; mean age 70 ± 10 years; range:44-87 years), 25 % (13/51) had lung cancer, 15 % (8/51) colon cancer. Thin reconstructions are essential for PE diagnosis, regardless of reader experience. Regarding oncologic patients, incidental PE diagnosis influences anticoagulation therapy. (orig.)

  17. Contrast enhanced chest-MDCT in oncologic patients. Prospective evaluation of the prevalence of incidental pulmonary embolism and added value of thin reconstructions

    International Nuclear Information System (INIS)

    Tresoldi, Silvia; Flor, Nicola; Luciani, Andrea; Lombardi, Maria Antonietta; Colombo, Bernardo; Cornalba, Gianpaolo

    2015-01-01

    To prospectively assess prevalence/characteristics of clinically unsuspected pulmonary embolism (PE) in cancer patients undergoing follow-up chest MDCT and investigate MDCT protocol. We evaluated 1013 oncologic patients. MDCT images at 5 and 1.25 mm thickness were independently evaluated. Pulmonary artery opacification degree was assessed. Presence, level, and site of PE were reported. Type of malignancy and metastases were reported for PE-positive patients. After excluding 1.4 % (14/1013) of examinations due to inadequate vessel opacification, 999 patients (572 male; mean age:68 ± 12 years; range:26-93 years) entered the study. Prevalence of PE was 5 %. There was significant improvement in the sensitivity for both readers in the evaluation of 1.25 mm compared to 5 mm images (46-50 % to 82-92 %). 30 % (15/51) PE were not described by the radiologist in the prospectively issued report; 53 % (27/51) of PE were segmental, 72.5 % (37/51) unilateral. The right lower lobe was the most involved (59 %). 27 % patients had colon cancer, 18 % lung cancer. Among PE-positive patients (25 male; mean age 70 ± 10 years; range:44-87 years), 25 % (13/51) had lung cancer, 15 % (8/51) colon cancer. Thin reconstructions are essential for PE diagnosis, regardless of reader experience. Regarding oncologic patients, incidental PE diagnosis influences anticoagulation therapy. (orig.)

  18. Detection of pulmonary nodules. Improvement by new screen-film systems?

    International Nuclear Information System (INIS)

    Lehmann, K.J.; Himmighoefer, U.

    1994-01-01

    In addition to digital radiography and AMBER, the development of asymmetric screen-film systems is another attempt to optimize chest radiography. Due to reduced contrast in the parenchyma, the former asymmetric screen-film systems did not show sufficient image quality. Three new asymmetric systems with completely different composition are available now. In-Sight VHC (Kodak), High Light GUV (3M) and Opthos D (Agfa) were compared to standard chest films using densitometric curves, a chest phantom for high and low contrast detectability, a nodule detection phantom and patient studies. The sensitivity of nodule detection in the mediastinum has been 41-48% for L-films and 58-65% for the asymmetric screen-film systems. No differences could be demonstrated for nodule detection in the lung field. Contrast in the parenchyma is equivalent to L-films. There is no loss of diagnostic information in the lung field. Differences between the asymmetric systems concern speed, dynamic range and granularity. If AMBER and digital radiography are not available, new asymmetric screen-film systems can improve nodule detection without further investment costs. (orig.) [de

  19. Whole lung computed tomography for detection of pulmonary metastasis of osteosarcoma confirmed at thoracotomy

    International Nuclear Information System (INIS)

    Ishida, Itsuro; Fukuma, Seigo; Sawada, Kinya; Seki, Yasuo; Tanaka, Fumitaka

    1980-01-01

    Whole lung computed tomography (CT) was performed in patients with osteosarcoma of bone to evaluate its diagnostic efficacy in comparison to that in conventional chest radiography and in whole lung tomography to detect metastatic nodules in the lung. In 11 of the 12 patients with osteosarcoma, CT detected pulmonary nodules and in 6 of the 11 patients pulmonary nodules were detected by CT, conventional chest radiography and whole lung tomography, respectively, and 22 pulmonary nodules were resected at thoracotomy and proved to be metastatic lesions. Nineteen nodules of the 22 nodules resected were detected by CT and nine of the 22 nodules were discovered only by CT, while only 10 of 22 nodules were recognized by the conventional chest radiography and the whole lung tomography. Two pulmonary nodules, measuring 1 mm and 2 mm in diameter, respectively, were not detected by any of these three methods. In three nodules that showed to be false positive in CT in the two patients, two nodules were histologically suture granulomas induced by the previous operation, and a deformed protuberance of the chest wall was erroneously interpreted to be a subpleural and intrapulmonary nodule in the remaining. We conclude that CT is the most efficient method to detect pulmonary nodules in the patients with osteosarcoma, but that the minimal size of the detectable nodule by CT is 3 mm in diameter. But a smaller nodule having a tendency to ossify can be detected by CT. (author)

  20. Noninvasive Computed Tomography–based Risk Stratification of Lung Adenocarcinomas in the National Lung Screening Trial

    Science.gov (United States)

    Maldonado, Fabien; Duan, Fenghai; Raghunath, Sushravya M.; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Garg, Kavita; Greco, Erin; Nath, Hrudaya; Robb, Richard A.; Bartholmai, Brian J.

    2015-01-01

    Rationale: Screening for lung cancer using low-dose computed tomography (CT) reduces lung cancer mortality. However, in addition to a high rate of benign nodules, lung cancer screening detects a large number of indolent cancers that generally belong to the adenocarcinoma spectrum. Individualized management of screen-detected adenocarcinomas would be facilitated by noninvasive risk stratification. Objectives: To validate that Computer-Aided Nodule Assessment and Risk Yield (CANARY), a novel image analysis software, successfully risk stratifies screen-detected lung adenocarcinomas based on clinical disease outcomes. Methods: We identified retrospective 294 eligible patients diagnosed with lung adenocarcinoma spectrum lesions in the low-dose CT arm of the National Lung Screening Trial. The last low-dose CT scan before the diagnosis of lung adenocarcinoma was analyzed using CANARY blinded to clinical data. Based on their parametric CANARY signatures, all the lung adenocarcinoma nodules were risk stratified into three groups. CANARY risk groups were compared using survival analysis for progression-free survival. Measurements and Main Results: A total of 294 patients were included in the analysis. Kaplan-Meier analysis of all the 294 adenocarcinoma nodules stratified into the Good, Intermediate, and Poor CANARY risk groups yielded distinct progression-free survival curves (P < 0.0001). This observation was confirmed in the unadjusted and adjusted (age, sex, race, and smoking status) progression-free survival analysis of all stage I cases. Conclusions: CANARY allows the noninvasive risk stratification of lung adenocarcinomas into three groups with distinct post-treatment progression-free survival. Our results suggest that CANARY could ultimately facilitate individualized management of incidentally or screen-detected lung adenocarcinomas. PMID:26052977

  1. Visual vs Fully Automatic Histogram-Based Assessment of Idiopathic Pulmonary Fibrosis (IPF) Progression Using Sequential Multidetector Computed Tomography (MDCT)

    Science.gov (United States)

    Colombi, Davide; Dinkel, Julien; Weinheimer, Oliver; Obermayer, Berenike; Buzan, Teodora; Nabers, Diana; Bauer, Claudia; Oltmanns, Ute; Palmowski, Karin; Herth, Felix; Kauczor, Hans Ulrich; Sverzellati, Nicola

    2015-01-01

    Objectives To describe changes over time in extent of idiopathic pulmonary fibrosis (IPF) at multidetector computed tomography (MDCT) assessed by semi-quantitative visual scores (VSs) and fully automatic histogram-based quantitative evaluation and to test the relationship between these two methods of quantification. Methods Forty IPF patients (median age: 70 y, interquartile: 62-75 years; M:F, 33:7) that underwent 2 MDCT at different time points with a median interval of 13 months (interquartile: 10-17 months) were retrospectively evaluated. In-house software YACTA quantified automatically lung density histogram (10th-90th percentile in 5th percentile steps). Longitudinal changes in VSs and in the percentiles of attenuation histogram were obtained in 20 untreated patients and 20 patients treated with pirfenidone. Pearson correlation analysis was used to test the relationship between VSs and selected percentiles. Results In follow-up MDCT, visual overall extent of parenchymal abnormalities (OE) increased in median by 5 %/year (interquartile: 0 %/y; +11 %/y). Substantial difference was found between treated and untreated patients in HU changes of the 40th and of the 80th percentiles of density histogram. Correlation analysis between VSs and selected percentiles showed higher correlation between the changes (Δ) in OE and Δ 40th percentile (r=0.69; phistogram analysis at one year follow-up of IPF patients, whether treated or untreated: Δ 40th percentile might reflect the change in overall extent of lung abnormalities, notably of ground-glass pattern; furthermore Δ 80th percentile might reveal the course of reticular opacities. PMID:26110421

  2. Evaluation of thoracic abnormalities on 64-row multi-detector row CT: Comparison between axial images versus coronal reformations

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Mizuki [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States)]. E-mail: mnishino@bidmc.harvard.edu; Kubo, Takeshi [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Kataoka, Milliam L. [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Gautam, Shiva [Department of General Clinical Research Center and Biometrics, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Raptopoulos, Vassilios [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States); Hatabu, Hiroto [Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215 (United States)

    2006-07-15

    Purpose: To evaluate the capability of coronal reformations of chest on 64-row MDCT in demonstrating thoracic abnormalities in comparison with axial images. Materials and methods: Thirty-eight consecutive patients who underwent pulmonary CTA on 64-row MDCT were retrospectively studied with institutional review board (IRB) approval. Contiguous 2 mm axial and coronal images were reviewed independently with a 1-week interval, by consensus reading of two board-certified radiologists. Overall image quality was graded using a five-point scale. Abnormalities in mediastinum, hilum, pulmonary vessels, aorta, heart, esophagus, pleura, chest wall, and lung parenchyma were scored: 1 = definitely absent, 2 = probably absent, 3 = equivocal, 4 probably present, 5 = definitely present. Scores on axial and coronal images were compared using weighted {kappa} analysis. Results: Overall image quality was not different with statistical relevance between axial and coronal images (mean/median scores; 3.7/4; 3.6/4, respectively, P = 0.286, Wilcoxon signed-rank test). Significant agreement was observed between axial and coronal scores (mean weighted {kappa}, 0.661; range, 0.362-1). Agreement was almost perfect for pneumothorax, lung and pleural mass, effusion and consolidation (weighted {kappa} = 0.833-1); substantial for pulmonary embolism, trachea, mediastinal lymphadenopathy and non-skeletal chest wall lesion, heart, esophagus, and emphysema (weighted {kappa}, 0.618-0.799); moderate for atelectasis, mediastinum, hilar nodes, aorta, other lung lesions, skeletal chest wall lesions, linear scarring, nodules >1 cm, pulmonary artery abnormalities and pleural thickening (weighted {kappa}, 0.405-0.592); and fair for nodules <1 cm (weighted {kappa} = 0.362). Conclusion: Coronal reformations on 64-row MDCT had substantial agreement with axial images for evaluation of the majority of thoracic abnormalities.

  3. Evaluation of thoracic abnormalities on 64-row multi-detector row CT: Comparison between axial images versus coronal reformations

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Kubo, Takeshi; Kataoka, Milliam L.; Gautam, Shiva; Raptopoulos, Vassilios; Hatabu, Hiroto

    2006-01-01

    Purpose: To evaluate the capability of coronal reformations of chest on 64-row MDCT in demonstrating thoracic abnormalities in comparison with axial images. Materials and methods: Thirty-eight consecutive patients who underwent pulmonary CTA on 64-row MDCT were retrospectively studied with institutional review board (IRB) approval. Contiguous 2 mm axial and coronal images were reviewed independently with a 1-week interval, by consensus reading of two board-certified radiologists. Overall image quality was graded using a five-point scale. Abnormalities in mediastinum, hilum, pulmonary vessels, aorta, heart, esophagus, pleura, chest wall, and lung parenchyma were scored: 1 = definitely absent, 2 = probably absent, 3 = equivocal, 4 probably present, 5 = definitely present. Scores on axial and coronal images were compared using weighted κ analysis. Results: Overall image quality was not different with statistical relevance between axial and coronal images (mean/median scores; 3.7/4; 3.6/4, respectively, P = 0.286, Wilcoxon signed-rank test). Significant agreement was observed between axial and coronal scores (mean weighted κ, 0.661; range, 0.362-1). Agreement was almost perfect for pneumothorax, lung and pleural mass, effusion and consolidation (weighted κ = 0.833-1); substantial for pulmonary embolism, trachea, mediastinal lymphadenopathy and non-skeletal chest wall lesion, heart, esophagus, and emphysema (weighted κ, 0.618-0.799); moderate for atelectasis, mediastinum, hilar nodes, aorta, other lung lesions, skeletal chest wall lesions, linear scarring, nodules >1 cm, pulmonary artery abnormalities and pleural thickening (weighted κ, 0.405-0.592); and fair for nodules <1 cm (weighted κ = 0.362). Conclusion: Coronal reformations on 64-row MDCT had substantial agreement with axial images for evaluation of the majority of thoracic abnormalities

  4. Phased searching with NEAT in a time-scaled framework: experiments on a computer-aided detection system for lung nodules.

    Science.gov (United States)

    Tan, Maxine; Deklerck, Rudi; Cornelis, Jan; Jansen, Bart

    2013-11-01

    In the field of computer-aided detection (CAD) systems for lung nodules in computed tomography (CT) scans, many image features are presented and many artificial neural network (ANN) classifiers with various structural topologies are analyzed; frequently, the classifier topologies are selected by trial-and-error experiments. To avoid these trial and error approaches, we present a novel classifier that evolves ANNs using genetic algorithms, called "Phased Searching with NEAT in a Time or Generation-Scaled Framework", integrating feature selection with the classification task. We analyzed our method's performance on 360 CT scans from the public Lung Image Database Consortium database. We compare our method's performance with other more-established classifiers, namely regular NEAT, Feature-Deselective NEAT (FD-NEAT), fixed-topology ANNs, and support vector machines (SVMs) using ten-fold cross-validation experiments of all 360 scans. The results show that the proposed "Phased Searching" method performs better and faster than regular NEAT, better than FD-NEAT, and achieves sensitivities at 3 and 4 false positives (FP) per scan that are comparable with the fixed-topology ANN and SVM classifiers, but with fewer input features. It achieves a detection sensitivity of 83.0±9.7% with an average of 4FP/scan, for nodules with a diameter greater than or equal to 3mm. It also evolves networks with shorter evolution times and with lower complexities than regular NEAT (p=0.026 and pNEAT and by our approach shows that our approach searches for good solutions in lower dimensional search spaces, and evolves networks without superfluous structure. We have presented a novel approach that combines feature selection with the evolution of ANN topology and weights. Compared with the original threshold-based Phased Searching method of Green, our method requires fewer parameters and converges to the optimal network complexity required for the classification task at hand. The results of the

  5. Using the MDCT thick slab MinIP method for the follow-up of pulmonary emphysema.

    Science.gov (United States)

    Lan, Hai; Nishitani, Hiromu; Nishihara, Sadamitsu; Ueno, Junji; Takao, Shoichiro; Iwamoto, Seiji; Kawanaka, Takashi; Mahmut, Mawlan; Qingge, Si

    2011-08-01

    The purpose of this study was to evaluate the usefulness of thick slab minimum intensity projection (MinIP) as a follow-up method in patients with pulmonary emphysema. This method was used to determine the presence or absence of changes over time in the lung field based on multi-detector-row CT (MDCT) data. Among patients diagnosed with pulmonary emphysema who underwent 16-MDCT (slice thickness, 1 mm) twice at an interval of 6 months or more, 12 patients without changes in the lung field and 14 with clear changes in the lung field were selected as subjects. An image interpretation experiment was performed by five image interpreters. Pulmonary emphysema was followed up using two types of thick slab MinIP (thick slab MinIP 1 and 2) and multi-planar reformation (MPR), and the results of image interpretation were evaluated by receiver operating characteristic (ROC) analysis. In addition, the time required for image interpretation was compared among the three follow-up methods. The area under the ROC curve (Az) was 0.794 for thick slab MinIP 1, 0.778 for the thick slab MinIP 2, and 0.759 for MPR, showing no significant differences among the three methods. Individual differences in each item were significantly more marked for MPR than for thick slab MinIP. The time required for image interpretation was around 18 seconds for thick slab MinIP 1, 11 seconds for thick slab MinIP 2, and approximately 127 seconds for MPR, showing significant differences among the three methods. There were no significant differences in the results of image interpretation regarding the presence or absence of changes in the lung fields between thick slab MinIP and MPR. However, thick slab MinIP showed a shorter image interpretation time and smaller individual differences in the results among image interpreters than MPR, suggesting the usefulness of this method for determining the presence or absence of changes with time in the lung fields of patients with pulmonary emphysema.

  6. MDCT diagnosis of penetrating diaphragm injury

    Energy Technology Data Exchange (ETDEWEB)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A. [University of Maryland School of Medicine, Department of Diagnostic Radiology, Baltimore, MD (United States); Stein, Deborah M. [University of Maryland, Department of Surgery, Shock Trauma Center, Baltimore, MD (United States); Alexander, Melvin [National Study Center for Trauma and Emergency Medical Systems, Baltimore, MD (United States)

    2009-08-15

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  7. MDCT diagnosis of penetrating diaphragm injury

    International Nuclear Information System (INIS)

    Bodanapally, Uttam K.; Shanmuganathan, Kathirkamanathan; Mirvis, Stuart E.; Sliker, Clint W.; Fleiter, Thorsten R.; Sarada, Kamal; Miller, Lisa A.; Stein, Deborah M.; Alexander, Melvin

    2009-01-01

    The purpose of the study was to determine the diagnostic sensitivity and specificity of multidetector CT (MDCT) in detection of diaphragmatic injury following penetrating trauma. Chest and abdominal CT examinations performed preoperatively in 136 patients after penetrating trauma to the torso with injury trajectory in close proximity to the diaphragm were reviewed by radiologists unaware of surgical findings. Signs associated with diaphragmatic injuries in penetrating trauma were noted. These signs were correlated with surgical diagnoses, and their sensitivity and specificity in assisting the diagnosis were calculated. CT confirmed diaphragmatic injury in 41 of 47 injuries (sensitivity, 87.2%), and an intact diaphragm in 71 of 98 patients (specificity, 72.4%). The overall accuracy of MDCT was 77%. The most accurate sign helping the diagnosis was contiguous injury on either side of the diaphragm in single-entry penetrating trauma (sensitivity, 88%; specificity, 82%). Thus MDCT has high sensitivity and good specificity in detecting penetrating diaphragmatic injuries. (orig.)

  8. Computerized Detection of Lung Nodules by Means of “Virtual Dual-Energy” Radiography

    Science.gov (United States)

    Chen, Sheng; Suzuki, Kenji

    2014-01-01

    Major challenges in current computer-aided detection (CADe) schemes for nodule detection in chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose in this study was to develop a CADe scheme with improved sensitivity and specificity by use of “virtual dual-energy” (VDE) CXRs where ribs and clavicles are suppressed with massive-training artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the MTANN technique that had been trained with real dual-energy imaging. Our scheme detected nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic and gray-level-based features were extracted from each candidate from both original and VDE CXRs. A nonlinear support vector classifier was employed for classification of the nodule candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs was used for testing our CADe scheme. All nodules were confirmed by computed tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent (42/140) of the nodules were rated “extremely subtle” or “very subtle” by a radiologist. The original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 (1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 (583/233) per image at the same sensitivity

  9. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    International Nuclear Information System (INIS)

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, H.-P.; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou Chuan

    2006-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (A z ) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  10. Local pulmonary structure classification for computer-aided nodule detection

    Science.gov (United States)

    Bahlmann, Claus; Li, Xianlin; Okada, Kazunori

    2006-03-01

    We propose a new method of classifying the local structure types, such as nodules, vessels, and junctions, in thoracic CT scans. This classification is important in the context of computer aided detection (CAD) of lung nodules. The proposed method can be used as a post-process component of any lung CAD system. In such a scenario, the classification results provide an effective means of removing false positives caused by vessels and junctions thus improving overall performance. As main advantage, the proposed solution transforms the complex problem of classifying various 3D topological structures into much simpler 2D data clustering problem, to which more generic and flexible solutions are available in literature, and which is better suited for visualization. Given a nodule candidate, first, our solution robustly fits an anisotropic Gaussian to the data. The resulting Gaussian center and spread parameters are used to affine-normalize the data domain so as to warp the fitted anisotropic ellipsoid into a fixed-size isotropic sphere. We propose an automatic method to extract a 3D spherical manifold, containing the appropriate bounding surface of the target structure. Scale selection is performed by a data driven entropy minimization approach. The manifold is analyzed for high intensity clusters, corresponding to protruding structures. Techniques involve EMclustering with automatic mode number estimation, directional statistics, and hierarchical clustering with a modified Bhattacharyya distance. The estimated number of high intensity clusters explicitly determines the type of pulmonary structures: nodule (0), attached nodule (1), vessel (2), junction (>3). We show accurate classification results for selected examples in thoracic CT scans. This local procedure is more flexible and efficient than current state of the art and will help to improve the accuracy of general lung CAD systems.

  11. Concordance of coronary artery calcium estimates between MDCT and electron beam tomography.

    Science.gov (United States)

    Daniell, Anthony L; Wong, Nathan D; Friedman, John D; Ben-Yosef, Nachum; Miranda-Peats, Romalisa; Hayes, Sean W; Kang, Xingping; Sciammarella, Maria G; de Yang, Ling; Germano, Guido; Berman, Daniel S

    2005-12-01

    The objective of our study was to compare MDCT with electron beam tomography (EBT) for the quantification of coronary artery calcification (CAC). Sixty-eight patients underwent both MDCT and EBT within 2 months for the quantification of CAC. The images were scored in a blinded fashion and independently by two observers with a minimum of 7 days between the interpretations of images obtained from one scanner type to the other. Presence versus absence of CAC was discordant by EBT versus MDCT in 6% (n = 4) of the cases by observer 1, with one of these cases also discordant by observer 2. All cases except one (aortic calcium misidentified as CAC) were among those with a mean Agatston score of less than 5 present on EBT but absent on MDCT. EBT and MDCT scores correlated well (r = 0.98-0.99). The relative median variability between EBT and MDCT for the Agatston score was 24% for observer 1 and 27% for observer 2 and was 18% and 14%, respectively, for volume score (average for both observers: 27% for Agatston score and 16% for volume score). Scores were higher for EBT than MDCT in approximately half of the cases, with little systematic difference between the two (median EBT-MDCT difference: Agatston score, -0.55; volume score, 3.4 mm3). The absolute median difference averaged for the two observers was 28.75 for the Agatston score and 15.4 mm3 for the volume score. Differences in CAC measurements using EBT and MDCT are similar to interscan differences in CAC measurements previously reported for EBT or for other MDCT scanners individually.

  12. Dual energy MDCT assessment of renal lesions: an overview

    International Nuclear Information System (INIS)

    Mileto, Achille; Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T.; Ascenti, Giorgio

    2014-01-01

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  13. Dual energy MDCT assessment of renal lesions: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille [Duke University Medical Center, Department of Radiology, Durham, NC (United States); University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy); Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Ascenti, Giorgio [University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy)

    2014-02-15

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  14. Effect of Clinical Experience of Chest Tomosynthesis on Detection of Pulmonary Nodules

    International Nuclear Information System (INIS)

    Zachrisson, S.; Svalkvist, A.; Maansson, L.G.; Baath, M.; Vikgren, J.; Johnsson, Aa.A.; Boijsen, M.; Flinck, A.; Kheddache, S.

    2009-01-01

    Background: The new technique chest tomosynthesis refers to the principle of collecting low-dose projections of the chest at different angles and using these projections to reconstruct section images of the chest at a radiation dose comparable to that of chest radiography. Purpose: To investigate if, for experienced thoracic radiologists, the detectability of pulmonary nodules obtained after only a short initial learning period of chest tomosynthesis improves with additional clinical experience of the new technique. Material and Methods: Two readings of the same clinical chest tomosynthesis cases, the first performed after 6 months of clinical experience and the second after an additional period of 1 year, were conducted. Three senior thoracic radiologists, with more than 20 years of experience of chest radiography, acted as observers, with the task of detecting pulmonary nodules in a jackknife free-response receiver operating characteristics (JAFROC1) study. The image material consisted of 42 patients with and 47 patients without pulmonary nodules examined with chest tomosynthesis. Multidetector computed tomography (MDCT) was used as a reference. The total number of nodules was 131. The JAFROC1 figure of merit (FOM) was used as the principal measure of detectability. Results: The difference in the observer-averaged JAFROC1 FOM of the two readings was 0.004 (95% confidence interval: -0.11, 0.12; F-statistic: 0.01 on 1 and 2.65 df; P=0.91). Thus, no significant improvement in detectability was found after the additional clinical experience of tomosynthesis. Conclusion: The study indicates that experienced thoracic radiologists already within the first months of clinical use of chest tomosynthesis are able to take advantage of the new technique in the task of detecting pulmonary nodules

  15. Benign pulmonary nodule. Morphological features and contrast enhancement evaluated with contiguous thin-section CT

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Hisayasu; Murata, Kiyoshi; Takahashi, Masashi; Morita, Rikushi [Shiga Univ. of Medical Science, Otsu (Japan)

    1998-10-01

    The morphological changes in 54 benign lung nodules, including 8 histologically proven nodules of tuberculoma, 10 of focal organizing pneumonia (FOP), 1 of lung abscess and 35 other benign nodules, were evaluated with contiguous thin-section (3 mm) CT. In addition, incremental dynamic studies were carried out in 25 of these nodules. The three-dimensional shapes of the nodules were found to be quite varied and were classified into four types: round mass (n=18), polygonal mass with concave or straight margins (n=20), oval or band-like mass extending along the bronchovascular bundle (n=7), and oval mass attached to the pleura with broad contact (n=9). Forty-two (78%) of the 54 nodules were located along the bronchovascular bundle. The maximum increments in CT values over 20 HU were observed after contrast enhancement in 18 (72%) of the 25 benign nodules, among which all tuberculomas showed little or no contrast enhancement. The number of small vessels quantified microscopically in the center of the nodules were minimal in tuberculomas with little enhancement and plentiful in lesions of FOP and abscess which showed marked enhancement. Our results suggest that the differentiation between benign and malignant pulmonary nodules is not possible simply on the basis of the degree of contrast enhancement. Therefore, morphological features and the anatomical relation to the bronchovascular bundles should also be taken into consideration in the diagnosis of pulmonary nodules. (author)

  16. Benign pulmonary nodule. Morphological features and contrast enhancement evaluated with contiguous thin-section CT

    International Nuclear Information System (INIS)

    Matsuo, Hisayasu; Murata, Kiyoshi; Takahashi, Masashi; Morita, Rikushi

    1998-01-01

    The morphological changes in 54 benign lung nodules, including 8 histologically proven nodules of tuberculoma, 10 of focal organizing pneumonia (FOP), 1 of lung abscess and 35 other benign nodules, were evaluated with contiguous thin-section (3 mm) CT. In addition, incremental dynamic studies were carried out in 25 of these nodules. The three-dimensional shapes of the nodules were found to be quite varied and were classified into four types: round mass (n=18), polygonal mass with concave or straight margins (n=20), oval or band-like mass extending along the bronchovascular bundle (n=7), and oval mass attached to the pleura with broad contact (n=9). Forty-two (78%) of the 54 nodules were located along the bronchovascular bundle. The maximum increments in CT values over 20 HU were observed after contrast enhancement in 18 (72%) of the 25 benign nodules, among which all tuberculomas showed little or no contrast enhancement. The number of small vessels quantified microscopically in the center of the nodules were minimal in tuberculomas with little enhancement and plentiful in lesions of FOP and abscess which showed marked enhancement. Our results suggest that the differentiation between benign and malignant pulmonary nodules is not possible simply on the basis of the degree of contrast enhancement. Therefore, morphological features and the anatomical relation to the bronchovascular bundles should also be taken into consideration in the diagnosis of pulmonary nodules. (author)

  17. MDCT Findings of Traumatic Adrenal Injury in Children

    International Nuclear Information System (INIS)

    Choi, Seung Joon; Kim, Jee Eun; Ryu, Il; Kim, Jin Joo; Choi, Hye Young

    2011-01-01

    We wanted to evaluate the MDCT findings and concomitant injuries of traumatic adrenal injury in children. Among 375 children who had undergone a MDCT scan for abdominal trauma during the recent five years at our institution, 27 children who had revealed adrenal injury on their CT scan were included in the study. We retrospectively evaluated the causes of the trauma, the patterns of adrenal injury, the associated CT findings and the concomitant injuries of the other organs in the abdomen. We identified 27 children (7.5%) (17 boys and 10 girls, mean age: 9.9 years, range: 2-18 years) with adrenal injury. The causes of adrenal injury were a traffic accident for 20 patients (74%), falls for four patients (15%) and blunt trauma for three patients (11%). The right adrenal gland was injured in 20 patients (74%), while the left adrenal gland was injured in three patients and bilateral involvement was noted in four patients. The patterns of adrenal injury were round or oval shaped hematoma in 23 lesions (74%), irregular hemorrhage with obliterating the gland in six lesions (19%) and active extravasation of contrast material from the adrenal region in two lesions (7%). Concomitant injuries were noted in 22 patients (81%), including 15 patients with liver laceration (56%), 11 patients with lung contusion (41%) and nine patients with renal injury (33%). The frequency of adrenal injury was 7.5%. The right adrenal gland was more frequently involved. Concomitant organ injury was noted 81% of the patients and the most frequently involved organ was the liver (56%)

  18. [Role of MRI for detection and characterization of pulmonary nodules].

    Science.gov (United States)

    Sommer, G; Koenigkam-Santos, M; Biederer, J; Puderbach, M

    2014-05-01

    Due to physical and technical limitations, magnetic resonance imaging (MRI) has hitherto played only a minor role in image-based diagnostics of the lungs. However, as a consequence of important methodological developments during recent years, MRI has developed into a technically mature and clinically well-proven method for specific pulmonary questions. The purpose of this article is to provide an overview on the currently available sequences and techniques for assessment of pulmonary nodules and analyzes the clinical significance according to the current literature. The main focus is on the detection of lung metastases, the detection of primary pulmonary malignancies in high-risk individuals and the differentiation between pulmonary nodules of benign and malignant character. The MRI technique has a sensitivity of approximately 80 % for detection of malignant pulmonary nodules compared to the reference standard low-dose computed tomography (CT) and is thus somewhat inferior to CT. Advantages of MRI on the other hand are a higher specificity in differentiating malignant and benign pulmonary nodules and the absence of ionizing radiation exposure. A systematic use of MRI as a primary tool for detection and characterization of pulmonary nodules is currently not recommended due to insufficient data. The diagnostic potential of MRI for early detection and staging of malignant pulmonary diseases, however, seems promising. Therefore, further evaluation of MRI as a secondary imaging modality in clinical trials is highly warranted.

  19. Multi-detector CT (MDCT in bowel and mesenteric injury

    Directory of Open Access Journals (Sweden)

    Vajjalla Ravikumar

    2013-04-01

    Full Text Available Objectives: To evaluate multi-detector CT (MDCT findings in bowel and mesenteric injury due to blunt abdominal trauma.Method: Retrospective evaluation of MDCT scan reports of patients admitted in Hamad Medical Corporation, Doha, Qatar with bowel and mesenteric injury during the period of January 2005 to April 2008.Results: MDCT, without using oral contrast, clearly demonstrated various specific and less specific findings of bowel and mesenteric injury.Conclusion: Multi-detector CT is an excellent diagnostic modality in bowel and mesenteric injury. Routine administration of oral contrast agent is not mandatory for initial evaluation of these patients.

  20. MDCT of renal and mesenteric vessels

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, D. [Dept. of Radiology, Stanford Univ. Medical Center, Stanford, CA (United States)

    2003-12-01

    Computed tomography angiography (CTA) with multiple detector-row CT (MDCT) has evolved into an established technique for non-invasive imaging of renal and mesenteric vessels. With adequate selection of acquisition parameters (thin collimation) high spatial-resolution volumetric data sets for subsequent 2D and 3D reformation can be acquired. Contrast medium (CM) injection parameters need to be adjusted to the acquisition speed of the scanners. Whereas fast acquisitions allow a reduction of total CM volume in the setting of CTA, this is not the case when CTA is combined with a second-phase abdominal MDCT acquisition for parenchymal (e.g., hepatic) imaging. Renal CTA is an accurate and reliable test for visualizing vascular anatomy and renal artery stenosis, and therefore a viable alternative to MRA in the assessment of patients with renovascular hypertension and in potential living related renal donors. CTA, combined with abdominal/parenchymal MDCT is a first-line diagnostic test in patients with suspected abdominal vascular emergencies, such as acute mesenteric ischemia, and an excellent tool to assess a wide variety of vascular abnormalities of the abdominal viscera. (orig.)

  1. MDCT of renal and mesenteric vessels

    International Nuclear Information System (INIS)

    Fleischmann, D.

    2003-01-01

    Computed tomography angiography (CTA) with multiple detector-row CT (MDCT) has evolved into an established technique for non-invasive imaging of renal and mesenteric vessels. With adequate selection of acquisition parameters (thin collimation) high spatial-resolution volumetric data sets for subsequent 2D and 3D reformation can be acquired. Contrast medium (CM) injection parameters need to be adjusted to the acquisition speed of the scanners. Whereas fast acquisitions allow a reduction of total CM volume in the setting of CTA, this is not the case when CTA is combined with a second-phase abdominal MDCT acquisition for parenchymal (e.g., hepatic) imaging. Renal CTA is an accurate and reliable test for visualizing vascular anatomy and renal artery stenosis, and therefore a viable alternative to MRA in the assessment of patients with renovascular hypertension and in potential living related renal donors. CTA, combined with abdominal/parenchymal MDCT is a first-line diagnostic test in patients with suspected abdominal vascular emergencies, such as acute mesenteric ischemia, and an excellent tool to assess a wide variety of vascular abnormalities of the abdominal viscera. (orig.)

  2. Effects of Different Reconstruction Parameters on CT Volumetric Measurement 
of Pulmonary Nodules

    Directory of Open Access Journals (Sweden)

    Rongrong YANG

    2012-02-01

    Full Text Available Background and objective It has been proven that volumetric measurements could detect subtle changes in small pulmonary nodules in serial CT scans, and thus may play an important role in the follow-up of indeterminate pulmonary nodules and in differentiating malignant nodules from benign nodules. The current study aims to evaluate the effects of different reconstruction parameters on the volumetric measurements of pulmonary nodules in chest CT scans. Methods Thirty subjects who underwent chest CT scan because of indeterminate pulmonary nodules in General Hospital of Tianjin Medical University from December 2009 to August 2011 were retrospectively analyzed. A total of 52 pulmonary nodules were included, and all CT data were reconstructed using three reconstruction algorithms and three slice thicknesses. The volumetric measurements of the nodules were performed using the advanced lung analysis (ALA software. The effects of the reconstruction algorithms, slice thicknesses, and nodule diameters on the volumetric measurements were assessed using the multivariate analysis of variance for repeated measures, the correlation analysis, and the Bland-Altman method. Results The reconstruction algorithms (F=13.6, P<0.001 and slice thicknesses (F=4.4, P=0.02 had significant effects on the measured volume of pulmonary nodules. In addition, the coefficients of variation of nine measurements were inversely related with nodule diameter (r=-0.814, P<0.001. The volume measured at the 2.5 mm slice thickness had poor agreement with the volumes measured at 1.25 mm and 0.625 mm, respectively. Moreover, the best agreement was achieved between the slice thicknesses of 1.25 mm and 0.625 mm using the bone algorithm. Conclusion Reconstruction algorithms and slice thicknesses have significant impacts on the volumetric measurements of lung nodules, especially for the small nodules. Therefore, the reconstruction setting in serial CT scans should be consistent in the follow

  3. The limitation and coordination of CT and positron emission tomography in the diagnosis of pulmonary nodules

    International Nuclear Information System (INIS)

    Zhang Jin'e; Liang Changhong; Zhao Zhenjun; Wang Shuxia; Qiao Suixian; He Hui; Zhang Jia; Ru Guangteng

    2005-01-01

    Objective: To Analyze the limitation and coordination of CT and positron emission tomography (PET) in the diagnosis of pulmonary nodules. Methods: A retrospective study was undertaken in 118 patients with pulmonary nodules which had CT and PET scan. The interval between examinations of various imaging equipment was less than 2 weeks. The diameter of nodules ranged from 2 cm to 4 cm with an average of 2.7 cm. The nodules were proved as lung cancer by pathology in 85 cases and metastatic tumor in 2 cases, benign nodules in 31 cases, including 8 cases of tuberculosis, 6 cases of hamartoma, 6 cases of inflammatory pseudotumor, 4 cases of chronic nonspecific inflammation, 3 cases of inflammation granuloma, 2 cases of mycosis, 1 case of abscess, and 1 case of globular atelectasis. Results: 93 cases were correctly diagnosed and 25 cases were misdiagnosed with CT in 118 cases of pulmonary nodules. The misdiagnosis rate of CT was 21.2%. 12 cases of lung cancer were misdiagnosed as benign and 13 cases of benign nodules were misdiagnosed as lung cancer. 96 cases were correctly diagnosed and 22 cases were misdiagnosed with PET. The misdiagnosis rate of PET was 18.6%. 10 cases of malignant nodules were misdiagnosed as benign and 12 cases of benign nodules were misdiagnosed as lung cancer. 108 cases were correctly diagnosed and 10 cases were misdiagnosed with CT coordinated with PET. The misdiagnosis rate was 8.5%. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of CT, PET, and CT coordinated with PET were 86.2%, 58.1%, 85.2%, 60.0%, 78.8% and 88.5%, 61.3%, 86.5%, 65.5%, 81.4%, and 97.7%, 74.2%, 91.4%, 92.0%, 91.5% respectively. The accuracy showed no significant difference between CT and PET (χ 2 =0.625, P=0.239), but there were significant difference between CT coordinated with PET and CT or PET (χ 2 =7.762 and 5.318, P=0.005 and 0021). Conclusion: The features of CT and PET in benign and malignant pulmonary nodules are partly

  4. Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility

    International Nuclear Information System (INIS)

    Wormanns, Dag; Marheine, Anke; Beyer, Florian; Heindel, Walter; Diederich, Stefan; Kohl, Gerhard; Klotz, Ernst

    2004-01-01

    The aim of this study was to assess the in vivo measurement precision of a software tool for volumetric analysis of pulmonary nodules from two consecutive low-dose multi-row detector CT scans. A total of 151 pulmonary nodules (diameter 2.2-20.5 mm, mean diameter 7.4±4.5 mm) in ten subjects with pulmonary metastases were examined with low-dose four-detector-row CT (120 kVp, 20 mAs (effective), collimation 4 x 1 mm, normalized pitch 1.75, slice thickness 1.25 mm, reconstruction increment 0.8 mm; Somatom VolumeZoom, Siemens). Two consecutive low-dose scans covering the whole lung were performed within 10 min. Nodule volume was determined for all pulmonary nodules visually detected in both scans using the volumetry tool included in the Siemens LungCare software. The 95% limits of agreement between nodule volume measurements on different scans were calculated using the Bland and Altman method for assessing measurement agreement. Intra- and interobserver agreement of volume measurement were determined using repetitive measurements of 50 randomly selected nodules at the same scan by the same and different observers. Taking into account all 151 nodules, 95% limits of agreement were -20.4 to 21.9% (standard error 1.5%); they were -19.3 to 20.4% (standard error 1.7%) for 105 nodules <10 mm. Limits of agreement were -3.9 to 5.7% for intraobserver and -5.5 to 6.6% for interobserver agreement. Precision of in vivo volumetric analysis of nodules with an automatic volumetry software tool was sufficiently high to allow for detection of clinically relevant growth in small pulmonary nodules. (orig.)

  5. Percutaneous radiofrequency ablation of lung tumors in a large animal model.

    Science.gov (United States)

    Ahrar, Kamran; Price, Roger E; Wallace, Michael J; Madoff, David C; Gupta, Sanjay; Morello, Frank A; Wright, Kenneth C

    2003-08-01

    Percutaneous radiofrequency ablation (RFA) is accepted therapy for liver tumors in the appropriate clinical setting, but its use in lung neoplasms remains investigational. We undertook this study to evaluate the feasibility and immediate effectiveness of RFA for treatment of both solitary pulmonary nodules and clusters of lung tumors in a large animal model. Percutaneous RFA of 14 lung tumors in five dogs was performed under CT guidance. Animals were euthanatized 8-48 hours after the procedure. The lungs and adjacent structures were harvested for gross and histopathologic evaluation. Five solitary pulmonary nodules (range, 17-26 mm) and three clusters of three nodules each (range, 7-17 mm per nodule) were treated with RFA. All ablations were technically successful. Perilesional ground-glass opacity and small asymptomatic pneumothoraces (n = 4) were visualized during the RFA sessions. One dog developed a large pneumothorax treated with tube thoracostomy but was euthanatized 8 hours post-RFA for persistent pneumothorax and continued breathing difficulty. Follow-up CT 48 hours post-RFA revealed opacification of the whole lung segment. Gross and histopathologic evaluation showed complete thermal coagulation necrosis of all treated lesions without evidence of any viable tumor. The region of thermal coagulation necrosis typically extended to the lung surface. Small regions of pulmonary hemorrhage and congestion often surrounded the areas of coagulation necrosis. RFA can be used to treat both solitary pulmonary nodules and clusters of tumor nodules in the canine lung tumor model. This model may be useful for development of specific RFA protocols for human lung tumors.

  6. Automatic detection of pulmonary nodules at spiral CT: clinical application of a computer-aided diagnosis system

    International Nuclear Information System (INIS)

    Wormanns, Dag; Fiebich, Martin; Saidi, Mustafa; Diederich, Stefan; Heindel, Walter

    2002-01-01

    The aim of this study was to evaluate a computer-aided diagnosis (CAD) workstation with automatic detection of pulmonary nodules at low-dose spiral CT in a clinical setting for early detection of lung cancer. Eighty-eight consecutive spiral-CT examinations were reported by two radiologists in consensus. All examinations were reviewed using a CAD workstation with a self-developed algorithm for automatic detection of pulmonary nodules. The algorithm is designed to detect nodules with diameters of at least 5 mm. A total of 153 nodules were detected with at least one modality (radiologists in consensus, CAD, 85 nodules with diameter <5 mm, 68 with diameter ≥5 mm). The results of automatic nodule detection were compared to nodules detected with any modality as gold standard. Computer-aided diagnosis correctly identified 26 of 59 (38%) nodules with diameters ≥5 mm detected by visual assessment by the radiologists; of these, CAD detected 44% (24 of 54) nodules without pleural contact. In addition, 12 nodules ≥5 mm were detected which were not mentioned in the radiologist's report but represented real nodules. Sensitivity for detection of nodules ≥5 mm was 85% (58 of 68) for radiologists and 38% (26 of 68) for CAD. There were 5.8±3.6 false-positive results of CAD per CT study. Computer-aided diagnosis improves detection of pulmonary nodules at spiral CT and is a valuable second opinion in a clinical setting for lung cancer screening despite of its still limited sensitivity. (orig.)

  7. Automatic segmentation of tumor-laden lung volumes from the LIDC database

    Science.gov (United States)

    O'Dell, Walter G.

    2012-03-01

    The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.

  8. Comparative analysis between spiral CT and pathology of pulmonary nodules

    International Nuclear Information System (INIS)

    Wang Kaifu; Zhang Zhanqing

    2007-01-01

    Objective: To explore the value of spiral CT in the diagnosis of atypical pulmonary nodules. Methods: CT, clinic and histopathologic data of 72 patients with atypical pulmonary nodules confirmed by surgical resection in 41 cases and/or biopsy in 31 cases were retrospectively analyzed. Results: CT scans demonstrated slight lobulation in 34 cases, irregular margin in 50 cases, long speculate in 10 cases, air-bronchogram in 2 case, vacuole in 2 case. 38 pulmonary cancer, 22 pulmonary tuberculosis and 12 pulmonary inflammatory pseudotumors were diagnosed with spiral CT. However, 30 pulmonary cancer, 30 pulmonary tuberculosis and 12 pulmonary inflammatory pseudotumors were confirmed by histopathology. The overall accurate diagnostic rate of pulmonary cancer was 66.7% (20/30), pulmonary tuberculosis was 60%(18/30), pulmonary inflammatory pseudotumors was 16.7%(2/12). 40 cases were diagnosed correctly and 32 cases were misdiagnosed with CT in 72 cases of atypical pulmonary nodules. The misdiagnostic rate of CT was 44.4%. 10 cases of lung cancer were misdiagnosed, including 4 cases of tuberculosis (long speculate or irregular margin) and 6 cases of inflammatory pseudotumors (irregular margin or long speculate or air-bronchogram). 12 cases of tuberculosis were misdiagnosed, including 8 cases lung cancer (slight lobulation) and 4 cases of inflammatory pseudotumors (slight lobulation). 10 cases inflammatory pseudotumor were misdiagnosed as lung cancer (slight lobulation). Conclusion: Spiral CT was very useful in the localization and morphological describing, but difficult in qualitative diagnosing of atypical pulmonary nodules, exactly diagnosis was relied on surgery and biopsy. (authors)

  9. Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2015-01-01

    Full Text Available The key problem of computer-aided diagnosis (CAD of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO pulmonary nodules than other typical algorithms.

  10. International Association for the Study of Lung Cancer Computed Tomography Screening Workshop 2011 report

    DEFF Research Database (Denmark)

    Field, John K; Smith, Robert A; Aberle, Denise R

    2011-01-01

    national screening programs; (iii) develop guidelines for the clinical work-up of "indeterminate nodules" resulting from CT screening programmers; (iv) guidelines for pathology reporting of nodules from lung cancer CT screening programs; (v) recommendations for surgical and therapeutic interventions...... of suspicious nodules identified through lung cancer CT screening programs; and (vi) integration of smoking cessation practices into future national lung cancer CT screening programs....

  11. MDCT imaging of calcinosis in systemic sclerosis

    International Nuclear Information System (INIS)

    Freire, V.; Becce, F.; Feydy, A.; Guérini, H.; Campagna, R.; Allanore, Y.; Drapé, J.-L.

    2013-01-01

    Calcinosis is a typical feature of systemic sclerosis (SSc) and can be found in many different tissues including the superficial soft tissues, periarticular structures, muscles, and tendons. It can also provoke erosive changes on bones. Investigation is conducted most often with plain radiographs. However, when a more detailed assessment is necessary, multidetector computed tomography (MDCT) is helpful owing to its multiplanar reformat (MPR) ability. The purpose of this review is to provide an overview of the various appearances of calcinosis in SSc patients as visualized at MDCT

  12. Optimization of a tomosynthesis system for the detection of lung nodules

    International Nuclear Information System (INIS)

    Pineda, Angel R.; Yoon, Sungwon; Paik, David S.; Fahrig, Rebecca

    2006-01-01

    Mathematical observers that track human performance can be used to reduce the number of human observer studies needed to optimize imaging systems. The performance of human observers for the detection of a 3.6 mm lung nodule in anatomical backgrounds was measured as a function of varying tomosynthetic angle and compared with mathematical observers. The human observer results showed a dramatic increase in the percent of correct responses, from 80% in the projection images to 96% in the projection images with a tomosynthetic angle of just 3 degrees. This result suggests the potential usefulness of the scanned beam digital x-ray system for this application. Given the small number of images (40) used per tomosynthetic angle and the highly nonstationary statistical nature of the backgrounds, the nonprewhitening eye observer achieved a higher performance than the channelized Hotelling observer using a Laguerre-Gauss basis. The channelized Hotelling observer with internal noise and the eye filter matched to the projection data were shown to track human performance as the tomosynthetic angle changed. The validation of these mathematical observers extends their applicability to the optimization of tomosynthesis systems

  13. The experimental study and clinical application on the detection of pulmonary nodules with low-dose multislice spiral CT

    International Nuclear Information System (INIS)

    Wu Xiaohua; Ma Daqing; Zhang Zhongjia; Ji Jingling; Zhang Yansong

    2004-01-01

    Objective: To investigate the detection rate of pulmonary nodules ,especially nodules ≤5 mm, in variable low-doses, and to evaluate the imaging quality of low-dose MSCT. Methods: Six postmortem specimens of patients with pneumoconiosis after necropsy were fixed at end-inspiratory volume. The fixed specimens were examined by using MSCT with standard dose (130 mA) and low-dose (50, 30, 10 mA, respectively). Low-dose MSCT scans of 40 asymptomatic volunteers and 60 patients with pulmonary metastasis were also examined with 30 mA. The numbers of pulmonary nodules less than 5 mm at standard-dose and different low-dose were recorded. Nodules were assessed by diagnostic confidence ('definite nodule', 'questionable nodule', and 'definite not nodule'). The number of images with artifact in specimens and in 40 volunteers and 60 patients with pulmonary metastasis were recorded. Results: In specimen's study, the Kappa values of groups of low-dose (50, 30, 10 mA) were 0.515, 0.242, and 0.154, respectively. The group of 50 mA had a good coincidence with standard-dose group by U test. The sensitivity of group 50, 30, 10 mA was 88.0%, 78.4%, and 75.0%, respectively. The positive predictive values of which were 98%, 94%, and 93%, respectively. The correction rates of which were 85%, 73%, and 69%, respectively. In specimens' images, subtle linear artifact was showed only in paravertebral lung field in 21 images of 31 at the group of 10 mA. Linear artifacts that affected small nodule detection were showed in lung apexes in 3 of 100 subjects. Conclusion: Low-dose MSCT is expected to improve early detection of lung cancer. Pulmonary nodules less than 5 mm could be reliably detected at 50 mA tube current in specimens. Low-dose CT (30 mA) showed satisfactory imaging quality in our study. Low-dose CT screening for lung cancer may be applied if situation permits. (authors)

  14. Computer aided detection system for lung cancer using computer tomography scans

    Science.gov (United States)

    Mahesh, Shanthi; Rakesh, Spoorthi; Patil, Vidya C.

    2018-04-01

    Lung Cancer is a disease can be defined as uncontrolled cell growth in tissues of the lung. If we detect the Lung Cancer in its early stage, then that could be the key of its cure. In this work the non-invasive methods are studied for assisting in nodule detection. It supplies a Computer Aided Diagnosis System (CAD) for early detection of lung cancer nodules from the Computer Tomography (CT) images. CAD system is the one which helps to improve the diagnostic performance of radiologists in their image interpretations. The main aim of this technique is to develop a CAD system for finding the lung cancer using the lung CT images and classify the nodule as Benign or Malignant. For classifying cancer cells, SVM classifier is used. Here, image processing techniques have been used to de-noise, to enhance, for segmentation and edge detection of an image is used to extract the area, perimeter and shape of nodule. The core factors of this research are Image quality and accuracy.

  15. Comparison of chest radiography, chest digital tomosynthesis and low dose MDCT to detect small ground-glass opacity nodules: an anthropomorphic chest phantom study

    International Nuclear Information System (INIS)

    Doo, Kyung Won; Kang, Eun-Young; Yong, Hwan Seok; Ham, Soo-Youn; Lee, Ki Yeol; Choo, Ji Yung

    2014-01-01

    The purpose of this study was to evaluate the diagnostic performance of chest radiography (CXR), chest digital tomosynthesis (DT) and low dose multidetector computed tomography (LDCT) for the detection of small pulmonary ground-glass opacity (GGO) nodules, using an anthropomorphic chest phantom. Artificial pulmonary nodules were placed in a phantom and a total of 40 samples of different nodule settings underwent CXR, DT and LDCT. The images were randomly read by three experienced chest radiologists. Free-response receiver-operating characteristics (FROC) were used. The figures of merit for the FROC curves averaged for the three observers were 0.41, 0.37 and 0.76 for CXR, DT and LDCT, respectively. FROC analyses revealed significantly better performance of LDCT over CXR or DT for the detection of GGO nodules (P < 0.05). The difference in detectability between CXR and DT was not statistically significant (P = 0.73). The diagnostic performance of DT for the detection of pulmonary small GGO nodules was not significantly different from that of CXR, but LDCT performed significantly better than both CXR and DT. DT is not a suitable alternative to CT for small GGO nodule detection, and LDCT remains the method of choice for this purpose. (orig.)

  16. Comparison of chest radiography, chest digital tomosynthesis and low dose MDCT to detect small ground-glass opacity nodules: an anthropomorphic chest phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Doo, Kyung Won; Kang, Eun-Young; Yong, Hwan Seok [Korea University Guro Hospital, Korea University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Ham, Soo-Youn [Korea University Anam Hospital, Korea University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lee, Ki Yeol; Choo, Ji Yung [Korea University Ansan Hospital, Korea University College of Medicine, Department of Radiology, Ansan (Korea, Republic of)

    2014-12-15

    The purpose of this study was to evaluate the diagnostic performance of chest radiography (CXR), chest digital tomosynthesis (DT) and low dose multidetector computed tomography (LDCT) for the detection of small pulmonary ground-glass opacity (GGO) nodules, using an anthropomorphic chest phantom. Artificial pulmonary nodules were placed in a phantom and a total of 40 samples of different nodule settings underwent CXR, DT and LDCT. The images were randomly read by three experienced chest radiologists. Free-response receiver-operating characteristics (FROC) were used. The figures of merit for the FROC curves averaged for the three observers were 0.41, 0.37 and 0.76 for CXR, DT and LDCT, respectively. FROC analyses revealed significantly better performance of LDCT over CXR or DT for the detection of GGO nodules (P < 0.05). The difference in detectability between CXR and DT was not statistically significant (P = 0.73). The diagnostic performance of DT for the detection of pulmonary small GGO nodules was not significantly different from that of CXR, but LDCT performed significantly better than both CXR and DT. DT is not a suitable alternative to CT for small GGO nodule detection, and LDCT remains the method of choice for this purpose. (orig.)

  17. The value of MDCT in diagnosis of hyaline-vascular Castleman's disease

    International Nuclear Information System (INIS)

    Sun, Xiaoli; Liu, Cheng; Wang, Rengui; Zhu, Xuejun; Gao, Li; Chen, Jiuhong

    2012-01-01

    Purpose: Castleman's disease (CD) is an uncommon entity characterized by a massive growth of lymphoid tissue. There are two types: the hyaline-vascular (HV) type and the plasma cell (PC) type. The purpose of this study was to evaluate the clinical value of multiple detector computed tomography (MDCT) in the diagnosis and planning of treatment for hyaline-vascular CD. Materials and methods: Fifty-two cases of confirmed hyaline-vascular CD were retrospectively reviewed. Unenhanced and contrast-enhanced MDCT scans had been performed in all patients, followed by surgery and pathological analysis of the lesion. Original MDCT transverse and reconstructed images were used for image interpretation. Features of the lesion and its adjacent structures were identified. Results: The lesion was present in the thorax of 24 patients and the abdomen in 28. Obvious features of hyaline-vascular CD (especially feeding vessels and draining veins) and its adjacent structures were demonstrated on 52 patients. Conclusion: On MDCT imaging, original MDCT transverse and reconstructed images provide an excellent tool for diagnosis of hyaline-vascular CD and have high value in the determination of a treatment plan

  18. Diagnostic work-up of pulmonary nodules. Management of pulmonary nodules detected with low-dose CT screening; Abklaerung von Lungenrundherden. Management durch Frueherkennungsuntersuchungen detektierter pulmonaler Rundherde

    Energy Technology Data Exchange (ETDEWEB)

    Wormanns, D. [Evangelische Lungenklinik Berlin, Berlin (Germany)

    2016-09-15

    Pulmonary nodules are the most frequent pathological finding in low-dose computed tomography (CT) scanning for early detection of lung cancer. Early stages of lung cancer are often manifested as pulmonary nodules; however, the very commonly occurring small nodules are predominantly benign. These benign nodules are responsible for the high percentage of false positive test results in screening studies. Appropriate diagnostic algorithms are necessary to reduce false positive screening results and to improve the specificity of lung cancer screening. Such algorithms are based on some of the basic principles comprehensively described in this article. Firstly, the diameter of nodules allows a differentiation between large (>8 mm) probably malignant and small (<8 mm) probably benign nodules. Secondly, some morphological features of pulmonary nodules in CT can prove their benign nature. Thirdly, growth of small nodules is the best non-invasive predictor of malignancy and is utilized as a trigger for further diagnostic work-up. Non-invasive testing using positron emission tomography (PET) and contrast enhancement as well as invasive diagnostic tests (e.g. various procedures for cytological and histological diagnostics) are briefly described in this article. Different nodule morphology using CT (e.g. solid and semisolid nodules) is associated with different biological behavior and different algorithms for follow-up are required. Currently, no obligatory algorithm is available in German-speaking countries for the management of pulmonary nodules, which reflects the current state of knowledge. The main features of some international and American recommendations are briefly presented in this article from which conclusions for the daily clinical use are derived. (orig.) [German] Lungenrundherde sind die haeufigsten pathologischen Befunde bei Untersuchungen mit der Niedrigdosis-CT zur Lungenkrebsfrueherkennung. Fruehstadien des Lungenkarzinoms manifestieren sich meist als Rundherd

  19. Distress and patient-centered communication among veterans with incidental (not screen-detected) pulmonary nodules. A cohort study.

    Science.gov (United States)

    Slatore, Christopher G; Golden, Sara E; Ganzini, Linda; Wiener, Renda Soylemez; Au, David H

    2015-02-01

    Incidental pulmonary nodule detection is postulated to cause distress, but the frequency and magnitude of that distress have not been reported. The quality of patient-clinician communication and the perceived risk of lung cancer may influence distress Objectives: To evaluate the association of communication processes with distress and the perceived risk of lung cancer using validated instruments. We conducted a prospective cohort study of patients with incidentally detected nodules who received care at one Department of Veterans Affairs Medical Center. We measured distress with the Impact of Event Scale and patient-centered communication with the Consultation Care Measure, both validated instruments. Risk of lung cancer was self-reported by participants. We used multivariable adjusted logistic regression to measure the association of communication quality with distress. Among 122 Veterans with incidental nodules, 23%, 12%, and 4% reported experiencing mild, moderate, and severe distress, respectively, at the time they were informed of the pulmonary nodule. Participant-reported risk of lung cancer was not associated with distress. In the adjusted model, high-quality communication was associated with decreased distress (odds ratio [OR] = 0.28, 95% confidence interval [CI] = 0.08-1.00, P = 0.05). Among participants who reported a risk of malignancy of 30% or less, high-quality communication was associated with decreased distress (OR = 0.15, 95% CI = 0.02-0.92, P = 0.04), but was not associated with distress for those who reported a risk greater than 30% (OR = 0.12 (95% CI = 0.00-3.97, P = 0.24), although the P value for interaction was not significant. Veterans with incidental pulmonary nodules frequently reported inadequate information exchange regarding their nodule. Many patients experience distress after they are informed that they have a pulmonary nodule, and high-quality patient-clinician communication is associated with

  20. Diagnosing lung nodules on oncologic MR/PET imaging: Comparison of fast T1-weighted sequences and influence of image acquisition in inspiration and expiration breath-hold

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, Nina F.; Seith, Ferdinand; Gatidis, Sergios; Brendle, Cornelia; Schmidt, Holger; Pfannenberg, Christina A; LaFougère, Christian; Nikolaou, Konstantin; Schraml, Christina [University Hospital of Tuebingen, Tuebingen (Germany)

    2016-09-15

    First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR/PET patients. In contrast to CT, inspiration versus

  1. Diagnosing Lung Nodules on Oncologic MR/PET Imaging: Comparison of Fast T1-Weighted Sequences and Influence of Image Acquisition in Inspiration and Expiration Breath-Hold

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, Nina F.; Seith, Ferdinand; Gatidis, Sergios [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Brendle, Cornelia [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Department of Diagnostic and Interventional Neuroradiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Schmidt, Holger; Pfannenberg, Christina A. [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Fougère, Christian la [Department of Nuclear Medicine, University Hospital of Tuebingen, Tuebingen 72076 (Germany); Nikolaou, Konstantin; Schraml, Christina [Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076 (Germany)

    2016-11-01

    First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR/PET patients. In contrast to CT, inspiration versus

  2. Pulmonary nodule characterization, including computer analysis and quantitative features.

    Science.gov (United States)

    Bartholmai, Brian J; Koo, Chi Wan; Johnson, Geoffrey B; White, Darin B; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Moynagh, Michael R; Lindell, Rebecca M; Hartman, Thomas E

    2015-03-01

    Pulmonary nodules are commonly detected in computed tomography (CT) chest screening of a high-risk population. The specific visual or quantitative features on CT or other modalities can be used to characterize the likelihood that a nodule is benign or malignant. Visual features on CT such as size, attenuation, location, morphology, edge characteristics, and other distinctive "signs" can be highly suggestive of a specific diagnosis and, in general, be used to determine the probability that a specific nodule is benign or malignant. Change in size, attenuation, and morphology on serial follow-up CT, or features on other modalities such as nuclear medicine studies or MRI, can also contribute to the characterization of lung nodules. Imaging analytics can objectively and reproducibly quantify nodule features on CT, nuclear medicine, and magnetic resonance imaging. Some quantitative techniques show great promise in helping to differentiate benign from malignant lesions or to stratify the risk of aggressive versus indolent neoplasm. In this article, we (1) summarize the visual characteristics, descriptors, and signs that may be helpful in management of nodules identified on screening CT, (2) discuss current quantitative and multimodality techniques that aid in the differentiation of nodules, and (3) highlight the power, pitfalls, and limitations of these various techniques.

  3. Preoperative detection of colorectal liver metastases in fatty liver: MDCT or MRI?

    International Nuclear Information System (INIS)

    Kulemann, Vanessa; Schima, Wolfgang; Tamandl, Dietmar; Kaczirek, Klaus; Gruenberger, Thomas; Wrba, Friedrich; Weber, Michael; Ba-Ssalamah, Ahmed

    2011-01-01

    Objective: To compare the diagnostic value of multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) in the preoperative detection of colorectal liver metastases in diffuse fatty infiltration of the liver, associated with neoadjuvant chemotherapy. Materials and methods: Twenty preoperative tri-phasic MDCT (4-64-row, Siemens) and dynamic contrast-enhanced MRI (1.5 T or 3.0 T, Siemens) examinations of patients with colorectal cancer and liver metastases in diffuse steatosis were retrospectively evaluated. All patients underwent surgical resection for liver metastases (time interval 1-60 days). The amount of fatty infiltration of the liver was determined histopathologically by semi-quantitative percent-wise estimation and ranged from 25 to 75%. Results: Overall, 51 metastases were found by histopathology of the resected liver segments/lobes. The size of the metastases ranged from 0.4 to 13 cm, with 18 (35%) being up to 1 cm in diameter. In the overall rating, MDCT detected 33/51 lesions (65%), and MRI 45/51 (88%). For lesions up to 1 cm, MDCT detected only 2/18 (11%) and MRI 12/18 (66%). One false positive lesion was detected by MDCT. Statistical analysis showed that MRI is markedly superior to MDCT, with a statistically significant difference (p 1 cm. Conclusion: For the detection of colorectal liver metastases after neoadjuvant chemotherapy and consecutive diffuse fatty infiltration of the liver, MRI is superior to MDCT, especially for the detection of small lesions.

  4. Comparison of multi-slice CT findings between malignant focal pulmonary ground-glass opacity nodules and solid nodules of 3 cm or less

    International Nuclear Information System (INIS)

    Fan Li; Yu Hong; Liu Shiyuan; Li Qingchu; Jiang Tao; Xiao Xiangsheng

    2010-01-01

    Objective: To compare the MSCT findings of malignant focal pulmonary ground-glass opacity nodules (fGGO) and solid nodules of 3 cm or less, and try to find specific signs in fGGO. Methods: Clinical data (sex ratio, age), size of lesion and MSCT findings (shape, margin, interface, internal characteristics, adjacent structure) of 105 cases pathologically confirmed to have solid lung cancers and 48 cases with fGGO less than 3 cm were retrospectively analyzed. Differences were analyzed by using the Fisher exact test or Mann-Whitney U test. Results: The male and female ratio of solid lung cancer(60:45) were higher than that of fGGO (18:30, X 2 value 5.09, P 2 values were 11.48, 4.07, 29.70 and 22.38 respectively, P 2 values 1.00, 2.20, 0.00, 0.15, 4.43, 1.50, 0.00, P>0.05). Conclusions: Malignant fGGO and solid lung cancer manifest mostly similar MSCT features. The frequency of irregular shape, vacuole sign and air bronchograms was higher in fGGO than in solid lung cancer to some degree, but speculation is more infrequent in fGGO, which may be attribute to thepathological type and basis of tumor. (authors)

  5. MDCT coronary angiography, postprocessing, reading, and reporting - Last but not least

    International Nuclear Information System (INIS)

    Marano, Riccardo; Savino, Giancarlo; Merlino, Biagio; Verrillo, Gemma; Silvestri, Valentina; Tricarico, Francesco; Meduri, Agostino; Natale, Luigi; Bonomo, Lorenzo

    2013-01-01

    Significant literature on MDCT coronary angiography (MDCT-CA) has emerged in the last decade concerning patient's selection, technical aspects of different generations of CT equipment, ECG gating, contrast material and beta-blockade administration, acquisition parameters, and radiation dose. However, the literature regarding postprocessing, reading, and reporting is not so extensive. This review highlights the main elements of MDCT-CA data analysis, thereby allowing the radiologist to take full advantage of this technology and enable a structured report to be generated, promoting best practice with high-quality results

  6. Toward clinically usable CAD for lung cancer screening with computed tomography

    International Nuclear Information System (INIS)

    Brown, Matthew S.; Lo, Pechin; Goldin, Jonathan G.; Barnoy, Eran; Kim, Grace Hyun J.; McNitt-Gray, Michael F.; Aberle, Denise R.

    2014-01-01

    The purpose of this study was to define clinically appropriate, computer-aided lung nodule detection (CAD) requirements and protocols based on recent screening trials. In the following paper, we describe a CAD evaluation methodology based on a publically available, annotated computed tomography (CT) image data set, and demonstrate the evaluation of a new CAD system with the functionality and performance required for adoption in clinical practice. A new automated lung nodule detection and measurement system was developed that incorporates intensity thresholding, a Euclidean Distance Transformation, and segmentation based on watersheds. System performance was evaluated against the Lung Imaging Database Consortium (LIDC) CT reference data set. The test set comprised thin-section CT scans from 108 LIDC subjects. The median (±IQR) sensitivity per subject was 100 (±37.5) for nodules ≥ 4 mm and 100 (±8.33) for nodules ≥ 8 mm. The corresponding false positive rates were 0 (±2.0) and 0 (±1.0), respectively. The concordance correlation coefficient between the CAD nodule diameter and the LIDC reference was 0.91, and for volume it was 0.90. The new CAD system shows high nodule sensitivity with a low false positive rate. Automated volume measurements have strong agreement with the reference standard. Thus, it provides comprehensive, clinically-usable lung nodule detection and assessment functionality. (orig.)

  7. Toward clinically usable CAD for lung cancer screening with computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Matthew S.; Lo, Pechin; Goldin, Jonathan G.; Barnoy, Eran; Kim, Grace Hyun J.; McNitt-Gray, Michael F.; Aberle, Denise R. [David Geffen School of Medicine at UCLA, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, Los Angeles, CA (United States)

    2014-11-15

    The purpose of this study was to define clinically appropriate, computer-aided lung nodule detection (CAD) requirements and protocols based on recent screening trials. In the following paper, we describe a CAD evaluation methodology based on a publically available, annotated computed tomography (CT) image data set, and demonstrate the evaluation of a new CAD system with the functionality and performance required for adoption in clinical practice. A new automated lung nodule detection and measurement system was developed that incorporates intensity thresholding, a Euclidean Distance Transformation, and segmentation based on watersheds. System performance was evaluated against the Lung Imaging Database Consortium (LIDC) CT reference data set. The test set comprised thin-section CT scans from 108 LIDC subjects. The median (±IQR) sensitivity per subject was 100 (±37.5) for nodules ≥ 4 mm and 100 (±8.33) for nodules ≥ 8 mm. The corresponding false positive rates were 0 (±2.0) and 0 (±1.0), respectively. The concordance correlation coefficient between the CAD nodule diameter and the LIDC reference was 0.91, and for volume it was 0.90. The new CAD system shows high nodule sensitivity with a low false positive rate. Automated volume measurements have strong agreement with the reference standard. Thus, it provides comprehensive, clinically-usable lung nodule detection and assessment functionality. (orig.)

  8. Computer-Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imaging?

    Science.gov (United States)

    Foley, Finbar; Rajagopalan, Srinivasan; Raghunath, Sushravya M; Boland, Jennifer M; Karwoski, Ronald A; Maldonado, Fabien; Bartholmai, Brian J; Peikert, Tobias

    2016-01-01

    Increased clinical use of chest high-resolution computed tomography results in increased identification of lung adenocarcinomas and persistent subsolid opacities. However, these lesions range from very indolent to extremely aggressive tumors. Clinically relevant diagnostic tools to noninvasively risk stratify and guide individualized management of these lesions are lacking. Research efforts investigating semiquantitative measures to decrease interrater and intrarater variability are emerging, and in some cases steps have been taken to automate this process. However, many such methods currently are still suboptimal, require validation and are not yet clinically applicable. The computer-aided nodule assessment and risk yield software application represents a validated tool for the automated, quantitative, and noninvasive tool for risk stratification of adenocarcinoma lung nodules. Computer-aided nodule assessment and risk yield correlates well with consensus histology and postsurgical patient outcomes, and therefore may help to guide individualized patient management, for example, in identification of nodules amenable to radiological surveillance, or in need of adjunctive therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. How accurate is unenhanced multidetector-row CT (MDCT) for localization of renal calculi?

    International Nuclear Information System (INIS)

    Goetschi, Stefan; Umbehr, Martin; Ullrich, Stephan; Glenck, Michael; Suter, Stefan; Weishaupt, Dominik

    2012-01-01

    Purpose: To investigate the correlation between unenhanced MDCT and intraoperative findings with regard to the exact anatomical location of renal calculi. Design, setting, and participants: Fifty-nine patients who underwent unenhanced MDCT for suspected urinary stone disease, and who underwent subsequent flexible ureterorenoscopy (URS) as treatment of nephrolithiasis were included in this retrospective study. All MDCT data sets were independently reviewed by three observers with different degrees of experience in reading CT. Each observer was asked to indicate presence and exact anatomical location of any calcification within pyelocaliceal system, renal papilla or renal cortex. Results were compared to intraoperative findings which have been defined as standard of reference. Calculi not described at surgery, but present on MDCT data were counted as renal cortex calcifications. Results: Overall 166 calculi in 59 kidneys have been detected on MDCT, 100 (60.2%) were located in the pyelocaliceal system and 66 (39.8%) in the renal parenchyma. Of the 100 pyelocaliceal calculi, 84 (84%) were correctly located on CT data sets by observer 1, 62 (62%) by observer 2, and 71 (71%) by observer 3. Sensitivity/specificity was 90–94% and 50–100% if only pyelocaliceal calculi measuring >4 mm in size were considered. For pyelocaliceal calculi ≤4 mm in size diagnostic performance of MDCT was inferior. Conclusion: Compared to flexible URS, unenhanced MDCT is accurate for distinction between pyelocaliceal calculi and renal parenchyma calcifications if renal calculi are >4 mm in size. For smaller renal calculi, unenhanced MDCT is less accurate and distinction between a pyelocaliceal calculus and renal parenchyma calcification is difficult.

  10. MDCT classification of osseous ankle and foot injuries; MDCT-Klassifikation knoecherner Verletzungen des oberen Sprunggelenks und des Fusses

    Energy Technology Data Exchange (ETDEWEB)

    Opherk, J.P.; Rosenthal, H.; Galanski, M. [Medizinische Hochschule, Abteilung Diagnostische Radiologie, Hannover (Germany)

    2007-03-15

    Conventional radiography plays an essential role in the primary evaluation of acute ankle and foot trauma. In the case of complex injuries, however, subsequent computed tomography (CT) is nowadays recommended. In this connection, multidetector computed tomography (MDCT) allows better temporal, spatial, and contrast resolution compared with the conventional single-slice spiral CT. Multiplanar reformation and three-dimensional reconstruction of the acquired data sets are also helpful tools for critical assessment of therapeutic intervention. This report reviews the potential of the MDCT technique for accurate fracture classification, precise illustration of displaced components, and postoperative control of arrangement of typical lesions. (orig.) [German] Die konventionelle Radiographie spielt bei der initialen Diagnostik akuter Verletzungen des oberen Sprunggelenks und des Fusses eine essenzielle Rolle. Im Falle komplexer Frakturen ist jedoch eine weiterfuehrende computertomographische Diagnostik empfehlenswert. Dabei ist die Multidetektorcomputertomographie (MDCT) der konventionellen Einzeilencomputertomographie hinsichtlich Zeit-, Orts- und Kontrastaufloesung deutlich ueberlegen. Die multiplanare Reformation und dreidimensionale Rekonstruktion des akquirierten Datensatzes sind zudem bei der Beurteilung therapeutischer Interventionen aussagekraeftige Werkzeuge. Der vorliegende Beitrag gibt einen Ueberblick ueber die exakte Frakturklassifikation, die praezise Abbildung dislozierter Komponenten und die postoperative Stellungskontrolle typischer Verletzungen mit dieser Technik. (orig.)

  11. Ultralow dose CT for pulmonary nodule detection with chest X-ray equivalent dose - a prospective intra-individual comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Messerli, Michael [University Zurich, Department of Nuclear Medicine, University Hospital Zurich, Zurich (Switzerland); Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Kluckert, Thomas; Knitel, Meinhard; Desbiolles, Lotus; Bauer, Ralf W.; Wildermuth, Simon [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Waelti, Stephan [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); University of Montreal, Department of Radiology, CHU Sainte-Justine, Montreal, Quebec (Canada); Rengier, Fabian [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Warschkow, Rene [Cantonal Hospital St. Gallen, Department of Surgery, St. Gallen (Switzerland); Alkadhi, Hatem [University Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland); Leschka, Sebastian [Cantonal Hospital St. Gallen, Division of Radiology and Nuclear Medicine, St. Gallen (Switzerland); University Zurich, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland)

    2017-08-15

    To prospectively evaluate the accuracy of ultralow radiation dose CT of the chest with tin filtration at 100 kV for pulmonary nodule detection. 202 consecutive patients undergoing clinically indicated chest CT (standard dose, 1.8 ± 0.7 mSv) were prospectively included and additionally scanned with an ultralow dose protocol (0.13 ± 0.01 mSv). Standard dose CT was read in consensus by two board-certified radiologists to determine the presence of lung nodules and served as standard of reference (SOR). Two radiologists assessed the presence of lung nodules and their locations on ultralow dose CT. Sensitivity and specificity of the ultralow dose protocol was compared against the SOR, including subgroup analyses of different nodule sizes and types. A mixed effects logistic regression was used to test for independent predictors for sensitivity of pulmonary nodule detection. 425 nodules (mean diameter 3.7 ± 2.9 mm) were found on SOR. Overall sensitivity for nodule detection by ultralow dose CT was 91%. In multivariate analysis, nodule type, size and patients BMI were independent predictors for sensitivity (p < 0.001). Ultralow dose chest CT at 100 kV with spectral shaping enables a high sensitivity for the detection of pulmonary nodules at exposure levels comparable to plain film chest X-ray. (orig.)

  12. Can independent coronal multiplanar reformatted images obtained using state-of-the-art MDCT scanners be used for primary interpretation of MDCT of the abdomen and pelvis? A feasibility study

    International Nuclear Information System (INIS)

    Sebastian, Sunit; Kalra, Mannudeep K.; Mittal, Pardeep; Saini, Sanjay; Small, William C.

    2007-01-01

    Purpose: To evaluate if coronal reformatted images can be used for primary interpretation of MDCT of the abdomen and pelvis using 64-slice MDCT. Materials and methods: IRB approval was obtained. We reviewed MDCT studies of the abdomen and pelvis of 220 consecutive patients performed with 64 row MDCT with constant scanning parameters. Based on a 0.625 mm raw data set, transverse images were reconstructed at 5 mm and coronal images at 3 mm using standard reconstruction algorithms. Reader familiarity was achieved by simultaneous evaluation of transverse and coronal reformats in an initial group of 20 separate cases for findings in consensus. Two subsequent phases of image analysis were then performed in two groups of 100 patients each. In the first phase two radiologists evaluated the added utility of simultaneous review of MDCT of transverse and coronal reformatted images over transverse images alone in 100 consecutive patients referred for MDCT of the abdomen and pelvis. In the second phase, the same radiologists evaluated whether coronal multiplanar reformats could be used for primary interpretation of MDCT of the abdomen and pelvis in a separate but similar cohort of 100 consecutive abdominopelvic MDCT studies. The number of lesion(s), their location, size of smallest lesion, presence of artifacts and likely diagnosis were noted at each image interpretation. Image quality and confidence for interpretation was evaluated using five-point and three-point scale, respectively. The time required for primary interpretation of coronal reformats and transverse images were recorded. Statistical analysis was performed using Wilcoxon signed rank test. Results: Both readers detected additional findings (n = 37, 35), respectively, on simultaneous review of transverse and coronal reformats as compared with transverse images alone (p < 0.001). Excellent interobserver agreement was noted (r = 0.94-0.96). Both readers detected additional findings (n = 62, 53), respectively, on

  13. Quantification of bronchial dimensions at MDCT using dedicated software

    International Nuclear Information System (INIS)

    Brillet, P.Y.; Fetita, C.I.; Saragaglia, A.; Perchet, D.; Preteux, F.; Beigelman-Aubry, C.; Grenier, P.A.

    2007-01-01

    This study aimed to assess the feasibility of quantification of bronchial dimensions at MDCT using dedicated software (BronCare). We evaluated the reliability of the software to segment the airways and defined criteria ensuring accurate measurements. BronCare was applied on two successive examinations in 10 mild asthmatic patients. Acquisitions were performed at pneumotachographically controlled lung volume (65% TLC), with reconstructions focused on the right lung base. Five validation criteria were imposed: (1) bronchus type: segmental and subsegmental; (2) lumen area (LA)>4 mm 2 ; (3) bronchus length (Lg) > 7 mm; (4) confidence index - giving the percentage of the bronchus not abutted by a vessel - (CI) >55% for validation of wall area (WA) and (5) a minimum of 10 contiguous cross-sectional images fulfilling the criteria. A complete segmentation procedure on both acquisitions made possible an evaluation of LA and WA in 174/223 (78%) and 171/174 (98%) of bronchi, respectively. The validation criteria were met for 56/69 (81%) and for 16/69 (23%) of segmental bronchi and for 73/102 (72%) and 58/102 (57%) of subsegmental bronchi, for LA and WA, respectively. In conclusion, BronCare is reliable to segment the airways in clinical practice. The proposed criteria seem appropriate to select bronchi candidates for measurement. (orig.)

  14. Mucoid impaction presenting as multiple pulmonary nodules in cystic fibrosis

    International Nuclear Information System (INIS)

    Carpenter, L.D.; Lambie, N.K.; Wilsher, M.L.

    1996-01-01

    Mucoid impaction has been described as a complication of asthma and more commonly in patients with allergic bronchopulmonary aspergillosis. In such cases, the impacted pools of mucus may present as discrete nodules on chest X-ray and hence simulate the appearance of metastatic malignancy. A case of mucoid impaction presenting as multiple pulmonary nodules in a patient with cystic fibrosis is described. The chest X-ray showed hyperinfiltration and scattered changes consistent with bronchiectasis. Computed tomography scan confirmed these and additional intra-pulmonary nodular densities. This report illustrates that mucus impaction as a cause of pulmonary nodules should be considered in any patient with chronic lung disease characterised by excess mucus production. 6 refs., 3 figs

  15. MRI, MDCT features, and clinical outcome of extremity leiomyosarcomas: experience in 47 patients

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Robert W.; Shinagare, Atul B. [Brigham and Women' s Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States); Tirumani, Sree Harsha; Jagannathan, Jyothi P.; Ramaiya, Nikhil H. [Brigham and Women' s Hospital, Harvard Medical School, Department of Radiology, Boston, MA (United States); Dana-Farber Cancer Institute, Harvard Medical School, Department of Imaging, Boston, MA (United States); Kurra, Vikram [Dana-Farber Cancer Institute, Harvard Medical School, Department of Imaging, Boston, MA (United States); Hornick, Jason L. [Brigham and Women' s Hospital, Harvard Medical School, Department of Pathology, Boston, MA (United States)

    2014-05-15

    To describe MRI, MDCT features, and clinical outcome of extremity leiomyosarcomas (LMS). In this IRB-approved, HIPAA-compliant retrospective study, we included 47 patients (23 women, 24 men; mean age: 55.3 years, range: 17-85 years) with pathologically confirmed extremity LMS seen at our adult tertiary cancer center between 2000 and 2012. MRI/MDCT of primary tumors in 23 patients and follow-up in all patients were reviewed by two radiologists in consensus. Clinical data were extracted from electronic medical records. Primary tumors were distributed in bones (6 out of 47), deep soft tissues (24 out of 47), and superficial soft tissues (17 out of 47). On imaging (bone = 4, deep soft tissue = 11, superficial soft tissue = 8), compared with skeletal muscle, they were T1 iso-hypointense and T2 hyperintense. Bone LMS were metaphyseal tumors with cortical destruction (3 out of 4). Deep soft-tissue LMS were large with hemorrhage (7 out of 11) and necrosis (10 out of 11). Superficial soft-tissue LMS were relatively smaller, homogeneously enhancing (6 out of 8) tumors. Distant metastases developed in 32 out of 47 patients (bone LMS [6 out of 6], deep soft-tissue LMS [18 out of 24], superficial soft-tissue LMS [8 out of 17]), commonly to lung (29 out of 47) and bone (14 out of 47). At the time of writing, 22 out of 36 patients (bone LMS [4 out of 6], deep soft-tissue LMS [15 out of 24], superficial soft-tissue LMS [4 out of 17]) have died. There was no statistically significant correlation between metastatic disease and tumor size or grade. Extremity LMS arise in bones and in the deep and superficial soft tissues, frequently metastasize to the lungs, and have a poor prognosis. Superficial LMS tend to have a better prognosis than bone or deep soft-tissue LMS. (orig.)

  16. MRI, MDCT features, and clinical outcome of extremity leiomyosarcomas: experience in 47 patients

    International Nuclear Information System (INIS)

    Gordon, Robert W.; Shinagare, Atul B.; Tirumani, Sree Harsha; Jagannathan, Jyothi P.; Ramaiya, Nikhil H.; Kurra, Vikram; Hornick, Jason L.

    2014-01-01

    To describe MRI, MDCT features, and clinical outcome of extremity leiomyosarcomas (LMS). In this IRB-approved, HIPAA-compliant retrospective study, we included 47 patients (23 women, 24 men; mean age: 55.3 years, range: 17-85 years) with pathologically confirmed extremity LMS seen at our adult tertiary cancer center between 2000 and 2012. MRI/MDCT of primary tumors in 23 patients and follow-up in all patients were reviewed by two radiologists in consensus. Clinical data were extracted from electronic medical records. Primary tumors were distributed in bones (6 out of 47), deep soft tissues (24 out of 47), and superficial soft tissues (17 out of 47). On imaging (bone = 4, deep soft tissue = 11, superficial soft tissue = 8), compared with skeletal muscle, they were T1 iso-hypointense and T2 hyperintense. Bone LMS were metaphyseal tumors with cortical destruction (3 out of 4). Deep soft-tissue LMS were large with hemorrhage (7 out of 11) and necrosis (10 out of 11). Superficial soft-tissue LMS were relatively smaller, homogeneously enhancing (6 out of 8) tumors. Distant metastases developed in 32 out of 47 patients (bone LMS [6 out of 6], deep soft-tissue LMS [18 out of 24], superficial soft-tissue LMS [8 out of 17]), commonly to lung (29 out of 47) and bone (14 out of 47). At the time of writing, 22 out of 36 patients (bone LMS [4 out of 6], deep soft-tissue LMS [15 out of 24], superficial soft-tissue LMS [4 out of 17]) have died. There was no statistically significant correlation between metastatic disease and tumor size or grade. Extremity LMS arise in bones and in the deep and superficial soft tissues, frequently metastasize to the lungs, and have a poor prognosis. Superficial LMS tend to have a better prognosis than bone or deep soft-tissue LMS. (orig.)

  17. Empirical description of bronchial and nonbronchial arteries with MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Yu Hong, E-mail: yuhong.2002@hotmail.co [Department of Imageology, Changzheng hospital, Second Military Medical University, Shanghai 200003 (China); Liu Shiyuan, E-mail: cjr.liushiyuan@vip.163.co [Department of Imageology, Changzheng hospital, Second Military Medical University, Shanghai 200003 (China); Li Huimin, E-mail: yuhongphd@163.co [Department of Imageology, Changzheng hospital, Second Military Medical University, Shanghai 200003 (China); Xiao Xiangsheng, E-mail: cjr.xxsh@vip.163.co [Department of Imageology, Changzheng hospital, Second Military Medical University, Shanghai 200003 (China); Dong Weihua, E-mail: dongweihua2000@163.co [Department of Imageology, Changzheng hospital, Second Military Medical University, Shanghai 200003 (China)

    2010-08-15

    Purpose: We aimed to retrospectively evaluate bronchial and nonbronchial systemic arteries using multi-detector row helical computed tomographic (MDCT) angiography in patients with pulmonary disorders. Materials and Methods: Thirty-nine patients (24 men, 15 women; mean age, 63.4 years; range, 20-82 years) with congenital and acquired pulmonary disorders of the bronchial and nonbronchial systemic arteries underwent multi-detector row helical computed tomographic angiography of the thorax using a 16-detector row scanner. Each of these patients had experienced an episode of hemoptysis. Computed tomographic angiogram data, which included maximum intensity projections, multiplanar reconstruction, and three-dimensional volume-rendered images, were used to retrospectively analyse the characteristics of the bronchial and nonbronchial systemic arteries. Results: We identified a total of 128 bronchial arteries (76 on the right side and 52 on the left) in 39 patients. We detected 42 nonbronchial systemic artery branches, including 19 internal mammary artery branches, 8 subclavian artery branches, 8 inferior phrenic artery branches, 5 intercostal artery branches, 1 thyrocervical trunk branch, and 1 celiac trunk branch. Thirty-five dilated and tortuous nonbronchial systemic arteries entered into the lung parenchyma and extended down to the lesions. Every case, except the one case of sequestration, was associated with pleural thickening where the vascular structures passed through the extrapleural fat. Conclusions: The variations in both the bronchial artery anatomy and the location and type of the nonbronchial arteries were great. Nonbronchial arteries may be a significant source of hemoptysis. MDCT angiography can be used to detect detailed anatomical information about the origins and courses of bronchial and nonbronchial systemic arteries and their pathophysiologic features.

  18. Characteristics of Consolidation, Centrilobular Nodule and Bronchus as CT Findings for the Differentiation between Tuberculosis and Pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Se Young; Chung, Myung Hee; Lim, Yeon Soo; Lim, Hyun Wook; Kahng, Ji Min [Bucheon St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Bucheon (Korea, Republic of); Sung, Mi Sook [Dept. of Radiology, St. Paul' s Hospital, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2013-06-15

    To differentiate tuberculosis from pneumonia by computed tomography (CT) in cases difficult to diagnose clinically and radiologically. CT scans of 300 patients with tuberculosis and 234 patients with pneumonia were retrospectively analyzed. Parenchymal abnormalities, lymph nodes, pleural effusions and central bronchial narrowing were evaluated. The density of consolidation was measured by pre- and post-enhanced CT. Centrilobular nodules, granulomas, cavitations in both nodules as well as consolidation, conglomerated nodules, and enlarged lymph nodes occurred with significantly greater frequency in patients with tuberculosis than in those with pneumonia. Centrilobular nodules were larger and denser in tuberculosis patients. In consolidation, decreases in lung lobe volume and a bronchial beaded appearance (irregular narrowing and dilatation) were more frequent in patients with tuberculosis. The tuberculous consolidation had significantly lower mean enhancement and net enhancement than that from pneumonia. When the diagnostic criteria for tuberculosis were set as well-demarcated larger centrilobular nodules and/or a lowerly enhancing consolidation with internal beaded bronchi, the diagnostic accuracy was found to be 82.0%. Consolidation with a low level of enhancement, decreased lung lobe volume, and bronchi with irregular, beaded shape and denser and larger centrilobular nodules are helpful CT findings for the diagnosis of tuberculosis.

  19. Sublobar resection is equivalent to lobectomy for clinical stage 1A lung cancer in solid nodules.

    Science.gov (United States)

    Altorki, Nasser K; Yip, Rowena; Hanaoka, Takaomi; Bauer, Thomas; Aye, Ralph; Kohman, Leslie; Sheppard, Barry; Thurer, Richard; Andaz, Shahriyour; Smith, Michael; Mayfield, William; Grannis, Fred; Korst, Robert; Pass, Harvey; Straznicka, Michaela; Flores, Raja; Henschke, Claudia I

    2014-02-01

    A single randomized trial established lobectomy as the standard of care for the surgical treatment of early-stage non-small cell lung cancer. Recent advances in imaging/staging modalities and detection of smaller tumors have once again rekindled interest in sublobar resection for early-stage disease. The objective of this study was to compare lung cancer survival in patients with non-small cell lung cancer with a diameter of 30 mm or less with clinical stage 1 disease who underwent lobectomy or sublobar resection. We identified 347 patients diagnosed with lung cancer who underwent lobectomy (n = 294) or sublobar resection (n = 53) for non-small cell lung cancer manifesting as a solid nodule in the International Early Lung Cancer Action Program from 1993 to 2011. Differences in the distribution of the presurgical covariates between sublobar resection and lobectomy were assessed using unadjusted P values determined by logistic regression analysis. Propensity scoring was performed using the same covariates. Differences in the distribution of the same covariates between sublobar resection and lobectomy were assessed using adjusted P values determined by logistic regression analysis with adjustment for the propensity scores. Lung cancer-specific survival was determined by the Kaplan-Meier method. Cox survival regression analysis was used to compare sublobar resection with lobectomy, adjusted for the propensity scores, surgical, and pathology findings, when adjusted and stratified by propensity quintiles. Among 347 patients, 10-year Kaplan-Meier for 53 patients treated by sublobar resection compared with 294 patients treated by lobectomy was 85% (95% confidence interval, 80-91) versus 86% (confidence interval, 75-96) (P = .86). Cox survival analysis showed no significant difference between sublobar resection and lobectomy when adjusted for propensity scores or when using propensity quintiles (P = .62 and P = .79, respectively). For those with cancers 20 mm or less in

  20. Granulomatous Bronchiolitis with Necrobiotic Pulmonary Nodules in Chrohn's Disease

    Directory of Open Access Journals (Sweden)

    Hugh J Freeman

    2004-01-01

    Full Text Available A 37-year-old man with extensive Crohn's disease of the stomach, small and large intestine for almost a decade developed respiratory symptoms and radiological findings suggestive of pneumonia that failed to resolve with antibiotic treatment. Computed tomography scanning of his lungs showed extensive changes with cavitated parenchymal nodules. Histological evaluation of an open lung biopsy showed granulomatous bronchiolitis and pulmonary necrobiosis. Treatment with steroids and immunosuppression resulted in complete resolution of his clinical symptoms of pneumonia and abnormal computed tomography imaging changes. Granulomatous bronchiolitis and necrobiotic nodules may be a manifestation of Crohn's disease in the absence of microbial agents, including mycobacteria or fungal agents. While a multiplicity of complex pulmonary changes may occur in Crohn's disease, their clinical recognition and precise pathological definition may be particularly important if treatment with a biological agent, such as infliximab, is being considered.

  1. Evaluation of aortogenic embolic stroke using multi-detector row CT (MDCT)

    International Nuclear Information System (INIS)

    Mizuno, Masanori; Ooura, Kazumasa; Yamaguchi, Mao; Katsura, Noriyuki; Terayama, Yasuo

    2010-01-01

    Transesophageal cardioechography is one of the useful tools for detecting aortic arteriosclerosis causing aortogenic cerebral embolism. However, it is difficult to perform this method to all of the patients because of the technical difficulties due to patient's condition, especially the severity of atherosclerosis. To avoid the unexpected and adverse events, we are routinely applying multi-detector row CT (MDCT) to those patients. Among 10 cerebral embolic patients with unidentified embolic origin, MDCT revealed arteriosclerotic changes in aorta inducing mobile thrombus in 3 cases. The above data indicates that MDCT is safe and useful tool for diagnosis of aortogenic embolic stroke. (author)

  2. Usefulness of CT-guided automatic needle biopsy of solitary pulmonary nodule smaller than 15 mm

    International Nuclear Information System (INIS)

    Jin, Gong Yong; Lim, Yeong Su

    2004-01-01

    To evaluate the usefulness of the CT-guided percutaneous lung biopsy for the solitary pulmonary nodules smaller than 15 mm in diameter. Between April 2002 and May 2003, we evaluated twenty-five patients (11 men, 14 women, mean ages: 52.5 years) who had solitary pulmonary nodules, which we could not discriminate as being benign or malignant on the CT findings. All the subjects had CT-guided percutaenous cutting needle biopsy (PCNB) performed on them at our institution. A definitive diagnosis of benignity or malignancy was established to retrospectively analyze the patient's records. We evaluated the accuracy, sensitivity, specificity and complications of PCNB for the definitive diagnosis of benignity or malignancy. The sensitivity and specificity of PCNB were determined using the Chi-square test, and the correlations with pneumothorax and emphysema after biopsy were analyzed using Spearman's rank correlation coefficient. In two nodules of the twenty-five nodules, no definitive diagnosis could be established. Of the remaining twenty-three nodules, 7 (30.4%) were malignant and 16 (69.6%) were benign. Twenty (87%) of the twenty-three definitively diagnosed nodules were correctly diagnosed with PCNB. Of the twenty nodules, 6 (30%) were malignant and 14 (70%) were benign. The sensitivity and specificity of the malignant nodules were 85.7% (6/7) and 100% (16/16), respectively. The sensitivity and specificity of the benign nodules were 87.5% (14/16) and 85.7% (6/7), respectively. Post-biopsy complication occurred in nine patients (36%): Hemoptysis (n=4, 16%) and pneumothorax (n=5, 20%). However, there was not a statistical significance between pneumothorax and emphysema after biopsy (r=0.3, p=0.15). When CT-guided percutaneous lung biopsy of the solitary pulmonary nodules smaller than 15 mm in diameter was performed without an on-site cytopathologist, we know that PCNB can yield high diagnostic accuracy and very few complications

  3. Spontaneous Regression of Pulmonary Nodules Presenting as Epstein-Barr Virus-related Atypical Infectious Mononucleosis.

    Science.gov (United States)

    Shinozuka, Jun; Awaguni, Hitoshi; Tanaka, Shin-Ichiro; Makino, Shigeru; Maruyama, Rikken; Inaba, Tohru; Imashuku, Shinsaku

    2016-07-01

    Pulmonary nodules associated with Epstein-Barr virus (EBV)-related atypical infectious mononucleosis have rarely been described. A 12-year-old Japanese boy, upon admission, revealed multiple small round nodules (a total of 7 nodules in 4 to 8 mm size) in the lungs on computed tomography. The hemorrhagic pharyngeal tonsils with hot signals on 18F-fluorodeoxyglucose-positron emission tomography-computed tomography were biopsied revealing the presence of EBV-encoded small nuclear RNA (EBER)-positive cells; however, no lymphoma was noted. The patient was diagnosed as having atypical EBV-infectious mononucleosis associated with primary EBV infection. Pulmonary nodules markedly reduced in numbers and sizes spontaneously over a 2-year period. Differential diagnosis of pulmonary nodules in childhood should include atypical EBV infection.

  4. Automatic Lung-RADS™ classification with a natural language processing system.

    Science.gov (United States)

    Beyer, Sebastian E; McKee, Brady J; Regis, Shawn M; McKee, Andrea B; Flacke, Sebastian; El Saadawi, Gilan; Wald, Christoph

    2017-09-01

    Our aim was to train a natural language processing (NLP) algorithm to capture imaging characteristics of lung nodules reported in a structured CT report and suggest the applicable Lung-RADS™ (LR) category. Our study included structured, clinical reports of consecutive CT lung screening (CTLS) exams performed from 08/2014 to 08/2015 at an ACR accredited Lung Cancer Screening Center. All patients screened were at high-risk for lung cancer according to the NCCN Guidelines ® . All exams were interpreted by one of three radiologists credentialed to read CTLS exams using LR using a standard reporting template. Training and test sets consisted of consecutive exams. Lung screening exams were divided into two groups: three training sets (500, 120, and 383 reports each) and one final evaluation set (498 reports). NLP algorithm results were compared with the gold standard of LR category assigned by the radiologist. The sensitivity/specificity of the NLP algorithm to correctly assign LR categories for suspicious nodules (LR 4) and positive nodules (LR 3/4) were 74.1%/98.6% and 75.0%/98.8% respectively. The majority of mismatches occurred in cases where pulmonary findings were present not currently addressed by LR. Misclassifications also resulted from the failure to identify exams as follow-up and the failure to completely characterize part-solid nodules. In a sub-group analysis among structured reports with standardized language, the sensitivity and specificity to detect LR 4 nodules were 87.0% and 99.5%, respectively. An NLP system can accurately suggest the appropriate LR category from CTLS exam findings when standardized reporting is used.

  5. Napsin A levels in epithelial lining fluid as a diagnostic biomarker of primary lung adenocarcinoma.

    Science.gov (United States)

    Uchida, Akifumi; Samukawa, Takuya; Kumamoto, Tomohiro; Ohshige, Masahiro; Hatanaka, Kazuhito; Nakamura, Yoshihiro; Mizuno, Keiko; Higashimoto, Ikkou; Sato, Masami; Inoue, Hiromasa

    2017-12-12

    It is crucial to develop novel diagnostic approaches for determining if peripheral lung nodules are malignant, as such nodules are frequently detected due to the increased use of chest computed tomography scans. To this end, we evaluated levels of napsin A in epithelial lining fluid (ELF), since napsin A has been reported to be an immunohistochemical biomarker for histological diagnosis of primary lung adenocarcinoma. In consecutive patients with indeterminate peripheral lung nodules, ELF samples were obtained using a bronchoscopic microsampling (BMS) technique. The levels of napsin A and carcinoembryonic antigen (CEA) in ELF at the nodule site were compared with those at the contralateral site. A final diagnosis of primary lung adenocarcinoma was established by surgical resection. We performed BMS in 43 consecutive patients. Among patients with primary lung adenocarcinoma, the napsin A levels in ELF at the nodule site were markedly higher than those at the contralateral site, while there were no significant differences in CEA levels. Furthermore, in 18 patients who were undiagnosed by bronchoscopy and finally diagnosed by surgery, the napsin A levels in ELF at the nodule site were identically significantly higher than those at the contralateral site. In patients with non-adenocarcinoma, there were no differences in napsin A levels in ELF. The area under the receiver operator characteristic curve for identifying primary lung adenocarcinoma was 0.840 for napsin A and 0.542 for CEA. Evaluation of napsin A levels in ELF may be useful for distinguishing primary lung adenocarcinoma.

  6. Electromagnetic Navigational Bronchoscopy versus CT-guided Percutaneous Sampling of Peripheral Indeterminate Pulmonary Nodules: A Cohort Study.

    Science.gov (United States)

    Bhatt, Kavita M; Tandon, Yasmeen K; Graham, Ruffin; Lau, Charles T; Lempel, Jason K; Azok, Joseph T; Mazzone, Peter J; Schneider, Erika; Obuchowski, Nancy A; Bolen, Michael A

    2018-03-01

    Purpose To compare the diagnostic yield and complication rates of electromagnetic navigational bronchoscopic (ENB)-guided and computed tomography (CT)-guided percutaneous tissue sampling of lung nodules. Materials and Methods Retrospectively identified were 149 patients sampled percutaneously with CT guidance and 146 patients who underwent ENB with transbronchial biopsy of a lung lesion between 2013 and 2015. Clinical data, incidence of complications, and nodule pathologic analyses were assessed through electronic medical record review. Lung nodule characteristics were reviewed through direct image analysis. Molecular marker studies and pathologic analyses from surgical excision were reviewed when available. Multiple-variable logistic regression models were built to compare the diagnostic yield and complication rates for each method and for different patient and disease characteristics. Results CT-guided sampling was more likely to be diagnostic than ENB-guided biopsy (86.0% [129 of 150] vs 66.0% [99 of 150], respectively), and this difference remained significant even after adjustments were made for patient and nodule characteristics (P guided sampling (P guided sampling, 88.9% [32 of 36]; CT-guided sampling, 82.0% [41 of 50]). The two groups had similar rates of major complications (symptomatic hemorrhage, P > .999; pneumothorax requiring chest tube and/or admission, P = .417). Conclusion CT-guided transthoracic biopsy provided higher diagnostic yield in the assessment of peripheral pulmonary nodules than navigational bronchoscopy with a similar rate of clinically relevant complications. © RSNA, 2017 Online supplemental material is available for this article.

  7. Noninvasive Characterization of Indeterminate Pulmonary Nodules Detected on Chest High-Resolution Computed Tomography

    Science.gov (United States)

    2016-10-01

    Current Status ANALYZE Nodule Segmentation CANARY -PLUS ANALYZE AVW Surface Extraction In-house monolithic software ADMesh Surface Repair MATLAB...a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE October 2016 2. REPORT TYPE Annual 3...we are currently developing a multivariate radiologic prediction model (radiologic model) using a population of benign and malignant lung nodules

  8. Correlation coefficient based supervised locally linear embedding for pulmonary nodule recognition.

    Science.gov (United States)

    Wu, Panpan; Xia, Kewen; Yu, Hengyong

    2016-11-01

    Dimensionality reduction techniques are developed to suppress the negative effects of high dimensional feature space of lung CT images on classification performance in computer aided detection (CAD) systems for pulmonary nodule detection. An improved supervised locally linear embedding (SLLE) algorithm is proposed based on the concept of correlation coefficient. The Spearman's rank correlation coefficient is introduced to adjust the distance metric in the SLLE algorithm to ensure that more suitable neighborhood points could be identified, and thus to enhance the discriminating power of embedded data. The proposed Spearman's rank correlation coefficient based SLLE (SC(2)SLLE) is implemented and validated in our pilot CAD system using a clinical dataset collected from the publicly available lung image database consortium and image database resource initiative (LICD-IDRI). Particularly, a representative CAD system for solitary pulmonary nodule detection is designed and implemented. After a sequential medical image processing steps, 64 nodules and 140 non-nodules are extracted, and 34 representative features are calculated. The SC(2)SLLE, as well as SLLE and LLE algorithm, are applied to reduce the dimensionality. Several quantitative measurements are also used to evaluate and compare the performances. Using a 5-fold cross-validation methodology, the proposed algorithm achieves 87.65% accuracy, 79.23% sensitivity, 91.43% specificity, and 8.57% false positive rate, on average. Experimental results indicate that the proposed algorithm outperforms the original locally linear embedding and SLLE coupled with the support vector machine (SVM) classifier. Based on the preliminary results from a limited number of nodules in our dataset, this study demonstrates the great potential to improve the performance of a CAD system for nodule detection using the proposed SC(2)SLLE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Detectability of pulmonary nodules with electronic collimation and conventional antiscatter grid

    International Nuclear Information System (INIS)

    Plenkovich, D.; Plavsic, B.; Robinson, A.E.; Lichtenstein, R.L.

    1989-01-01

    Electronic collimation is a method for rejection of scattered radiation and veiling glare in digital radiography. Digital images of a frozen, unembalmed, human chest phantom with simulated pulmonary nodules were obtained with use of the electronic collimation technique and a conventional 10:1 antiscatter grid. Observers were asked to locate multiple nodules and to record one of three levels of confidence. For each criterion, the total number of correct responses was divided by the total number of nodules to obtain the ordinate of a point. The total number of false-positive answers generated was divided by the number of images to obtain the abscissa of the point. The analysis was repeated for each scatter rejection method and for either the lungs or the mediastinum. The electronic collimation technique has improved the detectability of nodules projected over the mediastinum

  10. Retrospective assessment of interobserver agreement and accuracy in classifications and measurements in subsolid nodules with solid components less than 8mm: which window setting is better?

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Roh-Eul [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Goo, Jin Mo; Park, Chang Min [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Hwang, Eui Jin; Yoon, Soon Ho; Lee, Chang Hyun [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Ahn, Soyeon [Seoul National University Bundang Hospital, Medical Research Collaborating Center, Seongnam-si (Korea, Republic of)

    2017-04-15

    To compare interobserver agreements among multiple readers and accuracy for the assessment of solid components in subsolid nodules between the lung and mediastinal window settings. Seventy-seven surgically resected nodules with solid components smaller than 8 mm were included in this study. In both lung and mediastinal windows, five readers independently assessed the presence and size of solid component. Bootstrapping was used to compare the interobserver agreement between the two window settings. Imaging-pathology correlation was performed to evaluate the accuracy. There were no significant differences in the interobserver agreements between the two windows for both identification (lung windows, k = 0.51; mediastinal windows, k = 0.57) and measurements (lung windows, ICC = 0.70; mediastinal windows, ICC = 0.69) of solid components. The incidence of false negative results for the presence of invasive components and the median absolute difference between the solid component size and the invasive component size were significantly higher on mediastinal windows than on lung windows (P < 0.001 and P < 0.001, respectively). The lung window setting had a comparable reproducibility but a higher accuracy than the mediastinal window setting for nodule classifications and solid component measurements in subsolid nodules. (orig.)

  11. Low-dose CT: new tool for screening lung cancer?

    International Nuclear Information System (INIS)

    Diederich, S.; Wormanns, D.; Heindel, W.

    2001-01-01

    Lung cancer is the leading cause of death from malignant tumours as it is very common and has a poor prognosis at advanced tumour stages. Prognosis could be improved by treatment at early stages. As these stages are usually asymptomatic, a diagnostic test that would allow detection of early tumour stages in a population at risk could potentially reduce mortality from lung cancer. Previous approaches using chest radiography and sputum cytology in smokers have been disappointing. Fluorescent bronchoscopy and molecular markers are not yet applicable in clinical routine. Because of its high sensitivity for small pulmonary nodules, which are the most common manifestation of early lung cancer, CT appears suitable as a screening test. Low-dose examination parameters can and should be used for this purpose. From clinical practice it is well known that chest CT often demonstrates small pulmonary nodules, which do not represent lung cancer. Therefore, non-invasive diagnostic algorithms are required to avoid unnecessary biopsies in benign lesions. In preliminary studies of low-dose CT using algorithms based on size and density of detected nodules a large proportion of asymptomatic lung cancers and a large proportion of early, resectable tumour stages were found with a small proportion of invasive procedures for benign nodules. Before this technology can be recommended for broad application, however, further information is required regarding appropriate inclusion criteria (smoking habits, age groups) and screening intervals. Most importantly, further data are required to clarify whether lung cancer screening using low-dose CT can actually reduce mortality from lung cancer. (orig.)

  12. MDCT classification of osseous ankle and foot injuries

    International Nuclear Information System (INIS)

    Opherk, J.P.; Rosenthal, H.; Galanski, M.

    2007-01-01

    Conventional radiography plays an essential role in the primary evaluation of acute ankle and foot trauma. In the case of complex injuries, however, subsequent computed tomography (CT) is nowadays recommended. In this connection, multidetector computed tomography (MDCT) allows better temporal, spatial, and contrast resolution compared with the conventional single-slice spiral CT. Multiplanar reformation and three-dimensional reconstruction of the acquired data sets are also helpful tools for critical assessment of therapeutic intervention. This report reviews the potential of the MDCT technique for accurate fracture classification, precise illustration of displaced components, and postoperative control of arrangement of typical lesions. (orig.) [de

  13. Multi-scale analysis of lung computed tomography images

    CERN Document Server

    Gori, I; Fantacci, M E; Preite Martinez, A; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C

    2007-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  14. Detection and classification of interstitial lung diseases and emphysema using a joint morphological-fuzzy approach

    Science.gov (United States)

    Chang Chien, Kuang-Che; Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise; Chang, Ruey-Feng

    2009-02-01

    Multi-detector computed tomography (MDCT) has high accuracy and specificity on volumetrically capturing serial images of the lung. It increases the capability of computerized classification for lung tissue in medical research. This paper proposes a three-dimensional (3D) automated approach based on mathematical morphology and fuzzy logic for quantifying and classifying interstitial lung diseases (ILDs) and emphysema. The proposed methodology is composed of several stages: (1) an image multi-resolution decomposition scheme based on a 3D morphological filter is used to detect and analyze the different density patterns of the lung texture. Then, (2) for each pattern in the multi-resolution decomposition, six features are computed, for which fuzzy membership functions define a probability of association with a pathology class. Finally, (3) for each pathology class, the probabilities are combined up according to the weight assigned to each membership function and two threshold values are used to decide the final class of the pattern. The proposed approach was tested on 10 MDCT cases and the classification accuracy was: emphysema: 95%, fibrosis/honeycombing: 84% and ground glass: 97%.

  15. Imaging in lung transplants: Checklist for the radiologist

    International Nuclear Information System (INIS)

    Madan, Rachna; Chansakul, Thanissara; Goldberg, Hilary J

    2014-01-01

    Post lung transplant complications can have overlapping clinical and imaging features, and hence, the time point at which they occur is a key distinguisher. Complications of lung transplantation may occur along a continuum in the immediate or longer postoperative period, including surgical and mechanical problems due to size mismatch and vascular as well as airway anastomotic complication, injuries from ischemia and reperfusion, acute and chronic rejection, pulmonary infections, and post-transplantation lymphoproliferative disorder. Life expectancy after lung transplantation has been limited primarily by chronic rejection and infection. Multiple detector computed tomography (MDCT) is critical for evaluation and early diagnosis of complications to enable selection of effective therapy and decrease morbidity and mortality among lung transplant recipients

  16. Excavated pulmonary nodules: an unusual clinical presentation of lung metastasis in two cases

    Directory of Open Access Journals (Sweden)

    Lalya Issam

    2010-06-01

    Full Text Available Abstract Background Excavated pulmonary metastasis are rare. We present two cases of excavated pulmonary nodules proved to be metastases from osteosarcoma and gallblader lymphoma. Case presentation The first one is 39-year-old man in whom cholecystectomy made the diagnosis of primary non-Hodgkin's lymphoma of the gallbladder. He presented in chest CT scan excavated nodules that had been biopsied and confirmed the diagnosis of non hodgkin lymphoma. He underwent 8 courses of chemotherapy CHOP 21 with complete remission. The second one is an 21 years old man who presented a right leg osteoblastic osteosarcoma with only excavated pulmonary nodules in extension assessment. He had 3 courses of polychemotherapy API (doxorubicin, platinum, and ifosfamide with partial response. Unfortunately, he died following a septic shock. Review of the literature shows that excavated pulmonary nodules as metastasis are rare but we should consider this diagnosis every time we are in front of a cancer. Chest computed tomography is the best diagnosis imaging that could make this diagnosis. Differential diagnosis between benign and malignant bullous lesions is important because surgical excision affects survival in some malignancies. Conclusions Although pulmonary nodules are the most common cancer metastasis, a differential diagnosis of a concurrent primary malignancy should always be considered every time we have excavated lesions, even in patients with known malignant disease. Thorough chest evaluation is important, as multiple primary malignancies may occur concomitantly.

  17. Cardiac Computed Tomography (Multidetector CT, or MDCT)

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Cardiac Computed Tomography (Multidetector CT, or MDCT) Updated:Sep 19,2016 What is Computerized Tomography (CT)? CT is a noninvasive test that uses ...

  18. Computerized comprehensive data analysis of Lung Imaging Database Consortium (LIDC)

    International Nuclear Information System (INIS)

    Tan Jun; Pu Jiantao; Zheng Bin; Wang Xingwei; Leader, Joseph K.

    2010-01-01

    Purpose: Lung Image Database Consortium (LIDC) is the largest public CT image database of lung nodules. In this study, the authors present a comprehensive and the most updated analysis of this dynamically growing database under the help of a computerized tool, aiming to assist researchers to optimally use this database for lung cancer related investigations. Methods: The authors developed a computer scheme to automatically match the nodule outlines marked manually by radiologists on CT images. A large variety of characteristics regarding the annotated nodules in the database including volume, spiculation level, elongation, interobserver variability, as well as the intersection of delineated nodule voxels and overlapping ratio between the same nodules marked by different radiologists are automatically calculated and summarized. The scheme was applied to analyze all 157 examinations with complete annotation data currently available in LIDC dataset. Results: The scheme summarizes the statistical distributions of the abovementioned geometric and diagnosis features. Among the 391 nodules, (1) 365 (93.35%) have principal axis length ≤20 mm; (2) 120, 75, 76, and 120 were marked by one, two, three, and four radiologists, respectively; and (3) 122 (32.48%) have the maximum volume overlapping ratios ≥80% for the delineations of two radiologists, while 198 (50.64%) have the maximum volume overlapping ratios <60%. The results also showed that 72.89% of the nodules were assessed with malignancy score between 2 and 4, and only 7.93% of these nodules were considered as severely malignant (malignancy ≥4). Conclusions: This study demonstrates that LIDC contains examinations covering a diverse distribution of nodule characteristics and it can be a useful resource to assess the performance of the nodule detection and/or segmentation schemes.

  19. [Henoch-Schönlein Purpura with lung abscess].

    Science.gov (United States)

    Nakazawa, Junji; Watanabe, Atsushi; Nakajima, Tomohiro; Mishina, Taijiro; Miyajima, Masahiro; Higami, Tetsuya

    2013-09-01

    A 72-year-old man had underwent left lower lobectomy for squamous cell carcinoma in our hospital in 2008. Postoperative stage was I A (T1N0M0). In 2010, follow-up chest computed tomography (CT) images showed similar cavitary nodules in segments 2 and 8 of the right lung with positive uptake on fluorodeoxyglucose-positron emission tomography (FDG-PET) images. Physical examination, blood tests, and levels of serum tumor markers showed no abnormality. Transbronchial lung biopsy revealed the absence of malignant cells. Segment 8 of the right lower lobe with the nodule was partially resected, and pathological examination demonstrated lung abscess. He was discharged but was hospitalized in another hospital for purpuric rash, fever, and arthralgia. Microscopic albuminuria was noted, and renal biopsy revealed nephritis with immunoglobulin A( IgA)deposition. He was made a diagnosis of Henoch-Schönlein purpura. Oral steroid therapy( prednisolone 60 mg/d) was initiated, resulting in the improvement of symptoms and disapearance of the cavitary nodule in the right lung segment 2.

  20. Significance and management of computed tomography detected pulmonary nodules: a report from the National Wilms Tumor Study Group

    International Nuclear Information System (INIS)

    Meisel, Jay A.; Guthrie, Katherine A.; Breslow, Norman E.; Donaldson, Sarah S.; Green, Daniel M.

    1999-01-01

    Purpose: To define the optimal treatment for children with Wilms tumor who have pulmonary nodules identified on chest computed tomography (CT) scan, but have a negative chest radiograph, we evaluated the outcome of all such patients randomized or followed on National Wilms Tumor Study (NWTS)-3 and -4. Patients and Methods: We estimated the event-free and overall survival percentages of 53 patients with favorable histology tumors and pulmonary densities identified only by CT scan (CT-only) who were treated as Stage IV with intensive doxorubicin-containing chemotherapy and whole-lung irradiation, and compared these to the event-free and overall survival percentages of 37 CT-only patients who were treated less aggressively based on the extent of locoregional disease with 2 or 3 drugs, and without whole-lung irradiation. Results: The 4-year event-free and overall survival percentages of the 53 patients with CT-only nodules and favorable histology Wilms tumor who were treated as Stage IV were 89% and 91%, respectively. The 4-year event-free and overall survival percentages for the 37 patients with CT-only nodules and favorable histology who were treated according to the extent of locoregional disease were 80% and 85%, respectively. The differences observed between the 2 groups were not statistically significant. Among the patients who received whole-lung irradiation, there were fewer pulmonary relapses, but more deaths attributable to lung toxicity. Conclusions: The current data raise the possibility that children with Wilms tumor and CT-only pulmonary nodules who receive whole lung irradiation have fewer pulmonary relapses, but a greater number of deaths due to treatment toxicity. The role of whole lung irradiation in the treatment of this group of patients cannot be definitively determined based on the present data. Prolonged follow-up of this group of patients is necessary to accurately estimate the frequency of late, treatment-related mortality

  1. High resolution computed tomography(HRCT) findings of a solitary pulmonary nodule : differential diagnosis of cancer and tuberculosis

    International Nuclear Information System (INIS)

    Kim, Hee Soo; Choe, Kyu Ok

    1996-01-01

    To evaluate the role of HRCT in the differentiation of Pulmonary tuberculosis and lung cancer, where the manifestation of disease is a solitary pulmonary nodule(SPN). Forty eight SPNs including 29 cancers proven by surgery(n=10), by bronchoscopic biopsy(n=7) and by fine needle aspiration biopsy(n=12), and 19 tuberculous nodules proven by surgery(n=4), by bronchoscopic biopsy(n=4), by fine needle aspiration biopsy(n=5), by a positive result in AFB culture without evidence of malignant cells(n=3), and by a decrease in size on serial plain chests despite negative AFB culture(n=3) were included. Scanning parameters for HRCT were 140 KVp, 170 mA, 1.5 mm collimation, 3 sec scanning time, and a high spatial frequency algorithm was used. With regard to the marginal features of nodules, the findings more commonly observed in malignant nodules were greater average length of the longest spicule(5.35 ± 3.19 mm versus 2.75 ± 1.56 mm), and more commonspiculated nodules greater than 3 cm in diameter, 16(55%) versus 2(10.5%)(p<0.05). Regarding the internal characteristics of nodules and perinodular parenchymal changes, the findings more commonly observed in cases of cancer were air-bronchograms within nodules(14 ; 48.3%) and interlobar fissure puckering (6 ; 20.7%), whereas in tuberculosis cases the most common findings were low density of nodule(16 ; 84.2%), cavitation(12 ; 63.1%), and perinodular focal lung hypodensity(5 ; 26.3%), (p<0.05). no statstically significant difference was observed between the incidence of satellite lesion of tuberculous(73.7%) and of malignant nodules(34.5%). However, perilobular nodules or bronchovascular bundle thickening s were more commonly observed in the satellite lesions of malignant nodules(9 ; 90%), whereas centrilobular nodules or lobular consolidation were more commonly observed in those of tuberculous nodules(12 ; 85.7%), (p<0.05). HRCT provides detailed information concerning perinodular parenchymal changes and characteristics of

  2. Comparison of 640-Slice Multidetector Computed Tomography Versus 32-Slice MDCT for Imaging of the Osteo-odonto-keratoprosthesis Lamina.

    Science.gov (United States)

    Norris, Joseph M; Kishikova, Lyudmila; Avadhanam, Venkata S; Koumellis, Panos; Francis, Ian S; Liu, Christopher S C

    2015-08-01

    To investigate the efficacy of 640-slice multidetector computed tomography (MDCT) for detecting osteo-odonto laminar resorption in the osteo-odonto-keratoprosthesis (OOKP) compared with the current standard 32-slice MDCT. Explanted OOKP laminae and bone-dentine fragments were scanned using 640-slice MDCT (Aquilion ONE; Toshiba) and 32-slice MDCT (LightSpeed Pro32; GE Healthcare). Pertinent comparisons including image quality, radiation dose, and scanning parameters were made. Benefits of 640-slice MDCT over 32-slice MDCT were shown. Key comparisons of 640-slice MDCT versus 32-slice MDCT included the following: percentage difference and correlation coefficient between radiological and anatomical measurements, 1.35% versus 3.67% and 0.9961 versus 0.9882, respectively; dose-length product, 63.50 versus 70.26; rotation time, 0.175 seconds versus 1.000 seconds; and detector coverage width, 16 cm versus 2 cm. Resorption of the osteo-odonto lamina after OOKP surgery can result in potentially sight-threatening complications, hence it warrants regular monitoring and timely intervention. MDCT remains the gold standard for radiological assessment of laminar resorption, which facilitates detection of subtle laminar changes earlier than the onset of clinical signs, thus indicating when preemptive measures can be taken. The 640-slice MDCT exhibits several advantages over traditional 32-slice MDCT. However, such benefits may not offset cost implications, except in rare cases, such as in young patients who might undergo years of radiation exposure.

  3. Fusariosis as solitary pulmonary nodule

    International Nuclear Information System (INIS)

    Moreno, Nelson; Saavedra R, Alfredo; Sanchez Edgar A

    2008-01-01

    Invasive fungal infections are common cause of morbidity and mortality in immunocompromised patients. Of these the most frequents are: aspergillosis and Fusariosis, both grouped under the term Hyalohyphomycosis. One of the organs most commonly affected is the lung.Unfortunately the clinical manifestations as cough, pain and bleeding pleuritic such are none specific. The chest Rx may show since alveolar infiltration, or nodular lesions until cavitaciones. This is the first report on Colombia of a single pulmonary nodule by Fusarium fungi in an immunocompetent patient.

  4. Multidetector row computed tomography may accurately estimate plaque vulnerability. Does MDCT accurately estimate plaque vulnerability? (Pro)

    International Nuclear Information System (INIS)

    Komatsu, Sei; Imai, Atsuko; Kodama, Kazuhisa

    2011-01-01

    Over the past decade, multidetector row computed tomography (MDCT) has become the most reliable and established of the noninvasive examination techniques for detecting coronary heart disease. Now MDCT is chasing intravascular ultrasound (IVUS) in terms of spatial resolution. Among the components of vulnerable plaque, MDCT may detect lipid-rich plaque, the lipid pool, and calcified spots using computed tomography number. Plaque components are detected by MDCT with high accuracy compared with IVUS and angioscopy when assessing vulnerable plaque. The TWINS study and TOGETHAR trial demonstrated that angioscopic loss of yellow color occurred independently of volumetric plaque change by statin therapy. These 2 studies showed that plaque stabilization and regression reflect independent processes mediated by different mechanisms and time course. Noncalcified plaque and/or low-density plaque was found to be the strongest predictor of cardiac events, regardless of lesion severity, and act as a potential marker of plaque vulnerability. MDCT may be an effective tool for early triage of patients with chest pain who have a normal electrocardiogram (ECG) and cardiac enzymes in the emergency department. MDCT has the potential ability to analyze coronary plaque quantitatively and qualitatively if some problems are resolved. MDCT may become an essential tool for detecting and preventing coronary artery disease in the future. (author)

  5. Thoracoscopic anatomical lung segmentectomy using 3D computed tomography simulation without tumour markings for non-palpable and non-visualized small lung nodules.

    Science.gov (United States)

    Kato, Hirohisa; Oizumi, Hiroyuki; Suzuki, Jun; Hamada, Akira; Watarai, Hikaru; Sadahiro, Mitsuaki

    2017-09-01

    Although wedge resection can be curative for small lung tumours, tumour marking is sometimes required for resection of non-palpable or visually undetectable lung nodules as a method for identification of tumours. Tumour marking sometimes fails and occasionally causes serious complications. We have performed many thoracoscopic segmentectomies using 3D computed tomography simulation for undetectable small lung tumours without any tumour markings. The aim of this study was to investigate whether thoracoscopic segmentectomy planned with 3D computed tomography simulation could precisely remove non-palpable and visually undetectable tumours. Between January 2012 and March 2016, 58 patients underwent thoracoscopic segmentectomy using 3D computed tomography simulation for non-palpable, visually undetectable tumours. Surgical outcomes were evaluated. A total of 35, 14 and 9 patients underwent segmentectomy, subsegmentectomy and segmentectomy combined with adjacent subsegmentectomy, respectively. All tumours were correctly resected without tumour marking. The median tumour size and distance from the visceral pleura was 14 ± 5.2 mm (range 5-27 mm) and 11.6 mm (range 1-38.8 mm), respectively. Median values related to the procedures were operative time, 176 min (range 83-370 min); blood loss, 43 ml (range 0-419 ml); duration of chest tube placement, 1 day (range 1-8 days); and postoperative hospital stay, 5 days (range 3-12 days). Two cases were converted to open thoracotomy due to bleeding. Three cases required pleurodesis for pleural fistula. No recurrences occurred during the mean follow-up period of 44.4 months (range 5-53 months). Thoracoscopic segmentectomy using 3D computed tomography simulation was feasible and could be performed to resect undetectable tumours with no tumour markings. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. [Thyroid nodule].

    Science.gov (United States)

    Clerc, Jérôme

    2005-01-31

    The thyroid nodule is a frequent, most often benign, chronic, multifocal and slowly progressive disease. The first line strategy is to diagnose cancerous nodules (thyroid nodules is controversial since the prognosis of thyroid cancer is excellent for lesions measuring less than 20 mm. Though imaging accuracy is quite limited in assessing the diagnosis of thyroid cancer, both ultrasounds (US) and thyroid scan are helpful to enhance nodular identification (>30%), to sort the nodules relevant for cytological sampling and to optimize the follow-up, the major source of health costs. Suspicious and non contributive FNAs must have a control FNA within 6 months. Nodules with a non suspicious FNA (>85%) require long term follow-up. This follow-up is mainly morphological. New or evolutive nodules, as assessed by palpation or US, will require iterative FNAs or should be considered for surgery. In patients with hyperfunctioning nodules on the scan (10 to 20%), a yearly evaluation of the TSH level is sufficient. These nodules account either for autonomously functioning ones, which slowly develop towards thyrotoxicosis, or for hyperplastic nodules frequently disclosing a lymphocytic thyroiditis. Morbidity due to thyroid autonomy is still underestimated especially in aging patients with TSH levels thyroid nodule is suggested.

  7. The incidental pulmonary nodule in a child. Part 1: recommendations from the SPR Thoracic Imaging Committee regarding characterization, significance and follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Westra, Sjirk J. [Massachusetts General Hospital, Division of Pediatric Radiology, Boston, MA (United States); Brody, Alan S. [Cincinnati Children' s Hospital Medical Center, Department of Radiology (CH-1), Cincinnati, OH (United States); Mahani, Maryam Ghadimi [University of Michigan Health System, Section of Pediatric Radiology, C. S. Mott Children' s Hospital Department of Radiology, Ann Arbor, MI (United States); Guillerman, R.P. [Texas Children' s Hospital, Department of Radiology, Houston, TX (United States); Hegde, Shilpa V. [Arkansas Children' s Hospital, Department of Radiology, Little Rock, AR (United States); Iyer, Ramesh S. [Seattle Children' s Hospital, Department of Radiology, Seattle, WA (United States); Lee, Edward Y. [Boston Children' s Hospital, Department of Pediatric Radiology, Boston, MA (United States); Newman, Beverley [Lucile Packard Children' s Hospital at Stanford University, Department of Radiology, Stanford, CA (United States); Podberesky, Daniel J. [Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States); Thacker, Paul G. [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States)

    2015-05-01

    No guidelines are in place for the follow-up and management of pulmonary nodules that are incidentally detected on CT in the pediatric population. The Fleischner guidelines, which were developed for the older adult population, do not apply to children. This review summarizes the evidence collected by the Society for Pediatric Radiology (SPR) Thoracic Imaging Committee in its attempt to develop pediatric-specific guidelines. Small pulmonary opacities can be characterized as linear or as ground-glass or solid nodules. Linear opacities and ground-glass nodules are extremely unlikely to represent an early primary or metastatic malignancy in a child. In our review, we found a virtual absence of reported cases of a primary pulmonary malignancy presenting as an incidentally detected small lung nodule on CT in a healthy immune-competent child. Because of the lack of definitive information on the clinical significance of small lung nodules that are incidentally detected on CT in children, the management of those that do not have the typical characteristics of an intrapulmonary lymph node should be dictated by the clinical history as to possible exposure to infectious agents, the presence of an occult immunodeficiency, the much higher likelihood that the nodule represents a metastasis than a primary lung tumor, and ultimately the individual preference of the child's caregiver. Nodules appearing in children with a history of immune deficiency, malignancy or congenital pulmonary airway malformation should not be considered incidental, and their workup should be dictated by the natural history of these underlying conditions. (orig.)

  8. Diagnostic imaging strategy for MDCT- or MRI-detected breast lesions: use of targeted sonography

    International Nuclear Information System (INIS)

    Nakano, Satoko; Ohtsuka, Masahiko; Mibu, Akemi; Karikomi, Masato; Sakata, Hitomi; Yamamoto, Masahiro

    2012-01-01

    Leading-edge technology such as magnetic resonance imaging (MRI) or computed tomography (CT) often reveals mammographically and ultrasonographically occult lesions. MRI is a well-documented, effective tool to evaluate these lesions; however, the detection rate of targeted sonography varies for MRI detected lesions, and its significance is not well established in diagnostic strategy of MRI detected lesions. We assessed the utility of targeted sonography for multidetector-row CT (MDCT)- or MRI-detected lesions in practice. We retrospectively reviewed 695 patients with newly diagnosed breast cancer who were candidates for breast conserving surgery and underwent MDCT or MRI in our hospital between January 2004 and March 2011. Targeted sonography was performed in all MDCT- or MRI-detected lesions followed by imaging-guided biopsy. Patient background, histopathology features and the sizes of the lesions were compared among benign, malignant and follow-up groups. Of the 695 patients, 61 lesions in 56 patients were detected by MDCT or MRI. The MDCT- or MRI-detected lesions were identified by targeted sonography in 58 out of 61 lesions (95.1%). Patients with pathological diagnoses were significantly older and more likely to be postmenopausal than the follow-up patients. Pathological diagnosis proved to be benign in 20 cases and malignant in 25. The remaining 16 lesions have been followed up. Lesion size and shape were not significantly different among the benign, malignant and follow-up groups. Approximately 95% of MDCT- or MRI-detected lesions were identified by targeted sonography, and nearly half of these lesions were pathologically proven malignancies in this study. Targeted sonography is a useful modality for MDCT- or MRI-detected breast lesions

  9. Malignant renal cysts: Diagnostic performance and strong predictors at MDCT

    International Nuclear Information System (INIS)

    Kim, Dae Yoon; Kim, Jeong Kon; Cho, Kyoung-Sik; Min, Gyeong-Eun; Ahn, Han-Jong

    2010-01-01

    Background: Utilization of multidetector-row CT (MDCT) is anticipated to improve the diagnostic accuracy and reliability for determining malignant cysts. Purpose: To assess the diagnostic accuracy, interobserver agreement, benefit of consensus reading, and strong predictors of malignancy in determining malignant cystic renal masses at MDCT. Material and Methods: Two radiologists independently rated the probability of malignancy at MDCT in 72 benign and 53 malignant cysts. The accuracy and interobserver agreement for determining malignant cysts were evaluated. The strong predictors of malignancy were determined, and in patients with interobserver disagreement for determining malignant cysts, consensus readings were performed. Results: Az value of the two readers was 0.905-0.936 and the sensitivity and specificity were 85-89% and 83-93%, respectively. The overall interobserver agreement for determining the malignant cyst was good as the κ value was 0.696 (% agreement, 61% (76/125)). Thickened irregular wall, thickened irregular septa, and enhancing soft tissue component were strong predictors for malignancy with both readers. In the 17 patients with interobserver disagreement for determining malignant cysts, the sensitivity was improved from 38-63% to 89% by the consensus reading. Conclusion: At MDCT, some false negative decisions for determining malignant cysts can be corrected by consensus reading, and thickened irregular septa, thickened irregular wall, and enhancing soft tissue component are the strong predictors of malignant cysts

  10. Usefulness of multidetector-row computed tomography (MD-CT) for diagnosis and evaluation of cardiovascular anomalies in infants

    International Nuclear Information System (INIS)

    Kani, Hiroyuki; Narabayashi, Isamu; Tanikake, Masato; Matsuki, Mitsuru; Uesugi, Yasuo

    2005-01-01

    We examined the effectiveness of multidetector-row CT (MD-CT) in the diagnosis and evaluation of cardiovascular anomalies in infants. MD-CT was performed 34 times on 21 patients with cardiovascular anomalies. We performed three evaluations: 1) The assessment of the specificity of MD-CT in detecting the morphological features of cardiovascular anomalies. 2) The diameters of aortae with coronary artery (CoA), and the diameters of pulmonary artery, measured by using MD-CT were compared with those by angiography. 3) The amount of exposure to radiation was measured. 1) MD-CT can detect CoA, pulmonary arteriovenous anomalies among extracardiac anomalies in all the patients. The diagnostic accuracy for intracardiac anomalies was poor as only six of the 15 anomalies could be accurately diagnosed. 2) The diameters of aortae and pulmonary artery obtained using MD-CT showed a good correlation with those obtained using arteriography (r=0.97, 0.95). 3) The average dose-length product was 269.2 mGy·cm. And the average effective dose was 5.1 mSv. MD-CT is not suitable for the evaluation of intracardiac anomalies, but is extremely effective in the evaluation of extracardiac major vascular anomalies. On the basis of the amount of information and noninvasive nature, MD-CT should be used first before angiography. (author)

  11. Comparative reading support system for lung cancer CT screening

    International Nuclear Information System (INIS)

    Kubo, Mitsuru; Saita, Shinsuke; Kawata, Yoshiki; Niki, Noboru; Suzuki, Hidenobu; Ohmatsu, Hironobu; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki

    2010-01-01

    The comparative reading is performed using current and past images of the same case obtained from lung cancer CT screening. The result of this is useful for the early detection of lung cancer. Our paper describes the efficiency improvement of comparative reading using 10 mm slice thickness CT images by developing the system consists of slice registration method, pulmonary nodule registration method, and quantitative evaluation method of pulmonary nodule's degree of change. The proposed system is applied to CT images scanned for 1107 times of 85 cases with 198 pulmonary nodules and is evaluated by comparing it with the reading result of the doctors. We show the effectiveness of the system. (author)

  12. Nodule detection in digital chest radiography: Summary of the radius chest trial

    International Nuclear Information System (INIS)

    Haakansson, M.; Baath, M.; Boerjesson, S.; Kheddache, S.; Grahn, A.; Ruschin, M.; Tingberg, A.; Mattson, S.; Maansson, L. G.

    2005-01-01

    As a part of the Europe-wide research project 'Unification of physical and clinical requirements for medical X-ray imaging' - governed by the Radiological Imaging Unification Strategies (RADIUS) Group - a major image quality trial was conducted by members of the group. The RADIUS chest trial aimed at thoroughly examining various aspects of nodule detection in digital chest radiography, such as the effects of nodule location, system noise, anatomical noise, and anatomical background. The main findings of the RADIUS chest trial concerning the detection of a lung nodule with a size in the order of 10 mm can be summarised as: (1) the detectability of the nodule is largely dependent on its location in the chest, (2) the system noise has a minor impact on the detectability at the dose levels used today, (3) the disturbance of the anatomical noise is larger than that of the system noise but smaller than that of the anatomical background and (4) the anatomical background acts as noise to a large extent and is the major image component affecting the detectability of the nodule. (authors)

  13. Evolutionary image simplification for lung nodule classification with convolutional neural networks.

    Science.gov (United States)

    Lückehe, Daniel; von Voigt, Gabriele

    2018-05-29

    Understanding decisions of deep learning techniques is important. Especially in the medical field, the reasons for a decision in a classification task are as crucial as the pure classification results. In this article, we propose a new approach to compute relevant parts of a medical image. Knowing the relevant parts makes it easier to understand decisions. In our approach, a convolutional neural network is employed to learn structures of images of lung nodules. Then, an evolutionary algorithm is applied to compute a simplified version of an unknown image based on the learned structures by the convolutional neural network. In the simplified version, irrelevant parts are removed from the original image. In the results, we show simplified images which allow the observer to focus on the relevant parts. In these images, more than 50% of the pixels are simplified. The simplified pixels do not change the meaning of the images based on the learned structures by the convolutional neural network. An experimental analysis shows the potential of the approach. Besides the examples of simplified images, we analyze the run time development. Simplified images make it easier to focus on relevant parts and to find reasons for a decision. The combination of an evolutionary algorithm employing a learned convolutional neural network is well suited for the simplification task. From a research perspective, it is interesting which areas of the images are simplified and which parts are taken as relevant.

  14. Pulmonary nodule characterization: A comparison of conventional with quantitative and visual semi-quantitative analyses using contrast enhancement maps

    International Nuclear Information System (INIS)

    Petkovska, Iva; Shah, Sumit K.; McNitt-Gray, Michael F.; Goldin, Jonathan G.; Brown, Matthew S.; Kim, Hyun J.; Brown, Kathleen; Aberle, Denise R.

    2006-01-01

    Purpose: To determine whether conventional nodule densitometry or analysis based on contrast enhancement maps of indeterminate lung nodules imaged with contrast-enhanced CT can distinguish benign from malignant lung nodules. Materials and method: Thin section, contrast-enhanced CT (baseline, and post-contrast series acquired at 45, 90,180, and 360 s) was performed on 29 patients with indeterminate lung nodules (14 benign, 15 malignant). A thoracic radiologist identified the boundary of each nodule using semi-automated contouring to form a 3D region-of-interest (ROI) on each image series. The post-contrast series having the maximum mean enhancement was then volumetrically registered to the baseline series. The two series were subtracted volumetrically and the subtracted voxels were quantized into seven color-coded bins, forming a contrast enhancement map (CEM). Conventional nodule densitometry was performed to obtain the maximum difference in mean enhancement values for each nodule from a circular ROI. Three thoracic radiologists performed visual semi-quantitative analysis of each nodule, scoring each map for: (a) magnitude and (b) heterogeneity of enhancement throughout the entire volume of the nodule on a five-point scale. Receiver operator characteristic (ROC) analysis was conducted on these features to evaluate their diagnostic efficacy. Finally, 14 quantitative texture features were calculated for each map. A statistical analysis was performed to combine the 14 texture features to a single factor. ROC analysis of the derived aggregate factor was done as an indicator of malignancy. All features were analyzed for differences between benign and malignant nodules. Results: Using 15 HU as a threshold, 93% (14/15) of malignant and 79% (11/14) of benign nodules demonstrated enhancement. The ROC curve when higher values of enhancement indicate malignancy was generated and area under the curve (AUC) was 0.76. The visually scored magnitude of enhancement was found to be

  15. The impact of radiologists' expertise on screen results decisions in a CT lung cancer screening trial

    International Nuclear Information System (INIS)

    Heuvelmans, Marjolein A.; Vliegenthart, Rozemarijn; Oudkerk, Matthijs; Jong, Pim A. de; Mali, Willem P.; Groen, Harry J.M.

    2015-01-01

    To evaluate the impact of radiological expertise on screen result decisions in a CT lung cancer screening trial. In the NELSON lung cancer screening trial, the baseline CT result was based on the largest lung nodule's volume. The protocol allowed radiologists to manually adjust screen results in cases of high suspicion of benign or malignant nodule nature. Participants whose baseline CT result was based on a solid or part-solid nodule were included in this study. Adjustments by radiologists at baseline were evaluated. Histology was the reference for diagnosis or to confirm benignity and stability on subsequent CT examinations. A total of 3,318 participants (2,796 male, median age 58.0 years) were included. In 195 participants (5.9 %) the initial baseline screen result was adjusted by the radiologist. Adjustment was downwards from positive or indeterminate to negative in two and 119 participants, respectively, and from positive to indeterminate in 65 participants. None of these nodules turned out to be malignant. In 9/195 participants (4.6 %) the screen result was adjusted upwards from negative to indeterminate or indeterminate to positive; two nodules were malignant. In one in 20 cases of baseline lung cancer screening, nodules were reclassified by the radiologist, leading to a reduction of false-positive screen results. (orig.)

  16. Interscan variation of semi-automated volumetry of subsolid pulmonary nodules

    NARCIS (Netherlands)

    Scholten, Ernst Th; de Jong, Pim A.; Jacobs, Colin; van Ginneken, Bram; van Riel, Sarah; Willemink, Martin J.; Vliegenthart, Rozemarijn; Oudkerk, Matthijs; de Koning, Harry J.; Horeweg, Nanda; Prokop, Mathias; Mali, Willem P. Th. M.; Gietema, Hester A.

    We aimed to test the interscan variation of semi-automatic volumetry of subsolid nodules (SSNs), as growth evaluation is important for SSN management. From a lung cancer screening trial all SSNs that were stable over at least 3 months were included (N = 44). SSNs were quantified on the baseline CT

  17. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning

    DEFF Research Database (Denmark)

    Ashraf, H; Dirksen, A; Jakobsen, Annika Loft

    2011-01-01

    In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules.......In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules....

  18. Non-invasive Characterization of the Histopathologic Features of Pulmonary Nodules of the Lung Adenocarcinoma Spectrum using Computer Aided Nodule Assessment and Risk Yield (CANARY) – a Pilot Study

    Science.gov (United States)

    Maldonado, Fabien; Boland, Jennifer M.; Raghunath, Sushravya; Aubry, Marie Christine; Bartholmai, Brian J.; deAndrade, Mariza; Hartman, Thomas E.; Karwoski, Ronald A.; Rajagopalan, Srinivasan; Sykes, Anne-Marie; Yang, Ping; Yi, Eunhee S.; Robb, Richard A.; Peikert, Tobias

    2013-01-01

    Introduction Pulmonary nodules of the adenocarcinoma spectrum are characterized by distinctive morphological and radiological features and variable prognosis. Non-invasive high-resolution computed-tomography (HRCT)-based risk stratification tools are needed to individualize their management. Methods Radiological measurements of histopathologic tissue invasion were developed in a training set of 54 pulmonary nodules of the adenocarcinoma spectrum and validated in 86 consecutively resected nodules. Nodules were isolated and characterized by computer-aided analysis and data were analyzed by Spearman correlation, sensitivity, specificity as well as the positive and negative predictive values. Results Computer Aided Nodule Assessment and Risk Yield (CANARY) can non-invasively characterize pulmonary nodules of the adenocarcinoma spectrum. Unsupervised clustering analysis of HRCT data identified 9 unique exemplars representing the basic radiologic building blocks of these lesions. The exemplar distribution within each nodule correlated well with the proportion of histologic tissue invasion, Spearman R=0.87,p < 0.0001 and 0.89,p < 0.0001 for the training and the validation set, respectively. Clustering of the exemplars in three-dimensional space corresponding to tissue invasion and lepidic growth was used to develop a CANARY decision algorithm, which successfully categorized these pulmonary nodules as “aggressive” (invasive adenocarcinoma) or “indolent” (adenocarcinoma in situ and minimally invasive adenocarcinoma). Sensitivity, specificity, positive predictive value and negative predictive value of this approach for the detection of “aggressive” lesions were 95.4%, 96.8%, 95.4% and 96.8%, respectively in the training set and 98.7%, 63.6%, 94.9% and 87.5%, respectively in the validation set. Conclusion CANARY represents a promising tool to non-invasively risk stratify pulmonary nodules of the adenocarcinoma spectrum. PMID:23486265

  19. CT SCAN EVALUATION OF PULMONARY NODULE

    Directory of Open Access Journals (Sweden)

    A. Ravi Kumar

    2016-06-01

    Full Text Available BACKGROUND Lung carcinomas are quite commonly diagnosed. Thanks to the ever increasing smokers’ population. Majority of the city dwellers are at a higher risk of having this disease when compared to the village counterparts. The stigma through which the person and the family have to undergo before confirming the diagnosis is enormous. So the radiographic methods of diagnosing the malignancies have to improve. Before confirming the diagnosis, the radiologists, the treating physicians should be somewhat confident about the diagnosis so as to prepare the patients and their relatives for the most probable diagnosis before the confirmatory report. The confirmatory procedures include the PET scan and the Histopathology. Both are time consuming procedures and in an economy like ours, finding a PET scanning centre is rather difficult. So the most probable diagnosis has to be thought of using minimal resource. This study puts in a sincere effort to understand and evaluate the pulmonary nodule when identified by a CT scan. This paper is intended to help the practicing radiologists and also make life easy for a practicing physician to identify correctly the lesions and also help the patients to prevent further progression of the disease. METHODS The study was a cross-sectional study. The sample size of the study consisted of thirty patients. CT scan was done in thirty patients who were identified to have lung nodules either by other mode of radiological studies or first time identified in a CT scan itself. The study was conducted in Fathima Institute of Medical Sciences, Kadapa. The study was conducted from 2014 to 2015. RESULT Non-solid nodules were more in number when compared to the solid nodules. All the non-solid nodules were confirmed to be adenomas. Eighty percent of the nodules which were more than 8 mm in size were confirmed to be malignant. One hundred percent of the spiculated border on CT was confirmed to be malignant. In the present study

  20. Computer Vision Tool and Technician as First Reader of Lung Cancer Screening CT Scans.

    Science.gov (United States)

    Ritchie, Alexander J; Sanghera, Calvin; Jacobs, Colin; Zhang, Wei; Mayo, John; Schmidt, Heidi; Gingras, Michel; Pasian, Sergio; Stewart, Lori; Tsai, Scott; Manos, Daria; Seely, Jean M; Burrowes, Paul; Bhatia, Rick; Atkar-Khattra, Sukhinder; van Ginneken, Bram; Tammemagi, Martin; Tsao, Ming Sound; Lam, Stephen

    2016-05-01

    To implement a cost-effective low-dose computed tomography (LDCT) lung cancer screening program at the population level, accurate and efficient interpretation of a large volume of LDCT scans is needed. The objective of this study was to evaluate a workflow strategy to identify abnormal LDCT scans in which a technician assisted by computer vision (CV) software acts as a first reader with the aim to improve speed, consistency, and quality of scan interpretation. Without knowledge of the diagnosis, a technician reviewed 828 randomly batched scans (136 with lung cancers, 556 with benign nodules, and 136 without nodules) from the baseline Pan-Canadian Early Detection of Lung Cancer Study that had been annotated by the CV software CIRRUS Lung Screening (Diagnostic Image Analysis Group, Nijmegen, The Netherlands). The scans were classified as either normal (no nodules ≥1 mm or benign nodules) or abnormal (nodules or other abnormality). The results were compared with the diagnostic interpretation by Pan-Canadian Early Detection of Lung Cancer Study radiologists. The overall sensitivity and specificity of the technician in identifying an abnormal scan were 97.8% (95% confidence interval: 96.4-98.8) and 98.0% (95% confidence interval: 89.5-99.7), respectively. Of the 112 prevalent nodules that were found to be malignant in follow-up, 92.9% were correctly identified by the technician plus CV compared with 84.8% by the study radiologists. The average time taken by the technician to review a scan after CV processing was 208 ± 120 seconds. Prescreening CV software and a technician as first reader is a promising strategy for improving the consistency and quality of screening interpretation of LDCT scans. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  1. Low dose CT in early lung cancer diagnosis: prevalence data

    International Nuclear Information System (INIS)

    Cardinale, Luciano; Cortese, Giancarlo; Ferraris, Fabrizio; Perotto, Fabio; Fava, Cesare; Borasio, Piero; Dogliotti, Luigi; Novello, Silvia; Scagliotti, Giorgio

    2005-01-01

    Purpose. Lung cancer has a high mortality rate and its prognosis largely depends on early detection. We report the prevalence data of the study on early detection of lung cancer with low-dose spiral CT underway at our hospital. Materials and methods. Since the beginning of 2001, 519 asymptomatic volunteers have undergone annual blood tests, sputum tests, urinalyses and low-dose spiral CT. The inclusion criteria were age (55 years old), a history of cigarette smoking and a negative history for previous neoplastic disease. The diagnostic workup varied depending on the size and CT features of the nodules detected. Results. At baseline, the CT scan detected nodules> 5 mm in 22% of subjects; the nodules were single in 42 and multiple in 71. In 53% of cases the findings were completely negative, while in 122 (23.4%) nodules with a diameter [it

  2. Clinical application of low-dose CT combined with computer-aided detection in lung cancer screening

    International Nuclear Information System (INIS)

    Xu Zushan; Hou Hongjun; Xu Yan; Ma Daqing

    2010-01-01

    Objective: To investigate the clinical value of chest low-dose CT (LDCT) combined with computer-aided detection (CAD) system for lung cancer screening in high risk population. Methods: Two hundred and nineteen healthy candidates underwent 64-slice LDCT scan. All images were reviewed in consensus by two radiologists with 15 years of thoracic CT diagnosis experience. Then the image data were analyzed with CAD alone. Finally images were reviewed by two radiologists with 5 years of CT diagnosis experience with and without CT Viewer software. The sensitivity, false positive rate of CAD for pulmonary nodule detection were calculated. SPSS 11.5 software and Chi-square test were used for the statistics. Results: Of 219 candidates ,104(47.5% ) were detected with lung nodules. There were 366 true nodules confirmed by the senior radiologists. The CAD system detected 271 (74.0%) true nodules and 424 false-positive nodules. The false-positive rate was 1.94/per case. The two junior radiologists indentifid 292 (79.8%), 286(78.1%) nodules without CAD and 336 (91.8%), 333 (91.0%) nodules with CAD respectively. There were significant differences for radiologists in indentifying nodules with or without CAD system (P<0.01). Conclusions: CAD is more sensitive than radiologists for indentifying the nodules in the central area or in the hilar region of the lung. While radiologists are more sensitive for the peripheral and sub-pleural nodules,or ground glass opacity nodules, or nodules smaller than 4 mm. CAD can not be used alone. The detection rate can be improved with the combination of radiologist and CAD in LDCT screen. (authors)

  3. Central venous device-related thrombosis as imaged with MDCT in oncologic patients: prevalence and findings

    International Nuclear Information System (INIS)

    Catalano, Orlando; Castelguidone, Elisabetta de Lutio di; Granata, Vincenza; D'Errico, Adolfo Gallipoli; Sandomenico, Claudia; Petrillo, Mario; Aprea, Pasquale

    2011-01-01

    Background: Venous thrombosis is a common occurrence in cancer patients, developing spontaneously or in combination with indwelling central venous devices (CVD). Purpose: To analyze the multidetector CT (MDCT) prevalence, appearance, and significance of catheter related thoracic venous thrombosis in oncologic patients and to determine the percentage of thrombi identified in the original reports. Material and Methods: Five hundred consecutive patients were considered. Inclusion criteria were: presence of a CVD; availability of a contrast-enhanced MDCT; and cancer history. Exclusion criteria were: direct tumor compression/infiltration of the veins; poor image quality; device tip not in the scanned volume; and missing clinical data. Seventeen (3.5%) out of the final 481 patients had a diagnosis of venous thrombosis. Results: Factors showing the highest correlation with thrombosis included peripherally-inserted CVD, right brachiocephalic vein tip location, patient performance status 3, metastatic stage disease, ongoing chemotherapy, and longstanding CVD. The highest prevalence was in patients with lymphoma, lung carcinoma, melanoma, and gynecologic malignancies. Eleven out of 17 cases had not been identified in the original report. Conclusion: CVD-related thrombosis is not uncommon in cancer patients and can also be observed in outpatients with a good performance status and a non-metastatic disease. Thrombi can be very tiny. Radiologists should be aware of the possibility to identify (or overlook) small thrombi

  4. Nodules size: An important factor in nodule mining?

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    A study of about 850 different sized nodules from 234 sites in the Central Indian Basin (CIB) showed a clear inverse relationship between size and grade of nodules. Among the different sized nodules, only the small (less than 2 cm) and medium (2...

  5. The impact of radiologists' expertise on screen results decisions in a CT lung cancer screening trial

    Energy Technology Data Exchange (ETDEWEB)

    Heuvelmans, Marjolein A.; Vliegenthart, Rozemarijn [University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, Groningen (Netherlands); University of Groningen / University Medical Center Groningen, Department of Radiology, Groningen (Netherlands); Oudkerk, Matthijs [University of Groningen, University Medical Center Groningen, Center for Medical Imaging - North East Netherlands, Groningen (Netherlands); Jong, Pim A. de; Mali, Willem P. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Groen, Harry J.M. [University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen (Netherlands)

    2014-11-04

    To evaluate the impact of radiological expertise on screen result decisions in a CT lung cancer screening trial. In the NELSON lung cancer screening trial, the baseline CT result was based on the largest lung nodule's volume. The protocol allowed radiologists to manually adjust screen results in cases of high suspicion of benign or malignant nodule nature. Participants whose baseline CT result was based on a solid or part-solid nodule were included in this study. Adjustments by radiologists at baseline were evaluated. Histology was the reference for diagnosis or to confirm benignity and stability on subsequent CT examinations. A total of 3,318 participants (2,796 male, median age 58.0 years) were included. In 195 participants (5.9 %) the initial baseline screen result was adjusted by the radiologist. Adjustment was downwards from positive or indeterminate to negative in two and 119 participants, respectively, and from positive to indeterminate in 65 participants. None of these nodules turned out to be malignant. In 9/195 participants (4.6 %) the screen result was adjusted upwards from negative to indeterminate or indeterminate to positive; two nodules were malignant. In one in 20 cases of baseline lung cancer screening, nodules were reclassified by the radiologist, leading to a reduction of false-positive screen results. (orig.)

  6. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis.

    Science.gov (United States)

    Nagatani, Yukihiro; Takahashi, Masashi; Murata, Kiyoshi; Ikeda, Mitsuru; Yamashiro, Tsuneo; Miyara, Tetsuhiro; Koyama, Hisanobu; Koyama, Mitsuhiro; Sato, Yukihisa; Moriya, Hiroshi; Noma, Satoshi; Tomiyama, Noriyuki; Ohno, Yoshiharu; Murayama, Sadayuki

    2015-07-01

    To compare lung nodule detection performance (LNDP) in computed tomography (CT) with adaptive iterative dose reduction using three dimensional processing (AIDR3D) between ultra-low dose CT (ULDCT) and low dose CT (LDCT). This was part of the Area-detector Computed Tomography for the Investigation of Thoracic Diseases (ACTIve) Study, a multicenter research project being conducted in Japan. Institutional Review Board approved this study and informed consent was obtained. Eighty-three subjects (body mass index, 23.3 ± 3.2) underwent chest CT at 6 institutions using identical scanners and protocols. In a single visit, each subject was scanned using different tube currents: 240, 120 and 20 mA (3.52, 1.74 and 0.29 mSv, respectively). Axial CT images with 2-mm thickness/increment were reconstructed using AIDR3D. Standard of reference (SOR) was determined based on CT images at 240 mA by consensus reading of 2 board-certificated radiologists as to the presence of lung nodules with the longest diameter (LD) of more than 3mm. Another 5 radiologists independently assessed and recorded presence/absence of lung nodules and their locations by continuously-distributed rating in CT images at 20 mA (ULDCT) and 120 mA (LDCT). Receiver-operating characteristic (ROC) analysis was used to evaluate LNDP of both methods in total and also in subgroups classified by LD (>4, 6 and 8 mm) and nodular characteristics (solid and ground glass nodules). For SOR, 161 solid and 60 ground glass nodules were identified. No significant difference in LNDP for entire solid nodules was demonstrated between both methods, as area under ROC curve (AUC) was 0.844 ± 0.017 in ULDCT and 0.876 ± 0.026 in LDCT (p=0.057). For ground glass nodules with LD 8mm or more, LNDP was similar between both methods, as AUC 0.899 ± 0.038 in ULDCT and 0.941 ± 0.030 in LDCT. (p=0.144). ULDCT using AIDR3D with an equivalent radiation dose to chest x-ray could have comparable LNDP to LDCT with AIDR3D except for smaller ground

  7. Comparison of MET-PET and FDG-PET for differentiation between benign lesions and lung cancer in pneumoconiosis

    International Nuclear Information System (INIS)

    Kanegae, Kakuko; Kuge, Yuji; Shiga, Tohru; Zhao, Songji; Okamoto, Shouzo; Tamaki, Nagara; Nakano, Ikuo; Kimura, Kiyonobu; Kaji, Hiroshi

    2007-01-01

    The aim of this study was to evaluate and compare the ability of C-11-methionine (MET) and F-18 fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) to diagnose lung cancer in patients with pneumoconiosis. Twenty-six subjects underwent both wholebody MET-PET and FDG-PET on the same day. The first group was a lung cancer group, which consisted of 15 patients, and included those with pneumoconiosis with increased nodules (13 cases), hemoptysis (1 case), and positive sputum cytology (1 case). The second group was a no-malignancy control group, consisting of 11 patients with pneumoconiosis. Significant correlations between nodule size and the maximum standardized uptake value (SUV max ) of the two PET tracers were observed in the control group. The larger the nodule size, the greater were the amounts of these tracers accumulated (MET: r=0.771, P max of MET was significantly lower than that of FDG in the pneumoconiotic nodules (P max of MET was significantly higher in the lung cancer than in the pneumoconiotic nodules, with 3.48±1.18 (mean ± SE) for the lung cancer and 1.48±0.08 for the pneumoconiotic nodules (P max of FDG, with 7.12±2.36 and 2.85±0.24 (P<0.05), respectively. On the basis of the criteria for the control group, FDG and MET identified lung cancer with sensitivities of 60% and 80%, specificities of 100% and 93%, accuracies of 90% and 90%, positive predictive values of 100% and 80%, and negative predictive values of 88% and 93%, respectively. Our results indicate that nodules with an intense uptake of MET and FDG relative to their size should be carefully observed because of a high risk for lung cancer. (author)

  8. Atypical adenomatous hyperplasia of the lung: correlation between high-resolution CT findings and histopathologic features

    International Nuclear Information System (INIS)

    Kawakami, S.; Takashima, S.; Li, F.; Yang, Z.G.; Maruyama, Y.; Hasegawa, M.; Wang, J.C.; Sone, S.; Honda, T.

    2001-01-01

    We describe herein the CT features of atypical adenomatous hyperplasia (AAH) of the lung and its histopathological characteristics. Among 17,919 individuals screened for lung cancer by CT scanning, ten AAH nodules were detected in nine asymptomatic subjects. On high-resolution CT, the lesions measured from 6 x 6 mm to 15 x 17 mm and their CT number ranged from -500 to -760 HU. The AAHs appeared as round nodules with smooth and distinct borders and showed a ground-glass opacity. Plain chest radiographs failed to identify all lesions. Histopathologically, AAH lesions showed atypical epithelial cell proliferation along slightly thickened alveolar septa. Whereas it is often easy to differentiate these nodules from inflammatory and benign lung lesions, histopathological examination remains at present the only method to differentiate AAH from lung cancers. (orig.)

  9. Atypical adenomatous hyperplasia of the lung: correlation between high-resolution CT findings and histopathologic features

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, S.; Takashima, S.; Li, F.; Yang, Z.G.; Maruyama, Y.; Hasegawa, M.; Wang, J.C. [Dept. of Radiology, Shinshu University School of Medicine, Matsumoto (Japan); Sone, S. [Dept. of Radiology, Shinshu University School of Medicine, Matsumoto (Japan); Azumi General Hospital, Ikeda, Nagano (Japan); Honda, T. [Dept. of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto (Japan)

    2001-05-01

    We describe herein the CT features of atypical adenomatous hyperplasia (AAH) of the lung and its histopathological characteristics. Among 17,919 individuals screened for lung cancer by CT scanning, ten AAH nodules were detected in nine asymptomatic subjects. On high-resolution CT, the lesions measured from 6 x 6 mm to 15 x 17 mm and their CT number ranged from -500 to -760 HU. The AAHs appeared as round nodules with smooth and distinct borders and showed a ground-glass opacity. Plain chest radiographs failed to identify all lesions. Histopathologically, AAH lesions showed atypical epithelial cell proliferation along slightly thickened alveolar septa. Whereas it is often easy to differentiate these nodules from inflammatory and benign lung lesions, histopathological examination remains at present the only method to differentiate AAH from lung cancers. (orig.)

  10. Thyroid nodule

    International Nuclear Information System (INIS)

    McKenney, J.F.

    1975-01-01

    A palpable mass or nodule may represent any one of a large and diverse group of conditions that involve the thyroid. Whether the patient is euthyroid, hypothyroid, or hyperthyroid can be assessed, and the cause of hypofunction or hyperfunction can usually be determined. Scintiscanning provides important information on the anatomic structure of thyroid nodules. A hot nodule should be ablated by either radioiodine or surgery. A warm nodule usually responds to suppression therapy; if regression does not occur, the problem should be reevaluated. A cold nodule should be surgically excised, as microscopic study of such a lesion is mandatory

  11. Lung inflammatory pseudo tumor

    International Nuclear Information System (INIS)

    Veliz, Elizabeth; Leone, Gaetano; Cano, Fernando; Sanchez, Jaime

    2005-01-01

    The inflammatory pseudo tumor is a non neoplastic process characterized by an irregular growth of inflammatory cells. We described the case of a 38 year-old patient, she went to our institute for a in situ cervix cancer and left lung nodule without breathing symptoms; valued by neumology who did bronchoscopy with biopsy whose result was negative for malignancy. She went to surgery in where we find intraparenquima nodule in felt lingula of approximately 4 cms, we remove it; the result was: Inflammatory pseudotumor. This pathology is a not very frequent, it can develop in diverse regions of the organism, it is frequent in lung. The image tests are not specific for the diagnose, which it is possible only with the biopsy. The treatment is the complete resection. (The author)

  12. Air-space pattern in lung metastasis from adenocarcinoma of the GI tract

    Energy Technology Data Exchange (ETDEWEB)

    Gaeta, M.; Volta, S.; Scribano, E. [Univ. of Messina (Italy)] [and others

    1996-03-01

    We retrospectively reviewed a series of proven lung metastasis to evaluate the frequency and CT features of metastases showing an air-space (lepidic) pattern of growth. CT examinations of 65 patients with proven lung metastasis from GI carcinomas were reviewed by three observers. Four CT features were used to classify lesions as air-space metastases: (a) air-space nodules; (b) parenchymal consolidation containing air bronchogram and/or showing angiogram sign; (c) focal or extensive ground-glass opacities; and (d) nodule(s) with a {open_quotes}halo{close_quotes} sign. Six of 65 patients showed air-space metastases: three from pancreatic carcinoma. two from colonic carcinoma, and one from jejunal carcinoma. In one case, metastasis appeared as extensive parenchymal consolidation associated with ground-glass opacities; in one as an area of ground-glass opacity; in one as an extensive parenchymal consolidation with air bronchogram; in one as parenchymal consolidations with angiogram sign and multiple nodules, some of these with halo sign; in one as air-space nodules and patchy air-space consolidations; and in one as a solitary nodule with halo sign. Our study shows that air-space lung metastasis from GI carcinomas is uncommon but not rare. On CT as well as microscopically, differential diagnosis between air-space metastasis and bronchioloalveolar carcinoma may be impossible. 13 refs., 5 figs., 1 tab.

  13. Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Thomas; Dobritz, Martin; Rummeny, Ernst J.; Noel, Peter B. [Technische Universitaet Muenchen, Institut fuer Radiologie, Klinikum rechts der Isar, Muenchen (Germany); Bauer, Jan S. [Technische Universitaet Muenchen, Abteilung fuer Neuroradiologie, Klinikum rechts der Isar, Muenchen (Germany); Klinder, Tobias; Lorenz, Cristian [Philips Research Laboratories, Hamburg (Germany)

    2014-04-15

    To develop a prototype algorithm for automatic spine segmentation in MDCT images and use it to automatically detect osteoporotic vertebral fractures. Cross-sectional routine thoracic and abdominal MDCT images of 71 patients including 8 males and 9 females with 25 osteoporotic vertebral fractures and longitudinal MDCT images of 9 patients with 18 incidental fractures in the follow-up MDCT were retrospectively selected. The spine segmentation algorithm localised and identified the vertebrae T5-L5. Each vertebra was automatically segmented by using corresponding vertebra surface shape models that were adapted to the original images. Anterior, middle, and posterior height of each vertebra was automatically determined; the anterior-posterior ratio (APR) and middle-posterior ratio (MPR) were computed. As the gold standard, radiologists graded vertebral fractures from T5 to L5 according to the Genant classification in consensus. Using ROC analysis to differentiate vertebrae without versus with prevalent fracture, AUC values of 0.84 and 0.83 were obtained for APR and MPR, respectively (p < 0.001). Longitudinal changes in APR and MPR were significantly different between vertebrae without versus with incidental fracture (ΔAPR: -8.5 % ± 8.6 % versus -1.6 % ± 4.2 %, p = 0.002; ΔMPR: -11.4 % ± 7.7 % versus -1.2 % ± 1.6 %, p < 0.001). This prototype algorithm may support radiologists in reporting currently underdiagnosed osteoporotic vertebral fractures so that appropriate therapy can be initiated. circle This spine segmentation algorithm automatically localised, identified, and segmented the vertebrae in MDCT images. (orig.)

  14. BMD measurements of the spine derived from sagittal reformations of contrast-enhanced MDCT without dedicated software

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Thomas, E-mail: thbaum@gmx.de [Institut fuer Roentgendiagnostik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Str. 22, 81675 Muenchen (Germany); Mueller, Dirk, E-mail: dirk.mueller@roe.med.tum.de [Institut fuer Roentgendiagnostik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Str. 22, 81675 Muenchen (Germany); Dobritz, Martin, E-mail: dobritz@roe.med.tum.de [Institut fuer Roentgendiagnostik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Str. 22, 81675 Muenchen (Germany); Rummeny, Ernst J., E-mail: institut@roe.med.tum.de [Institut fuer Roentgendiagnostik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Str. 22, 81675 Muenchen (Germany); Link, Thomas M., E-mail: thomas.link@radiology.ucsf.edu [Musculoskeletal and Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, San Francisco, CA 94107 (United States); Bauer, Jan S., E-mail: jsb@roe.med.tum.de [Institut fuer Roentgendiagnostik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Str. 22, 81675 Muenchen (Germany)

    2011-11-15

    Purpose: To assess QCT equivalent BMD of the lumbar spine in sagittal reformations of routine abdominal contrast-enhanced MDCT with simple PACS measurement tools and to apply this method to MDCT datasets for differentiating patients with and without osteoporotic vertebral fractures. Materials and methods: Eight postmenopausal women (65 {+-} 5years) underwent standard QCT to assess BMD of L1-L3. Afterwards routine abdominal contrast-enhanced MDCT images of these women were obtained and apparent BMD of L1-L3 was measured using the sagittal reformations. The MDCT-to-QCT conversion equation for BMD was calculated with linear regression analysis. The conversion equation was applied to vertebral BMD datasets (L1-L3) of 75 postmenopausal women (66 {+-} 4years). Seventeen of the 75 patients had osteoporotic vertebral fractures. Results: BMD values of contrast-enhanced MDCT were on average 56 mg/ml higher than those of standard QCT. A correlation coefficient of r = 0.94 (p < 0.05) was calculated for the BMD values of MDCT and standard QCT with the conversion equation BMD{sub QCT} = 0.69 x BMD{sub MDCT} - 11 mg/ml. Accordingly converted BMD values of patients with vertebral fractures were significantly lower than those of patients without vertebral fractures (69 mg/ml vs. 85 mg/ml; p < 0.05). Using ROC analysis to differentiate patients with and without vertebral fractures, AUC = 0.72 was obtained for converted BMD values (p < 0.05). Short- and long-term reproducibility errors for BMD measurements in the sagittal reformations amounted 2.09% and 7.70%, respectively. Conclusion: BMD measurements of the spine could be computed in sagittal reformations of routine abdominal contrast-enhanced MDCT with minimal technical and time effort. Using the conversion equation, the acquired BMD data could differentiate patients with and without osteoporotic vertebral fractures.

  15. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Yukihiro, E-mail: yatsushi@belle.shiga-med.ac.jp [Department of Radiology, Shiga University of Medical Science, Otsu 520-2192, Shiga (Japan); Takahashi, Masashi; Murata, Kiyoshi [Department of Radiology, Shiga University of Medical Science, Otsu 520-2192, Shiga (Japan); Ikeda, Mitsuru [Department of Radiological and Medical Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Aichi (Japan); Yamashiro, Tsuneo [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan); Miyara, Tetsuhiro [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan); Department of Radiology, Okinawa Prefectural Yaeyama Hospital, Ishigaki 907-0022, Okinawa (Japan); Koyama, Hisanobu [Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo (Japan); Koyama, Mitsuhiro [Department of Radiology, Osaka Medical College, Takatsuki 569-8686, Osaka (Japan); Sato, Yukihisa [Department of Radiology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka (Japan); Department of Radiology, Osaka Medical Center of Cancer and Cardiovascular Diseases, Osaka 537-8511, Osaka (Japan); Moriya, Hiroshi [Department of Radiology, Ohara General Hospital, Fukushima 960-8611 (Japan); Noma, Satoshi [Department of Radiology, Tenri Hospital, Tenri 632-8552, Nara (Japan); Tomiyama, Noriyuki [Department of Radiology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka (Japan); Ohno, Yoshiharu [Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo (Japan); Murayama, Sadayuki [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara 903-0215, Okinawa (Japan)

    2015-07-15

    Highlights: • Using AIDR 3D, ULDCT showed comparable LND of solid nodules to LDCT. • Using AIDR 3D, LND of smaller GGN in ULDCT was inferior to that in LDCT. • Effective dose in ULDCT was about only twice of that in chest X-ray. • BMI values in study population were mostly in the normal range body habitus. - Abstract: Purpose: To compare lung nodule detection performance (LNDP) in computed tomography (CT) with adaptive iterative dose reduction using three dimensional processing (AIDR3D) between ultra-low dose CT (ULDCT) and low dose CT (LDCT). Materials and methods: This was part of the Area-detector Computed Tomography for the Investigation of Thoracic Diseases (ACTIve) Study, a multicenter research project being conducted in Japan. Institutional Review Board approved this study and informed consent was obtained. Eighty-three subjects (body mass index, 23.3 ± 3.2) underwent chest CT at 6 institutions using identical scanners and protocols. In a single visit, each subject was scanned using different tube currents: 240, 120 and 20 mA (3.52, 1.74 and 0.29 mSv, respectively). Axial CT images with 2-mm thickness/increment were reconstructed using AIDR3D. Standard of reference (SOR) was determined based on CT images at 240 mA by consensus reading of 2 board-certificated radiologists as to the presence of lung nodules with the longest diameter (LD) of more than 3 mm. Another 5 radiologists independently assessed and recorded presence/absence of lung nodules and their locations by continuously-distributed rating in CT images at 20 mA (ULDCT) and 120 mA (LDCT). Receiver-operating characteristic (ROC) analysis was used to evaluate LNDP of both methods in total and also in subgroups classified by LD (>4, 6 and 8 mm) and nodular characteristics (solid and ground glass nodules). Results: For SOR, 161 solid and 60 ground glass nodules were identified. No significant difference in LNDP for entire solid nodules was demonstrated between both methods, as area under ROC

  16. Multidetector computed tomography enteroclysis (MDCT-E) with neutral enteral and IV contrast enhancement in tumor detection

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Stefania; Lutio, Elisabetta de; Romano, Luigia [Cardarelli Hospital, Department of Diagnostic Imaging, Naples (Italy); Rollandi, Gian Andrea [San Martino Hospital, 2. Service of Radiology, Genova (Italy); Grassi, Roberto [Second University of Naples, Institute of Radiology, Naples (Italy); Maglinte, Dean D.T. [Indiana University School of Medicine, Department of Radiology, Indianapolis, IN (United States)

    2005-06-01

    The aim of our study was to evaluate the reliability of MDCT-enteroclysis (MDCT-E), an emerging technique of small bowel examination that combines the advantages of MDCT examination of the abdomen and the enteral volume challenge of enteroclysis, in evaluation of small bowel neoplasms. In our institutions, MDCT-E was used to study 456 patients (age range 21-84 years, mean 53 years) admitted for suspicion of small bowel disease. All examinations were done on multichannel CT units, 129 on a 16-slice scanner and 327 on a four-slice scanner. Post-processing and multiplanar reformatting and interpretation were performed on dedicated workstations. After adequate gastrointestinal preparation and naso-enteric intubation, small bowel was distended by methylcellulose infused by a peristaltic pump. One volumetric MDCT acquisition was obtained after 120-130 ml of intravenous contrast medium. Multiplanar reformatting was based on the image reconstruction parameters from 3 to 4 mm. Forty-five small bowel neoplasms were found; in the remaining cases, 223 Crohn's diseases and 149 other abnormalities were detected. All findings were confirmed by surgery, endoscopy or clinical follow-up. In our experience, MDCT-E with neutral enteral and IV contrast seems to be a reliable method in the diagnosis of small bowel neoplasms. (orig.)

  17. Stereotactic Body Radiation Therapy Delivery in a Genetically Engineered Mouse Model of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shisuo; Lockamy, Virginia [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Zhou, Lin [Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Xue, Christine; LeBlanc, Justin [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Glenn, Shonna [Xstrahl, Inc, Suwanee, Georgia (United States); Shukla, Gaurav; Yu, Yan; Dicker, Adam P.; Leeper, Dennis B. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Lu, You [Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Lu, Bo, E-mail: bo.lu@jefferson.edu [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2016-11-01

    Purpose: To implement clinical stereotactic body radiation therapy (SBRT) using a small animal radiation research platform (SARRP) in a genetically engineered mouse model of lung cancer. Methods and Materials: A murine model of multinodular Kras-driven spontaneous lung tumors was used for this study. High-resolution cone beam computed tomography (CBCT) imaging was used to identify and target peripheral tumor nodules, whereas off-target lung nodules in the contralateral lung were used as a nonirradiated control. CBCT imaging helps localize tumors, facilitate high-precision irradiation, and monitor tumor growth. SBRT planning, prescription dose, and dose limits to normal tissue followed the guidelines set by RTOG protocols. Pathologic changes in the irradiated tumors were investigated using immunohistochemistry. Results: The image guided radiation delivery using the SARRP system effectively localized and treated lung cancer with precision in a genetically engineered mouse model of lung cancer. Immunohistochemical data confirmed the precise delivery of SBRT to the targeted lung nodules. The 60 Gy delivered in 3 weekly fractions markedly reduced the proliferation index, Ki-67, and increased apoptosis per staining for cleaved caspase-3 in irradiated lung nodules. Conclusions: It is feasible to use the SARRP platform to perform dosimetric planning and delivery of SBRT in mice with lung cancer. This allows for preclinical studies that provide a rationale for clinical trials involving SBRT, especially when combined with immunotherapeutics.

  18. Persistent pulmonary subsolid nodules with solid portions of 5 mm or smaller: Their natural course and predictors of interval growth

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk [Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Department of Radiology, Seoul (Korea, Republic of); Park, Chang Min [Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Department of Radiology, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Duke University Medical Center, Department of Radiology, Durham, NC (United States); Lee, Sang Min [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology, Seoul (Korea, Republic of); Kim, Hyungjin [Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Department of Radiology, Seoul (Korea, Republic of); Air Force Education and Training Command, Aerospace Medical Group, Jinju (Korea, Republic of); McAdams, H.P. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Goo, Jin Mo [Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Department of Radiology, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of)

    2016-06-15

    To investigate the natural course of persistent pulmonary subsolid nodules (SSNs) with solid portions ≤5 mm and the clinico-radiological features that influence interval growth over follow-ups. From 2005 to 2013, the natural courses of 213 persistent SSNs in 213 patients were evaluated. To identify significant predictors of interval growth, Kaplan-Meier analysis and Cox proportional hazard regression analysis were performed. Among the 213 nodules, 136 were pure ground-glass nodules (GGNs; growth, 18; stable, 118) and 77 were part-solid GGNs with solid portions ≤5 mm (growth, 24; stable, 53). For all SSNs, lung cancer history (p = 0.001), part-solid GGNs (p < 0.001), and nodule diameter (p < 0.001) were significant predictors for interval growth. On subgroup analysis, nodule diameter was an independent predictor for the interval growth of both pure GGNs (p < 0.001), and part-solid GGNs (p = 0.037). For part-solid GGNs, lung cancer history (p = 0.002) was another significant predictor of the interval growth. Interval growth of pure GGNs ≥10 mm and part-solid GGNs ≥8 mm were significantly more frequent than in pure GGNs <10 mm (p < 0.001) and part-solid GGNs <8 mm (p = 0.003), respectively. The natural course of SSNs with solid portions ≤5 mm differed significantly according to their nodule type and nodule diameters, with which their management can be subdivided. (orig.)

  19. Soft tissue buccal carcinoma - a role of MDCT and PET/CT during the staging procedure

    International Nuclear Information System (INIS)

    Al-Amin, M.; Zlatareva, D.; Dineva, S.; Hadjidekov, V.; Kostadinova, I.; Al-Amin, B.

    2013-01-01

    Full text: Introduction: The incidence of buccal mucosa carcinoma is 8-10 % of cancers developing in the oral mucosa. Most often it develops on prior pre-neoplasia: leucoplakia, lichen. Characterized by painless in the early growth. The tumor is widely and quickly grows into the underlying tissues. Contracture are common. Histologically settled mostly squamous cell carcinoma and rarely glandular small salivary glands. What you will learn: A case study about a patient referred by a dentist with a painless swelling of the face on the right, with tightly - elastin texture appeared about 3 months ago is presented . Patient has difficulty swallowing, talking and breathing and limited mouth opening. Discussion: A MDCT study with intravenous contrast medium was performed for findings staging. It is found a heterodense tumor formation, involving the nasopharynx and oropharynx right without infiltration of main blood vessels with destruction of almost the entire branch of the mandible, with an interruption of the processus caronoideus integrity as well as the lateral wall and floor of the right maxillary sinus. The diagnose is buccal tumor formation in stage T4 N2V, Mx. The patient was referred to a specialized hospital for active treatment in maxillofacial surgery, where a biopsy was done and the histological result is: moderately differentiated buccal and gingival squamous cell carcinoma. From X-ray study of the lungs and heart several pulmonary nodules are identified and there is a possibility for metastatic lesions. Patient was referred for restaging and conducting whole body PET/CT. It is found a metabolically active tumor formation with data for regional lymphatic dissemination in the right. Conclusion: Squamous cell carcinoma is the most common cancer of the oral cavity (90-95 %). Buccal carcinoma represents 9.8% of cancer of the oral cavity and maxillofacial area. Treatment is complex. The five-year survival in T3 and T4 stages is 20-30%

  20. Impact of Multidetector Computerized Tomography (MDCT) On The General Population

    Energy Technology Data Exchange (ETDEWEB)

    Leite, B.B.; Ribeiro, N.C. [Servico de Radiologia, Hospital de Curry Cabral, Rua da Beneficencia, 8, 1069-166 Lisboa (Portugal)

    2009-05-15

    Multidetector computerized tomography (MDCT) appeared in the early 1990s, as a technological evolution of computerized tomography. As one would expect, the evolution continues and, each year, more powerful equipments appear, with new medical applications. However, the general use of this technique has lead to the dramatic increase on the general population irradiation. Special concern is required regarding the most vulnerable groups, like the pediatric population, the pregnant and the young female. Due to a larger awareness of this irradiation risks, some initiatives have been developed, coming from different areas, aiming to maximize the benefit to risk ratio of MDCT. (author)

  1. Incidental detection of prostate-specific antigen-negative metastatic prostate cancer initially presented with solitary pulmonary nodule on fluorodeoxyglucose positron emission tomography/computed tomography

    International Nuclear Information System (INIS)

    Erdogan, Ezgi Basak; Buyukpinarbasili, Nur; Ziyade, Sedat; Akman, Tolga; Turk, Haci Mehmet; Aydin, Mehmet

    2005-01-01

    A 71-year-old male patient with solitary pulmonary nodule underwent fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) showing slightly increased FDG uptake in this nodule. In addition, PET/CT detected hypermetabolic sclerotic bone lesions in the right second rib and 7 th thoracic vertebrae, which were interpreted as possible metastases, and mildly increased FDG uptake in the prostate gland highly suspicious of malignancy. The patient's prostate-specific antigen (PSA) level was within normal range (3.8 ng/dL). The histopathological examination of the lung nodule and right second rib lesion proved metastases from prostate cancer, then the prostate biopsy-confirmed prostate adenocarcinoma. The unique feature of this case is to emphasize the importance of performing PET/CT for solitary pulmonary nodule in detecting PSA-negative metastatic prostate cancer. This case indicated that it should be kept in mind that, even if the PSA is negative, a lung metastasis of prostate cancer may be an underlying cause in patients evaluated for solitary pulmonary nodule by FDG PET/CT

  2. Ectopic Varices in Colonic Stoma: MDCT Findings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Woong; Lee, Chang Hee; Kim, Kyeong Ah; Park, Cheol Min; Kim, Jin Yong [Guro Hospital of Korea University, Seoul (Korea, Republic of)

    2006-12-15

    We describe the 2D reformatted and 3D volume rendered images by MDCT in a patient with an episode of acute bleeding from the colonic stoma. This case indicates that the 2D reformatted and 3D volume rendered images are useful to detect this rare complication of portal hypertension, and they help to tailor adequate treatment for the patients with bleeding from stomal varices. Ectopic varices are an uncommon cause of gastrointestinal hemorrhage, but they account for up to 5% of all variceal bleedings (1). Bleeding from stomal varices has been reported in up to 20% of the patients suffering with chronic liver failure with permanent stoma (2). However, the diagnosis of stomal varices is difficult because bleeding from stoma may also be associated with lower gastrointestinal bleeding. To the best of our knowledge, the 2D reformatted and 3D volume rendered images by MDCT for visualization of ectopic stomal varices have not been previously reported in the medical literature.

  3. Detection of skeletal muscle metastases on initial staging of lung cancer: a retrospective case series.

    Science.gov (United States)

    Bocchino, Marialuisa; Valente, Tullio; Somma, Francesco; de Rosa, Ilaria; Bifulco, Marco; Rea, Gaetano

    2014-03-01

    Estimation of skeletal muscle metastases (SMMs) at the time of diagnosis and/or initial staging of lung cancer. Retrospective evaluation of clinical charts and imaging data suggestive of SMMs of patients with histology-proved lung cancer over a 5-year period. SMMs were identified in 46 out of 1,754 patients. Single and multiple (62.9% of cases) SMMs were detected by total body multi-detector computed tomography (MDCT). They were associated with poorly differentiated (43%) and advanced adenocarcinomas (52%) without clinically relevant symptoms and/or signs. Psoas and buttock muscles were most frequently involved (33.3%). MDCT findings consisted of well-defined homogeneously hyperdense oval masses (31%), lesions with ring-like enhancement and central hypoattenuation (68%), or large abscess-like necrotic lesions (24%). Sonography revealed well-defined hypoechoic masses (41.6%), ill-defined hypoechoic lesions (33.3%), or anechoic areas with a necrotic centre (25%). Positron emission tomography revealed that all SMMs were metabolically active. SMMs are uncommon but not negligible in lung cancer, with an estimated prevalence of 2.62% in our series. Although histology remains the recommended method, use of high-performance imaging techniques and increased clinical suspicion may improve their early detection. Efforts addressing their effect on the natural history of lung cancer are needed.

  4. Transbronchial lung biopsy with a flexible cryoprobe: First case report from India

    Directory of Open Access Journals (Sweden)

    Sahajal Dhooria

    2016-01-01

    Full Text Available Sarcoidosis and tuberculosis are granulomatous disorders that mimic each other both clinically and radiologically. Both can present with fever and pulmonary nodules and often require the performance of transbronchial lung biopsy (TBLB for diagnosis. In recent studies, the flexible cryoprobe for carrying out TBLB has been found to be useful in the diagnosis of disorders diffusely involving the lung parenchyma. Here, we present the case of a 29-year-old man who presented with fever and cough and was found to have multiple small nodules in both lungs. TBLB with a flexible cryoprobe helped in differentiating between sarcoidosis and tuberculosis.

  5. Suspected pulmonary embolism and deep venous thrombosis: A comprehensive MDCT diagnosis in the acute clinical setting

    International Nuclear Information System (INIS)

    Salvolini, Luca; Scaglione, Mariano; Giuseppetti, Gian Marco; Giovagnoni, Andrea

    2008-01-01

    Both pulmonary arterial and peripheral venous sides of venous thromboembolism (VTE) can now be efficiently and safely investigated by multi-detector CT (MDCT) at the same time by a combined CT angiography/CT venography protocol. In the emergency setting, the use of such a single test for patients suspected of suffering from VTE on a clinical grounds may considerably shorten and simplify diagnostic algorithms. The selection of patients to be submitted to MDCT must follow well-established clinical prediction rules in order to avoid generalized referral to CT on a generic clinical suspicion basis and excessive population exposure to increased ionizing radiation dose, especially in young patients. Clinical and anatomical wide-panoramic capabilities of MDCT allow identification of underlying disease that may explain patients' symptoms in a large number of cases in which VTE is not manifest. The analysis of MDCT additional findings on cardiopulmonary status and total thrombus burden can lead to better prognostic stratification of patients and influence therapeutic options. Some controversial points such as optimal examination parameters, clinical significance of subsegmentary emboli, CT pitfalls and/or possible falsely positive diagnoses, and outcome of untreated patients in which VTE has been excluded by MDCT without additional testing, must of course be taken into careful consideration before the definite role of comprehensive MDCT VTE 'one-stop-shop' diagnosis in everyday clinical practice can be ascertained

  6. Suspected pulmonary embolism and deep venous thrombosis: A comprehensive MDCT diagnosis in the acute clinical setting

    Energy Technology Data Exchange (ETDEWEB)

    Salvolini, Luca [Radiology Department, ' Umberto I' Hospital - Ospedali Riuniti - ' Politecnica delle Marche' University, Via Conca, 60020 Ancona (Italy)], E-mail: lucasalvolini@alice.it; Scaglione, Mariano [Emergency and Trauma CT Section, Department of Radiology, Cardarelli Hospital, Via G. Merliani 31, 80127 Naples (Italy); Giuseppetti, Gian Marco; Giovagnoni, Andrea [Radiology Department, ' Umberto I' Hospital - Ospedali Riuniti - ' Politecnica delle Marche' University, Via Conca, 60020 Ancona (Italy)

    2008-03-15

    Both pulmonary arterial and peripheral venous sides of venous thromboembolism (VTE) can now be efficiently and safely investigated by multi-detector CT (MDCT) at the same time by a combined CT angiography/CT venography protocol. In the emergency setting, the use of such a single test for patients suspected of suffering from VTE on a clinical grounds may considerably shorten and simplify diagnostic algorithms. The selection of patients to be submitted to MDCT must follow well-established clinical prediction rules in order to avoid generalized referral to CT on a generic clinical suspicion basis and excessive population exposure to increased ionizing radiation dose, especially in young patients. Clinical and anatomical wide-panoramic capabilities of MDCT allow identification of underlying disease that may explain patients' symptoms in a large number of cases in which VTE is not manifest. The analysis of MDCT additional findings on cardiopulmonary status and total thrombus burden can lead to better prognostic stratification of patients and influence therapeutic options. Some controversial points such as optimal examination parameters, clinical significance of subsegmentary emboli, CT pitfalls and/or possible falsely positive diagnoses, and outcome of untreated patients in which VTE has been excluded by MDCT without additional testing, must of course be taken into careful consideration before the definite role of comprehensive MDCT VTE 'one-stop-shop' diagnosis in everyday clinical practice can be ascertained.

  7. Automated lung module detection at low-dose CT: preliminary experience

    International Nuclear Information System (INIS)

    Goo, Jin-Mo; Lee, Jeong-Won; Lee, Hyun-Ju; Kim, Seung-Wan; Kim, Jong-Hyo; Im, Jung-Gi

    2003-01-01

    To determine the usefulness of a computer-aided diagnosis (CAD) system for the automated detection of lung nodules at low-dose CT. A CAD system developed for detecting lung nodules was used to process the data provided by 50 consecutive low-dose CT scans. The results of an initial report, a second look review by two chest radiologists, and those obtained by the CAD system were compared, and by reviewing all of these, a gold standard was established. By applying the gold standard, a total of 52 nodules were identified (26 with a diameter ≤ 5 mm; 26 with a diameter > 5 mm). Compared to an initial report, four additional nodules were detected by the CAD system. Three of these, identified only at CAD, formed part of the data used to derive the gold standard. For the detection of nodules > 5 mm in diameter, sensitivity was 77% for the initial report, for the second look review, and 88% for the second look review,and 65% for the CAD system. There were 8.0 ± 5.2 false-positive CAD results per CT study. These preliminary results indicate that a CAD system may improve the detection of pulmonary nodules at low-dose CT

  8. MDCT findings in sports and recreational accidents.

    Science.gov (United States)

    Bensch, Frank V; Koivikko, Mika P; Koskinen, Seppo K

    2011-12-01

    Sports and recreational accidents involving critical areas of the body occur commonly in the general population. Reports on their demographics and recommendations for screening procedures are, however, few. To assess injuries of the craniofacial area, spine, and torso resulting from sports and recreational accidents with multidetector computed tomography (MDCT) as primary imaging method in a Level I trauma center. All emergency room CT requests over a time span of 105 months were reviewed retrospectively for trauma mechanism and injury. Patients were identified using an electronic picture archiving and communications system (PACS), and MDCT studies interpreted by two radiologists independently. Of a total of 5898 patients, 492 patients (301 boys/men, 191 girls/women, age range 2-76 years, mean 33.5 years, median 29.5 years) with sports or recreational accidents emerged. A total of 102 traumatic findings were diagnosed, thereof 72 (71%) serious. The three most commonly encountered serious injuries were intracranial injury, fractures of facial bones, and vertebral injuries. The three most common injury mechanisms were bicycling, horseback riding, and team ball sports. Patients from recreational activities were on average significantly younger (29.2 years) than those from sports accidents (36.9 years; P accidents presented with an overall incidence of 21%, of which 71% are serious. The most common mechanisms of injury were bicycling, horseback riding, and team ball sports. The largest incidence of serious injury involved bicycling. Because of the high probability of a serious injury and the high energies that are often involved in these accidents, we recommend ruling out of internal injury by MDCT as the primary imaging modality.

  9. MDCT assessment of CAD in type-2 diabetic subjects with diabetic neuropathy: the role of Charcot neuro-arthropathy

    International Nuclear Information System (INIS)

    Marano, Riccardo; Savino, Giancarlo; Merlino, Biagio; Pirro, Federica; Rutigliano, Claudia; Santangelo, Carolina; Minoiu, Aurelian Costin; Natale, Luigi; Bonomo, Lorenzo; Pitocco, Dario; Di Stasio, Enrico; Trani, Carlo

    2016-01-01

    To compare the CACS and CAD severity assessed by MDCT in neuropathic type-2 diabetic patients with and without Charcot-neuroarthropathy (CN). Thirty-four CN asymptomatic-patients and 36 asymptomatic-patients with diabetic-neuropathy (DN) without CN underwent MDCT to assess CACS and severity of CAD. Patients were classified as positive for significant CAD in presence of at least one stenosis >50 % on MDCT-coronary-angiography (MDCT-CA). Groups were matched for age, sex and traditional CAD risk-factors. The coronary-angiography (CA) was performed in all patients with at least a significant stenosis detected by MDCT-CA, both as reference and eventually as treatment. CN patients showed higher rates of significant CAD in comparison with DN subjects [p < 0.001], while non-significant differences were observed in CACS (p = 0.980). No significant differences were also observed in CACS distribution in all subjects for stenosis ≥/<50 % (p = 0.814), as well as in both groups (p = 0.661 and 0.559, respectively). The MDCT-CA showed an overall diagnostic-accuracy for significant CAD of 87 %. These preliminary data suggest that CN-patients have a higher prevalence of severe CAD in comparison with DN-patients, while coronary plaques do not exhibit an increased amount of calcium. MDCT may be helpful to assess the CV risk in such asymptomatic type-2-diabetic patients with autonomic-neuropathy. (orig.)

  10. MDCT assessment of CAD in type-2 diabetic subjects with diabetic neuropathy: the role of Charcot neuro-arthropathy

    Energy Technology Data Exchange (ETDEWEB)

    Marano, Riccardo; Savino, Giancarlo; Merlino, Biagio; Pirro, Federica; Rutigliano, Claudia; Santangelo, Carolina; Minoiu, Aurelian Costin; Natale, Luigi; Bonomo, Lorenzo [Catholic University of Rome, ' ' A. Gemelli' ' University Hospital, Department of Radiological Sciences - Institute of Radiology, Rome (Italy); Pitocco, Dario [Catholic University of Rome, ' ' A. Gemelli' ' University Hospital, Department of Internal Medicine, Rome (Italy); Di Stasio, Enrico [Catholic University of Rome, ' ' A. Gemelli' ' University Hospital, Department of Clinical Biochemistry, Rome (Italy); Trani, Carlo [Catholic University of Rome, ' ' A. Gemelli' ' University Hospital, Department of Cardiovascular Medicine - Institute of Cardiology, Rome (Italy)

    2016-03-15

    To compare the CACS and CAD severity assessed by MDCT in neuropathic type-2 diabetic patients with and without Charcot-neuroarthropathy (CN). Thirty-four CN asymptomatic-patients and 36 asymptomatic-patients with diabetic-neuropathy (DN) without CN underwent MDCT to assess CACS and severity of CAD. Patients were classified as positive for significant CAD in presence of at least one stenosis >50 % on MDCT-coronary-angiography (MDCT-CA). Groups were matched for age, sex and traditional CAD risk-factors. The coronary-angiography (CA) was performed in all patients with at least a significant stenosis detected by MDCT-CA, both as reference and eventually as treatment. CN patients showed higher rates of significant CAD in comparison with DN subjects [p < 0.001], while non-significant differences were observed in CACS (p = 0.980). No significant differences were also observed in CACS distribution in all subjects for stenosis ≥/<50 % (p = 0.814), as well as in both groups (p = 0.661 and 0.559, respectively). The MDCT-CA showed an overall diagnostic-accuracy for significant CAD of 87 %. These preliminary data suggest that CN-patients have a higher prevalence of severe CAD in comparison with DN-patients, while coronary plaques do not exhibit an increased amount of calcium. MDCT may be helpful to assess the CV risk in such asymptomatic type-2-diabetic patients with autonomic-neuropathy. (orig.)

  11. The radiographic findings of lymphoproliferative disorders of the lung

    International Nuclear Information System (INIS)

    Song Wei; Li Liping; Yan Hongzhen

    2002-01-01

    Objective: To study the radiographic findings of lymphoproliferative disorders of the lung. Methods: Twenty-five patients with lymphoproliferative disorders of the lung were examined by X-ray film, tomography, and CT. Results: Multiple and mediastinal lymphadenopathy were observed in 2 patients with pulmonary pseudolymphoma. Multiple nodules or masses were observed in 4 patients with pulmonary lymphomatoid granulomatosis. Hilar and mediastinal lymphadenopathy was observed in each patient with angioimmunoblastic lymphadenopathy, 2 patients had multiple nodules or masses, 8 patients had single or multiple patchy infiltrations, 10 had diffuse interstitial infiltrations. 3 patients with Castlemen' disease had a mass in the mediastinum, and another patient had mediastinal lymphadenopathy. Conclusion: Radiographic findings of lymphoproliferative disorders of the lung are varied, and the final diagnosis relies on pathology

  12. Surgical Treatment of Small Pulmonary Nodules Under Video-assisted Thoracoscopy 
(A Report of 129 Cases

    Directory of Open Access Journals (Sweden)

    Tong WANG

    2017-01-01

    Full Text Available Background and objective The development of image technology has led to increasing detection of pulmonary small nodules year by year, but the determination of their nature before operation is difficult. This clinical study aimed to investigate the necessity and feasibility of surgical resection of pulmonary small nodules through a minimally invasive approach and the operational manner of non-small cell lung cancer (NSCLC. Methods The clinical data of 129 cases with pulmonary small nodule of 10 mm or less in diameter were retrospectively analyzed in our hospital from December 2013 to November 2016. Thin-section computed tomography (CT was performed on all cases with 129 pulmonary small nodules. CT-guided hook-wire precise localization was performed on 21 cases. Lobectomy, wedge resection, and segmentectomy with lymph node dissection might be performed in patients according to physical condition. Results Results of the pathological examination of 37 solid pulmonary nodules (SPNs revealed 3 primary squamous cell lung cancers, 3 invasive adenocarcinomas (IAs, 2 metastatic cancers, 2 small cell lung cancers (SCLCs, 16 hamartomas, and 12 nonspecific chronic inflammations. The results of pathological examination of 49 mixed ground glass opacities revealed 19 IAs, 6 micro invasive adenocarcinomas (MIAs, 4 adenocarcinomas in situ (AIS, 1 atypical adenomatous hyperplasia (AAH, 1 SCLC, and 18 nonspecific chronic inflammations. The results of pathological examination of 43 pure ground glass opacities revealed 19 AIS, 6 MIAs, 6 IA, 6 AAHs, and 6 nonspecific chronic inflammations. Wedge resection under video-assisted thoracoscopic surgery (VATS was performed in patients with 52 benign pulmonary small nodules. Lobectomy and systematic lymph node dissection under VATS were performed in 33 patients with NSCLC. Segmentectomy with selective lymph node dissection, wedge resection, and selective lymph node dissection under VATS were performed in six patients with

  13. Visualization of subtle temporal bone structures. Comparison of cone beam CT and MDCT

    International Nuclear Information System (INIS)

    Pein, M.K.; Plontke, S.K.; Brandt, S.; Koesling, S.

    2014-01-01

    The purpose of this study was to compare the visualization of subtle, non-pathological temporal bone structures on cone beam computed tomography (CBCT) and multi-detector computed tomography (MDCT) in vivo. Temporal bone studies of images from 38 patients archived in the picture archiving and communication system (PACS) were analyzed (slice thickness MDCT 0.6 mm and CBCT 0.125 mm) of which 23 were imaged by MDCT and 15 by CBCT using optimized standard protocols. Inclusion criteria were normal radiological findings, absence of previous surgery and anatomical variants. Images were evaluated blind by three trained observers. Using a five-point scale the visualization of ten subtle structures of the temporal bone was analyzed. Subtle middle ear structures showed a tendency to be more easily distinguishable by CBCT with significantly better visualization of the tendon of the stapedius muscle and the crura of the stapes on CBCT (p = 0.003 and p = 0.033, respectively). In contrast, inner ear components, such as the osseus spiral lamina and the modiolus tended to be better detectable on MDCT, showing significant differences for the osseous spiral lamina (p = 0.001). The interrater reliability was 0.73 (Cohen's kappa coefficient) and intraobserver reliability was 0.89. The use of CBCT and MDCT allows equivalent and excellent imaging results if optimized protocols are chosen. With both imaging techniques subtle temporal bone structures could be visualized with a similar degree of definition. In vivo differences do not seem to be as large as suggested in several previous studies. (orig.) [de

  14. Chronic mitral regurgitation detected on cardiac MDCT: differentiation between functional and valvular aetiologies.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    OBJECTIVE: To determine whether cardiac computed tomography (MDCT) can differentiate between functional and valvular aetiologies of chronic mitral regurgitation (MR) compared with echocardiography (TTE). METHODS: Twenty-seven patients with functional or valvular MR diagnosed by TTE and 19 controls prospectively underwent cardiac MDCT. The morphological appearance of the mitral valve (MV) leaflets, MV geometry, MV leaflet angle, left ventricular (LV) sphericity and global\\/regional wall motion were analysed. The coronary arteries were evaluated for obstructive atherosclerosis. RESULTS: All control and MR cases were correctly identified by MDCT. Significant differences were detected between valvular and control groups for anterior leaflet length (30 +\\/- 7 mm vs. 22 +\\/- 4 mm, P < 0.02) and thickness (3.0 +\\/- 1 mm vs. 2.2 +\\/- 1 mm, P < 0.01). High-grade coronary stenosis was detected in all patients with functional MR compared with no controls (P < 0.001). Significant differences in those with\\/without MV prolapse were detected in MV tent area (-1.0 +\\/- 0.6 mm vs. 1.3 +\\/- 0.9 mm, P < 0.0001) and MV tent height (-0.7 +\\/- 0.3 mm vs. 0.8 +\\/- 0.8 mm, P < 0.0001). Posterior leaflet angle was significantly greater for functional MR (37.9 +\\/- 19.1 degrees vs. 22.9 +\\/- 14 degrees , P < 0.018) and less for valvular MR (0.6 +\\/- 35.5 degrees vs. 22.9 +\\/- 14 degrees, P < 0.017). Sensitivity, specificity, and positive and negative predictive values of MDCT were 100%, 95%, 96% and 100%. CONCLUSION: Cardiac MDCT allows the differentiation between functional and valvular causes of MR.

  15. Novel technique for addressing streak artifact in gated dual-source MDCT angiography utilizing ECG-editing

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Laura T.; Boll, Daniel T. [Duke University Medical Center, Department of Radiology, Box 3808, Durham, NC (United States)

    2008-11-15

    Streak artifact is an important source of image degradation in computed tomographic imaging. In coronary MDCT angiography, streak artifact from pacemaker leads in the SVC can render segments of the right coronary artery uninterpretable. With current technology in clinical practice, there is no effective way to eliminate streak artifact in coronary MDCT angiography entirely. We propose a technique to minimize the impact of streak artifact in retrospectively gated coronary MDCT angiography by utilizing small shifts in the reconstruction window. In our experience, previously degraded portions of the coronary vasculature were able to be well evaluated using this technique. (orig.)

  16. Diagnostic accuracy of contemporary multidetector computed tomography (MDCT) for the detection of lumbar disc herniation

    Energy Technology Data Exchange (ETDEWEB)

    Notohamiprodjo, S.; Stahl, R.; Braunagel, M.; Kazmierczak, P.M.; Thierfelder, K.M.; Treitl, K.M.; Wirth, S. [University Hospital of Munich, LMU Munich, Institute for Clinical Radiology, Munich (Germany); Notohamiprodjo, M. [University Hospital Tuebingen, Eberhard Karls University Tuebingen, Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2017-08-15

    To evaluate the diagnostic accuracy of multidetector CT (MDCT) for detection of lumbar disc herniation with MRI as standard of reference. Patients with low back pain underwent indicated MDCT (128-row MDCT, helical pitch), 60 patients with iterative reconstruction (IR) and 67 patients with filtered back projection (FBP). Lumbar spine MRI (1.5 T) was performed within 1 month. Signal-to-noise ratios (SNR) of cerebrospinal fluid (CSF), annulus fibrosus (AF) and the spinal cord (SC) were determined for all modalities. Two readers independently rated image quality (IQ), diagnostic confidence and accuracy in the diagnosis of lumbar disc herniation using MRI as standard of reference. Inter-reader correlation was assessed with weighted κ. Sensitivity, specificity, precision and accuracy of MDCT for disc protrusion were 98.8%, 96.5%, 97.1%, 97.8% (disc level), 97.7%, 92.9%, 98.6%, 96.9% (patient level). SNR of IR was significantly higher than FBP. IQ was significantly better in IR owing to visually reduced noise and improved delineation of the discs. κ (>0.90) was excellent for both algorithms. MDCT of the lumbar spine yields high diagnostic accuracy for detection of lumbar disc herniation. IR improves image quality so that the provided diagnostic accuracy is principally equivalent to MRI. (orig.)

  17. Lung cancer screening with low-dose CT

    International Nuclear Information System (INIS)

    Diederich, S.; Wormanns, D.; Heindel, W.

    2003-01-01

    Screening for lung cancer is hoped to reduce mortality from this common tumour, which is characterised by a dismal overall survival, relatively well defined risk groups (mainly heavy cigarette smokers and workers exposed to asbestos) and a lack of early symptoms. In the past studies using sputum cytology and chest radiography have failed to demonstrate any reduction in lung cancer mortality through screening. One of the reasons is probably the relatively poor sensitivity of both these tests in early tumours. Low radiation dose computed tomography (CT) has been shown to have a much higher sensitivity for small pulmonary nodules, which are believed to be the most common presentation of early lung cancer. As, however, small pulmonary nodules are common and most are not malignant, non-invasive diagnostic algorithms are required to correctly classify the detected lesions and avoid invasive procedures in benign nodules. Nodule density, size and the demonstration of growth at follow-up have been shown to be useful in this respect and may in the future be supplemented by contrast-enhanced CT and positron emission tomography. Based on these diagnostic algorithms preliminary studies of low-dose CT in heavy smokers have demonstrated a high proportion of asymptomatic, early, resectable cancers with good survival. As, however, several biases could explain these findings in the absence of the ultimate goal of cancer screening, i.e. mortality reduction, most researchers believe that randomised controlled trials including several 10000 subjects are required to demonstrate a possible mortality reduction. Only then general recommendations to screen individuals at risk of lung cancer with low-dose CT should be made. It can be hoped that international cooperation will succeed in providing results as early as possible

  18. Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages.

    Science.gov (United States)

    Serova, Tatiana A; Tsyganova, Anna V; Tsyganov, Viktor E

    2018-04-03

    Plant symbiotic mutants are useful tool to uncover the molecular-genetic mechanisms of nodule senescence. The pea (Pisum sativum L.) mutants SGEFix - -1 (sym40), SGEFix - -3 (sym26), and SGEFix - -7 (sym27) display an early nodule senescence phenotype, whereas the mutant SGEFix - -2 (sym33) does not show premature degradation of symbiotic structures, but its nodules show an enhanced immune response. The nodules of these mutants were compared with each other and with those of the wild-type SGE line using seven marker genes that are known to be activated during nodule senescence. In wild-type SGE nodules, transcript levels of all of the senescence-associated genes were highest at 6 weeks after inoculation (WAI). The senescence-associated genes showed higher transcript abundance in mutant nodules than in wild-type nodules at 2 WAI and attained maximum levels in the mutant nodules at 4 WAI. Immunolocalization analyses showed that the ethylene precursor 1-aminocyclopropane-1-carboxylate accumulated earlier in the mutant nodules than in wild-type nodules. Together, these results showed that nodule senescence was activated in ineffective nodules blocked at different developmental stages in pea lines that harbor mutations in four symbiotic genes.

  19. Breast metastasis and lung large-cell neuroendocrine carcinoma: first clinical observation.

    Science.gov (United States)

    Papa, Anselmo; Rossi, Luigi; Verrico, Monica; Di Cristofano, Claudio; Moretti, Valentina; Strudel, Martina; Zoratto, Federica; Minozzi, Marina; Tomao, Silverio

    2017-09-01

    The lung large-cell neuroendocrine carcinoma (LCNEC) is a very rare aggressive neuroendocrine tumor with a high propensity to metastasize and very poor prognosis. We report an atypical presentation of lung LCNEC was diagnosed from a metastatic nodule on the breast. Our patient is a 59-years-old woman that presented in March 2014 nonproductive cough. A CT scan showed multiple brain, lung, adrenal gland and liver secondary lesions; moreover, it revealed a breast right nodule near the chest measuring 1.8 cm. The breast nodule and lung lesions were biopsied and their histology and molecular diagnosis were LCNEC of the lung. To our knowledge, this is the first documented case of breast metastasis from LCNEC of the lung. Furthermore, breast metastasis from extramammary malignancy is uncommon and its diagnosis is difficult but important for proper management and prediction of prognosis. Therefore, a careful clinical history with a thorough clinical examination is needed to make the correct diagnosis. Moreover, metastasis to the breast should be considered in any patient with a known primary malignant tumor history who presents with a breast lump. Anyhow, pathological examination should be performed to differentiate the primary breast cancer from metastatic tumor. Therefore, an accurate diagnosis of breast metastases may not only avoid unnecessary breast resection, more importantly it is crucial to determine an appropriate and systemic treatment. © 2015 John Wiley & Sons Ltd.

  20. Consistent interactive segmentation of pulmonary ground glass nodules identified in CT studies

    Science.gov (United States)

    Zhang, Li; Fang, Ming; Naidich, David P.; Novak, Carol L.

    2004-05-01

    Ground glass nodules (GGNs) have proved especially problematic in lung cancer diagnosis, as despite frequently being malignant they characteristically have extremely slow rates of growth. This problem is further magnified by the small size of many of these lesions now being routinely detected following the introduction of multislice CT scanners capable of acquiring contiguous high resolution 1 to 1.25 mm sections throughout the thorax in a single breathhold period. Although segmentation of solid nodules can be used clinically to determine volume doubling times quantitatively, reliable methods for segmentation of pure ground glass nodules have yet to be introduced. Our purpose is to evaluate a newly developed computer-based segmentation method for rapid and reproducible measurements of pure ground glass nodules. 23 pure or mixed ground glass nodules were identified in a total of 8 patients by a radiologist and subsequently segmented by our computer-based method using Markov random field and shape analysis. The computer-based segmentation was initialized by a click point. Methodological consistency was assessed using the overlap ratio between 3 segmentations initialized by 3 different click points for each nodule. The 95% confidence interval on the mean of the overlap ratios proved to be [0.984, 0.998]. The computer-based method failed on two nodules that were difficult to segment even manually either due to especially low contrast or markedly irregular margins. While achieving consistent manual segmentation of ground glass nodules has proven problematic most often due to indistinct boundaries and interobserver variability, our proposed method introduces a powerful new tool for obtaining reproducible quantitative measurements of these lesions. It is our intention to further document the value of this approach with a still larger set of ground glass nodules.

  1. Lung cancer screening with low-dose helical CT in Korea: experiences at the Samsung Medical Center.

    Science.gov (United States)

    Chong, Semin; Lee, Kyung Soo; Chung, Myung Jin; Kim, Tae Sung; Kim, Hojoong; Kwon, O Jung; Choi, Yoon-Ho; Rhee, Chong H

    2005-06-01

    To determine overall detection rates of lung cancer by low-dose CT (LDCT) screening and to compare histopathologic and imaging differences of detected cancers between high- and low-risk groups, this study included 6,406 asymptomatic Korean adults with >or=45 yr of age who underwent LDCT for lung cancer screening. All were classified into high- (>or=20 pack-year smoking; 3,353) and low-risk (3,053; <20 pack-yr smoking and non-smokers) groups. We compared CT findings of detected cancers and detection rates between high- and low-risk. At initial CT, 35% (2,255 of 6,406) had at least one or more non-calcified nodule. Lung cancer detection rates were 0.36% (23 of 6,406). Twenty-one non-small cell lung cancers appeared as solid (n=14) or ground-glass opacity (GGO) (n=7) nodules. Cancer likelihood was higher in GGO nodules than in solid nodules (p<0.01). Fifteen of 23 cancers occurred in high-risk group and 8 in low-risk group (p=0.215). Therefore, LDCT screening help detect early stage of lung cancer in asymptomatic Korean population with detection rate of 0.36% on a population basis and may be useful for discovering early lung cancer in low-risk group as well as in high-risk group.

  2. Isolated lung events following radiation for early stage breast cancer: incidence and predictors for primary lung vs metastatic breast cancer

    International Nuclear Information System (INIS)

    Van Buren, Teresa A; Harris, Jay R; Sugarbaker, David J; Schneider, Lindsey; Healey, Elizabeth A

    1995-01-01

    Purpose: 1) To define the incidence of isolated lung events in a cohort of women treated with conservative surgery (CS) and radiation therapy (RT) for early stage breast cancer. 2) Among such patients, to define the relative distribution of primary lung cancer, metastatic breast cancer, and indeterminate lesions; and to identify any predictors for a diagnosis of lung vs metastatic breast cancer. 3) To examine the cohort with respect to whether a higher than expected incidence of lung cancer is seen following breast irradiation. Materials and Methods: Between 1968 and 1986, 1865 patients with clinical stage I-II breast cancer were treated with CS and RT; the median follow-up for surviving patients is 129 months. The study population was limited to patients who developed a subsequent isolated lung event as the first site of distant disease. Isolated lung event was defined as disease limited to the thoracic cavity, without evidence of either uncontrolled local breast disease or metastatic disease elsewhere. Diagnosis of the lung event as a primary lung cancer, a metastatic breast lesion, or an indeterminate lesion was documented from the viewpoint of 1) the pathologic analysis and 2) the clinical impression at the time of the lung event. Results: Sixty six of the 1865 patients (3.5%) developed an isolated lung event. The relative distribution of the pathologic and clinical diagnoses is shown below: The 66 lung events were characterized either as a solitary pulmonary nodule (27), multiple nodules (23), pleural effusion alone (10), unknown (2), or miscellaneous other findings (4). Among the 47 patients for whom pathology was available, the diagnosis remained indeterminate for 24 (51%). For patients with a definitive pathologic diagnosis, 69% ((9(13))) of smokers had a new lung cancer compared to 20% ((2(10))) of non-smokers (p=0.036), and 67% ((10(15))) of patients with a solitary pulmonary nodule had lung cancer compared to 14% ((1(7))) for other lung presentations (p

  3. Baseline MDCT findings after prosthetic heart valve implantation provide important complementary information to echocardiography for follow-up purposes

    Energy Technology Data Exchange (ETDEWEB)

    Sucha, Dominika; Mali, Willem P.T.M.; Habets, Jesse [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Chamuleau, Steven A.J. [University Medical Center Utrecht, Department of Cardiology, Utrecht (Netherlands); Symersky, Petr [VU Medical Center, Department of Cardiothoracic Surgery, Amsterdam (Netherlands); Meijs, Matthijs F.L. [Thoraxcentrum Twente, Medisch Spectrum Twente, Department of Cardiology, Enschede (Netherlands); Brink, Renee B.A. van den [Academic Medical Center, Department of Cardiology, Amsterdam (Netherlands); Mol, Bas A.J.M. de [Academic Medical Center, Department of Cardiothoracic Surgery, Amsterdam (Netherlands); Herwerden, Lex A. van [University Medical Center Utrecht, Department of Cardiothoracic Surgery, Utrecht (Netherlands); Budde, Ricardo P.J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Erasmus University Medical Center, Department of Radiology, Rotterdam (Netherlands)

    2016-04-15

    Recent studies have proposed additional multidetector-row CT (MDCT) for prosthetic heart valve (PHV) dysfunction. References to discriminate physiological from pathological conditions early after implantation are lacking. We present baseline MDCT findings of PHVs 6 weeks post implantation. Patients were prospectively enrolled and TTE was performed according to clinical guidelines. 256-MDCT images were systematically assessed for leaflet excursions, image quality, valve-related artefacts, and pathological and additional findings. Forty-six patients were included comprising 33 mechanical and 16 biological PHVs. Overall, MDCT image quality was good and relevant regions remained reliably assessable despite mild-moderate PHV-artefacts. MDCT detected three unexpected valve-related pathology cases: (1) prominent subprosthetic tissue, (2) pseudoaneurysm and (3) extensive pseudoaneurysms and valve dehiscence. The latter patient required valve surgery to be redone. TTE only showed trace periprosthetic regurgitation, and no abnormalities in the other cases. Additional findings were: tilted aortic PHV position (n = 3), pericardial haematoma (n = 3) and pericardial effusion (n = 3). Periaortic induration was present in 33/40 (83 %) aortic valve patients. MDCT allowed evaluation of relevant PHV regions in all valves, revealed baseline postsurgical findings and, despite normal TTE findings, detected three cases of unexpected, clinically relevant pathology. (orig.)

  4. Role of MDCT angiography in the preoperative evaluation of anomalous pulmonary venous connection associated with complex cardiac abnormality

    International Nuclear Information System (INIS)

    Liu Jingzhe; Wu Qingyu; Xu Yufeng; Bai Yan; Liu Zhibo; Li Hongyin; Zhu Jiemin

    2012-01-01

    Objectives: To evaluate the diagnostic accuracy of MDCT in patients with APVC associated with complex cardiac abnormality. Materials and methods: The clinical and imaging data of 39 patients with APVC confirmed by surgery were retrospectively reviewed. According to accompanied cardiac malformations, patients with APVC were classified as isolated and complex group. Using surgical findings as the reference standard, diagnostic agreement of MDCT, TTE (transthoracic echocardiography) and cardiac catheterization for detection of APVC were calculated. Results: At surgery, 27 patients were considered as complex APVCs. MDCT correctly diagnosed APVC in all patients and the diagnostic agreements between MDCT and surgery were both 100% in isolated and complex groups. All 5 APVCs which could not be detected at cardiac catheterization were in complex group, and the diagnostic agreements were 100% and 76.2% in isolated and complex groups, respectively. At TTE, eight of nine disagreed patients were complex cases. The diagnostic agreements of TTE were 91.7% and 66.7% in isolated and complex groups, respectively. The dysmorphic pulmonary veins were identified in 11 patients by MDCT. Conclusions: MDCT is superior to catheterization and TTE in evaluation of APVC associated with complex cardiac defects.

  5. Artificial life models in lung CTS

    International Nuclear Information System (INIS)

    Sorin, Cheran

    2006-01-01

    A new method for the analysis of 3D medical images is introduced. The algorithm is based on Biological Models of ants known as Artificial Life models. Test images (lung Computed Tomographies) undergo a 3D region growing procedure for the identification of the ribs cage. Active Contour Models (snakes) are used in order to build a confined area where ants are deployed. The ant-based approach, in which steps are allowed in any direction with different probabilities, allows a kind of tunneling effect for the successful identification of small 3D structures that are not clearly connected to the rest of the tree. The best approach is based on a gradient rule for the release of pheromone. A possible application, as part of a Computer Assisted Detection system for the identification of lung nodules, is the removal of the bronchial and vascular tree from lung CTs thus reducing the number of false positives a Nodule Hunter might report. (Full Text)

  6. Myocardial bridging as evaluated by 16 row MDCT

    International Nuclear Information System (INIS)

    Canyigit, Murat; Hazirolan, Tuncay; Karcaaltincaba, Musturay; Dagoglu, Merve Gulbiz; Akata, Deniz; Aytemir, Kudret; Oto, Ali; Balkanci, Ferhun; Akpinar, Erhan; Besim, Aytekin

    2009-01-01

    Purpose: The purpose of this study is to find out the prevalence, appearance and clinical symptoms of myocardial bridging (MB) by MDCT coronary angiography (CTA). Materials and methods: A total of 280 (50 females) consecutive patients followed with coronary artery disease or postoperative stent and bypass control, underwent CTA performed by 16-MDCT scanner between January 2006 and April 2006. Short axis multiplanar reformatted images were evaluated. MBs were classified as complete and incomplete bridges with respect to continuity of the myocardium over the tunneled segment of left anterior descending artery (LAD) in interventricular groove and the cut-off value is 1.3 mm. Patients diagnosed with MB on CTA who had prior catheter angiography studies were re-evaluated for the presence of MB. Results: One hundred and twenty MBs [98 (81.6%) on LAD, 2 (1.6%) on diagonal branch, 11 (9.1%) on obtuse marginal, 4 (3.3%) on right coronary artery, 5 (4.1%) on ramus intermedius artery] were detected in 108 (38.5%) patients. Eighty-five (70.8%) of bridged segments in 79 (28.2%) patients were complete and the rest [35 (29.2%) in 34 (12.1%) patients] were incomplete. In 12 patients two MBs (either on different arteries or on the same artery) were detected. The length of bridged segments in patients with complete and incomplete MBs varied between 4-50.9 mm (mean 18 mm) and 4-37.3 mm (mean 13.6 mm), respectively, and the depth of myocardium over the artery ranged between 1-6.4 mm (mean 2.3 mm) and 1-1.2 mm (mean 1 mm), respectively. Thirty (27.7%) out of 108 patients, in whom MB was detected on CTA, were found to have correlative catheter angiography studies, retrospectively and MB was detected only in 4 (13.3%) out of 30 patients. Conclusion: MDCT coronary angiography is a non-invasive, efficient method in the diagnosis of MB avoiding the procedural risks that catheter angiography carries. MDCT coronary angiography allows direct visualization of the bridge itself and may thus give

  7. CT diagnosis of pleural dissemination without pleural effusion in primary lung cancer

    International Nuclear Information System (INIS)

    Murayama, Sadayuki; Murakami, Junji; Yoshimitsu, Kengo; Torii, Yoshikuni; Masuda, Kouji; Ishida, Teruyoshi.

    1996-01-01

    We retrospectively reviewed the CT scans of 25 primary lung cancers with disseminated pleural nodules or minimal malignant pleural effusion that were not recognized preparatively. Special attention was devoted to abutting interlobar fissures, thick major fissures, and disseminated nodules on the chest wall, the diaphragm, and in the interlobar fissures. Among 10 primary tumors abutting interlobar fissures, nine (90%) had at least one of these findings. Among 15 primary lung tumors which did not abut interlobar fissures, four (27%) had at least one of these findings. We conclude that CT is a useful modality for detecting the pleural dissemination of primary lung cancers when primary lung cancers abut interlobar fissures even if no pleural effusion is detectable on CT. (author)

  8. Utility of 64-row MDCT in assessment of neonates with congenital EA and distal TEF

    Directory of Open Access Journals (Sweden)

    Hosam El-Deen Galal Mohamed El-Malah

    2015-12-01

    Conclusion: Preoperative MDCT scan with MPVR, 3D TL-VR of 64-row MDCT which is a noninvasive technique could provide more accurate information about the assessment of the origin of the fistula, the distal esophageal pouches and inter-pouch distance in neonates with EA and distal TEF.

  9. Level-set segmentation of pulmonary nodules in megavolt electronic portal images using a CT prior

    International Nuclear Information System (INIS)

    Schildkraut, J. S.; Prosser, N.; Savakis, A.; Gomez, J.; Nazareth, D.; Singh, A. K.; Malhotra, H. K.

    2010-01-01

    Purpose: Pulmonary nodules present unique problems during radiation treatment due to nodule position uncertainty that is caused by respiration. The radiation field has to be enlarged to account for nodule motion during treatment. The purpose of this work is to provide a method of locating a pulmonary nodule in a megavolt portal image that can be used to reduce the internal target volume (ITV) during radiation therapy. A reduction in the ITV would result in a decrease in radiation toxicity to healthy tissue. Methods: Eight patients with nonsmall cell lung cancer were used in this study. CT scans that include the pulmonary nodule were captured with a GE Healthcare LightSpeed RT 16 scanner. Megavolt portal images were acquired with a Varian Trilogy unit equipped with an AS1000 electronic portal imaging device. The nodule localization method uses grayscale morphological filtering and level-set segmentation with a prior. The treatment-time portion of the algorithm is implemented on a graphical processing unit. Results: The method was retrospectively tested on eight cases that include a total of 151 megavolt portal image frames. The method reduced the nodule position uncertainty by an average of 40% for seven out of the eight cases. The treatment phase portion of the method has a subsecond execution time that makes it suitable for near-real-time nodule localization. Conclusions: A method was developed to localize a pulmonary nodule in a megavolt portal image. The method uses the characteristics of the nodule in a prior CT scan to enhance the nodule in the portal image and to identify the nodule region by level-set segmentation. In a retrospective study, the method reduced the nodule position uncertainty by an average of 40% for seven out of the eight cases studied.

  10. Solitary pulmonary nodule and {sup 18}F-FDG PET/CT. Part 2: accuracy, cost-effectiveness, and current recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Mosmann, Marcos Pretto; Borba, Marcelle Alves; Macedo, Francisco Pires Negromonte de; Liguori, Adriano de Araujo Lima; Villarim Neto, Arthur [Liga Norte-Riograndense Contra o Cancer, Natal, RN (Brazil); Lima, Kenio Costa de, E-mail: mosmann@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Saude Coletiva

    2016-03-15

    A solitary pulmonary nodule is a common, often incidental, radiographic finding. The investigation and differential diagnosis of solitary pulmonary nodules remain complex, because there are overlaps between the characteristics of benign and malignant processes. There are currently many strategies for evaluating solitary pulmonary nodules. The main objective is to identify benign lesions, in order to avoid exposing patients to the risks of invasive methods, and to detect cases of lung cancer accurately, in order to avoid delaying potentially curative treatment. The focus of this study was to review the evaluation of solitary pulmonary nodules, to discuss the current role of {sup 18}F fluorodeoxyglucose positron-emission tomography, addressing its accuracy and cost-effectiveness, and to detail the current recommendations for the examination in this scenario. (author)

  11. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans

    International Nuclear Information System (INIS)

    Lassen, B C; Kuhnigk, J-M; Van Ginneken, B; Van Rikxoort, E M; Jacobs, C

    2015-01-01

    The malignancy of lung nodules is most often detected by analyzing changes of the nodule diameter in follow-up scans. A recent study showed that comparing the volume or the mass of a nodule over time is much more significant than comparing the diameter. Since the survival rate is higher when the disease is still in an early stage it is important to detect the growth rate as soon as possible. However manual segmentation of a volume is time-consuming. Whereas there are several well evaluated methods for the segmentation of solid nodules, less work is done on subsolid nodules which actually show a higher malignancy rate than solid nodules. In this work we present a fast, semi-automatic method for segmentation of subsolid nodules. As minimal user interaction the method expects a user-drawn stroke on the largest diameter of the nodule. First, a threshold-based region growing is performed based on intensity analysis of the nodule region and surrounding parenchyma. In the next step the chest wall is removed by a combination of a connected component analyses and convex hull calculation. Finally, attached vessels are detached by morphological operations. The method was evaluated on all nodules of the publicly available LIDC/IDRI database that were manually segmented and rated as non-solid or part-solid by four radiologists (Dataset 1) and three radiologists (Dataset 2). For these 59 nodules the Jaccard index for the agreement of the proposed method with the manual reference segmentations was 0.52/0.50 (Dataset 1/Dataset 2) compared to an inter-observer agreement of the manual segmentations of 0.54/0.58 (Dataset 1/Dataset 2). Furthermore, the inter-observer agreement using the proposed method (i.e. different input strokes) was analyzed and gave a Jaccard index of 0.74/0.74 (Dataset 1/Dataset 2). The presented method provides satisfactory segmentation results with minimal observer effort in minimal time and can reduce the inter-observer variability for segmentation of

  12. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans

    Science.gov (United States)

    Lassen, B. C.; Jacobs, C.; Kuhnigk, J.-M.; van Ginneken, B.; van Rikxoort, E. M.

    2015-02-01

    The malignancy of lung nodules is most often detected by analyzing changes of the nodule diameter in follow-up scans. A recent study showed that comparing the volume or the mass of a nodule over time is much more significant than comparing the diameter. Since the survival rate is higher when the disease is still in an early stage it is important to detect the growth rate as soon as possible. However manual segmentation of a volume is time-consuming. Whereas there are several well evaluated methods for the segmentation of solid nodules, less work is done on subsolid nodules which actually show a higher malignancy rate than solid nodules. In this work we present a fast, semi-automatic method for segmentation of subsolid nodules. As minimal user interaction the method expects a user-drawn stroke on the largest diameter of the nodule. First, a threshold-based region growing is performed based on intensity analysis of the nodule region and surrounding parenchyma. In the next step the chest wall is removed by a combination of a connected component analyses and convex hull calculation. Finally, attached vessels are detached by morphological operations. The method was evaluated on all nodules of the publicly available LIDC/IDRI database that were manually segmented and rated as non-solid or part-solid by four radiologists (Dataset 1) and three radiologists (Dataset 2). For these 59 nodules the Jaccard index for the agreement of the proposed method with the manual reference segmentations was 0.52/0.50 (Dataset 1/Dataset 2) compared to an inter-observer agreement of the manual segmentations of 0.54/0.58 (Dataset 1/Dataset 2). Furthermore, the inter-observer agreement using the proposed method (i.e. different input strokes) was analyzed and gave a Jaccard index of 0.74/0.74 (Dataset 1/Dataset 2). The presented method provides satisfactory segmentation results with minimal observer effort in minimal time and can reduce the inter-observer variability for segmentation of

  13. Outcomes of Adolescent and Adult Patients with Lung Metastatic Osteosarcoma and Comparison of Synchronous and Metachronous Lung Metastatic Groups.

    Directory of Open Access Journals (Sweden)

    Ayse Gok Durnali

    Full Text Available Osteosarcomas with lung metastases are rather heterogenous group. We aimed to evaluate the clinicopathological characteristics and outcomes of osteosarcoma patients with lung metastases and to compare the synchronous and metachronous lung metastatic groups. A total of 93 adolescent and adult patients with lung metastatic osteosarcoma, from March 1995 to July 2011, in a single center, were included. Sixty-five patients (69.9% were male. The median age was 19 years (range, 14-74. Thirty-nine patients (41.9% had synchronous lung metastases (Group A and 54 patients (58.1% had metachronous lung metastases (Group B. The 5-year and 10-year post-lung metastases overall survival (PLM-OS was 17% and 15%, respectively. In multivariate analysis for PLM-OS, time to lung metastases (p = 0.010, number of metastatic pulmonary nodules (p = 0.020, presence of pulmonary metastasectomy (p = 0.007 and presence of chemotherapy for lung metastases (p< 0.001 were found to be independent prognostic factors. The median PLM-OS of Group A and Group B was 16 months and 9 months, respectively. In Group B, the median PLM-OS of the patients who developed lung metastases within 12 months was 6 months, whereas that of the patients who developed lung metastases later was 16 months. Time to lung metastases, number and laterality of metastatic pulmonary nodules, chemotherapy for lung metastatic disease and pulmonary metastasectomy were independent prognostic factors for patients with lung metastatic osteosarcoma. The best PLM-OS was in the subgroup of patients treated both surgery and chemotherapy. The prognosis of the patients who developed lung metastases within 12 months after diagnosis was worst.

  14. Retrospective Evaluation of Safety, Efficacy and Risk Factors for Pneumothorax in Simultaneous Localizations of Multiple Pulmonary Nodules Using Hook Wire System.

    Science.gov (United States)

    Zhong, Yan; Xu, Xiao-Quan; Pan, Xiang-Long; Zhang, Wei; Xu, Hai; Yuan, Mei; Kong, Ling-Yan; Pu, Xue-Hui; Chen, Liang; Yu, Tong-Fu

    2017-09-01

    To evaluate the safety and efficacy of the hook wire system in the simultaneous localizations for multiple pulmonary nodules (PNs) before video-assisted thoracoscopic surgery (VATS), and to clarify the risk factors for pneumothorax associated with the localization procedure. Between January 2010 and February 2016, 67 patients (147 nodules, Group A) underwent simultaneous localizations for multiple PNs using a hook wire system. The demographic, localization procedure-related information and the occurrence rate of pneumothorax were assessed and compared with a control group (349 patients, 349 nodules, Group B). Multivariate logistic regression analyses were used to determine the risk factors for pneumothorax during the localization procedure. All the 147 nodules were successfully localized. Four (2.7%) hook wires dislodged before VATS procedure, but all these four lesions were successfully resected according to the insertion route of hook wire. Pathological diagnoses were acquired for all 147 nodules. Compared with Group B, Group A demonstrated significantly longer procedure time (p pneumothorax (p = 0.019). Multivariate logistic regression analysis indicated that position change during localization procedure (OR 2.675, p = 0.021) and the nodules located in the ipsilateral lung (OR 9.404, p pneumothorax. Simultaneous localizations for multiple PNs using a hook wire system before VATS procedure were safe and effective. Compared with localization for single PN, simultaneous localizations for multiple PNs were prone to the occurrence of pneumothorax. Position change during localization procedure and the nodules located in the ipsilateral lung were independent risk factors for pneumothorax.

  15. FDG-PET/CT finding of benign metastasizing leiomyoma of the lung

    International Nuclear Information System (INIS)

    Nakajo, Masatoyo; Nakayama, Hirofumi; Sato, Masayuki; Fukukura, Yoshihiko; Nakajo, Masayuki; Kajiya, Yoriko; Yanagi, Masakazu; Tabata, Kazuhiro; Higashi, Michiyo

    2012-01-01

    We report a case of multiple benign metastasizing leiomyoma (BML) lung nodules showing faint or non-avid uptake of F-18 fluorodeoxyglucose (FDG) (respective 1-hour early and 2-hour delayed maximum standardized uptake values; 1.3 or less and 1.2 or less) in a 50-year-old woman with a history of hysterectomy for uterine leiomyoma at the age of 38 years. When multiple lung nodules show faint or non-avid FDG uptake in a patient with a history of hysterectomy for uterine leiomyoma, BML should be included in the differential diagnosis

  16. High-resolution computed tomography findings of pulmonary tuberculosis in lung transplant recipients

    Energy Technology Data Exchange (ETDEWEB)

    Giacomelli, Irai Luis; Schuhmacher Neto, Roberto; Nin, Carlos Schuller; Cassano, Priscilla de Souza; Pereira, Marisa; Moreira, Jose da Silva; Nascimento, Douglas Zaione; Hochhegger, Bruno, E-mail: iraigiacomelli@gmail.com [Complexo Hospitalar Santa Casa de Porto Alegre, RS (Brazil)

    2017-07-15

    Objective: Respiratory infections constitute a major cause of morbidity and mortality in solid organ transplant recipients. The incidence of pulmonary tuberculosis is high among such patients. On imaging, tuberculosis has various presentations. Greater understanding of those presentations could reduce the impact of the disease by facilitating early diagnosis. Therefore, we attempted to describe the HRCT patterns of pulmonary tuberculosis in lung transplant recipients. Methods: From two hospitals in southern Brazil, we collected the following data on lung transplant recipients who developed pulmonary tuberculosis: gender; age; symptoms; the lung disease that led to transplantation; HRCT pattern; distribution of findings; time from transplantation to pulmonary tuberculosis; and mortality rate. The HRCT findings were classified as miliary nodules; cavitation and centrilobular nodules with a tree-in-bud pattern; ground-glass attenuation with consolidation; mediastinal lymph node enlargement; or pleural effusion. Results: We evaluated 402 lung transplant recipients, 19 of whom developed pulmonary tuberculosis after transplantation. Among those 19 patients, the most common HRCT patterns were ground-glass attenuation with consolidation (in 42%); cavitation and centrilobular nodules with a tree-in-bud pattern (in 31.5%); and mediastinal lymph node enlargement (in 15.7%). Among the patients with cavitation and centrilobular nodules with a tree-in-bud pattern, the distribution was within the upper lobes in 66.6%. No pleural effusion was observed. Despite treatment, one-year mortality was 47.3%. Conclusions: The predominant HRCT pattern was ground-glass attenuation with consolidation, followed by cavitation and centrilobular nodules with a tree-in-bud pattern. These findings are similar to those reported for immunocompetent patients with pulmonary tuberculosis and considerably different from those reported for AIDS patients with the same disease. (author)

  17. High-resolution computed tomography findings of pulmonary tuberculosis in lung transplant recipients.

    Science.gov (United States)

    Giacomelli, Irai Luis; Schuhmacher Neto, Roberto; Nin, Carlos Schuller; Cassano, Priscilla de Souza; Pereira, Marisa; Moreira, José da Silva; Nascimento, Douglas Zaione; Hochhegger, Bruno

    2017-01-01

    Respiratory infections constitute a major cause of morbidity and mortality in solid organ transplant recipients. The incidence of pulmonary tuberculosis is high among such patients. On imaging, tuberculosis has various presentations. Greater understanding of those presentations could reduce the impact of the disease by facilitating early diagnosis. Therefore, we attempted to describe the HRCT patterns of pulmonary tuberculosis in lung transplant recipients. From two hospitals in southern Brazil, we collected the following data on lung transplant recipients who developed pulmonary tuberculosis: gender; age; symptoms; the lung disease that led to transplantation; HRCT pattern; distribution of findings; time from transplantation to pulmonary tuberculosis; and mortality rate. The HRCT findings were classified as miliary nodules; cavitation and centrilobular nodules with a tree-in-bud pattern; ground-glass attenuation with consolidation; mediastinal lymph node enlargement; or pleural effusion. We evaluated 402 lung transplant recipients, 19 of whom developed pulmonary tuberculosis after transplantation. Among those 19 patients, the most common HRCT patterns were ground-glass attenuation with consolidation (in 42%); cavitation and centrilobular nodules with a tree-in-bud pattern (in 31.5%); and mediastinal lymph node enlargement (in 15.7%). Among the patients with cavitation and centrilobular nodules with a tree-in-bud pattern, the distribution was within the upper lobes in 66.6%. No pleural effusion was observed. Despite treatment, one-year mortality was 47.3%. The predominant HRCT pattern was ground-glass attenuation with consolidation, followed by cavitation and centrilobular nodules with a tree-in-bud pattern. These findings are similar to those reported for immunocompetent patients with pulmonary tuberculosis and considerably different from those reported for AIDS patients with the same disease.

  18. A method for smoothing segmented lung boundary in chest CT images

    Science.gov (United States)

    Yim, Yeny; Hong, Helen

    2007-03-01

    To segment low density lung regions in chest CT images, most of methods use the difference in gray-level value of pixels. However, radiodense pulmonary vessels and pleural nodules that contact with the surrounding anatomy are often excluded from the segmentation result. To smooth lung boundary segmented by gray-level processing in chest CT images, we propose a new method using scan line search. Our method consists of three main steps. First, lung boundary is extracted by our automatic segmentation method. Second, segmented lung contour is smoothed in each axial CT slice. We propose a scan line search to track the points on lung contour and find rapidly changing curvature efficiently. Finally, to provide consistent appearance between lung contours in adjacent axial slices, 2D closing in coronal plane is applied within pre-defined subvolume. Our method has been applied for performance evaluation with the aspects of visual inspection, accuracy and processing time. The results of our method show that the smoothness of lung contour was considerably increased by compensating for pulmonary vessels and pleural nodules.

  19. Diagnostic Value of Early-Phase-Enhanced Computed Tomography for the Differentiation of Pulmonary Metastases from Hepatocellular Carcinoma and Primary Lung Cancer

    International Nuclear Information System (INIS)

    Choi, Joon-Il; Jung, Dae Chul; Kim, Min-Ju; Hong, Eun Kyung; Park, Joong-Won; Kim, Chang-Min; Choi, Hyuck Jae; Jang, Yun-Jin

    2009-01-01

    Background: The lung is the most common site of distant metastases from hepatocellular carcinoma. Correct differentiation between metastatic hepatocellular carcinoma of the lung and primary lung cancer is sometimes difficult without biopsy. Purpose: To evaluate the usefulness of measuring the attenuations of pulmonary nodules on early-phase contrast-enhanced computed tomography (CT) for the differentiation of pulmonary metastases from hepatocellular carcinoma and primary lung cancer. Material and Methods: Thirteen patients with pulmonary metastases from hepatocellular carcinoma (nine men, four women; age 53.9±14.2 years, range 16-70 years) and 25 patients with primary lung cancer (14 men, 11 women; age 62.2±9.4 years, range 43-72 years) were retrospectively evaluated. Contrast-enhanced scans were obtained 35 s after commencing intravenous injection of contrast medium. Attenuation values and the size of the pulmonary nodules were measured on contrast-enhanced CT scans. CT and clinical features were analyzed with regard to age, sex, body surface area of the patients, the attenuation values and size of the nodules, and CT machines using univariate analysis (Fisher's exact test for binary data sets and the Mann-Whitney U test for continuous data sets). Multiple linear regression analysis was used to eliminate confounding factors. Results: The mean attenuation value of metastatic pulmonary nodules from hepatocellular carcinoma (75.7±24.9 HU) was higher than that of primary lung cancer nodules (45.8±14.4 HU) (P<0.01). Other variables such as age, sex, body surface area of the patients, CT device, and nodule size were not significant variables on multiple regression analysis. When a cut-off value of 75 HU was applied, the positive predictive value for diagnosing metastatic nodules from hepatocellular carcinoma was 100%. Conclusion: Pending confirmation in a large study, our findings suggest that there is a difference in contrast enhancement between pulmonary

  20. Imaging of macrophage-related lung diseases

    International Nuclear Information System (INIS)

    Marten, Katharina; Hansell, David M.

    2005-01-01

    Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling. (orig.)

  1. An Unusual Radiologic Pattern of Cryptogenic Organizing Pneumonia: Diffuse Pulmonary Nodules in a Leukemia Patient

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kai Hsiung; Hsu, Hsian He; Kao, Woei Yau; Chang, Ching Feng; Cheng, Ming Fang; Huang, Guo Shu [Tri-Service General Hospital, Taipei (China)

    2009-02-15

    The radiological appearance of diffuse discrete pulmonary nodules associated with cryptogenic organizing pneumonia (COP) has been rarely described. We describe a case of COP in 49-year-old woman with acute myeloid leukemia who developed diffuse pulmonary nodules during the second course of induction chemotherapy. The clinical status of the patient and imaging findings suggested the presence of a pulmonary metastasis or infectious disease. A video-assisted thoracoscopic lung biopsy resulted in the unexpected diagnosis of COP as an isolated entity. Steroid therapy led to dramatic improvement of the clinical symptoms and the pulmonary lesions.

  2. Virtual bronchoscopy-guided transbronchial biopsy for aiding the diagnosis of peripheral lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Iwano, Shingo, E-mail: iwano45@med.nagoya-u.ac.jp [Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Shouwa-ku, Nagoya 4668550, Aichi (Japan); Imaizumi, Kazuyoshi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Shouwa-ku, Nagoya 4668550 (Japan); Okada, Tohru [Research Center for Charged Particle Therapy, National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 2638555 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Shouwa-ku, Nagoya 4668550 (Japan); Naganawa, Shinji [Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Shouwa-ku, Nagoya 4668550, Aichi (Japan)

    2011-07-15

    Objective: The aim of this study was to evaluate the clinical value of virtual bronchoscopy (VB) in aiding diagnosis of peripheral lung cancer by transbronchial biopsy (TBB). In addition, we sought to systematically analyze the factors that affect the diagnostic sensitivity of VB-guided TBB for the evaluation of peripheral lung cancers. Materials and methods: A hundred and twenty-two peripheral lung cancers from 122 patients (82 men and 40 women, 38-84 years; median 68.5 years) who were performed VB-guided TBB were evaluated retrospectively. VB was reconstructed from 1- or 0.5-mm slice thickness images of multi-detector CT (MDCT). Experienced pulmonologists inserted the conventional and ultrathin bronchoscopes into the target bronchus under direct vision following the VB image. Results: A definitive diagnosis was established by VB-guided TBB in 96 lesions (79%). The diagnostic sensitivity of small pulmonary lesions {<=}30 mm in maximal diameter (71%) was significantly lower than that of lesions >30 mm (91%, p = 0.008). For small pulmonary lesions {<=}30 mm (n = 76), internal opacity of the lesion was the independent predictor of diagnostic sensitivity by VB-guided TBB, and the non-solid type lung cancers were significantly lower than the solid type and part-solid type lung cancers for diagnostic sensitivity (odds ratio = 0.161; 95% confidence interval = 0.033-0.780; p = 0.023). Conclusion: Use of an ultrathin bronchoscope and simulation with VB reconstructed by high quality MDCT images is thought to improve pathological diagnosis of peripheral lung cancers, especially for solid and partly solid types. For small pulmonary lesions {<=}30 mm, the lesion internal opacity is a significant factor for predicting the diagnostic sensitivity, and the sensitivity was low for small non-solid type of lung cancers.

  3. Eye-tracking of nodule detection in lung CT volumetric data

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Ivan; Verdun, Francis R.; Bochud, François O., E-mail: francois.bochud@chuv.ch [Institute of Radiation Physics, Lausanne University Hospital, Lausanne 1004 (Switzerland); Schmidt, Sabine [Department of Radiology, Lausanne University Hospital, Lausanne 1004 (Switzerland)

    2015-06-15

    Purpose: Signal detection on 3D medical images depends on many factors, such as foveal and peripheral vision, the type of signal, and background complexity, and the speed at which the frames are displayed. In this paper, the authors focus on the speed with which radiologists and naïve observers search through medical images. Prior to the study, the authors asked the radiologists to estimate the speed at which they scrolled through CT sets. They gave a subjective estimate of 5 frames per second (fps). The aim of this paper is to measure and analyze the speed with which humans scroll through image stacks, showing a method to visually display the behavior of observers as the search is made as well as measuring the accuracy of the decisions. This information will be useful in the development of model observers, mathematical algorithms that can be used to evaluate diagnostic imaging systems. Methods: The authors performed a series of 3D 4-alternative forced-choice lung nodule detection tasks on volumetric stacks of chest CT images iteratively reconstructed in lung algorithm. The strategy used by three radiologists and three naïve observers was assessed using an eye-tracker in order to establish where their gaze was fixed during the experiment and to verify that when a decision was made, a correct answer was not due only to chance. In a first set of experiments, the observers were restricted to read the images at three fixed speeds of image scrolling and were allowed to see each alternative once. In the second set of experiments, the subjects were allowed to scroll through the image stacks at will with no time or gaze limits. In both static-speed and free-scrolling conditions, the four image stacks were displayed simultaneously. All trials were shown at two different image contrasts. Results: The authors were able to determine a histogram of scrolling speeds in frames per second. The scrolling speed of the naïve observers and the radiologists at the moment the signal

  4. The methods for detecting multiple small nodules from 3D chest X-ray CT images

    International Nuclear Information System (INIS)

    Hayase, Yosuke; Mekada, Yoshito; Mori, Kensaku; Toriwaki, Jun-ichiro; Natori, Hiroshi

    2004-01-01

    This paper describes a method for detecting small nodules, whose CT values and diameters are more than -600 Hounsfield unit (H.U.) and 2 mm, from three-dimensional chest X-ray CT images. The proposed method roughly consists of two submodules: initial detection of nodule candidates by discriminating between nodule regions and other regions such as blood vessels or bronchi using a shape feature computed from distance values inside the regions and reduction of false positive (FP) regions by using a minimum directional difference filter called minimum directional difference filter (Min-DD) changing its radius suit to the size of the initial candidates. The performance of the proposed method was evaluated by using seven cases of chest X-ray CT images including six abnormal cases where multiple lung cancers are observed. The experimental results for nodules (361 regions in total) showed that sensitivity and FP regions are 71% and 7.4 regions in average per case. (author)

  5. iPads and LCDs show similar performance in the detection of pulmonary nodules

    Science.gov (United States)

    McEntee, Mark F.; Lowe, Joanna; Butler, Marie Louise; Pietrzyk, Mariusz; Evanoff, Michael G.; Ryan, John; Brennan, Patrick C.; Rainford, Louise A.

    2012-02-01

    In February 2011 the University of Chicago Medical School distributed iPads to its trainee doctors for use when reviewing clinical information and images on the ward or clinics. The use of tablet computing devices is becoming widespread in medicine with Apple™ heralding them as "revolutionary" in medicine. The question arises, just because it is technical achievable to use iPads for clinical evaluation of images, should we do so? The current work assesses the diagnostic efficacy of iPads when compared with LCD secondary display monitors for identifying lung nodules on chest x-rays. Eight examining radiologists of the American Board of Radiology were involved in the assessment, reading chest images on both the iPad and the an off-the-shelf LCD monitor. Thirty chest images were shown to each observer, of which 15 had one or more lung nodules. Radiologists were asked to locate the nodules and score how confident they were with their decision on a scale of 1-5. An ROC and JAFROC analysis was performed and modalities were compared using DBM MRMC. The results demonstrate no significant differences in performance between the iPad and the LCD for the ROC AUC (p<0.075) or JAFROC FOM (p<0.059) for random readers and random cases. Sample size estimation showed that this result is significant at a power of 0.8 and an effect size of 0.05 for ROC and 0.07 for JAFROC. This work demonstrates that for the task of identifying pulmonary nodules, the use of the iPad does not significantly change performance compared to an off-the-shelf LCD.

  6. Computer-aided detection of pulmonary nodules: influence of nodule characteristics on detection performance

    International Nuclear Information System (INIS)

    Marten, K.; Engelke, C.; Seyfarth, T.; Grillhoesl, A.; Obenauer, S.; Rummeny, E.J.

    2005-01-01

    AIM: To evaluate prospectively the influence of pulmonary nodule characteristics on detection performances of a computer-aided diagnosis (CAD) tool and experienced chest radiologists using multislice CT (MSCT). MATERIALS AND METHODS: MSCT scans of 20 consecutive patients were evaluated by a CAD system and two independent chest radiologists for presence of pulmonary nodules. Nodule size, position, margin, matrix characteristics, vascular and pleural attachments and reader confidence were recorded and data compared with an independent standard of reference. Statistical analysis for predictors influencing nodule detection or reader performance included chi-squared, retrograde stepwise conditional logistic regression with odds ratios and nodule detection proportion estimates (DPE), and ROC analysis. RESULTS: For 135 nodules, detection rates for CAD and readers were 76.3, 52.6 and 52.6%, respectively; false-positive rates were 0.55, 0.25 and 0.15 per examination, respectively. In consensus with CAD the reader detection rate increased to 93.3%, and the false-positive rate dropped to 0.1/scan. DPEs for nodules ≤5 mm were significantly higher for ICAD than for the readers (p<0.05). Absence of vascular attachment was the only significant predictor of nodule detection by CAD (p=0.0006-0.008). There were no predictors of nodule detection for reader consensus with CAD. In contrast, vascular attachment predicted nodule detection by the readers (p=0.0001-0.003). Reader sensitivity was higher for nodules with vascular attachment than for unattached nodules (sensitivities 0.768 and 0.369; 95% confidence intervals=0.651-0.861 and 0.253-0.498, respectively). CONCLUSION: CAD increases nodule detection rates, decreases false-positive rates and compensates for deficient reader performance in detection of smallest lesions and of nodules without vascular attachment

  7. Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image

    International Nuclear Information System (INIS)

    Wang Huan; Guo Xiuhua; Jia Zhongwei; Li Hongkai; Liang Zhigang; Li Kuncheng; He Qian

    2010-01-01

    Purpose: To introduce multilevel binomial logistic prediction model-based computer-aided diagnostic (CAD) method of small solitary pulmonary nodules (SPNs) diagnosis by combining patient and image characteristics by textural features of CT image. Materials and methods: Describe fourteen gray level co-occurrence matrix textural features obtained from 2171 benign and malignant small solitary pulmonary nodules, which belongs to 185 patients. Multilevel binomial logistic model is applied to gain these initial insights. Results: Five texture features, including Inertia, Entropy, Correlation, Difference-mean, Sum-Entropy, and age of patients own aggregating character on patient-level, which are statistically different (P < 0.05) between benign and malignant small solitary pulmonary nodules. Conclusion: Some gray level co-occurrence matrix textural features are efficiently descriptive features of CT image of small solitary pulmonary nodules, which can profit diagnosis of earlier period lung cancer if combined patient-level characteristics to some extent.

  8. Comparison between MDCT and Grayscale IVUS in a Quantitative Analysis of Coronary Lumen in Segments with or without Atherosclerotic Plaques

    Energy Technology Data Exchange (ETDEWEB)

    Falcão, João L. A. A.; Falcão, Breno A. A. [Heart Institute (InCor), University of São Paulo Medical School (USP), São Paulo, SP (Brazil); Gurudevan, Swaminatha V. [Cedars-Sinai Heart Institute, Los Angeles, California, USA (United States); Campos, Carlos M.; Silva, Expedito R.; Kalil-Filho, Roberto; Rochitte, Carlos E.; Shiozaki, Afonso A.; Coelho-Filho, Otavio R.; Lemos, Pedro A. [Heart Institute (InCor), University of São Paulo Medical School (USP), São Paulo, SP (Brazil)

    2015-04-15

    The diagnostic accuracy of 64-slice MDCT in comparison with IVUS has been poorly described and is mainly restricted to reports analyzing segments with documented atherosclerotic plaques. We compared 64-slice multidetector computed tomography (MDCT) with gray scale intravascular ultrasound (IVUS) for the evaluation of coronary lumen dimensions in the context of a comprehensive analysis, including segments with absent or mild disease. The 64-slice MDCT was performed within 72 h before the IVUS imaging, which was obtained for at least one coronary, regardless of the presence of luminal stenosis at angiography. A total of 21 patients were included, with 70 imaged vessels (total length 114.6 ± 38.3 mm per patient). A coronary plaque was diagnosed in segments with plaque burden > 40%. At patient, vessel, and segment levels, average lumen area, minimal lumen area, and minimal lumen diameter were highly correlated between IVUS and 64-slice MDCT (p < 0.01). However, 64-slice MDCT tended to underestimate the lumen size with a relatively wide dispersion of the differences. The comparison between 64-slice MDCT and IVUS lumen measurements was not substantially affected by the presence or absence of an underlying plaque. In addition, 64-slice MDCT showed good global accuracy for the detection of IVUS parameters associated with flow-limiting lesions. In a comprehensive, multi-territory, and whole-artery analysis, the assessment of coronary lumen by 64-slice MDCT compared with coronary IVUS showed a good overall diagnostic ability, regardless of the presence or absence of underlying atherosclerotic plaques.

  9. MDCT arthrography of the wrist: Diagnostic accuracy and indications

    International Nuclear Information System (INIS)

    De Filippo, Massimo; Pogliacomi, Francesco; Bertellini, Annalisa; Araoz, Philip A.; Averna, Raffaele; Sverzellati, Nicola; Ingegnoli, Anna; Corradi, Maurizio; Costantino, Cosimo; Zompatori, Maurizio

    2010-01-01

    Purpose: To evaluate the diagnostic accuracy and indications of arthrography with Multidetector Computed Tomography (arthro-MDCT) of the wrist in patients with absolute or relative contraindications to magnetic resonance imaging (MRI) studies and in patients with periarticular metal implants using diagnostic arthroscopy as the gold standard. Materials and methods: After intra-articular injection of iodixanol and volumetric acquisition, 43 wrists in patients of both genders (18 females, 25 males, age range 32-60 years) were examined with a 16-detector-row CT scanner. Fifteen patients had prior wrist surgery. The patients had arthralgia, degenerative and traumatic arthropathies as well as limited range of motion, but no radiologically detected fractures. All examinations were interpreted by two experienced musculoskeletal radiologists. The findings were compared with arthroscopic findings carried out within 28 days of the CT study. Results: In non-operated and operated wrists the comparison between arthro-MDCT and arthroscopy showed sensitivity, specificity and accuracy ranging between 92% and 94% for triangular fibrocartilage complex (TFCC), between 80% and 100% for intrinsic ligaments located within the proximal carpal compartment, and between 94% and 100% for articular cartilage. Inter-observer agreement between two radiologists, in the evaluation of all types of lesions, was almost perfect (k = 0.96) and statistically significant (p < 0.05). Conclusions: Arthro-MDCT of the wrist provides an accurate diagnosis to identify chondral, fibrocartilaginous and intra-articular ligament lesions in patients who cannot be evaluated by MRI, and in post-surgical patients.

  10. MDCT arthrography of the wrist: Diagnostic accuracy and indications

    Energy Technology Data Exchange (ETDEWEB)

    De Filippo, Massimo [Department of Clinical Sciences, Section of Radiological Sciences, University of Parma, Parma Hospital, Via Gramsci, 14, 43100 Parma (Italy)], E-mail: massimo.defilippo@unipr.it; Pogliacomi, Francesco [Orthopaedics, Traumatology and Functional Rehabilitation Unit, Department of Surgical Sciences, University of Parma, Parma Hospital, Via Gramsci 14, 43100 Parma (Italy); Bertellini, Annalisa [Department of Clinical Sciences, Section of Radiological Sciences, University of Parma, Parma Hospital, Via Gramsci, 14, 43100 Parma (Italy); Araoz, Philip A. [Department of Radiology, Division of Biostatistics, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (United States); Averna, Raffaele; Sverzellati, Nicola; Ingegnoli, Anna [Department of Clinical Sciences, Section of Radiological Sciences, University of Parma, Parma Hospital, Via Gramsci, 14, 43100 Parma (Italy); Corradi, Maurizio; Costantino, Cosimo [Orthopaedics, Traumatology and Functional Rehabilitation Unit, Department of Surgical Sciences, University of Parma, Parma Hospital, Via Gramsci 14, 43100 Parma (Italy); Zompatori, Maurizio [Department of Radiological and Histopathological Sciences, Policlinic S.Orsola-Malpighi, University of Bologna, Via Massarenti 9, 40138 Bologna (Italy)

    2010-04-15

    Purpose: To evaluate the diagnostic accuracy and indications of arthrography with Multidetector Computed Tomography (arthro-MDCT) of the wrist in patients with absolute or relative contraindications to magnetic resonance imaging (MRI) studies and in patients with periarticular metal implants using diagnostic arthroscopy as the gold standard. Materials and methods: After intra-articular injection of iodixanol and volumetric acquisition, 43 wrists in patients of both genders (18 females, 25 males, age range 32-60 years) were examined with a 16-detector-row CT scanner. Fifteen patients had prior wrist surgery. The patients had arthralgia, degenerative and traumatic arthropathies as well as limited range of motion, but no radiologically detected fractures. All examinations were interpreted by two experienced musculoskeletal radiologists. The findings were compared with arthroscopic findings carried out within 28 days of the CT study. Results: In non-operated and operated wrists the comparison between arthro-MDCT and arthroscopy showed sensitivity, specificity and accuracy ranging between 92% and 94% for triangular fibrocartilage complex (TFCC), between 80% and 100% for intrinsic ligaments located within the proximal carpal compartment, and between 94% and 100% for articular cartilage. Inter-observer agreement between two radiologists, in the evaluation of all types of lesions, was almost perfect (k = 0.96) and statistically significant (p < 0.05). Conclusions: Arthro-MDCT of the wrist provides an accurate diagnosis to identify chondral, fibrocartilaginous and intra-articular ligament lesions in patients who cannot be evaluated by MRI, and in post-surgical patients.

  11. Accuracy of automated volumetry of pulmonary nodules across different multislice CT scanners

    International Nuclear Information System (INIS)

    Das, Marco; Muehlenbruch, Georg; Mahnken, Andreas H.; Katoh, Markus; Guenther, Rolf W.; Wildberger, Joachim E.; Ley-Zaporozhan, Julia; Kauczor, Hans-Ulrich; Gietema, H.A.; Prokop, Mathias; Czech, Andre; Diederich, Stefan; Bakai, Annemarie; Salganicoff, Marcos

    2007-01-01

    The purpose of this study was to compare the accuracy of an automated volumetry software for phantom pulmonary nodules across various 16-slice multislice spiral CT (MSCT) scanners from different vendors. A lung phantom containing five different nodule categories (intraparenchymal, around a vessel, vessel attached, pleural, and attached to the pleura), with each category comprised of 7-9 nodules (total, n = 40) of varying sizes (diameter 3-10 mm; volume 6.62 mm 3 -525 mm 3 ), was scanned with four different 16-slice MSCT scanners (Siemens, GE, Philips, Toshiba). Routine and low-dose chest protocols with thin and thick collimations were applied. The data from all scanners were used for further analysis using a dedicated prototype volumetry software. Absolute percentage volume errors (APE) were calculated and compared. The mean APE for all nodules was 8.4% (±7.7%) for data acquired with the 16-slice Siemens scanner, 14.3% (±11.1%) for the GE scanner, 9.7% (±9.6%) for the Philips scanner and 7.5% (±7.2%) for the Toshiba scanner, respectively. The lowest APEs were found within the diameter size range of 5-10 mm and volumes >66 mm 3 . Nodule volumetry is accurate with a reasonable volume error in data from different scanner vendors. This may have an important impact for intraindividual follow-up studies. (orig.)

  12. Solitary pulmonary nodule and 18F-FDG PET/CT. Part 1: epidemiology, morphological evaluation and cancer probability

    Directory of Open Access Journals (Sweden)

    Marcos Pretto Mosmann

    2016-02-01

    Full Text Available Abstract Solitary pulmonary nodule corresponds to a common radiographic finding, which is frequently detected incidentally. The investigation of this entity remains complex, since characteristics of benign and malignant processes overlap in the differential diagnosis. Currently, many strategies are available to evaluate solitary pulmonary nodules with the main objective of characterizing benign lesions as best as possible, while avoiding to expose patients to the risks inherent to invasive methods, besides correctly detecting cases of lung cancer so as the potential curative treatment is not delayed. This first part of the study focuses on the epidemiology, the morfological evaluation and the methods to determine the likelihood of cancer in cases of indeterminate solitary pulmonary nodule.

  13. Computer-aided pulmonary nodule detection. Performance of two CAD systems at different CT dose levels

    International Nuclear Information System (INIS)

    Hein, Patrick Alexander; Rogalla, P.; Klessen, C.; Lembcke, A.; Romano, V.C.

    2009-01-01

    Purpose: To evaluate the impact of dose reduction on the performance of computer-aided lung nodule detection systems (CAD) of two manufacturers by comparing respective CAD results on ultra-low-dose computed tomography (ULD-CT) and standard dose CT (SD-CT). Materials and Methods: Multi-slice computed tomography (MSCT) data sets of 26 patients (13 male and 13 female, patients 31 - 74 years old) were retrospectively selected for CAD analysis. Indication for CT examination was staging of a known primary malignancy or suspected pulmonary malignancy. CT images were consecutively acquired at 5 mAs (ULD-CT) and 75 mAs (SD-CT) with 120kV tube voltage (1 mm slice thickness). The standard of reference was determined by three experienced readers in consensus. CAD reading algorithms (pre-commercial CAD system, Philips, Netherlands: CAD-1; LungCARE, Siemens, Germany: CAD-2) were applied to the CT data sets. Results: Consensus reading identified 253 nodules on SD-CT and ULD-CT. Nodules ranged in diameter between 2 and 41 mm (mean diameter 4.8 mm). Detection rates were recorded with 72% and 62% (CAD-1 vs. CAD-2) for SD-CT and with 73% and 56% for ULD-CT. Median also positive rates per patient were calculated with 6 and 5 (CAD-1 vs. CAD-2) for SD-CT and with 8 and 3 for ULD-CT. After separate statistical analysis of nodules with diameters of 5 mm and greater, the detection rates increased to 83% and 61% for SD-CT and to 89% and 67% for ULD-CT (CAD-1 vs. CAD-2). For both CAD systems there were no significant differences between the detection rates for standard and ultra-low-dose data sets (p>0.05). Conclusion: Dose reduction of the underlying CT scan did not significantly influence nodule detection performance of the tested CAD systems. (orig.)

  14. CT-guided localization of small pulmonary nodules using adjacent microcoil implantation prior to video-assisted thoracoscopic surgical resection

    Energy Technology Data Exchange (ETDEWEB)

    Su, Tian-Hao; Jin, Long; He, Wen [Capital Medical University, Department of Radiology, Beijing Friendship Hospital, Beijing (China); Fan, Yue-Feng [Xiamen University, Department of Interventional Therapy, The First Affiliated Hospital, Xiamen, Fujian (China); Hu, Li-Bao [Peking University People' s Hospital, Department of Radiology, Beijing (China)

    2015-09-15

    To describe and assess the localization of small peripheral pulmonary nodules prior to video-assisted thoracoscopic surgical (VATS) resection using the implantation of microcoils. Ninety-two patients with 101 pulmonary nodules underwent computed tomography (CT)-guided implantation of microcoils proximal to each nodule. Patients were randomly assigned to undergo entire microcoil or leaving-microcoil-end implantations. The complications and efficacy of the two implantation methods were evaluated. VATS resection of lung tissue containing each pulmonary lesion and microcoil were performed in the direction of the microcoil marker. Histopathological analysis was performed for the resected pulmonary lesions. CT-guided microcoil implantation was successful in 99/101 cases, and the placement of microcoils within 1 cm of the nodules was not disruptive. There was no difference in the complications and efficacy associated with the entire implantation method (performed for 51/99 nodules) versus the leaving-microcoil-end implantation method (performed for 48/99 nodules). All nodules were successfully removed using VATS resection. Asymptomatic pneumothorax occurred in 16 patients and mild pulmonary haemorrhage occurred in nine patients. However, none of these patients required further surgical treatment. Preoperative localization of small pulmonary nodules using a refined percutaneous microcoil implantation method was found to be safe and useful prior to VATS resection. (orig.)

  15. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    International Nuclear Information System (INIS)

    Gomez-Cardona, Daniel; Nagle, Scott K.; Li, Ke; Chen, Guang-Hong; Robinson, Terry E.

    2015-01-01

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo TM , GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  16. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cardona, Daniel [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Nagle, Scott K. [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Robinson, Terry E. [Department of Pediatrics, Stanford School of Medicine, 770 Welch Road, Palo Alto, California 94304 (United States)

    2015-10-15

    Purpose: Wall thickness (WT) is an airway feature of great interest for the assessment of morphological changes in the lung parenchyma. Multidetector computed tomography (MDCT) has recently been used to evaluate airway WT, but the potential risk of radiation-induced carcinogenesis—particularly in younger patients—might limit a wider use of this imaging method in clinical practice. The recent commercial implementation of the statistical model-based iterative reconstruction (MBIR) algorithm, instead of the conventional filtered back projection (FBP) algorithm, has enabled considerable radiation dose reduction in many other clinical applications of MDCT. The purpose of this work was to study the impact of radiation dose and MBIR in the MDCT assessment of airway WT. Methods: An airway phantom was scanned using a clinical MDCT system (Discovery CT750 HD, GE Healthcare) at 4 kV levels and 5 mAs levels. Both FBP and a commercial implementation of MBIR (Veo{sup TM}, GE Healthcare) were used to reconstruct CT images of the airways. For each kV–mAs combination and each reconstruction algorithm, the contrast-to-noise ratio (CNR) of the airways was measured, and the WT of each airway was measured and compared with the nominal value; the relative bias and the angular standard deviation in the measured WT were calculated. For each airway and reconstruction algorithm, the overall performance of WT quantification across all of the 20 kV–mAs combinations was quantified by the sum of squares (SSQs) of the difference between the measured and nominal WT values. Finally, the particular kV–mAs combination and reconstruction algorithm that minimized radiation dose while still achieving a reference WT quantification accuracy level was chosen as the optimal acquisition and reconstruction settings. Results: The wall thicknesses of seven airways of different sizes were analyzed in the study. Compared with FBP, MBIR improved the CNR of the airways, particularly at low radiation dose

  17. Pulmonary aspergilloma: A rare differential diagnosis to lung cancer after positive FDG PET scan

    Directory of Open Access Journals (Sweden)

    Franziska Spycher

    2014-01-01

    Full Text Available Early diagnosis and treatment of lung cancer, one of the leading causes of cancer-related death, is important to improve morbidity and mortality. Therefore any suspect solitary pulmonary nodule should prompt the pursuit for a definitive histological diagnosis. We describe the case of a 55-years-old male ex-smoker, who was admitted to our hospital due to recurrent hemoptysis and dry cough. A CT scan showed an irregular nodule of increasing size (28 mm in diameter in the left lower lobe (LLL. A whole body PET-CT scan (643 MBq F-18 FDG i.v. was performed and confirmed an avid FDG uptake of the nodule in the LLL, highly suspicious of lung cancer, without any evidence of lymphogenic or hematogenic metastasis. Bronchoscopy was not diagnostic and due to severe adhesions after prior chest trauma and the central location of the nodule, a lobectomy of the LLL was performed. Surprisingly, histology showed a simple aspergilloma located in a circumscribed bronchiectasis with no evidence of malignancy. This is a report of an informative example of an aspergilloma, which presented with symptoms and radiological features of malignant lung cancer.

  18. MDCT imaging of post interventional liver: a pictorial essay

    International Nuclear Information System (INIS)

    Romano, Stefania; Tortora, Giovanni; Scaglione, Mariano; Lassandro, Francesco; Guidi, Guido; Grassi, Roberto; Romano, Luigia

    2005-01-01

    In this pictorial essay, we consider the post operative MDCT findings after liver resection, transplantation, surgical managed major trauma and radiofrequency ablation of focal lesions. Common complications such as fluid collections, hemorrhage, biloma, vascular disease, hematoma, abscesses will be also considered

  19. Lung cancer detection with digital chest tomosynthesis: first round results from the SOS observational study.

    Science.gov (United States)

    Bertolaccini, Luca; Viti, Andrea; Tavella, Chiara; Priotto, Roberto; Ghirardo, Donatella; Grosso, Maurizio; Terzi, Alberto

    2015-04-01

    Baseline results of the Studio OSservazionale (SOS), observational study, a single-arm observational study of digital chest tomosynthesis for lung cancer detection in an at-risk population demonstrated a detection rate of lung cancer comparable to that of studies that used low dose CT scan (LDCT). We present the results of the first round. Totally 1,703 out of 1,843 (92%) subjects who had a baseline digital chest tomosynthesis underwent a first round reevaluation after 1 year. At first round chest digital tomosynthesis, 13 (0.7%) subjects had an indeterminate nodule larger than 5 mm and underwent low-dose CT scan for nodule confirmation. PET/CT study was obtained in 10 (0.5%) subjects and 2 subjects had a low-dose CT follow up. Surgery, either video-assisted thoracoscopic or open surgery for indeterminate pulmonary nodules was performed in 10 (0.2%) subjects. A lung cancer was diagnosed and resected in five patients. The lung cancer detection rate at first round was 0.3% (5/1,703). The detection rate of lung cancer at first round for tomosynthesis is comparable to rates reported for CT. In addition, results of first round digital chest tomosynthesis confirm chest tomosynthesis as a possible first-line lung cancer-screening tool.

  20. Cost-Effectiveness Analysis (CEA) of Intravenous Urography (IVU) and Unenhanced Multidetector Computed Tomography (MDCT) for Initial Investigation of Suspected Acute Ureterolithiasis

    International Nuclear Information System (INIS)

    Eikefjord, E.; Askildsen, J.E.; Roervik, J.

    2008-01-01

    Background: It is important to compare the cost and effectiveness of multidetector computed tomography (MDCT) and intravenous urography (IVU) to determine the most cost-effective alternative for the initial investigation of acute ureterolithiasis. Purpose: To analyze the task-specific variable costs combined with the diagnostic effect of MDCT and IVU for patients with acute flank pain, and to determine which is most cost effective. Material and Methods: 119 patients with acute flank pain suggestive of stone disease (ureterolithiasis) were examined by both MDCT and IVU. Variable costs related to medical equipment, consumption material, equipment control, and personnel were calculated. The diagnostic effect was assessed. Results: The variable costs of MDCT versus IVU were EUR 32 and EUR 117, respectively. This significant difference was mainly due to savings in examination time, higher annual examination frequency, lower material costs, and no use of contrast media. As for diagnostic effect, MDCT proved considerably more accurate in the diagnosis of stone disease than IVU and markedly more accurate concerning differential diagnoses. Conclusion: MDCT had lower differential costs and a higher capacity to determine correctly stone disease and differential diagnoses, as compared to IVU, in patients with acute flank pain. Consequently, MDCT is a dominant alternative to IVU when evaluated exclusively from a cost-effective perspective

  1. Diagnostic accuracy of C-arm CT during selective transcatheter angiography for hepatocellular carcinoma: comparison with intravenous contrast-enhanced, biphasic, dynamic MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Higashihara, Hiroki; Osuga, Keigo; Onishi, Hiromitsu; Nakamoto, Atsushi; Tsuboyama, Takahiro; Maeda, Noboru; Hori, Masatoshi; Kim, Tonsok; Tomiyama, Noriyuki [Osaka University Graduate School of Medicine, Department of Diagnostic and Interventional Radiology, Suita, Osaka (Japan)

    2012-04-15

    This study was aimed to compare the accuracy, sensitivity, and positive predictive value of C-arm CT (CACT) during selective transcatheter angiography with those of multidetector CT (MDCT) in the detection of hepatocellular carcinoma (HCC). In this prospective study, 30 patients (mean age, 73 years) with unresectable HCC were examined with CACT before chemoembolisation. Images of a combination of CACT during arterial portography (CACTAP) and dual-phase CACT during hepatic arteriography (CACTHA) was obtained and images of intravenous contrast-enhanced, biphasic, dynamic, MDCT was also obtained beforehand. Three blinded observers independently reviewed CACT and MDCT. Diagnostic accuracy was evaluated by the alternative free-response receiver operating characteristic (AFROC) method. Sensitivities and positive predictive values (PPV) were analyzed with the paired t-test. In the mean area under the AFROC curve (Az), there was no significant difference between MDCT and CACT (MDCT, mean Az value, 0.83; CACT, 0.85, respectively) (P = 0.32). There was also no significant difference between the two techniques in sensitivity (MDCT, mean 0.65; CACT, 0.60) and PPV (MDCT, mean 0.98; CACT, 0.97) (P = 0.40, P = 0.68, respectively). The diagnostic accuracy of CACT was equivalent to that of biphasic CT in the diagnosis of HCC. (orig.)

  2. Evaluation of portosystemic collaterals by MDCT-MPR imaging for management of hemorrhagic esophageal varices

    International Nuclear Information System (INIS)

    Kodama, Hideaki; Aikata, Hiroshi; Takaki, Shintaro; Azakami, Takahiro; Katamura, Yoshio; Kawaoka, Tomokazu; Hiramatsu, Akira; Waki, Koji; Imamura, Michio; Kawakami, Yoshiiku; Takahashi, Shoichi; Toyota, Naoyuki; Ito, Katsuhide; Chayama, Kazuaki

    2010-01-01

    Objective: To study the correlation between changes in portosystemic collaterals, evaluated by multidetector-row computed tomography imaging using multiplanar reconstruction (MDCT-MPR), and prognosis in patients with hemorrhagic esophageal varices (EV) after endoscopic treatment. Methods: Forty-nine patients with primary hemostasis for variceal bleeding received radical endoscopic treatment: endoscopic injection sclerotherapy (EIS) or endoscopic variceal ligation (EVL). Patients were classified according to the rate of reduction in feeding vessel diameter on MDCT-MPR images, into the narrowing (n = 24) and no-change (n = 25) groups. We evaluated changes in portosystemic collaterals by MDCT-MPR before and after treatment, and determined rebleeding and survival rates. Results: The left gastric and paraesophageal (PEV) veins were recognized as portosystemic collaterals in 100 and 80%, respectively, of patients with EV on MDCT-MPR images. The rebleeding rates at 1, 2, 3, and 5 years after endoscopic treatment were 10, 15, 23, and 23%, respectively, for the narrowing group, and 17, 24, 35, and 67%, respectively, for the no-change group (P = 0.068). Among no-change group, the rebleeding rate in patients with large PEV was significantly lower than that with small PEV (P = 0.027). The rebleeding rate in patients with small PEV of the no-change group was significantly higher than that in the narrowing group (P = 0.018). There was no significant difference in rebleeding rates between the no-change group with a large PEV and narrowing group (P = 0.435). Conclusion: Changes in portosystemic collaterals evaluated by MDCT-MPR imaging correlate with rebleeding rate. Evaluation of portosystemic collaterals in this manner would provide useful information for the management of hemorrhagic EV.

  3. Superwideband Bandwidth Extension Using Normalized MDCT Coefficients for Scalable Speech and Audio Coding

    Directory of Open Access Journals (Sweden)

    Young Han Lee

    2013-01-01

    Full Text Available A bandwidth extension (BWE algorithm from wideband to superwideband (SWB is proposed for a scalable speech/audio codec that uses modified discrete cosine transform (MDCT coefficients as spectral parameters. The superwideband is first split into several subbands that are represented as gain parameters and normalized MDCT coefficients in the proposed BWE algorithm. We then estimate normalized MDCT coefficients of the wideband to be fetched for the superwideband and quantize the fetch indices. After that, we quantize gain parameters by using relative ratios between adjacent subbands. The proposed BWE algorithm is embedded into a standard superwideband codec, the SWB extension of G.729.1 Annex E, and its bitrate and quality are compared with those of the BWE algorithm already employed in the standard superwideband codec. It is shown from the comparison that the proposed BWE algorithm relatively reduces the bitrate by around 19% with better quality, compared to the BWE algorithm in the SWB extension of G.729.1 Annex E.

  4. High-resolution computed tomography findings of pulmonary tuberculosis in lung transplant recipients

    Directory of Open Access Journals (Sweden)

    Irai Luis Giacomelli

    Full Text Available ABSTRACT Objective: Respiratory infections constitute a major cause of morbidity and mortality in solid organ transplant recipients. The incidence of pulmonary tuberculosis is high among such patients. On imaging, tuberculosis has various presentations. Greater understanding of those presentations could reduce the impact of the disease by facilitating early diagnosis. Therefore, we attempted to describe the HRCT patterns of pulmonary tuberculosis in lung transplant recipients. Methods: From two hospitals in southern Brazil, we collected the following data on lung transplant recipients who developed pulmonary tuberculosis: gender; age; symptoms; the lung disease that led to transplantation; HRCT pattern; distribution of findings; time from transplantation to pulmonary tuberculosis; and mortality rate. The HRCT findings were classified as miliary nodules; cavitation and centrilobular nodules with a tree-in-bud pattern; ground-glass attenuation with consolidation; mediastinal lymph node enlargement; or pleural effusion. Results: We evaluated 402 lung transplant recipients, 19 of whom developed pulmonary tuberculosis after transplantation. Among those 19 patients, the most common HRCT patterns were ground-glass attenuation with consolidation (in 42%; cavitation and centrilobular nodules with a tree-in-bud pattern (in 31.5%; and mediastinal lymph node enlargement (in 15.7%. Among the patients with cavitation and centrilobular nodules with a tree-in-bud pattern, the distribution was within the upper lobes in 66.6%. No pleural effusion was observed. Despite treatment, one-year mortality was 47.3%. Conclusions: The predominant HRCT pattern was ground-glass attenuation with consolidation, followed by cavitation and centrilobular nodules with a tree-in-bud pattern. These findings are similar to those reported for immunocompetent patients with pulmonary tuberculosis and considerably different from those reported for AIDS patients with the same disease.

  5. Incidental finding of both cholecystoduodenal fistula and caecum carcinoma with MDCT imaging

    International Nuclear Information System (INIS)

    Groudeva, V.; Adam, G.; Malla Houech, I-V.; Davidkov, L.; Stoinova, V.

    2015-01-01

    Full text: Bouveret’s syndrome is a rare condition of gastric outlet obstruction, due to the impaction of gallstones in the duodenum. Most commonly it affects women and usually a history of cholelithiasis is present. We present the case of 86 years old female, with complaints of fullness, belching, acids, loss of appetite and weight for a few weeks. The examination revealed soft abdomen, painful palpation and a palpable movable mass in the right lower quadrant. The patient was referred to the imaging department for assessment of the finding. MDCT of the abdomen was carried out on 320 - row Aquillion ONE Toshiba machine, using contrast medium. The aim is to clarifying the accurate managing of the diagnosis of cholecystoduodenal fistula using MDCT. MDCT identified the presence of two independent from one another diseases, characterized by similar complaints. An enhancing mass with irregular borders in the caecal area was visualized. In addition presence of pneumobilia and a communication extending from the gallbladder to the duodenum and calculi in the latter were identified.The findings were consistent with cholecystoduodenal fistula. the patient underwent surgery, right hemicolectomy was performed together with duodenotomy and calculus extraction. Different conditions may present with overlapping symptoms and imaging diagnostic comes in help with the investigation. Since the condition of cholecystoduodenal fistula is associated with high risk of complications and death, it appeals to quick diagnosis and treatment. the use of MDCT in clinical practice as a non-invasive method allows precise identification of the signs of this disease

  6. Pleural Dye Marking Using Radial Endobronchial Ultrasound and Virtual Bronchoscopy before Sublobar Pulmonary Resection for Small Peripheral Nodules.

    Science.gov (United States)

    Lachkar, Samy; Baste, Jean-Marc; Thiberville, Luc; Peillon, Christophe; Rinieri, Philippe; Piton, Nicolas; Guisier, Florian; Salaun, Mathieu

    2018-01-01

    Minimally invasive surgery of pulmonary nodules allows suboptimal palpation of the lung compared to open thoracotomy. The objective of this study was to assess endoscopic pleural dye marking using radial endobronchial ultrasound (r-EBUS) and virtual bronchoscopy to localize small peripheral lung nodules immediately before minimally invasive resection. The endoscopic procedure was performed without fluoroscopy, under general anesthesia in the operating room immediately before minimally invasive surgery. Then, 1 mL of methylene blue (0.5%) was instilled into the guide sheath, wedged in the subpleural space. Wedge resection or segmentectomy were guided by visualization of the dye on the pleural surface. Contribution of dye marking to the surgical procedure was rated by the surgeon. Twenty-five nodules, including 6 ground glass opacities, were resected in 22 patients by video-assisted thoracoscopic wedge resection (n = 11) or robotic-assisted thoracoscopic surgery (10 segmentectomies and 1 wedge resection). The median greatest diameter of nodules was 8 mm. No conversion to open thoracotomy was needed. The endoscopic procedure added an average 10 min to surgical resection. The dye was visible on the pleural surface in 24 cases. Histological diagnosis and free margin resection were obtained in all cases. Median skin-to-skin operating time was 90 min for robotic segmentectomy and 40 min for video-assisted wedge resection. The same operative precision was considered impossible by the surgeon without dye marking in 21 cases. Dye marking using r-EBUS and virtual bronchoscopy can be easily and safely performed to localize small pulmonary nodules immediately before minimally invasive resection. © 2018 S. Karger AG, Basel.

  7. Case report of invasive, disseminated candidiasis with peripheral nodular cavitary lesions in the lung

    OpenAIRE

    Arshad, Hafiza; Garcia, Silvia; Khaja, Misbahuddin

    2016-01-01

    We report a case of invasive candidiasis presenting as multiple lung nodules and cavitary lesions with minimal pleural effusion. Candida infections of the lung are rare but can occur after hematologic dissemination of the yeast from other body sites, such as the skin and the gastrointestinal and genitourinary tracts. Here, we describe the case of a 56-year-old female with a history of end-stage renal disease (ESRD) who presented with fever, productive cough, and pulmonary nodules and cavitary...

  8. Evaluation of solitary pulmonary nodules by integrated PET/CT: improved accuracy by FDG uptake pattern and CT findings

    International Nuclear Information System (INIS)

    Joon Young Choi; Kyung Soo Lee; O Jung Kwon; Young Mog Shim; Kyung-Han Lee; Yong Choi; Yearn Seong Choe; Byung-Tae Kim

    2004-01-01

    Objective: FDG PET is useful to differentiate malignancy from benign lesions in the evaluation of solitary pulmonary nodules (SPNs). However, FDG PET showed false positive results in benign inflammatory lesions such as tuberculosis and organizing pneumonia. Furthermore, malignant tumors such as adenocarcinoma (AC) with bronchioloalveolar carcinoma (BAC) type had lower FDG uptake than other cell types of non-small cell lung cancer. We investigated whether FDG uptake pattern and image findings of CT for attenuation correction could improve accuracy for evaluating SPNs over SUV in integrated PET/CT imaging using FDG. Methods: Forty patients (M:F = 23:17, mean age 58.2±9.4 yrs) with non-calcified SPNs (diameter on CT 30 mm, no significant mediastinal node enlargement, no atelectasis) were included. All subjects underwent integrated PET/CT imaging using FDG. One nuclear medicine physician and 1 chest radiologist interpreted the PET and non-contrast CT images for attenuation correction, respectively. On PET images, maximum SUV of SPN was acquired, and FDG uptake pattern was categorized as diffusely increased or heterogeneously increased with upper threshold of window setting adjusted to maximum SUV of each nodule. A radiologist interpreted SPNs as benign or malignant based on CT images with lung and mediastinai window settings blinded to PET findings. Results: On pathological exam, 30 SPNs were confirmed to be malignant (11 AC with non-BAC type, 8 AC with BAC type, 8 squamous cell carcinoma, 1 adenosquamous cell carcinoma, 1 neuroendocrine carcinoma, 1 large cell carcinoma), and 10 were benign (4 tuberculosis, 3 organizing pneumonia, 2 sclerosing pneumocytoma, 1 non-specific inflammation). All 5 nodules with max SUV 7.0 except one with tuberculoma had malignancy. When only nodules with diffusely increased uptake were considered malignant in indeterminate group with max SUV of 4.0 to 7.0, PET could diagnose 5 of 9 malignant nodules with one false positive nodule. In 6 of

  9. Rare cause of multiple nodular opacities at chest x-ray: pulmonary hydatid cyst

    International Nuclear Information System (INIS)

    Inan, K.; Hamcan, S.; Gumus, S.; Turhan, U.; Karaman, B.

    2012-01-01

    Full text: Introduction: Hydatid disease is incidentally common in our country. Objectives and tasks: In this study, unlike the classical radiological appearance of hydatid disease of the lung, MDCT appearance of multiple nodules were demonstrated. Materials and methods: The patient who comes our hospital's Pulmonary Clinic with shortness of breath and with membranes that come from his mouth, referred to our clinic for chest radiography and chest HRCT. Results: In the conventional chest x-ray, multiple nodular opacities in both lungs were common. HRCT was performed with 5 mm and 1 mm thick sections of our patient. In both hemithorax, multiple nodular lesions were found in various sizes and configurations, some of them opened to the bronchus which is the largest one is 2 cm in diameter. Nodule in the left hemithorax inferior lingular segment has calcified wall. Patient's Echinococcus granulosus test was evaluated positive for IgG. Conclusion: Hydatid disease is a parasitic infestation created by Echinococcus granulosus. Although seen most frequently in the liver, often seen in the lungs 10-30%.. 30 to 50% of cases are asymptomatic and incidentally diagnosed radiologically. Although we know that the classic radiologic findings of hydatid cyst, different radiographic views (eg nodular mass) should be considered in rare circumstances

  10. Estimation of Lung Ventilation

    Science.gov (United States)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  11. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  12. Clinical significance of pulmonary nodules detected on abdominal CT in pediatric patients

    International Nuclear Information System (INIS)

    Breen, Micheal; Lee, Edward Y.; Zurakowski, David

    2015-01-01

    The clinical significance of a pulmonary nodule that is detected incidentally on CT studies in children is unknown. In addition, there is limited information regarding the management of incidentally detected pulmonary nodules discovered on abdominal CT studies in children. The purpose of this study was to investigate the clinical significance of incidental pulmonary nodules detected on abdominal CT studies in children. This was a retrospective study performed following institutional review board approval. Abdominal CT reports in patients younger than 18 years of age from July 2004 to June 2011 were reviewed for the terms ''nodule,'' ''nodular'' or ''mass'' in reference to the lung bases. The study population included those pediatric patients in whom pulmonary nodules were initially detected on abdominal CT studies. The largest pulmonary nodules detected on CT studies were evaluated for their features (size, shape, margin, attenuation, location, and presence of calcification and cavitation). Follow-up CT studies and clinical records were reviewed for demographic information, history of underlying malignancies and the clinical outcome of the incidental pulmonary nodules. Comparison of malignant versus benign pulmonary nodules was performed with respect to the size of the nodule, imaging features on CT, and patient history of malignancy using the Student's t-test and Fisher exact test. Youden J-index in receiver operating characteristic (ROC) analysis was used to determine the optimal cut-off size for suggesting a high risk of malignancy of incidentally detected pulmonary nodules. Pulmonary nodules meeting inclusion criteria were detected in 62 (1.2%) of 5,234 patients. The mean age of patients with nodules was 11.2 years (range: 5 months-18 years). Thirty-one patients (50%) had follow-up CT studies and two of these patients (6%) were subsequently found to have malignant pulmonary nodules. Both of these

  13. Clinical significance of pulmonary nodules detected on abdominal CT in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Breen, Micheal; Lee, Edward Y. [Boston Children' s Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Zurakowski, David [Boston Children' s Hospital and Harvard Medical School, Departments of Anesthesiology and Surgery, Boston, MA (United States)

    2015-11-15

    The clinical significance of a pulmonary nodule that is detected incidentally on CT studies in children is unknown. In addition, there is limited information regarding the management of incidentally detected pulmonary nodules discovered on abdominal CT studies in children. The purpose of this study was to investigate the clinical significance of incidental pulmonary nodules detected on abdominal CT studies in children. This was a retrospective study performed following institutional review board approval. Abdominal CT reports in patients younger than 18 years of age from July 2004 to June 2011 were reviewed for the terms ''nodule,'' ''nodular'' or ''mass'' in reference to the lung bases. The study population included those pediatric patients in whom pulmonary nodules were initially detected on abdominal CT studies. The largest pulmonary nodules detected on CT studies were evaluated for their features (size, shape, margin, attenuation, location, and presence of calcification and cavitation). Follow-up CT studies and clinical records were reviewed for demographic information, history of underlying malignancies and the clinical outcome of the incidental pulmonary nodules. Comparison of malignant versus benign pulmonary nodules was performed with respect to the size of the nodule, imaging features on CT, and patient history of malignancy using the Student's t-test and Fisher exact test. Youden J-index in receiver operating characteristic (ROC) analysis was used to determine the optimal cut-off size for suggesting a high risk of malignancy of incidentally detected pulmonary nodules. Pulmonary nodules meeting inclusion criteria were detected in 62 (1.2%) of 5,234 patients. The mean age of patients with nodules was 11.2 years (range: 5 months-18 years). Thirty-one patients (50%) had follow-up CT studies and two of these patients (6%) were subsequently found to have malignant pulmonary nodules. Both of these

  14. Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images

    International Nuclear Information System (INIS)

    Aoyama, Masahito; Li Qiang; Katsuragawa, Shigehiko; MacMahon, Heber; Doi, Kunio

    2002-01-01

    A novel automated computerized scheme has been developed to assist radiologists for their distinction between benign and malignant solitary pulmonary nodules on chest images. Our database consisted of 55 chest radiographs (33 primary lung cancers and 22 benign nodules). In this method, the location of a nodule was indicated first by a radiologist. The difference image with a nodule was produced by use of filters and then represented in a polar coordinate system. The nodule was segmented automatically by analysis of contour lines of the gray-level distribution based on the polar-coordinate representation. Two clinical parameters (age and sex) and 75 image features were determined from the outline, the image, and histogram analysis for inside and outside regions of the segmented nodule. Linear discriminant analysis (LDA) and knowledge about benign and malignant nodules were used to select initial feature combinations. Many combinations for subgroups of 77 features were evaluated as input to artificial neural networks (ANNs). The performance of ANNs with the selected 7 features by use of the round-robin test showed Az=0.872, which was greater than Az=0.854 obtained previously with the manual method (P=0.53). The performance of LDA (Az=0.886) was slightly improved compared to that of ANNs (P=0.59) and was greater than that of the manual method (Az=0.854) reported previously (P=0.40). The high level of its performance indicates the potential usefulness of this automated computerized scheme in assisting radiologists as a second opinion for distinction between benign and malignant solitary pulmonary nodules on chest images

  15. In the workup of patients with obscure gastrointestinal bleed, does 64-slice MDCT have a role?

    International Nuclear Information System (INIS)

    Kulkarni, Chinmay; Moorthy, Srikanth; Sreekumar, KP; Rajeshkannan, R; Nazar, PK; Sandya, CJ; Sivasubramanian, S; Ramchandran, PV

    2012-01-01

    The purpose was to prospectively determine the sensitivity of 64-slice MDCT in detecting and diagnosing the cause of obscure gastrointestinal bleed (OGIB). Our study included 50 patients (male 30, female 20) in the age range of 3–82 years (average age: 58.52 years) who were referred to our radiology department as part of their workup for clinically evident gastrointestinal (GI) bleed or as part of workup for anemia (with and without positive fecal occult blood test). All patients underwent conventional upper endoscopy and colonoscopy before undergoing CT scan. Following a noncontrast scan, all patients underwent triple-phase contrast CT scan using a 64-slice CT scan system. The diagnostic performance of 64-slice MDCT was compared to the results of capsule endoscopy, 99m-technetium-labeled red blood cell scintigraphy (99mTc-RBC scintigraphy), digital subtraction angiography, and surgery whenever available. CT scan showed positive findings in 32 of 50 patients. The sensitivity, specificity, positive predictive value, and negative predictive values of MDCT for detection of bleed were 72.2%, 42.8%, 81.2%, and 44.4%, respectively. Capsule endoscopy was done in 15 patients and was positive in 10 patients; it had a sensitivity of 71.4%. Eleven patients had undergone 99mTc-RBC scintigraphy prior to CT scan, and the result was positive in seven patients (sensitivity 70%). Digital subtraction angiography was performed in only eight patients and among them all except one patient showed findings consistent with the lesions detected on MDCT. MDCT is a sensitive and noninvasive tool that allows rapid detection and localization of OGIB. It can be used as the first-line investigation in patients with negative endoscopy and colonoscopy studies. MDCT and capsule endoscopy have complementary roles in the evaluation of OGIB

  16. Interstitial laser photocoagulation for benign thyroid nodules: time to treat large nodules.

    Science.gov (United States)

    Amabile, Gerardo; Rotondi, Mario; Pirali, Barbara; Dionisio, Rosa; Agozzino, Lucio; Lanza, Michele; Buonanno, Luciano; Di Filippo, Bruno; Fonte, Rodolfo; Chiovato, Luca

    2011-09-01

    Interstitial laser photocoagulation (ILP) is a new therapeutic option for the ablation of non-functioning and hyper-functioning benign thyroid nodules. Amelioration of the ablation procedure currently allows treating large nodules. Aim of this study was to evaluate the therapeutic efficacy of ILP, performed according to a modified protocol of ablation, in patients with large functioning and non-functioning thyroid nodules and to identify the best parameters for predicting successful outcome in hyperthyroid patients. Fifty-one patients with non-functioning thyroid nodules (group 1) and 26 patients with hyperfunctioning thyroid nodules (group 2) were enrolled. All patients had a nodular volume ≥40 ml. Patients were addressed to 1-3 cycles of ILP. A cycle consisted of three ILP sessions, each lasting 5-10 minutes repeated at an interval of 1 month. After each cycle of ILP patients underwent thyroid evaluation. A nodule volume reduction, expressed as percentage of the basal volume, significantly occurred in both groups (F = 190.4; P nodule volume; (iii) total amount of energy delivered expressed in Joule. ROC curves identified the percentage of volume reduction as the best parameter predicting a normalized serum TSH (area under the curve 0.962; P thyroid nodules, both in terms of nodule size reduction and cure of hyperthyroidism (87% of cured patients after the last ILP cycle). ILP should not be limited to patients refusing or being ineligible for surgery and/or radioiodine. Copyright © 2011 Wiley-Liss, Inc.

  17. Coronary calcium scoring with MDCT: The radiation dose to the breast and the effectiveness of bismuth breast shield

    International Nuclear Information System (INIS)

    Yilmaz, Mehmet Halit; Yasar, Dogan; Albayram, Sait; Adaletli, Ibrahim; Ozer, Harun; Ozbayrak, Mustafa; Mihmanli, Ismail; Akman, Canan

    2007-01-01

    Objective: The purpose of our study was to determine the breast radiation dose during coronary calcium scoring with multidetector computerized tomography (MDCT). We also evaluated the degree of dose reduction by using a bismuth breast shield when performing coronary calcium scoring with MDCT. Materials and methods: The dose reduction achievable by shielding the adult (35 years or older) female breasts was studied in 25 women who underwent coronary calcium scoring with MDCT. All examinations were performed with a 16-MDCT scanner. To compare the shielded versus unshielded breast dose, the examinations were performed with (right breast) and without (left breast) breast shielding in all patients. With this technique the superficial breast doses were calculated. To determine the average glandular breast radiation dose, we imaged an anthropomorphic dosimetric phantom into which calibrated dosimeters were placed to measure the dose to the breast. The phantom was imaged using the same protocol. Radiation doses to the breasts with and without the breast shielding were measured and compared using the Student's t-test. Results: The mean radiation doses with and without the breast shield were 5.71 ± 1.1 mGy versus 9.08 ± 1.5 mGy, respectively. The breast shield provided a 37.12% decrease in radiation dose to the breast with shielding. The difference between the dose received by the breasts with and without bismuth shielding was significant, with a p-value of less than 0.001. Conclusion: The high radiation during MDCT greatly exceeds the recommended doses and should not be underestimated. Bismuth in plane shielding for coronary calcium scoring with MDCT decreased the radiation dose to the breast. We recommend routine use of breast shields in female patients undergoing calcium scoring with MDCT

  18. MDCT findings in sports and recreational accidents

    Energy Technology Data Exchange (ETDEWEB)

    Bensch, Frank V; Koivikko, Mika P; Koskinen, Seppo K (Dept. of Radiology, Toeoeloe Hospital, Helsinki (Finland)), email: frank.bensch@hus.fi

    2011-12-15

    Background. Sports and recreational accidents involving critical areas of the body occur commonly in the general population. Reports on their demographics and recommendations for screening procedures are, however, few. Purpose. To assess injuries of the craniofacial area, spine, and torso resulting from sports and recreational accidents with multidetector computed tomography (MDCT) as primary imaging method in a Level I trauma center. Material and Methods. All emergency room CT requests over a time span of 105 months were reviewed retrospectively for trauma mechanism and injury. Patients were identified using an electronic picture archiving and communications system (PACS), and MDCT studies interpreted by two radiologists independently. Results. Of a total of 5898 patients, 492 patients (301 boys/men, 191 girls/women, age range 2-76 years, mean 33.5 years, median 29.5 years) with sports or recreational accidents emerged. A total of 102 traumatic findings were diagnosed, thereof 72 (71%) serious. The three most commonly encountered serious injuries were intracranial injury, fractures of facial bones, and vertebral injuries. The three most common injury mechanisms were bicycling, horseback riding, and team ball sports. Patients from recreational activities were on average significantly younger (29.2 years) than those from sports accidents (36.9 years; P < 0.001). Only age groups <21 years and 41-50 years differed in injury severity from the other age groups (P = 0.004 and P = 0.063, respectively). Of all trauma mechanisms, only bicycling had a significantly increased risk of injury (P < 0.001). Conclusion. Injuries in sports and recreational accidents presented with an overall incidence of 21%, of which 71% are serious. The most common mechanisms of injury were bicycling, horseback riding, and team ball sports. The largest incidence of serious injury involved bicycling. Because of the high probability of a serious injury and the high energies that are often involved

  19. MDCT findings in sports and recreational accidents

    International Nuclear Information System (INIS)

    Bensch, Frank V; Koivikko, Mika P; Koskinen, Seppo K

    2011-01-01

    Background. Sports and recreational accidents involving critical areas of the body occur commonly in the general population. Reports on their demographics and recommendations for screening procedures are, however, few. Purpose. To assess injuries of the craniofacial area, spine, and torso resulting from sports and recreational accidents with multidetector computed tomography (MDCT) as primary imaging method in a Level I trauma center. Material and Methods. All emergency room CT requests over a time span of 105 months were reviewed retrospectively for trauma mechanism and injury. Patients were identified using an electronic picture archiving and communications system (PACS), and MDCT studies interpreted by two radiologists independently. Results. Of a total of 5898 patients, 492 patients (301 boys/men, 191 girls/women, age range 2-76 years, mean 33.5 years, median 29.5 years) with sports or recreational accidents emerged. A total of 102 traumatic findings were diagnosed, thereof 72 (71%) serious. The three most commonly encountered serious injuries were intracranial injury, fractures of facial bones, and vertebral injuries. The three most common injury mechanisms were bicycling, horseback riding, and team ball sports. Patients from recreational activities were on average significantly younger (29.2 years) than those from sports accidents (36.9 years; P < 0.001). Only age groups <21 years and 41-50 years differed in injury severity from the other age groups (P = 0.004 and P = 0.063, respectively). Of all trauma mechanisms, only bicycling had a significantly increased risk of injury (P < 0.001). Conclusion. Injuries in sports and recreational accidents presented with an overall incidence of 21%, of which 71% are serious. The most common mechanisms of injury were bicycling, horseback riding, and team ball sports. The largest incidence of serious injury involved bicycling. Because of the high probability of a serious injury and the high energies that are often involved

  20. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT

    International Nuclear Information System (INIS)

    Gaudino, Chiara; Csernus, Reka; Pham, Mirko; Bendszus, Martin; Rohde, Stefan; Cosgarea, Raluca; Kim, Ti-Sun; Heiland, Sabine; Beomonte Zobel, Bruno

    2011-01-01

    The aim of this study was (1) to assess the ability of magnetic resonance imaging (MRI) to visualize dental and periodontal structures and (2) to compare findings with multidetector computed tomography (MDCT) and cone beam CT (CBCT). Four porcine mandibles were examined with (1) 3T-MRI, (2) MDCT and (3) CBCT. Two observers independently reviewed MR, MDCT and CBCT images and assessed image quality of different dental and periodontal structures. To assess quantitatively the accuracy of the different imaging technique, both observers measured burr holes, previously drilled in the mandibles. Dental structures, e.g. teeth roots, pulpa chamber and dentin, were imaged accurately with all imaging sources. Periodontal space and cortical/trabecular bone were better visualized by MRI (p < 0.001). MRI could excellently display the lamina dura, not detectable with MDCT and only inconstant visible with CBCT (p < 0.001). Burr hole measurements were highly precise with all imaging techniques. This experimental study shows the diagnostic feasibility of MRI in visualization of teeth and periodontal anatomy. Detection of periodontal structures was significantly better with MRI than with MDCT or CBCT. Prospective trials have to evaluate further the potential benefit of MRI in a clinical setting. (orig.)

  1. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Gaudino, Chiara; Csernus, Reka; Pham, Mirko; Bendszus, Martin; Rohde, Stefan [University Hospital Heidelberg, Department of Neuroradiology, Heidelberg (Germany); Cosgarea, Raluca; Kim, Ti-Sun [University Hospital Heidelberg, Department of Periodontology, Heidelberg (Germany); Heiland, Sabine [University Hospital Heidelberg, Section of Experimental Radiology, Heidelberg (Germany); Beomonte Zobel, Bruno [University Campus Bio-Medico of Rome, Department of Radiology, Interdisciplinary Center for Biomedical Research, Rome (Italy)

    2011-12-15

    The aim of this study was (1) to assess the ability of magnetic resonance imaging (MRI) to visualize dental and periodontal structures and (2) to compare findings with multidetector computed tomography (MDCT) and cone beam CT (CBCT). Four porcine mandibles were examined with (1) 3T-MRI, (2) MDCT and (3) CBCT. Two observers independently reviewed MR, MDCT and CBCT images and assessed image quality of different dental and periodontal structures. To assess quantitatively the accuracy of the different imaging technique, both observers measured burr holes, previously drilled in the mandibles. Dental structures, e.g. teeth roots, pulpa chamber and dentin, were imaged accurately with all imaging sources. Periodontal space and cortical/trabecular bone were better visualized by MRI (p < 0.001). MRI could excellently display the lamina dura, not detectable with MDCT and only inconstant visible with CBCT (p < 0.001). Burr hole measurements were highly precise with all imaging techniques. This experimental study shows the diagnostic feasibility of MRI in visualization of teeth and periodontal anatomy. Detection of periodontal structures was significantly better with MRI than with MDCT or CBCT. Prospective trials have to evaluate further the potential benefit of MRI in a clinical setting. (orig.)

  2. Solitary pulmonary nodule and {sup 18}F-FDG PET/CT. Part 1: epidemiology, morphological evaluation and cancer probability

    Energy Technology Data Exchange (ETDEWEB)

    Mosmann, Marcos Pretto; Borba, Marcelle Alves; Macedo, Francisco Pires Negromonte; Liguori, Adriano de Araujo Lima; Villarim Neto, Arthur, E-mail: mosmann@gmail.com [Liga Norte Riograndense Contra o Cancer, Natal, RN (Brazil); Lima, Kenio Costa de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-Graduacao em Saude Coletiva

    2016-01-15

    Solitary pulmonary nodule corresponds to a common radiographic finding, which is frequently detected incidentally. The investigation of this entity remains complex, since characteristics of benign and malignant processes overlap in the differential diagnosis. Currently, many strategies are available to evaluate solitary pulmonary nodules with the main objective of characterizing benign lesions as best as possible, while avoiding to expose patients to the risks inherent to invasive methods, besides correctly detecting cases of lung cancer so as the potential curative treatment is not delayed. This first part of the study focuses on the epidemiology, the morphological evaluation and the methods to determine the likelihood of cancer in cases of indeterminate solitary pulmonary nodule. (author)

  3. Primary hemangiopericytoma of the lung: Case report

    International Nuclear Information System (INIS)

    Seong, Hyun Lim; Yang, Jae Beom; Park, Chan Sup; Park, Yang Hee; Lee, Sang Seun

    1990-01-01

    Hemangiopericytoma may occur at any age and can arise in almost any part of the body, but seldom in the lung. Since the first report by Stout, around fifty cases of primary hemangiopericytoma of the lung have been reported in English literature journal up to 1987. We report a case of primary pulmonary hemangiopericytoma in a 19 year old man which manifest as a solitary nodule

  4. Ultrasound guided percutaneous microwave ablation of benign thyroid nodules: Safety and imaging follow-up in 222 patients

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Wenwen [Binzhou Medical University, #346 Guan-hai Road, Lai-shan, Yantai, Shandong 264003 (China); Wang, Shurong, E-mail: 7762808@sina.com [Department of Ultrasound, Muping Area People' s Hospital, #629 Nan-hua Street, Mu-ping, Yantai, Shandong 264100 (China); Wang, Bin [Binzhou Medical University, #346 Guan-hai Road, Lai-shan, Yantai, Shandong 264003 (China); Xu, Qingling; Yu, Shoujun; Yonglin, Zhang; Wang, Xiju [Department of Ultrasound, Muping Area People' s Hospital, #629 Nan-hua Street, Mu-ping, Yantai, Shandong 264100 (China)

    2013-01-15

    Objective: Microwave ablation is a minimally invasive technique that has been used to treat benign and malignant tumors of liver, lung and kidney. Towards thyroid nodules, only a few cases are reported so far. The aim of the study was to investigate the effectiveness and safety of ultrasound-guided percutaneous microwave ablation in the treatment of benign thyroid nodules with a large sample. Materials and methods: A total of 477 benign thyroid nodules in 222 patients underwent microwave ablation in our department from July 2009 to March 2012. Microwave ablation was carried out using microwave antenna (16G) under local anesthesia. Nodule volume, thyroid function and clinical symptoms were evaluated before treatment and at 1, 3, more than 6 months. The study was ethics committee approved and written informed consents were obtained from all patients. Results: All thyroid nodules significantly decreased in size after microwave ablation. A 6-month follow-up was achieved in 254 of 477 nodules, and the mean decrease in the volume of thyroid nodules was from 2.13 ± 4.42 ml to 0.45 ± 0.90 ml, with a mean percent decrease of 0.65 ± 0.65. A volume-reduction ratio greater than 50% was observed in 82.3% (209/254) of index nodules, and 30.7% (78/254) of index nodules disappeared 6-month after the ablation. The treatment was well tolerated and no major complications were observed except pain and transient voice changes. Conclusions: Microwave ablation seems to be a safe and effective technique for the treatment of benign thyroid nodules. Further prospective randomized studies are needed to define the role of the procedure in the treatment of thyroid nodules.

  5. Development of a personalized training system using the Lung Image Database Consortium and Image Database resource Initiative Database.

    Science.gov (United States)

    Lin, Hongli; Wang, Weisheng; Luo, Jiawei; Yang, Xuedong

    2014-12-01

    The aim of this study was to develop a personalized training system using the Lung Image Database Consortium (LIDC) and Image Database resource Initiative (IDRI) Database, because collecting, annotating, and marking a large number of appropriate computed tomography (CT) scans, and providing the capability of dynamically selecting suitable training cases based on the performance levels of trainees and the characteristics of cases are critical for developing a efficient training system. A novel approach is proposed to develop a personalized radiology training system for the interpretation of lung nodules in CT scans using the Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) database, which provides a Content-Boosted Collaborative Filtering (CBCF) algorithm for predicting the difficulty level of each case of each trainee when selecting suitable cases to meet individual needs, and a diagnostic simulation tool to enable trainees to analyze and diagnose lung nodules with the help of an image processing tool and a nodule retrieval tool. Preliminary evaluation of the system shows that developing a personalized training system for interpretation of lung nodules is needed and useful to enhance the professional skills of trainees. The approach of developing personalized training systems using the LIDC/IDRL database is a feasible solution to the challenges of constructing specific training program in terms of cost and training efficiency. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  6. Role of baseline nodule density and changes in density and nodule features in the discrimination between benign and malignant solid indeterminate pulmonary nodules

    NARCIS (Netherlands)

    Xu, D.M.; van Klaveren, R.J.; de Bock, G.H.; Leusveld, A.L.M.; Dorrius, M.D.; Zhao, Y.; Wang, Y.; de Koning, H.J.; Scholten, E.T.; Verschakelen, J.; Prokop, M.; Oudkerk, M.

    Purpose: To retrospectively evaluate whether baseline nodule density or changes in density or nodule features could be used to discriminate between benign and malignant solid indeterminate nodules. Materials and methods: Solid indeterminate nodules between 50 and 500 mm(3) (4.6-9.8 mm) were assessed

  7. Radiation dose reduction to the male gonads during MDCT: the effectiveness of a lead shield.

    Science.gov (United States)

    Hohl, Christian; Mahnken, Andreas H; Klotz, Ernst; Das, Marco; Stargardt, Achim; Mühlenbruch, Georg; Schmidt, Thorsten; Günther, Rolf W; Wildberger, Joachim E

    2005-01-01

    Our study was designed to quantify the effect of a standard gonad shield on the testicular radiation exposure due to scatter during routine abdominopelvic MDCT. Routine abdominopelvic MDCT was performed in 34 patients with gonadal lead shielding and 32 patients without this shielding; the testes were not exposed to the direct beam during the examination. We estimated the testicular dose administered with thermoluminescent dosimetry, taking into account each patient's body weight and body mass index (BMI). With a 1-mm lead shield, the mean testicular dose was reduced from 2.40 to 0.32 mSv, a reduction of 87%. The difference was found to be statistically significant (p Shielding the male gonads reduces the testicular radiation dose during abdominopelvic MDCT significantly and can be recommended for routine use.

  8. Polyarteritis nodosa: MDCT as a 'One-Stop Shop' Modality for Whole-Body Arterial Evaluation

    International Nuclear Information System (INIS)

    Tsai, W.-L.; Tsai, I-C.; Lee Tain; Hsieh, C.-W.

    2008-01-01

    Polyarteritis nodosa is a rare disease, which is characterized by aneurysm formation and occlusion in the arteries of multiple systems. Due to its extensive involvement, whole-body evaluation is necessary for diagnosis and treatment monitoring. We report a case of polyarteritis nodosa using multidetector-row computed tomography (MDCT) as a 'one-stop shop' modality for whole-body arterial evaluation. With precise protocol design, MDCT can be used as a reliable noninvasive modality providing comprehensive whole-body arterial evaluation.

  9. Hypervascular hyperplastic nodules appearing in chronic alcoholic liver disease: benign intrahepatic nodules mimicking hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Park, Won Kyu; Chang, Jay Chun; Kim, Jae Woon

    2006-01-01

    Hypervascular hyperplastic nodules in those patients with chronic alcoholic liver disease and who are hepatitis B and C negative have recently been reported on. The purpose of this study was to correlate the radiologic and pathologic findings with the clinical significance of these hypervascular hyperplastic nodules in chronic alcoholic liver disease. The study included eight hypervascular nodules of seven patients with chronic alcoholic liver disease, and these patients abused alcohol for more than 20 years. Eight hypervascular nodules were seen on the arterial phase of dynamic CT scans, but the possibility of HCC was excluded pathologically (n=4) or clinically. The radiologic and pathologic findings, and the changes of these nodules on follow up CT scans were retrospectively analyzed. All nodules showed good enhancement on the arterial phase. The tissue equilibrium phase of the dynamic CT scans showed isodensity in seven patients and low density in one patient. Ultrasound scans revealed hypoechoic findings for three nodules, isoechoic findings for two nodules, hyperechoic findings for one nodules, and two nodules were not detected. Angiograms (n=6) showed late incremental tumor staining, and all the nodules were well seen on the sinusoidal phase. CT during hepatic angiography (n=4) showed well stained tumor. CT during arterial portography (n=4) showed no defect in three nodules and nodular defect in on nodule. The MR images (n=3) showed low signal intensity in two nodules and iso-signal intensity in one nodule on T2WI. Five of six cases for which follow up CT scans were performed showed decrease in size and one was disappeared. Radiologically, it is often difficult to differentiate the hypervascular hyperplastic nodules seen in the chronic alcoholic liver disease from hepatocellular carcinoma, and histological confirmation is needed for excluded hepatocellular carcinoma. However, late tumor staining during the sinusoidal phase without any blood supply by feeding

  10. Hypervascular hyperplastic nodules appearing in chronic alcoholic liver disease: benign intrahepatic nodules mimicking hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Kyu; Chang, Jay Chun; Kim, Jae Woon [College of Medicine, Yeungnam University, Daegu (Korea, Republic of)] (and others)

    2006-02-15

    Hypervascular hyperplastic nodules in those patients with chronic alcoholic liver disease and who are hepatitis B and C negative have recently been reported on. The purpose of this study was to correlate the radiologic and pathologic findings with the clinical significance of these hypervascular hyperplastic nodules in chronic alcoholic liver disease. The study included eight hypervascular nodules of seven patients with chronic alcoholic liver disease, and these patients abused alcohol for more than 20 years. Eight hypervascular nodules were seen on the arterial phase of dynamic CT scans, but the possibility of HCC was excluded pathologically (n=4) or clinically. The radiologic and pathologic findings, and the changes of these nodules on follow up CT scans were retrospectively analyzed. All nodules showed good enhancement on the arterial phase. The tissue equilibrium phase of the dynamic CT scans showed isodensity in seven patients and low density in one patient. Ultrasound scans revealed hypoechoic findings for three nodules, isoechoic findings for two nodules, hyperechoic findings for one nodules, and two nodules were not detected. Angiograms (n=6) showed late incremental tumor staining, and all the nodules were well seen on the sinusoidal phase. CT during hepatic angiography (n=4) showed well stained tumor. CT during arterial portography (n=4) showed no defect in three nodules and nodular defect in on nodule. The MR images (n=3) showed low signal intensity in two nodules and iso-signal intensity in one nodule on T2WI. Five of six cases for which follow up CT scans were performed showed decrease in size and one was disappeared. Radiologically, it is often difficult to differentiate the hypervascular hyperplastic nodules seen in the chronic alcoholic liver disease from hepatocellular carcinoma, and histological confirmation is needed for excluded hepatocellular carcinoma. However, late tumor staining during the sinusoidal phase without any blood supply by feeding

  11. Histoplasmosis lung. Primary pulmonary infection: histoplasmoma

    International Nuclear Information System (INIS)

    Massaro C Maurizio; Diaz Pacheco, Carlos; Roldan, Miguel

    2005-01-01

    Histoplasmosis is a primarily pulmonary originated mycosis which is acquired by inhalation. In the majority of the cases infection goes unnoticed or gets manifested by slight respiratory symptoms. Histoplasmoma is a relatively common form of acute lung histoplasmosis, in form of nodules, which is generally accompanied by calcification that can increase in size and simulate a lung neoplasia. This article describes a case of an immunocompromised patient with this kind of pulmonary mycosis

  12. Demonstration of vascular abnormalities compressing esophagus by MDCT: Special focus on dysphagia lusoria

    Energy Technology Data Exchange (ETDEWEB)

    Alper, Fatih [Department of Radiology, Medical Faculty, Atatuerk University, Erzurum (Turkey)]. E-mail: fatihrad@yahoo.com; Akgun, Metin [Department of Chest Diseases, Medical Faculty, Atatuerk University, Erzurum (Turkey); Kantarci, Mecit [Department of Radiology, Medical Faculty, Atatuerk University, Erzurum (Turkey); Eroglu, Atilla [Department of Thoracic Surgery, Medical Faculty, Atatuerk University, Erzurum (Turkey); Ceyhan, Elvan [Department of Mathematics, College of Arts and Sciences, Koc University, Istanbul (Turkey); Onbas, Omer [Department of Radiology, Medical Faculty, Atatuerk University, Erzurum (Turkey); Duran, Cihan [Department of Radiology, Florence Nightingale Hospital, Istanbul (Turkey); Okur, Adnan [Department of Radiology, Medical Faculty, Atatuerk University, Erzurum (Turkey)

    2006-07-15

    Purpose: Dysphagia lusoria (DL) is described in the literature as difficulty in swallowing caused by vascular abnormalities. The most common cause is an aberrant right subclavian artery (SCA) which passes behind the esophagus and is also called arteria lusoria (AL). Our aim was to demonstrate the use of multidetector computed tomography (MDCT) in the diagnosis of AL, as there is no comprehensive study investigating the role of MDCT in such cases. Material and methods: A total of 38 consecutive patients, comprising of 23 females (61%) and 15 males (39%), who had extrinsic compression were included in the study. These patients are selected from the cases who were admitted due to their gastrointestinal symptoms, such as dysphagia, epigastric pain, chronic nausea, vomiting, etc. The mean age of patients was 40 {+-} 25 years (range 15-65). Following barium esophagogram and then endoscopy performed, MDCT angiography was carried out on the same or the following few days. MDCT sections were examined to determine the following: presence of vascular abnormality; the diameter and angle of that vascular structure; and the compressed area of esophagus. Radiological findings and dysphagia scores were also compared. Results: In each of 15 cases, there was a compression due to vascular abnormality which were all located between the esophagus and the spine. There was an esophageal compression in each of 12 cases, due to right aberrant SCA, in one case due to right superior aortic arch and in two cases due to both right aortic arch and left SCA with Kommerell's diverticulum. The mean diameter and the angle of AL were 16.4 mm and 48.8{sup o}, respectively, and the mean area of pressured esophagus was 194.7 mm{sup 2}. Dysphagia scores of the cases was 1 in thirteen cases and 2 in two cases. However, dysphagia scores were not correlated with these parameters. Conclusions: MDCT angiography is a useful diagnostic tool for evaluation of patients with dysphagia, especially caused by a

  13. Demonstration of vascular abnormalities compressing esophagus by MDCT: Special focus on dysphagia lusoria

    International Nuclear Information System (INIS)

    Alper, Fatih; Akgun, Metin; Kantarci, Mecit; Eroglu, Atilla; Ceyhan, Elvan; Onbas, Omer; Duran, Cihan; Okur, Adnan

    2006-01-01

    Purpose: Dysphagia lusoria (DL) is described in the literature as difficulty in swallowing caused by vascular abnormalities. The most common cause is an aberrant right subclavian artery (SCA) which passes behind the esophagus and is also called arteria lusoria (AL). Our aim was to demonstrate the use of multidetector computed tomography (MDCT) in the diagnosis of AL, as there is no comprehensive study investigating the role of MDCT in such cases. Material and methods: A total of 38 consecutive patients, comprising of 23 females (61%) and 15 males (39%), who had extrinsic compression were included in the study. These patients are selected from the cases who were admitted due to their gastrointestinal symptoms, such as dysphagia, epigastric pain, chronic nausea, vomiting, etc. The mean age of patients was 40 ± 25 years (range 15-65). Following barium esophagogram and then endoscopy performed, MDCT angiography was carried out on the same or the following few days. MDCT sections were examined to determine the following: presence of vascular abnormality; the diameter and angle of that vascular structure; and the compressed area of esophagus. Radiological findings and dysphagia scores were also compared. Results: In each of 15 cases, there was a compression due to vascular abnormality which were all located between the esophagus and the spine. There was an esophageal compression in each of 12 cases, due to right aberrant SCA, in one case due to right superior aortic arch and in two cases due to both right aortic arch and left SCA with Kommerell's diverticulum. The mean diameter and the angle of AL were 16.4 mm and 48.8 o , respectively, and the mean area of pressured esophagus was 194.7 mm 2 . Dysphagia scores of the cases was 1 in thirteen cases and 2 in two cases. However, dysphagia scores were not correlated with these parameters. Conclusions: MDCT angiography is a useful diagnostic tool for evaluation of patients with dysphagia, especially caused by a vascular

  14. Usefulness of multidetector computed tomography (MDCT) for the initial evaluation of multiple blunt trauma of the trunk

    International Nuclear Information System (INIS)

    Hagiwara, Shuichi; Ogino, Takashi; Isaka, Akira; Takahashi, Yuga; Nameki, Tarou; Kagoshima, Kaie; Yamada, Takurou; Ishihara, Kouichi; Iino, Yuichi

    2008-01-01

    Focused assessment with sonography for trauma (FAST) is useful for detecting hemoperitoneum (HE) in trauma patients in the emergency room (ER), but, patients' condition cannot be evaluated adequately by FAST alone. CT is useful for the diagnosis of multiple trauma, but has certain drawbacks. We evaluated the utility of multidetector computed tomography (MDCT) as the initial tool for proper diagnosis and treatment planning of multiple trauma patients. We retrospectively analyzed 128 cases treated in ER of Gunma University Hospital between April 1, 2005 and December 31, 2006, and they were hospital patients were hospitalized with blunt multiple trauma. We analyzed the sensitivity, specificity, and accuracy of FAST, compiled MDCT finding, lifesaving treatment, and outcome. Eight patients were FAST positive, and 7 of the 8 were scanned by MDCT. There were 120 patients were FAST negative patients, 23 of the 120 were MDCT-negative, despite visceral injury, however 9 of the 120 had visceral injury by MDCT findings. Damage control surgery without MDCT was performed in one case, but the patient died after surgery. Six of the patients in the HE-positive group had really HE. One of the 6 died while a waiting surgery, transcatheter arterial embolization (TAE) was performed in three patients, and one person out of the 3 died. The course of the remaining 2 patients was monitored, and they are alive. A patient in the HE-negative group with bladder rupture required surgery. There were 120 patients in the FAST-negative group. One of the 6 patients in the HE-positive subgroup died while a waiting surgery. One patient required chest and pericardial drainage. TAE was performed in 2 patients, and the remaining 6 were monitored and are alive. There were 23 FAST-negative patients patients who had visceral injury. Five of them required chest drainage, one received TAE, 17 were monitored, and all of the 23 are alive. There were 14 cases of pelvic fracture alone, and all of them were FAST

  15. TH-AB-207A-12: CT Lung Cancer Screening and the Effects of Further Dose Reduction On CAD Performance

    International Nuclear Information System (INIS)

    Young, S; Lo, P; Hoffman, J; Kim, H; Hsu, W; Flores, C; Lee, G; Brown, M; McNitt-Gray, M

    2016-01-01

    Purpose: CT lung screening is already performed at low doses. In this study, we investigated the effects of further dose reduction on a lung-nodule CAD detection algorithm. Methods: The original raw CT data and images from 348 patients were obtained from our local database of National Lung Screening Trial (NLST) cases. 61 patients (17.5%) had at least one nodule reported on the NLST reader forms. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, a CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST forms. Sensitivities and false-positive rates (FPR) were calculated for each dose level, with a sub-analysis by nodule LungRADS category. Results: For larger category 4 nodules, median sensitivities were 100% at all three dose levels, and mean sensitivity decreased with dose. For the more challenging category 2 and 3 nodules, the dose dependence was less obvious. Overall, mean subject-level sensitivity varied from 38.5% at 100% dose to 40.4% at 50% dose, a difference of only 1.9%. However, median FPR quadrupled from 1 per case at 100% dose to 4 per case at 25% dose. Conclusions: Dose reduction affected nodule detectability differently depending on the LungRADS category, and FPR was very sensitive at sub-screening levels. Care should be taken to adapt CAD for the very challenging noise characteristics of screening. Funding support: NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens

  16. TH-AB-207A-12: CT Lung Cancer Screening and the Effects of Further Dose Reduction On CAD Performance

    Energy Technology Data Exchange (ETDEWEB)

    Young, S; Lo, P; Hoffman, J; Kim, H; Hsu, W; Flores, C; Lee, G; Brown, M; McNitt-Gray, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: CT lung screening is already performed at low doses. In this study, we investigated the effects of further dose reduction on a lung-nodule CAD detection algorithm. Methods: The original raw CT data and images from 348 patients were obtained from our local database of National Lung Screening Trial (NLST) cases. 61 patients (17.5%) had at least one nodule reported on the NLST reader forms. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, a CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST forms. Sensitivities and false-positive rates (FPR) were calculated for each dose level, with a sub-analysis by nodule LungRADS category. Results: For larger category 4 nodules, median sensitivities were 100% at all three dose levels, and mean sensitivity decreased with dose. For the more challenging category 2 and 3 nodules, the dose dependence was less obvious. Overall, mean subject-level sensitivity varied from 38.5% at 100% dose to 40.4% at 50% dose, a difference of only 1.9%. However, median FPR quadrupled from 1 per case at 100% dose to 4 per case at 25% dose. Conclusions: Dose reduction affected nodule detectability differently depending on the LungRADS category, and FPR was very sensitive at sub-screening levels. Care should be taken to adapt CAD for the very challenging noise characteristics of screening. Funding support: NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens

  17. Telomerase in lung cancer diagnostics

    International Nuclear Information System (INIS)

    Kovkarova, E.; Stefanovski, T.; Dimov, A.; Naumovski, J.

    2003-01-01

    Background. Telomerase is a ribonucleoprotein that looks after the telomeric cap of the linear chromosomes maintaining its length. It is over expressed in tumour tissues, but not in normal somatic cells. Therefore the aim of this study was to determine the telomerase activity in lung cancer patients as novel marker for lung cancer detection evaluating the influence of tissue/cell obtaining technique. Material and methods. Using the TRAP (telomeric repeat amplification protocol), telomerase activity was determined in material obtained from bronchobiopsy (60 lung cancer patients compared with 20 controls) and washings from transthoracic fine needle aspiration biopsy performed in 10 patients with peripheral lung tumours. Results. Telomerase activity was detected in 75% of the lung cancer bronchobyopsies, and in 100% in transthoracic needle washings. Conclusions. Measurement of telomerase activity can contribute in fulfilling the diagnosis of lung masses and nodules suspected for lung cancer. (author)

  18. Search for Nodulation and Nodule Development-related cystatin genes in the genome of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Songli Yuan

    2016-10-01

    Full Text Available Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97~245 amino acid residues, different isoelectric points (pI and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS - specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16 was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to

  19. Neglectable benefit of searching for incidental findings in the Dutch-Belgian lung cancer screening trial (NELSON) using low-dose multidetector CT

    International Nuclear Information System (INIS)

    Wiel, J.C.M. van de; Wang, Y.; Xu, D.M.; Zaag-Loonen, H.J. van der; Jagt, E.J. van der; Oudkerk, M.; Klaveren, R.J. van

    2007-01-01

    The purpose of this study was to prospectively determine the frequency and spectrum of incidental findings (IFs) and their clinical implications in a high risk population for lung cancer undergoing low-dose multidetector computed tomography (MDCT) screening for lung cancer. Scans of 1,929 participants were evaluated for lung lesions and IFs by two radiologists. IFs were categorised as not clinically relevant or possibly clinically relevant. Findings were considered possibly clinically relevant if they could require further evaluation or could have substantial clinical implications. All possibly clinically relevant IFs were reviewed by a third radiologist, who determined its clinical relevance. Of all 1,929 participants, 1,410 (73%) had not clinically relevant IFs and 163 (8%) had possibly clinically relevant IFs of which 129 (79%) were indeed considered clinically relevant. Additional imaging was performed mainly by ultrasound (112 of 118, 96%). All but one lesion were concluded to be benign, mostly cysts (n = 115, 80%). Only 21 (1%) participants had findings with clinical implications. In one participant a malignancy was found, yet without any clinical benefit since no curative treatment was possible. Based on our results, we advise against systematically searching for and reporting of IFs in lung cancer screening studies using low-dose MDCT. (orig.)

  20. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules

    NARCIS (Netherlands)

    Kohlen, W.; Ng, Jason Liang Pin; Deinum, E.E.; Mathesius, Ulrike

    2018-01-01

    Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-studied types are called indeterminate and determinate nodules.

  1. Liver imaging with MDCT and high concentration contrast media

    International Nuclear Information System (INIS)

    Spielmann, Audrey L.

    2003-01-01

    Liver imaging has advanced greatly over the last 10 years with helical CT capability and more recently the addition of multidetector-row CT (MDCT). Multidetector CT technology facilitates imaging at faster speeds with improved image quality and less breathing artifact [Abdom. Imaging 25 (2000) 643]. Exquisite three-dimensional data sets can be obtained with thin collimation providing improved lesion detection, multiplanar imaging, and the ability to perform CT angiography of the liver and mesenteric vessels. New challenges arise with this advance in technology including safety considerations. The radiation dose to the patient has increased with MDCT and this is compounded by the ability to perform multi-phase liver imaging. Furthermore, issues of contrast media administration require reconsideration including optimal timing and rate of administration, the total volume of contrast needed and the ideal iodine concentration of the contrast media. Recently, the use of high concentration contrast media (HCCM) has been explored and study results to date will be reviewed

  2. Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection.

    Science.gov (United States)

    Dou, Qi; Chen, Hao; Yu, Lequan; Qin, Jing; Heng, Pheng-Ann

    2017-07-01

    False positive reduction is one of the most crucial components in an automated pulmonary nodule detection system, which plays an important role in lung cancer diagnosis and early treatment. The objective of this paper is to effectively address the challenges in this task and therefore to accurately discriminate the true nodules from a large number of candidates. We propose a novel method employing three-dimensional (3-D) convolutional neural networks (CNNs) for false positive reduction in automated pulmonary nodule detection from volumetric computed tomography (CT) scans. Compared with its 2-D counterparts, the 3-D CNNs can encode richer spatial information and extract more representative features via their hierarchical architecture trained with 3-D samples. More importantly, we further propose a simple yet effective strategy to encode multilevel contextual information to meet the challenges coming with the large variations and hard mimics of pulmonary nodules. The proposed framework has been extensively validated in the LUNA16 challenge held in conjunction with ISBI 2016, where we achieved the highest competition performance metric (CPM) score in the false positive reduction track. Experimental results demonstrated the importance and effectiveness of integrating multilevel contextual information into 3-D CNN framework for automated pulmonary nodule detection in volumetric CT data. While our method is tailored for pulmonary nodule detection, the proposed framework is general and can be easily extended to many other 3-D object detection tasks from volumetric medical images, where the targeting objects have large variations and are accompanied by a number of hard mimics.

  3. Role of Computer Aided Diagnosis (CAD in the detection of pulmonary nodules on 64 row multi detector computed tomography

    Directory of Open Access Journals (Sweden)

    K Prakashini

    2016-01-01

    Full Text Available Aims and Objectives: To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. Materials and Methods: A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP rate of CAD software was calculated. Observations and Results: Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2% and 202 (91.4% by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4% and nodules in hilar (100% and central (96.5% location when compared to RAD′s performance. Conclusion: CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD′s performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.

  4. Role of Computer Aided Diagnosis (CAD) in the detection of pulmonary nodules on 64 row multi detector computed tomography.

    Science.gov (United States)

    Prakashini, K; Babu, Satish; Rajgopal, K V; Kokila, K Raja

    2016-01-01

    To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location. A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated. Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4-10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance. CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.

  5. Automated detection of pulmonary nodules in CT images with support vector machines

    Science.gov (United States)

    Liu, Lu; Liu, Wanyu; Sun, Xiaoming

    2008-10-01

    Many methods have been proposed to avoid radiologists fail to diagnose small pulmonary nodules. Recently, support vector machines (SVMs) had received an increasing attention for pattern recognition. In this paper, we present a computerized system aimed at pulmonary nodules detection; it identifies the lung field, extracts a set of candidate regions with a high sensitivity ratio and then classifies candidates by the use of SVMs. The Computer Aided Diagnosis (CAD) system presented in this paper supports the diagnosis of pulmonary nodules from Computed Tomography (CT) images as inflammation, tuberculoma, granuloma..sclerosing hemangioma, and malignant tumor. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of SVMs classifiers. The achieved classification performance was 100%, 92.75% and 90.23% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  6. Usefulness of virtual images of the visceral pleura in identifying the localization of peripheral small pulmonary nodules intraoperatively

    International Nuclear Information System (INIS)

    Kambayashi, Takatoyo

    2011-01-01

    The objective of this study was to assess the usefulness of virtual images of the visceral pleura in identifying the localization of peripheral small pulmonary nodules intraoperatively. We examined 12 cases with 12 peripheral small pulmonary nodules between 2008 and 2010. All lesions were predicted to be difficult to identify during surgery, and virtual images of the visceral pleura were made and evaluated before surgery. We predicted the usefulness of virtual images of the visceral pleura in identifying the localization of peripheral small pulmonary nodules. The mean maximum dimensions were 10.5±4.36 mm. The mean depth from the visceral pleura was 4.0±4.67 mm. The lesions were the solid type in 6 cases and the ground-glass opacity type in 6 cases. In 7 cases primary lung cancer was present, while the other 5 cases had only benign lesions. In all cases, changes in the visceral pleura could be identified with virtual images of the visceral pleura before surgery. We identified 7 lesions out of 12 intraoperatively. The reasons for the failure to identify the lesions were an inability to adequately observe the visceral pleura because of pleural adhesion, or failure to perform single lung ventilation in 3 cases. Another reason was that the changes in the visceral pleura were too minor to identify intraoperatively (2 cases). Virtual images of the visceral pleura may be useful for identifying the localization of peripheral small pulmonary nodules, and the prediction of whether or not the identification of lesions is possible intraoperatively, without preoperative marking in order to identify peripheral pulmonary nodules. (author)

  7. The relationship between the peripheral lung cancer and the bronchi, pulmonary artery and vein: a multislice helical CT observation

    International Nuclear Information System (INIS)

    Liu Xueguo; Liang Mingzhu; Chen Cuifen; Qin Peixin; Zhong Guomei; He Yanguo; Liu Xiaobing; Han Mingqun; Yi Xianping; Wang Yong; Zhang Hao

    2008-01-01

    Objective: To investigate the relationships between the peripheral lung cancer and pulmonary vessels or bronchi by 16-row multislice computed tomography (MSCT) and analyze the related factors. Methods: Fifty-four patients with peripheral lung cancer confirmed pathologically underwent contrast-enhanced MSCT. Multiplanar reformation (MPR) and maximum intensity projection (MIP) in all patients were used to demonstrate the relationships between the peripheral lung cancer and pulmonary vessels, bronchi. The relationships were categorized five types: Type 1, erupted at the edge of nodule. Type 2, erupted at the center of nodule. Type 3, penetrated through the nodule. Type 4, contacting the nodule but stretched or encased. Type 5, contacting the nodule but smoothly compressed. The pathology type, stage, size, density and location of the peripheral lung cancer were recorded and the relationships with five types were evaluated by using Chi-square test and correlation analysis. Results: (1) Tumor-bronchi relationship: type 1 (33,61.1%) was more often seen in ≥2.0 cm and solid lesions with stage II-IV, while Type 2(14,25.9%) was often seen in < 2.0 cm and part-solid or non-solid lesions with stage I. (2) Tumor-PA relationship: Type 1 was more often seen in ≥2.0 cm and solid lesions with stage II-IV, while Type 2 was often seen in part-solid or non-solid lesions with stage I. (3) Tumor-PV relationship: type 4 was the most common type (29, 53.7%). Type 2 (13, 24.1%) was more often seen in part-solid or non-solid lesions. (4) Tumor-bronchi relationship and tumor-PA relationship had a positive correlation (r0.5265, P<0.01). Conclusions: MSCT can demonstrate the relations between the peripheral lung cancer and bronchi, PA and PV. It is useful for the differential diagnosis and prognosis evaluation of the lung cancer. (authors)

  8. ESR/ERS white paper on lung cancer screening

    Energy Technology Data Exchange (ETDEWEB)

    Kauczor, Hans-Ulrich; Stackelberg, Oyunbileg von [University Hospital Heidelberg, Dept of Diagnostic and Interventional Radiology, Heidelberg (Germany); Member of the German Lung Research Center, Translational Lung Research Center, Heidelberg (Germany); Bonomo, Lorenzo [A. Gemelli University Hospital, Institute of Radiology, Rome (Italy); Gaga, Mina [Athens Chest Hospital, 7th Resp. Med. Dept and Asthma Center, Athens (Greece); Nackaerts, Kristiaan [KU Leuven-University of Leuven, University Hospitals Leuven, Department of Respiratory Diseases/Respiratory Oncology Unit, Leuven (Belgium); Peled, Nir [Tel Aviv University, Davidoff Cancer Center, Rabin Medical Center, Tel Aviv (Israel); Prokop, Mathias [Radboud University Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Remy-Jardin, Martine [Department of Thoracic Imaging, Hospital Calmette (EA 2694), CHRU et Universite de Lille, Lille (France); Sculier, Jean-Paul [Universite Libre de Bruxelles, Thoracic oncology, Institut Jules Bordet, Brussels (Belgium); Collaboration: on behalf of the European Society of Radiology (ESR) and the European Respiratory Society (ERS)

    2015-09-15

    Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low-dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low-dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and a quality assurance plan. The establishment of a central registry, including a biobank and an image bank, and preferably on a European level, is strongly encouraged. (orig.)

  9. ESR/ERS white paper on lung cancer screening

    International Nuclear Information System (INIS)

    Kauczor, Hans-Ulrich; Stackelberg, Oyunbileg von; Bonomo, Lorenzo; Gaga, Mina; Nackaerts, Kristiaan; Peled, Nir; Prokop, Mathias; Remy-Jardin, Martine; Sculier, Jean-Paul

    2015-01-01

    Lung cancer is the most frequently fatal cancer, with poor survival once the disease is advanced. Annual low-dose computed tomography has shown a survival benefit in screening individuals at high risk for lung cancer. Based on the available evidence, the European Society of Radiology and the European Respiratory Society recommend lung cancer screening in comprehensive, quality-assured, longitudinal programmes within a clinical trial or in routine clinical practice at certified multidisciplinary medical centres. Minimum requirements include: standardised operating procedures for low-dose image acquisition, computer-assisted nodule evaluation, and positive screening results and their management; inclusion/exclusion criteria; expectation management; and smoking cessation programmes. Further refinements are recommended to increase quality, outcome and cost-effectiveness of lung cancer screening: inclusion of risk models, reduction of effective radiation dose, computer-assisted volumetric measurements and assessment of comorbidities (chronic obstructive pulmonary disease and vascular calcification). All these requirements should be adjusted to the regional infrastructure and healthcare system, in order to exactly define eligibility using a risk model, nodule management and a quality assurance plan. The establishment of a central registry, including a biobank and an image bank, and preferably on a European level, is strongly encouraged. (orig.)

  10. Noninvasive evaluation of active lower gastrointestinal bleeding: comparison between contrast-enhanced MDCT and 99mTc-labeled RBC scintigraphy.

    Science.gov (United States)

    Zink, Stephen I; Ohki, Stephen K; Stein, Barry; Zambuto, Domenic A; Rosenberg, Ronald J; Choi, Jenny J; Tubbs, Daniel S

    2008-10-01

    The purpose of our study was to compare contrast-enhanced MDCT and (99m)Tc-labeled RBC scanning for the evaluation of active lower gastrointestinal bleeding. Over 17 months, 55 patients (32 men, 23 women; age range, 21-92 years) were evaluated prospectively with contrast-enhanced MDCT using 100 mL of iopromide 300 mg I/mL. Technetium-99m-labeled RBC scans were obtained on 41 of 55 patients and select patients underwent angiography for attempted embolization. Each imaging technique was reviewed in a blinded fashion for sensitivity for detection of active bleeding as well as the active lower gastrointestinal bleeding location. Findings were positive on both examinations in eight patients and negative on both examinations in 20 patients. Findings were positive on contrast-enhanced MDCT and negative on (99m)Tc-labeled RBC in two patients; findings were negative on contrast-enhanced MDCT and positive on (99m)Tc-labeled RBC in 11 patients. Statistics showed significant disagreement, with simple agreement = 68.3%, kappa = 0.341, and p = 0.014. Sixteen of 60 (26.7%) contrast-enhanced MDCT scans were positive prospectively, with all accurately localizing the site of bleeding and identification of the underlying lesion in eight of 16 (50%). Nineteen of 41 (46.3%) (99m)Tc-labeled RBC scans were positive. Eighteen of 41 matched patients went on to angiography. In four of these 18 (22.2%) patients, the site of bleeding was confirmed by angiography, but in 14 of 18 (77.8%), the findings were negative. Contrast-enhanced MDCT and (99m)Tc-labeled RBC scanning show significant disagreement for evaluation of active lower gastrointestinal bleeding. Contrast-enhanced MDCT appears effective for detection and localization in cases of active lower gastrointestinal bleeding in which hemorrhage is active at the time of CT.

  11. Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database

    International Nuclear Information System (INIS)

    Jacobs, Colin; Prokop, Mathias; Rikxoort, Eva M. van; Ginneken, Bram van; Murphy, Keelin; Schaefer-Prokop, Cornelia M.

    2016-01-01

    To benchmark the performance of state-of-the-art computer-aided detection (CAD) of pulmonary nodules using the largest publicly available annotated CT database (LIDC/IDRI), and to show that CAD finds lesions not identified by the LIDC's four-fold double reading process. The LIDC/IDRI database contains 888 thoracic CT scans with a section thickness of 2.5 mm or lower. We report performance of two commercial and one academic CAD system. The influence of presence of contrast, section thickness, and reconstruction kernel on CAD performance was assessed. Four radiologists independently analyzed the false positive CAD marks of the best CAD system. The updated commercial CAD system showed the best performance with a sensitivity of 82 % at an average of 3.1 false positive detections per scan. Forty-five false positive CAD marks were scored as nodules by all four radiologists in our study. On the largest publicly available reference database for lung nodule detection in chest CT, the updated commercial CAD system locates the vast majority of pulmonary nodules at a low false positive rate. Potential for CAD is substantiated by the fact that it identifies pulmonary nodules that were not marked during the extensive four-fold LIDC annotation process. (orig.)

  12. Follow-up of coronary artery bypass graft patency: diagnostic efficiency of high-pitch dual-source 256-slice MDCT findings.

    Science.gov (United States)

    Yuceler, Zeyneb; Kantarci, Mecit; Yuce, Ihsan; Kizrak, Yesim; Bayraktutan, Ummugulsum; Ogul, Hayri; Kiris, Adem; Celik, Omer; Pirimoglu, Berhan; Genc, Berhan; Gundogdu, Fuat

    2014-01-01

    Our aim was to evaluate the diagnostic accuracy of 256-slice, high-pitch mode multidetector computed tomography (MDCT) for coronary artery bypass graft (CABG) patency. Eighty-eight patients underwent 256-slice MDCT angiography to evaluate their graft patency after CABG surgery using a prospectively synchronized electrocardiogram in the high-pitch spiral acquisition mode. Effective radiation doses were calculated. We investigated the diagnostic accuracy of high-pitch, low-dose, prospective, electrocardiogram-triggering, dual-source MDCT for CABG patency compared with catheter coronary angiography imaging findings. A total of 215 grafts and 645 vessel segments were analyzed. All graft segments had diagnostic image quality. The proximal and middle graft segments had significantly (P < 0.05) better mean image quality scores (1.18 ± 0.4) than the distal segments (1.31 ± 0.5). Using catheter coronary angiography as the reference standard, high-pitch MDCT had the following sensitivity, specificity, positive predictive value, and negative predictive value of per-segment analysis for detecting graft patency: 97.1%, 99.6%, 94.4%, and 99.8%, respectively. In conclusion, MDCT can be used noninvasively with a lower radiation dose for the assessment of restenosis in CABG patients.

  13. Comprehensive cardiovascular ECG-gated MDCT as a standard diagnostic tool in patients with acute chest pain

    Energy Technology Data Exchange (ETDEWEB)

    Runza, G. [Department of Radiology, University of Palermo (Italy)], E-mail: grunza@sirm.org; La Grutta, L.; Alaimo, V. [Department of Radiology, University of Palermo (Italy); Evola, S. [Department of Cardiology, University of Palermo (Italy); Lo Re, F.; Bartolotta, T.V. [Department of Radiology, University of Palermo (Italy); Cademartiri, F. [Department of Radiology and Cardiology, Erasmus Medical Center, Rotterdam (Netherlands); Department of Radiology and Cardiology, Cardiovascular CT Unit, University Hospital, Parma (Italy); Midiri, M. [Department of Radiology, University of Palermo (Italy)

    2007-10-15

    Acute myocardial infarction, pulmonary embolism, and aortic dissection are diseases associated with acute chest pain and may lead to severe morbidity and mortality. These diseases may not be trivial to diagnose in the settings of emergency room. ECG-gated multi-detector computed tomography (MDCT), already established for the assessment of pulmonary embolism and aortic dissection, provides reliable information regarding the triage of patients with acute coronary syndrome in the emergency room. MDCT recently appeared to be logistically feasible and a promising comprehensive method for the evaluation of cardiac and non-cardiac chest pain in emergency department patients. The possibility to scan the entire thorax visualizing the thoracic aorta, the pulmonary arteries, and the coronary arteries could provide a new approach to the triage of acute chest pain. The inherent advantage of MDCT with cardiac state-of-the-art capabilities is the rapid investigation of the main sources of acute chest pain with a high negative predictive value. Recent studies also reports an advantage in terms of costs. With current evidence, the selection of patients with acute chest pain candidates to MDCT should remain restricted to avoid unjustified risk of ionizing radiation.

  14. Comprehensive cardiovascular ECG-gated MDCT as a standard diagnostic tool in patients with acute chest pain

    International Nuclear Information System (INIS)

    Runza, G.; La Grutta, L.; Alaimo, V.; Evola, S.; Lo Re, F.; Bartolotta, T.V.; Cademartiri, F.; Midiri, M.

    2007-01-01

    Acute myocardial infarction, pulmonary embolism, and aortic dissection are diseases associated with acute chest pain and may lead to severe morbidity and mortality. These diseases may not be trivial to diagnose in the settings of emergency room. ECG-gated multi-detector computed tomography (MDCT), already established for the assessment of pulmonary embolism and aortic dissection, provides reliable information regarding the triage of patients with acute coronary syndrome in the emergency room. MDCT recently appeared to be logistically feasible and a promising comprehensive method for the evaluation of cardiac and non-cardiac chest pain in emergency department patients. The possibility to scan the entire thorax visualizing the thoracic aorta, the pulmonary arteries, and the coronary arteries could provide a new approach to the triage of acute chest pain. The inherent advantage of MDCT with cardiac state-of-the-art capabilities is the rapid investigation of the main sources of acute chest pain with a high negative predictive value. Recent studies also reports an advantage in terms of costs. With current evidence, the selection of patients with acute chest pain candidates to MDCT should remain restricted to avoid unjustified risk of ionizing radiation

  15. Micromonospora is a normal occupant of actinorhizal nodules

    Indian Academy of Sciences (India)

    Supplementary table 1. Number of isolates per nodule. Nodule Colonies Average Nodule Colonies Average. AV1 Nodule 1 2 13 EEM Nodule 1 17 9.4. Nodule 2 O Nodule 2 13. Nodule 3 2 Nodule 3 9. AV2 Nodule 1 19 16.1 Nodule 4 7. Nodule 2 25 Nodule 5 18. Nodule 3 38 Nodule 6 4. AV4 Nodule 1 8 14.0 Nodule 7 12.

  16. Bilateral pulmonary nodules in an adult patient with bronchiolitis obliterans-organising pneumonia.

    Science.gov (United States)

    Kopanakis, Antonios; Golias, Christos; Pantentalakis, George; Patentalakis, Michalis; Mermigkis, Charalampos; Mermigkis, Christos; Charalabopoulos, Alexandros; Peschos, Dimitrios; Batistatou, Anna; Charalabopoulos, Konstantinos

    2009-01-01

    A 58-year-old male ex-smoker was admitted to hospital because of nodular infiltrates on chest x rays. He was complaining of fatigue, dyspnoea with exertion, low grade fever and weight loss. Physical examination was unremarkable. Bronchoscopy was inconclusive but revealed endobronchial lesions of chronic active inflammation. The diagnosis of cryptogenic organising pneumonitis bronchiolitis obliterans-organising pneumonia (COP-BOOP) was established by open lung biopsy. Proliferative bronchiolitis with regions of organising pneumonia is the characteristic feature of COP. The radiological picture of bilateral pulmonary nodules is an infrequent manifestation of COP. Lung biopsy, open or with video assistance thoracic surgery, is recommended to confirm the diagnosis.

  17. Differential CT features between malignant mesothelioma and pleural metastasis from lung cancer or extra thoracic primary tumor mimicking malignant mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Il; Ryu, Young Hoon; Lee, Kwang Hun; Choe, Kyu Ok; Kim, Sang Jin [College of Medicine, Yonsei University, Seoul (Korea, Republic of)

    2000-01-01

    To evaluate the differential CT features found among malignant mesothelioma and pleural metastasis from lung cancer and from extra-thoracic primary tumor which on CT mimic malignant mesothelioma. Forty-four patients who on chest CT scans showed pleural thickening suggesting malignant pleural disease and in whom this condition was pathologically confirmed were included in this study. On the basis of their pathologically proven primary disease (malignant mesothelioma (n=3D14), pleural metastasis of lung cancer (n=3D18), extra thoracic primary tumor (n=3D12). They were divided into three groups. Cases of lung which on CT showed a primary lung nodule or endobronchial mass with pleural lesion, or manifested only pleural effusion, were excluded. The following eight CT features were retrospectively analyzed: (1) configuration of pleural lesion (type I, single or multiple separate nodules, type II, localized flat pleural thickening, type III, diffuse flat pleural thickening; type IV, type III with pleural nodules superimposed; type V, mass filling the hemithorax), (2) the presence of pleural effusion, (3) chest wall or rib invasion, (4) the involvement of a major fissure, (5) extra-pleural fat proliferation, (6) calcified plaque, (7) metastatic lymph nodes, (8) metastatic lung modules. In malignant mesothelioma, type IV (8/14) or II (4/14) pleural thickening was relatively frequent. Pleural metastasis of lung cancer favored type IV (8/18) or I (6/18) pleural thickening, while pleural metastasis from extrathoracic primary tumor showed a variable thickening configuration, except type V. Pleural metastasis from lung cancer and extrapleural primary tumor more frequently showed type I configuration than did malignant mesothelioma, and there were significant differences among the three groups. Fissural involvement, on the other hand, was significantly more frequent in malignant mesothelioma than in pleural metastasis from lung cancer or extrapleural primary tumor. Metastatic

  18. Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis.

    Science.gov (United States)

    Mookiah, M R K; Rohrmeier, A; Dieckmeyer, M; Mei, K; Kopp, F K; Noel, P B; Kirschke, J S; Baum, T; Subburaj, K

    2018-04-01

    This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%. This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of healthy/fracture cohort and classification was performed using support vector machine (SVM). The results revealed significant correlations between texture parameters derived from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%. Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.

  19. Detection of occult vertebral fractures by quantitative assessment of bone marrow attenuation values at MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Henes, Frank Oliver, E-mail: f.henes@uke.de [Department of Diagnostic and Interventional Radiology, Center for Radiology and Endoscopy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Groth, Michael [Department of Diagnostic and Interventional Neuroradiology, Center for Radiology and Endoscopy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Kramer, Harald [Department of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377 Munich (Germany); Department of Radiology, University of Wisconsin – Madison, Clinical Science Center, 600 Highland Avenue, Madison, WI 53792 (United States); Schaefer, Christian [Department of Trauma-, Hand- and Reconstructive Surgery, Spine Center, Center for Surgical Sciences, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg (Germany); Regier, Marc; Derlin, Thorsten; Adam, Gerhard; Bannas, Peter [Department of Diagnostic and Interventional Radiology, Center for Radiology and Endoscopy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2014-01-15

    Objectives: To determine a cut-off value of Hounsfield attenuation units (HU) at multidetector computed tomography (MDCT) for valid and reliable detection of bone marrow oedema (BME) related to occult vertebral fractures. Methods: 36 patients underwent both MDCT and Magnetic Resonance Imaging (MRI) for evaluation of vertebral fractures of the thoracolumbar spine and were included in this retrospective study. Two readers independently assessed HU values at MDCT in a total of 196 vertebrae. Reliability was assessed by intraclass correlation coefficient and Bland–Altman analysis. For each patient we determined the vertebra with the lowest HU value and calculated the HU-difference to each other vertebral body. HU-differences were subjected to receiver operating characteristic (ROC) curve analysis to determine the diagnostic accuracy for detection of BME as determined by MRI, which served as the reference standard. Results of HU-measurements were compared with standard visual evaluation of MDCT. Results: HU measurements demonstrated a high interrater reliability (ICC = 0.984). ROC curve analysis (AUC = 0.978) exhibited an ideal cut-off value of 29.6 HU for detection of BME associated with vertebral fractures with an accuracy of 97.4% as compared to 93.4% accuracy of visual evaluation. Particularly, HU-measurements increased the sensitivity for detection of vertebral fractures from 78.0% to 92.7% due to the detection of 7 of 9 occult fractures that were missed by visual evaluation alone. Conclusions: Assessing bone marrow density by HU measurements using the cut-off of 29.6 HU is a valid and reliable tool for detection of BME related to occult vertebral fractures in MDCT. The introduced technique may allow more accurate treatment decisions and may make further diagnostic work-up with MRI unnecessary.

  20. Detection of occult vertebral fractures by quantitative assessment of bone marrow attenuation values at MDCT

    International Nuclear Information System (INIS)

    Henes, Frank Oliver; Groth, Michael; Kramer, Harald; Schaefer, Christian; Regier, Marc; Derlin, Thorsten; Adam, Gerhard; Bannas, Peter

    2014-01-01

    Objectives: To determine a cut-off value of Hounsfield attenuation units (HU) at multidetector computed tomography (MDCT) for valid and reliable detection of bone marrow oedema (BME) related to occult vertebral fractures. Methods: 36 patients underwent both MDCT and Magnetic Resonance Imaging (MRI) for evaluation of vertebral fractures of the thoracolumbar spine and were included in this retrospective study. Two readers independently assessed HU values at MDCT in a total of 196 vertebrae. Reliability was assessed by intraclass correlation coefficient and Bland–Altman analysis. For each patient we determined the vertebra with the lowest HU value and calculated the HU-difference to each other vertebral body. HU-differences were subjected to receiver operating characteristic (ROC) curve analysis to determine the diagnostic accuracy for detection of BME as determined by MRI, which served as the reference standard. Results of HU-measurements were compared with standard visual evaluation of MDCT. Results: HU measurements demonstrated a high interrater reliability (ICC = 0.984). ROC curve analysis (AUC = 0.978) exhibited an ideal cut-off value of 29.6 HU for detection of BME associated with vertebral fractures with an accuracy of 97.4% as compared to 93.4% accuracy of visual evaluation. Particularly, HU-measurements increased the sensitivity for detection of vertebral fractures from 78.0% to 92.7% due to the detection of 7 of 9 occult fractures that were missed by visual evaluation alone. Conclusions: Assessing bone marrow density by HU measurements using the cut-off of 29.6 HU is a valid and reliable tool for detection of BME related to occult vertebral fractures in MDCT. The introduced technique may allow more accurate treatment decisions and may make further diagnostic work-up with MRI unnecessary